Middleware Supporting PIS:)
Requirements, Solutions, and Challenges | @

Chantal Taconet, Thais Batista, Pedro Borges, Georgios Bouloukakis,
Everton Cavalcante, Sophie Chabridon, Denis Conan, Thierry Desprats,
and Denisse Muiiante

1 Introduction

Pervasive computing, the computing that disappears, has been introduced by Weiser
(1991). It has been followed by ubiquitous computing, the computing appearing
everywhere and anytime introduced by Satyanarayanan (2001a). They both have
profoundly changed Information Systems (IS') in the three last decades. Those IS
are sometimes qualified as Pervasive Information Systems (PIS?) (Kourouthanassis
and Giaglis 2007). With PIS, IS features are enriched while their architecture
becomes more and more distributed. In addition to the traditional databases they

! The term IS will be herein interchangeably used to express both singular and plural.
2 The term PIS will be herein interchangeably used to express both singular and plural.

C. Taconet (b<) - P. Borges - G. Bouloukakis - S. Chabridon - D. Conan

SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, Evry and Palaiseau, France
e-mail: chantal.taconet@telecom-sudparis.eu; pedro.borges @telecom-sudparis.eu;
georgios.bouloukakis @telecom-sudparis.eu; sophie.chabridon @telecom-sudparis.eu;
denis.conan @telecom-sudparis.eu

T. Batista - E. Cavalcante
Federal University of Rio Grande do Norte, Natal, Brazil
e-mail: thais @dimap.ufrn.br; everton.cavalcante @ufrn.br

T. Desprats

IRIT, Université de Toulouse, CNRS, Toulouse, France
e-mail: Thierry.Desprats @irit.fr

D. Muiiante

SAMOVAR, ENSIIE, Evry, France
e-mail: denisse.munantearzapalo@ensiie.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 65
M. Kirsch Pinheiro et al. (eds.), The Evolution of Pervasive Information Systems,
https://doi.org/10.1007/978-3-031-18176-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18176-4_4&domain=pdf

 885
43008 a 885 43008 a

mailto:chantal.taconet@telecom-sudparis.eu

 15526 43008 a 15526 43008 a

mailto:pedro.borges@telecom-sudparis.eu

 -2016 44115 a -2016
44115 a

mailto:georgios.bouloukakis@telecom-sudparis.eu

15014 44115 a 15014 44115 a

mailto:sophie.chabridon@telecom-sudparis.eu

 -2016 45222 a -2016 45222 a

mailto:denis.conan@telecom-sudparis.eu

 885 49096 a 885 49096 a

mailto:thais@dimap.ufrn.br

 9200 49096 a 9200 49096 a

mailto:everton.cavalcante@ufrn.br

 885
52970 a 885 52970 a

mailto:Thierry.Desprats@irit.fr

 885 56845 a 885 56845
a

mailto:denisse.munantearzapalo@ensiie.fr

 -2016 61494 a -2016 61494
a

https://doi.org/10.1007/978-3-031-18176-4_4

66 C. Taconet et al.

were built upon, they include data coming from the physical environment and should
be accessible anytime and from any (mobile) device.

To illustrate the complexity of PIS throughout this chapter, we consider the
case of a logistic chain traceability system related to the transport operations of
shipments (Ahmed et al. 2021). Each shipment transport involves at least three
types of stakeholders: (1) the shipper at the origin of the transport request; (2) the
carriers in charge of transport operations; and (3) the consignee that receives the
transported shipment. Other stakeholders can also be involved in this process,
e.g., logistic service providers, customs, insurance companies, and banks. These
traceability IS were centralized in the past, but next-generation IS in this domain are
going to be more and more distributed. The system is deployed at each stakeholder
infrastructure locally and in the cloud. IS includes data collected from the Internet
of Things (IoT) with wireless connected devices (such as a temperature sensor)
deployed on the shipment and in the stakeholders’ infrastructures. Furthermore,
traceability data may be used dynamically for decision-making purposes, e.g., a
change in a transport company, notification of transport delays to the consignee and
the carriers, and the early identification of transport default such as the non-respect
of temperature conditions.

PIS software architecture comprises several layers: a business layer, a ser-
vice/middleware layer, and context-management data layer (a.k.a. 10T layer). Each
layer might be composed of several software components provided by different
organizations and deployed on a large-scale, heterogeneous, and distributed infras-
tructure. A PIS may be abstracted by a distributed software architecture in which
data and actions are transmitted among components, both inside and between layers.
The so-called middleware is an essential part of the design and execution of this
software architecture.

In a distributed computing system, middleware is defined as the software layer
that lies between the operating system and the applications on each site of the
system. Its role is to make application development easier, by providing common
programming abstractions, by masking the heterogeneity and the distribution of the
underlying hardware and operating systems, and by hiding low-level programming
details (Krakowiak 2009). Middleware has provided a key set of features enabling
distributed architectures to expand. In the 1990s, middleware started by offering
the basic client-server model that has been extensively used by IS. Since then,
there have been extensive innovations in middleware capabilities. We can mention
the persistence capability that enables transparent interactions between applications
and databases and the publish-subscribe interaction pattern that enables designers to
decouple system components.

PIS have specific requirements concerning middleware. Biegel and Cahill (2007)
have identified some of these requirements, such as loosely coupled communication
and sensor and actuator abstractions. Raychoudhury et al. (2013) surveyed the
literature on middleware for pervasive systems and highlighted new requirements
for PIS, such as context management, i.e., how to consume high-level context
information obtained after processing, fusing, and filtering a large amount of low-
level context data collected from the environment. They also draw attention to

Middleware Supporting PIS: Requirements, Solutions, and Challenges 67

the service-oriented paradigm, the common middleware abstraction in this decade,
which comes with service discovery and service composition issues. In this chapter,
we focus on presenting the state of the art on requirements concerning middleware
for PIS in the context of the IoT, i.e., the integration of connected devices that
interact with the environment into the Internet. As stated by Blair et al. (2016),
the IoT ensues with new requirements and challenges for PIS middleware such as
scalability and heterogeneity.

At the same time, as PIS grow in terms of complexity and distribution and
become ubiquitous, they raise a new concern in terms of energy consumption.
According to Ferreboeuf et al. (2021), the energy demand of Information Technol-
ogy (IT) in 2019 was estimated to be 4184 TWh (IT represents 4.2% of the energy
consumption and 3.5% of greenhouse gas in the world). If the energy consumption
continues to rise by 6.2% by year as it has had since 2015, both energy and
greenhouse gas could double in 10 years, a non-sustainable scenario. As middleware
has a central position in IS and as it is used by many of them, middleware platforms
might play a key role in making systems developed atop of them become energy-
aware and energy-efficient. These requirements are even more relevant considering
that programmers often have limited knowledge on how much energy their software
consumes and which parts use most energy (Pang et al. 2016). Consequently, energy
consumption is a first-class concern for PIS middleware that we address in this
chapter.

The remainder of this chapter is organized as follows. Section 2 describes the
requirements imposed by PIS to middleware. Section 3 presents how some of those
requirements are handled by middleware in the literature. Section 4 details how
platforms proposed in our research respond to some of the identified requirements
concerning PIS middleware. Next, Sect. 5 draws open challenges to be handled in
the future. Section 6 concludes the chapter with final remarks.

2 Requirements for PIS Middleware

This section gives an overview of the requirements for PIS middleware in the
context of the [oT. As the aim of a middleware layer is to bridge the gap between
the pervasive elements spread over the physical environment and the applications,
the requirements for PIS middleware include the provision of several services to
allow applications to gather contextual information from heterogeneous distributed
devices. We present the main functional requirements (i.e., driven by application
constraints such as interacting with a given sensor or defining application adaptation
rules) and non-functional requirements essential in a PIS scenario (such as handling
interoperability, scalability, and the need for supporting energy-efficiency). Table 1
summarizes the presented requirements by organizing them in three categories:
requirements necessary for Context data management in the IoT, Application
support, and requirements Exacerbated in IoT systems. Table 1 also maps the

68 C. Taconet et al.

Table 1 Requirements for PIS in the context of the IoT

Requirement Type SotA?| Proposals

Context data management

2.1 Sensing and actuation support FR IoTvar (4.5)

2.2 Context-awareness FR

2.3 Dynamic adaptation capabilities FR

2.4 Quality of Context management NFR® 3.1 | QoCIM (4.1), QoDisco (4.4)

Application support

2.5 Application development support FR IoTvar (4.5)

2.6 Support for multiple interaction patterns FR 32

Exacerbated in IoT systems

2.7 Enabling interoperability NFR 3.3 | DeX Mediators (4.3),
QoDisco (4.4), IoTvar (4.5)

2.8 Security and privacy FR/NFR| 3.4 | MUDEBS (4.2), QoCIM (4.1)

2.9 Scalability NFR 3.5 | MUDEBS (4.2)

2.10 Energy efficiency and energy-awareness | FR/NFR| 3.6

2 SotA = State of the art
b FR = Functional requirement
¢ NFR = Non-functional requirement

middleware proposals that will be presented in Sect. 4 with the requirements they
tackle and for which we discuss the state of the art in Sect. 3.

2.1 Sensing and Actuation Support

PIS middleware needs to deal with small, often battery-powered devices such as
sensors and actuators, the physical elements that the system needs to interact with
the environment. Sensors typically obtain information from entities of interest or
their environment, whereas actuators act on an entity or the environment or provide
feedback to the user. A relevant requirement for PIS middleware is to provide
programming abstractions that enable event-driven programming at a high level,
thereby significantly simplifying the use of sensors and actuators by hiding the
complexity of accessing heterogeneous devices that use different communication
protocols.

In the example of the logistic chain traceability related to the transport operations
of shipments, all the data collected by sensors providing the temperature in the
compartments of a ship during the transportation need to be received by the
application. Similarly, the application needs to set the desired temperature remotely
by sending a message to some temperature actuators. The middleware layer should
provide programming abstractions for the communication with heterogeneous
sensors and actuators to support high-level interaction with them.

Middleware Supporting PIS: Requirements, Solutions, and Challenges 69
2.2 Context-Awareness

Several works have defined the terms context and context-awareness. In this chapter,
we rely on a generic, well-known definition from Dey and Abowd (2000): Context
is any information that can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and applications themselves.
Context-awareness is one of the most notorious characteristics of PIS as it is related
to the pervasive capability of collecting, processing, storing, and reasoning about
environmental information on a real-time basis. This requirement is essential to
support PIS self-adaptation to any environmental condition. For instance, users’
mobility, or any environmental disruption, such as temperature increase, that can
impact the quality of the application.

In essence, middleware should provide a well-defined interface to generic context
management solutions to prevent PIS from dealing with the burden of context-
awareness management. Middleware for PIS typically should offer system-level
services to deal with context data acquisition, storage, reasoning, discovery, and
query processing, as well as automated context-aware adaptation.

In the logistic chain traceability system example, context-awareness is essential
to provide specific information to the different stakeholders involved. For instance,
the insurance companies do not need to receive the same information as the customs
services. Insurance companies are often interested only in information important to
the insurance context, which differs from the information of interest to the customs
services. Another example of context-awareness, is to automatically trigger alert
and reconfiguration in case of an inappropriate temperature detection.

2.3 Dynamic Adaptation Capabilities

PIS have to be dynamic for diverse reasons, such as failure management, energy
budget, network unavailability, user mobility, and unpredictable interactions. In the
face of these situations, PIS middleware should hence provide dynamic adaptation
capabilities to ensure the quality and availability of applications at runtime.
Dynamic adaptation means the ability of an application to reconfigure its structure,
behavior, protocols, etc. without interrupting its execution, ideally with minimal or
no human intervention or disruption.

