
Explaining Semantic Reasoning Using
Argumentation

Carlos Eduardo A. Ferreira1, Alison R. Panisson1(B), Débora C. Engelmann2,4,
Renata Vieira3, Viviana Mascardi4, and Rafael H. Bordini2

1 Department of Computing, UFSC, Florianópolis, Brazil
alison.panisson@ufsc.br

2 School of Technology, PUCRS, Porto Alegre, Brazil
debora.engelmann@edu.pucrs.br, rafael.bordini@pucrs.br

3 CIDEHUS, University of Évora, Evora, Portugal
renatav@uevora.pt

4 DIBRIS, University of Genoa, Genoa, Italy

viviana.mascardi@unige.it

Abstract. Multi-Agent Systems (MAS) are popular because they pro-
vide a paradigm that naturally meets the current demand to design
and implement distributed intelligent systems. When developing a multi-
agent application, it is common to use ontologies to provide the domain-
specific knowledge and vocabulary necessary for agents to achieve the
system goals. In this paper, we propose an approach in which agents can
query semantic reasoners and use the received inferences to build expla-
nations for such reasoning. Also, thanks to an internal representation
of inference rules used to build explanations, in the form of argumenta-
tion schemes, agents are able to reason and make decisions based on the
answers from the semantic reasoner. Furthermore, agents can communi-
cate the built explanation to other agents and humans, using computa-
tional or natural language representations of arguments. Our approach
paves the way towards multi-agent systems able to provide explanations
from the reasoning carried out by semantic reasoners.

Keywords: Argumentation schemes · Multi-agent systems · Semantic
reasoning · Explainability

1 Introduction

Explainability is pointed out as an essential characteristic in artificial intelligence
applications, because it provides users with the necessary information for them
to effectively understand, trust, and manage such applications [20]. The need
for explaining a decision/reasoning/action was discussed as early as the 1970s,
starting with the development of expert systems and the need for those systems
to explain their decisions [1]. Nowadays, explainability becomes an essential

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Dignum et al. (Eds.): PAAMS 2022, LNAI 13616, pp. 153–165, 2022.
https://doi.org/10.1007/978-3-031-18192-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18192-4_13&domain=pdf
https://doi.org/10.1007/978-3-031-18192-4_13


154 C. E. A. Ferreira et al.

characteristic in MAS [40], given that MAS are one of the most powerful
paradigms to implement complex distributed systems powered by artificial intel-
ligence techniques.

Ontologies are known for empowering the execution of semantic reasoners,
providing functionalities such as consistency checking [36]. Also, ontologies make
it possible to share a common understanding of the structure of information
among people and software agents as well as to reuse domain knowledge [17].
Integrating semantic reasoners and ontologies with agents enhances the knowl-
edge representation features and reasoning capabilities of MAS applications [14].
Indeed, one notable possibility resulting from the use of ontologies in MAS is the
capability of software agents to infer new knowledge based on logic rules [25] that
can be applied by semantic reasoners. In this context, although semantic reason-
ers provide the computational steps (logic rules, concepts, etc.) used during infer-
ences for an answer (i.e., query answering systems), they are not user-friendly
explanations, and it would be difficult for users to understand those answers
provided by semantic reasoners. Thus, in this paper, we propose an approach in
which software agents are able to query semantic reasoners to obtain the answer,
containing the trace of computational steps used for a particular inference, then
they are able to translate those computational steps to explanations that can be
communicated to software agents and humans, using computational and natural
language representations of arguments. Our approach is based on the idea that
inference rules, used by semantic reasoners to provide answers to queries, can be
internally represented and stored by agents as argumentation schemes used to
instantiate arguments based on the argumentation-based framework in [28,31].

The contributions of this work are: (i) we propose an approach that enables
agents to query semantic reasoners and explain the received answer to other
software agents or human users, as illustrated in Fig. 1; (ii) our approach allows
the automatic translation of inference rules from answers received when query-
ing semantic reasoners into argumentation schemes written in an Agent Oriented
Programming Language (AOPL) (arrow 1 in Fig. 1). Translating those inferences
into argumentation schemes, like those proposed by [39], bring us two main ben-
efits. First, agents can store in their belief bases the argumentation schemes
extracted from the answers obtained from the semantic reasoner and use them
to instantiate arguments they can use for reasoning and communication (arrow
2 in Fig. 1). Second, using natural language templates for those argumentation
schemes (arrows 3 and 4 in Fig. 1), agents can translate computational argu-
ments into natural language arguments, using them to build natural language
explanations for human users; and (iii) we describe a real-world multi-agent
application for bed allocation in hospitals, exemplifying our approach based on
what we have developed for that application.



