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Abstract Analytical solutions for a tight-bindingmodel are presented for a position-
based qubit and N interacting qubits realized by quasi-one-dimensional network of
coupled quantum dots expressed by connected or disconnected graphs of any topol-
ogy in 2 and 3 dimensions where one electron is presented at each separated graphs.
Electron(s) quantum dynamic state is described under various electromagnetic cir-
cumstances with an omission spin degree-of-freedom. The action of Hadamard and
phase rotating gate is given by analytical formulas derived and formulated for any
case of physical field evolution preserving the occupancy of two-energy level sys-
tem. The procedure for heating up and cooling down of the quantum state placed
in position based qubit is described. The interaction of position-based qubit with
electromagnetic cavity is described. In particular non-local communication between
position based qubits is given. It opens the perspective of implementation of quan-
tum internet among electrostatic CMOS quantum computers (quantum chips). The
interface between superconducting Josephson junction and semiconductor position-
based qubit implemented in coupled semiconductor q-dots is described such that
it can be the base for electrostatic interface between superconducting and semi-
conductor quantum computer. Modification of Andreev Bound State in Josephson
junction by the presence of semiconductor qubit in its proximity and electrostatic
interaction with superconducting qubit is spotted by the minimalistic tight-binding
model. The obtained results allow in creating interface between semiconductor quan-
tum computer and superconducting quantum computer. They open the perspective
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of construction of QISKIT like software that will describe both types of quantum
computers as well as their interface.

Keywords N-body problem · Tight-binding · Semiconductor electrostatic
position-based qubit · Wannier qubit · Semiconductor Wannier qubit interface with
Josephson junction · Quantum gates · Quantum non-local communication ·
Electrostatic entanglement · Entanglement between matter and radiation

1 Introduction to Recent Trends in Q-Technologies

Quantum technology opens the gate for quantum computation and quantum sensing
as well as quantum communication. Also in the nearest perspective one shall con-
sider quantum Artificial Intelligence as extension of classical Artificial Intelligence.
Because of high technical cost of implementation of quantum technologies one shall
think about usage of both classical and quantum technologies at one chip what is
possible in FD SOI CMOS technology that currently manufactures transistors with
3nm of channel length. The quantummechanics offers the superposition of states and
massive parallelism as well as non-local correlations that are non-present in classical
world perceived by us. However these phenomena occurs only in special time scale
and under specific thermodynamic conditions in the case of special geometries and
confining potentials. Basically the quantum system needs to bemaximally decoupled
from the world to keep its unique quantum features. On the other hand we need to
be able to interact with quantum system relatively quickly what brings the need for
not so small interaction of qubit with classical or semiclassical interface via specific
channels. At the same time we would expect the quantum technology to be highly
reproducible in large scale, compact and having an easy interface with already exist-
ing technologies mostly working at room temperature. Basically ideal candidate for
qubit does not exist and we have to make trade-off between certain technical parame-
ters. The first option is to chose the system that is maximally decoupled from external
world so we arrive to the idea of ion traps. We are placing atomic ions in almost ideal
vacuum and we trap them by strong magnetic and electric fields. Maxwells equa-
tions does not allow for complicated topologies of EM confinement field affecting
ion positions and thus we are limited to the case of ions on one line as it is indicated
by many experimentalist. However every time we are about to use quantum ionic
processor we need to cool down and set the ions in certain positions what makes
structure to be practically not adjustable for large scales. However the decoherence
times are more than promising since T1 and T2 time is in range of seconds what
makes it bigger by 4 orders magnitude than any other quantum technology available
so far. This makes ion trap to be excellent quantum sensors.

On the other hand we can think about use of electron or electron spin to represent
the state of qubit. So far the electron is most successful carrier of classical informa-
tion. Thus we need to use it on the level of qubit implementation in semiconductor or
in superconductor. In the natural way we arrive to the electrostatic qubit in semicon-
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ductor, where presence of single electron corresponds to logical |1〉 and its lack to |0〉
(Fujisawa [1], Petta [2]) or to superconducting Cooper pair box. However electron-
electron interaction is quite strong as in comparison with spin to spin interaction.
The strength of the interaction preimposes the decoherence time since the stronger
is the interaction the smaller is the decoherence time. At the same time big quantum
information density is usually leading to higher decoherence times since qubit-qubit
interaction is more prominent.

Every qubit assembles can be described by the following Hamiltonian operator:

Ĥt = H[Q0] + ([HQ − HQ0 ])[Q\Q0] + H[Q−Env] + H[Q−Q] + H[Env] =
Nqbits∑

l=1

(Ee,l (t)|el (t) >< el (t)| + Eg,l (t)|gl (t) >< gl (t)|+

+ Tg→e,l (t)|el (t) >< gl (t)| + Te→g,l (t)|gl (t) >< el (t)|)[Q0]

+
Nqbits∑

l=1

(

+∞∑

s1l=3

(Es1,l (t)|s1l (t) >< s1l (t)| +
+∞∑

s2l=3,s2l �=s1l

Ts1l→s2l ,l (t)|s1l (t) >< s2l (t)|)+

+Tesl →s3l ,l (t)|esl (t) >< s3l (t)| + Ts3l→esl ,l
(t)|s3(t)l >< e(t)sl | + Tgsl →s3l ,l (t)|gsl (t) >< s3l (t)|+

+ Ts3l→gsl ,l
(t)|s3(t)l >< g(t)sl |)[Q\Q0]+

+ (

+∞∑

i=1

Nqbits∑

l=1

+∞∑

s1l=(g,e,...)

+∞∑

s2l=(g,e,...)

U3(s1l , s2l , i, t)|s1l (t), i(t) >< s2l (t), i(t)|)[Q−Env]+

+(

Nqbits∑

l=1

Nqbits∑

k=1,k �=l

+∞∑

s1k=(g,e,...)

+∞∑

s2l=(g,e,...)

U4(s1k , s2l , t)|s1k(t), s2l (t) >< s1k (t), s2l (t)|)[Q−Q]+

+(

+∞∑

i=1

Ei (t)|i(t) >< i(t)|)[Env].

The given Hamiltonian is describing quantum system embedded in external envi-
ronment (external world) and it has terms HQ0 , HQ\Q0 , HQ−Env, HQ−Q, HEnv. In
particular we have idealistic mathematical model of qubit that is isolated from exter-
nal world and denoted by HQ0 (blue color). Next Hamiltonian term HQ\Q0 (green
color) describes Hamiltonian setting qubit state and Hamiltonian term capable of
qubit readout. However it is not suprising that Hamiltonian term responsible for
qubit setting and reading can also contribute to its decoherence. The Hamiltonian
terms describing the decoherence are due to qubit-qubit interaction and due to qubit-
environment interaction (red and orange color). Usually we drop the last Henv term
since we assume that environment has infinite size and has well-defined thermody-
namical state that cannot be changed by the small size and finite quantum system
Q that implements qubits. The value of Ee and Eg is determined by the qubit con-
finement potential, while functions f1(t) and f2(t) give us the ways to implement
qubit setting mechanism and qubit reading mechanism by means of time-dependent
Hamiltonians that are driven by external biasing circuit [qubit controlling circuit].
Formally we recognize that qubit assembly is the many body system with certain
desired degrees of freedom (in general the available number of degrees of freedom
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is much bigger than desired and it is a function of given quantum technology) that
are controlled by given quantum technology placed in special thermodynamic condi-
tions and given qubit implementation scheme. Study of the quantum system Q being
assemble of interacting qubits embedded in external world denoted as environment is
fundamental study and as much important for fundamental science as for technology.

Basically the thermodynamics is against preservation of information stored in
qubit since entropy is increasing with time. The difference between energy levels
of ground state (g) and excited state (e) is tiny and can be directly evaluated from
Schrodinger equation. Once the excited level is occupied to certain extent it is in
metastable state and tends to decay into ground state g. This decay time in case lack
of external perturbations is shorter for the case of systems with bigger difference
between excited and ground state. Because of this decay quantum state needs to be
refreshed all the times to maintain its content (IBM Q-Experience provides super-
conducting Josephson junction qubits of 100µs coherence time). The biggest danger
to qubit coherence is energy of surrounding environment that is expressed especially
by Henv last Hamiltonian term and by Henv−Q . Moderate decoherence to qubit state
is by qubit-qubit interaction HQ−Q that is potential factor limiting the maximum
density of quantum logic.

Zoo of existing quantum technologies is growing. However still there exists two
fundamental representation of q-information in spin of electron or Cooper pair and
in electric charge as it is depicted in Fig. 1.

Currently there exist various paradigms for quantum computation. Themost com-
mon is by the use of quasiparticle that is trapped in effective field that builds up the
quantization of the energetic levels.

Paradigms existing currently assume that the quantum system shall be controlled
either by electric or magnetic field factor or by combined magnetic and electric field
that is generated by the controlling circuit. The good example are superconducting
Cooper pair box (JJ-Josephson junction controlled by external capacitor), flux-qubit
JJ (JJ controlled by external solenoid), phase JJ qubit (controlled by biasing electric
current) and transmon qubit (controlled both by solenoid and capacitor). Indeed
very recent progress was done very much up to electrical control of various types
of technologies. The experiments conducted in 2003 by Fujisawa [1] have revealed
significant charge noise problem and contributed to the change of the dominant
paradigm in development of quantum circuits that was about shift from electric to
magnetic field control and later electromagnetic control what is greatly expressed in
superconducting technologies by common use of transmon superconducting qubit
(and transmon like qubits: Xmon, etc.). The details are specified in the attached
Table 1.
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�Fig. 1 Summary of quantum information technologies [Arxiv: 1801.06722] as in case of one-
and two-qubit operations and single-shot measurement, for (a) and semiconductor spin qubit in
a single quantum dot (b) [T. Fujisawa, NTT Technical Review, Vol. 1 No. 3, 2003], for a phase
controlled Josephson junction qubit (c) polarized by external electric current, for a chargeflux or
transmon superconducting qubit (d) polarized by both external magnetic and electric field, for a
Cooper pair box Josephson junction qubit (e) as polarized by external electric field, for charged
ions Pauli trap qubit as in (f) as with interactions given by (g) and a semiconductor charge qubit
in a double quantum dot with interactions given in (h). One can encounter 3 main architectures of
superconducting qubits as given in (c1), (c2), (c3) as corresponding to charge, flux and phase qubit.

Table 1 Quick overview on quantum technologies

Comparison of dominant quantum technologies

Quantum technology
[S-spin or C-charge
like] qbits

Scalability Coherence time T1 Coherence time T2

Ion traps [S] Relatively low >1010µs! >106 µs!

Semiconductor qubits High ∼1–10ns ∼1–10ns

→ Charge qubit [C] High 7 ns 250ps

→ Spin qubit [S] High 59 ns 59ns

→ Spin singlet-triplet
qubit [S]

→ Spin exchange
qubit [S]

High 19

→ Spin resonant
exchange qbit [S]

High 0 19µs

→ Spin-charge qbit
[S-C qbit]

High 80ns

Josephson junction
qubits

Moderate 0.1–100µs 0.1–100µs

→ Cooper pair box
[C]

Moderate 2 µs 2 µs

→ Flux qubit [S] Moderate 4.6 µs 1.2 µs

→ Phase qubit Moderate 0.5 µs 0.3 µs

→ 3D Transmon
[S-C]

High >100µs >140µs

→ 2 D Transmon
[S-C]

Moderate 50 µs 20 µs

→ Fluxm [S-C] Moderate 1000 µs >10µs

→ C-shunt [S-C] Moderate 55 µs 40 µs

→ Xmon [S-C] Moderate 50 µs 20 µs

→ Gatemon [S-C] Moderate 5.3 µs 3.7 µs
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2 Description of Position Based-Qubit in Tight-Binding
Model

We refer to the physical situation from Fig. 2 and we consider position based-qubit
in tight-binding model [3] and its the Hamiltonian of this system is given as

Ĥ(t) =
(
Ep1(t) ts12(t)
t†s12(t) Ep2(t)

)

[x=(x1,x2)]
= (E1(t) |E1〉t 〈E1|t + E2(t) |E2〉 〈E2|)[E=(E1,E2)]. (1)

The Hamiltonian Ĥ(t) eigenenergies E1(t) and E2(t) with E2(t) > E1(t) are given
as

E1(t) =
(

−
√

(Ep1(t) − Ep2(t))2

4
+ |ts12(t)|2 + Ep1(t) + Ep2(t)

2

)
,

E2(t) =
(

+
√

(Ep1(t) − Ep2(t))2

4
+ |ts12(t)|2 + Ep1(t) + Ep2(t)

2

)
, (2)

and energy eigenstates |E1(t)〉 and |E2(t)〉 have the following form

|E1, t〉 =
⎛

⎝ (Ep2(t)−Ep1(t))+
√

(Ep2(t)−Ep1(t))2

2 +|ts12(t)|2
−i tsr (t)+tsi (t)−1

⎞

⎠ ,

|E2, t〉 =
⎛

⎝−(Ep2(t)−Ep1(t))+
√

(Ep2(t)−Ep1(t))2

2 +|ts12(t)|2
tsr (t)−i tsi (t)

1

⎞

⎠ . (3)

This Hamiltonian gives a description of two coupled quantum wells as depicted in
Fig. 2. In such situation we have real-valued functions Ep1(t), Ep2(t) and complex-
valued functions ts12(t) = ts(t) = tsr (t) + i tsi (t) and ts21(t) = t∗s12(t), what is equiv-
alent to the knowledge of four real valued time-dependent continuous or discontinues
functions Ep1(t), Ep1(2) , tsr (t) and tsi (t). The quantum state is a superposition of
state localized at node 1 and 2 and therefore is given as

|ψ〉[x] = α(t) |1, 0〉x + β(t) |0, 1〉x = α(t)

(
1
0

)
+ β(t)

(
0
1

)
, (4)

where |α(t)|2 (|β(t)|2) is probability of finding particle at node 1(2) respectively,
which brings |α(t)|2+|β(t)|2=1 and obviously 〈1, 0|x ||1, 0〉x = 1 = 〈0, 1|x ||0, 1〉x
and 〈1, 0|x ||0, 1〉x = 0 = 〈0, 1|x ||1, 0〉x . In Schrödinger formalism, states |1, 0〉x
and |0, 1〉x are Wannier functions that are parameterized by position x . We work in
tight-binding approximation and quantum state evolution with time as given by
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(1)

V1(t)a V2(t)a

(2)

V3(t)a

[-> source of AC voltage]

dipole
microwave
antenna

Va(X)

x

=

QUBIT A

(1) (2)

QUANTUM 
SWAP GATE

(1)

V1(t)a V2(t)a

(2)

V3(t)a Va(X)

x

=

QUBIT A

(1) (2)

gate1a gate2a gate3a

V1(t)b V2(t)b V3(t)b Vb(X)

x

=

gate1b gate2b gate3b

QUBIT B
d1

a 2 electrostatically
coupling qubits parametrized

Fig. 2 [Left]: Electrostatic position-based qubit implemented in CMOS technology [4]. [Upper
Left]: Simplistic representation by particle localized in two regions of space denoted by nodes (1)
and (2); [Lower Left]: case of two electrostatically interacting qubits implementing quantum swap
gate. Quantum dynamics are parameterized by presence of electrons at nodes 1, 2, 1’ and 2’
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i�
d

dt
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 = E(t) |ψ(t)〉 . (5)

The last equation has an analytic solution

|ψ(t)〉 = e
1
i�

∫ t
t0
Ĥ(t1)dt1 |ψ(t0)〉 = e

1
i�

∫ t
t0
Ĥ(t1)dt1

(
α(0)
β(0)

)
(6)

and in quantum density matrix theory we obtain

ρ̂(t) = ρ̂†(t) = |ψ(t)〉 〈ψ(t)| =
= Û (t, t0)ρ̂(t0)Û (t, t0)

−1 =
= e

1
i�

∫ t
t0
Ĥ(t1)dt1(|ψ(t0)〉 〈ψ(t0)|)e− 1

i�

∫ t
t0
Ĥ(t1)dt1 =

= e
1
i�

∫ t
t0
Ĥ(t1)dt1

((
α(0)
β(0)

) (
α∗(0) β∗(0)

) )
e−

∫ t
t0

Ĥ(t1)dt1
i� =

= Û (t, t0)

( |α(0)|2 α(0)β∗(0)
β(0)α(0)∗ |β(0)|2

)
Û (t, t0)

†. (7)

Having Hermitian matrix Â with real-valued coefficients a11(t), a22(t), a12r (t),
a12i (t) and Pauli matrices σ1, σ2, σ3, σ0 = Î2by2 we observe that

Â2×2 =
(

a11 a12r + ia12i
a12r − ia12i a22

)
,=

= a12rσ1 − a12iσ2 + 1

2
(a11 − a22)σ3 + 1

2
(a11 + a22)σ0. (8)

and for Â2N×2N = �k1,k2,...,kN bk1,k2,...,kN (σk1 × σk2 × · · · × σkN )we obtain the unique
matrix decomposition in terms of Pauli matrix tensor products, where ki = 0, . . . , 3.

Using the above property for matrix of size 2×2 we obtain e
1
i�

∫ t
t0
Ĥ(t1)dt1 = Û (t, t0),

and assuming Ep1(t) = Ep2(t) = Ep(t) and we are given matrix e
1
i�

∫ t
t0
Ĥ(t1)dt1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

e
−i
∫ t
t0

Ep (t ′)dt ′
� ch

(√
− ∫ t

t0
(|ts (t ′)|2)dt ′

�

)
e

−i
∫ t
t0

Ep (t ′)dt ′
� (

∫ t
t0

(t∗s (t ′))dt ′)sh

(√
− ∫ tt0 |ts (t ′)|2)

�

)

√
− ∫ t

t0
((tsi (t ′)2+tsr (t ′))2)dt ′

e
−i
∫ t
t0

Ep (t ′)dt ′
� (

∫ t
t0

(−ts (t ′))dt ′)sh

(√
− ∫ tt0 |ts (t ′)|2dt ′

�

)

√
− ∫ t

t0
((tsi (t ′)2+tsr (t ′))2)dt ′

e
−i
∫ t
t0

Ep (t ′)dt ′
� ch

(√
− ∫ t

t0
(|ts (t ′)|2)dt ′

�

)

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(9)

where sh(.) and ch(.) are sinh and cosh hyperbolic functions, where |ts(t)|2 =
|tsr (t)|2 + |tsi (t)|2. This matrix is unitary so Û †(t, t0) = Û−1(t, t0). At the very end
we will also consider more general case when Ep1(t) �= Ep2(t). At first let us con-
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sider the case of two localized states in the left and right quantum well so there is no
hopping which implies ts = 0. In such case the evolution matrix Û (t, t0) is unitarian
and has the following form

Û (t, t0) = e
1
i�

∫ t
t0
Ĥ(t1)dt1 =

⎛

⎝e
−i
∫ t
t0

Ep1(t ′)dt ′
� 0

0 e
−i
∫ t
t0

Ep2(t ′)dt ′
�

⎞

⎠ , (10)

what implies that left and right quantum dot are two disconnected physical systems
subjected to its own evolution with time. However since one electron is distributed
between those physical systems the measurement conducted on the left quantum dot
will have its immediate effect on the right quantum dot. Another extreme example is
the situation when hopping energy is considerably bigger than localization energy.
In such case we set Ep1 = Ep2 = 0 and in case of non-zero hopping terms we obtain

Û (t, t0) = e
1
i�

∫ t
t0
Ĥ(t1)dt1

=

⎛

⎜⎜⎜⎜⎜⎜⎝

ch

(√
− ∫ t

t0
(|ts (t ′)|2)dt ′

�

)
(
∫ t
t0

(t∗s (t ′))dt ′)sh

(√
− ∫ tt0 |ts (t ′)|2)

�

)

√
− ∫ t

t0
((tsi (t ′)2+tsr (t ′))2)dt ′

(
∫ t
t0

(−ts (t ′))dt ′)sh

(√
− ∫ tt0 |ts (t ′)|2dt ′

�

)

√
− ∫ t

t0
((tsi (t ′)2+tsr (t ′))2)dt ′

ch

(√
− ∫ t

t0
(|ts (t ′)|2)dt ′

�

)

⎞

⎟⎟⎟⎟⎟⎟⎠
, (11)

Now it is time tomove tomost general situation of Ep1 �= Ep2, tsr , tsi �= 0.We have 4

elements of evolution matrix given as Û (t, t0) = e
1
i�

∫ t
t0
Ĥ(t1)dt1 =(

U (t, t0)1,1 U (t, t0)1,2
U (t, t0)2,1 = U (t, t0)∗1,2 U (t, t0)2,2

)
.

U (t, t0)1,1 =

exp

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−

√√√√−�2

(
|
∫ t

t0
dt ′(Ep1(t ′) − Ep2(t ′))|2 + 4

(
|
∫ t

t0
dt ′tsi (t ′)|2 + |

∫ t

t0
dt ′tsr (t ′)|2

))

+i�
∫ t

t0
dt ′(Ep1(t ′) + Ep2(t ′))

2�2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2�

(
(
∫ t
t0

dt ′(Ep1(t ′) − Ep2(t ′)))2 + 4
(
| ∫ tt0 dt ′ tsi (t ′)|2 + | ∫ tt0 dt ′tsr (t ′)|2

)) ×

×
[

− i(
∫ t

t0
dt ′Ep1(t ′))

√√√√−�2

(
|
∫ t

t0
dt ′(Ep1(t ′) − Ep2(t ′))|2 + 4

(
|
∫ t

t0
dt ′tsi (t ′)|2 + |

∫ t

t0
dt ′ tsr (t ′)|2

))
+

+ �

(
|
∫ t

t0
dt ′(Ep1(t ′) − Ep2(t ′))|2 + 4

(
|
∫ t

t0
dt ′tsi (t ′)|2 + |

∫ t

t0
dt ′tsr (t ′)|2

))
×
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e

√
−�2

(
| ∫ tt0 dt ′(Ep1(t ′)−Ep2(t ′))|2+4

(
| ∫ tt0 dt ′tsi (t ′)|2+| ∫ tt0 dt ′tsr (t ′)|2

))

�2 +

+
((

(

∫ t

t0
dt ′(Ep1(t ′) − Ep2(t ′)))2 + 4

(
|
∫ t

t0
dt ′tsi (t ′)|2 + |

∫ t

t0
dt ′tsr (t ′)|2

)))
+

+ i(
∫ t

t0
dt ′Ep1(t ′))e

√
−h2

(
| ∫ tt0 dt ′(Ep1(t ′)−Ep2(t ′))|2+4

(
| ∫ tt0 dt ′tsi (t ′)|2+| ∫ tt0 dt ′tsr (t ′)|2

))

�2

×
√√√√−�2

(
|
∫ t

t0
dt ′(Ep1(t ′) − Ep2(t ′))|2 + 4

(
|
∫ t

t0
dt ′tsi (t ′)|2 + |

∫ t

t0
dt ′tsr (t ′)|2

))

− i(
∫ t

t0
dt ′Ep2(t ′))e

√
−�2

(
| ∫ tt0 dt ′(Ep1(t ′)−Ep2(t ′))|2+4

(
| ∫ tt0 dt ′tsi (t ′)|2+| ∫ tt0 dt ′tsr (t ′)|2

))

�2 ×
√√√√−�2

(
|
∫ t

t0
dt ′(Ep1(t ′) − Ep2(t ′))|2 + 4

(
|
∫ t

t0
dt ′tsi (t ′)|2 + |

∫ t

t0
dt ′ tsr (t ′)|2

))
+

+ i(
∫ t

t0
dt ′Ep2(t ′))

√√√√−�2

(
|
∫ t

t0
dt ′(Ep1(t ′) − Ep2(t ′))|2 + 4

(
|
∫ t

t0
dt ′tsi (t ′)|2 + |

∫ t

t0
dt ′tsr (t ′)|2

))]
. (12)

U (t, t0)1,2 =

2�(

∫ t

t0
dt ′(tsi (t ′) − i tsr (t ′)))e−

i
∫ t
t0

dt ′(Ep1(t ′)+Ep2(t ′))
2�

sinh

⎛

⎜⎜⎝

√
−�2

(
| ∫ tt0 dt ′(Ep1(t ′) − Ep2(t ′))|2 + 4

(
| ∫ tt0 dt ′ tsi (t ′)|2 + | ∫ tt0 dt ′tsr (t ′)|2

))

2h2

⎞

⎟⎟⎠

√
−�2

(
| ∫ tt0 dt ′(Ep1(t ′) − Ep2(t ′))|2 + 4

(
| ∫ tt0 dt ′tsi (t ′)|2 + | ∫ tt0 dt ′tsr (t ′)|2

))

= U (t, t0)∗2,1 . (13)

U (t, t0)2,2=
exp

⎛

⎝−
√

−�2
(
| ∫ tt0 dt ′(Ep1(t ′)−Ep2(t ′))|2+4

(
| ∫ tt0 dt ′ tsi (t ′)|2+| ∫ tt0 dt ′ tsr (t ′)|2

))
−i�

∫ t
t0
dt ′(Ep1(t ′)+Ep2(t ′))

2�2

⎞

⎠

2�

(
(
∫ t
t0
dt ′(Ep1(t ′) − Ep2(t ′)))2 + 4

(
| ∫ tt0 dt ′tsi (t ′)|2 + | ∫ tt0 dt ′tsr (t ′)|2

)) ×

×
[

+ i(
∫ t

t0
dt ′Ep1(t

′))

√

−�2

(
|
∫ t

t0
dt ′(Ep1(t ′) − Ep2(t ′))|2 + 4

(
|
∫ t

t0
dt ′tsi (t ′)|2 + |

∫ t

t0
dt ′tsr (t ′)|2

))
+

+ �

(
|
∫ t

t0
dt ′(Ep1(t

′) − Ep2(t
′))|2 + 4

(
|
∫ t

t0
dt ′tsi (t ′)|2 + |

∫ t

t0
dt ′tsr (t ′)|2

))
×

e

√
−�2

(
| ∫ tt0 dt ′ (Ep1 (t ′)−Ep2 (t ′))|2+4

(
| ∫ tt0 dt ′ tsi (t ′ )|2+| ∫ tt0 dt ′ tsr (t ′)|2

))

�2 +

+
((

(

∫ t

t0
dt ′(Ep1(t

′) − Ep2(t
′)))2 + 4

(
|
∫ t

t0
dt ′tsi (t ′)|2 + |

∫ t

t0
dt ′tsr (t ′)|2

)))
+

− i(
∫ t

t0
dt ′Ep1(t

′))e

√
−�2

(
| ∫ tt0 dt ′ (Ep1 (t ′)−Ep2 (t ′))|2+4

(
| ∫ tt0 dt ′ tsi (t ′ )|2+| ∫ tt0 dt ′ tsr (t ′ )|2

))

�2 ×
√

−�2

(
|
∫ t

t0
dt ′(Ep1(t ′) − Ep2(t ′))|2 + 4

(
|
∫ t

t0
dt ′tsi (t ′)|2 + |

∫ t

t0
dt ′tsr (t ′)|2

))

+ i(
∫ t

t0
dt ′Ep2(t

′))e

√
−�2

(
| ∫ tt0 dt ′ (Ep1 (t ′)−Ep2 (t ′ ))|2+4

(
| ∫ tt0 dt ′ tsi (t ′ )|2+| ∫ tt0 dt ′ tsr (t ′ )|2

))

�2 ×
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√

−�2

(
|
∫ t

t0
dt ′(Ep1(t ′) − Ep2(t ′))|2 + 4

(
|
∫ t

t0
dt ′tsi (t ′)|2 + |

∫ t

t0
dt ′tsr (t ′)|2

))
+

− i(
∫ t

t0
dt ′Ep2(t

′))

√

−�2

(
|
∫ t

t0
dt ′(Ep1(t ′) − Ep2(t ′))|2 + 4

(
|
∫ t

t0
dt ′tsi (t ′)|2 + |

∫ t

t0
dt ′tsr (t ′)|2

))]
.

