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Abstract. In this paper we put forward an open multi-agent sys-
tems (MAS) architecture for the important and challenging to engineer
vehicle-to-grid (V2G) and grid-to-vehicle (G2V) energy transfer prob-
lem domains. To promote scalability, our solution is provided in the
form of modular microservices that are interconnected using a multi-
protocol Internet of Things (IoT) platform. On the one hand, the low-
level modularity of Smart Grid services allows the seamless integration
of different agent strategies, pricing mechanisms and algorithms; and on
the other, the IoT-based implementation offers both direct applicabil-
ity in real-world settings, as well as advanced analytics capabilities by
enabling digital twins models for Smart Grid ecosystems. We describe our
MAS/IoT-based architecture and present results from simulations that
incorporate large numbers of heterogeneous Smart Grid agents, which
might follow different strategies for their decision making tasks. Our
framework enables the testing of various schemes in simulation mode,
and can also be used as the basis for the implementation of real-world
prototypes for the delivery of large-scale V2G/G2V services.

Keywords: Internet of things + Open multi-agent systems + Smart grid

1 Introduction

In the emerging Smart Grid [2], energy and information flow towards all possible
directions over distribution and transmission networks. As such, buildings but
also vehicles become active consumers and producers of energy, and need to
be integrated into the Grid. Not only is the Smart Grid an electricity network
with diverse consumers and producers, it is also a dynamic marketplace where
heterogeneous devices appear and need to connect [9]. To date, several Smart
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Grid-related business models and information systems’ architectures have been
proposed, but they do not always adhere to particular standards [4]. This is
normal, as the energy markets involved can be global, regional, or isolated; can
be based mostly on renewable energy or not; and can be regulated by a public
authority or allow dynamic pricing based on demand and offer.

Such energy markets naturally reflect systems where not one player can force
others to use her products; players or stakeholders can come along their own
business models; and stakeholders can have diverse goals in negotiating their
consumption and offer. Moreover, these systems allow for pro-activeness of the
players who pursue their goals and sociability—as they can form dynamic part-
nerships or coalitions, but also react and/or adapt to a changing dynamic envi-
ronment [13]. In addition, it is natural for participants to be generally able to
freely join and leave the system at any time. All these characteristics point to
agent technology and open multiagent systems (MAS) in particular [20].

At the same time, the advances in the domain of the Internet of Things
(IoT) allow the deployment of such approaches in the real world, as IoT offers a
networking layer that interconnects distributed resources, e.g. power meters and
other sensors, charging controllers and similar actuators, decision support agents
and various processing services [5]. A key IoT concept is that these resources,
although heterogeneous, are interoperable in the sense that they exchange infor-
mation and reconfigure particular parameters, crucial for their operation.

To the best of our knowledge, however, existing approaches for the Vehicle-
to-Grid (V2G)/ Grid-to-Vehicle (G2V) problem do not provide functional open
prototypes offering such features, or adequately exploit existing engineering MAS
research paradigms. In an open system, diverse agents representing stakeholders
need to use predefined protocols to interact; but also need to work the protocols
with their own algorithms and/or goals. Given this, the main contribution of this
paper is a novel MAS/IoT architecture we put forward for the V2G/G2V domain.
Our architecture allows the different stakeholders to reuse existing agents in
new deployments, or to develop new ones, according to respective goals. We pro-
pose the instantiation of such a system using SYNAISTHISI, a research-oriented
ToT platform deployed in docker containers, which allows agents to connect and
communicate using the Message Queuing Telemetry Transport (MQTT) pub-
lish /subscribe protocol [1]. The validity of the approach is illustrated via sim-
ulation experiments with two different dynamic pricing mechanisms and three
charging scheduling algorithms inspired by the existing literature.