PIS should possess inherent characteristics that make dynamic adaptation partic-
ularly relevant. Context-awareness is related to the ability of a system to perceive
information about the context where it is inserted into. By sensing environmental
conditions, the system can recognize the current context and adapt itself according
to changes in it. Another sort of dynamic adaptation in PIS is device mobility, e.g.,
a user with a mobile device in the environment at a given moment and leaving
that location at another, so that PIS needs to transparently discover and (un)link

70 C. Taconet et al.

participating devices into the network. Kourouthanassis and Giaglis (2015) also
raises opportunistic user interaction as a challenge to the development of PIS,
in the sense that it may not be possible to know in advance the users who will
interact with the system or the frequency of such interactions. All these features
need to be adequately supported by PIS middleware components to enable building
applications atop them that can have their structure and behavior adapted at runtime
while maintaining their availability and quality.

In the logistic chain traceability system example, dynamic adaptations may be
required due to communication latency issues (e.g., changing protocols for the sake
of reliability and performance), anomalous operation, unavailability of connected
devices due to a low power level or even failure, or measures to improve the accuracy
of gathered data. These scenarios point out PIS middleware to maintain availability
and work properly in such a dynamic environment while collecting, analyzing,
planning and reacting to changes.

2.4 Quality of Context Management

An important requirement concerns monitoring and managing the quality of the
context information received by applications. International standardization bodies
underline the importance of uncertainty in metrology (Joint Committee for Guides
in Metrology 2008). When reporting the result of a measurement of a physical
quantity, some quantitative indication of the quality of the result should be given
so that those who use it can assess its reliability.

Regarding context information, Henricksen and Indulska (2004) acknowledge
that it may be inherently ambiguous, when two different sources provide con-
tradictory information, inaccurate, when too little information is available about
a situation, or even erroneous when it does not reflect reality. For information
provided by open data or human beings, e.g., data from social networks, the latter
may be incomplete or erroneous, whether voluntarily or not. In general, context
information sources are numerous and diverse. They do not all share the same
formats or units of measurement, which means that conversion operations are
necessary and potentially add new errors.

Quality of Context (QoC) has first been defined by Buchholz et al. (2003) as
any information that describes the quality of information that is used as context
information and can be represented as a set of parameters that reflects the quality
of context data (Bellavista et al. 2012). We consider that QoC parameters, such as
accuracy or currentness as defined in ISO/IEC 25012 (2008), should therefore be
associated with context information in the form of metadata and be used to compute
the quality level of context information.

In the case of logistic chains, at least four quality parameters should be
considered in these metadata (Ahmed et al. 2021): (1) the accuracy, to ensure
that the collected data represent the reality of the shipment conditions, (2) the
completeness, to ensure that there is no gap in the collected data, (3) the consistency,

Middleware Supporting PIS: Requirements, Solutions, and Challenges 71

to ensure the users’ agreement on the traceability data collected from multiple
sources, and (4) the currentness, to ensure that the collected data are timely valid.
Information provided to context-aware applications is derived through analysis
operations and various transformations. Howeyver, if these operations are performed
on erroneous information, the new information produced is also erroneous. QoC
management must hence be carried out throughout the entire information life
cycle, from its collection to its dissemination to the applications through all
the intermediate transformation steps. Middleware should enable applications to
become QoC-aware and provide PIS developers with QoC management facilities.

2.5 Application Development Support

Middleware platforms are a key element in leveraging application development by
abstracting away the specificities of the underlying distributed components from
users and exposing valuable reusable services to applications. Besides an accessible
programming model that adequately supports application developers by taking
advantage of abstractions exposed by PIS middleware, it is relevant to come up with
interoperable environments that could assist those developers to effortlessly build
their applications while orchestrating the diversity of existing devices, platforms,
and services. Inspired by a cloud-based IoT scenario (Truong and Dustdar 2015),
the life cycle of developing a PIS may comprise (1) selecting, composing, and
integrating components across the system for specifying and developing possible
governance and control operations, (2) deploying several types of software compo-
nents at different levels of abstraction and capabilities to configure deployments and
continuous resource provisioning, and (3) capabilities to monitor end-to-end metrics
and perform governance processes across the system. Transversally, it is necessary
to provide environments supporting the development of applications based on data
streams generated by devices and available through the underlying deployment
infrastructure (i.e., cloud, edge).

2.6 Support for Multiple Interaction Patterns

To facilitate the development of applications that exchange data between devices
and services, PIS middleware platforms rely on IP-based protocols. These protocols
abstract distributed peers that interact with each other based on different interaction
patterns, such as request-reply, publish-subscribe and event-based. Middleware
protocols are typically available through an API, and each protocol supports several
characteristics (synchronous/asynchronous interactions, QoS guarantees, etc.). In
general, each interaction pattern can be characterized by (1) its semantics, which
expresses the different dimensions of coupling among interacting peers, and (2) its
API, with a set of primitives expressed as functions provided by the middleware.

72 C. Taconet et al.

The request-reply pattern is commonly used for Web Services and followed by
popular middleware protocols such as HTTP, XMPP, etc. A client interacts directly
(without intermediate components) with a server either by direct messaging (one-
way) or through remote procedure calls (RPC). Request-reply protocols usually
support both synchronous and asynchronous interactions. In turn, the publish-
subscribe pattern is commonly used for content broadcasting. Middleware protocols
such as MQTT and AMQP, APIs (e.g., JMS) and message brokers such as
RabbitMQ, EMQx, and Mosquitto follow this pattern. Multiple publisher-consumer
peers interact via an intermediate broker. Consumers subscribe to a specific filter
(e.g., topic-based filters) on the broker while publishers produce events to that filter,
whereas consumers receive events in a FIFO order. Publish-subscribe protocols
commonly support asynchronous interactions. In Sect. 3.2, we provide an overview
of existing protocols that can be classified into the request-reply and publish-
subscribe patterns.

PIS are characterized by diverse entities (devices, systems, users, etc.) that are
pervasively inserted into the environment and provide context information about
this environment. These entities are also inherently mobile, i.e., they may be present
in the surroundings at a given instant of time and no longer be there at another
one, and they may be unknown a priori at design time. Such characteristics lead
the communication in a PIS to be preferably loosely coupled due to the inherent
dynamicity of interaction among the system constituents and scale well upon the
many entities envisioned in PIS environments. In this perspective, Biegel and Cahill
(2015) especially advocate using an event-based pattern (Bacon et al. 2000) in PIS
middleware as a means of providing asynchronous communication in a many-to-
many, loosely-coupled interaction among the distributed application components.

2.7 Enabling Interoperability

It is essential to tackle heterogeneity across multiple layers to enable interoperability
between IoT devices and other PIS components. For instance, in the logistic
chain traceability scenario, a shipment may provide information regarding its
state through the following application layer operation: get shipment state
(1d) . However, a carrier may require the shipment status via query shipment
(shipment id, state). Such issues at the application layer can be qualified
as semantic heterogeneity issues. Ensuring end-to-end data consistency is one of
the goals of semantic interoperability. There are two basic solutions for achieving
semantic interoperability between two IoT devices. The first solution is a one-to-one
model mapping. Another more suitable approach is to use shared data meta-models
that can be used to unambiguously define the meaning of terms in existing models,
such as ontologies. In Sect. 3.3, we discuss some existing semantic interoperability
approaches in the literature.

Semantic interoperability ensures mapping between diverse data models
employed by IoT systems. However, this alone does not make the interacting devices

Middleware Supporting PIS: Requirements, Solutions, and Challenges 73

fully interoperable. Different APIs and data representations and primitives used by
IoT devices must be mapped with each other at the middleware layer. Solving the
middleware interoperability issue is challenging, mainly due to the fast development
of protocols and APIs. Existing efforts address the middleware interoperability issue
by relying on service-oriented architectures (SOA), IoT gateways, cloud computing
platforms, and model-driven engineering. In Sect. 3.3, we discuss some middleware
interoperability approaches in the literature.

2.8 Security and Privacy

To promote the user acceptability of new IoT-enabled PIS applications, it is essential
to provide mechanisms to ensure the privacy of users and the protection of the
handled data. With the heterogeneity and amount of connected things and the
unprecedented amount of collected data, security and privacy are no longer an
option in PIS. They should be enforced throughout the entire software life cycle.
PIS middleware is the right layer to intercept the information flow of applications
and integrate security and privacy mechanisms. Such mechanisms can then benefit
all applications by default, with the possibility to configure some specific business
rules to take into account applications needs.

Security corresponds to the degree to which a product or system protects informa-
tion and data so that persons or other products or systems have the degree of data
access appropriate to their types and levels of authorization (ISO/IEC 25010 2011).
More specifically, cybersecurity is about ensuring three properties of information,
services, and systems, namely confidentiality, integrity, and availability. Securing
an information system means preventing an unauthorized entity from accessing
information, services, and systems, modifying them, or making them unavailable.
Privacy can be thought of as the confidentiality of the relationship between people
and data. Therefore, it is important to notice that privacy can be guaranteed
only when a security strategy is enforced in an end-to-end way. While relying
on cryptographic primitives and protocols, privacy protection involves its own
properties, techniques, and methodologies.

Cavoukian and Dixon (2013) recommend aligning seven principles for both
security-by-design and privacy-by-design. These principles are: (1) proactive and
preventative, not reactive and remedial, to anticipate and prevent invasive events
before they happen; (2) default setting as no action should be required on the part
of individuals for their protection; (3) embedded into the design, not bolt after the
fact; (4) a positive-sum, not zero-sum but full functionality by accommodating all
legitimate interests and objectives; (5) an end-to-end approach, by ensuring secure
life-cycle management of information with confidentiality, integrity, and availability
of all information for all stakeholders; (6) visibility and transparency, by keeping IT
systems’ internal parts transparent to users and providers and by following open
standards; and (7) respect for the user in a user-centric approach to protecting the
interests of all information owners.

74 C. Taconet et al.

PIS technology is still in its infancy and does not have utterly standardized
security and privacy requirements (Chaudhuri and Cavoukian 2018). Alhirabi
et al. (2020) recommend using threat modelling techniques during the design
stage, like STRIDE for security threats and LINDDUN for privacy threats. The
STRIDE framework (Howard and Lipner 2006) is an acronym for Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of Service, and Elevation
of Privilege. The LINDDUN framework (Deng et al. 2011) is an acronym for
Linkability, Identifiability, Non-repudiation, Detectability, information Disclosure,
content Unawareness, and policy and consent Non-compliance.

Even though PIS mainly rely on an event-driven data reporting method (see
Sect. 2.6), there may be situations when a query-driven approach is more relevant
to get insights about some phenomenon at a given time. For instance, a query
would get a particular set of sensor readings satisfying some condition. Data query
privacy (Lopez et al. 2017) is hence an important requirement of PIS in order to
reduce the risk of exposing sensitive information to attackers when issuing queries.

In the logistic chain traceability system example, the collected data should
be kept confidential and not be transferred to or stored by untrustworthy third
parties. Anonymity or pseudonymity should also be enforced so that untrustworthy
third parties can distinguish location information from fake locations. These are
just examples of some issues. Many more security and privacy aspects should be
considered in a PIS middleware all along the data life cycle and at all the system
architecture.