(14)

We recognize that more efficient mathematical representation of qubit evolution
with time is by introducing 4 quantities that are real valued functions of the form:

EP1(t) = EP[Ep1]t =
∫ t

t0

dt ′Ep1(t
′), EP2(t) = EP[Ep2]t =

∫ t

t0

dt ′Ep2(t
′),

T R(t) = T R[tsr ]t =
∫ t

t0

dt ′tsr (t ′), T I (t) = T I [tsi ]t =
∫ t

t0

dt ′tsi (t ′).

It shall be underlined that Ep1(t ′), Ep2(t ′),tsr (t ′) and tsi (t ′) can be continuous or
discontinuous real valued functions of finite value of any dependence and that EP[.],
T R[.] and T I [.] are functionals of Hamiltonian parameters. Usually in case of nano-
circuit their range of values and time-dependence is limited but can be extended with
more advanced engineering and circuit topology. It can be carefully examined if one
moves from Schroedinger to tight-binding formalism so value Ep1 is associated with
energy of particle localized at node 1 and Ep2 is associated with energy of particle
localized at node 2, while ts is measure of energy that can be transported between
node 1 and 2 that takes places during particle movement. ts can also be measured by
the delocalized energy between 2 nodes. Therefore highly energetic particle moving
across nanostructure of q-wells shall have high value of ts and low value of Ep1

and Ep2 so ballistic transport takes place. On another hand slowly moving particle
participating in diffusive transport between one q-well and neighbouring q-well is
strongly localized so Ep1, Ep2 >> |ts |.

3 Action of Phase Rotating Gate Described Analytically

Let us consider the situation of single qubit from Fig. 2 when we assume the follow-
ing dependencies: Ep1(t) = Ep2(t) = Ep = constant and ts12(t) = ts21(t) = ts(t) =
constant1. In such we have two time-independent eigenenergies E1 = Ep − ts and
Ep + ts . For simplicity we assume (α(0) ∈ R), (β(0) ∈ R). The probability of find-
ing electron at node 1 is given by angle � at Bloch sphere expressed as
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P1(t) = |α(t)|2 = 1

2
((|α(0)|2 + |β(0)|2)

+ 1

2
(|α(0)|2 − |β(0)|2) cos(( E2 − E1)t

�
)) = cos(�(t))2,

P2(t) = |α(t)|2 = 1

2
((|α(0)|2 + |β(0)|2)

− 1

2
(|α(0)|2 − |β(0)|2) cos(( E2 − E1)t

�
)) = sin(�(t))2, (15)

and it oscillates periodically with frequency proportional to distance between ener-
getic levels E2 and E1 and is given as ω0 = E2−E1

�
. Therefore the same occupancy

at node is repeating with periodic time td = n 2π�

E2−E1
for integer n. Obviously proba-

bility of finding of particle at node 2 is P2 = 1 − P1. The phase difference between
wavefunctions at node 1 and 2 is denoted as φ(t) and can be expressed analytically
by formula

−φ(t) = ASin

⎡

⎣
sin(

E1 t
�

)(|α(0)|2 − |β(0)|2) + sin(
E2 t
�

)(|α(0)|2 + |β(0)|2)

cos(
E1 t
�

)(|α(0)|2 − |β(0)|2) + cos(
E2 t
�

)(|α(0)|2 + |β(0)|2)

⎤

⎦

= ASin

⎡

⎣
1
2i (exp(i

E1t
�

) − exp(−i
E1t
�

))(|α(0)|2 − |β(0)|2) + 1
2i (exp(i

E2 t
�

) − exp(−i
E2 t
�

))(|α(0)|2 + |β(0)|2)

1
2 (exp(i

E1t
�

) + exp(−i
E1t
�

)))(|α(0)|2 − |β(0)|2) + 1
2 (exp(i

E2 t
�

) + exp(−i
E2 t
�

))(|α(0)|2 + |β(0)|2)

⎤

⎦

= ASin

⎡

⎣
1
2i (1 − exp(−i

2E1 t
�

))(|α(0)|2 − |β(0)|2) + 1
2i (exp(i

(E2−E1)t
�

) − exp(−i
(E2+E1)t

�
))

1
2 (1 + exp(−i

2E1 t
�

)))(|α(0)|2 − |β(0)|2) + 1
2 (exp(i

(E2−E1)t
�

) + exp(−i
(E1+E2)t

�
))

⎤

⎦ =

= ASin

⎡

⎣
1
2i (1 − exp(−i

2E1 t
�

))(|α(0)|2 − |β(0)|2) + 1
2i (cos(

(E2−E1)t
�

) + i sin(
(E2−E1)t

�
)) − exp(−i

(E2+E1)t
�

))

1
2 (1 + exp(−i

2E1 t
�

)))(|α(0)|2 − |β(0)|2) + 1
2 (cos(

(E2−E1)t
�

) + i sin(
(E2−E1)t

�
) + exp(−i

(E1+E2)t
�

))

⎤

⎦

= ASin

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 − e
−i

2E1 t
� )(|α(0)|2 − |β(0)|2)

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

cos(�(t))2 − 1
2

1
2 (|α(0)|2 − |β(0)|2)

+i |

√√√√√1 − (
cos(�(t))2 − 1

2
1
2 (|α(0)|2 − |β(0)|2)

)2 |s
sin(

(E2−E1)t
�

)
− e

−i
(E2+E1)t

�

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

i(1 + e
−i

2E1 t
� ))(|α(0)|2 − |β(0)|2)

+i

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

cos(�(t))2 − 1
2

1
2 (|α(0)|2 − |β(0)|2)

+i |

√√√√√1 − (
cos(�(t))2 − 1

2
1
2 (|α(0)|2 − |β(0)|2)

)2 |s
sin(

(E2−E1)t
�

)
+ e

−i
(E1+E2)t

�

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

We recognize that three frequencies are involved ω1 = E1
�
, ω21m = E2−E1

�
, ω21p =

E2+E1
�

in the dynamics of phase difference of quantum state between nodes 2 and 1.
We are using sign function as Sign(sin( (E2−E1)t

�
))) = s

(sin( (E2−E1)t
�

))
so it has 1 and −1

values for positive and negative values of sin (E2−E1)t
�

and 0 otherwise. More phase
difference across position based qubit between nodes 1 and 2 is codependent on the
occupancy of the left and right node as given by last equation in the case of time-
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independent Hamiltonian. Such situation is not taking place in most conventional
qubits using energy eigenbases to encode information but takes place in position
based semiconductor qubit. The ideal phase rotating gate implemented in position
based qubit brings desired phase difference between wavefunctions at nodes 2 and
1 is not changing the occupancy of node 1 and 2. If we want to keep the occupancy
from time t = 0we need to consider times td = n 2π�

E2−E1
. At time t=0 phase difference

was assumed to be 0.

4 Action of Hadamard Gate in Position Qubit

The Hadamard gate is able to conduct the following unitary transformation on quan-
tum state |ψ(t)〉 and is given as

UHadamard =
(
1 1
1 −1

)
. (17)

It has property U †
Hadamard = UHadamard and UHadamardU

†
Hadamard = 1 so double action

of Hadamard gate gives UHadamardU
−1
Hadamard = 1.

Let us concentrate on the position dependent qubit with time-independent param-
eters Ep1, Ep2 = Ep1 = Ep, ts ∈ R. In such case we obtain following eigenenergies
E1 = Ep − ts and E2 = Ep + ts . From simple calculations we can notice that two
eigenenergies E1 = Ep − ts and E1 = Ep + ts have corresponding eigenstates

|E1〉 = 1√
2
(|1, 0〉x − |0, 1〉x ), |E2〉 = 1√

2
(|1, 0〉x + |0, 1〉x ), (18)

that are orthonormal so 〈1, 0|1, 0〉 = 〈0, 1|0, 1〉 = 1 and 〈1, 0|0, 1〉 = 〈0, 1|1, 0〉 =
0. At the same time 〈E1|E1〉 = 〈E2|E2〉 = 1 and 〈E1|E2〉 = 〈E2|E1〉 = 0. We rec-
ognize that Formula 18 can be written in the compact form as

(|E2〉
|E1〉

)
= 1√

2

(
1 1
1 −1

)(|1, 0〉x
|0, 1〉x

)
= ÛHadamard

(|1, 0〉x
|0, 1〉x

)
,

(|1, 0〉x
|0, 1〉x

)
= 1√

2

(
1 1
1 −1

)(|E2〉
|E1〉

)
= ÛHadamard

(|E2〉
|E1〉

)
. (19)

We recognize that quantum transformation is naturally encoded in transformation
from position quantum system eigenbases into energy eigenbases. Quantum logical
0 can be spanned (represented) by state |1, 0〉x = |0〉L (presence of electron in qubit
on the left side in Fig. 2) and quantum logical 1 can be spanned (represented) by the
state |0, 1〉x = |1〉R (presence of electron in qubit on the right side). Therefore qubit
state shall be defined by
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|ψt 〉 = α(t) |1, 0〉x + β |0, 1〉x = ei Ph(α(t))=iξ(t)(|α(t)| |1, 0〉x
+ ePh(β(t))−Ph(α(t))β(t) |0, 1〉x ) =
= eiξ(t)(|α(t)| |1, 0〉x + eiφ(t)β |0, 1〉x ). (20)

Action of Hadamard gate requires

|0〉L = |1, 0〉x → 1√
2
(|1, 0〉x + |0, 1〉x )

= 1√
2
(|1〉L + |2〉L),

|0〉R = |0, 1〉x → 1√
2
(|1, 0〉x − |0, 1〉x )

= 1√
2
(|1〉L − |2〉L). (21)

that is heating up (left transition from occupancy of two energetic levels expressed by
quantum state |1, 0〉x to occupancy of E2 level given by quantum state 1√

2
(|1, 0〉x +

|0, 1〉x )) or cooling down (right transition from occupancy of 2 energetic levels
expressed by quantum state |0, 1〉x to the occupancy of ground state E1 given by
quantum state 1√

2
(|1〉L − |2〉L)) of quantum state in 2 energy level system. We rec-

ognize that quantum logical 0 or presence of state (electron) in left well is achieved
when there is equal occupancy (given by cE1) of energetic level E1 and E2 so
|cE1(t)|2 = |cE2(t)|2. The scheme how to change the complete occupancy of ener-
getic level E1 into full occupancy of energetic level E2 is given by Formula 37 that
is associated with time-dependent Hamiltonian applied to position based qubit. The
quantum state is given as

|ψ(t)〉 = 1√
2
[(cE1(t)(|1, 0〉x − |0, 1〉x )) + (cE2(t)(|1, 0〉x + |0, 1〉x ))] =

1√
2
[e 1

� (e
1

�i (t−t0)E1cE1(t0)(|1, 0〉x − |0, 1〉x ))

+(e
1

�i (t−t0)E2(t−t0)cE2(t0)(|1, 0〉x + |0, 1〉x ))] =
1√
2
[((+e

1
�i (t−t0)E1cE1(t0) + (e

1
�i (t−t0)E2(t−t0)cE2(t0)) |1, 0〉x +

((−e
1

�i (t−t0)E1cE1(t0) + (e
1

�i (t−t0)E2(t−t0)cE2(t0)) |0, 1〉x ].

Such state will evolve after characteristic time from logical state |0〉L into quantum
logical |1〉L and later into |0〉L and so on. We can also set logical quantum state in
position space parameterized by x andwe can read the results of Hadamard operation
action in energy space or reversely. Engineers have the choice of setting qubit state
in a position space (what is more intuitive if one aims to obtain high integration
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circuits) or in energy space. By setting the quantum state in position space (as by
injecting electron from left side into left well of qubit) one needs to read it by energy
space or reversely. Reading the quantum state after Hadamard operation (or any
other quantum operation) in energy space requires either spectroscopy of occupation
of energy levels which basically means that we need to use microwaves in order to
populate or depopulate given energy level(s).Alternativemethod for reading the qubit
state after Hadamard operation (or any other quantum operation) is determination the
state of neighbouring qubit that interactswithmeasured qubit in electrostaticway as it
is depicted in the right side of Fig. 2. The determination of occupancy of energy level
E1 and E2 will give us the information on the qubit state after Hadamard operation
(so presence of at least 2 energy levels in physical system is the requirement) and
formally we have

|ψ〉output = cE1 |E1〉 + cE2 |E2〉 = cE1 |0〉L−output + cE2 |1〉L−output

= ÛHadamard(α |0〉L−input + β |1〉L−input). (22)

5 Rabi Oscillations in General Case for 2 Energy Level
System

In general case during heating up of q-state or during cooling down of q-state we need
to consider theHamiltonian as H = E1 |E1〉 〈E1| + E2 |E2〉 〈E2| + f1(t) |E2〉 〈E1| +
f2(t) |E1〉 〈E2|. If we want to have time-dependent only E1(t) and onlyE2(t) states
we need to consider H = E1 |E1(t)〉 〈E1(t)| + E2 |E2(t)〉 〈E2(t)| + f1(t) |E2(t)〉
〈E1(t)| + f2(t) |E1(t)〉 〈E2(t)|. Let us see the dynamics of quantum states with
time so we have f1(t), f2(t) = 0 for t <= 0 and constant non-zero otherwise
( f1(t) = f1 = const1, f2(t) = f2 = const2) so one obtains the equation

+ �i
d

dt
cE1(t) = (cE1(t)E1 + f2(t)cE2(t)),

+ �i
d

dt
cE2(t) = (cE2(t)E2 + f1(t)cE1(t)). (23)

From first equation we have 1
f2(t)

(+�i d
dt cE1(t)(t) − E1cE1(t)(t)) = cE2(t) and we

obtain the second equation

+ �i
d

dt
(

1

f2(t)
(+�i

d

dt
cE1(t) − E1cE1(t)))

= (
1

f2(t)
(+�i

d

dt
cE1(t) − E1cE1(t)))E2 + f1(t)cE1(t). (24)

which gives,
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d

dt
(

1

f2(t)
(+�i

d

dt
cE1(t) − E1cE1(t)(t)))

= −d f2
dt

1

f 22 (t)
(+�i

d

dt
cE1(t) − E1cE1(t)(t))

+ (
1

f2(t)
(+�i

d2

dt2
cE1(t)(t) − E1

d

dt
cE1(t))

= 1

i�
(

1

f2(t)
(+�i

d

dt
cE1(t) − E1cE1(t)(t)))

E2 + 1

i�
f1(t)cE1(t)(t). (25)

and it implies

d2

dt2
cE2(t)

�i

f2(t)
+ d

dt
cE2(t)[−d f2

dt

�i

f 22 (t)
− (E1 + E2)

f2(t)
]

+ cE2(t)[ E1

i�

E2

f2(t)
+ d f2

dt

E1

f2(t)2
− 1

�i
f1(t)] = 0. (26)

After multiplication by f2(t)
�i the last equation gives

d2

dt2
cE1(t) + d

dt
cE1(t)[−d f2

dt

1

f2(t)
+ i

(E1 + E2)

�
]

+ β(t)[− E1E2

�2
− i

�

d f2
dt

E1

f2(t)
+ 1

�2
f1(t) f2(t)] = 0. (27)

In analogical way we obtain

d2

dt2
cE2(t) + d

dt
cE2(t)[−d f1

dt

1

f1(t)
+ i

(E1 + E2)

�
]

+ β(t)[− E1E2

�2
− i

�

d f1
dt

E2

f1(t)
+ 1

�2
f1(t) f2(t)] = 0. (28)

Boundary conditions are given as

i�
d

dt
cE1(t

+
0 ) = E1cE2(t

+
0 ) + f2(t

+
0 )cE1(t0),

i�
d

dt
cE2(t

+
0 ) = E2cE1(t

+
0 ) + f1(t

+
0 )cE2(t0),

cE2(t
+
0 ) = cE2(t0), cE1(t

+
0 ) = cE1(t0). (29)

From later considerations it turns out that f1(t)∗ = f2(t) so f1(t) = fa(t) + i fb(t)
and f2(t) = fa(t) − i fb(t), where fa(t) and fb(t) are real valued functions. There-
fore we can write the equations of motion as



84 K. Pomorski

d2

dt2
cE1(t) + d

dt
cE1(t)[−d f2

dt

1

f2(t)
+ i

(E1 + E2)

�
]

+ cE1(t0)[− E1E2

�2
− i

�

d f2
dt

E1

f2(t)
+ 1

�2
fa(t) fb(t)] = 0. (30)

In analogical way we obtain

d2

dt2
cE2(t0)(t) + d

dt
cE2(t0)[−d f1

dt

1

f1(t)
+ i

(E1 + E2)

�
]

+ cE1(t)[− E1E2

�2
− i

�

d f1
dt

E2

f1(t)

+ 1

�2
( fa(t)

2 + fb(t)
2)] = 0. (31)

Boundary conditions are given as

i�
d

dt
cE2(t

+
0 ) = E1cE2(t

+
0 ) + ( fa(t0) − i fb(t0))cE1(t0),

i�
d

dt
cE1(t0)(t

+
0 ) = E2cE1(t0)(t

+
0 ) + ( fa(t0) + i fb(t0)cE2(t0),

cE2(t
+
0 ) = cE2(t0), cE1(t

+
0 ) = cE1(t0). (32)

Very special case is when f1(t) = a exp(ct) + ib exp(ct), f2(t) = a exp(ct) − ib
exp(ct), where c, a and b are real valued. In such cases we obtain the equations for
the occupancy of energy state E1 and E2 expressed as

d2

dt2
cE2(t) + d

dt
cE2(t)(t)[−c + i

(E1 + E2)

�
]

+ cE2(t)(t)[− E1E2

�2
− i

�
E1c + 1

�2
(a2 + b2)exp(2ct)] = 0. (33)

First case is c = 0, � = 1 and solution is

cE1(t) = e− 1
2 i(E1+E2−i

√
−4a2−4b2−E2

1+2E1E2−E2
2 )t g1

+ e
1
2 (−i(E1+E2)+

√
−4a2−4b2−E2

1+2E1E2−E2
2 )t g2, (34)

where g1 and g1 are complex values. Having non-zero c we obtain solutions

cE1(t) = c1 exp

(
1

2
t

(
−
√

−4a2e2ct − 4b2e2ct + c2 − 2icE1 + 2icE2 − E21 + 2E1E2 − E22 + c − i E1 − i E2

))
+

c2 exp

(
1

2
t

(√
−4a2e2ct − 4b2e2ct + c2 − 2icE1 + 2icE2 − E21 + 2E1E2 − E22 + c − i E1 − i E2

))
, (35)
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cE2(t) = c1 exp

(
1

2
t

(
−
√

−4a2e2ct − 4b2e2ct + c2 + 2icE1 − 2icE2 − E21 + 2E1E2 − E22 + c − i E1 − i E2

))
+

c2 exp

(
1

2
t

(√
−4a2e2ct − 4b2e2ct + c2 + 2icE1 − 2icE2 − E21 + 2E1E2 − E22 + c − i E1 − i E2

))
. (36)

The simplified case of last formula can be given as

cE2(t) = −g4 exp

(
−1

2
i t

(
−i
√

−E2
1 + 2E1E2 − E2

2 − 4 + E1 + E2

))

(
−1 + exp

(
1

2
i t

(
−i
√

−E2
1 + 2E1E2 − E2

2 − 4 + E1 + E2

)

+1

2
t

(√
−E2

1 + 2E1E2 − E2
2 − 4 − i(E1 + E2)

)))
(37)

and the numerical example of its dependence on time is depicted in Fig. 6, where
initially energy level E1 was completely populated and with time the full population
of energy level E2 was achieved while energy level E1 was completely depopu-
lated. Such dependence can be used for example in the action of Hadamard gate
implemented in electrostatic position dependent qubit. If f1(t) and f2(t) func-
tions have small values one can assume |E1〉 = 1√

2
(|1, 0〉x − |0, 1〉x ) and |E2〉 =

1√
2
(|1, 0〉x + |0, 1〉x ) and

Ĥ(t)x =
(
Ep ts
t∗s E p

)
+ 1

2

(+ f1(t) + f2(t) − f1(t) + f2(t)
+ f1(t) − f2(t) −( f1(t) + f2(t))

)
. (38)

Hermicity of last Hamiltonian requires that f1(t) = f2(t)∗ (Figs. 3, 4 and 5).

Fig. 3 Case of position based qubit with N = 6 energetic levels and unoccupied ground state
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Fig. 4 Positionbasedqubitwith 5 energetic levels, two-different potentialminimaandoneoccupied
localized state

V(x)

x

Vg2(t)

Vg1(t)

-L +L0 -L+L0 2L+L0

E4

E6
E7
E8
E9

Coupling between
localized state in
the right q-well

Coupling between localized
state in the right q-ell and
delocalized state in q-well

E5

E2
E3

E1

Coupling between localized
states in the left q-well

Coupling between
localized state in

left q-well and
delocalized state

Coupling between
delocalized q-states

It requires certain shapes of
microwave external field
with special frequencies

Possible transfer behind localized states
is an example of non-local phenomena!!!

Fig. 5 All possible quantum processes in the system of 2 coupled q-dots in the case of various
microwave fields: transitions between delocalized eigen energetic levels (P1), transitions between
left localized eigen energies (P2), transitions between right localized eigen energy states (P3),
transitions between left and right delocalized eigen energy states (P4), transitions between left
localized q-states and delocalized q-states (P5), transitions between right localized q-states and
delocalized q-states (P6). One can also distinguish process on injection of electron from outside to
2-qwell system (P7) and process of ejection of electron from 2-qwell system to the outside (P8).
Six processes P1–P6 are described by the Hamiltonian (48) and its precursor Hamiltonian (48)
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6 Extension of 2-Energy Tight Binding Model into N
Energetic Levels for Position Based Qubit in Arbitrary
Electromagnetic Environment

Pictures presented before as in Eq.1 with N=2 energetic levels can be easily extended
for arbitrary number of energy levels E1 < E2 < · · · < E2N1=N what is valid in
time-independent case. It is worth mentioning that very last chain of inequali-
ties between time depedent eigenenergies does not need to be always valid in
the general case of time-dependent Hamiltonian. In most general case we have
N = 2N1 energetic levels among 2 coupled quantum wells controlled electrostat-
ically. Quite obviously we are omitting continuum spectrum of eigenenergies and
we only concentrate on the systemwith electrons confiment by some effective poten-
tial. It requires introduction of 2N1 orthogonal Wannier functional bases such that
|x1〉1 , . . . , |x1〉N1

, |x2〉1 , . . . , |x2〉N1
=(|1, 0〉E1−E2 ,…, |1, 0〉EN1−1−EN1

, |0, 1〉E1−E2 ,

. . . , |0, 1〉EN1−1,EN1
) and such that 〈x1|k (|x2〉m) = 0 for anymdifferent than k. In such

case the quantum state for N1 = 3 (N = 2N1) is described as

|ψ〉 (t) = γE1−E2,p1(t) |x1〉E1,E2
+ γE3−E4,p1(t) |x1〉E3,E4

+ γE5−E6,p1(t) |x1〉E5,E6
+ γE5−E6,p2(t) |x2〉E5−E6

+ γE3−E4,p2(t) |x2〉E3−E4
+ γE1,p2(t) |x2〉E1−E2

=

= 1√
N

⎡

⎢⎢⎢⎢⎢⎢⎣
γE1−E2,p1(t)

⎛

⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎠
+ γE3−E4,p1(t)

⎛

⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎠
+ · · · + γE1−E2,p2(t)

⎛

⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1

⎞

⎟⎟⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎥⎥⎦

=

⎛

⎜⎜⎜⎜⎜⎜⎝

γE1−E2,p1(t)
γE3−E4,p1(t)
γE5−E6,p1(t)
γE5−E6,p2(t)
γE3−E4,p2(t)
γE1−E2,p2(t)

⎞

⎟⎟⎟⎟⎟⎟⎠
. (39)

The probability of presence of electron at node 1 is P1(t) = |γE1−E2,p1(t) +
γE3−E4,p1(t) + γE5−E6,p1(t)|2 and the probability of presence of electron at node
2 is P2(t) = |γE1−E2,p2(t) + γE3−E4,p2(t) + γE5−E6,p2(t)|2. The act of measurement
on position based qubit is represented by the operator

PLef t = |1, 0〉E1,E2
〈1, 0|E1,E2

+ |1, 0〉E3,E4
〈1, 0|E3,E4

+ |1, 0〉E5,E6
〈1, 0|E5,E6

,

(40)



88 K. Pomorski

PRight = |0, 1〉E1,E2
〈0, 1|E1,E2

+ |0, 1〉E3,E4
〈0, 1|E3,E4

+ |0, 1〉E5,E6
〈0, 1|E5,E6

.

(41)

Let us review the Hamiltonian describing system with N = 2N1 energy lev-
els. Essentially we have 2N1 coefficients describing energy localized at 2 nodes
Ep1,1, Ep1,2, . . . , Ep1,N1 , Ep2,1, Ep2,2, . . . , Ep2,N1 , so we are dealing with Epu,m

coefficients, where m=1…N1, pu is 1 or 2 and we have taken into account existence
of all N = 2N1 energetic levels. Let us set N1 = 3 and in such case the quantum state
Hamiltonia in the case of lack of transition between energetic levels corresponding
to Fig. 4. can be written as

Ĥ =

⎛

⎜⎜⎜⎜⎜⎜⎝

E1,p1 0 0 0 0 t1,p1→p2

0 E2,p1 0 0 t2,p1→p2 0
0 0 E3,p1 t3,p1→p2 0 0
0 0 t3,p2→p1 E3,p2 0 0
0 t2,p2→p1 0 0 E2,p2 0

t1,p2→p1 0 0 0 0 E1,p2

⎞

⎟⎟⎟⎟⎟⎟⎠

x

=

= E1,t

∣∣E1,t
〉 〈
E1,t

∣∣+ E2,t

∣∣E2,t
〉 〈
E2,t

∣∣+ E3,t

∣∣E3,t
〉 〈
E3,t

∣∣

+ E4,t

∣∣E4,t
〉 〈
E4,t

∣∣+ E5,t

∣∣E5,t
〉 〈
E5,t

∣∣

+ E6,t

∣∣E6,t
〉 〈
E6,t

∣∣ . (42)

It is important to mention that in the case of lack of time-dependent Hamiltonian
having any among frequency components Ek−El

�
for k �= l such that (k, l) = 1 . . . 6

there is no possibility for the occurrence of resonant state and change of probability
of occupancy among different energetic levels. In such case (|1, 0〉E1,E2

〈1, 0|E1,E2
)

(|1, 0〉E3,E4
〈1, 0|E3,E4

) = 0. However it is not true if there exists resonant state and if
for example Hamiltonian consists following non-zero components with frequencies
( E1−E3

�
, E1−E4

�
, E2−E3

�
, E2−E4

�
).