Explaining Semantic Reasoning Using Argumentation 155

1
Inferences used by semantic reasoners to provide answers

2 3

Computational representation for Argumentation Schemes

Machine readable explanation for software agentes

Human readable explanation for users in natural language

4
Natural Language Templates for Argumentation Schemes

Fig. 1. Our approach for explaining semantic reasoning

2 Background

2.1 Agent Oriented Programming Languages

Among the many AOPLs and platforms, such as Jason, Jadex, Jack, Agent-
Factory, 2APL, GOAL, Golog, and MetateM, as discussed in [3], we chose the
Jason platform [4] to implement our work. Jason provides excellent concep-
tual/theoretical support; it extends the AgentSpeak language, an abstract logic-
based AOPL introduced by Rao [32], which is one of the best-known languages
inspired by the Beliefs, Desires, Intentions (BDI) architecture. Besides specify-
ing BDI agents with well-defined mental attitudes, the Jason platform has some
other features that are particularly interesting for our work, for example, strong
negation, belief annotations, and (customisable) speech-act based communica-
tion.

2.2 Argumentation Schemes

Argumentation schemes represent reasoning/argument patterns normally found
in daily conversation, as well as in specific argumentation, as scientific argumen-
tation (scientific reports, discourses, etc.) [39]. Argumentation schemes provide a
very elegant manner to represent and analyse these common argument patterns
that are naturally found in the construction of reasoning.

For example, the Argument from role to know in MAS (role to know for
short) from [28,31] is represented as follows:

“Agent ag is currently playing a role R (its position) that implies knowing
things in a certain subject domain S containing proposition A (Major
Premise). ag asserts that A (in domain S) is true (or false) (Minor
Premise). A is true (or false) (Conclusion)”.

In order to allow agents to instantiate arguments from argumentation
schemes, Panisson and colleagues [26–28,31] have proposed a framework to rep-
resent argumentation schemes in Jason multi-agent platform using defeasible
inference rules. For example, the argumentation scheme role to know is repre-
sented in Jason as follows1:
1 Note that argumentation schemes are modelled as agents beliefs, and the annotation
[as(as name)] is used to distinguish argumentation schemes from other beliefs.



156 C. E. A. Ferreira et al.

defeasible_rule(Conclusion,[role(Agent,Role), role_to_know(Role,Domain),

asserts(Agent,Conclusion),about(Conclusion,Domain)])[as(role_to_know)].

where the agents are able to instantiate such argumentation schemes with the
information available to them and to evaluate the acceptability of the conclusion
based on the interactions among such instantiated arguments [28,31].

For example, imagine that an agent ag knows that john (another agent in the
system) is playing the role of doctor—role(john, doctor). Further, ag knows
that doctors know about cancer—role to know(doctor, cancer). Therefore, if
john asserts that “smoking causes cancer”—asserts(john, causes(smoking,
cancer)), and given that causes of cancer are a subject matter related to
cancer—about(causes(smoking, cancer), cancer), ag is able to instantiate the
argumentation scheme role to know, which allows ag to conclude that smok-
ing causes cancer—causes(smoking, cancer), based on the unification func-
tion {Agent �→ john, Role �→ doctor, Domain �→ cancer, Conclusion �→
causes(smoking, cancer)}.

Further, argumentation schemes combined with natural language templates
can be used for translating arguments from a computational representation to
natural language representation [29]. For example, the natural language template
for the argumentation scheme role to know is as follows:

〈“<Agent> is a <Role>, and <Role>s know about <Domain>.
<Agent> asserts <Conclusion>, therefore we should believe that
<Conclusion>”.〉[as(role to know)]

using the same unification function {Agent �→ john, Role �→ doctor, Domain �→
cancer, Conclusion �→ causes(smoking, cancer)}, it is possible to build the
following natural language argument:

〈“john is a doctor, and doctors know about cancer. john asserts
smoking causes cancer, therefore we should believe that smoking
causes cancer”.〉[as(role to know)]

2.3 OWL Ontologies

An ontology is an explicit and formal specification of a shared conceptualisation
consisting of concepts or classes, relationships, instances, attributes, axioms,
restrictions, rules, and events [18,38]. Currently, ontologies are used in projects
of several domains: Internet of Things (IoT) [22], smart cities [6], higher edu-
cation [37], among others. A standard for representing ontologies that is widely
used both in academia and industry is the OWL (Ontology Web Language),
based on formal logic. OWL is based on description logic and has an inference
mechanism based on this logic developed in the context of the global Semantic
Web project and graphical editors for the creation of ontologies [38].