2.9 Scalability

The IoT paradigm calls for exchanging data among dynamic, heterogeneous
sensors and client applications at unprecedented scales. We follow the framework
from Duboc et al. (2007) for characterizing the scalability of PIS middleware. For
instance, when considering an IoT-based solution, the scaling dimensions, which
represent the scaling aspects, are the number of queries per second and the number
of machines in the cluster. The non-scaling variables are the network conditions
(e.g., available bandwidth). The dependent variables, which represent the aspects
of the system behavior affected by changes in the scaling dimensions, are the
response time for a query, bandwidth usage, and cluster load. In this first example,
the requirement can then be formulated as follows: “the studied system shall scale
with respect to latency” because it can maintain a maximum given response time as
the number of requests per second scales by varying the number of machines in the
cluster. In another architectural style, such as a highly-distributed publish-subscribe
system for the PIS middleware, the scaling dimensions shall include the number
of intermediary entities (i.e., brokers of the overlay network) that route data from
sensors to client applications. We shall then measure the total resource consumption
for filtering data records through the multiple brokers from the sensor to the client
application.

Middleware Supporting PIS: Requirements, Solutions, and Challenges 75

When considering the logistic chain traceability illustrative application domain,
architects may differentiate PIS systems deployed in relatively small areas mainly
managed by one administrative entity, such as merchandise warehouses or ocean
liners, from more extensive areas with many stakeholders, e.g., in port cities. In the
former scenario, IoT solutions, including ones enhanced with cloud computing, may
be appropriate. In the latter configuration, more distributed, decoupled solutions
involving several brokers along with distributed routing and filtering might be
required.

2.10 Energy Efficiency and Energy-Awareness

Penzenstadler (2015) point out that new quality attributes have recently been studied
by the research community in the objective to keep systems sustainable. In the past,
resource utilization mainly referred to the efficiency of the use of the available
processing, storage, and network. For energy-efficiency purposes, the resource to
be monitored is the energy consumption.

While energy efficiency means using less energy to perform a given task,
energy-awareness represents knowing the energy consumption for a given task.
The middleware can use energy-awareness to reduce energy consumption through
energy-saving strategies, e.g., protocol, scheduling and the volume of exchanged
data. Energy-awareness can also be shared with upper layers of applications. Appli-
cations may adjust their behavior for energy-saving purposes, e.g., reducing some
requirements to remain within the limits of a given energy budget. Applications can
also share energy consumption reports with end-users who could adapt their usage
based on energy consumption knowledge. Indeed, energy-awareness is expected to
have a positive impact in terms of energy efficiency (Hassan et al. 2009).

In the logistic chain traceability system example, to achieve energy efficiency,
the PIS middleware could: (1) at design time, choose the most energy-efficient
consensus algorithm for sharing securely and transparently data between the
stakeholders (Sedlmeir et al. 2020); (2) at runtime, reduce the volume of exchanged
data by filtering data based on their content or minimizing the frequency of data
transmissions (de Oliveira et al. 2020). For energy-awareness, the middleware could
adapt the frequency of data transmissions to keep energy consumption above a
certain level of energy budget or transmit energy consumption information to the
application level, for example, to inform the end-user about the consumption of the
energy budget.

PIS middleware should integrate architectural tactics for energy efficiency,
e.g., energy monitoring, resource allocation, and resource adaptation (Paradis
et al. 2021). It is reasonable seeing middleware as the good level for integrating
energy management strategies due to its operation at the protocol level and high
reusability (Noureddine et al. 2013). Additionally, middleware should provide
energy-awareness mechanisms (Verdecchia et al. 2021) that allow future PIS
providers to master energy consumption.

76 C. Taconet et al.

3 State of the Art on Middleware Supporting PIS
Requirements

In Sect. 2, we have identified and defined the requirements for PIS middleware in
the context of the IoT. Context-awareness state-of-the-art is covered in chapter “The
Context Awareness Challenges for PIS” of this book. In this section, we present
only the state of the art concerning the most pregnant requirements in the context of
the IoT.

3.1 QoC Management

Even though the management of the quality of context data has long been recognized
as a requirement of PIS and context-aware applications (Buchholz et al. 2003), only
a few middleware actually provide the necessary support for QoC. We herein present
some recent initiatives and summarize the provided mechanisms.

The ContextNet middleware (Endler and Silva 2018) integrates QoC manage-
ment through the Context Data Distribution Layer (CDDL) (Gomes et al. 2017a).
A set of QoC parameters is available, including accuracy, measurement time,
age, completeness, and numeric resolution. ContextNet targets the Internet of
Mobile Things (IoMT) and takes dynamicity into account at different levels. QoC
parameters may also exhibit dynamic variability (they oscillate over time), and
CDDL can monitor the variation of a given QoC parameter. CDDL also offers
filtering based on context data and their QoC metadata.

The LAURA architecture (Teixeira et al. 2020) was designed to support the
deployment of decoupled IoT applications. LAURA provides a fog layer that plays
the role of an intermediate between applications and the network or sensor nodes
and can be regarded as a middleware. This fog layer, still under development, is
designed to filter or aggregate data received from the physical layer to prevent
unnecessary or poor quality data from being sent to upper layers. QoC parameters
are associated with the sensed data, allowing user applications to verify the context
data’s usefulness or temporal relevance. QoC-based filtering and aggregation are
seen as important features of LAURA.

Jagarlamudi et al. (2021) proposed a Service Level Agreement (SLA) template
integrating a QoC-aware mechanism, called the Relative Reputation (RR), to select
context providers with high RR values. The QoC evaluator generates the RR
unit representing the match between QoC outcomes and QoC requirements. A
mechanism of penalties also exists to indicate the applicable penalties with each
QoC indicator’s degradation in the context response compared to its guarantees.

Middleware Supporting PIS: Requirements, Solutions, and Challenges 77
3.2 Protocols for Multiple Interaction Patterns

As mentioned in Sect.2.6, PIS middleware platforms leverage communication
protocols upon different interaction patterns. We herein provide an overview
of existing middleware-based IoT protocols. These protocols offer middleware
primitives that aim to facilitate the development of IoT applications that include
resource-constrained IoT devices. Karagiannis et al. (2015) compare the most
promising IoT middleware protocols (more specifically, the ones mentioned here).
Even though there are multiple IoT protocols, no single protocol has been adopted
yet for IoT system development. This is mainly because the IoT is too diverse,
including multiple data formats and (possibly highly) resource-constrained devices.

Protocols such as DPWS, OPC UA, CoAP, and XMPP have been introduced to
support data exchange among peers based on the request-reply interaction pattern.
OASIS introduced DPWS (Zeeb et al. 2007) in 2004 as an open standard, and it is
suitable for supporting large-scale deployments and mobile devices. Nevertheless,
the induced protocol overhead is noticeable and requires a large amount of RAM.
The OPC Foundation designed OPC UA (Mahnke et al. 2009) in 2008 to target
resource-constrained devices, but it implies a large payload unsuitable for IoT
applications. IETF designed CoAP (Shelby et al. 2014), a lightweight protocol that
supports highly resource-constrained devices and the delivery of small message
payloads. Finally, XMPP (Saint-Andre 2011) is now a suitable protocol for IoT real-
time communications, even though it uses XML data formats that create a significant
computational overhead.

The publish-subscribe interaction pattern is an alternative to request-reply
and offers time and space decoupled interactions. The Sun Microsystems’ JMS
standard has been one of the most successful asynchronous messaging technolo-
gies available by defining an API for building messaging systems. DDS (OMG
2015) is a messaging protocol designed for brokerless architectures and real-time
applications. AMQP (OASIS 2012) is another messaging protocol designed to
support applications with high message traffic rates. To support highly resource-
constrained devices, MQTT (Banks and Gupta 2014) offers a publish-subscribe
centralized architecture, but its performance decreases significantly when sending
large message payloads. WebSockets (Fette 2011) were introduced to support real-
time full-duplex interactions using only two bytes of overhead in message payloads.

3.3 Enabling Interoperability

Different data representations and APIs among IoT devices, platforms, and appli-
cations can be mapped with each other at the middleware layer. However, this
alone does not make the interacting peers fully interoperable. There are indeed
incompatibilities of IoT devices at the application layer, e.g., operation/resource
names, data semantics, etc.

78 C. Taconet et al.

Ontologies (Gruber 1993) provide a common model for annotating content and
thus help systems to interoperate. We review well-known ontologies for general
sensor modeling. The W3C Semantic Sensor Network (SSN) ontology (Compton
et al. 2012) presents a vocabulary to describe sensors and their observations,
actuators, and their association to features of interest. Its central building block is
the SOSA (Sensor, Observation, Sample, and Actuator) ontology (Janowicz et al.
2019), a standalone light-weight ontology that offers the core vocabulary for the
descriptions. The Smart Appliances REFerence (SAREF) ontology (Daniele et al.
2015) follows a similar design to describe concepts required by smart applications.
In SAREF, devices make measurements related to properties of interest (similar
to sensors making observations in SSN). Depending on the application under
development, developers must use the appropriate ontology. For example, the
SAREF ontology is commonly used to model information of appliances in smart
homes.

Several approaches to bridge middleware-based protocols have been proposed
concerning APIS, protocols, and data representations, e.g., the QEST broker for
CoAP and RESTful APIs (Collina et al. 2012), HTTP-CoAP proxy (Castellani
et al. 2012), and Ponte for REST, CoAP, and MQTT (Banks and Gupta 2014).
These approaches implement one-to-one mappings between existing protocols.
Despite the simplicity, this is highly inefficient due to the vast development of
IoT protocols. Negash et al. (2015, 2016) introduces the Lightweight Internet of
Things Service Bus (LISA) for tackling IoT heterogeneity. Derhamy et al. (2017)
introduced a protocol translator that utilizes an intermediate format to capture all
protocol-specific information. XWARE (Roth et al. 2018) implements mediators
to translate messages of IoT protocols by using an intermediate format. Finally,
Georgantas et al. (2013) extended the Bouloukakis et al. (2019)’s work to deal with
IoT heterogeneity using software abstractions and code generation.

While the above approaches considerably reduce the development effort, they do
not consider semantic layer incompatibilities prevalent in the IoT. IoT platforms
such as SemloTic (Yus et al. 2019) provide end-to-end IoT interoperability in
smart buildings by leveraging the SSN/SOSA ontologies and mediating adapters. In
addition, it leverages the middleware-based interoperability approach that is further
presented in Sect. 4.3.

3.4 Security and Privacy

In a comparison of 50 context-aware computing research projects, Perera et al.
(2014) identified that only 11 projects (about 20%) provided security and pri-
vacy solutions. More recently, Alhirabi et al. (2020) reviewed the evolution of
design notations, models, and languages that facilitate capturing the non-functional
requirements of security and privacy. The majority of the requirement engineering
efforts are focused on security. Among the 47 design notations analyzed in their
study, security is supported by more than half (32 notations out of 47), while only

Middleware Supporting PIS: Requirements, Solutions, and Challenges 79

three notations cover privacy. Even though a by-design approach has long been
recommended for both security and privacy (Cavoukian and Dixon 2013), it is still
not sufficiently put into practice by developers. Aljeraisy et al. (2021) highlight that
there is still a relevant gap between legislation and design patterns that can help to
translate and implement them.