Now we are moving towards the situation of system with position based qubit
with 5 energetic levels, two-different potential minima and one occupied localized
state on the right side as depicted in Fig. 5. We have Hamiltonian of the form

Ĥ =

⎛

⎜⎜⎜⎜⎝

E2,p1 0 0 t2,p1→p2 0
0 E3,p1 t3,p1→p2 0 0
0 t3,p2→p1 E3,p2 0 0

t2,p2→p1 0 0 E2,p2 0
0 0 0 0 E1,p1

⎞

⎟⎟⎟⎟⎠

= E1(t) |E1(t)〉 〈E1(t)| + · · · + E5(t) |E5(t)〉 〈E5(t)| (43)

with corresponding quantum state given as

|ψ, t〉x = γE5,E4,p1(t) |1, 0〉E5,E4
+ γE3,E2,p1(t) |1, 0〉E3,E2

+ γE5,E4,p2(t) |0, 1〉E5,E4
+ γE3,E2,p2(t) |1, 0〉E3,E2

+
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+ γE1,p2(t) |0, 1〉E1
=

⎛

⎜⎜⎜⎜⎝

γE5,E4,p1(t)
γE3,E2,p1(t)
γE3,E2,p2(t)
γE5,E4,p2(t)
γE1,p2(t)

⎞

⎟⎟⎟⎟⎠

x

. (44)

The energetic states parametrized by E5, E4 or E3, E2 can move freely between
node 1 and 2 so they are delocalized while the state numerated by E1 is the particular
localized ground state. Specified Hamiltonian structure implies that the ground state
cannot be moved to excited states and reversely excited states cannot be moved into
ground state .

The coupling between ground state and first excited state at node 2 occurs in the
case of modified Hamiltonian of the following form as

Ĥ =

⎛

⎜⎜⎜⎜⎝

E2,p1 0 0 t2,p1→p2 0
0 E3,p1 t3,p1→p2 0 0
0 t3,p2→p1 E3,p2 0 0

t2,p2→p1 0 0 E2,p2 t1→2,p2→p2

0 0 0 t2→1,p2→p2 E1,p1

⎞

⎟⎟⎟⎟⎠

= E1(t) |E1(t)〉 〈E1(t)| + E2(t) |E2(t)〉 〈E2(t)| + . . .

+ E5(t) |E5(t)〉 〈E6(t)| + f1(t) |E2〉 〈E1|
+ f2(t) |E1〉 〈E2| + f3(t) |E3〉 〈E1| + f4(t) |E1〉 〈E3| . (45)

In a particular state it is allowed for the wave-packet in the right-well to undergo
transition from energetic state E1 to E2 and E3 and reversely. A better picture can be
obtained from Schroedinger equation. Last Hamiltonian implies presence of time-
dependent component in matrix that has ω21 = E2−E1

�
and ω31 = E3−E1

�
frequency

components.
In such case the projectors (|0, 1〉E1,E2

〈0, 1|E1,E2
)(|0, 1〉E1,E3

〈0, 1|E3,E1
) are dif-

ferent from zero because of existence of resonant states characterized by frequencies
ω21 and ω31. Now we are moving from position based Hamiltonian representation
into energy based that is by identity transformation

Ĥ(t) =

⎛

⎜⎜⎜⎜⎝

E5 0 0 0 0
0 E4 0 0 0
0 0 E3 0 0
0 0 0 E2 0
0 0 0 0 E1

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

1
E5

0 0 0 0
0 1

E4
0 0 0

0 0 1
E3

0 0
0 0 0 1

E2
0

0 0 0 0 1
E1

⎞

⎟⎟⎟⎟⎟⎠
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⎛

⎜⎜⎜⎜⎝

E2,p1 0 0 t2,p1→p2 0
0 E3,p1 t3,p1→p2 0 0
0 t3,p2→p1 E3,p2 0 0

t2,p2→p1 0 0 E2,p2 t1→2,p2→p2

0 0 0 t2→1,p2→p2 E1,p1

⎞

⎟⎟⎟⎟⎠
=

=

⎛

⎜⎜⎜⎜⎝

E5 0 0 0 0
0 E4 0 0 0
0 0 E3 0 0
0 0 0 E2 0
0 0 0 0 E1

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

E2,p1

E5
0 0 t2,p1→p2

E5
0

0 E3,p1

E4

t3,p1→p2

E4
0 0

0 t3,p2→p1

E3

E3,p2

E3
0 0

t2,p2→p1

E2
0 0 E2,p2

E2

t1→2,p2→p2

E2

0 0 0 t2→1,p2→p2

E1

E1,p1

E1

⎞

⎟⎟⎟⎟⎟⎟⎠

Nowweneed to specify the energy eigenstates introducing Ê = diag(E5, E4, E3, E2,

E1) and we obtain Ê acting on

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E2,p1
E5

0 0
t2,p1→p2

E5
0

0
E3,p1
E4

t3,p1→p2
E4

0 0

0
t3,p2→p1

E3

E3,p2
E3

0 0

t2,p2→p1
E2

0 0
E2,p2
E2

t1→2,p2→p2
E2

0 0 0
t2→1,p2→p2

E1

E1,p1
E1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

γE3,E2,p1
γE4,E5,p1
γE4,E5,p2
γE3,E2,p2

γE1,p2

⎞

⎟⎟⎟⎟⎟⎟⎠

x

= Ê

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γE3,E2,p1(t)
E2,p1
E5

+ t2,p1→p2
E5

γE3,E2,p2(t)

γE4,E5,p1(t)
E3,p1
E4

+ t3,p1→p2
E4

γE4,E5,p2(t)

γE4,E5,p2(t)
E3,p2
E3

+ γE4,E5,p1(t)
t3,p2→p1

E3
E2,p2γE3,E2,p2

E2
+ γE1,p2 t1→2,p2→p2

E2
+ γE3,E2,p1 t2,p2→p1

E2
t2→1,p2→p2

E1
γE2,E3,p2(t) + γE1,p2(t)

E1,p1
E1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x

=

⎛

⎜⎜⎜⎜⎜⎝

γE2,E3,p1(t)E2,p1 + t2,p1→p2γE2,E3,p2(t)

0
0
0
0

⎞

⎟⎟⎟⎟⎟⎠

E5

+

⎛

⎜⎜⎜⎜⎜⎝

0
γE4,E5,p1(t)E3,p1 + t3,p1→p2γE4,E5,p2(t)

0
0
0

⎞

⎟⎟⎟⎟⎟⎠

E4

+

⎛

⎜⎜⎜⎜⎜⎝

0
0

γE4,E5,p2(t)E3,p2 + γE4,E5,p1(t)t3,p2→p1
0
0

⎞

⎟⎟⎟⎟⎟⎠

E3

+

⎛

⎜⎜⎜⎜⎜⎝

0
0
0

E2,p2γE2,E3,p2 + γE1,p2 t1→2,p2→p2 + γE2,E3,p1 t2,p2→p1
0

⎞

⎟⎟⎟⎟⎟⎠

E2

+

+

⎛

⎜⎜⎜⎜⎜⎝

0
0
0
0

t2→1,p2→p2γE2,E3,p2(t) + γE1,p2(t)E1,p1

⎞

⎟⎟⎟⎟⎟⎠

E1

(46)
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It is noticeable to recognize that the ground state eigenvector from localized state
was converted into delocalized state by the presence of non-zero γE1,p2(t)E1,p1 term
in the Hamiltonian .

⎛

⎜⎜⎜⎜⎝

0
0
0
0

γE1,p2(t)E1,p1

⎞

⎟⎟⎟⎟⎠

E1

· →

⎛

⎜⎜⎜⎜⎝

0
0
0
0

t2→1,p2→p2γE5,E4,p2(t) + γE1,p2(t)E1,p1

⎞

⎟⎟⎟⎟⎠

E1

·

Also second energy level eigenvector was changed.

⎛

⎜⎜⎜⎜⎝

0
0
0

E2,p2γE5,E4,p2 + γE5,E4,p1t2,p2→p1

0

⎞

⎟⎟⎟⎟⎠

E2

→

⎛

⎜⎜⎜⎜⎝

0
0
0

(E2,p2γE5,E4,p2 + γE5,E4,p1t2,p2→p1) + γE1,p2t1→2,p2→p2

0

⎞

⎟⎟⎟⎟⎠

E2

. (47)

The element t2→1,p2→p2 is responsible for heating up or cooling down of the localized
state. We notice that all other eigenenergy vectors were not changed by the presence
of non-zero elements t2→1,p2→p2 = t∗1→2,p2→p2 in the Hamiltonian 45.

It may occur that potential minima (bottom) in position based qubit can have
arbitrary depth so more than one eigenenergy state can be localized. The number of
localized states can be arbitrary big both on the left and the right side. In considered
example we have only localized on the right state. Localized states can be heated up
or cool down so one localized state is transfering into another localized state in the
same quantumwell. In general k states (as k = 2 in reference to the matrix 48) can be
localized on the right side among k + m all energetic states (wherem = 4 is number
of delocalized eigenenergy states) so total number of Hamiltonian eigenenergy state
k + m is 4 + 2 = 6.

Ĥ =

⎛

⎜⎜⎜⎜⎜⎜⎝

E2,p1 0 0 t2,p1→p2 0 0
0 E3,p1 t3,p1→p2 0 0 0
0 t3,p2→p1 E3,p2 0 0 0

t2,p2→p1 0 0 E2,p2 t1→2,p2→p2 t0→2,p2→p2

0 0 0 t2→1,p2→p2 E1,p2 t0→1,p2→p2

0 0 0 t2→0,p2→p2 t1→0,p2→p2 E0,p2

⎞

⎟⎟⎟⎟⎟⎟⎠
(48)
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We recognize that term the t1→0,p2→p2 is able to heat up and cool down the
localized q-state between 0 and 1 energetic level in q-well p2 and term t2→0,p2→p2

is describing interaction between 0 and 2 energy level in q-well p2, while term
t2→1,p2→p2 describes the interaction between 1st and 2nd energetic level in second
quantum well p2.

Now to describe the situation of 3 localized states in the left well (associated with
matrix coefficients in green) and 2 localized states in the right wells (associated with
matrix coefficients in red) and 4 states that are delocalized so we are dealing with
matrix of 9 states.

Ĥ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E−1,p1 t0→−1,p1→p1 t1→−1,p1→p1 0 0 0 0 0 t0→−1,p1→p2

t−1→0,p1→p1 E0,p1 t1→0,p1→p1 0 0 0 0 0 0
t−1→1,p1→p1 t0→1,p1→p1 E1,p1 t2→1,p1→p1 0 0 0 0 0

0 0 t1→2,p1→p1 E2,p1 0 0 t2,p1→p2 0 0
0 0 0 0 E3,p1 t3,p1→p2 0 0 0
0 0 0 0 t3,p2→p1 E3,p2 0 0 0
0 0 0 t2,p2→p1 0 0 E2,p2 t1→2,p2→p2 t0→2,p2→p2

0 0 0 0 0 0 t2→1,p2→p2 E1,p2 t0→1,p2→p2

t−1→0,p2→p1 0 0 0 0 0 t2→0,p2→p2 t1→0,p2→p2 E0,p2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Heating up and cooling down of the localized quantum state in the left q-well is
controlled by Hamiltonian coefficients t0→−1,p1→p1, t1→0,p1→p1, t1→−1,p1→p1 and its
conjugate counterparts t−1→0,p1→p1, t0→1,p1→p1, t−1→1,p1→p1. Moving delocalized
q-state in the left q-well p1 into delocalized q-state in the left p2 well is by non-zero
t1→2,p1→p1 and its conjugate t2→1,p1→p1 in orange color. From the point of view
of q-mechanics it is also possible to transfer one q-state localized in the left q-well
into the q-state localized in the right q-well. It is achieved by the non-zero coefficient
t0→−1,p1→p2 and its conjugate t−1→0,p2→p1 in brown color. All these transfer between
states of different energies requires microwave field or AC voltage components. In
case of matrix 9 by 9 we can spot (92 − 9)/2 processes of transfer from one energetic
state into another energetic state in the same q-well or into opposite q-well. In general
for a N by N matrix one has (N 2 − N )/2 such processes. More detailed knowledge
about this processes might be only extracted from Schroediger formalism in 1, 2 or
3 dimensions. In most general case in the case of system with 9 energetic levels are
depicted in Fig. 6.

Now we are describing the most general situation for the system preserving 6
energy levels where position of potential minima and maxima can change in time
so localized states can change into delocalized or reversely. It is thus describing the
system is placed in outside time-dependent electromagnetic field of any dependence
so the matrix of position-based qubit Ĥ(t) can be written as
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Ĥ(t) =

⎛

⎜⎜⎜⎜⎜⎜⎝

E1,p1 t2→1,p1→p1 t3→1,p1→p1 t3→1,p2→p1 t2→1,p2→p1 t1,p2→p1

t1→2,p1→p1 E2,p1 t3→2,p1→p1 t3→2,p2→p1 t2,p2→p1 t1→2,p2→p1

t1→3,p1→p1 t2→3,p1→p1 E3,p1 t3,p2→p1 t2→3,p2→p1 t1→3,p2→p1

t1→3,p1→p2 t2→3,p1→p2 t3,p1→p2 E3,p2 t2→3,p2→p2 t1→3,p2→p2

t1→2,p1→p2 t2,p1→p2 t3→2,p1→p2 t3→2,p2→p2 E2,p2 t1→2,p2→p2

t1,p1→p2 t2→1,p1→p2 t3→1,p1→p2 t3→1,p2→p2 t2→1,p2→p2 E1,p2

⎞

⎟⎟⎟⎟⎟⎟⎠

x

.

(49)

Suchmatrix isHermitian so t∗k→s,pk→pl
= t∗k→s,pk→pl

for k and s among 1, 2 and 3 and
pk and pl having value p1 (presence of electron in left quantumwell) or p2 (presence
of electron in right quantum well) and having real-valued diagonal elements. The
meaning of non-diagonal coefficients is non-trivial.

In the general case the eigenvalues of described matrix cannot be determined ana-
lytically unless there are some preimposed symmetries as for example Ek,p1=Ek,p2

for k = 1, 2 and 3 and in such case eigenvalues are determined by the roots of poly-
nomial of 3rd order in an analytical way. Final reasoning can be conducted also
for the system with 8 energetic levels when one deals with roots of polynomial of
4th order. By proper electromagnetic engineering the system with 6 energetic levels
can be controlled by ((36 − 6)/2) + 6 = 15 + 6 = 21 time dependent parameters.
In most general case the system of position based qubit having 2 coupled quan-
tum dots with 6 energy levels can be parametrized by 36 real valued functions that
are time-dependent. Quite obviously the same system with 2N energetic levels can
be parametrized by (2N )2 real valued functions under the assumption that occu-
pancy of electron is distributed among 2N energetic levels. We introduce the nota-
tion γ1,p1 = γE1−E2,p1, γ2,p1 = γE3−E4,p1, γ3,p1 = γE5−E6,p1, γ3,p2 = γE5−E6,p2,

γ2,p2 = γE3−E4,p2, γ1,p2 = γE1−E2,p2. The last matrix can be written in energy bases
by using the last matrix of Hamiltonian with identity Ĥ(t) |ψ〉 (t) =

⎛

⎜⎜⎜⎜⎜⎜⎝

E1 0 0 0 0 0
0 E2 0 0 0 0
0 0 E3 0 0 0
0 0 0 E4 0 0
0 0 0 0 E5 0
0 0 0 0 0 E6

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
E1

0 0 0 0 0
0 1

E2
0 0 0 0

0 0 1
E3

0 0 0
0 0 0 1

E4
0 0

0 0 0 0 1
E5

0
0 0 0 0 0 1

E6

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

E1,p1 t2→1,p1→p1 t3→1,p1→p1 t3→1,p2→p1 t2→1,p2→p1 t1,p2→p1

t1→2,p1→p1 E2,p1 t3→2,p1→p1 t3→2,p2→p1 t2,p2→p1 t1→2,p2→p1

t1→3,p1→p1 t2→3,p1→p1 E3,p1 t3,p2→p1 t2→3,p2→p1 t1→3,p2→p1

t1→3,p1→p2 t2→3,p1→p2 t3,p1→p2 E3,p2 t2→3,p2→p2 t1→3,p2→p2

t1→2,p1→p2 t2,p1→p2 t3→2,p1→p2 t3→2,p2→p2 E2,p2 t1→2,p2→p2

t1,p1→p2 t2→1,p1→p2 t3→1,p1→p2 t3→1,p2→p2 t2→1,p2→p2 E1,p2

⎞

⎟⎟⎟⎟⎟⎟⎠

x
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×

⎛

⎜⎜⎜⎜⎜⎜⎝

γE1−E2,p1

γE3−E4,p1

γE5−E6,p1

γE5−E6,p2

γE3−E4,p2

γE1−E2,p2

⎞

⎟⎟⎟⎟⎟⎟⎠
. =

⎛

⎜⎜⎜⎜⎜⎜⎝

E1 0 0 0 0 0
0 E2 0 0 0 0
0 0 E3 0 0 0
0 0 0 E4 0 0
0 0 0 0 E5 0
0 0 0 0 0 E6

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1,p1

E1

t2→1,p1→p1

E1
t3→1,p1→p1

E1

t3→1,p2→p1

E1

t2→1,p2→p1

E1

t1,p2→p1

E1
t1→2,p1→p1

E2

E2,p1

E2

t3→2,p1→p1

E2

t3→2,p2→p1

E2

t2,p2→p1

E2

t1→2,p2→p1

E2
t1→3,p1→p1

E3

t2→3,p1→p1

E3

E3,p1

E3

t3,p2→p1

E3

t2→3,p2→p1

E3

t1→3,p2→p1

E3
t1→3,p1→p2

E4

t2→3,p1→p2

E4

t3,p1→p2

E4

E3,p2

E4

t2→3,p2→p2

E4

t1→3,p2→p2

E4
t1→2,p1→p2

E5

t2,p1→p2

E5

t3→2,p1→p2

E5

t3→2,p2→p2

E5

E2,p2

E5

t1→2,p2→p2

E5
t1,p1→p2

E6

t2→1,p1→p2

E6

t3→1,p1→p2

E6

t3→1,p2→p2

E6

t2→1,p2→p2

E6

E1,p2

E6

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

x

⎛

⎜⎜⎜⎜⎜⎜⎝

γE1−E2,p1

γE3−E4,p1

γE5−E6,p1

γE5−E6,p2

γE3−E4,p2

γE1−E2,p2

⎞

⎟⎟⎟⎟⎟⎟⎠

x

=

= Ê

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1,p1
E1

γ1,p1(t) + t2→1,p1→p1
E1 γ2,p1(t) + t3→1,p1→p1

E1
γ3,p1(t) + t3→1,p2→p1

E1
γ3,p2(t) + t2→1,p2→p1

E1
γ2,p2(t) + t1,p2→p1

E1
γ1,p2(t)

t1→2,p1→p1
E2

γE1,p1(t) + E2,p1
E2

γE2,p1(t) + t3→2,p1→p1
E2

γE3,p1(t) + t3→2,p2→p1
E2

γE3,p2(t) + t2,p2→p1
E2

γ2,p2(t) + t1→2,p2→p1
E2

γ1,p2(t)
t1→3,p1→p1

E3
γ1,p1(t) + t2→3,p1→p1

E3
γ2,p1(t) + E3,p1

E3
γ3,p1(t) + t3,p2→p1

E3
γ3,p2(t) + t2→3,p2→p1

E3
γ2,p2(t) + t1→3,p2→p1

E3
γ1,p2(t)

t1→3,p1→p2
E4

γ1,p1(t) + t2→3,p1→p2
E4

γ2,p1(t) + t3,p1→p2
E4

γ3,p1(t) + E3,p2
E4

γ3,p2(t) + t2→3,p2→p2
E4

γ2,p2(t) + t1→3,p2→p2
E4

γ1,p2(t)
t1→2,p1→p2

E5
γ1,p1(t) + t2,p1→p2

E5
γ2,p1(t) + t3→2,p1→p2

E5
γ3,p1(t) + t3→2,p2→p2

E5
γ3,p2(t) + E2,p2

E5
γ2,p2(t) + t1→2,p2→p2

E5
γ1,p2(t)

t1,p1→p2
E6

γ1,p1(t) + t2→1,p1→p2
E6

γ2,p1(t) + t3→1,p1→p2
E6

γ3,p1(t) + t3→1,p2→p2
E6

γ3,p2(t) + t2→1,p2→p2
E6

γ2,p2(t) + E1,p2
E6

γ1,p2(t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E

= E1

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

E1,p1
E1

γ1,p1 + t2→1,p1→p1
E1 γ2,p1 + t3→1,p1→p1

E1
γ3,p1(t) + t3→1,p2→p1

E1
γ3,p2(t) + t2→1,p2→p1

E1
γ2,p2(t) + t1,p2→p1

E1
γ1,p2(t)

0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

E

+

+E2

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0
t1→2,p1→p1

E2
γ1,p1(t) + E2,p1

E2
γ2,p1(t) + t3→2,p1→p1

E2
γ3,p1(t) + t3→2,p2→p1

E2
γ3,p2(t) + t2,p2→p1

E2
γ2,p2(t) + t1→2,p2→p1

E2
γ1,p2(t)

0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

E

+

+E3

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0
0

t1→3,p1→p1
E3

γ1,p1(t) + t2→3,p1→p1
E3

γ2,p1(t) + E3,p1
E3

γ3,p1(t) + t3,p2→p1
E3

γ3,p2(t) + t2→3,p2→p1
E3

γ2,p2(t) + t1→3,p2→p1
E3

γ1,p2(t)

0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

E

+

+E4

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

t1→3,p1→p2
E4

γ1,p1(t) + t2→3,p1→p2
E4

γ2,p1(t) + t3,p1→p2
E4

γ3,p1(t) + E3,p2
E4

γ3,p2(t) + t2→3,p2→p2
E4

γ2,p2(t) + t1→3,p2→p2
E4

γ1,p2(t)

0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

E

+

+E5

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

t1→2,p1→p2
E5

γ1,p1(t) + t2,p1→p2
E5

γ2,p1(t) + t3→2,p1→p2
E5

γ3,p1(t) + t3→2,p2→p2
E5

γ3,p2(t) + E2,p2
E5

γ2,p2(t) + t1→2,p2→p2
E5

γ1,p2(t)

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

E

+
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+E6

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0

t1,p1→p2
E6

γ1,p1(t) + t2→1,p1→p2
E6

γ2,p1(t) + t3→1,p1→p2
E6

γ3,p1(t) + t3→1,p2→p2
E6

γ3,p2(t) + t2→1,p2→p2
E6

γ2,p2(t) + E1,p2
E6

γ1,p2(t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

E

=

= E1(t)cE1,t |E1, t〉 + E2(t)cE2,t |E2, t〉 + E3(t)cE3,t |E3, t〉
+ E4(t)cE4,t |E4, t〉
+ E5(t)cE5,t |E5, t〉 + E6(t)cE6,t |E6, t〉 =
= (E1(t) |E1, t〉 〈E1, t | + E2(t) |E2, t〉 〈E2, t |
+ E3(t) |E3, t〉 〈E3, t |
+ E4(t) |E4, t〉 〈E4, t | + E5(t) |E5, t〉 〈E5, t | +
E6(t) |E6, t〉 〈E6, t |) |ψ, t〉 . (50)

where |Ek, t〉 〈Ek, t | is projector on energy eigenstate Ek and 〈Ek, t | |El , t〉 = δk,l
and

Ê =

⎛

⎜⎜⎜⎜⎜⎜⎝

E1 0 0 0 0 0
0 E2 0 0 0 0
0 0 E3 0 0 0
0 0 0 E4 0 0
0 0 0 0 E5 0
0 0 0 0 0 E6

⎞

⎟⎟⎟⎟⎟⎟⎠
, |E1, t〉 =

⎛

⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

|E1, t〉 〈E1, t | =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

|E2, t〉 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎠
, |E2, t〉 〈E2, t | =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, . . . ,
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|E6, t〉 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1

⎞

⎟⎟⎟⎟⎟⎟⎠
, |E6, t〉 〈E6, t | =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
. (51)

It is worth noticing that having knowledge on all eigenvalues E1(t), . . . , EN (t)
with time we can determine the eigenenergy occupancy with time from position
occupancy in unique way. From the above considerations the following relations
takes place

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1,p1

E1

t2→1,p1→p1

E1
t3→1,p1→p1

E1

t3→1,p2→p1

E1

t2→1,p2→p1

E1

t1,p2→p1

E1
t1→2,p1→p1

E2

E2,p1

E2

t3→2,p1→p1

E2

t3→2,p2→p1

E2

t2,p2→p1

E2

t1→2,p2→p1

E2
t1→3,p1→p1

E3

t2→3,p1→p1

E3

E3,p1

E3

t3,p2→p1

E3

t2→3,p2→p1

E3

t1→3,p2→p1

E3
t1→3,p1→p2

E4

t2→3,p1→p2

E4

t3,p1→p2

E4

E3,p2

E4

t2→3,p2→p2

E4

t1→3,p2→p2

E4
t1→2,p1→p2

E5

t2,p1→p2

E5

t3→2,p1→p2

E5

t3→2,p2→p2

E5

E2,p2

E5

t1→2,p2→p2

E5
t1,p1→p2

E6

t2→1,p1→p2

E6

t3→1,p1→p2

E6

t3→1,p2→p2

E6

t2→1,p2→p2

E6

E1,p2

E6

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

E/x

⎛

⎜⎜⎜⎜⎜⎜⎝

γE1−E2,p1(t)
γE3−E4,p1(t)
γE5−E6,p1(t)
γE5−E6,p2(t)
γE3−E4,p2(t)
γE1−E2,p2(t)

⎞

⎟⎟⎟⎟⎟⎟⎠

x

=

⎛

⎜⎜⎜⎜⎜⎜⎝

cE1,p1(t)
cE2,p1(t)
cE3,p1(t)
cE3,p2(t)
cE2,p2(t)
cE1,p2(t)

⎞

⎟⎟⎟⎟⎟⎟⎠

E

= Â(t)γ̂ .