When developing an ontology, Semantic Web Rule Language (SWRL) [25]
can be used to model more sophisticated inferences, and they are specified in the
following format: pre1, . . . , pren− > conc, with pre1, . . . , pren the n premises of
the rule, and conc the conclusion of the rule.



Explaining Semantic Reasoning Using Argumentation 157

3 Scenario

In this paper, we use a scenario of bed allocation in hospitals, based on the work
reported in [8,10–12], in order to exemplify how we have built our approach
for explaining semantic reasoning using argumentation. Bed allocation is a chal-
lenge hospitals face since hospital beds are scarce, and when poorly managed,
it can generate long lines and chaos in emergency rooms [19]. The large number
of constraints that need to be considered during the allocation process makes
this process difficult for humans to perform. Considering that MAS can be pow-
ered by different artificial intelligence techniques, they are suitable to deal with
complex problems like bed allocation in hospitals. Thanks to recent develop-
ments, MAS are equipped with communication in natural language [9,10] and
ontological reasoning [14].

Below, we have an example of dialogue that occurs in the multi-agent appli-
cation developed, in which a human operator tries to allocate a patient named
patient2 to the bed 101b; however, bed 101b is considered unsuitable for that
patient given the hospital rules modelled in the domain-specific ontology of that
application. Thus, the agent (software agent) responsible to assist the bed allo-
cation in the multi-agent application opens a dialogue with the human operator
to inform that bed is not suitable for that patient, later explaining why it is not
suitable:

– Assistant: Your bed allocation plan has flaws. Bed 101b is unsuitable for
patient2.

– Operator: Why do you think bed 101b is unsuitable for patient2?
– Assistant: Because patient patient1 is of care semi-Intensive-Care and

occupies bed 101a. So bed 101a is of care semi-Intensive-Care. Bed
101a is in bedroom 101 and it is of care semi-Intensive-Care. So bed-
room 101 is of care semi-Intensive-Care. Bed 101b is in bedroom 101
and bedroom 101 is of care semi-Intensive-Care. So bed 101b is of care
semi-Intensive-Care. Patient patient2 is of care minimal-Care and bed
101b is of care semi-Intensive-Care that is different from minimal-Care.
So bed 101b is unsuitable for patient patient2.

– Operator: And how about bed 103a? Is it suitable?
– Assistant: No, it isn’t.
– Operator: Why?
– Assistant: Because patient patient3 is of care intensive-Care and occu-

pies bed 103b. So bed 103b is of care intensive-Care. Bed 103b is in
bedroom 103 and is of care intensive-Care. So bedroom 103 is of care
intensive-Care. Bed 103a is in bedroom 103 and bedroom 103 is of care
intensive-Care. So bed 103a is of care intensive-Care. Patient patient2
is of care minimal-Care and bed 103a is of care intensive-Care that is dif-
ferent from minimal-Care. So bed 103a is unsuitable for patient patient2.

This dialogue in natural language is resulting from the approach we will
present in this paper, combined with other technologies: (i) Dial4JaCa2 [10],
2 https://github.com/smart-pucrs/Dial4JaCa.

https://github.com/smart-pucrs/Dial4JaCa


158 C. E. A. Ferreira et al.

which allows the integration between chatbot technologies and MAS, and it is
used to identify users’ intentions and to extract entities from natural language
inputs as well as to provide responses to users in natural language; and (ii) an
interface between MAS and ontologies [14], which allows extending the agents’
belief bases with semantic technologies. While Dial4JaCa represents an impor-
tant component in the multi-agent application developed, which provides an
interactive interface with human users, in this work we are going to focus only
on the the components necessary to present our approach, namely the interface
between ontologies and MAS.

4 Querying Ontologies

In a series of papers, Freitas and colleagues [13–15] developed an approach to
interface OWL ontologies and MAS using CArtAgO artifacts [33]. Using the
proposed approach, agents are able to store, access, and query domain-specific
OWL ontologies. The infrastructure proposed by [14] has been used in different
applications as evidenced by [30,35], and it provides an elegant architecture for
engineering intelligent systems based on the MAS paradigm.