Aljeraisy et al. (2021) analyzed data protection laws used across different
countries, namely the European General Data Protection Regulations (GDPR),
the Canadian Personal Information Protection and Electronic Documents Act
(PIPEDA), the California Consumer Privacy Act (CCPA), the Australian Privacy
Principles (APPs), and the New Zealand’s Privacy Act 1993. The authors then
retained the fundamental principles and individuals’ rights to define the Combined
Privacy Law Framework (CPLF) by eliminating duplication. Finally, they mapped
CPLF with privacy-by-design (PbD) schemes (e.g., privacy principles, strategies,
guidelines, and patterns) previously developed by different researchers to investigate
the gaps in existing schemes. The results of this extensive study helped to identify
where new privacy patterns should be defined. More than 70 privacy patterns have
already been proposed in the literature (Colesky et al. 2022; Kargl et al. 2022) and
they are a relevant, concrete mechanism to handle data usage and protection in a
specific context. However, some principles and rights of CPLF are not achieved by
any existing privacy pattern and call for further research.

While security and privacy research is very active, its integration into operational
middleware is still limited. Fremantle and Scott (2017) analysed 54 IoT middleware
frameworks and observed that they address security and privacy in very different
ways. A majority of these middleware frameworks provide access control and
authentication mechanisms, and others focus on providing protection for the content
shared on the network. However, very few middleware frameworks support a
sufficient coverage of the features required to support security and privacy for PIS.

3.5 Scalability

Without middleware, i.e., when applications directly obtain IoT data from sensors,
existing coupling significantly hampers the system’s scalability. Therefore, as
formulated by Bellavista et al. (2012), PIS middleware architectures are classically
first organized according to the following question: is the middleware centralized or
decentralized? The centralized approach includes deploying middleware on a single
host or cloud. The second approach has two subcategories depending on whether
the distribution is hierarchical or not. Consequently, the basic solutions for scaling
up follow these three classes of solutions.

The architectures of the first class of solutions have been referred to as Web
of Things (Delicato et al. 2013) or, more recently, Cloud of Things (Dias et al.
2020). Scalability issues arising in these centralized architectures concern the
complex processing of a huge quantity of data with many clients either producing or

80 C. Taconet et al.

requesting data. Cugola and Margara (2012) surveyed solutions for complex event
processing and stream processing.

The second class of solutions dealing with scalability targets this requirement at
a local scale, a.k.a. localized scalability (Satyanarayanan 2001b). A collection of
small clouds, i.e., cloudlets, typically are brought to lower latencies between so-
called co-located clients: these smaller clouds are physically distributed to form
smaller groups of clients. This architectural style corresponds to what we know as
fog computing. Perera et al. (2017) surveyed such solutions for smart cities.

To target scalability at a global scale, an architecture based on publish-subscribe
is preferred as it favors decoupling. Eugster et al. (2003) distinguish three forms of
decoupling, namely space, time, and synchronization decoupling. In this approach,
some clients publish IoT data while others consume these data. As surveyed
by Bellavista et al. (2012), a first set of solutions organize an overlay of brokers
responsible for routing IoT data from producers to subscribers. Producers push
data to their access broker, and brokers forward them to the consumers that have
subscribed to these data. A data model and a filtering model define the non-scaling
variables of publish-subscribe solutions: roughly speaking, topic-based filtering
with opaque data scales better than content-based filtering with structured data or
semi-structured data. In addition, the diameter of the overlay network of brokers
is the other non-scaling variable. Kermarrec and Triantafillou (2013) surveyed
a second set of solutions targeting non-broker-based routing and using topic-
based filtering. These solutions are constructed as peer-to-peer systems: peer nodes
simultaneously play the three roles, namely publishers, subscribers, and routers.

Finally, note that broker-based PIS middleware protocols such as AMQP and
MQTT are topic-based and cloud-based, but without complex event processing or
streaming. This is precisely the role of recent works such the one of Luckner et al.
(2014), and of industrial platforms such as AWS IoT Core,’ Google IoT Core,”
Microsoft Azure IoT Hub,” and FIWARE, to add complex event processing and
streaming to publish-subscribe middleware standards. These platforms are proof, if
any were needed, of the interest of major operators in working to integrate scalability
into PIS middleware.

3.6 Energy Efficiency and Energy-Awareness

Middleware has recently explored some strategies for the IoT for energy efficiency
and energy-awareness purposes. The most used strategy for energy efficiency is
network adaptation. Network adaptation refers to introducing new protocols, mod-

3 https://aws.amazon.com/iot-core/.

4 https://cloud.google.com/iot-core.

3 https://docs.microsoft.com/azure/architecture/reference-architectures/iot.
6 https://www.fiware.org/.

 -1446 54390 a -1446 54390
a

https://aws.amazon.com/iot-core/

 -1446 55719 a -1446 55719 a

https://cloud.google.com/iot-core

 -1446 57047 a -1446 57047 a

https://docs.microsoft.com/azure/architecture/reference-architectures/iot

 -1446 58376 a -1446 58376
a

https://www.fiware.org/

Middleware Supporting PIS: Requirements, Solutions, and Challenges 81

ifying existing ones, and making network optimizations. Akkermans et al. (2016)
proposed adapting a publish-subscribe middleware by adding a layer between the
broker and the client applications to send notifications via IPv6 multicast rather
than using several point-to-point messages. Kalbarczyk and Julien (2018) proposed
Omni, a device-to-device middleware with periodic adaptive discovery of neighbor
devices using lightweight discovery mechanisms in wireless local area networks.
Discovered devices are only connected when data needs to be transferred, and the
communication technology adapts both to the network energy efficiency and the
volume of data.

Task offloading stands for using the network to transfer software components to
other locations. For example, an application running on a mobile phone could send
data to a server in a cloud or to another computer in its vicinity for data processing
purposes. Several authors such as Aazam et al. (2020), Pasricha (2018), Song et al.
(2017), Ivarez-Valera et al. (2019), and Shekhar et al. (2019) proposed middleware
to offload software components to other nodes in the cloud or the fog as a means of
saving energy on the source nodes. All these proposals show that task offloading has
a benefit in terms of energy consumption for at least one of the nodes of the system.

The data filtering capability offered by some middleware proposes processing
data to reduce the number or the size of messages according to specific crite-
ria. Adaptive sampling and adaptive filtering (Giouroukis et al. 2020a) are two
techniques that have emerged over the last decade. These techniques dynamically
reconfigure rates and filter thresholds to trade-off data quality against resource
utilization. de Oliveira et al. (2020) proposed a data stream processing workflow
to be deployed at the network’s edge to perform data cleaning tasks.

Another strategy used by middleware is to temporarily reduce the activity of
some nodes to reduce the infrastructure energy consumption. This strategy is used
for a time in data centers. For example, Binder and Suri (2009) presented a dispatch
algorithm to concentrate services on a reduced number of servers so that they put
inactive servers in a sleeping mode to save energy in the data center. In the context
of the IoT, this strategy is used as well and is known as active node selection. For
example, Cecchinel et al. (2019) proposed determining an optimal configuration of
sensors towards extending their battery life. Sarkar et al. (2016) proposed to reduce
interactions among the nodes of a wireless sensor network and hence the network’s
energy consumption. The data stream processing workflow proposed by de Oliveira
et al. (2020) also includes active node selection. Active node selection can hence
reduce energy consumption on some of the nodes of a PIS.

The second requirement concerning energy introduced in Sect.2.10 is energy-
awareness. The energy-awareness may be provided at the middleware or the
application level (i.e., knowledge shared through middleware abstractions with the
application components). At the former level, energy-awareness may be used to con-
strain the system’s energy consumption through an energy budget configuration. For
example, Padhy et al. (2017) proposed a middleware to minimize the total energy
consumption of an IoT application while ensuring that the requested accuracy is met.
The middleware intends to find the sensors that consume the minor energy while
satisfying the sensing requirements and maximizing the overall accuracy under an

82 C. Taconet et al.

energy budget. For the latter level, we found some examples where applications
express energy requirements (e.g. Song et al. 2017) for deployment purposes.
However, middleware does not usually expose energy consumption to upper layers.

Energy consumption is a recent concern for the community working on IoT
middleware. Some middleware has mainly handled energy efficiency to reduce
energy consumption only on some systems parts. We noticed a few middleware
proposals providing energy-awareness to the upper layers.

4 PIS Middleware Proposals

We have been working on middleware for the IoT and PIS for some years. Different
software is available in open source (Bouloukakis et al. 2022; Conan et al. 2022;
Gomes et al. 2017b) and some of these proposals are presented below. Table 1
summarizes the requirements tackled by each of them.

4.1 QoC Management with QoCIM and Processing Functions

Based on the QoC criteria most frequently mentioned in the literature, it is possible
to notice that no criteria can respond to all the needs of applications, each having
its own method for computing the quality of context information. We have then
focused our attention on realizing a model able to represent any type of QoC
criteria. This resulted in QoCIM’ (Quality of Context Information Model) (Marie
et al. 2013), a meta-model dedicated to modeling QoC criteria and enforcing
expressiveness, computability, and genericity of QoC management. QoCIM offers
a flexible ideology, i.e., it defines a basis to design and represent any QoC criterion
instead of providing a predefined list of supported QoC criteria. With QoCIM, a
given QoC criterion can also be built upon other primitive or composed QoC criteria.

QoCIM is complemented with the specification and implementation of a set of
functions for processing context information and its QoC metadata. The goal of
these processing functions is to provide the developers of PIS with middleware
programming facilities to process context information together with its associated
QoC metadata efficiently. The functions manage three types of data: (1) context
information sensed and collected from different sources; (2) QoC metadata modeled
with QoCIM, each piece of QoC metadata corresponding to an instance of a QoC
indicator, and (3) message encapsulating a piece of context information associated
to a list of QoC metadata. There are functions for aggregation, filtering, inference,
and fusion of context information with QoC metadata. These functions can be
configured to determine what computing method to use and to indicate the number

7 QoCIM is part of the M4IoT platform: https://www-inf.it-sudparis.eu/m4iot/.

 13320 58376 a 13320 58376 a

https://www-inf.it-sudparis.eu/m4iot/

Middleware Supporting PIS: Requirements, Solutions, and Challenges 83

of messages to be taken as input. The configurability of the functions is based on a
declarative solution.

The aggregation function applies an aggregation operator onto a list of messages.
The result is a message with the same abstraction level. The choice of the aggrega-
tion operator (arithmetical average, for instance) is specified in a configuration file.
There is also a distinction between temporal aggregation and spatial aggregation.
The former handles information coming from a single context source and produced
during some time. The latter handles information coming from several context
sources that periodically produce the same type of context information. The filtering
function analyzes the message and decides to remove it or not, but the content of
the message itself is never modified. The inference function applies an inference
operator onto a list of messages. The result is only one message with a higher
abstraction level. The fusion function executes a set of functions sequentially. The
result is a list of messages with a higher abstraction level.

QoC management must take place throughout the whole chain of processing
context information. A declarative programming approach allows qualifying context
information and self-adapting QoC management due to potential physical limita-
tions of the processing entities (Marie et al. 2016).

4.2 MUDEBS

Distributed-based event systems (DEBS) for broad IoT face unprecedented scales
regarding the volume of exchanged data, number of participants, and communica-
tion distance. As many brokers may be involved, a high amount of messages may be
exchanged when installing subscription filters and, most importantly, when routing
numerous events from producers to consumers. MUDEBS? (Conan et al. 2017) take
advantage of the inherently heterogeneous nature of broad IoT systems to control
and limit the amount of exchanged data. Some sources of heterogeneity, such as
geographical and group membership heterogeneity, may delimit visibility scopes
for data distribution, with notifications being visible only in certain scopes. More
precisely, Fiege et al. (2002) define scope as an abstraction that bundles a set of
clients (producers and consumers) in that the visibility of notifications published
by a producer is confined to the consumers belonging to the same scope as the
producer; a scope can recursively be a member of other scopes. In MUDEBS,
filtering is impacted by the visibility of notifications that are analyzed according
to several dimensions of scopes. A client advertises or subscribes by providing
a filter tagged with a set of scopes, with at most one scope per dimension, e.g.,
interest in geographical scopes or areas belonging to end-users scopes or groups. A
notification is visible to a client if it is visible in all the dimensions. In summary,

8 muDEBS is part of the M4IoT platform: https://www-inf.it-sudparis.eu/m4iot/.