By proper controlling matrix in position representation we can achieved desired
occupancy of energetic levels with time expressed by cE1,p1(t), . . . , cE1,p2(t) coef-
ficients. On another hand preimposing dependence of occupancy of energetic levels
by quantum state expressed in cE1,p1(t), . . . , cE1,p2(t) with time one can achieve
desired dependence of electrons positions γE1,p1(t), . . . , γE1,p2(t) by using relation
|ψ, t〉x = γ̂ (t) = Â(t)−1ĉE (t) = Â(t)−1 |ψ, t〉E .

7 Case of Electrostatic Qubit Interaction

We consider most minimalist model of electrostatically interacting two position-
based qubits that are double quantum dots A (with nodes 1 and 2 and named as
U-upper qubit) and B (with nodes 1’ and 2’ and named as L-lower qubit) with local
confinement potentials as given in the right side of Fig. 2. By introducing notation
|1, 0〉x = |1〉 , |0, 1〉x = |2〉 ,

∣∣1′, 0′〉
x = ∣∣1′〉 ,

∣∣0′, 1′〉
x = ∣∣1′〉 the minimalistic Hamil-

tonian of the system of electrostatically interacting position based qubits can be
written as

Ĥ = (ts21(t) |2〉 〈1| + ts12(t) |1〉 〈2|) Îb) + ( Îa(ts2′1′(t)
∣∣2′〉 〈1′∣∣+ ts1′2′(t)

∣∣2′〉 〈1′∣∣)+
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+ (Ep1(t) |1〉 〈1| + Ep2(t) |2〉 〈2|) Îb + Îa(Ep1′(t)
∣∣1′〉 〈1′∣∣+ Ep2′ (t)

∣∣2′〉 〈2′∣∣)+

+ q2

d11′

∣∣1, 1′〉 〈1, 1′∣∣+ q2

d22′

∣∣2, 2′〉 〈2, 2′∣∣+ q2

d12′

∣∣1, 2′〉 〈1, 2′∣∣+ q2

d21′

∣∣2, 1′〉 〈2, 1′∣∣ =
Hkinetic1 + Hpot1 + Hkinetic2 + Hpot2 + HA−B (52)

described by parameters Ep1(t), Ep2(t), Ep1′(t), Ep2′(t), ts12(t), ts1′2′(t) and dis-
tances between nodes k and l’: d11′ ,d22′ ,d21′ ,d12′ . In such case q-state of the system
is given as

|ψ, t〉 = γ1(t) |1, 0〉U |1, 0〉L + γ2(t) |1, 0〉U |0, 1〉L
+ γ3(t) |0, 1〉U |1, 0〉L + γ4(t) |0, 1〉U |0, 1〉L , (53)

where normalization condition gives |γ1(t)|2 + . . . |γ4(t)|2. Probability of finding
electron in upper system at node 1 is by action of projector P̂1U = 〈1, 0|U 〈1, 0|L +
〈1, 0|U 〈0, 1|L on q-state P̂1U |ψ〉 so it gives probability amplitude |γ1(t) + γ3(t)|2.
On the other hand probability of finding electron from qubit A (U) at node 2 and
electron from qubit B(L) at node 1 is obtained by projection P̂2U,1L = 〈0, 1|U 〈1, 0|L
acting on q-state giving (〈0, 1|U 〈1, 0|L) |ψ〉 that gives probability amplitude |γ3(t)|2.
Referring to picture from Fig. 2 we set distances between nodes as d11′ = d22′ = d1,

d12′ = d21′ =
√

(a + b)2 + d2
1 and assume Coulomb electrostatic energy to be of the

form Ec(k, l) = q2

dkl′
and hence we obtain the matrix Hamiltonian given as Ĥ(t) =

⎛

⎜⎜⎜⎜⎜⎝

Ep1(t) + Ep1′ (t) + q2

d1
ts1′2′ (t) ts12(t) 0

ts1′2′ (t)∗ Ep1(t) + Ep2′ (t) + q2√
(d1)2+(b+a)2

0 ts12(t)

t∗s12(t) 0 Ep2(t) + Ep1′ (t) + q2√
(d1)2+(b+a)2

ts1′2′ (t)

0 t∗s12(t) ts1′2′ (t)∗ Ep2(t) + Ep2′ (t) + q2

d1

⎞

⎟⎟⎟⎟⎟⎠
(54)

We can introduce notation Ec1 = q2

d1
and Ec2 = q2√

d2
1+(b+a)2

. In most general

case of 2 qubit electrostatic interaction one of which has 4 different Coulomb
terms on matrix diagonal Ec1 = q2

d11′
, Ec2

q2

d12′
, Ec3 = q2

d21′
, Ec4 = q2

d22′
and |ψ, t〉 =

Û (t, t0) |ψ, t0〉. We introduce q1 = Ep1(t) + Ep1′(t) + Ec11′ , q2 = Ep1(t) + Ep2′

(t) + Ec12′ , q3 = Ep2(t) + Ep1′(t) + Ec21′ , q4 = Ep2(t) + Ep2′(t) + Ec22′ and in
such case by using Formula (8) one can decompose 2 particle Hamiltonian 54 as

Ĥ =
[ (q1 + q2 + q3 + q4)

4
σ0 × σ0 + (q1 − q2 + q3 − q4)

4
σ0

× σ3 + (q1 + q2 − q3 − q4)

4
σ3 × σ0+

(q1 − q2 − q3 + q4)

4
σ3 × σ3 + +tsr1(t)σ0 × σ1 − tsi1(t)σ0
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× σ2 + tsr2(t)σ1 × σ0 − tsi2(t)σ2 × σ0 (55)

Avery similar procedure is for the case of 3or N interactingparticles soonedealswith
tensor product of 3 or N Pauli matrices. In order to simplify representation of unitary
matrix describing physical system of 2 particles evolution with time it is helpful to
define Q1(t) = ∫ t

t0
(Ep1(t ′) + Ep1′(t ′) + Ec11′)dt ′,Q2(t) = ∫ t

t0
(Ep1(t ′) + Ep2′(t ′) +

Ec12′)dt ′, Q3(t) = ∫ t
t0
(Ep2(t ′) + Ep1′(t ′) + Ec21′)dt ′,Q4(t) = ∫ t

t0
(Ep2(t ′) + Ep2′

(t ′) + Ec22′)dt ′ and T R1(t) = ∫ t
t0
dt ′ts1r (t ′) , T I1(t) = ∫ t

t0
dt ′ts1i (t ′). We consider

the situation when there is no hopping between q-wells ts2 = 0 so, the second parti-
cle is localized among two quantum wells and first particle can move freely among 2
q-wells. We obtain the following unitary matrix evolution with time with following
Û (t, t0)1,2 = Û (t, t0)1,4 = 0 = Û (t, t0)2,3 = Û3,4 and

Û (t, t0)1,1 =
1

2
√

(Q1(t) − Q3(t))2 + 4
(
T R1(t)2 + T I1(t)2

)

[
Q1(t)

(
−ei�

√
(Q1(t)−Q3(t))2+4(T R1(t)2+T I1(t)2)

)

+
(√

|Q1(t) − Q3(t)|2 + 4(T R1(t)2 + T I1(t)2) + Q3(t)
)

×
(
−ei�

√
(Q1(t)−Q3(t))2+4(T R1(t)2+T I1(t)2)

)
+

√
(Q1(t) − Q3(t))2 + 4

(
T R1(t)2 + T I1(t)2

)

+ (Q1(t) − Q3(t)))e
− 1

2 i�
(√

| ∫ t
t0
dt ′(q1(t ′)−q3(t ′))|2+4(t2s1r+t2si1)+(Q1(t)+Q3(t))

)]
(56)

Û (t, t0)1,3 =
2(T I1(t) − iT R1(t))e

− 1
2 (Q1(t)+Q3(t))i�

sin

(
1
2 �

√
|Q1(t) − Q3(t)|2 + 4(T R1(t)2 + T I1(t)2)

)

√
|Q1(t) − Q3(t)|2 + 4(T R1(t)2 + T I1(t)2)

, (57)

Û (t, t0)2,2 =
[
e
( 1
2 i�

(√
(Q2(t)−Q4(t))2+4(T R1(t)2+T I1(t)2)−(Q2(t)+Q4(t))

)
)×

×
(√

(Q2(t) − Q4(t))2 + 4(T R1(t)2 + T I1(t)2) − Q2(t) + Q4(t)
)

2
√

(Q2 − Q4)2 + 4(T R1(t)2 + T I1(t)2)

− e
(

1
2 i�

(
−
√

(Q2(t)−Q4(t))2+4(T R1(t)2+T I1(t)2)−(Q2(t)+Q4(t))
))

×
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×
(
−√(Q2(t) − Q4(t))2 + 4(T R1(t)2 + T I1(t)2) − Q2(t) + Q4(t)

)

2
√

(Q2 − Q4)2 + 4(T R1(t)2 + T I1(t)2)
(58)

Û (t, t0)3,3 =
exp

(
− 1

2 i�
(√

(Q1(t)2 − Q3(t))2 + 4
(
T R1(t)2 + T I1(t)2

)+ Q1(t) + Q3(t)
))

2
√

(Q1(t)2 − Q3(t))2 + 4
(
T R1(t)2 + T I1(t)2

) ×

[
Q1(t)

(
−1 + e

i�
√

(Q1(t)−Q3(t))2+4
(
T R1(t)2+T I1(t)2

))
+

(√
(Q1(t) − Q3(t))2 + 4

(
T R1(t)2 + T I1(t)2

)− q3

)

e
i�
√

(Q1(t)−Q3(t))2+4
(
T R1(t)2+T I1(t)2

)
+

+
√

(Q1(t) − Q3(t))2 + 4
(
T R1(t)2 + T I1(t)2

)+ Q3(t)

]
(59)

Û (t, t0)4,4 =
exp

(
− 1

2 i�
(√

(Q2(t) − Q4(t))2 + 4
(
T R1(t)2 + T I1(t)2

)+ Q2(t) + Q4(t)
))

2
√

(Q2(t) − Q4(t))2 + 4
(
T R1(t)2 + T I1(t)2

) ×

×
[
Q2(t)

⎛

⎜⎝−1 + e
i�

√
(Q2(t)−Q4(t))2+4

(
T R1(t)2+T I1(t)2

)⎞

⎟⎠+

+
(√

(Q2(t) − Q4(t)2)2 + 4
(
T R1(t)2 + T I1(t)2

)− Q4(t)

)

e
i�

√
(Q2(t)−Q4(t))2+4

(
T R1(t)2+T I1(t)2

)

+
√

(Q2(t) − Q4(t))2 + 4
(
T R1(t)2 + T I1(t)2

)+ Q4(t)

]

Û (t, t0)2,4 =
2(T I1(t) − iT R1(t))e

− 1
2 i�(Q2(t)+Q4(t))

sin

(
1
2 �

√
(Q2(t) − Q4(t))2 + 4

(
T R1(t)2 + T I1(t)2

))

√
(Q2(t) − Q4(t))2 + 4

(
T R1(t)2 + T I1(t)2

) (60)

The example of function dependence of eigenenergy spectra of 2 electrostatically
interacting qubits on distance is given by Fig. 6.

An important observation is that any element of matrix Ĥ(t ′) for t ′ ∈ (t0, t)

denoted as Hk,l(t ′) is transferred to element Ûk,l(t, t0) = e
1

�i

∫ t
t0
dt ′(Hk,l (t ′)) of matrix

Û (t, t0). We can easily generalize the presented reasoning for the system of N elec-
trostatically coupled electrons confined by some local potentials. However we need
to know the position dependent Hamiltonian eigenstate at the initial time t0. In case
N > 2 finding such eigenstate is the numerical problem since analytical solutions
for roots of polynomials of one variable for higher order than 4 does not exist.
Using numerical eigenstate at time instance t0 we can compute the system quantum
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Fig. 6 Case of dependence of energy spectra on the distance d1 for the case of 2 electrostatically
interacting qubits from Fig. 2

dynamics in analytical way. This give us a strong and relatively simple mathemati-
cal tool giving full determination of quantum dynamical state at the any instance of
time. The act of measurement on position based qubit is represented by the operator
PLef t = |1, 0〉E1,E2

〈1, 0|E1,E2
and PRight = |0, 1〉E1,E2

〈0, 1|E1,E2
.

7.1 Simplified Picture of Symmetric Q-Swap Gate

Now we need to find a system 4 eigenvalues and eigenstates (4 orthogonal 4-
dimensional vectors) so we are dealing with a matrix eigenvalue problem) what
is the subject of classical algebra. Let us assume that 2 double quantum dot sys-
tems are symmetric and biased by the same voltages generating potential bottoms Vs

so we have Ep1 = Ep2 = Ep1′ = Ep2′ = Ep = Vs and that ts12 = ts1′2′ = ts . Denot-
ing Ec(1, 1′) = Ec(2, 2′) = Ec1 and Ec(1, 2′) = Ec(2, 1′) = Ec2 we are obtaining
4 orthogonal Hamiltonian eigenvectors

|E1〉 =

⎛

⎜⎜⎝

−1
0
0

+1

⎞

⎟⎟⎠ = − |1, 0〉U |1, 0〉L + |0, 1〉U |0, 1〉L

�= (a1 |1, 0〉U + a2 |0, 1〉U )(a3 |1, 0〉U + a4 |0, 1〉U ), (61)

|E2〉 =

⎛

⎜⎜⎝

1
0
0

−1

⎞

⎟⎟⎠ = |1, 0〉U |0, 1〉L − |0, 1〉U |1, 0〉L
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Fig. 7 Scheme of
renormalization in the
system of coupled qubits

�= (a1 |1, 0〉U + a2 |0, 1〉U )(a3 |1, 0〉U + a4 |0, 1〉U ). (62)

We observe that two first energetic states are degenerated so the same quantum
state corresponds to 2 different eigenenergies E1 and E2. This degeneracy is non-
present if we come back to Schroedinger picture and observe that localized energy
and hopping terms for one particle are depending on another particle presence that
will bring renormalization of wavevectors. Situation is depicted in Fig. 7. Degener-
acy of eigenstates is lifted if we set Ep1(|ψ(1′)|2, |ψ(2′)|2), Ep2(|ψ(1′)|2, |ψ(1′)|2),
Ep1′(|ψ(1)|2, |ψ(2)|2), Ep2′(|ψ(1)|2, |ψ(1)|2) and t1→2(|ψ(1′)|2, |ψ(2′)|2), t1′→2′

(|ψ(1′)|2, |ψ(2′)|2).
The same argument is for another wavevectors as given below.

∣∣E3(4)
〉 =

⎛

⎜⎜⎜⎜⎝

1
∓ 4ts

±(−Ec1+Ec2)+
√

(Ec1−Ec2)2+16t2s

∓ 4ts
±(−Ec1+Ec2)+

√
(Ec1−Ec2)2+16t2s

1

⎞

⎟⎟⎟⎟⎠

= |1, 0〉U |1, 0〉L + |0, 1〉U |0, 1〉L
+ c(|1, 0〉U |0, 1〉L + |0, 1〉U |1, 0〉L) =
= (|1, 0〉U + |0, 1〉U )(|1, 0〉L + |0, 1〉L)
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+ (c − 1)(|1, 0〉U |0, 1〉L + |0, 1〉U |1, 0〉L)
�= (a1 |1, 0〉U + a2 |0, 1〉U )(a3 |1, 0〉U + a4 |0, 1〉U ), (63)

where c = ∓ 4ts
±(−Ec1+Ec2)+

√
(Ec1−Ec2)2+16t2s

First two |E1〉 and |E2〉 energy eigenstates
are always entangled, while |E3〉 and |E4〉 eigenenergies are only partially entangled
if ∓ 4ts

±(−Ec1+Ec2)+
√

(Ec1−Ec2)2+16t2s
�= 1. If c = 1 = ∓ 4ts

±(−Ec1+Ec2)+
√

(Ec1−Ec2)2+16t2s
last

two energy eigenstates are not entangled. The situation of c = 1 takes place when
Ec1 = Ec2 so when two qubits are infinitely far away so when they are electrostati-
cally decoupled. Situation of c=0 is interesting because it means that |E3〉 and |E4〉
are maximally entangled and it occurs when ts = 0 so when two electrons are max-
imally localized in each of the qubit so there is no hopping between left and right
well.

The obtained eigenenergy states correspond to 4 eigenenergies

E1 = Ec1 + 2Vs, E2 = Ec2 + 2Vs, E1 > E2

E3 = 1

2
((Ec1 + Ec2) −

√
(Ec1 − Ec2)2 + 16t2s + 4Vs) =

= 1

2
((q2(

1

d1
+ 1√

d2
1 + (a + b)2

))

−
√√√√(q2(

1

d1
− 1√

d2
1 + (a + b)2

))2 + 16t2s + 4Vs),

E4 = 1

2
((Ec1 + Ec2) +

√
(Ec1 − Ec2)2 + 16t2s + 4Vs) =

1

2
((q2(

1

d1
+ 1√

d2
1 + (a + b)2

)

+
√√√√(q2(

1

d1
− 1√

d2
1 + (a + b)2

))2 + 16t2s + 4Vs), E4 > E3. (64)

We also notice that the eigenenergy states |E1〉, |E2〉 ,|E3〉, |E4〉 do not have its
classical counterpart since upper electron exists at both positions 1 and 2 and lower
electron exists at both positions at the same time. We observe that when distance
between two systems of double quantum dots goes into infinity the energy difference
between quantum state corresponding to |E3〉 and |E4〉 goes to zero. This makes
those two entangled states degenerated.

Normalized 4 eigenvectors of 2 interacting qubits in SWAP Q-Gate configuration
are of the following form
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|E1〉n = 1
√(

8

(
tsr1−tsr2√

(Ec1−Ec2)2+4(tsr1−tsr2)2−Ec1+Ec2

))2

+ 2

⎛

⎜⎜⎜⎜⎝

−1,
− 2(tsr1−tsr2)√

(Ec1−Ec2)2+4(tsr1−tsr2)2−Ec1+Ec2

,

2(tsr1−tsr2)√
(Ec1−Ec2)2+4(tsr1−tsr2)2−Ec1+Ec2

1

⎞

⎟⎟⎟⎟⎠

= 1
√(

8

(
tsr1−tsr2√

(Ec1−Ec2)2+4(tsr1−tsr2)2−Ec1+Ec2

))2

+ 2

|E1〉

|E2〉n = − 1
√(

8

(
tsr1−tsr2√

(Ec1−Ec2)2+4(tsr1−tsr2)2+Ec1−Ec2

))2

+ 2

⎛

⎜⎜⎜⎜⎝

−1
2(tsr1−tsr2)√

(Ec1−Ec2)2+4(tsr1−tsr2)2+Ec1−Ec2

− 2(tsr1−tsr2)√
(Ec1−Ec2)2+4(tsr1−tsr2)2+Ec1−Ec2

, 1

⎞

⎟⎟⎟⎟⎠

= − 1
√(

8

(
tsr1−tsr2√

(Ec1−Ec2)2+4(tsr1−tsr2)2+Ec1−Ec2

))2

+ 2

|E2〉

|E3〉n = 1
√(

8

(
tsr1+tsr2√

(Ec1−Ec2)2+4(tsr1+tsr2)2−Ec1+Ec2

))2

+ 2

⎛

⎜⎜⎜⎜⎝

1,
− 2(tsr1+tsr2)√

(Ec1−Ec2)2+4(tsr1+tsr2)2−Ec1+Ec2

,

− 2(tsr1+tsr2)√
(Ec1−Ec2)2+4(tsr1+tsr2)2−Ec1+Ec2

,

1

⎞

⎟⎟⎟⎟⎠

= 1
√(

8

(
tsr1+tsr2√

(Ec1−Ec2)2+4(tsr1+tsr2)2−Ec1+Ec2

))2

+ 2

|E3〉
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|E4〉n = 1
√(

8

(
tsr1+tsr2√

(Ec1−Ec2)2+4(tsr1+tsr2)2−Ec2+Ec1

))2

+ 2

⎛

⎜⎜⎜⎜⎝

1,
2(tsr1+tsr2)√

(Ec1−Ec2)2+4(tsr1+tsr2)2+Ec1−Ec2

,

2(tsr1+tsr2)√
(Ec1−Ec2)2+4(tsr1+tsr2)2+Ec1−Ec2

,

1

⎞

⎟⎟⎟⎟⎠

= 1
√(

8

(
tsr1+tsr2√

(Ec1−Ec2)2+4(tsr1+tsr2)2−Ec2+Ec1

))2

+ 2

|E4〉 .

We are obtaining simplifications after assuming tsr1(t) = tsr2(t) so we obtain

|E1〉n = 1√
2

⎛

⎜⎜⎝

−1
0
0
1

⎞

⎟⎟⎠ , |E2〉n = 1√
2

⎛

⎜⎜⎝

1
0
0

−1

⎞

⎟⎟⎠ , (65)

|E3〉n =
√√√√

4ts

(Ec2 − Ec1) + 8ts −
√

(Ec1 − Ec2)2 + 16t2s

⎛

⎜⎜⎜⎜⎜⎜⎝

1
− 4ts

(−Ec1+Ec2)+
√

(Ec1−Ec2)2+16t2s

− 4ts

(−Ec1+Ec2)+
√

(Ec1−Ec2)2+16t2s
1

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(66)

|E4〉n =
√√√√

4ts

(Ec1 − Ec2) + 8ts −
√

(Ec1 − Ec2)2 + 16t2s

⎛

⎜⎜⎜⎜⎜⎜⎝

1
4ts

(Ec1−Ec2)+
√

(Ec1−Ec2)2+16t2s
4ts

(Ec1−Ec2)+
√

(Ec1−Ec2)2+16t2s
1

⎞

⎟⎟⎟⎟⎟⎟⎠
. (67)

It is worth mentioning that if we want to bring two electrostatic qubits to the
entangled state we need to cool down (or heat-up) the system of interacting qubits
to the energy E1 (or to energy E2). Otherwise we might also wish to disentangle
two electrostatically interacting qubits. In such way one of the scenario is to bring
the quantum system either to energy E3 or E4 so only partial entanglement will be
achieved. Other scenario would be by bringing the occupancy of different energetic
levels so net entanglement is reduced. One can use the entanglement witness in
quantifying the existence of entanglement. One of the simplest q-state entanglement
measurement is von Neumann entanglement entropy as it is expressed by Formula
185 that requires the knowledge of q-system density matrix with time. Such matrices
can be obtained analytically for the case of 2 electrostatically interacting qubits.
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It is interesting to spot the dependence of eigenenergies on distance between
interacting qubits in the general case as it is depicted in Fig. 6. Now we are moving
towards description the procedure of cooling down or heating up inQ-Swap gate. The
procedure was discussed previously in the case of single qubit. Now it is exercised
in the case of 2-qubit electrostatic interaction. For the sake of simplicity we will
change the occupancy of the energy level E1 and energy level level E2 and keep the
occupancy of other energy levels unchanged. We can write the |E2〉 〈E1| as

|E2〉n 〈E1|n = 1

2

⎛

⎜⎜⎝

1
0
0

−1

⎞

⎟⎟⎠
(−1 0 0 1

) =

⎛

⎜⎜⎝

−1 0 0 +1
0 0 0 0
0 0 0 0

+1 0 0 −1

⎞

⎟⎟⎠ ,

|E1〉n 〈E2|n = 1

2

⎛

⎜⎜⎝

−1
0
0
1

⎞

⎟⎟⎠
(
1 0 0 −1

) =

⎛

⎜⎜⎝

−1 0 0 +1
0 0 0 0
0 0 0 0

+1 0 0 −1

⎞

⎟⎟⎠ . (68)

We are introducing f1 and f2 real valued functions of small magnitude f (t) =
f1(t) = f2(t), (| f1|, | f2| << (E1, E2)) andwe are considering the followingHamil-
tonian having H0 that is time-independent and other part dependent part as

Ĥ = Ĥ0 + f1(t) |E2〉n 〈E1|n + f2(t) |E1〉n 〈E2|n = E1 |E1〉 〈E1| + E2 |E2〉 〈E2|
+ f1(t) |E2〉n 〈E1|n + f2(t) |E1〉n 〈E2|n =

=

⎛

⎜⎜⎜⎜⎜⎜⎝

2Ep + q2

d1
ts ts 0

t∗s 2Ep + q2√
(d1)2+(b+a)2

0 ts

t∗s 0 2Ep + q2√
(d1)2+(b+a)2

ts

0 t∗s t∗s 2Ep + q2

d1

⎞

⎟⎟⎟⎟⎟⎟⎠

+ 1

2

⎛

⎜⎜⎝ f1

⎛

⎜⎜⎝

−1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 −1

⎞

⎟⎟⎠+ f2

⎛

⎜⎜⎝

−1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 −1

⎞

⎟⎟⎠

⎞

⎟⎟⎠ =

=

⎛

⎜⎜⎜⎜⎜⎜⎝

2Ep + q2

d1
− f (t) ts ts f (t)

t∗s 2Ep + q2√
(d1)2+(b+a)2

0 ts

t∗s 0 2Ep + q2√
(d1)2+(b+a)2

ts

f (t) t∗s t∗s 2Ep + q2

d1 − f (t)

⎞

⎟⎟⎟⎟⎟⎟⎠

= Ĥ(t)E1<−>E2,Q-Swap. (69)
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Initially we have established the following parameters of tight-binding model as
ts12 = ts1′2′ . Changing ts12 into ts12 − f (t)

2 and ts1′2′ into ts1′2′ + f (t)
2 while keeping

other parameters of tight-binding model unchanged will result in the heating up
(cooling down) of q-state of SWAP gate so population of energy level E1 and E2

are time-dependent, while populations of energy levels E3 and E4 are unchanged.
Practically our results mean that we need to keep all our confiment potential bottoms
constant, while changing barrier height between neighbouring q-dots in each of
position based qubits. In such way we have established the procedure of perturbative
cooling (heatingup) of q-state.Non-perturbative approach is absolutely possible but it
requires full knowledge of time dependent eigenstates and eigenenergies (solutions of
eigenenergies of 4th order polynomial are very lengthy in general case) and therefore
corresponding expression are very lengthy. In similar fashion we can heat up or cool
down two coupled Single Electron Lines [3] as in Fig. 1 or any other q-system having
N interacting q-bodies that can be represented by the system ofN-interacting position
based qubits.