In the rest of this paper, we first present the necessary background and dis-
cuss related work (Sect. 2). Then, Sect. 3 presents our V2G/G2V-specific MAS-
based architecture and the roles that the different agents have. Section 4 details
the system development process, along with the IoT communications infrastruc-
ture and agent interaction protocols. Following that, in Sect. 5, we evaluate the
applicability of our approach with realistic use case scenarios of interest. Finally,
Sect. 6 concludes this paper.
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2 Background and Related Work

Recent trends indicate that, in the near future, large numbers of EVs will pene-
trate into the electricity markets resulting to different demand patterns, altered
enough to disrupt the stability and reliability of existing power networks [6]. To
overcome this, researchers have introduced “smart charging”, or Grid-to-Vehicle
(G2V) approaches, where charging might not be initiated instantly upon EV
connection, but get delayed due to various factors [3], e.g., renewable produc-
tion levels, demand from other EVs, pricing, etc. Complementary to G2V, the
Vehicle-to-Grid (V2G) approach takes advantage of the electricity storage capa-
bilities of EV batteries, and allows their controlled discharging for supporting
the Grid during times of energy supply shortage [15].

Research has focused on combining simulators with (possibly smaller-scale)
real-world trials for the delivery of V2G and G2V services. For example, XBOS-
V [12] is a system for controlling plug-in EV charging in residential and small
commercial sites. RISE-V2G is an implementation of the V2G communication
interface ISO 15118, i.e. a standardized communication method, which provides
lower level connection infrastructure between electric vehicles and charging sta-
tions. Similar examples are the Open Charge Point Protocol (OCPP), the Open
Charge Point Interface (OCPI), and the Open Smart Charging Protocol (OSCP).
OpenV2G [7] implements the necessary components of the V2G public key infras-
tructure. The focus of the approach is to securely connect electric vehicles and
charging stations and provide simulation capabilities. GEM [17], another app-
roach, simulates the operation on both the mobility and the electricity domains.
However, the simulation approach followed represents a higher level and does
not include particular stakeholder types, such as a station recommender. ACN-
Sim [10] is a tool for managing battery charging and performs a user- rather than
a grid-level analysis.

SYNAISTHISI IoT is a research-oriented platform that brings together open-
source frameworks into a unified solution with many desirable properties [1]. In
particular, services and sub-modules come in docker containers, allowing scalable
and operating system independent deployments. For user developed services, the
platform can act as a message-oriented middleware enabling their communica-
tion and orchestration. To that end, multiple protocols are supported and can be
translated to one another instantly, so that agent and service heterogeneity with
respect to their implementation details is sufficiently captured. Moreover, authen-
tication and authorization is supported for restricting access to topics holding
private information, and semantic descriptions of services and exchanged infor-
mation allow more sophisticated processing and knowledge extraction. These fea-
tures fulfill the requirements of our proposed open system, and also enable the
reusability of services for fast system redeployment at different locations.

3 System Architecture

In this section we provide an overview of our architecture. We assume that
agents coexist in a microgrid infrastructure that can be interconnected with
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Fig. 1. Overview of the proposed MAS architecture for the V2G/G2V problem.

other parts of the Smart Grid through distribution and transmission networks.
When a microgrid requires power that can not be generated locally, it can import
it, while, when it has a local energy surplus, it can export it to the Grid and create
additional profits for its producers, according to energy market regulations [9].
Figure 1 provides an overview of the agents and their interactions.

In particular, the agent types in our system are: the (a) Electric Vehicle
agents (EV), the (b) Charging Station agents (CS), the (¢) Electricity Producer
agents (EP), and the (d) Electricity Consumer agents (EC). We also assume the
existence of a regulatory service (possibly a for-profit private service), that con-
sists of the following agents: (i) a Station Recommender (SR), (ii) an Electricity
Imbalance (EI), and (i) a Mechanism Design (MD). In what follows, we refer
to this service by its three distinct agents separately. Note that each agent type
may consist of certain “private” sub-modules, whose specific functionality can
further differentiate agent behaviors.