 14000 58376 a 14000 58376
a

https://www-inf.it-sudparis.eu/m4iot/

84 C. Taconet et al.

MUDEBS targets scalability by scoping the distribution of data between producers
and consumers.

IoT data can be exploited by pervasive applications to detect the users’ current
situation and provide them with the relevant services corresponding to their precise
needs. The threats to the users’ privacy appear more clearly and Chabridon et al.
(2014) have shown that QoC and privacy are closely related and must be addressed
together in order to find a workable solution. As a first step, Lim et al. (2015)
identified models for a first set of attributes to be specified in privacy policies,
namely purpose (intention of use), visibility (who has access), and retention (for
how long data may be retained). Following these models, IoT producers specify
privacy requirements and QoC guarantees in producer context contracts that are
then registered in MUDEBS as XACML policies.” On their side, IoT consumers
express their QoC requirements and the privacy guarantees that they are committed
to fulfilling in consumer context contracts, mentioning at least for what purpose
they are requesting access to some specific IoT data. Privacy guarantees take the
form of ABAC information registered with the subscription filters. QoC guarantees
and requirements are expressed by following the QoCIM model (see Sect.4.1). As a
second step, Denis et al. (2020) studied confidentiality under the semi-trusted broker
assumption in which brokers are considered honest-but-curious, i.e., brokers route
the publications to the interested consumers, but they can make use of the data for
their own interest. More precisely, confidentiality concerns encompass (1) part or
all of the constraints of the subscriptions, (2) part or all the information in the
publication that is used for routing against subscriptions, and (3) the payload of
the publications. The solution proposed in MUDEBS adapts an existing attribute-
based encryption scheme and combines it with data splitting, a non-cryptographic
method called for alleviating the cost of encrypted matching. Data splitting enables
forming groups of attributes sent apart over several independent broker networks. It
also prevents the identification of an end-user, and only attributes are encrypted to
prevent data leakage.

4.3 DeX Mediators

IoT devices employ middleware-layer protocols such as MQTT, CoAP, ZeroMQ,
and more to interact with each other. These protocols support different Quality
of Service (QoS) semantics. They define multiple data-serialization formats (e.g.,
JSON, XML, protobuf, etc.) and different payloads suitable for constrained or
healthy devices and follow different interaction patterns such as request-reply and
publish-subscribe. IoT systems include heterogeneous IoT devices employing any
of those protocols. In many cases, new heterogeneous IoT devices may be added
to an IoT system in an on-demand fashion. For instance, in the logistic chain

? https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html.

 -1446 58376 a -1446 58376 a

https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

Middleware Supporting PIS: Requirements, Solutions, and Challenges 85

Mediator

mediator
logic

27
HTTP { HTTP }[MaQrTT }* MarTT

< DeX connector A > <: DeX connector B >

Fig. 1 Enabling data exchange via mediators

traceability scenario, IoT devices in the shipment must interact with the services
of the IS that dynamically collect information for decision-making purposes.
Therefore, generic, automated solutions must enable data exchange in such IoT
systems.

The Data eXchange Mediator Synthesizer (DeXMS)'? (Bouloukakis et al. 2019)
addresses the heterogeneity of IoT devices and services by synthesizing software
mediators. As depicted in Fig. I, DeXMS relies on the Data eXchange (DeX) API,
which implements POST and GET primitives for sending/receiving messages using
existing IoT protocols such as CoAP, MQTT, XMPP, etc. In the illustration, the
mediator converts temperature data from a package (in JSON format through the
HTTP protocol) to be received from an IS dashboard (in XML format through the
MQTT protocol). Considering a set of heterogeneous IoT devices that have to inter-
connect with devices deployed in an IoT system, DeXMS accepts their input/output
data representation models as input and synthesizes the required mediators. Based
on the requirements defined in Sect. 2, DeXMS provides a semi-automated manner
to tackle interoperability among devices employing middleware-layer protocols
(classified to diverse interaction patterns). Regarding the application-layer, DeXMS
enables developers to manually perform data mappings between applications
semantics. More details on DeXMS can be found in the work of Bouloukakis et al.
(2019).

4.4 QoDisco

A pervasive context encompasses a distributed plethora of heterogeneous resources
(sensors, actuators, services) with different functionalities and communication

10 https://gitlab.inria.fr/dexms.

 -1088 58376 a -1088 58376
a

https://gitlab.inria.fr/dexms

86 C. Taconet et al.

protocols. In this scenario, a well-known challenge for both machines and users is
finding, selecting, and using these resources. Discovering services play a significant
role in addressing this issue by enabling clients (applications, middleware, end-
users) to retrieve available resources based on complex search criteria considering
contextual information essential in a pervasive environment.

QoDisco'! is a QoC-aware federated discovery service supporting multiple-
attribute searches, range queries, and synchronous/asynchronous operations. It
encompasses an ontology-based information model for semantically describing
resources, services, and QoC-related information. QoDisco is structured upon
a distributed architecture composed of a federation of autonomous repositories
cooperating with each other to perform data and service discovery tasks. It provides
an API to perform discovery tasks in such repositories, and each repository
provides operations for querying and updating records. Clients are responsible for
semantically annotating resource data (such as the ones provided by sensors) by
using the concepts of the QoDisco information model. When receiving a discovery
request, QoDisco searches for resource descriptions or data stored in the available
repositories, thereby hiding the heterogeneity.

The semantic description of resources defined by the QoDisco information
model relies on: (1) the SAN ontology (Spalazzi et al. 2014), an extension of the
W3C’s SSN ontology (Barnaghi et al. 2011) that provides concepts, attributes,
and properties to model both sensors and actuators; (2) part of the SOUPA
ontology (Chen et al. 2005) aiming at including location-related concepts to describe
spatial locations of entities in terms of latitude, longitude, altitude, distance, and
surface, as well as symbolic representations of space and spatial relationships; (3)
the OWL-S ontology for semantically modeling services exposed by the resources;
and (4) part of the QoCIM meta-model (Marie et al. 2013) to describe QoC-related
concerns (see Sect.4.1). This information model supports the QoC management
requirement and tackles data format heterogeneity using ontologies.

Due to the dynamic context in which the IoT resources operate, QoDisco
handles both synchronous calls and asynchronous notifications. The former relies
on request-reply interactions towards providing resource information at the moment
of the search. The latter is based on publish-subscribe interactions to notify clients
in case of resource removal, insertion, or update. More details on QoDisco can be
found in the work of Gomes et al. (2019).

4.5 IoTVar

IoTVar'”? is a middleware that provides developers with abstractions for IoT
variables. From a variable declaration, IoTVar automatically discovers matching

T https://github.com/porfiriogomes/qodisco.
12 [oTVar is part of the M4IoT platform: https://www-inf.it-sudparis.eu/m4iot/.

 -1088 57047 a -1088 57047
a

https://github.com/porfiriogomes/qodisco

 13415 58376 a 13415 58376 a

https://www-inf.it-sudparis.eu/m4iot/

Middleware Supporting PIS: Requirements, Solutions, and Challenges 87

data-producer objects and transparently deals with updates to these variables thanks
to transparent interaction with IoT systems. IoT Var offers an abstraction level to
interact with virtualized sensors. It drastically minimizes the number of lines of
code to be written by the client application developer to obtain up-to-date sensor
data from several hundreds of lines of code to a single dozen.

The IoT Var architecture has been designed to integrate new IoT platforms and
IoT systems. For this purpose, it exposes an interface that can easily be implemented
for integrating with new platforms. The architecture was focused not only on devel-
oping the IoT applications but also on expanding the middleware to support multiple
IoT platforms. IoT Var is currently integrated with FIWARE, OneM2M (oneM2M
Partners 2019), and MuDEBS (Conan et al. 2017) IoT platforms. More details on
IoTVar can be found in the work of Borges et al. (2019).

IoTVar responds to some of the previously mentioned PIS requirements. The
multiple IoT platforms supported by IoTVar have different data models and
API access and use different protocols to retrieve sensor data. For the sake of
interoperability, IoTVar includes data unmarshallers, IoT protocols handlers, and
IoT API handlers, as well as it supports both publish-subscribe and request-reply
interaction patterns to be chosen according to efficiency considerations. IoT Var also
supports application development by providing an API accessible through code in
the Java programming language and enabling IoT developers to access sensor data
easily. The developer will declare environment variables by providing a simple IoT
variable declaration. Those IoT variables will be automatically updated.

S Open Challenges for Future PIS Middleware

Next-generation PIS are deployed at an unprecedented scale with components on
connected mobile devices and remote servers in cloud and fog intermediaries. In this
context, handling requirements from an end-to-end perspective is challenging. At
the same time, mastering requirements such as privacy and sustainability becomes
essential and even more complex. This section highlights some open challenges that
can commission research on future PIS middleware.

5.1 Enabling End-to-End Interoperability

As mentioned in Sect. 3.3, existing middleware approaches enable interoperability
at each layer (i.e., application, middleware, network) independently. However,
enabling IoT interoperability requires introducing end-to-end approaches. This is
challenging due to: (1) the difficulty to select a unique data model and IoT protocol
to develop cross-domain IoT applications, which results in composing multiple
IoT protocols and data models; (2) the existence of numerous IoT protocols to
support diverse types of devices (healthy/constrained/tiny in terms of resources);

88 C. Taconet et al.

(3) the diversity of data models to cover multiple application domains (healthcare,
autonomous driving, etc.); and (4) end-to-end approaches are usually developed for
specific application domains (e.g., smart buildings) and it is difficult to adapt them
to other domains. Therefore, advanced end-to-end interoperability approaches must
be introduced while considering those challenges.

5.2 PIS Adaptive Middleware

Previous research on the so-called adaptive middleware can indeed contribute to
support dynamic adaptation in PIS, including proposals on context-aware appli-
cations (Huebscher and McCann 2006), ubiquitous computing (Yau and Karim
2004), wireless sensor networks (Portocarrero et al. 2016), IoT (Cavalcanti et al.
2021), cyber-physical systems (Garcia-Vallis and Baldoni 2015), and cloud com-
puting (Rafique et al. 2017). Adaptive middleware can be defined as a kind of
middleware that enables modifying the behavior of a distributed application in
response to changes in requirements or operating conditions (Sadjadi and McKinley
2003). To the best of our knowledge, the literature has still not explored building
adaptive middleware to support PIS and provide these systems with dynamic
adaptation capabilities.

Designing adaptive middleware needs to consider some SW1H (What? Who?
Where? When? Why? How?) issues typically associated with self-adaptive software
systems (Salehie and Tahvildari 2009). It is necessary to understand (1) the need
for adapting the middleware to changes in application requirements and context,
(2) the time at which the adaptation needs to be triggered, whether proactively or
reactively, (3) the extent of the adaptation in terms of how many components should
be subjected to the adaptation, and (4) how the adaptation actions can be executed
and implemented (Rosa et al. 2020). Designing PIS middleware with adequate
support for dynamic adaptation should hence cope with these issues.