While agents are able to query OWL ontologies using the approach developed
in [14], the interface does not provide explanations for queries, or even traces
of computational steps used by the semantic reasoner to reach that particular
conclusion. Even though an agent would have access to answers from semantic
reasoners, queries result from complex reasoning executed over domain-specific
inference rules, modelled using SWRL rules [25], and those inferences would not
be easily understood by software agents in their original form3.

We have extended the approach presented by [14] to process the traces of com-
putational steps (including the application of inference rules) used by semantics
reasoners during queries to OWL ontologies. Then, using our approach to trans-
late those answers into an agent-oriented programming representation, agents
are able not only to understand and manipulate that information but also to
build explanations from external semantic reasoning.

5 Translating SWRL Rules into Argumentation Schemes

Our approach for building explanations for answers from semantic reasoners is
based on the idea that agents are able to internally model and store inference
rules returned by semantic reasoners (when providing an answer for a query)
using argumentation schemes like those presented in Sect. 2.2, which are pro-
cessed by agents using the framework presented in [28,31]. Then, using templates
in natural language for argumentation schemes, also introduced in Sect. 2.2,
agents build natural language explanations for those answers.

First, we provide an approach for agents to query semantic reasoners, obtain-
ing the answer for the queries in the format of traces of computational steps

3 Frequently, they are not easily understood even by users of those technologies.



Explaining Semantic Reasoning Using Argumentation 159

Table 1. Correspondence between answers from semantic reasoners and an AOPL
representation

Answer from the Semantic Reasoner Representation in AOPL

101b is-in 101 is in("101b","101")

DifferentIndividuals: Intensive-Care,

Minimal-Care, Semi-Intensive-Care

isDifferentFrom("Intensive-Care","Minimal-Care")

isDifferentFrom("Intensive-Care","Semi-Intensive-Care")

isDifferentFrom("Minimal-Care","Semi-Intensive-Care")

101a is-in 101 is in("101a","101")

Patient2 is-care Minimal-Care is care("Patient2","Minimal-Care")

101b Type Hospital Bed hospital Bed("101b")

Hospital Bed(?B1r), Bedroom(?Br),

is-in(?B1r,?Br), bed-is-care(?B1r,?C1r) ->

bedroom-is-care (?Br,?C1r)

defeasible rule(bedroom is care(Br,C1r),

[hospital Bed(B1r),bedroom(Br),is in(B1r,Br),

bed is care(B1r,C1r)])[as(<schemeName>)]

101a Type Hospital Bed hospital Bed("101a")

Patient(?P2r), Hospital Bed(?B2r),

is-care(?P2r,?C2r), bed-is-care(?B2r,?C1r),

DifferentFrom(?C1r,?C2r) ->

is-unsuitable-for(?B2r,?P2r)

defeasible rule(is unsuitable for(B2r,P2r)[patient(P2r),

hospital Bed(B2r),is care(P2r,C2r),bed is care(B2r,C1r),

differentFrom(C1r,C2r)])[as(<schemeName>)]

101 Type Bedroom bedroom("101")

Hospital Bed(?B2r), Bedroom(?Br),

is-in(?B2r,?Br), bedroom-is-care(?Br,?C1r) ->

bed-is-care(?B2r,?C1r)

defeasible rule(bed is care(B2r,C1r),

[hospital Bed(B2r),bedroom(Br),is in(B2r,Br),

bedroom is care(Br,C1r)])[as(<schemeName>)]

Patient1 occupy-one 101a occupy one("Patient1","101a")

Patient1 is-care Semi-Intensive-Care is care("Patient1","Semi-Intensive-Care")

Patient2 Type Patient patient("Patient2")

Patient(?P1r), is-care(?P1r,?C1r),

Hospital Bed(?B1r), occupy-one(?P1r,?BIr) ->

bed-is-care(?BIr,?C1r)

defeasible rule(bed is care(B1r,C1r),

[patient(P1r),is care(P1r,C1r),hospital Bed(B1r),

occupy one(P1r,B1r)])[as(<schemeName>)]

Patient1 Type Patient patient("Patient1")

(including concepts, classes and inference rules) used by the semantic reasoner
to infer that particular query. We implemented our approach using a CArtAgO
artifact [34], using the OWL API4 (a Java API for creating, manipulating and
serializing OWL Ontologies) as a basis for querying ontologies in conjunction
with Openllet5 (an open-source OWL DL reasoner for Java) to extract the
answers about inferences made based on SWRL rules.