EV agents aim to optimize a utility function set by the EV owner— e.g., always
have enough energy to realize the next trip, achieve so by the minimum cost, etc.
The EV agent monitors the driver’s activities, models and predicts her future
behavior and needs, and can contact a charging station to schedule battery charg-
ing, seek profit from participation in V2G activities, and engage in negotiations
with the charging stations. Building blocks can be preference elicitation modules,
responsible for monitoring the habits and behavior of the driver, and perhaps even
forecast future preferences; user interfaces accessible by humans either via mobile
devices or the vehicle’s dashboard, to operate respective procedures and monitor
their conduct, for example payments, negotiations, or browse and select recom-
mendations. Such agents can implement alternative strategies for automatically
selecting a charging schedule according to predefined needs of each driver, e.g. less
cost, quicker availability, charging network preferences, location-based selection
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etc. An EV agent communicates with the SR agent to receive recommendations
and the CS agents to reserve station slots.

Next, CS agents manage the physical gateways (i.e. connectors, parking slots)
by which EVs connect to the grid and create profit by charging their batteries.
They can also negotiate with EV agents regarding an existing charging agree-
ment, to change some of the parameters so as be able to schedule the charging of
additional vehicles. This leads to better utilization of the station infrastructure,
and maximizes its profit. A CS agent may contain a charging scheduling module,
the algorithmic component responsible for schedule charging/discharging activ-
ities over a predefined planning horizon; a negotiation decision making module
for conducting negotiations; a pricing module that calculates costs and pay-
ments; and a preference elicitation module that monitors charging slots usage
and updates the prices for each of them according to the needs of the station
owner; A CS Agent communicates with the SR, the MD, the FEI, and EV agents.

The SR agent recommends to EVs a subset of the available CS and charging
slots that match most with their preferences (e.g. duration, distance). This agent
can be also augmented to take into account various grid constraints in order to,
e.g., help avoid herding effects. It consists of a recommendations engine module,
an EV repository module that stores information about the past EV behavior in
order to utilize it for future recommendations, and a charging station repository
of registered CSs. It communicates with the C'S and FV agents.

The EI agent aggregates data from the EP, CS, and EC agents regarding their
expected energy profiles, and calculates the periods of electricity shortage and
surplus. Then, it provides the imbalance levels to all interested parties, for them
to plan their consumption and production activities. It employs a constraints
extraction module that incorporates various measures and methods that could be
relevant in such a scenario, and calculates electricity imbalance over a predefined
planning horizon; stations, producers, and consumers repositories.

The MD agent represents an intermediate trusted third party entity, respon-
sible for calculating dynamic prices and managing the payments of the various
contributor types. Its goal is to assign appropriate, and possibly personalized
rates for energy consumption and production by CS, EC, and EP agents. It
can be equipped with pricing mechanisms that incentivize agents to be truthful
regarding their statements for expected values, as well as their actual behavior.

Finally, the various EP and EC agents predict and periodically report
expected production and consumption levels respectively, and their confidence
on such predictions. These types of agents typically communicate with EI and
MD agents. Every agent type may also have user interfaces, either for mere moni-
toring in case of fully autonomous operation, or for additional human interaction
in semi-automatic or manual modes.

4 Agent Interactions

We followed a methodological approach to system analysis and design, based
on the Agent Systems Engineering Methodology (ASEME), which has been
employed in the past for modeling Ambient Intelligence applications [18] and
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Fig. 2. The proposed architecture. (*) denotes agent types with multiple instances.
Arrows start from the agent that initiates the protocol and point to the receiver agents.

referred to by the literature on modeling IoT-based MAS [16,21]. ASEME builds
on existing languages, such as Unified Modeling Language (UML) and state
charts, in order to represent system analysis and design models. It is agent
architecture- and agent mental model- independent, allowing the designer to
select the architecture type and the mental attributes of the agent, thus sup-
porting heterogeneous agent architectures. Moreover, ASEME puts forward a
modular agent design approach and uses the so-called intra-agent and inter-
agent control concepts. The first defines the agent’s behavior by coordinating
the different modules that implement its capabilities, while the latter defines the
protocols that govern the coordination of the society of the agents.!

In this sense the cooperation protocols were modeled as state charts. Figure 2
shows the agent types along with the protocols used for their cooperation.

CP1 Charging Recommendation: Initiated whenever an EV needs to sched-
ule a charging session. The EV submits its preference and location to the SR
and receives a list of recommended CSs and slots.