7.2 Case of Density Matrix in Case of 2 Interacting Particles
in Symmetric Case

We consider the simplifying matrix and highly symmetric matrix of the form

Ĥ(t)

=

⎛

⎜⎜⎜⎜⎜⎝

2Ep (t) + q2

d1
= q11 + q22 tsr2(t) tsr1(t) 0

tsr2(t) 2Ep (t) + q2√
(d1 )2+(b+a)2

= q11 − q22 0 tsr1(t)

tsr1(t) 0 2Ep (t) + q2√
(d1 )2+(b+a)2

= q11 − q22 tsr2(t)

0 tsr1(t) tsr2(t) 2Ep (t) + q2

d1 = q11 + q22

⎞

⎟⎟⎟⎟⎟⎠
=

= σ̂0 × σ̂0q11 + σ̂3 × σ̂3q22 + tsr2(t)σ̂0 × σ̂3 + tsr1(t)σ̂3 × σ̂0

(70)

that has only real value components Hk,l with q11 = Ep(t) + Ec1+Ec2
2 = Ep(t) +

1
2 (

q2

d1
+ q2√

(d1)2+(b+a)2
), q22 = Ec1−Ec2

2 = 1
2 (

q2

d1
− q2√

(d1)2+(b+a)2
) and Q11(t) = ∫ t

t0
d

t ′q11(t ′), Q22(t) = ∫ t
t0
dt ′q22(t ′), T R1(t) = ∫ t

t0
dt ′tsr1(t ′), T R2(t) = ∫ t

t0
dt ′tsr2(t ′).

We obtain the density matrix

Û (t) =

⎛

⎜⎜⎝

U1,1(t) U1,2(t) U1,3(t) U1,4(t)
U2,1(t) U2,2(t) U2,3(t) U2,4(t)
U3,1(t) U3,2(t) U3,3(t) U3,4(t)
U4,1(t) U4,2(t) U4,3(t) U4,4(t)

⎞

⎟⎟⎠ ,
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ρ̂(t) = Û (t, t0)

⎛

⎜⎜⎝

ρ1,1(t0) ρ1,2(t0) ρ1,3(t0) ρ1,4(t0)
ρ2,1(t0) ρ2,2(t0) ρ2,3(t0) ρ2,4(t0)
ρ3,1(t0) ρ3,2(t0) ρ3,3(t0) ρ3,4(t0)
ρ4,1(t0) ρ4,2(t0) ρ4,3(t0) ρ4,4(t0)

⎞

⎟⎟⎠ Û−1(t, t0) (71)

with the following components of unitary matrix

U1,1(t) = e−i�Q11(t)

2

[
− i Q22(t)×

×
⎛

⎝
sin
(
�

√|Q22(t)|2 + (T R1(t) − T R2(t))2
)

√|Q22(t)|2 + (T R1(t) − T R2(t))2

+
sin
(
�

√|Q22(t)|2 + (T R1(t) + T R2(t))2
)

√|Q22(t)|2 + (T R1(t) + T R2(t))2

⎞

⎠+

+ cos
(
�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

+ cos
(
�

√
|Q22(t)|2 + (T R1(t) + T R2(t))2

) ]
. (72)

U1,2(t) =
ie−i�Q11(t)

(
(T R1(t) − T R2(t)) sin

(
�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

2
√

|Q22(t)|2 + (T R1(t) − T R2(t))2

−
(T R1(t) + T R2(t)) sin

(
�

√
|Q22(t)|2 + (T R1(t) + T R2(t))2

))

2
√

|Q22(t)|2 + (T R1(t) + T R2(t))2
, (73)

U1,3(t) = −ie−i�Q11(t)

[
(T R1(t) − T R2(t)) sin

(
�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

2
√

|Q22(t)|2 + (T R1(t) − T R2(t))2

+
(T R1(t) + T R2(t)) sin

(
�

√
|Q22(t)|2 + |T R1(t) + T R2(t)|2

) ]

2
√

|Q22(t)|2 + (T R1(t) + T R2(t))2
. (74)

U1,4(t) = 1

2
e−i�Q11(t)

[
i Q22(t)

[ sin
(
�

√|Q22(t)|2 + (T R1(t) − T R2(t))2
)

√|Q22(t)|2 + (T R1(t) − T R2(t))2

−
sin
(
�

√|Q22(t)|2 + (T R1(t) + T R2(t))2
)

√|Q22(t)|2 + (T R1(t) + T R2(t))2

]

− cos
(
�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)
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+ cos
(
�

√
|Q22(t)|2 + (T R1(t) + T R2(t))2

) ]
(75)

U2,1(t) = − i

2
e−i�Q11(t)

[
(T R1(t) − T R2(t)) sin

(
�

√|Q22(t)|2 + (T R1(t) − T R2(t))2
)

√|Q22(t)|2 + (T R1(t) − T R2(t))2

−
(T R1(t) + T R2(t)) sin

(
�

√|Q22(t)|2 + (T R1(t) + T R2(t))2
) ]

√|Q22(t)|2 + (T R1(t) + T R2(t))2
(76)

U2,2(t) = 1

2
e−i�Q11(t)

[
i Q22(t)

[ sin
(
�

√|Q22(t)|2 + (T R1(t) − T R2(t))2
)

√|Q22(t)|2 + (T R1(t) − T R2(t))2
+

sin
(
�

√|Q22(t)|2 + (T R1(t) + T R2(t))2
)

√|Q22(t)|2 + (T R1(t) + T R2(t))2

]
+

+ cos
(
�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

+ cos
(
�

√
|Q22(t)|2 + (T R1(t) + T R2(t))2

) ]
(77)

U2,3(t) = e−i�Q11(t)
[−Q22(t) sin

(
�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

2
√

|Q22(t)|2 + (T R1(t) − T R2(t))2
+

+
Q22(t) sin

(
�

√
|Q22(t)|2 + (T R1(t) + T R2(t))2

)

2
√

|Q22(t)|2 + (T R1(t) + T R2(t))2
+

+
i cos

(
�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)
− i cos

(
�

√
|Q22(t)|2 + (T R1(t) + T R2(t))2

)

2

]
(78)

U2,4(t) = −
ie−i�Q11(t)

[
(T R1(t) − T R2(t)) sin

(
�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

2
√

|Q22(t)|2 + (T R1(t) − T R2(t))2
+

+
(T R1(t) + T R2(t)) sin

(
�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

) ]

2
√

|Q22(t)|2 + (T R1(t) + T R2(t))2
(79)

U3,1(t) = −ie−i�Q11(t)

[
(T R1(t) − T R2(t)) sin

(
�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

2
√

|Q22(t)|2 + (T R1(t) − T R2(t))2
+

+
(T R1(t) + T R2(t)) sin

(
�

√
|Q22(t)|2 + (T R1(t) + T R2(t))2

) ]

2
√

|Q22(t)|2 + (T R1(t) + T R2(t))2
(80)
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U3,2(t) = e−i�Q11(t)
[−Q22(t) sin

(
�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

2
√

|Q22(t)|2 + (T R1(t) − T R2(t))2
+

Q22(t) sin
(
�

√
|Q22(t)|2 + (T R1(t) + T R2(t))2

)

2
√

|Q22(t)|2 + (T R1(t) + T R2(t))2
+

+
i cos

(
�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)
− i cos

(
�

√
|Q22(t)|2 + (T R1(t) + T R2(t))2

) ]

2
(81)

U3,3(t) = 1

2
e−i�Q11(t)

[
i Q22(t)

[ sin
(
�

√|Q22(t)|2 + (T R1(t) − T R2(t))2
)

√|Q22(t)|2 + (T R1(t) − T R2(t))2

+
sin
(
�

√|Q22(t)|2 + (T R1(t) + T R2(t))2
)

√|Q22(t)|2 + (T R1(t) + T R2(t))2

]
+

+ cos
(
�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

+ cos
(
�

√
|Q22(t)|2 + (T R1(t) + T R2(t))2

) ]
(82)

U3,4(t) = (sin(�Q11(t))

+ i cos(�Q11(t)))

[
(T R1(t) − T R2(t)) sin

(
�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

2
√

|Q22(t)|2 + (T R1(t) − T R2(t))2
+

−
(T R1(t) + T R2(t)) sin

(
�

√
|Q22(t)|2 + (T R1(t) + T R2(t))2

) ]

2
√

|Q22(t)|2 + (T R1(t) + T R2(t))2
(83)

U4,1(t) = 1

2
e−i�Q11(t)

[
i Q22(t)

[ sin
(
�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

−
sin
(
�

√
|Q22(t)|2 + (T R1(t) + T R2(t))2

)

√
|Q22(t)|2 + (T R1(t) + T R2(t))2

]
+

− cos

(
�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

+ cos

(
�

√
|Q22(t)|2 + (T R1(t) + T R2(t))2

)]
(84)

U4,2(t) = −
ie−i�Q11(t)

[
(T R1(t) − T R2(t)) sin

(
�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

2
√

|Q22(t)|2 + (T R1(t) − T R2(t))2
+

+
(T R1(t) + T R2(t)) sin

(
�

√
|Q22(t)|2 + (T R1(t) + T R2(t))2

) ]

2
√

|Q22(t)|2 + (T R1(t) + T R2(t))2
(85)
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U4,3(t) = ie−i�Q11(t)
[ (T R1(t) − T R2(t)) sin

(
�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

2
√

|Q22(t)|2 + (T R1(t) − T R2(t))2
+

−
(T R1(t) + T R2(t)) sin

(
�

√
|Q22(t)|2 + (T R1(t) + T R2(t))2

)

2
√

|Q22(t)|2 + (T R1(t) + T R2(t))2

]
(86)

U4,4(t) = 1

2
e−i�Q11(t)

[
− i Q22(t)

[ sin
(
�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

+

sin
(
�

√
|Q22(t)|2 + (T R1(t) + T R2(t))2

)

√
|Q22(t)|2 + (T R1(t) + T R2(t))2

]
+

+ cos

(
�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

+ cos

(
�

√
|Q22(t)|2 + (T R1(t) + T R2(t))2

)]
(87)

We set the quantum state to be |ψ, t0〉 = |E1〉 at time t0 so it is maximally entan-

gled and its densitymatrix isρ(t0) = |ψ, t0〉 〈ψ, t0| = |E1〉 〈E1| = 1
2

⎛

⎜⎜⎝

+1 0 0 −1
0 0 0 0
0 0 0 0

−1 0 0 1

⎞

⎟⎟⎠.

Finally we obtain the following density matrix

ρ1,1(t) =
(T R1(t) − T R2(t))2 cos

(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)
+ 2|Q22(t)|2 + (T R1(t) − T R2(t))2

4
(|Q22(t)|2 + (T R1(t) − T R2(t))2

)

(88)

ρ1,2(t) =
(T R1(t) − T R2(t))

[
− i
√

|Q22(t)|2 + (T R1(t) − T R2(t))2 sin
(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

4
(|Q22(t)|2 + (T R1(t) − T R2(t))2

) +

+
Q22(t) cos

(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)
− Q22(t)

]

4
(|Q22(t)|2 + (T R1(t) − T R2(t))2

) (89)

ρ1,3(t) = −(T R1(t) − T R2(t))

[
− i
√|Q22(t)|2 + (T R1(t) − T R2(t))2 sin

(
2�

√|Q22(t)|2 + (T R1(t) − T R2(t))2
)

4
(|Q22(t)|2 + (T R1(t) − T R2(t))2

) +



Analytical Solutions for N -Electron Interacting System … 111

+
Q22(t) cos

(
2�

√|Q22(t)|2 + (T R1(t) − T R2(t))2
)

− Q22(t)

]

4
(|Q22(t)|2 + (T R1(t) − T R2(t))2

) (90)

ρ1,4(t) = −
(T R1(t) − T R2(t))2 cos

(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)
+ 2|Q22(t)|2 + (T R1(t) − T R2(t))2

4
(|Q22(t)|2 + (T R1(t) − T R2(t))2

)

(91)

ρ2,1(t) =
(T R1(t) − T R2(t))

(
i
√

|Q22(t)|2 + (T R1(t) − T R2(t))2 sin
(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

4
(|Q22(t)|2 + (T R1(t) − T R2(t))2

) +

+
Q22(t) cos

(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)
− Q22(t)

]

4
(|Q22(t)|2 + (T R1(t) − T R2(t))2

) (92)

ρ2,2(t) =
(T R1(t) − T R2(t))2 sin2

(
�

√|Q22(t)|2 + (T R1(t) − T R2(t))2
)

2
(|Q22(t)|2 + (T R1(t) − T R2(t))2

)

(93)

ρ2,3(t) = −
(T R1(t) − T R2(t))2 sin2

(
�

√|Q22(t)|2 + (T R1(t) − T R2(t))2
)

2
(|Q22(t)|2 + (T R1(t) − T R2(t))2

)

(94)

ρ2,4(t) = −
(T R1(t) − T R2(t))

[
i
√

|Q22(t)|2 + (T R1(t) − T R2(t))2 sin
(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

4
(|Q22(t)|2 + (T R1(t) − T R2(t))2

) +

+
Q22(t) cos

(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)
− Q22(t)

]

4
(|Q22(t)|2 + (T R1(t) − T R2(t))2

) (95)

ρ3,1(t) = −(T R1(t) − T R2(t))

[
i
√

|Q22(t)|2 + (T R1(t) − T R2(t))2 sin
(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

4
(|Q22(t)|2 + (T R1(t) − T R2(t))2

) +

+
Q22(t) cos

(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)
− Q22(t)

]

4
(|Q22(t)|2 + (T R1(t) − T R2(t))2

) (96)
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ρ3,2(t) = −
(T R1(t) − T R2(t))2 sin2

(
�

√|Q22(t)|2 + (T R1(t) − T R2(t))2
)

2
(|Q22(t)|2 + (T R1(t) − T R2(t))2

)

(97)

ρ3,3(t) =
(T R1(t) − T R2(t))2 sin2

(
�

√|Q22(t)|2 + (T R1(t) − T R2(t))2
)

2
(|Q22(t)|2 + (T R1(t) − T R2(t))2

)

(98)

ρ3,4(t) =
(T R1(t) − T R2(t))

(
i
√

|Q22(t)|2 + (T R1(t) − T R2(t))2 sin
(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

4
(|Q22(t)|2 + (T R1(t) − T R2(t))2

) +

Q22(t) cos
(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)
− Q22(t)

]

4
(|Q22(t)|2 + (T R1(t) − T R2(t))2

)

(99)

ρ4,1(t) = −
(T R1(t) − T R2(t))2 cos

(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)
+ 2|Q22(t)|2 + (T R1(t) − T R2(t))2

4
(|Q22(t)|2 + (T R1(t) − T R2(t))2

)

(100)

ρ4,2(t) = −(T R1(t) − T R2(t))

[
− i
√|Q22(t)|2 + (T R1(t) − T R2(t))2 sin

(
2�

√|Q22(t)|2 + (T R1(t) − T R2(t))2
)

4
(|Q22(t)|2 + (T R1(t) − T R2(t))2

) +

+
Q22(t) cos

(
2�

√|Q22(t)|2 + (T R1(t) − T R2(t))2
)

− Q22(t)

]

4
(|Q22(t)|2 + (T R1(t) − T R2(t))2

) (101)

ρ4,3(t) = (T R1(t) − T R2(t))

[
− i
√

|Q22(t)|2 + (T R1(t) − T R2(t))2 sin
(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

4
(|Q22(t)|2 + (T R1(t) − T R2(t))2

) +

Q22(t) cos
(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)
− Q22(t)

]

4
(|Q22(t)|2 + (T R1(t) − T R2(t))2

) (102)

ρ4,4(t) =
(T R1(t) − T R2(t))2 cos

(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)
+ 2|Q22(t)|2 + (T R1(t) − T R2(t))2

4
(|Q22(t)|2 + (T R1(t) − T R2(t))2

)

(103)
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It turns out that ρn(t) = ρ(t) so one deals with a pure quantum state. Now we are
obtaining reduced matrices describing the state of particle B from 2 particle density
matrix.

ρB (t) =
(

ρ11(t) + ρ22(t) ρ13(t) + ρ24(t)
ρ31(t) + ρ42(t) ρ33(t) + ρ44(t)

)
=

⎛

⎜⎝
1
2

Q22 (t)(T R1(t)−T R2(t)) sin2
(
�

√
|Q22 (t)|2+(T R1(t)−T R2(t))2

)

|Q22 (t)|2+(T R1(t)−T R2(t))2

Q22 (t)(T R1(t)−T R2(t)) sin2
(
�

√
|Q22 (t)|2+(T R1(t)−T R2(t))2

)

|Q22 (t)|2+(T R1(t)−T R2(t))2
1
2

⎞

⎟⎠ . (104)

Consequently we can compute entanglement entropy. At first we evaluate

Log(ρB(t)) =
(
a b
c d

)
, (105)

a = 1

2

[
log

[
Q22(t)(T R1(t) − T R2(t)) cos

(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)
+

+|Q22(t)|2 + Q22(t)(T R2(t) − T R1(t)) + (T R1(t) − T R2(t))2
]

−2 log

[
|Q22(t)|2 + (T R1(t) − T R2(t))2

]

+ log

[[
Q22(t)(T R2(t) − T R1(t)) cos

(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)
+

|Q22(t)|2 + Q22(t)(T R1(t) − T R2(t)) + (T R1(t) − T R2(t))2
]

− log(4)

]

b = − tanh−1

(
Q22(t)(T R1(t)−T R2(t))

(
cos
(
2�

√
|Q22(t)|2+(T R1(t)−T R2(t))2

)
−1
)

|Q22(t)|2+(T R1(t)−T R2(t))2

)
= c

d = 1

2

[
log

[
Q22(t)(T R1(t) − T R2(t)) cos

(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)
+

|Q22(t)|2 + Q22(t)(T R2(t) − T R1(t)) + (T R1(t) − T R2(t))2
]

−2 log

[
|Q22(t)|2 + (T R1(t) − T R2(t))2

]]

+ log

[
Q22(t)(T R2(t) − T R1(t)) cos

(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)
+

|Q22(t)|2 + Q22(t)(T R1(t) − T R2(t)) + (T R1(t) − T R2(t))2
]

− log(4)

]
(106)

and we obtain the formula when we start from T R1(t0) = T R2(t0) as

SB (t) = Tr [ρB (t)Log[ρB (t)]] =

= Tr

[
⎛

⎜⎝
1
2

Q22(t)(T R1(t)−T R2(t)) sin2
(
�

√
|Q22(t)|2+(T R1(t)−T R2(t))2

)

|Q22(t)|2+(T R1(t)−T R2(t))2

Q22(t)(T R1(t)−T R2(t)) sin2
(
�

√
|Q22(t)|2+(T R1(t)−T R2(t))2

)

|Q22(t)|2+(T R1(t)−T R2(t))2
1
2

⎞

⎟⎠×
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Log

[
⎛

⎜⎝
1
2

Q22(t)(T R1(t)−T R2(t)) sin2
(
�

√
|Q22(t)|2+(T R1(t)−T R2(t))2

)

|Q22(t)|2+(T R1(t)−T R2(t))2

Q22(t)(T R1(t)−T R2(t)) sin2
(
�

√
|Q22(t)|2+(T R1(t)−T R2(t))2

)

|Q22(t)|2+(T R1(t)−T R2(t))2
1
2

⎞

⎟⎠
]]

=

= − log(4)
1

2
+ 1

2

[
log

[
Q22(t)(T R1(t) − T R2(t)) cos

(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)
+

+|Q22(t)|2 + Q22(t)(T R2(t) − T R1(t)) + (T R1(t) − T R2(t))2
]

+

+ log

[
Q22(t)(T R2(t) − T R1(t)) cos

(
2�

√
|Q22(t)|2 + (T R1(t) − T R2(t))2

)

+|Q22(t)|2 + Q22(t)(T R1(t) − T R2(t)) + (T R1(t) − T R2(t))2
]

−2 log

[
|Q22(t)|2 + (T R1(t) − T R2(t))2

]

+
4Q22(t)(T R2(t) − T R1(t)) sin2

(
�

√|Q22(t)|2 + (T R1(t) − T R2(t))2
)

|Q22(t)|2 + (T R1(t) − T R2(t))2
×

× tanh−1

⎛

⎝
Q22(t)(T R1(t) − T R2(t))

(
cos

(
2�

√|Q22(t)|2 + (T R1(t) − T R2(t))2
)

− 1
)

|Q22(t)|2 + (T R1(t) − T R2(t))2

⎞

⎠
]

(107)

The results obtained allows for monitoring of entanglement entropy with time
(Fig. 8).

Fig. 8 Entanglement entropy with time for 2 interacting particles for different functions of hopping
constant with time
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8 Case of 2 Coupled Single Electron Lines

We follow the reasoning described in [3]. At first, we consider a physical system
of an electron confined in a potential with two minima (position-dependent qubit
with presence of electron at node 1 and 2) or three minima (position dependent qubit
with presence of electron at nodes 1, 2 and 3), as depicted in Fig. 9a, which was also
considered by Fujisawa [1] and Petta [2] and which forms a position-dependent qubit
(or qudit). We can write the Hamiltonian in the second quantization as

Ĥ =
∑

i, j

ti→ j â
†
i â j +

∑

i

E p(i)â
†
i âi +

∑

i, j,k,l

â†i â
†
j âi â j Vi, j , (108)

where â†i is a fermionic creator operator at i-th point in the space lattice and â j is
fermionic annihilator operator at j-th point of the lattice. The hopping term ti→ j

describes hopping from i-th to j-th lattice point and is a measure of kinetic energy.
The potential Vi, j represents particle-particle interaction and term Ep(i) incorporates
potential energy. In this approach we neglect the presence of a spin. It is convenient
to write a system Hamiltonian of position based qubit in spectral form as

Ĥ(t) = Ep1(t) |1, 0〉 〈1, 0| + Ep2(t) |0, 1〉 〈0, 1| +
t1→2(t) |0, 1〉 〈1, 0| + t2→1(t) |1, 0〉 〈0, 1| =

= 1

2
(σ̂0 + σ̂3)Ep1(t) + 1

2
(σ̂0 − σ̂3)Ep2(t) +

1

2
(σ̂1 − i σ̂2)t2→1(t) + 1

2
(i σ̂2 − σ̂1)t1→2(t) (109)

where Pauli matrices are σ̂0, . . . , σ̂3 while system quantum state is given as |ψ(t)〉 =
α(t) |1, 0〉 + β(t) |0, 1〉 with |α|2 + |β|2 = 1 and is expressed in Wannier function
eigenbases |1, 0〉 = wL(x) and |0, 1〉 = wR(x) which underlines the presence of
electron on the left/right side as equivalent to picture from Schrödinger equation [4].
We obtain two energy eigenstates

∣∣E1(2)
〉 =

(
(Ep2−Ep1)±

√
4t1→2t2→1+|Ep1−Ep2|2
2t1→2

1

)
=

(Ep2 − Ep1) ±√
4t1→2t2→1 + |Ep1 − Ep2|2
2t1→2

|1, 0〉 + |0, 1〉 .

and energy eigenvalues

E1(2) = 1

2
(Ep1 + Ep2 ±

√
4t1→2t2→1 + |Ep1 − Ep2|2) =
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SINGLE ELECRON LINE (SEL) AS POSITION BASED QUDIT

a V0(t) V1(t) V2(t) V3(t)
[1] [2] [3]

V(x) of SEL

x

[1] [2] [3]

V0(t) V1(t) V2(t) V3(t)[1] [2] [3]

V0'(t) V1'(t) V2'(t) V3'(t)
[1'] [2'] [3']

b

U Line

L Line

2 SINGLE ELECTRON LINES (2SELs) COUPLING CAPACITIVELY

V0(t) V1(t) V2(t) V3(t)

[1] [2] [3]

Iin1(t) Iout1(t)
[1] [2] [3]

V0'(t) V1'(t) V2'(t) V3'(t)

[1'] [2'] [3']

Iin2(t) Iout2(t)
[1'] [2'] [3']

c

d

2 CLASSICAL LINES COUPLING CAPACITIVELY

[1] [2] [3]

[1'] [2'] [3']

R13 L13 R23 L23

R1'3' L1'3' R2'3' L2'3'

C11' C33'

U Line

L Line

2 SINGLE ELECTRON LINES IMPLEMENT IN CMOS TECHNOLOGY

Fig. 9 Nanometer CMOS structure [4], effective potential and circuit representation of: a electro-
static position-dependent qubit [4] (the quantum dot dimensions are 80×80nm2 in 22FDX FDSOI
CMOS technology); b, c two electrostatic position-dependent qubits representing two inductively
interacting lines (upper “U” and lower “L” quantum systems) in minimalistic way (more rigorously
they shall be named asMOS transistor single-electron lines). Presented systems are subjected to the
external voltage biasing that controls the local potential landscape in which electrons are confined.
Classical limit is expressed by circuit D
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1

2
(Ep1 + Ep2 ± 2|t1→2|

√

1 + | Ep1 − Ep2

2t1→2t2→1
|2) ≈

1

2
(Ep1 + Ep2 ± 2|t1→2|(1 + 1

2
| Ep1 − Ep2

2t1→2t2→1
|2)) ≈

1

2
(Ep1 + Ep2) ± |t1→2|. (110)

The last approximation is obtained in the limit of t1→2 � Ep1, Ep2 (classical limit
when system energy becomes big and |t | has the interpretation of kinetic energy)
what is the case depicted in the middle Fig. 3 when |t | → +∞. Since Schroedinger
formalismcanbe also applied to the position based qubit that has discrete eigenenergy
spectra, one expects that value Ep and ts takes discrete values. It is even more
pronounced when one is using formula being prescription for Ep and ts parameters
as

Ep(i) =
∫ +∞

−∞
dxψ∗

i (x)Ĥ0ψi (x), (111)

where ψ(x)i is wavefunction of electron localized at i-th node (i-th quantum well)
and Ĥ is effective Hamiltonian. In similar fashion we can define hopping constant
from node i-th to node j-th as energy participating in energy transport from one
quantum well into the neighbouring quantum well so we define

ts,i→ j =
∫ +∞

−∞
dxψ∗

i (x)Ĥ0ψ j (x), (112)

Another interesting fact is the transition from Schroedinger picture to the tight-
bindingpicture that canbedoneby |ψ〉 = ∫∞

−∞ ψ(x)dx |x〉 ≈ ∑k=+∞
k=−∞ �xψ(k) |k�x〉,

where �x is the distance between nodes. Having momentum operator defined as
�

�x
√−1

(− |k + 1〉 〈k| + |k〉 〈k + 1|) = �

�x
√−1

d
dx k

. We obtain the second derivative

by Euler formula ( d2

dx2 )k = 1
(�x)2 (|k + 1〉 〈k| + |k〉 〈k + 1| − 2 |k〉 〈k|). Now we can

recover the Schroedinger equation and we observe that ts,i→i+1 = �
2

2m�x w, where
w is positive and integer. Therefore ts,i→i+1 has the positive discrete values. We
also observe that the potential in the Schroedinger equation can be connected with
Ep(i) − 2ts,i→i+1 = Vp(i) at i-th node. Since kinetic energy is discrete and potential
energy in Schroedigner equation is continuous one obtains discrete Ep. The eigen-
state depends in the tight binding model depends on an external vector potential
source acting on the qubit by means of t1→2 = |t1→2|eiα = t∗2→1. Since every energy
eigenstate is spanned by |0, 1〉 and |1, 0〉, we will obtain oscillations of occupancy
between two wells [3–5]. It is worth-mentioning that the act of measurement will
affect the qubit quantum state. Since we are dealing with a position-based qubit,
we can make measurement of the electron position with the use an external single-
electron device (SED) in close proximity to the qubit. This will require the use of
projection operators that represent eigenenergy measurement as

∣∣E0(1)
〉 〈
E0(1)

∣∣ or, for
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example, measurement of the electron position at left side so we use the projector
|1, 0〉 〈0, 1|. We can extend the model for the case of three (and more) coupled wells.
In such a case, we obtain the system Hamiltonian for a position based qubit:

Ĥ =
∑

s

E ps |s〉 〈s| +
∑

l,s,s �=l

ts→l |l〉 〈s| , (113)

where |1〉 = |1, 0, 0〉 , |2〉 = |0, 1, 0〉 , |3〉 = |0, 0, 1〉 and its Hamiltonian matrix

H(t) =
⎛

⎝
Ep1(t) t2→1(t) t3→1(t)
t1→2(t) Ep2(t) t3→2(t)
t1→3(t) t2→3(t) Ep3(t)

⎞

⎠ (114)

and quantum state |ψ〉 (with a normalization condition |α|2 + |β|2 + |γ |2 = 1) is
given as

|ψ〉 =
⎛

⎝
α(t)
β(t)
γ (t)

⎞

⎠ = α(t) |1, 0, 0〉 + β(t) |0, 1, 0〉 + γ (t) |0, 0, 1〉 .