Through the CArtAgO artifact developed, we provide agents with an opera-
tion called getExplanation that receives as a parameter the string correspond-
ing to the objectProperty (e.g. "is-unsuitable-for") that relates the indi-
viduals, and the predicate corresponding to the query (e.g. is unsuitable for
("101b","patient2")). Then, the artifact executes the query to the semantic
reasoner, and provides the answer to agents in the following format:

explanationTerms(rules(RulesList),assertions(AList),classInfo(CInfoList))

To build this internal representation based on the data returned for OWL
API and Openllet we created a class that converts each axiom to an AOPL
4 https://github.com/owlcs/owlapi.
5 https://github.com/Galigator/openllet.

https://github.com/owlcs/owlapi
https://github.com/Galigator/openllet


160 C. E. A. Ferreira et al.

representation. An example of this process is shown in Table 1, based on the
answer received by the assistant agent from the running scenario presented in
Sect. 3. Also, our approach translates the inference rules returned into an answer
to the format of argumentation schemes. This representation allows agents to
build arguments from the reasoning patterns extracted from the answers, being
able to reason, understand and communicate arguments instantiated from these
argumentation schemes using the argumentation-based framework presented
in [31].

We also created an internal action named unifyRule that receives as parame-
ters the rule list and the assertion list that we identified with the logical variables
RulesList and AList, respectively, in the explanationTerms internal repre-
sentation introduced above. It allows agents to unify terms in argumentation
schemes based on the assertions received in the answer provided by our inter-
face. That is, the unification function is obtained from RulesList, AList, and
CInfoList. This process provides agents with the set of arguments extracted
from the answer, which we call here an argumentation-based explanation. With
an internal representation of those reasoning patterns, agents are able to build
and communicate explanations represented in a computational representation
for arguments, which is useful when the system requires agents to provide expla-
nations to other software agents.

In order to provide explanations to human users, agents use natural language
templates for argumentation schemes [29] to translate those arguments to natural
language arguments, then using those arguments to build and provide natural
language explanations to human users.

Continuing our example, below, we demonstrate 1 of the 40 domain-specific
rules6 modelled by experts in order to establish the reasoning pattern necessary
to bed allocation in the multi-agent application described in Sect. 3. These rules
are used by the semantic reasoner to provide the answer used by the assistant
agents when building the explanation from our running scenario.

Argumentation Scheme for Unsuitable Beds (AS4UB): “Patient
P is of care C1 (premise). Bed B is of care care C2 (premise). Care
C1 is different of care C2 (premise). Bed B is unsuitable for patient P
(conclusion)”.

This argumentation scheme is extracted from the below SWRL rule available
in the ontology used in the multi-agent application.

Patient(?P), Hospital_Bed(?B), is-care(?P,?C1), bed-is-care(?B,?C2),

DifferentFrom(?C1,?C2) -> is-unsuitable-for(?B,?P)

When the assistant agent queries the semantic reasoners, asking if a particu-
lar bed 101b is unsuitable for the patient patient2 – is unsuitable for(101b,
patient2) – looking for validating the operator allocation, the semantic reasoner

6 All rules are available at https://github.com/DeboraEngelmann/explaining-
ontological-reasoning/blob/main/base rules.md.

https://github.com/DeboraEngelmann/explaining-ontological-reasoning/blob/main/base_rules.md
https://github.com/DeboraEngelmann/explaining-ontological-reasoning/blob/main/base_rules.md


Explaining Semantic Reasoning Using Argumentation 161

will answer that query with the trace of computational steps used to make the
inference. From the answer provided by the semantic reasoner, our approach
automatically translates the inference rules contained in that answer to argu-
mentation schemes, according the representation required by the argumentation-
based framework from [31], i.e., using defeasible inference rules represented by
the predicate defeasible rule(Conclusion,Premises), in which Conclusion
represents the conclusion of the rule, and Premises the set of premises used
in the body of that particular rule. For example, the argumentation scheme
presented in this section is internally represented by agents as follows:

defeasible_rule(is_unsuitable_for(B,P), [patient(P), hospital_Bed(B),

is_care(P,C1), bed_is_care(B,C2), differentFrom(C1,C2)])[as(as4ub)]

Thus, when agents need to communicate an explanation to another software
agent, for example, to explain why bed 101b is unsuitable to patient patient2,
according to our running scenario, they are going to build an explanation using
the computational representation for arguments introduced in Sect. 2.2, using
the argumentation-based framework [28,31].