CP2 Charging Station Reservation: Follows right after CP1, for the EV to
reserve the selected charging slot.

CP3 Negotiation: Optional, initiated after CP2, whenever the CS or the EV
need to reschedule a charging slot.

CP4 Charging Station Registration: Registration of a new CS into the
system and informs the MD, the EI and the SR about its specifications.
CP5 Authenticate Recommendation: Follows right after CP2. The EV
sends the recommendation it selected to the CS, and CS requests from to

the SR its validation.

CP6 Electricity Prices: Follows after CP7. Used by the MD to update prices
and broadcast these to every CS.

CP7 Electricity Imbalance: Follows right after CP10 or CP8, if the expected
production or consumption changes, the EI broadcasts the updated values
to the MD and every CS.

! More detailed descriptions of the inter- and intra-agent control and a detailed
description of the protocols, including the message syntax and semantics, can be
found in our online repository: https://github.com/iatrakis/IoT-V2G-G2V.
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CP8 Charging Station Update Schedule: Follows after CP5. The CS creates
an updated energy schedule after an EV recommendation is authenticated,
and communicates it to the EI and the MD.

CP9 Producer Consumer Registration: Registers new producers and con-
sumers. The new stakeholder informs EI and MD about its type.

CP10 Update Expected Production/Consumption: Triggers at the begin-
ning of each day. All producers and consumers inform the EI and MD agents
about the next day’s expected production and consumption.

CP11 Update Energy Profile Confidence: Triggers at the start of each
day. All producers and consumers inform the EI and MD agents about their
confidence regarding their forecasts (CP10).

CP12 Update Station Availability: Follows right after CP2. The CS updates
its charging slot availability after each new reservation, and informs the SR.

Now, each agent is implemented in a different program that is deployed in an
independent docker container, either hosted in cloud infrastructure, or locally in
each stakeholder’s premises. Moreover, to support research, we can set up sim-
ulations to test and evaluate different agent strategies and algorithms. This can
be achieved by implementing additional orchestrator scripts that take advantage
of the IoT platform’s API for registering, deploying, and configuring services in
batches, as well as for logging the actions and outcomes of each agent. We also
need to define the duration of a simulation hour in actual time—e.g., two sec-
onds correspond to one simulated hour, to configure the agent implementations
accordingly. Similarly, each agent provides data regarding demand/charging pref-
erences. In an actual system deployment though, the required data would be
obtained in real-time, via sensor measurements, or user input forms.

Our implementation is based on the SYNAISTHISI platform, however any
other IoT platform solution offering similar features could be used as well. We
chose this particular one for a number of reasons. From a user perspective, it
has a non-commercial license and can be used for research purposes, and allows
developers to create new services of their own and integrate them into more
complex applications; and from a technical perspective, it supports many appli-
cation layer protocols (MQTT,> HTTP/REST,? etc.), it can be easily deployed
as docker containers offering this way interoperability with other software and
scalability for large-scale deployments. Also, it employs user authentication and
authorization processes to restrict open access for private information.

The service interconnection is realized with the exchange of messages, in our
case using the MQTT publish/subscribe protocol. Each service can subscribe
to topics in order to receive messages, or publish to other topics where other
services have subscribed to, for sending information and commands. To receive
or send data, from and to particular topics, the service owner must possess
appropriate access rights, which can be managed via the platform’s GUI. The
same holds for the deployment and the execution monitoring of the deployed

2 MQTT is an OASIS standard messaging protocol for the Internet of Things,
mgqtt.org.
3 REpresentational State Transfer (REST) over Hypertext Transfer Protocol (HTTP).
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services. In case of mobile assets such as EVs, a wireless internet connection
is required in order for the messages to be exchanged. For charging stations
and the various Supervisory Control and Data Acquisition (SCADA) systems,
appropriate connectors can offer an interface for the platform interconnection,
provided that these too are connected via the internet.

4.1 Implemented Agent Strategies

For the purposes of evaluation via simulation, we need to test different methods

and compare their effects on the system in simulation mode. To this end, we

implemented two pricing algorithms used by the MD agent to observe how they
contribute to grid stability, i.e. to reducing the energy surplus and deficit peaks.