(115)

Coefficients α(t), β(t) and γ (t) describe oscillations of occupancy of one electron
at wells 1, 2 and 3. The problem of qubit equations of motion can be formulated
by having |ψ〉 = c1(0)e− i

�
t E1 |E1〉 + c2(0)e− i

�
t E2 |E2〉 + c3(0)e− i

�
t E3 |E3〉, where

|c1(0)|2,|c2(0)|2 and |c3(0)|2 are probabilities of occupancy of E1, E2 and E3 ener-
getic levels. Energy levels are roots of 3rd order polynomial

(−Ep1Ep2Ep3 + Ep3t
2
12 + Ep1t

2
23 + Ep2t

2
13 − 2ts12ts13ts23)

+(Ep1Ep2 + Ep1Ep3 + Ep2Ep3 − t212 − t223 − t213)E

−(Ep1 + Ep2 + Ep3)E
2 + E3 = 0,

where |E1〉 , |E2〉 , |E3〉 are 3-dimensional Hamiltonian eigenvectors.
By introducing two electrostatically interacting qudits, we are dealing with the

Hamiltonian of the upper and lower lines as well as with their Coulomb electrostatic
interactions.Weare obtaining theHamiltonian in spectral representation acting on the
product of Hilbert spaces in the form of Ĥ = ĤU × IL + IU × ĤL + ĤU−L where
Hu and Hl are Hamiltonians of separated upper and lower qudits, Hl−u is a two-line
Coulomb interaction and Iu(l) = |1, 0, 0〉u(l) 〈1, 0, 0|u(l) + |0, 1, 0〉u(l) 〈0, 1, 0|u(l) +
|0, 0, 1〉u(l) 〈0, 0, 1|u(l). The electrostatic interaction is encoded in Ec(1, 1′) = Ec(2,

2′) = Ec(3, 3′) = e2

4πε0εd
= q1 (red capacitors of Fig. 1) and q2 = Ec(2, 1′) = Ec(2,

3′) = Ec(1, 2′) = Ec(3, 2′) = e2

4πε0ε
√

d2+(a+b)2
and electrostatic energy of green

capacitors of Fig. 1. is
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Ec(1, 3
′) = Ec(3, 1

′) = q2 = e2

4πε0ε
√
d2 + 4(a + b)2

, (116)

where a, b and d are geometric parameters of the system, e is electron charge and ε is
a relative dielectric constant of the material; ε0 corresponds to the dielectric constant
of vacuum. The very last Hamiltonian corresponds to the following quantum state
|ψ(t)〉 (|γ1(t)|2 + . . . |γ9(t)|2 = 1) given as

|ψ(t)〉 = γ1(t) |1, 0, 0〉u |1, 0, 0〉l + γ2(t) |1, 0, 0〉u |0, 1, 0〉l
+γ3(t) |1, 0, 0〉u |0, 0, 1〉l + γ4(t) |0, 1, 0〉u |1, 0, 0〉l
+γ5(t) |0, 1, 0〉u |0, 1, 0〉l + γ6(t) |0, 1, 0〉u |0, 0, 1〉l
+γ7(t) |0, 0, 1〉u |0, 0, 1〉l + γ8(t) |0, 0, 1〉u |0, 1, 0〉l

+γ9(t) |0, 0, 1〉u |0, 0, 1〉l ,
(117)

where |γ1(t)|2 is the probability of finding two electrons at nodes 1 and 1’ at time
t (since γ1 spans |1, 0, 0〉u |1, 0, 0〉l ), etc. The Hamiltonian has nine eigenenergy
solutions that are parametrized by geometric factors and hopping constants tk,m as
well as energies Ep(k) for the case of ‘u’ or ‘l’ system. Formally, we can treat
Ep(k) = tk→k ≡ tk,k ≡ tk ∈ R as a hopping from k-th lattice point to the same lattice
point k. We obtain the following Hamiltonian

Ĥ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ1,1′ t1′→2′ t1′→3′ t1→2 0 0 t1→3 0 0
t2′→1′ ξ1,2′ t2′→3′ 0 t1→2 0 0 t1→3 0
t3′→1′ t3′→2′ ξ1,3′ 0 0 t1→2 0 0 t1→3

t2→1 0 0 ξ2,1′ t1′→2′ t1′→3′ t2→3 0 0
0 t2→1 0 t2′→1′ ξ2,2′ t2′→3′ 0 t2→3 0
0 0 t2→1 t3′→1′ t3′→2′ ξ2,3′ 0 0 t2→3

t3→1 0 0 t3→2 0 0 ξ3,1′ t1′→2′ t1′→3′

0 t3→1 0 0 t3→2 0 t2′→1′ ξ3,2′ t2′→3′

0 0 t3→1 0 0 t3→2 t3′→1′ t3′→2′ ξ3,3′

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛

⎝
H(1)1′,3′ H1,2 H1,3

H(1)2,1 H(2)1′,3′ H2,3

H3,1 H3,2 H(3)1,3′

⎞

⎠ (118)

with diagonal elements ([ξ1,1′ , ξ1,2′ , ξ1,3′ ] , [ξ2,1′ , ξ2,2′ , ξ2,3′ ], [ξ3,1′ , ξ3,2′ , ξ3,3′ ]) set to
([(Ep1 + Ep1′ + Ec(1, 1′)), (Ep1 + Ep2′ + Ec(1, 2′)) , (Ep1 + Ep3′ + Ec(1, 3′))],
[((Ep1 + Ep1′ + Ec(1, 1′)), (Ep2 + Ep2′ + Ec(2, 2′)) , (Ep2 + Ep3′ + Ec(2, 3′))],
[((Ep3 + Ep1′ + Ec(3, 1′), (Ep3 + Ep2′ + Ec(3, 2′)), (Ep3 + Ep3′ + Ec(3, 3′))]). In
the absence of magnetic field, we have tk→m = tm→k = tk,l = tm,k ∈ R and in the
case of nonzero magnetic field tk,m = t∗m,k ∈ C. It is straightforward to determine
the matrix of two lines with N wells [=3 in this work] each following the math-



120 K. Pomorski

ematical structure of two interacting lines with three wells in each line. Matrices
H1,2, H2,3, H1,3 are diagonal of size N × N with all the same terms on the diago-
nal. At the same time, matrices H(1)1′,N ′ ,…,H(N )1′,N ′ have only different diagonal
terms corresponding to ((ξ1,N ′ , . . . , ξ1,N ′), …, ((ξN ,N ′ , . . . , ξN ,N ′) elements. In sim-
plified considerations we can set t1→N = tN→1 and t1′→N ′ = tN ′→1′ to zero since a
probability for the wavefunction transfer from 1st to N -th lattice point is generally
proportional to≈ exp(−sN ),where s is some constant. It shall be underlined that in
the most general case of two capacitvely coupled symmetric SELs with three wells
each (being parallel to each other), we have six (all different Ep(k) and Ep(l ′)) plus
six (all different tk→s , tk ′→s ′ ) plus three geometric parameters (d, a and b) as well as
a dielectric constant hidden in the effective charge of interacting electrons q. There-
fore, the model Hamiltonian has 12+4 real-valued parameters (4 depends on the
material and geometry of 2 SELs). They can be extracted from a particular transis-
tor implementation of two SELs (Fig. 9c). There are two main physically important
regimes when t � Ep and when t � Ep. They correspond to the case of electron
tunneling from one quantumwell into another (electron is not in highly excited state)
and the case when electron wavepacket can move freely between neighbouring wells
(electron is in highly excited state).

9 Analytical and Numerical Modeling of Capacitively
Coupled SELs

9.1 Analytical Results

The greatest simplification of matrix (8) is when we set all tk ′→m ′ = to→m = |t |,
and all Ep(k) = Ep(m ′) = Ep for N = 3. Let us first consider the case of two
insulating lines (allwells on each line are completely decoupled so there is no electron
tunneling between the barriers and the barrier energies are high) where there are
trapped electrons so |t | = 0 (electrons are confined in quantum wells and cannot
move towards neighbouring wells). In such a case, we deal with a diagonal matrix
that has three different eigenvalues on its diagonal and has three different eigenenergy
values

Ê =

⎧
⎪⎪⎨

⎪⎪⎩

E1 = q1 = Ep + e2

4πεε0d
,

E2 = q2 = Ep + e2

4πεε0

√
|d|2+(a+b)2

,

E3 = q3 = Ep + e2

4πεε0

√
|d|2+4(a+b)2

,

(119)

so E3 < E2 < E1. In the limit of infinite distance between SELs, we have nine
degenerate eigenenergies. They are set to Epk which corresponds to six decoupled
quantum systems (the first electron is delocalized into three upper wells, while the
second electron is delocalized into three lowers wells).
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Let us also consider the case of ideal metal where electrons are completely delo-
calized. In such a case, all tk(k ′) � Epl(s) which brings Hamiltonian diagonal terms to
be negligible in comparison with other terms. In such a case, we can set all diagonal
terms to be zero which is an equivalent to the case of infinitely spaced SELs lines. It
simply means that in the case of ideal metals, two lines are not ‘seeing’ each other.

Let us now turn to the case where processes associated with hopping between
wells have similar values of energy to the energies denoted as Epk(l ′). In such a case,
the Hamiltonian matrix can be parametrized only by three real value numbers due to
symmetries depicted in Fig. 9b (we divide the matrix by a constant number |t |) so

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q11 = 2Ep+ e2

d
|t | ,

q12 = 2Ep+ e2√
d2+(a+b)2

|t | ,

q13 = 2Ep+ e2√
d2+4(a+b)2

|t | .

For a fixed |t |, we change the distance d and observe that q11 can be arbitrary large,
while q12 and q13 have finite values for d = 0. Going into the limit of infinite distance
d, we observe that all q11 , q12 and q13 approach a finite value 2Ep

|t | . We obtain the
simplifiedHamiltonianmatrix that is aHermitian conjugate andhas a property Hk,k =
HN−k+1,N−k+1. It is in the form

Ĥ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q11 1 0 1 0 0 0 0 0
1 q12 1 0 1 0 0 0 0
0 1 q13 0 0 1 0 0 0
1 0 0 q12 1 0 1 0 0
0 1 0 1 q11 1 0 1 0
0 0 1 0 1 q12 0 0 1
0 0 0 1 0 0 q13 1 0
0 0 0 0 1 0 1 q12 1
0 0 0 0 0 1 0 1 q11

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(120)

We can analytically find nine energy eigenvalues and they correspond to the
entangled states. We have

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E1 = q11 ,
E2 = q12 ,
E3 = 1

2 (q11 + q12 −√
8 + (q11 − q12)2),

E4 = 1
2 (q11 + q12 +√

8 + (q11 − q12)2),
E5 = 1

2 (q12 − q13 −√
8 + (q12 − q13)2),

E6 = 1
2 (q12 − q13 +√

8 + (q12 − q13)2).

(121)

The last 3 energy eigenvalues are the most involving analytically and are the roots
of a 3rd order polynomial
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(2q11 + 6q13 − q11q12q13) + (−8 + q11q12 +
q11q13 + q12q13)Ek − (q11 + q12 + q13)E

2
k + E3

k = 0.

(122)

We omit writing direct and very lengthy formulas since the solutions of a 3rd-order
polynomial are commonly known. The eigenvectors have the structure given in
Appendix 1.

We can readily recognize that all nine energy eigenvectors are entangled. In partic-
ular first two eigenenergy states (given also in Formula 187) are linear combination
of position dependent states,

|E1〉 = |1, 0, 0〉U |1, 0, 0〉L − |0, 1, 0〉U |0, 1, 0〉L +
|0, 0, 1〉U |0, 0, 1〉L ,

|E2〉 = |1, 0, 0〉U |0, 1, 0〉L − |0, 1, 0〉U |1, 0, 0〉L
− |0, 1, 0〉U |0, 0, 1〉L + |0, 0, 1〉U |0, 1, 0〉L , (123)

so they have no equivalence in the classical picture of two charged balls in channels
that are repelling each other.

9.2 Numerical Results for Case of Capacitively Coupled SETs

At first, we are analyzing available spectrum of eigenenergies as in the case of
insulator-to-metal phase transition [6], which can be implemented in a tight-binding
model by a systematic increase of the hopping term from small to large values,
while at the same time keeping all other parameters constant, as depicted in Fig. 11.
Described tight-bindingmodel canminimic ametal (t =1), semiconductor (t =0.1) or
insulator state (t = 0.01), as given in Fig. 10.We can recognized 2-SELs eigenenergy
spectra dependence on distance between the two lines. Characteristic narrowing of
bands is observed when one moves from large towards small distance d between
SELs (what can be related to the ratio of W/U in the Hubbard model) and it is
one of the signs of transition from metallic to insulator regime (Mott-insulator phase
transition [6]). One of the plots referring to t = 0.01 describes Anderson localization
of electrons and, in such a case, energy eigenspectra are determined by Formula (119)
and hopping terms t can be completely neglected since electrons are localized in the
quantum-well potential minima.

Bottom plots of Fig. 11. describe the ability of tunneling eigenenergy spectra
with respect to quantum well lengths (a + b), Ep and t parameters. The last two
parameters can be directly controlled by an applied voltage as earlier shown in
Fig. 9, where eight voltage signals are used for controlling the effective tight-binding
Hamiltonian. It is informative to notice that change of the quantum well length,
expressed by a + b, does not affect the eigenenergy of 2-SELs significantly. The
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Fig. 10 Cases of: a metal (t = 1, Ep = 1); b semiconductor (t = 0.1, Ep = 1); and c insulator
(t = 0.01, Ep = 1) state of 2-SELs given by eigenenergy spectra as function of distance d between
two lines (a = b = 1, e = 1)

observed change affects the ratio of electrostatic to kinetic energy and thus is similar
to the change in energy eigenspectra generated by different distances d. We can
spot narrowing of the bands when moving from the situation of lower to higher
electrostatic energy of interacting electron and again it is typical for metal-insulator
phase transition. Change of ratio kinetic to electrostatic energy can be obtained
by keeping quantum well size constant, constant distance between 2 SELs and by
change of hopping constant t that is the measure of electron ability in conducting
electric or heat current. Again one observes the narrowing of bands when we reduce
t so the dominant energy of electron is due to the electron-electron interaction.
The last plot of Fig. 11 describes our ability of tunneling eigenenergy spectra of
system in linear way just by change of Ep parameter. In very real way we can
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Fig. 11 Dependence of eigenenergy spectra versus a quantum well size a + b, b hopping term |t |,
and c chemical potential Ep parameter

recognize the ability of tuning the chemical potential (equivalent to Fermi energy
at temperatures T = 0K) by controlling voltages given in Fig. 9. in our artificial
lattice system. Due to controllability of energy eigenspectra by controlling voltages
from Fig. 9 one can recognize 2 SELs system as the first stage of implementation
of programmable quantum matter. In general case considered 2-SELs Hamiltonian
consists 12 different Ep parameters and 6 different t parameters that can be controlled
electrostatically (18 parameters under electrostatic control) by 2-SELS controlling
voltages V0(t), . . . , V3(t), V0′(t), . . . , V3′(t) depicted in Fig. 1.

The numerical modeling of electron transport across coupled SELs is about solv-
ing a set of nine coupled recurrent equations of motion as it is in the case of
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Fig. 12 Quantum state of two SELs over time: Upper (Lower) plots populate 3 (9) energy levels
as given by Scenario I (Scenario II). The probabilities of finding both electrons simultaneously at
the input p1(t) = |γ1(t)|2 and output p9(t) = |γ1(t)|2 is shown with time as well as evolution of
phases φ1(t), . . . , φ9(t) of γ1(t) = |γ1(t)|eφ1(t),…, γ9(t) = |γ9(t)|eφ9(t) corresponding to equation
(117)

time-dependent 2 SELs Hamiltonian. In this work we consider time-independent
Hamiltonian implying constant occupation of energetic levels. Therefore the quan-
tum state can bewritten in the form

∣∣ψ(t ′)
〉= α1e

�

i E1t ′ |E1〉 + · · · + α9e
�

i E9t ′ |E9〉, so
the probability of occupancy of energetic level E1 is |α1|2 = | 〈E1| |ψ(t)〉 |2 = pE1 =
constant, etc. Since we have obtained analytical form of all states |Ek〉 and eigenen-
ergies Ek we have analytical form of quantum state dynamics

∣∣ψ(t ′)
〉
with time.

From obtained analytical solutions presented in Appendix 1 we recognize that every
eigenenergy state is the linear combination of position-based states |k〉⊗∣∣l ′

〉
what

will imply that quantum state can never be fully localized at two nodes k and l’ as
it is pointed by analytically obtained eigenstates of the 2-SELs Hamiltonian that are
given in Appendix 1. In the conducted numerical simulations we visualize analytical

solutions. We set � = 1 and α1 = · · · = α8 = 1
9 , α9 =

√
1 − 8

81 (Scenario I that has

populated all 9 energetic levels) or α1 = α2 = 1
2 ,α9 =

√
2
2 ,α3 = · · · = α8 (Scenario

II that has populated 3 energetic levels) that will correspond to top or bottom plots of
Fig. 12. We can recognize that probability of occupancy of (1,1’) from Fig. 1. (when
two electrons are at input of 2-SELs) is given by |(〈1, 0, 0|⊗ 〈1, 0, 0|) |ψ(t)〉 |2 =
|γ1(t)|2 = p1(t) (two electrons as SELs inputs) can be compared with occupancy
of (3, 3’) given by p9(t) = |γ9(t)|2 = |(〈0, 0, 1|⊗ 〈0, 0, 1|) |ψ(t)〉 |2 (2 electrons at
SELs outputs) as depicted in Fig. 12. It is relatively easy to identify probability of
finding first electron at input as the sum of p1(t) + p2(t) + p3(t).

Various symmetries can be traced in the Scenario II (9 populated energy levels)
given by Fig. 12. as between probability p2(t) and p8(t) or in the upper part of
Fig. 12 in the Scenario I (3 populated energy levels) when p2(t) = p8(t) or φ2(t) =
phase(γ2(t)) = φ8(t). The same symmetry relations applies to the case of probability
p4(t) and p6(t) as well as φ4(γ4(t)) and φ6(γ6(t)). These symmetries has its origin
in the fact that 2 SELs system is symmetric along x axes what can be recognized in
symmetries of simplified Hamiltonian matrix 120. It shall be underlined that in the
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most general case when system matrix has no symmetries the energy eigenspectra
might have less monotonic behaviour.

9.3 Act of Measurement and Dynamics of Quantum State

The quantum system dynamics over time is expressed by the equation of motion
Ĥ(t ′)

∣∣ψ(t ′)
〉 = i� d

dt ′
∣∣ψ(t ′)

〉
that can be represented in discrete time step by relation

dt ′

i�
Ĥ(t ′)

∣∣ψ(t ′)
〉+ ∣∣ψ(t ′)

〉 = ∣∣ψ(t ′ + dt ′)
〉
. (124)

It leads to the following equations of motion for quantum state expressed by Eq.
(117) as follows

−→γ (t ′ + dt ′) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ1(t ′) + dt ′
∑9

k=1 Ĥ1,k(t ′)γk(t ′) =
f1(

−→γ (t ′), dt ′)[Ĥ(t ′)],
. . .

γ9(t ′) + dt ′
∑9

k=1 Ĥ9,k(t ′)γk(t ′) =
f9(

−→γ (t ′), dt ′)[Ĥ(t ′)]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

= −→
f (−→γ (t ′), dt ′)[Ĥ(t ′)] = −→

f (−→γ (t ′), dt ′)[Ĥ(t ′)].
(125)

Symbol [.] denotes functional dependence of −→
f (−→γ (t ′), dt ′) on Hamiltonian Ĥ(t ′).

The measurement can be represented by projection operators �̂(t ′) equivalent to
the matrix that acts on the quantum state over time. The lack of measurement can
simply mean that the state projects on itself so the projection is the identity operation
(�̂(t ′) = Î9×9). Otherwise, the quantum state is projected on its subset and hence the
projection operator can change in a non-continuous way over time. We can formally
write the quantum state dynamics with respect to time during the occurrence of
measurement process (interaction of external physical system with the considered
quantum system) as

−→γ (t ′ + dt ′) =
�̂(t ′ + dt ′)(

−→
f (−→γ (t ′), dt ′))

(�̂(t ′ + dt ′)
−→
f (−→γ (t ′), dt ′))†(�̂(t ′ + dt ′)

−→
f (−→γ (t ′), dt ′))

. (126)

Let us refer to some example by assuming that a particle in the upper SELs was
detected by the upper output detector (Fig. 9b). In such a case, the following projector
�̂(t, t + �t) is different from the identity in time interval (t, t + �t)with 11t,t+�t = 1
set to 1 in this time interval and 0 otherwise. The projector acts on the quantum state
(diagonal matrix is given by diag symbol). It is given as
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�̂(t, t + �t) = (1 − 1t,t+�t )( ÎU × ÎL) +
1t,t+�t (|0, 0, 1〉U 〈0, 0, 1|U × ÎL) =

(1 − 1t,t+�t )( ÎU × ÎL) +
1t,t+�t (|0, 0, 1〉U 〈0, 0, 1|U × (|1, 0, 0〉L 〈1, 0, 0|L +

|0, 1, 0〉L 〈0, 1, 0|L + |0, 0, 1〉L 〈0, 0, 1|L)) =
= (1 − 1t,t+�t ) Î9×9 + 1t,t+�tdiag(0, 0, 1) × Î3×3 (127)

= diag((1 − 1t,t+�t ), (1 − 1t,t+�t ), (1 − 1t,t+�t ),

(1 − 1t,t+�t ), (1 − 1t,t+�t ), (1 − 1t,t+�t ), 1, 1, 1)

10 Correlations for the Case of 2 Electrostatically
Interacting Qubits

We define correlation function as Ce(a, b) = N+,++N−,−−N+,−−N−,+
N+,++N−,−+N+,−+N−,+ , where N+,+ rep-

resents presene of 2 electrons at points 2 and 2’, N−,− represents presence of electrons
at points 1 and 1’, N+,− is corresponding to presence of electrons at point 2 and 1’
and N−,+ is corresponding to presence of electrons at point 1 and 2’. It is convenient
to introduce the operator

N+,+ + N−,− − N+,− − N−,+ = 〈ψ, t |

⎛

⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞

⎟⎟⎠ |ψ, t〉 (128)

= 〈ψ, t0|U (t, t0)
−1σ3 × σ3U (t, t0) |ψ, t0〉

Consequently we obtain

|E1〉n = 1
√(

8

(
tsr1−tsr2√

(Ec1−Ec2)2+4(tsr1−tsr2)2−Ec1+Ec2

))2

+ 2

⎛

⎜⎜⎜⎜⎝

−1,
− 2(tsr1−tsr2)√

(Ec1−Ec2)2+4(tsr1−tsr2)2−Ec1+Ec2

,

2(tsr1−tsr2)√
(Ec1−Ec2)2+4(tsr1−tsr2)2−Ec1+Ec2

1

⎞

⎟⎟⎟⎟⎠

= 1
√(

8

(
tsr1−tsr2√

(Ec1−Ec2)2+4(tsr1−tsr2)2−Ec1+Ec2

))2

+ 2

|E1〉
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|E1〉n = 1
√(

8

(
tsr1−tsr2√

(Ec1−Ec2)2+4(tsr1−tsr2)2−Ec1+Ec2

))2

+ 2

⎛

⎜⎜⎜⎜⎝

−1,
− 2(tsr1−tsr2)√

(Ec1−Ec2)2+4(tsr1−tsr2)2−Ec1+Ec2

,

2(tsr1−tsr2)√
(Ec1−Ec2)2+4(tsr1−tsr2)2−Ec1+Ec2

1

⎞

⎟⎟⎟⎟⎠

= 1
√(

8

(
tsr1−tsr2√

(Ec1−Ec2)2+4(tsr1−tsr2)2−Ec1+Ec2

))2

+ 2

|E1〉

|E2〉n = − 1
√(

8

(
tsr1−tsr2√

(Ec1−Ec2)2+4(tsr1−tsr2)2+Ec1−Ec2

))2

+ 2

⎛

⎜⎜⎜⎜⎝

−1
2(tsr1−tsr2)√

(Ec1−Ec2)2+4(tsr1−tsr2)2+Ec1−Ec2

− 2(tsr1−tsr2)√
(Ec1−Ec2)2+4(tsr1−tsr2)2+Ec1−Ec2

, 1

⎞

⎟⎟⎟⎟⎠

= − 1
√(

8

(
tsr1−tsr2√

(Ec1−Ec2)2+4(tsr1−tsr2)2+Ec1−Ec2

))2

+ 2

|E2〉

|E3〉n = 1
√(

8

(
tsr1+tsr2√

(Ec1−Ec2)2+4(tsr1+tsr2)2−Ec1+Ec2

))2

+ 2

⎛

⎜⎜⎜⎜⎝

1,
− 2(tsr1+tsr2)√

(Ec1−Ec2)2+4(tsr1+tsr2)2−Ec1+Ec2

,

− 2(tsr1+tsr2)√
(Ec1−Ec2)2+4(tsr1+tsr2)2−Ec1+Ec2

,

1

⎞

⎟⎟⎟⎟⎠

= 1
√(

8

(
tsr1+tsr2√

(Ec1−Ec2)2+4(tsr1+tsr2)2−Ec1+Ec2

))2

+ 2

|E3〉
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|E4〉n = 1
√(

8

(
tsr1+tsr2√

(Ec1−Ec2)2+4(tsr1+tsr2)2−Ec2+Ec1

))2

+ 2

⎛

⎜⎜⎜⎜⎝

1,
2(tsr1+tsr2)√

(Ec1−Ec2)2+4(tsr1+tsr2)2+Ec1−Ec2

,

2(tsr1+tsr2)√
(Ec1−Ec2)2+4(tsr1+tsr2)2+Ec1−Ec2

,

1

⎞

⎟⎟⎟⎟⎠

= 1
√(

8

(
tsr1+tsr2√

(Ec1−Ec2)2+4(tsr1+tsr2)2−Ec2+Ec1

))2

+ 2

|E4〉 .