5.3 Support to Develop PIS Relying on Middleware

Middleware platforms are well-acknowledged to leverage the development of
distributed applications, but this does not seem to be the case for PIS yet. Indeed,
there is still no available programming model for PIS relying on middleware
while coping with the characteristics of this class of systems. Biegel and Cahill
(2015) highlight that existing solutions and approaches in the literature are not
currently able to address the requirements for PIS middleware comprehensively,
but rather only a subset of them. The authors also point out the significant effort
necessary from application developers to deal with these requirements, an issue that
hampers a broader adoption of PIS middleware in industrial settings. Therefore, a

Middleware Supporting PIS: Requirements, Solutions, and Challenges 89

programming model able to ease the development of PIS relying on middleware is
desirable.

The development of PIS relying on middleware faces other challenges. On
the one hand, the proliferation of physical devices and platforms to support PIS
may lead these systems to become primarily vendor/platform- and hardware-
specific (Taivalsaari and Mikkonen 2017). This may also pose difficulties in finding
the most suitable solution (or set of solutions) for a specific application and deepen
users’ lack of experience and knowledge on understanding the implications for
current and future needs. PIS middleware should hence enable applications to
benefit from using different devices and platforms while relieving developers from
dealing with their specificities through proper high-level abstractions.

5.4 Privacy and Security

Security for PIS is still a significant challenge as attacks are relatively easy in an
open, connected world. Many devices were not designed for security, and their high
number increases the attack surface, as well as their integration within the Internet
that exposes them to numerous potential attackers. We underline some specific
areas where research challenges need to be addressed by PIS middleware in the
short term: (1) the need for low-cost cryptography primitives suitable for devices
with limited resources; (2) security analysis of new low-power wireless wide area
network technologies; and (3) the need for frameworks and protocols to facilitate
the development of devices where security is considered from the design stage.

Considering privacy, our connected world has allowed unprecedented growth in
personal data collection practices, with intrusion in our private life. The lack of
transparency, the fact that many services and devices behave like black boxes, and
the lack of user control raise major research challenges to enable PIS middleware
to enforce data protection and privacy patterns. In addition, robust anonymization,
which effectively resists deanonymization attacks while preserving data utility,
remains an open research topic.

With resource-constrained devices and sustainability objectives, resource con-
sumption of security and privacy solutions is gaining importance. We consider that
this also opens some new research directions where concerns for security, privacy,
and sustainability can be addressed jointly in PIS middleware.

5.5 Context Data Sampling and Filtering

As discussed in Sect. 3.5, many contributions exist that enable scaling PIS solutions
deployed in Clouds. Among the next challenges, for scaling PIS deployed in
highly distributed environments such as connected mobile devices and with fog
intermediaries, the contextual data filtering module of a PIS middleware should

90 C. Taconet et al.

strive to increase the system’s scalability by controlling and reducing the amount
of transmitted data. Giouroukis et al. (2020b) classify filtering techniques into (1)
time-based, i.e., sending data is suppressed until certain time conditions become
true, and (2) change-based, i.e., sending data is suppressed as long as the contextual
data are equal or similar to that previously transmitted. Of course, any combination
of time-based and change-based filtering techniques is possible. For example, in
the illustrative logistic chain traceability system, some applications may request to
receive location updates only if the new location is not identical to the previous one
and if an interval of at least 10 min has elapsed.

Adaptive sampling is, of course, closely related to adaptive filtering. For instance,
tuning sensor sampling frequency enforces network usage optimization and can be
performed according to the frequency of requests from deployed software appli-
cations. As another significant outcome, PIS middleware obtains a self-adaptive
platform with an extended sensor battery life while ensuring good data quality and
freshness.

Put together, selection-based filtering of publish-subscribe systems enables the
system to limit dissemination to some scopes, contrary to system-wide scoping.
Context-based filtering uses context data of different context dimensions to route
IoT data at the application layer. In contrast, adaptive filtering enables the system
to decide whether some IoT data are worth passing on intermediaries, depending on
whether a sensor value is similar to previous values or evolves predictably. These
issues are still not solved and are certainly a very fruitful area for future research.

5.6 PIS Sustainability

In the last decade, the number of existing PIS has grown, coming with new facilities
for the end-users and rising computer power demand. However, sustainability in IT
is from now on a first-class concern for enterprises. This demand has to be taken
into account by PIS middleware designers.

As seen in Sect. 3.6, many strategies have been proposed so far by middleware
targeting energy efficiency. However, those strategies mainly target one of the
components of the system. Considering energy efficiency at the scale of the whole
system is still a challenge.

Even though middleware eases the task of application developers when dealing
with energy efficiency, a developer may face difficulties in evaluating the energy
consumption of the system. An important research direction to foster energy
efficiency in PIS is providing energy-awareness at the middleware level. Some
techniques such as static code analysis (Vekris et al. 2012) and profilers to detect
software energy and performance bugs (Nistor and Ravindranath 2014) have been
proposed in the last years aiming at statically easing the identification of energy-
consuming components. Energy awareness may also be provided at runtime through
abstractions expressing energy requirements and evaluating energy consumption.
These abstractions based on measures and energy consumption models have yet to

Middleware Supporting PIS: Requirements, Solutions, and Challenges 91

be integrated in middleware. We believe that energy-awareness may significantly
increase the efficiency of the systems as the awareness brings a broader view
of where and how the many resources (CPU, network, energy, etc.) used by an
application are behaving in terms of energy consumption.

6 Conclusion

In this chapter, we have considered PIS middleware in the context of the IoT. This
middleware provides applications with an easy integration of context data collected
from connected objects spread over the Internet. This context comes with new
challenges and requirements. In addition to context-awareness, middleware should
tackle scalability, privacy and interoperability and provide applications with new
abstractions representing the physical environment and ensure the quality of the
data that may be used for decision-making.

We have shown through the state of the art that middleware has proposed
semantic interoperability for handling heterogeneities and large-scale publish-
subscribe architectures to tackle scalability. However, while middleware has already
enabled new kinds of PIS in various domains such as transport traceability,
healthcare, and smart cities, the middleware community still faces new challenges,
such as providing high-level programming model for PIS, supporting PIS dynamic
adaptation, disseminating and filtering large volumes of data, end-to-end privacy
and interoperability handling, as well as enabling the deployment of sustainable
applications.

Acknowledgments This work is a contribution to the Energy4Climate Interdisciplinary Center
(E4C) of IP Paris and Ecole des Ponts ParisTech, supported by 3rd Programme d’Investissements
d’ Avenir [ANR-18-EUR-0006-02]. It has been partially funded by the “Futur & Ruptures” program
from Institut Mines-Télécom, Fondation Mines-Télécom, and Institut Carnot.

References

Aazam M, Islam SU, Lone ST, Abbas A (2020) Cloud of things (cot): Cloud-fog-IoT task
offloading for sustainable internet of things. IEEE Transactions on Sustainable Computing pp
1-1, DOI https://doi.org/10.1109/TSUSC.2020.3028615

Ahmed M, Taconet C, Ould M, Chabridon S, Bouzeghoub A (2021) IoT Data Qualification for a
Logistic Chain Traceability Smart Contract. Sensors 21(6):2239

Akkermans S, Bachiller R, Matthys N, Joosen W, Hughes D, Vucini¢ M (2016) Towards efficient
publish-subscribe middleware in the IoT with IPv6 multicast. In: 2016 IEEE International
Conference on Communications (ICC), pp 1-6

Alhirabi N, Rana O, Perera C (2020) Security and Privacy Requirements for the Internet of Things:
A Survey. ACM Trans Internet Things 2(1):6:1-6:37

Aljeraisy A, Barati M, Rana O, Perera C (2021) Privacy Laws and Privacy by Design Schemes for
the Internet of Things: A Developer’s Perspective. ACM Comput Surv 54(5):102:1-102:38

 3102 47620 a 3102 47620 a

https://doi.org/10.1109/TSUSC.2020.3028615

92 C. Taconet et al.

Bacon J, Moody K, Bates J, Ma C, McNeil A, Seidel O, Spiteri M (2000) Generic support for
distributed applications. Computer 33(3):68-76, DOI https://doi.org/10.1109/2.825698

Banks A, Gupta R (2014) Mqtt version 3.1. 1

Barnaghi P, et al. (2011) Semantic Sensor Network XG Final Report. Tech. rep., W3C, URL http://
www.w3.0rg/2005/Incubator/ssn/XGR-ssn-20110628/

Bellavista P, Corradi A, Fanelli M, Foschini L (2012) A Survey of Context Data Distribution for
Mobile Ubiquitous Systems. ACM Computing Survey 44(4):24:1-24:45

Biegel G, Cahill V (2007) Requirements for middleware for pervasive information systems. In:
Pervasive Information Systems, M.E. Sharpe, Armonk, NY, pp 102-118

Biegel G, Cahill V (2015) Requirements for middleware for pervasive information systems. In:
Kourouthanassis PE, Giaglis GM (eds) Pervasive information systems, Routledge, USA, pp
86-102

Binder W, Suri N (2009) Green computing: Energy consumption optimized service hosting. In:
35th Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM),
Spindleruv Mlyn, Czech Republic, Springer, Lecture Notes in Computer Science, vol 5404, pp
117-128

Blair GS, Schmidt DC, Taconet C (2016) Middleware for Internet distribution in the context of
cloud computing and the Internet of Things - Editorial Introduction. Ann des Télécommunica-
tions 71(3-4):87-92

Borges PV, Taconet C, Chabridon S, Conan D, Batista T, Cavalcante E, Batista C (2019) Mastering
Interactions with Internet of Things Platforms through the IoTVar Middleware. In: 13th Int.
Conf. on Ubiquitous Computing and Ambient Intelligence (UCAmI), MDPI Proceedings,
vol 31,p 78

Bouloukakis G, Georgantas N, Ntumba P, Issarny V (2019) Automated Synthesis of Mediators for
Middleware-layer Protocol Interoperability in the IoT. Future Generation Computer Systems
101:1271-1294

Bouloukakis G, et al. (2022) DeXMS, The Data eXchange Mediator Synthesizer Framework.
https://gitlab.inria.fr/dexms

Buchholz T, Kupper A, Schiffers M (2003) Quality of context information: What it is and why
we need it. In: 10th Int. Workshop of the HP OpenView University Association (HPOVUA),
Geneva, Switzerland

Castellani AP, Fossati T, Loreto S (2012) HTTP-CoAP cross protocol proxy: an implementation
viewpoint. In: 9th IEEE Int. Conf. on Mobile Ad-Hoc and Sensor Systems, (MASS)

Cavalcanti D, Carvalho R, Rosa N (2021) Adaptive middleware of things. In: Proceedings of the
2021 IEEE Symposium on Computers and Communications, IEEE, USA

Cavoukian A, Dixon M (2013) Privacy and security by design: An enterprise architecture approach.
Tech. rep., Information and Privacy Commissioner of Ontario, Canada, https://www.ipc.on.ca

Cecchinel C, Fouquet F, Mosser S, Collet P (2019) Leveraging live machine learning and deep
sleep to support a self-adaptive efficient configuration of battery powered sensors. Future
Generation Computer Systems 92:225-240

Chabridon S, Laborde R, Desprats T, Oglaza A, Marie P, Machara Marquez S (2014) A Survey on
Addressing Privacy together with Quality of Context for Context Management in the Internet
of Things. Annals of Telecommunications 69(1):47-62