We also implemented three scheduling approaches that determine when and how

much energy is exchanged between CS and EV agents.

Price Calculation Algorithms for the Mechanism Design Agent:

A) NRG-Coin pricing algorithm: This mechanism is inspired by the one in [14],
and aims at incentivizing stakeholders to balance supply and demand.

B) Adaptive pricing algorithm: According to this mechanism proposed in [19],
we estimate the evaluation of energy with respect to the cost induced by the
EV agents. The mechanism can adjust prices to motivate agents to charge
their EVs when there is an energy surplus on the grid.

Charging Scheduling Algorithms:

A) First slot: In this case, EVs charge their battery in the first available time
interval, without taking into account if prices are better or worse.

B) Lowest Prices: In this approach, EVs are trying to reduce charging costs by
choosing time periods that the energy prices are the lowest possible.

C) V2G: In this case EVs are able to discharge their batteries when the prices
are high to provide load to the rest of the grid, and then charge it back when
prices are lower, nevertheless within the periods that EVs are connected to
a charger. For this purpose and inspired by [8] and [11], we used linear
programming to minimize an objective function representing charging costs
in the presence of constraints regarding the EV preferences and charging
specifications.

5 Experimental Evaluation

In this section we show four use cases that illustrate the applicability of our
proposed architecture. The use cases provide comparative evaluations of the
implemented strategies discussed in the previous section. All agent implementa-
tions are in Python, while the datasets that we used are based on a collection of
real data from a number of publicly available online resources;* and the duration
of each simulation is 10 days. The simulations were performed on a PC with an
AMD Ryzen 5 1500X @ 3.5 GHz processor and 8 GB of RAM.

4 Specifically, consumption and production data originate from the ENTSOE platform,
and EV data from the MyElectricAvenue project.
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5.1 Simulating Algorithms and Mechanisms

The first use case is employed to compare the different EV charging scheduling
methods, using the NRG-Coin pricing mechanism. We remind the reader that
these methods are charging (i) during the first slots that the EV gets connected
to a charger, (ii) during intervals with the lowest price for consumption, and (i)
with V2G capability, where the EV can also sell back to the grid some of the
stored energy and recharge later, provided that the price difference between the
discharge and recharge intervals generates profit. Figure 3a shows the average
cumulative EV costs for the entire planning horizon. As we can see, the highest
cost for the EV is given by the first slot method, which is expected as in this
case the EV agent chooses to charge immediately without considering the energy
price. By adopting the Lowest Prices method, the total cost for EV charging
drops about 33% by the end of the time horizon. Finally, by allowing V2G
operations, the charging costs drop even more, 15% lower than those of Lowest
Prices, and by 43% compared to the first slot method.

Next, we account for the impact of the different charging scheduling methods
on the aggregate energy imbalance. As a baseline, we consider grid imbalance
without the EV demand. We calculate the sum of the absolute imbalance values
among the intervals, the sum of only the positive imbalance intervals (i.e., the
total exported or “wasted” energy), and the sum of only the negative intervals
(i.e., the total energy imports). Table1 shows the significant impact of EVs
strategy on the energy imbalance. When using the first slot method, EVs affect
the system negatively, by increasing the total imbalance and adding more than
double to the energy that has to be produced to meet demand in the grid. In
parallel, the amount of energy wasted drops, since EVs consume energy that
otherwise would not be consumed. In the case of Lowest Prices method, the
imbalance tangibly drops, and the available energy that is utilized and does
not get wasted, increases by half (specifically, by 45.6%). The imports are also
increased, due to the additional demand of the 100 EVs and their occasional need
to charge their batteries to continue their trip without caring about high energy
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120 Lowest Prices
—— V2G

—+— First slot
Lowest Prices
—— V2G

0 50 100 150 200 250 0 5 10 15 20 25
time(h) hours connected to charger

(a) Average Cumulative Cost per EV for (b) Cost comparison of varying time peri-
different charging scheduling methods. ods that EVs are connected to chargers.