explanation(is_unsuitable_for(101b,patient2),

[defeasible_rule(bed_is_care(101a,semi-intensive-care),[...])[as(as4bc1)],

defeasible_rule(bedroom_is_care(101,semi-intensive-care),[...])[as(as4br)],

defeasible_rule(bed_is_care(101b,semi-intensive-care),[...])[as(as4bc2)],

defeasible_rule(is_unsuitable_for(101b,patient2), [patient(patient2),

hospital_Bed(101b), is_care(patient2,minimal-care),

bed_is_care(101b,semi-intensive-care),

differentFrom(minimal-care,semi-intensive-care)])[as(as4ub)]])}

To build the explanation presented above7, agents query their belief
base for the predicate they are interested to provide an explanation for,
using argument(Q, Arg) with Q the queried predicate, and Arg a free vari-
able that will unify with the argument supporting Q. This query uses the
argumentation-based framework [31], which looks for argumentation schemes
that infer that particular queried information, using the information avail-
able to the agent to instantiate argumentation schemes, building an argument
that supports the queried information. In our scenario, Arg unifies with the
set of arguments (or chained/complex argument) presented above, supporting
is_unsuitable_for(101b,patient2).

When it is necessary to communicate with human users, agents are able
to build natural language explanations, translating the computational repre-
sentation of arguments to natural language arguments, using natural language
templates for argumentation schemes, as we describe in the next section.

5.1 Translating Arguments to Natural Language Explanations

When agents need to communicate an explanation in natural language, they use
the plan +!translateToNaturalLanguage that implements how agents translate argu-
7 We omitted the premises of argumentation schemes we did not present in this paper.
All argumentation schemes are available in the GitHub repository.



162 C. E. A. Ferreira et al.

ments from a computational representation to natural language, then aggregat-
ing those natural language arguments into an explanation. As it can be observed
in Sect. 3, an explanation might be a sequence of arguments (also considered as
a chained/complex argument). Thus +!translateToNaturalLanguage receives a list
of one or more arguments (each one of those arguments are instances of an argu-
mentation scheme), and then it translates each computational argument to a
corresponding natural language argument, recovering the natural language tem-
plate to the argumentation scheme used to instantiate that particular argument
and returning its natural language representation.

6 Related Work and Conclusions

Explainablility has become a central topic in AI, and the literature of MAS
exploring explainability has significantly increased in the last few year, mostly
of it focusing on the health domain [2,5,7,16,21]. Also, interesting work explor-
ing the integration of ontologies and MAS has been developed, for example,
AgentSpeakDL [24], and CooL-AgentSpeak [23].

While our approach is inspired by much of these works, to the best of our
knowledge, our approach is the first to propose that intelligent agents are able
to explain the reasoning executed externally by semantic reasoners. Also, our
approach is the first to propose an internal representation for SWRL rules using
argumentation schemes in MAS, which allows agents to understand and manip-
ulate those reasoning patterns that were only processed by semantic reasoners
at the ontology level.

In this paper, we proposed an approach in which agents are able to build
explanations based on answers received from semantic reasoners about their
queries. Explanations can be communicated to both software agents and human
users, using a computational or a natural language representation for explana-
tions, respectively.

Our approach is based on the idea that inference rules contained in answers
obtained from queries to semantic reasoners can be translated into argumen-
tation schemes that agents are able to understand and manipulate using the
argumentation-based framework from [28,31]. Thus, agents can instantiate argu-
ments from argumentation schemes, using them for reasoning and communica-
tion. Furthermore, using natural language templates for argumentation schemes,
agents are able to translate the computational representation of arguments into
natural language arguments. Thus, they are able not only to build explanations
for other software agents but also for human users.

Combining the approach presented in this work with other technologies used
for human-agent interactions [10] allowed us to achieve the natural language
dialogue presented in Sect. 3, which is part of a real-world multi-agent application
(under development) that aims to help human operators in the process of bed
allocation in hospitals.

Acknowledgements. This research was partially funded by CNPq and CAPES.



Explaining Semantic Reasoning Using Argumentation 163

References

1. Akata, Z., et al.: A research agenda for hybrid intelligence: augmenting human
intellect with collaborative, adaptive, responsible, and explainable artificial intel-
ligence. Computer 53(8), 18–28 (2020)

2. Baskar, J., Janols, R., Guerrero, E., Nieves, J.C., Lindgren, H.: A multipurpose goal
model for personalised digital coaching. In: Montagna, S., Abreu, P.H., Giroux, S.,
Schumacher, M.I. (eds.) A2HC/AHEALTH 2017. LNCS (LNAI), vol. 10685, pp.
94–116. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70887-4 6

3. Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F.: Multi-Agent Program-
ming: Languages, Tools and Applications. Springer, Heidelberg (2009)

4. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak using Jason. Wiley, Hoboken (2007)

5. Cheng, C.Y., Qian, X., Tseng, S.H., Fu, L.C.: Recommendation dialogue system
through pragmatic argumentation. In: 2017 26th IEEE International Symposium
on Robot and Human Interactive Communication, pp. 335–340. IEEE (2017)

6. De Nicola, A., Villani, M.L.: Smart city ontologies and their applications: a sys-
tematic literature review. Sustainability 13(10), 5578 (2021)

7. Donadello, I., Dragoni, M., Eccher, C.: Explaining reasoning algorithms with per-
suasiveness: a case study for a behavioural change system. In: Proceedings of the
35th Annual ACM Symposium on Applied Computing, pp. 646–653 (2020)

8. Engelmann, D., Couto, J., Gabriel, V., Vieira, R., Bordini, R.: Towards an ontol-
ogy to support decision-making in hospital bed allocation. In: Proceedings of 31st
International Conference on Software Engineering & Knowledge Engineering, pp.
71–74 (2019)

9. Engelmann, D., et al.: Dial4JaCa – a demonstration. In: Dignum, F., Corchado,
J.M., De La Prieta, F. (eds.) PAAMS 2021. LNCS (LNAI), vol. 12946, pp. 346–350.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85739-4 29

10. Engelmann, D., et al.: Dial4JaCa – a communication interface between multi-
agent systems and chatbots. In: Dignum, F., Corchado, J.M., De La Prieta, F.
(eds.) PAAMS 2021. LNCS (LNAI), vol. 12946, pp. 77–88. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-85739-4 7

11. Engelmann, D.C., Cezar, L.D., Panisson, A.R., Bordini, R.H.: A conversational
agent to support hospital bed allocation. In: Britto, A., Valdivia Delgado, K.
(eds.) BRACIS 2021. LNCS (LNAI), vol. 13073, pp. 3–17. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-91702-9 1

12. Engelmann, D.C.: An interactive agent to support hospital bed allocation based
on plan validation. Dissertation, PUCRS (2019)

13. Freitas, A., Panisson, A.R., Hilgert, L., Meneguzzi, F., Vieira, R., Bordini, R.H.:
Integrating ontologies with multi-agent systems through CArtAgO artifacts. In:
2015 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI)
and Intelligent Agent Technologies (IAT) (2015)

14. Freitas, A., Panisson, A.R., Hilgert, L., Meneguzzi, F., Vieira, R., Bordini, R.H.:
Applying ontologies to the development and execution of multi-agent systems. In:
Web Intelligence, vol. 15, pp. 291–302. IOS Press (2017)

15. Freitas, A., Schmidt, D., Panisson, A., Bordini, R.H., Meneguzzi, F., Vieira, R.:
Applying ontologies and agent technologies to generate ambient intelligence appli-
cations. In: Koch, F., Meneguzzi, F., Lakkaraju, K. (eds.) AVSA CARE 2014.
CCIS, vol. 498, pp. 22–33. Springer, Cham (2014). https://doi.org/10.1007/978-3-
662-46241-6 3

https://doi.org/10.1007/978-3-319-70887-4_6
https://doi.org/10.1007/978-3-030-85739-4_29
https://doi.org/10.1007/978-3-030-85739-4_7
https://doi.org/10.1007/978-3-030-91702-9_1
https://doi.org/10.1007/978-3-662-46241-6_3
https://doi.org/10.1007/978-3-662-46241-6_3


164 C. E. A. Ferreira et al.

16. Grando, A., Moss, L., Bel-Enguix, G., Jiménez-López, M.D., Kinsella, J.:
Argumentation-based dialogue systems for medical training. In: Neustein, A.,
Markowitz, J. (eds.) Where Humans Meet Machines, pp. 213–232. Springer, New
York (2013). https://doi.org/10.1007/978-1-4614-6934-6 10

17. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2), 199–220 (1993)

18. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge
sharing? Int. J. Hum. Comput. Stud. 43(5), 907–928 (1995)

19. da Silveira Grübler, M., da Costa, C.A., Righi, R., Rigo, S., Chiwiacowsky, L.:
A hospital bed allocation hybrid model based on situation awareness. Comput.
Inform. Nurs. 36, 249–255 (2018)

20. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.Z.: XAI-
explainable artificial intelligence. Sci. Robot. 4(37) (2019)

21. Kökciyan, N., et al.: A collaborative decision support tool for managing chronic
conditions. In: MedInfo, pp. 644–648 (2019)