Chaudhuri A, Cavoukian A (2018) The Proactive and Preventive Privacy (3P) Framework for IoT
Privacy by Design. EDPACS 57(1):1-16

Chen H, Finin T, Joshi A (2005) The SOUPA ontology for Pervasive Computing. In: Ontologies
for agents: Theory and experiences, Whitestein Series in Software Agent Technologies,
Switzerland, pp 233-258

Colesky M, Hoepman JH, Boesch C, Kargl F, Kopp H, Mosby P, Métayer DL, Drozd O, del Alamo
IJM, Martin YS, Caiza JC, Gupta M, Doty N (2022) Privacy Patterns. https://privacypatterns.
org

Collina M, Corazza GE, Vanelli-Coralli A (2012) Introducing the QEST broker: Scaling the iot
by bridging MQTT and REST. In: 23rd IEEE Int. Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC)

 19601 800 a 19601 800 a

https://doi.org/10.1109/2.825698

 32586 3014
a 32586 3014 a

http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/

-687 29581 a -687 29581 a

https://gitlab.inria.fr/dexms

 26259 39544 a 26259
39544 a

https://www.ipc.on.ca

26245 53934 a 26245 53934 a

https://privacypatterns.org
https://privacypatterns.org

Middleware Supporting PIS: Requirements, Solutions, and Challenges 93

Compton M, Barnaghi P, Bermudez L, Garcia-Castro R, Corcho O, Cox S, Graybeal J, Hauswirth
M, Henson C, Herzog A, Huang V, Janowicz K, Kelsey WD, Le Phuoc D, Lefort L, Leggieri
M, Neuhaus H, Nikolov A, Page K, Passant A, Sheth A, Taylor K (2012) The SSN ontology of
the W3C semantic sensor network incubator group. Journal of Web Semantics 17

Conan D, Lim L, Taconet C, Chabridon S, Lecocq C (2017) A Multiscale Approach for a
Distributed Event-Based Internet of Things. In: Proc. of 15th IEEE Int. Conf. on Pervasive
Intelligence and Computing (PICOM), Orlando, USA, pp 844-852

Conan D, et al. (2022) M4IoT Frameworks, Middleware for the Internet of Things. https://www-
inf.it-sudparis.eu/m4iot/

Cugola G, Margara A (2012) Processing Flows of Information: From Data Stream to Complex
Event Processing. ACM Computing Survey 44(3):15:1-15:62

Daniele L, den Hartog F, Roes J (2015) The Smart Appliances REFerence (SAREF) Ontology. In:
Proc. of International Workshop Formal Ontologies Meet Industries

Delicato F, Pires P, Batista T (2013) Middleware Solutions for the Internet of Things. Springer
Briefs in Computer Science, Springer

Deng M, Wuyts K, Scandariato R, Preneel B, Joosen W (2011) A privacy threat analysis
framework: Supporting the elicitation and fulfillment of privacy requirements. Requirements
Engineering 16(1):3-32

Denis N, Chaffardon P, Conan D, Laurent M, Chabridon S, Leneutre J (2020) Privacy-preserving
Content-based Publish/Subscribe with Encrypted Matching and Data Splitting. In: 17th Int.
Joint Conf. on e-Business and Telecommunications (SECRYPT), INSTICC, SciTePress, Paris,
France, pp 405-414

Derhamy H, Eliasson J, Delsing J (2017) IoT interoperability—on-demand and low latency
transparent multiprotocol translator. IEEE Internet of Things Journal 4(5)

Dey A, Abowd G (2000) Towards a better understanding of context and context-awareness. In:
Proceedings of the PrCHI 2000 Workshop on the What, Who, Where, When and How of
Context-Awareness

Dias D, Delicato F, Pires P, Rocha A, Nakagawa E (2020) An Overview of Reference Architectures
for Cloud of Things. In: Proc. of the 35th ACM Symposium on Applied Computing, New York,
NY, USA, pp 1498-1505

Duboc L, Rosenblum D, Wicks T (2007) A Framework for Characterization and Analysis of
Software System Scalability. In: Proceedings of the the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, Dubrovnik, Croatia, pp 375-384

Endler M, Silva F (2018) Past, Present and Future of the ContextNet IoMT Middleware. Open
Journal of Internet Of Things (OJIOT) 4(1):7-23, Special Issue: Int. Workshop on Very Large
Internet of Things (VLIoT), in conjunction with the VLDB Conference in Rio de Janeiro, Brazil

Eugster P, Felber P, Guerraoui R, Kermarrec AM (2003) The Many Faces of Publish/Subscribe.
ACM Computing Survey 35(2)

Ferreboeuf H, Efoui-Hess M, Verne X (2021) Impact environnemental du numérique : Tendances
a 5 ans et gouvernance de la 5G. Tech. rep., The Shift project

Fette I (2011) The websocket protocol

Fiege L, Mezini M, Miihl G, Buchmann A (2002) Engineering Event-Based Systems with Scopes.
In: Magnusson B (ed) Proc. 16th European Conference on Object-Oriented Programming,
Springer, Mdlaga, Spain, Lecture Notes in Computer Science, vol 2374, pp 309-333

Fremantle P, Scott PJ (2017) A survey of secure middleware for the internet of things. Peer]
Comput Sci 3:e114

Garcia-Vallis M, Baldoni R (2015) Adaptive middleware design for CPS: Considerations on the
OS, resource managers, and the network at run-time. In: 14th Int. Workshop on Adaptive and
Reflective Middleware, ACM, USA, DOI 10.1145/2834965.2834968

Georgantas N, Bouloukakis G, Beauche S, Issarny V (2013) Service-oriented distributed appli-
cations in the future internet: The case for interaction paradigm interoperability. In: Lau
K, Lamersdorf W, Pimentel E (eds) 2nd European Conf. on Service-Oriented and Cloud
Computing, ESOCC, vol 8135

 29813 7442 a 29813 7442 a

https://www-inf.it-sudparis.eu/m4iot/
https://www-inf.it-sudparis.eu/m4iot/

94 C. Taconet et al.

Giouroukis D, Dadiani A, Traub J, Zeuch S, Markl V (2020a) A Survey of Adaptive Sampling and
Filtering Algorithms for the Internet of Things. In: Proceedings of the 14th ACM International
Conference on Distributed and Event-Based Systems, Association for Computing Machinery,
New York, NY, USA, DEBS 20, p 27-38, DOI https://doi.org/10.1145/3401025.3403777

Giouroukis D, Dadiani A, Traub J, Zeuch S, Markl V (2020b) A Survey of Adaptive Sampling and
Filtering Algorithms for the Internet of Things. In: Proc. 14th ACM International Conference
on Distributed Event-Based Systems, Montreal, Quebec, Canada, pp 27-38

Gomes B, Muniz LCM, da Silva e Silva FJ, dos Santos DV, Lopes RF, Coutinho LR, Carvalho
FO, Endler M (2017a) A Middleware with Comprehensive Quality of Context Support for the
Internet of Things Applications. Sensors 17(12):2853

Gomes P, Cavalcante E, Batista T, Taconet C, Conan D, Chabridon S, Delicato F, Pires P (2019)
A semantic-based discovery service for the internet of things. Journal of Internet Services and
Applications 10

Gomes P, et al. (2017b) QoDisco. https://github.com/porfiriogomes/qodisco

Gruber TR (1993) A translation approach to portable ontology specifications. Knowledge Acqui-
sition 5(2)

Hassan MG, Hirst R, Siemieniuch C, Zobaa A (2009) The impact of energy awareness on energy
efficiency. Int Journal of Sustainable Engineering 2(4):284-297

Henricksen K, Indulska J (2004) Modelling and using imperfect context information. In: Pervasive
Computing and Communications Workshops, 2004. Proceedings of the Second IEEE Annual
Conference on, pp 33-37

Howard M, Lipner S (2006) The Security Development Lifecycle. Microsoft Press, USA

Huebscher MC, McCann JA (2006) An adaptive middleware framework for context-aware
applications. Pervasive and Ubiquitous Computing 10:12-20

ISO/IEC 25010 (2011) Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software quality models. Tech. rep.,
ISO

ISO/IEC 25012 (2008) Data Quality model. URL https://is025000.com/index.php/en/iso-25000-
standards/iso-25012

Ivarez-Valera HH, Dalmau M, Roose P, Herzog C (2019) The architecture of kaligreen V2: A
middleware aware of hardware opportunities to save energy. In: Alsmirat MA, Jararweh Y
(eds) Sixth International Conference on Internet of Things: Systems, Management and Security,
IOTSMS 2019, Granada, Spain, October 22-25, 2019, IEEE, pp 79-86

Jagarlamudi KS, Zaslavsky A, Loke SW, Hassani A, Medvedev A (2021) Quality and Cost Aware
Service Selection in IoT-Context Management Platforms. In: Int. Conferences on Internet
of Things (iThings), Green Computing & Communications (GreenCom), Cyber, Physical
& Social Computing (CPSCom), Smart Data (SmartData) and Congress on Cybermatics
(Cybermatics), IEEE, pp 89-98

Janowicz K, Haller A, Cox SJ, Le Phuoc D, Lefrancois M (2019) SOSA: A lightweight ontology
for sensors, observations, samples, and actuators. Journal of Web Semantics 56

Joint Committee for Guides in Metrology (2008) Evaluation of measurement data - guide to the
expression of uncertainty in measurement. https://www.bipm.org/documents/20126/2071204/
JCGM_100_2008_E.pdf

Kalbarczyk T, Julien C (2018) Omni: An Application Framework for Seamless Device-to-Device
Interaction in the Wild. In: 19th Int. Middleware Conf., ACM, Rennes, France, p 161-173

Karagiannis V, et al. (2015) A Survey on Application Layer Protocols for the Internet of Things.
Transaction on IoT and Cloud Computing 3:11-17

Kargl F, Métayer DL, Gupta M, Colesky M, Hoepman JH, del Alamo JM, Martin YS, Boesch C,
Kopp H, Mosby P, Doty N, Drozd O (2022) Privacy Patterns, Collecting Patterns for Better
Privacy. https://privacypatterns.eu

Kermarrec AM, Triantafillou P (2013) XL Peer-to-Peer Pub/Sub Systems. ACM Computing
Survey 46(2):16:1-16:45

Kourouthanassis PE, Giaglis GM (2007) Pervasive Information Systems. Advances in Manage-
ment Information Systems (AMIS) Vol. 10:. M.E. Sharpe, Armonk, NY

 17697 3014 a 17697 3014
a

https://doi.org/10.1145/3401025.3403777

 10868 14084 a 10868 14084
a

https://github.com/porfiriogomes/qodisco

 17330 29581 a 17330
29581 a

https://iso25000.com/index.php/en/iso-25000-standards/iso-25012
https://iso25000.com/index.php/en/iso-25000-standards/iso-25012

 15832 45079
a 15832 45079 a

https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf

 2596 53934 a 2596 53934 a

https://privacypatterns.eu

Middleware Supporting PIS: Requirements, Solutions, and Challenges 95

Kourouthanassis PE, Giaglis GM (2015) Toward pervasiveness: Four eras of information systems
development. In: Kourouthanassis PE, Giaglis GM (eds) Pervasive information systems,
Routledge, USA, pp 3-25

Krakowiak S (2009) Middleware Architecture with Patterns and Frameworks. https://lig-membres.
imag.fr/krakowia/FilessMW-Book/Chapters/Preface/preface.html