Fig. 3. Charging cost variation in different scenarios.
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Table 1. Energy differences on charging scheduling methods compared to the “no
EVs” baseline. The MAPE of the original imbalance curve is 63.9%.

Method Imbalance | Wasted | Imported  MAPE
First slot +7.0% —21.8% | +104.2% | —12.4%
Lowest prices | —31.4% | —45.6% | +16.4% | —44.5%
V2G —37.3% —49.1% | +2.5% —55.7%

prices and energy shortage of the grid. An even better picture is obtained when
V2G comes into play, with even lower imbalance (higher imbalance reduction,
reaching 37.3%); less energy wasted (waste reduced by 49.1%; while imports are
increased by only a very small rate (specifically, by 2.5%). Moreover, it achieves a
larger reduction in the Mean Absolute Percentage Error (MAPE), than the other
two methods. MAPE measures the difference of the induced imbalance from a
totally flat curve with a value of zero, which resembles perfect matching between
supply and demand. This is clearly visible when plotting the imbalance across
the time horizon for each method, as we do in Fig. 4a. Indeed, it is noteworthy
that V2G induces smaller peaks in the imbalance between demand and supply
than the rest of the methods.

In the second use case, we measure the total cumulative cost of EVs, when
increasing the duration of connection to chargers by 24 h compared to the original
data, by following the three different charging scheduling methods of the first use
case. The results of Fig. 3b show that by increasing the duration of connection,
the Lowest Price and V2G methods manage to gradually reduce the battery
charging costs. This happens since the longer an EV is connected to a charger,
the higher probability it has to find the most advantageous intervals to buy
energy at from the grid— and also to sell it back to the grid in the case of V2G.
As anticipated, again, the V2G method leads to lower charging costs than the
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Fig. 4. Difference in imbalance curves in two different scenarios
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Table 2. Pricing Algorithms: Energy differences compared to “no EVs” baseline.

Method Imbalance | Wasted | Imported | MAPE
NRG-Coin -31.4% —45.6% | +16.4% | —44.5%
Adaptive pricing | —31.3% | —45.6% | +17.1% | —42.7%

other two, and the difference (mirroring this V2G’s advantage) increases as the
duration of connection to a charger gets longer.

The third use case compares different pricing algorithms for the MD agent,
in particular the NRG-Coin pricing and the adaptive pricing. Both methods aim
to balance demand and supply, by setting higher prices for consumption during
problematic intervals of negative imbalance, and lower for those with positive.
The charging of EVs for this use case is performed according to the Lowest Prices
scheduling approach. Considering that EV agents are rational and aim to reduce
their expenses, the application of the two pricing algorithms results to demand
being shifted to utilize the generated energy more effectively, thus leading to
smaller peaks in the imbalance curve. Figure 4b shows that the algorithms have
a similar effect on the stability of the grid. In Table 2, we can observe a similar
behavior of reducing the wasted energy and a slightly outperform of NRG-Coin
on imported energy and MAPE reduction.

In the fourth use case, we count the total number of exchanged messages
required for the scheduling of charging using our proposed cooperation protocols
as the EV population increases. We report that we observed a linear increase in
the number of messages exchanged over a 10 days period (we do not present the
results in detail due to space restrictions).

6 Conclusions and Future Work

In this paper we presented a open architecture for the V2G/G2V energy transfer
problem domain, and provided implementations of agents as flexible microser-
vices that are interconnected by an IoT platform. Our approach can be used
for the exploration of various agent strategies in simulation mode, but is also
readily deployable and can support real world trials. We also address the needs
for openness, and the coverage of diverse business models via the definition of
a number of key agent types and the development of open protocols. These can
be made available to any interested party, which can subsequently build their
own agents given their expertise and business cases. This is demonstrated via
presenting realistic use case scenarios.

Having validated our architecture, we can now look to the future. There is
much to be done in terms of populating the agents’ components with actual
machine learning, decision-making, and recommendation algorithms. Finally, we
intend to use our system in the real-world, first as part of a pilot study. This
will allow us to test the perceived openness and the usability of the system, and
to identify potential extensions, as well as important business models.
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