22. Li, W., Tropea, G., Abid, A., Detti, A., Le Gall, F.: Review of standard ontologies
for the web of things. In: 2019 Global IoT Summit (GIoTS), pp. 1–6 (2019)

23. Mascardi, V., Ancona, D., Bordini, R.H., Ricci, A.: CooL-AgentSpeak: enhanc-
ing AgentSpeak-DL agents with plan exchange and ontology services. In: 2011
IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent
Agent Technology, vol. 2, pp. 109–116. IEEE (2011)

24. Moreira, Á.F., Vieira, R., Bordini, R.H., Hübner, J.F.: Agent-oriented program-
ming with underlying ontological reasoning. In: Baldoni, M., Endriss, U., Omicini,
A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, pp. 155–170. Springer,
Heidelberg (2006). https://doi.org/10.1007/11691792 10

25. O’Connor, M.: The semantic web rule (2009)
26. Panisson, A.R., Bordini, R.H.: Knowledge representation for argumentation in

agent-oriented programming languages. In: 2016 Brazilian Conference on Intel-
ligent Systems, BRACIS (2016)

27. Panisson, A.R., Bordini, R.H.: Uttering only what is needed: enthymemes in multi-
agent systems. In: Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems, pp. 1670–1672. International Foundation for Autonomous
Agents and Multiagent Systems (2017)

28. Panisson, A.R., Bordini, R.H.: Towards a computational model of argumentation
schemes in agent-oriented programming languages. In: International Joint Confer-
ence on Web Intelligence and Intelligent Agent Technology (WI-IAT) (2020)

29. Panisson, A.R., Engelmann, D.C., Bordini, R.H.: Engineering explainable agents:
an argumentation-based approach. In: Alechina, N., Baldoni, M., Logan, B. (eds.)
EMAS 2021. LNCS, vol. 13190, pp. 273–291. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-97457-2 16

30. Panisson, A.R., et al.: Arguing about task reallocation using ontological informa-
tion in multi-agent systems. In: 12th International Workshop on Argumentation
in Multiagent Systems, vol. 108 (2015)

31. Panisson, A.R., McBurney, P., Bordini, R.H.: A computational model of argumen-
tation schemes for multi-agent systems. Argument Comput. 1–39 (2021)

32. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031845

33. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems:
an artifact-based perspective. Auton. Agent. Multi-Agent Syst. 23(2), 158–192
(2011)

https://doi.org/10.1007/978-1-4614-6934-6_10
https://doi.org/10.1007/11691792_10
https://doi.org/10.1007/978-3-030-97457-2_16
https://doi.org/10.1007/978-3-030-97457-2_16
https://doi.org/10.1007/BFb0031845


Explaining Semantic Reasoning Using Argumentation 165

34. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: an infrastructure for engineering
computational environments in MAS. In: Weyns, D., Parunak, H.V.D., Michel,
F. (eds.) 3rd International Workshop “Environments for Multi-Agent Systems”
(E4MAS), pp. 102–119 (2006)

35. Schmidt, D., Panisson, A.R., Freitas, A., Bordini, R.H., Meneguzzi, F., Vieira, R.:
An ontology-based mobile application for task managing in collaborative groups.
In: Florida Artificial Intelligence Research Society Conference (2016)

36. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-
DL reasoner. J. Web Semant. 5(2), 51–53 (2007)

37. Tapia-Leon, M., Rivera, A.C., Chicaiza, J., Luján-Mora, S.: Application of ontolo-
gies in higher education: a systematic mapping study. In: 2018 IEEE Global Engi-
neering Education Conference (EDUCON), pp. 1344–1353 (2018)

38. Vieira, R., Abdalla, D.S., Silva, D.M., Santana, M.R.: Web Semântica: Ontologias,
Lógica de Descrição e Inferência, pp. 127–167. SBC (2005)

39. Walton, D., Reed, C., Macagno, F.: Argumentation Schemes. Cambridge University
Press, Cambridge (2008)

40. Wooldridge, M.: An Introduction to Multiagent Systems. Wiley, Hoboken (2009)


	Explaining Semantic Reasoning Using Argumentation
	1 Introduction
	2 Background
	2.1 Agent Oriented Programming Languages
	2.2 Argumentation Schemes
	2.3 OWL Ontologies

	3 Scenario
	4 Querying Ontologies
	5 Translating SWRL Rules into Argumentation Schemes
	5.1 Translating Arguments to Natural Language Explanations

	6 Related Work and Conclusions
	References