Lim L, Marie P, Conan D, Chabridon S, Desprats T, Manzoor A (2015) Enhancing context data
distribution for the internet of things using qoc-awareness and attribute-based access control.
Annals of Telecommunications pp 1-12

Lépez J, Rios R, Bao F, Wang G (2017) Evolving privacy: From sensors to the internet of things.
Future Gener Comput Syst 75:46-57

Luckner M, Grzenda M, Kunicki R, Legierski J (2014) IoT Architecture for Urban Data-Centric
Services and Applications. ACM Transactions on Internet Technology 20(3):29:1-29:30

Mahnke W, Leitner SH, Damm M (2009) OPC unified architecture. Springer Science & Business
Media

Marie P, Desprats T, Chabridon S, Sibilla M (2013) QoCIM: A meta-model for Quality of Context.
In: Modeling and Using Context, LNCS, vol 8175

Marie P, Desprats T, Chabridon S, Sibilla M (2016) Enabling Self-Configuration of QoC-Centric
Fog Computing Entities. In: Intl IEEE Conf. on Advanced and Trusted Computing, Smart
World Congress (UIC/ATC/ScalCom/CBDCom/loP/SmartWorld), Toulouse, France

Negash B, Rahmani AM, Westerlund T, Liljeberg P, Tenhunen H (2015) Lisa: Lightweight internet
of things service bus architecture. Procedia Computer Science 52

Negash B, Rahmani AM, Westerlund T, Liljeberg P, Tenhunen H (2016) Lisa 2.0: lightweight
internet of things service bus architecture using node centric networking. Journal of Ambient
Intelligence and Humanized Computing 7(3)

Nistor A, Ravindranath L (2014) SunCat: Helping developers understand and predict performance
problems in smartphone applications. In: Int. Symp. on Software Testing and Analysis, ACM,
USA, p 282-292

Noureddine A, Rouvoy R, Seinturier L (2013) A review of middleware approaches for energy
management in distributed environments. Softw Pract Exp 43(9):1071-1100

OASIS (2012) Advanced Message Queuing Protocol (AMQP) version 1.0. http://docs.oasis-open.
org/amgp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf

de Oliveira EA, Delicato F, Mattoso M (2020) An energy-aware data cleaning workflow for real-
time stream processing in the internet of things. In: Anais do IV Workshop de Computagio
Urbana, SBC, Porto Alegre, RS, Brasil, pp 71-83

OMG (2015) Data Distribution Service, v. 1.4. https://www.omg.org/spec/DDS/

Padhy S, Chang HY, Hou TF, Chou J, King CT, Hsu CH (2017) A Middleware Solution for Optimal
Sensor Management of IoT Applications on LTE Devices. In: Quality, Reliability, Security and
Robustness in Heterogeneous Networks (QSHINE), vol 199, Springer, pp 283-292

Pang C, Hindle A, Adams B, Hassan AE (2016) What do programmers know about software energy
consumption? IEEE Software 33(03):83-89

Paradis CV, Kazman R, Tamburri DA (2021) Architectural tactics for energy efficiency: Review
of the literature and research roadmap. In: 54th Hawaii International Conference on System
Sciences (HICSS), pp 1-10

oneM2M Partners (2019) oneM2M Services Platform. Release 3

Pasricha S (2018) Overcoming Energy and Reliability Challenges for IoT and Mobile Devices with
Data Analytics. In: 31st Int. Conf. on VLSI Design (VLSID)

Penzenstadler B (2015) From requirements engineering to green requirements engineering. In:
Calero C, Piattini M (eds) Green in Software Engineering, Springer

Perera C, Zaslavsky AB, Christen P, Georgakopoulos D (2014) Context aware computing for the
internet of things: A survey. [EEE Commun Surv Tutorials 16(1):414-454

Perera C, Qin Y, Estrella J, Reiff-Marganiec S, Vasilakos A (2017) Fog Computing for Sustainable
Smart Cities: A Survey. ACM Computing Survey 50(3):32:1-32:43

 27173 3014 a 27173 3014 a

https://lig-membres.imag.fr/krakowia/Files/MW-Book/Chapters/Preface/preface.html
https://lig-membres.imag.fr/krakowia/Files/MW-Book/Chapters/Preface/preface.html

 26311
31795 a 26311 31795 a

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf

 15753 37330 a 15753
37330 a

https://www.omg.org/spec/DDS/

96 C. Taconet et al.

Portocarrero JMT, Delicato FC, Pires PF, Rodrigues TC, Batista TV (2016) SAMSON: Self-
adaptive middleware for wireless sensor networks. In: 31st Annual ACM Symposium on
Applied Computing, ACM, USA

Rafique A, Van Landuyt D, Reniers V, Jossen W (2017) Towards an adaptive middleware
for efficient multi-cloud data storage. In: 4th Workshop on CrossCloud Infrastructures &
Platforms, ACM, USA

Raychoudhury V, Cao J, Kumar M, Zhang D (2013) Middleware for pervasive computing: A
survey. Pervasive Mob Comput 9(2):177-200

Rosa N, Cavalcanti D, Campos G, Silva A (2020) Adaptive middleware in Go - a software
architecture approach. Journal of Internet Services and Applications 11(3), DOI https://doi.
org/10.1186/s13174-020-00124-5

Roth FM, Becker C, Vega G, Lalanda P (2018) XWARE - A customizable interoperability
framework for pervasive computing systems. Pervasive Mob Comput 47

Sadjadi SM, McKinley PK (2003) A survey of adaptive middleware. Tech. rep., Michigan State
University, USA

Saint-Andre P (2011) Extensible messaging and presence protocol (xmpp): Core

Salehie M, Tahvildari L (2009) Self-adaptive Software: Landscape and Research Challenges. ACM
Transactions on Autonomous and Adaptive Systems 4(2)

Sarkar C, Rao VS, Venkatesha Prasad R, Das SN, Misra S, Vasilakos A (2016) Vsf: An energy-
efficient sensing framework using virtual sensors. IEEE Sensors Journal 16(12):5046-5059,
DOI https://doi.org/10.1109/JSEN.2016.2546839

Satyanarayanan M (2001a) Pervasive computing: vision and challenges. Personal Communica-
tions, IEEE 8(4):10-17, DOI https://doi.org/10.1109/98.943998

Satyanarayanan M (2001b) Pervasive Computing: Vision and Challenges. IEEE Personal Commu-
nications 8(4):10-17

Sedlmeir J, Buhl HU, Fridgen G, Keller R (2020) The energy consumption of blockchain
technology: beyond myth. Business & Information Systems Engineering 62(6):599-608

Shekhar S, Chhokra A, Sun H, Gokhale A, Dubey A, Koutsoukos X (2019) URMILA: A
Performance and Mobility-Aware Fog/Edge Resource Management Middleware. In: 22nd
IEEE Int. Symposium on Real-Time Distributed Computing (ISORC), pp 118-125

Shelby Z, et al. (2014) The constrained application protocol (coap)

Song Z, Le M, Kwon YW, Tilevich E (2017) Extemporaneous micro-mobile service execution
without code sharing. In: 2017 IEEE 37th International Conference on Distributed Computing
Systems Workshops ICDCSW), pp 181-186, DOI https://doi.org/10.1109/ICDCSW.2017.70

Spalazzi L, Taccari G, Bernardini A (2014) An internet of things ontology for earthquake
emergency evaluation and response. In: Proceedings of the 2014 International Conference on
Collaboration Technologies and Systems (CTS 2014), pp 528-534

Taivalsaari A, Mikkonen T (2017) A roadmap to the Programmable World: Software challenges in
the IoT era. IEEE Software 34(1):72-80, DOI https://doi.org/10.1109/MS.2017.26

Teixeira S, Agrizzi BA, Filho JGP, Rossetto S, Pereira ISA, Costa PD, Branco AF, Martinelli RR
(2020) LAURA architecture: Towards a simpler way of building situation-aware and business-
aware loT applications. Journal of Systems and Software 161:110494

Truong HL, Dustdar S (2015) Principles for engineering IoT cloud systems. IEEE Cloud
Computing 2(2):68-76, DOI https://doi.org/10.1109/MCC.2015.23

Vekris P, Jhala R, Lerner S, Agarwal Y (2012) Towards verifying Android apps for the absence of
no-sleep energy bugs. In: Proceedings of the 2012 Workshop on Power-Aware Computing and
Systems, USENIX Association, USA

Verdecchia R, Lago P, Ebert C, de Vries C (2021) Green it and green software. IEEE Software
38(6):7-15, DOI https://doi.org/10.1109/MS.2021.3102254

Weiser M (1991) The Computer for the 21st Century. Scientific American, Special Issue on
Communications, Computers, and Networks 265(3):66-75

Yau SS, Karim F (2004) An adaptive middleware for context-sensitive communications for real-
time applications in ubiquitous computing environments. Real-Time Systems 26:29-61

 30782 9656 a 30782 9656 a

https://doi.org/10.1186/s13174-020-00124-5
https://doi.org/10.1186/s13174-020-00124-5

 1220 21833 a 1220 21833 a

https://doi.org/10.1109/JSEN.2016.2546839

 10446 24046 a 10446
24046 a

https://doi.org/10.1109/98.943998

 18734
36223 a 18734 36223 a

https://doi.org/10.1109/ICDCSW.2017.70

 16836 41758 a 16836 41758 a

https://doi.org/10.1109/MS.2017.26

 10342 47293 a 10342
47293 a

https://doi.org/10.1109/MCC.2015.23

 5872 52827
a 5872 52827 a

https://doi.org/10.1109/MS.2021.3102254

Middleware Supporting PIS: Requirements, Solutions, and Challenges 97

Yus R, Bouloukakis G, Mehrotra S, Venkatasubramanian N (2019) Abstracting interactions with
IoT devices towards a semantic vision of smart spaces. In: 6th ACM Int. Conf. on Systems for
Energy-Efficient Buildings, Cities, and Transportation, BuildSys

Zeeb E, Bobek A, Bohn H, Golatowski F (2007) Service-oriented architectures for embedded
systems using devices profile for web services. In: 21st International Conference on Advanced
Information Networking and Applications Workshops (AINAW’07), IEEE, vol 1, pp 956-963

	Middleware Supporting PIS: Requirements, Solutions, and Challenges
	1 Introduction
	2 Requirements for PIS Middleware
	2.1 Sensing and Actuation Support
	2.2 Context-Awareness
	2.3 Dynamic Adaptation Capabilities
	2.4 Quality of Context Management
	2.5 Application Development Support
	2.6 Support for Multiple Interaction Patterns
	2.7 Enabling Interoperability
	2.8 Security and Privacy
	2.9 Scalability
	2.10 Energy Efficiency and Energy-Awareness

	3 State of the Art on Middleware Supporting PIS Requirements
	3.1 QoC Management
	3.2 Protocols for Multiple Interaction Patterns
	3.3 Enabling Interoperability
	3.4 Security and Privacy
	3.5 Scalability
	3.6 Energy Efficiency and Energy-Awareness

	4 PIS Middleware Proposals
	4.1 QoC Management with QoCIM and Processing Functions
	4.2 muDEBS
	4.3 DeX Mediators
	4.4 QoDisco
	4.5 IoTVar

	5 Open Challenges for Future PIS Middleware
	5.1 Enabling End-to-End Interoperability
	5.2 PIS Adaptive Middleware
	5.3 Support to Develop PIS Relying on Middleware
	5.4 Privacy and Security
	5.5 Context Data Sampling and Filtering
	5.6 PIS Sustainability

	6 Conclusion
	References