10.1 Correlation Function for Classical and Quantum
Approaches for Single-Electron Lines

In this work, two capacitively coupled single-electron lines (SEL) are treated by the
tight-binding model with the use of three nodes for each line to describe the electron
occupancy. It should be highlighted that the most simplistic approach towards the
two SELs can be attemptedwith the use of two nodes for each line. In such a case, it is
possible to introduce a correlation function for both quantum and classical treatments
of the system under consideration. Let us start from the quantum approach. The
Hamiltonian of the system having flat bottoms of potentials can be written as

H =

⎛

⎜⎜⎝

Ec1 + 2Ep eiβ ts2 eiαts1 0
e−iβ ts2 Ec2 + 2Ep 0 eiαts1
e−iαts1 0 Ec2 + 2Ep eiβ ts2

0 e−iαts1 e−iβ ts2 Ec1 + 2Ep

⎞

⎟⎟⎠ , (129)

where Ec1 = q2

d and Ec2 = q2√
d2+a2

, so Ec1 − Ec2 = q2

d − q2√
d2+a2

> 0. The hopping
terms are parametrized by ts1 and ts2. This lastHamiltonian refers to the quantum state
describing the occupancy of four nodes at upperU = (1, 2) or lower line L = (1′, 2′)
by two spatially separated electrons

|ψ〉 = γ1(t) |1〉 ∣∣1′〉+ γ2(t) |1〉 ∣∣2′〉+ γ3(t) |2〉 ∣∣1′〉+ γ4(t) |2〉 ∣∣2′〉 . (130)

Normalization condition requires |γ1|2 + · · · + |γ4|2 = 1. We have four eigenener-
gies

E1 = 1

2
(Ec1+Ec2+4Ep−

√
(Ec1−Ec2)2 +4(ts1−ts2)2)),
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E2 = 1

2
(Ec1+Ec2+4Ep+

√
(Ec1−Ec2)2 +4(ts1−ts2)2)),

E3 = 1

2
(Ec1+Ec2+4Ep−

√
(Ec1−Ec2)2 +4(ts1+ts2)2)),

E4 = 1

2
(Ec1+Ec2+4Ep+

√
(Ec1−Ec2)2 +4(ts1+ts2)2)),

(131)

fulfilling E1 < E2, E3 < E4 as corresponding to four eigenenergy states

|E1〉 =

⎛

⎜⎜⎜⎜⎝

−ei(α+β),

− 2eiα(ts1−ts2)√
(Ec1−Ec2)2+4(ts1−ts2)2−Ec1+Ec2

,

2eiβ (ts1−ts2)√
(Ec1−Ec2)2+4(ts1−ts2)2−Ec1+Ec2

,

1

⎞

⎟⎟⎟⎟⎠
,

|E2〉 =

⎛

⎜⎜⎜⎜⎝

−ei(α+β),
2eiα(ts1−ts2)√

(Ec1−Ec2)2+4(ts1−ts2)2+Ec1−Ec2

,

− 2eiβ (ts1−ts2)√
(Ec1−Ec2)2+4(ts1−ts2)2+Ec1−Ec2

,

1

⎞

⎟⎟⎟⎟⎠
,

|E3〉 =

⎛

⎜⎜⎜⎜⎝

ei(α+β),

− 2eiα(ts1+ts2)√
(Ec1−Ec2)2+4(ts1+ts2)2−Ec2+Ec1

,

− 2eiβ (ts1+ts2)√
(Ec1−Ec2)2+4(ts1+ts2)2−Ec2+Ec1

,

1

⎞

⎟⎟⎟⎟⎠
,

|E4〉 =

⎛

⎜⎜⎜⎜⎝

ei(α+β),
2eiα(ts1+ts2)√

(Ec1−Ec2)2+4(ts1+ts2)2+Ec1−Ec2

,

2eiβ (tts1+ts2)√
(Ec1−Ec2)2+4(ts1+ts2)2+Ec1−Ec2

,

1

⎞

⎟⎟⎟⎟⎠
. (132)

with ground state

E3 = Eg = 1

2
(Ec1+Ec2+4Ep−

√
(Ec1−Ec2)2 +4(ts1+ts2)2)). (133)

We observe that in the ground state, the probability of occurrence of two particles
at the maximum distance p1,2′ = p2,1′ = panticorr to the probability of two particles
occurrence at the minimum distance p1,1′ = p2,2′ = pcorr is given by the formula:

pacorr
pcorr

==
[√

(Ec1 − Ec2)2 + 4(ts1 + ts2)2 − (Ec1 − Ec2)

2(ts1 + ts2)

]2
=
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Fig. 13 The ratio of probabilities in 2 SELs ground state between correlated and anticorrelated
quantum state components is very strongly depending on hopping constants by term ts1 + ts2 and
very strongly depends on size of quantum wells denoted by a and distance between two two neigh-
bours a

[
√
q2(
√
d2 + (a + b)2 − d)2 + 4(ts1 + ts2)2

2(ts1 + ts2)d
√
d2 + (a + b)2

− q2(
√
d2 + (a + b)2 − d)

2(ts1 + ts2)d
√
d2 + (a + b)2

]2

(134)

It is worthmentioning that ground state of 2 coupled SELs brings electrons partly into
anticorrelated position (2 electrons at maximum distance) and correlated positions (2
electrons at minimum distance) what simply means that anticorrelation is not greatly
pronounced in quantum case at it is the case of classical picture. One can refer to the
following dependence of ratio between probabilties for the state to be anticorrelated
or correlated state as depicted by Fig. 13.

The quantum state in case of time-independent Hamiltonian can be expressed as

|ψ〉=√
pE1e

φE10i e
1

�i E1t |E1〉+√
pE2e

φE20i e
1

�i E2t |E2〉+√
pE3e

φE30i e
1

�i E3t |E3〉+√
pE4e

φE40i e
1

�i E4t |E4〉 . (135)

Having Ec1 = q2

d and Ec2 = q2√
d2+a2

so Ec1 − Ec2 = q2

d − q2√
d2+a2

> 0 and hop-
ping terms ts1, ts2 we obtain Hamiltonian and a correlation function C .

We refer to the physical situation depicted in Fig. 14 and utilize the correlation
functionC to capture as towhat extent the two electrons are in a correlated state being
both either on the left or on the right side that is corresponding to terms N−,−, N+,+,
or in an anticorrelated state (expressed by terms N+,− and N−,+). Such function is
commonly used in spin systems and is a measure of non-classical correlations. Using
a tight-binding model describing two electrostatically coupled SELs and using the
same correlation function applicable in the test of Bell theory of entangled spins [7],
we obtain the correlation function C given by formula:
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Fig. 14 Case of electrostatically coupled charged particles confined by local potentials and elec-
trostatically interacting. Concept of correlation/anticorrelation in their positions

C = N+,+ + N−,− − N−,+ − N+,−
N+,+ + N−,− + N−,+ + N+,−

= 4

⎡

⎢⎢⎢⎢⎣

√
pE1

√
pE2(ts1 − ts2) cos[−t

√
(Ec1 − Ec2)2 + 4(ts1 − ts2)2 + φE10 − φE20]√

(Ec1 − Ec2)2 + 4(ts1 − ts2)2

+
√
pE3

√
pE4(ts1 + ts2) cos[−t

√
(Ec1 − Ec2)2 + 4(ts1 + ts2)2 + φE30 − φE40]√

(Ec1 − Ec2)2 + 4(ts1 + ts2)2

⎤

⎥⎥⎥⎥⎦

− (Ec1 − Ec2)

⎡

⎢⎢⎢⎣

pE1 − pE2√
(Ec1 − Ec2)2 + 4(ts1 − ts2)2

+ pE3 − pE4√
(Ec1 − Ec2)2 + 4(ts1 + ts2)2

⎤

⎥⎥⎥⎦ (136)

Classical intuition points out that when the kinetic energy of electrons goes to
zero they shall be anticorrelated due to the presence of the repulsive Coulomb force.
On the other hand, when the kinetic energy is dominant, the Coulomb interaction
does not matter so much and the correlation function shall be zero or positive. Four
fundamental solutions for the correlation function corresponding to the occupancy
of four eigenenergies are given by Fig. 15. Indeed, when only the ground state is
occupied so p1 = 1, thenC < 1, as depicted inFig. 16. It is remarkable to observe that
C = 0 if p1 = p3 = 0.5. We also observe that if the two qubits are electrostatically
decoupled then C = 0 does not need to be applied. However, for certain cases,
the weaker the Coulomb interaction the sharper the peaks in the 2-SEL correlation
function C , as depicted by Fig. 16 (Fig. 17).

Now we turn towards the classical description of the two coupled single-electron
lines using Newtonian dynamics as we expect qualitative changes in the correlation
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Fig. 15 Four main fundamental configurations named as anticorrelation and correlation for system
of coupled SEL depicted in Fig. 14. The correlation function C that are grasped by Formula (136)
corresponding to the full occupancy of one among four eigenenergies

Fig. 16 Correlation function C with time for time-independent Hamiltonian corresponding to full
and partial occupancy of 4 eigenergies of 2-SEL system

Fig. 17 Varying dependence of classical correlation function [C = x1(t)x2(t)
x2max

] over time. Upper

case refers to 2-SELs with particles of significantly different speeds at anticorrelated positions at
initial time; middle figure describes two perfectly anticorrelated particles (14); third case refers to
the proceeding Fig. 18
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function due to the unique differences between the quantum and classical pictures.
The confinement potential is approximated as a step function and presence of Poynt-
ing vector is neglected in the space as Hamiltonian system is time-independent, and
system Hamiltonian corresponds to the classical mechanical energy that is preserved
if we omit radiation emission for two particles subjected to acceleration and deceler-
ation during different moments of motion that can be periodic or aperiodic. We have
the minimalistic classical Hamiltonian for 2SELs given as

Ĥ = 1

2m1
p1(t)

2 + 1

2m2
p2(t)

2 + q2

√
d2 + (x1(t) − x2(t))2

+ V0�(x1(t) − xmax1) + V0�(−x1(t) − xmax1)+
V0�(x2(t) − xmax2) + V0�(−x2(t) − xmax2)

+ Vb1�(x1(t) − xb1) + Vb1�(−x1(t) − xb1)+
Vb2�(x2(t) − xb2) + Vb2�(−x2(t) − xb2). (137)

We simplify the situation by having two symmetric masses m1 = m2 = m and
same charges q, and having xmax1 = xmax2 = xmax. We set xb1 = xb2 → 0. There
are always two possible grounds states of the classically interacting electrons in 2
SELs configuration corresponding to the same energy when charged particles of
same charge are confined in local potential that corresponds to two positions of par-
ticle that are at maximum distance x2(t) = ∓xmin = constans, dx1

dt (t) = 0, d2x1
dt2 (t) =

0, x2(t) = ±xmin,
dx1
dt (t) = 0, d2x1

dt2 (t) = 0. Classical ground state is maximally anti-
correlated. On the contrary the same situation in quantumpicture has only one ground
state and this state is not maximally anticorrelated and is partly correlated what is
expressed by Formula 134. Moreover, in the classical picture of 2 SELs, one can
observe the emergence of deterministic chaos that is heavily pronounced in the clas-
sical system, as depicted in Figs. 18 and 19.Nowwe aremoving towards a description
of classical 2-SEL system in case of perfect correlated or anticorrelated electrons.
From the classical Hamiltonianwe determine the equations ofmotion of the two elec-
trons assuming the existence of the antisymmetric case ±x(t) = x1(t) = −x2(t) at
all instances of motion for the system symmetric around x = 0. We assume that the
distance between electrons

√
d2 + x(t)2 ≈ d. We have

mv2(t) + q2

√
d2 + x2

= Ec > 0,
d2x

dt
= xq2

(
√
d2 + x2)3

.

In simplified case d � x and thus we can write

m
d2x(t)

dt2
= x

q2

d
3
2

. (138)
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Fig. 18 Evolution of positions xi (t) and velocities vi (t) for the system of 2 electrostatically coupled
SELs in classical picture

Fig. 19 Acceleration for the system of 2 coupled oscillators from Fig. 18 confined by local potential
with coordinates x1, x2 ∈ (−xmax, xmax) with xmax = 10

and it has solutions for each electron position

x(t) =
√
mv0d3/4

q
sinh(

q√
md3/4

t). (139)

We notice that xmax =
√
mv0d3/4

q sinh( q√
md3/4

T
4 ) and the period of oscillations is

T = 4

√
md3/4

q
Arcsinh(

qxmax√
mv0d3/4

) (140)

if x1(t = 0) = x2(t = 0) = 0 and when dx1
dt (t = 0) = − x2

dt (t = 0) = v0 �= 0, which
is a definition of perfect anticorrelation. Collision with walls is occurring at T

4
time while the total size of classical well is 2xmax. We observe that x1(t) =√

mv0d3/4

q sinh( q√
md3/4 t) = −x2(t) for t ∈ [0, T

4 ]. Correlation function C is given ana-
lytically

C(t) = − 1

x2max

mv2
0d

3/2

q2
(sinh(

q√
md3/4

t))2 < 0 (141)
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and is negative for any energy Ec (function of q, d, v0) of the system. Such situation
occurs only in some subsets of the classical case since in the quantum case the sign of
functionC depends on the occupancy of the energetic levels. In the classical treatment
of 2-SELs there exist the case of perfectly correlated electrons at any distance that
is independent on the system energy if we are above the ground state.

It is possible to specify such situation when at t = 0 we have x1(t = 0) = x2(t =
0) = 0 and when dx1

dt (t = 0) = x2
dt (t = 0) = v0. In such a case, the Coulomb force

will act perpendicular to the direction of motion and will play no role in the electron
movement. Electron movement will be correlated and with constant speed over time,
with periodic reflections from the potential walls. The correlation function will have
the form

C(t) = 1

x2max

(v0)
2t2 (142)

within time t ∈ [0, T/4]. A perfect correlation of electrons in the classical situation
can occur for any energy (if kinetic energy is larger than zero) of the system Ec > 0.
It is one of the key differences from the quantum situation when the positive value
of correlation function can occur only for certain system eigenenergies as given by
Formula (136).

It should be underlined that the perfectly correlated electrons generate higher
overall magnetic field energy as it is the case of two electric currents of the same
sign (correlated electron movement in one direction) generated by each electron. In
the case of anticorrelated electrons we are dealing with electric currents of opposite
sign that are generating magnetic field in the opposite directions, thus decreasing the
overall magnetic field. Therefore, thermal equilibrium of 2-SEL will favor anticor-
relation of two electrons. It shall be underlined that, in accordance with the classical
thermodynamics that applies to the case of two electrons treated classically, the
movement of electron with certain acceleration will cause the occurrence of non-
zero Poynting vector into the space and thus electron’s energy will be emitted in
the form of electromagnetic radiation. In such way one can introduce effective dis-
sipative term to the movement of electrons and it will cause the system mechanical
energy to eventually vanish. After sufficiently long time the electrons will stop their
oscillatory movement and they will move into ground state that is perfectly anti-
correlated and corresponds to the case when x2 = x1 = ±xmax and d

dt x1 = d
dt x2 and

when d2

dt2 x1 = 0 = d2

dt2 x2 = 0. It is also worth mentioning that the ground state of two
classical electrons in 2-SELs is different from the quantum ground state of 2-SELs.

A case described by two perfectly anticorrelated electrons at any distance in the
classical treatment that is independent of the system energy. Such situation does
not take place in the quantum case as treated by the tight-binding model given by
Formula (136) that has discrete spectra of energies as specified by (131).

We can write the equations of motion of two electrons assuming the existence of
antisymmetric case x1(t) = −x2(t) at all instances of motion for the system sym-
metric around x = 0. From the equation
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mv2(t) + q2

√
d2 + 4x(t)2

= Ec = const > 0,

we obtain the equation
√

q4

(Ec−mv2(t))2 − d2 = 2x(t) and consequently we obtain the
equation of motion

m
dv

dt
= 1

2

√
q4

(Ec − mv2(t))2
− d2 · q2(Ec−mv2(t))3

1

q6
=

1

2q4

√
q4(Ec − mv2(t))4 − d2(Ec − mv2(t))6. (143)

Finally we obtain the equation

dv√
q4(Ec−mv2(t))4 − d2(Ec−mv2(t))6

= dt
1

2mq4
(144)

We introduce a new variable u = d
q (Ec − mv2). We have du = −2md

q vdv. We also

notice that
√

( Ec
m − q

mdu) = v. The last expressions imply

dv = − q

2md

du

v
= − q

2md

du√
( Ec
m − q

md u)

= −
√
q

2
√
md

du√
( Ecd

q − u)
. (145)

The last expression allows us to write integral

∫
dv√

q4(Ec − mv2))4 − d2(Ec − mv2)6
= d2

q4

∫
du√

( Ecd
q − u)

1

u2
√
1 − u2

= s1

∫
du√

(s − u)

1

u2
√
1 − u2

. (146)

Setting s1 = d2

q4 and s = Ecd
q we obtain the integral s1

∫
du√
(s−u)

1
u2

√
1−u2

that has a
solution as three types of elliptic functions given in Appendix 2.

10.2 Classical Weak Measurement on 2-SEL System

Measurement on a given physical system is about introducing an interaction of it
with an external physical system that acts as a probe. If this interaction is strong
(weak) we are dealing with a strong (weak) measurement. We shall introduce an
external charged particle at a certain distance that can move only in parallel to the
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Fig. 20 Case of the classical measurement with electron used for probing of 2-SELs

Fig. 21 Correlation function for 2-SELs under classical weak measurement from external probing
charged particle. One shall refer to the bottom plot of Fig. 17 and to Fig. 22

system being probed and then we apply Newtonian equations of motion. For the
sake of simplicity, we consider only interaction of the probe that is moving electron
across one line with nearest charged particle, as depicted in Fig. 22. At a first level of
approximation, the movement of external electron is the perturbation to the physical
system of two electrons (2-SELs) (Figs. 20 and 21).

10.3 Weak Quantum Measurement on 2-SEL System

We consider an interaction of two single-electron lines (2-SEL) that incorporate
qubits A and B with an external line along which there is a movement of position-
based qubit C . The CMOS structures have the capability to impose a constrained
‘movement’ of a virtual qubit along single-electron lines. This way, the moving qubit
becomes effectively a flying qubit, which is a term usually reserved for polarized
photons participating in quantum information processing. At a very far distance,
there is no interaction between the flying qubit and 2-SELs. In such a case one can
have a tensor of two density matrices being a density matrix of 2-SELs denoted by
ρAB and the external flying qubit. We have a three-body quantum density matrix
given as



Analytical Solutions for N -Electron Interacting System … 139

a

b

Fig. 22 Concept of classical and quantum weak measurements in a double single-electron line
system. All simulations were conducted for the classical case
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ρ̂ABC = ρ̂C × ρ̂AB =
(

ρC [1, 1]ρ̂AB ρC [1, 2]ρAB

ρC [2, 1]ρ̂AB ρC [2, 2]ρAB

)
=
(
Â1 B̂1

Ĉ1 D̂1

)
. (147)

We immediately recognize that we can obtain the density matrix of particle C by
tracing out the existence of density matrix AB

ρ̂C =
∑

i A={1,2}, jB={1′,2′}
〈i A, jB | ρ̂ABC |i A, jB〉 . (148)

In similar way we obtain the density matrix for 2-SEL system

ρ̂AB =
∑

kC={1,2}
〈kC | ρ̂ABC |kC 〉 . (149)

The last expressions can be expressed by formula

ρ̂C =
(
Tr( Â1) Tr(B̂1)

Tr(Ĉ1) Tr(D̂1)

)
, ρ̂AB = Â1 + D̂1. (150)

System of 2-SELs with the flying qubit can be reagarded as non-dissipative system
and thus one can write the following equations of motion

ρ(t) = e
1

−i� H0t e
1
i�

∫ t
0 Ĥ(t ′)dt ′ρ(t)e

1
−i�

∫ t
0 Ĥ(t ′)dt ′e

1
−i� H0t , (151)

where H0 is a time-independent Hamiltonian of isolated 2-SELs and isolated external
qubit, while H(t ′) stands for electrostatic interaction between the flying qubit and
2-SELs. We have the total system Hamiltonian having time-independent and time-
dependent components

Ĥ(t) = Ĥ0 + Ĥ1(t) = ( ÎC × ĤAB + ĤC × ÎAB )0 + ĤAC (t) × ÎB , (152)

where ÎAB and ÎC are identity matrices acting on the 2-SELs and flying qubit, while
ĤAB is 2-SEL Hamiltonian. ĤC is the flying qubit Hamiltonian and ĤAC(t) is the
interaction Hamiltonian between A line and flying qubit C (note: for the sake of
simplicity we neglect the interaction between B line and C qubit). The detailed
structure of those Hamiltonians are given in Appendix 3.

Defining 2-SEL correlation function previously defined by Formula (136), so
C = CAB , incorporated into three-body system takes form as CAB,C = ÎC × ĈAB

and, consequently, we obtain the following time dependence of correlation function
given as

C(t) = Tr(CAB,Cρ(t)). (153)

Details of the calculations can be found inAppendix 3. Finally, we obtain the formula
for correlation function of the 2-SEL system interacting weakly with the flying qubit
in the form as
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C(t) =

(Ec1 − Ec2)2 − 4 cos

⎛

⎝
t
√

(Ec1 − Ec2)2 + 16

�

⎞

⎠

⎛

⎜⎜⎜⎜⎜⎝

cos

(∫ t

0
dt ′ Ec11′′ (t

′) − Ec1′′2(t ′)
�

)

+ cos

(∫ t

0
dt ′ Ec2′′1(t ′) − Ec2pp2(t ′)

�

)
− 2

⎞

⎟⎟⎟⎟⎟⎠

(Ec1 − Ec2)2 + 16

+
4 cos

(
∫ t
0 dt ′ Ec11′′ (t

′)−Ec1′′2(t ′)
�

)
+ 4 cos

(
∫ t
0 dt ′ Ec2′′1(t ′)−Ec2′′2(t ′)

�

)
+ 8

(Ec1 − Ec2)2 + 16
(154)

where

Ec11′′(t) = q2

√
(x(t) + a + b)2 + d2

1

,

Ec12′′(t) = q2

√
(x(t) + 2(a + b))2 + d2

1

,

Ec21′′(t) = q2

√
(x(t) − (a + b))2 + d2

1

,

Ec22′′(t) = q2

√
(x(t))2 + d2

1

. (155)

Themovement of the flying qubit can be described, for example, by a constat velocity
v = v0, so x(t) = x0 + v0t . In case of a time-dependent flying qubit, x(t) = x(t0) +∫ t
t0

v f (t ′)dt ′, where v f (t) is an instantaneous speed of the flying qubit. The only
assumption for this model is that particle at time t = 0 is at a far distance from
2-SELs.

11 Entangling Two Qubits by Means of RF Fields

We are placing electrostatic position-based qubit in external electromagnetic cavity.
We assume that electromagnetic cavity maintains quantum coherence what is pos-
sible in case of cavities with small dissipation (high-quality factor) as it is the case
of superconducting cavity. At the same time we are assuming quantum coherence of
semiconductor position based qubit. What is more we assume coherent interaction
of electromagnetic radiation with electron trapped in positon based qubit. Such sys-
tem is depicted in Fig. 23. We expect that during this interaction it will be possible
to entangle electromagnetic radiation with position based qubit. This entanglement
will be essential in quantum information processing. Before moving to the detailed
picture of qubit-radiation interaction let us review non-local realism in quantum
mechanics.
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11.1 Non-local Realism in Quantum Mechanical Picture

Quantum mechanics gives only probabilistic description of physical processes what
does not support classical determinism but only stochastic determinism. Given par-
ticle can be localized in certain area of space as when it is in the potential minimum
that is around certain point or can be distributed over big area as it is the case of
conductive electron in metal. Once the measurement is conducted on the particle
its position can be determined very exactly but at the prize that particle momentum
is highly perturbed and essentialy information about particle momentum is lost. In
that way one cannot fully determine both position and momentum of the particle
what is expressed in the non-commutation relation between momentum and position
and it leads to the Heisenberg principle. The phenomena that one cannot determine
position and momentum of the particle is commonly known from wave mechanics.
Under the circumstance of particle being localized or delocalized the particles inter-
act what affects the probability distribution. In very real sense quantum particle is
like classical particle under very high noise so it is pointless to talk about the individ-
ual particle position but it makes sense to talk about probability of finding particle
in given ensemble of particles. We use to say that canonical ensemble is attached to
the individual behaviour of particle. Thus dealing with conglomerate of particles we
are dealing with statistical ensemble [of single particle] attached to another statisti-
cal ensemble of environment in which the given particle is placed. Such reasoning
indeed draws analogies of statistical mechanics with quantum mechanics. At some
point one can say that there is no big difference between quantum mechanical or
classical particle under the impact of external potential. Local principle holds for
both classical and quantum pictures and two particles interact if they are close one
to another. Coulomb electrostatic energy has the same formula both in classical and
in quantum picture. However first main difference is the fact that quantum particle
can be subjected to the self-interference as it is the case of two slit experiment when
given wave (quantum particle) appears in certain regions with higher probability
(higher wave intensity) and in other regions with lower probability. Self-interference
requires that wavefunction of given particle is coherent what is strongly dependent on
the environment. Self interference has classical counterpart in the theory of waves as
given electromagnetic wave can interfere with itself. There is however the effect that
has no classical counterpart in quantum picture and is named as entanglement that
is the manifestation of non-local correlation. In classical physics it is however not
suprising that when two particles are interacting the change of state of one particle
brings the change of state of another particle. However the surprising aspect is when
two particles being at very high distances are essentially no interacting and change of
the state of one of particles is affecting the state of another particles in immediateway.
Such event is called spooky action on the distance and is the example of non-local
correlation that can only occur in quantum theory and is the manifestation of particle
entanglement. In this work we will describe the entanglement between waveguide
and position based qubits as well as entanglement between two far position based
qubits mediated by waveguide. Most common picture of entanglement is illustrated
by the Bell states.



Analytical Solutions for N -Electron Interacting System … 143

Fig. 23 Position based qubit in RF field (a) and position based qubits placed at high distance
interlinked by waveguide (b)

11.2 Interaction of Radiation with Position Dependent Qubit

We are referring to the situation of placement of position based qubit in external
radiofrequency field of electromagnetic cavity or waveguide as depicted in Fig. 23.
Because of simplicity we are going to use Jaynes-Cumming Hamiltonian [8] that
describes the interaction atom with cavity by means of electromagnetic field [more
precise name can be tight-binding Jaynes-CummingHamiltonian orHubbard Jaynes-
Cumming Hamiltonian]. In the simplest approach the cavity Hamiltonian describing
waveguide without dissipation is represented as

Hcavity = �ωc(
1

2
+ â†â) = Eφ1

∣∣Eφ1
〉 〈
Eφ1

∣∣+ Eφ2

∣∣Eφ2
〉 〈
Eφ2

∣∣ , (156)

where â† (â) is the photon creation (annihilation) operator and number of photons in
cavity is given as n = â†â. At the same we can represent the two level qubit system

Hqubit = Eg |g〉 〈g| + Ee |e〉 〈e| . (157)
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The interaction Hamilonian is of the following form

Hqubit-cavity = g(â†σ− + âσ+), (158)

where σ− = σ1 − iσ2, σ+ = σ1 + iσ2. The qubity-cavity interaction has the electric-
dipole nature so quasiclassicaly we can write

Hqubit-cavity = d̂ · Ê = g(σ− + σ+)(â + â†) ≈ g(â†σ− + âσ+). (159)

Here we have neglected the terms g(σ−â + σ+â†) and our approach is known as
rotating phase. Constant g is depending on the distance between waveguide and
position-dependent qubit as depicted Fig. 2. During photon emission from qubit the
energy level is lowered and reversely during photon absorption the energy level of
qubit is raised what is seen in the term âσ+. The system Hamiltonian is given as
H = Hcavity + Hqubit + Hqubit-cavity. It is not hard to construct the Hilbert space for
Jaynes-Cumming Hamiltonian. Essentially we are considering the tensor product of
qubit space and cavity space.

|ψ〉 = γ1 |φ1〉 |0〉 + γ2 |φ1〉 |1〉 + γ3 |φ2〉 |0〉 + γ4 |φ2〉 |1〉 =

⎛

⎜⎜⎝

γ1
γ2
γ3
γ4

⎞

⎟⎟⎠ ,

1 = 〈ψ |ψ〉 = |γ1|2 + · · · + |γ4|2. (160)

Here |0〉 = |g〉 and |1〉 = |e〉 stands for Eg and Ee energetic state of position based
qubit, while |φ1〉 and |φ2〉 stands for cavity with 1 and 2 photons. We have the
following matrices Hqubit + Hcavity, Hqubit-cavity

Hqubit + Hcavity =

=

⎛

⎜⎜⎝

Eg + Eph1 0 0 0
0 Ee + Eph1 0 0
0 0 Eg + Eph2 0
0 0 0 Ee + Eph2

⎞

⎟⎟⎠

= Eg

∣∣Eg
〉 〈
Eg

∣∣+ Ee |Ee〉 〈Ee| + Eφ1(2)

∣∣Eφ1(2)

〉 〈
Eφ1(2)

∣∣ . (161)

Hqubit-cavity =

⎛

⎜⎜⎝

0 0 0 0
0 0 g1 0
0 g1 0 0
0 0 0 0

⎞

⎟⎟⎠ == g1(
∣∣Eφ1 , Ee

〉 〈
Eφ2 , Eg

∣∣+ ∣∣Eφ2 , Eg
〉 〈
Eφ1 , Ee

∣∣),

(162)

what implies
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Hqubit + Hcavity + Hqubit-cavity =

⎛

⎜⎜⎝

Eg + Eph1 0 0 0
0 Ee + Eph1 g1 0
0 g1 Eg + Eph2 0
0 0 0 Ee + Eph2

⎞

⎟⎟⎠ .

(163)

The last Hamiltonian gives the eigenstates

|E1 >=

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ , |E2 >=

⎛

⎜⎜⎝

0
0
0
1

⎞

⎟⎟⎠ ,

|E3 >=

⎛

⎜⎜⎜⎝

0
(Ee−Eg)−(Eph2−Eph1 )−

√
((Ee−Eg)−(Eph2−Eph1))2+4|g1|2
2g1
1
0

⎞

⎟⎟⎟⎠ =,

(Ee − Eg) − (Eph2 − Eph1) −√
((Ee − Eg) − (Eph2 − Eph1))2 + 4|g1|2
2g1

|φ1 > |Ee > +|φ2 > |Eg >,

|E4 >=

⎛

⎜⎜⎜⎝

0
(Ee−Eg)−(Eph2−Eph1 )+

√
((Ee−Eg)−(Eph2−Eph1))2+4|g1|2
2g1
1
0

⎞

⎟⎟⎟⎠ , (164)

and one obtains eigenenergies of the form

E1 = Eg + Eph1,

E2 = Ee + Eph2,

E3 = 1

2
(Eg + Ee + Eph1 + Eph2

−
√

((Ee − Eg) − (Eph2 − Eph1))2 + 4|g1|2,

E4 = 1

2
(Eg + Ee + Eph1 + Eph2

+
√

((Ee − Eg) − (Eph2 − Eph1))2 + 4|g1|2, (165)

We recognize that state corresponding to eigenenergies E3 and E4 are entangled states
of matter and radiation while states corresponding to eigenenergies E1 and E2 are
non-entangled states of matter and radiation. In particular if state E3 is subjected to
the measurement of number of photons and value 1 was encountered than it implies
that position based qubit is in the excited state corresponding to the energy Ee .
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Otherwise if the number of photon is encountered to be 2 than the state of qubit is
encountered to be Eg .

11.3 Case of 2 Qubits Interaction via Waveguide
on the Distance and Teleportation on the Distance

We have the following Hamiltonian for 2 qubits interacting with waveguide in the
case when qubit 1 is relatively far from qubit 2. If waveguide has L length and c is
speed of signal propagation along waveguide we have �t = L/c and Hamiltonian
is of the form:

H = (Eφ1|φ1 >< φ1| + Eφ2|φ2 >< φ2|)Iqubit1 Iqubit2+
+ Icavity(Eg1|g1 >< g1| + Ee1|e1 >< e1|)Iqubit2+
+ Icavity(Eg1|g1 >< g1| + Ee1|e1 >< e1|)Iqubit2+
+ Icavity Iqubit1(Eg2|g2 >< g2| + Ee2|e2 >< e2|)+
+ g1 f1(t)[(|φ1 >< φ2|)(|e1 >< g1|)+
+ (|φ2 >< φ1|)(|g1 >< e1|)]Iqubit2+
+ g2 f1(t + �t)[(|φ1 >< φ2|)Iqubit1(|e2 >< g2|)+
+ (|φ2 >< φ1|)Iqubit1(|g2 >< e2|)]. (166)

It is formally 3 interacting body system (qubit1)-(waveguide)-(qubit2) inwhich qubit
1 cannot directly interact with qubit 2 and the quantum state has the form

|ψ(t) >= α1(t)|φ1 > |g1 > |g2 > +α2(t)|φ1 > |g1 > |e2 > +
+ α3(t)|φ1 > |e1 > |g2 > +α4(t)|φ1 > |e1 > |e2 > +
α5(t)|φ2 > |g1 > |g2 > +α6(t)|φ2 > |g1 > |e2 > +
α7(t)|φ2 > |e1 > |g2 > +α8(t)|φ2 > |e1 > |e2 >, (167)

The normalization condition is fullfilled |α1(t)|2 + . . . |α8(t)|2 = 1. The system
matrix is of the structure given below

H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Eg1 + Eg2 + Eφ1 0 0 0 0 0 0 0

0 Eg1 + Ee2 + Eφ1 0 0 f1(t)e−id2 t g2 0 0 0

0 0 Ee1 + Eg2 + Eφ1 0 f1(t)g1e−id1 t 0 0 0

0 0 0 Ee1 + Ee2 + Eφ1 0 g1 f1(t)e−id1 t g2 f1(t)e−id2 t 0

0 f1(t)eid2 t g2 f1(t)eid1 t g1 0 Eg1 + Eg2 + Eφ2 0 0 0

0 0 0 g1 f1(t)eid1 t 0 Eg1 + Ee2 + Eφ2 0 0

0 0 0 f1(t)eid2 t g2 0 0 Ee1 + Eg2 + Eφ2 0

0 0 0 0 0 0 0 Ee1 + Ee2 + Eφ2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(168)

This matrix can be simplified. We can preassume that g1 f1(t) = g f (t)eid1(t) and
g2 f2(t) = g f (t)eid2(t) and we can divide all matrix by this value. Second simpli-
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fication is by Eg = Eg1 = Eg2 = Eφ1 = Eφ2 − Eφ1 = Ee1 − Eg1 = Ee2 − Eg2. In
such case we obtain

Ĥ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3Eg 0 0 0 0 0 0 0
0 4Eg 0 0 g2e−id2(t) 0 0 0
0 0 4Eg 0 g1e−id1(t) 0 0 0
0 0 0 5Eg 0 g1e−id1t g2e−id2(t) 0
0 g2eid2(t) g1eid1(t) 0 4Eg 0 0 0
0 0 0 g1eid1(t) 0 5Eg 0 0
0 0 0 g2eid2(t) 0 0 5Eg 0
0 0 0 0 0 0 0 6Eg

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (169)

It shall be underlined that is g1 and g2 are proportional to the electric field
in the resonator cavity so they are depending on frequency of oscillations and
amplitude of electric field in resonator cavity. If we are dealing with 2 or more
qubits we assume that they are at coupled to EM field in different way and that
they catch oscillating EM field at different phase what is expressed by phase fac-
tors eid1(t) , eid1(t) . The last Hamiltonian matrix has the following energy eigen-

values 3Eg, 4Eg, 5Eg, 6Eg, 4Eg −
√
g21 + g22, 5Eg −

√
g21 + g22 , 4Eg +

√
g21 + g22 ,

5Eg +
√
g21 + g22 . In general case g1 is depending on how waveguide with hole is

close to the position dependent qubit. Otherwise position dependent qubit must be
placed in resonant cavity. We assume Ep = Ep1 = Ep2 = Ep1′ = Ep2′ and we have
found the following eingenstates

|E1 >=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= |φ1 > |g1 > |g2 >= 1

2
|φ1〉 (|x1 > −|x2 >)(|x1′ > −|x2′ >),

(170)

|E2 > =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−(g1/g2)e

i(−d2+d1)

+1
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −(
g1
g2

ei(−d2+d1)|φ1 > |g1 > |e2 > +|φ1 > |e1 > |g2 >
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|E3 > =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0

− g2
g1
ei(−d2+d1)

1
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= − g2
g1

ei(−d2+d1)|φ2 > |g1 > |e2 > +|φ2 > |e1 > |g2 >, (171)

|E4 >=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= +|φ2 > |e1 > |e2 >, (172)

|E5 >=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

− g2eid2√
g21+g22

− g1eid1√
g21+g22
0
1
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

− g2e
id2

√
g21 + g22

|φ1 > |g1 > |e2 > − g1e
id1

√
g21 + g22

|φ1 > |e1 > |g2 > + 1√
2
|φ1 > |e1 > |e2 >,

(173)

|E6 >=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

− e2id2
√
g21+g22

g2
0
1
1
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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= −
e2id2

√
g21 + g22
g2

|φ1 > |e1 > |e2 > +|φ2 > |e1 > |g2 > +|φ2 > |g1 > |e2 >,

|E7 >=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
e−id2 g2√

g21+g22
e−id1 g1√

g21+g22
0
1
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

= e−id2
g2√

g21 + g22

(|φ1 > |e1 > |g2 > +e−id1
g1√

g21 + g22

(|φ1 > |g1 > |e2 > +|φ2 > |g1 > |g2 >,

|E8 >=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

e−i(2d1+d2)

√
g21+g22
g2

0
e−id2+id1 g1

g2
1
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= e−i(2d1+d2)

√
g21 + g22
g2

|φ1 > |e1 > |e2 > +e−id2+id1
g1
g2

|φ2 > |e1 > |g2 > +|φ2 > |g1 > |e2 >,

(174)

6 eigenstates among 8 Eigenstates (except E1 and E8) are entangled in energy bases.
It is noticeable to underline that all 8 energy eigenstates are entangled in position

based representation especially when all Ep values corresponding to nodes in 2
different qubits are different.

12 Analytic Extensions of Topology of Chain of Coupled
Quantum Dots

Since we have electrostatic control of interaction between quantum dots we can turn
on coupling between two chains of quantum dots as it is depicted in Fig. 24, where
Coulomb electrostatic interaction occurs between m and n’ node of two separated
chain and is given by Ec(m, n′) = f (m, n′) = q2

dm,n′ . The quantum state of right-
system is given as

|ψ〉 = γ1,1′ (t) |1〉 ∣∣1′〉+ γ1,2′ (t) |1〉 ∣∣2′〉+ γ1,3′ (t) |1〉 ∣∣3′〉+ γ1,4′ (t) |1〉 ∣∣4′〉+ γ2,1′ (t) |2〉 ∣∣1′〉+ γ2,2′ (t) |2〉 ∣∣2′〉+
+γ2,3′ (t) |2〉 ∣∣3′〉+ γ2,4′ (t) |2〉 ∣∣4′〉+ γ3,1′ (t) |3〉 ∣∣1′〉+ γ3,2′ (t) |3〉 ∣∣2′〉+ γ3,3′ (t) |3〉 ∣∣3′〉+ γ3,4′ (t) |3〉 ∣∣4′〉 .

(175)



150 K. Pomorski

where
∑

k,l ′ |γk,l ′ |2 = 1. After extension by 2 elements the quantum state of left
system is given as

|ψ〉 = γ1,1′ (t) |1〉 ∣∣1′〉+ γ1,2′ (t) |1〉 ∣∣2′〉+ γ1,3′ (t) |1〉 ∣∣3′〉+ γ1,4′ (t) |1〉 ∣∣4′〉+ γ2,1′ (t) |2〉 ∣∣1′〉+ γ2,2′ (t) |2〉 ∣∣2′〉+
+γ2,3′ (t) |2〉 ∣∣3′〉+ γ2,4′ (t) |2〉 ∣∣4′〉+ γ3,1′ (t) |3〉 ∣∣1′〉+ γ3,2′ (t) |3〉 ∣∣2′〉+ γ3,3′ (t) |3〉 ∣∣3′〉+ γ3,4′ (t) |3〉 ∣∣4′〉 .
+γ1,5′ (t) |1〉 ∣∣5′〉+ γ2,5′ (t) |2〉 ∣∣5′〉+ γ3,5′ (t) |3〉 ∣∣5′〉+ γ1,6′ (t) |1〉 ∣∣6′〉+ γ2,6′ (t) |2〉 ∣∣6′〉+ γ3,6′ (t) |3〉 ∣∣6′〉 .

(176)

where again
∑

s,w′ |γs,w′ |2 = 1. The Hamiltonian of the system before extension is

Ĥ =
(
H1 H2

H3 H4

)
(177)

and after extension into system depicted in Fig. 24 (left side) is

Ĥ(t)ext =
⎛

⎝
H1 H2 He1

H3 H4 He2

He5 He4 He3

⎞

⎠ (178)

with matrix subcomponents Ĥ1(t) =
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ep1 + Ep1′ + q2

d1,1′
ts1′ ,2′ 0 0 ts12 0

ts2′ ,1′ Ep1 + Ep2′ + q2

d1,2′
ts2′ ,3′ 0 0 ts12

0 ts3′ ,2′ Ep1 + Ep3′ + q2

d1,3′
ts3′ ,4′ 0 0

0 0 ts4′ ,3′ Ep1 + Ep4′ + q2

d1,4′
ts1′ ,2′ 0

ts2,1 0 0 0 Ep2 + Ep1′ + q2

d1′ ,2
t2′ ,3′

0 ts2,1 0 0 ts2′ ,1′ Ep2 + Ep2′ + q2

d2,2′

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ĥ2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0

ts1,2 0 0 0 0 0
0 ts1,2 0 0 0 0
0 0 ts2,3 0 0 0

ts2′,3′ 0 0 ts2,3 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, Ĥ3 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 ts2,1 0 0 ts3′,2′

0 0 0 ts2,1 0 0
0 0 0 0 ts3,2 0
0 0 0 0 0 ts3,2
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

Ĥ4(t) =
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ep2(t) + Ep3′ (t) + q2

d2,3′
ts3′ ,4′ (t) 0 0 0 0

ts4′ ,3′ (t) Ep2(t) + Ep4′ (t) + q2

d2,3′
0 0 0 0

0 0 Ep3(t) + Ep1′ (t) + q2

d2,3′
ts1′ ,2′ (t) 0 0

0 0 ts2′ ,1′ (t) Ep3(t) + Ep2′ (t) + q2

d3,2′
ts2′ ,3′ (t) 0

0 0 0 t3′ ,2′ (t) Ep3(t) + Ep3′ (t) + q2

d3,3′
ts3′ ,4′ (t)

0 0 0 0 ts4′ ,3′ (t) Ep3(t) + Ep4′ (t) + q2

d3,4′

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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1

2

3
1

2

3

extending graph by 

Fig. 24 Example of arbitrary extension of network of electrostatically coupled quantum dots with
reference to technological scheme depicted in Fig. 2

We can determine inductive step of quantum dot graph extension by adding matri-
ces Ĥe1, . . . , Ĥe5 to the Formula 178 in the form as given

Ĥe1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
ts2′,5′ 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 ts2′,5′ 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
,= Ĥ †

e5, Ĥe2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 ts2′,5′ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
= Ĥ †

e4, (179)

Ĥe3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ep1 + Ep5′ + q2

d1,5′
ts1,2 0 ts5′ ,6′ 0 0

ts2,1 Ep2 + Ep5′ + q2

d2,5′
ts2,3 0 ts5′ ,6′ 0

0 ts3,2 Ep3 + Ep5′ + q2

d3,5′
0 0 ts5′ ,6′

ts6′ ,5′ 0 0 Ep1 + Ep6′ + q2

d1,6′
ts1,2 0

0 ts6′ ,5′ 0 ts2,1 Ep2 + Ep6′ + q2

d2,6′
ts2,3

0 0 ts6′ ,5′ 0 ts3,2 Ep3 + Ep6′ + q2

d3,6′

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Similarly to before having the knowledge of quantum state at t0 we can evaluate
the state at time t by computing exp(

∫ t
t0

1
�i Ĥext(t)dt ′) |ψ, t0)〉 = |ψ, t)〉 what bases

on the same method already presented before in Eq. (8). We can also perform the
procedure of heating up or cooling down of the quantum state in the way as it was
described before.
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13 Electrostatic Interaction of Josephson Junction Qubit
with Semiconductor Electrostatic Qubit

The state of Josephson junction is well described by Bogoliubov-de Gennes (BdGe)
equation [9] pointing the correlation between electron and holes as

(
H0 �(x)

�(x)∗ −H †
0

)(
un(x)
vn(x)

)
= En

(
un(x)
vn(x)

)
, (180)

where H0 = − �
2

2m
d2

dx2 is free electron Hamiltonian with self-consistency relation
�(x) = ∑

n(1 − 2 f (En))un(x)vn(x)∗, where �(x) is the superconducting order
parameter and f (En) = 1

1+e
− En

kbT
is Fermi-Dirac distribution function and un(x) and

vn(x) are electron and hole wavefunctions. In case of bulk superconductor with con-
stant superconducting order parameter we obtain En = ±√|H0|2 + |�|2. In later
considerationswe are going to omit the self-consistency relation assuming the depen-
dence of superconducting order parameter as step-like function. It shall be underlined
that BdGe equation is mean field equation that is derived basing on BCS theory of
superconductivity. It it thus naturally valid for the case of many particles. Semi-
conductor single electron line with 2 nodes can be regarded as electrostatic posi-
tion dependent qubit and can be described by Hsemi = ts1,2 |1〉 〈2| + ts2,1 |2〉 〈1| +
Ep1 |1〉 〈1| + Ep2 |2〉 〈2| , Figs.7, 8 and 9.

We refer to the physical situation depicted in Fig. 25 that has some level of
similarity to the situation depicted in Figs.7, 8 and 9. We can express coupling of
2 systems assuming 4 nodes for electron or hole and 2 nodes for electron con-
fined in semiconductor so we have eigenvector having 16 components (|0〉e |1〉s ,
|0〉e |2〉s ,|1〉e |1〉s , |1〉e |2〉s ,|2〉e |1〉s , |2〉e |2〉s , |3〉e |1〉s , |2〉e |2〉s ), (|0〉h |1〉s , |0〉h |2〉s ,
|1〉h |1〉s , |1〉h |2〉s ,|2〉h |1〉s , |2〉h |2〉s , |3〉h |1〉s , |2〉h |2〉s) where s refers to semi-

Josephson Junction interacting with two coupled Q-Dots semiconductor qubits

superconductor 1 superconductor 2

0 1 2 3

V(t)

4 channels of 
Coulomb 

interaction

insulator, semiconductor, metallic or weak semiconductor

Points 0, 1, 2, 3 are 
associated with:
Ee0, Ee1, Ee2, Ee3 (electron)
Eh0, Eh1, Eh2, Eh3 (hole)

|1>s |2>sQ-Dot 1 Q-Dot 2
Semiconductor 

position-based qubit
System of 2 or more  coupled 
q-dots controlled by voltages

V1(t) V2(t) V3(t) Oxide Layer

Fig. 25 Superconducting Josephson junction interacting with semiconductor position based qubit
in minimalistic tight-binding approach, where tight-binding BdGe equation describing Josephson
junction is coupled electrostatically to tight-binding model of semiconductor position based qubit
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conductor qubit whose quantum state is superposition of |1〉s and |2〉s and states
|0〉e,…, |3〉e, |0〉h ,…, |3〉h characterizes the state of electron and hole respectively in
ABS [Andreev Bound State when electron moving in normal (non-superconducting)
region between superconductors is reflected as hole when it comes into supercon-
duction area and when hole moving in normal region is reflected as electron when
it meets superconductor etc. …] of Josephson junction. This time the quantum state
of the system can be written as

|ψ, t〉 = γ1(t) |0〉e |1〉s + γ2(t) |0〉e |2〉s + γ3(t) |1〉e |1〉s + γ4(t) |1〉e |2〉s + γ5(t) |2〉e |1〉s + γ6(t) |2〉e |2〉s + γ7(t) |2〉e |1〉s
+γ8(t) |2〉e |2〉s + γ9(t) |0〉h |1〉s + γ10(t) |0〉h |2〉s + γ11(t) |1〉h |1〉s + γ12(t) |1〉h |2〉s + γ13(t) |2〉h |1〉s + γ14(t) |2〉h |2〉s +

γ15(t) |2〉e |1〉s + γ16(t) |2〉h |2〉s .

(181)

Normalization condition implies |γ1(t)|2 + |γ2(t)|2 + · · · + |γ16(t)|2 = 1 at any
instance of time t. Such system has 16 eigenenergies. The probability of find elec-
tron at node 1 under any presence of electron in semiconductor qubit at node
1 or 2 is obtained by applying projection of 〈1|e 〈1|s + 〈1|e 〈2|s so | 〈1|e 〈1|s +
〈1|e 〈2|s |ψ, t〉 |2 is probability of finding electron at node 1 in Josephson junction.
We obtain the following structures of matrices corresponding to H0 part of BdGe
equation in the form as

Ĥ0[e] =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ep1 + Ee0 ts te(1,0) 0 te(2,0) 0 te(3,0) 0
t∗s E p2 + Ee0 0 te(1,0) 0 te(2,0) 0 te(3,0)

t∗e(1,0) 0 Ep1 + q2

a + Ee1 ts te(2,1) 0 te(3,1) 0

0 t∗e(1,0) t∗s E p2 + Ee1 + q2

b 0 te(2,1) 0 te(3,1)

t∗e(2,0) 0 t∗e(2,1) 0 Ep1 + Ee2 + q2

b ts te(3,2) 0

0 t∗e(2,0) 0 t∗e(2,1) t∗s E p2 + Ee2 + q2

a 0 te(3,2)
t∗e(3,0) 0 t∗e(3,1) 0 t∗e(3,2) 0 Ep1 + E3e ts
0 t∗e(3,0) 0 t∗e(3,1) 0 t∗e(3,2) t∗s E p2 + E3e

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(182)

Parameters Ep1, Ep2, ts correspond to semiconductor position based qubit and
distance between semiconductor qubit and Josephson junction is given by a and
b. Other parameters Ee0, Ee1, Ee2, Ee3, Eh0, Eh1, Eh2, Eh3 describes localization
energy of electron and hole at nodes 0, 1, 2 and 3 of Josephson junction. In analogical
way we can write

Ĥ0[h] =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ep1 + Eh0 ts th(1,0) 0 th(2,0) 0 th(3,0) 0
t∗s E p2 + Eh0 0 th(1,0) 0 th(2,0) 0 th(3,0)

t∗h(1,0) 0 Ep1 − q2

a + Eh1 ts th(2,1) 0 th(3,1) 0

0 t∗h(1,0) t∗s E p2 + Eh1 − q2

b 0 th(2,1) 0 th(3,1)

t∗h(2,0) 0 t∗h(2,1) 0 Ep1 + Eh2 − q2

b ts th(3,2) 0

0 t∗h(2,0) 0 t∗h(2,1) t∗s E p2 + Eh2 − q2

a 0 th(3,2)

t∗h(3,0) 0 t∗h(3,1) 0 t∗h(3,2) 0 Ep1 + E3h ts
0 t∗h(3,0) 0 t∗h(3,1) 0 t∗h(3,2) t∗s E p2 + E3h

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(183)
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and two other matrices �̂1 = diag(�(0),�(0),�(1),�(1),�(2),�(2),�(3),
�(3)), �̂2 = �̂

†
1. Finally we obtain the following structure of tight-binding

Bogoliubov-de Gennes equations including the interaction of semiconductor qubit
with Josephson junction described in the minimalistic way in the form

Ĥeff =
(
Ĥ0[e] �̂1

�̂2 Ĥ0[h]

)
. (184)

Similarly as before, having knowledge of quantum state at t0 we can evaluate
the state at time t by computing exp(

∫ t
t0

1
�i Ĥext(t)dt ′) |ψ, t0)〉 = |ψ, t)〉 which bases

on the same method already presented before in Eq. (8). We can also perform the
procedure of heating up or cooling down of the quantum state in the way as it was
described before or we can regulate the population of pointed energetic level(s).

In most minimalistic tight-binding model of Josephson junction Sc-I-Sc
(Superconductor-Insulator-Superconductor) we set �(1) = �(2) = 0 what corre-
sponds to the simplest form of Andreev Bound State in Tunneling Josephson junc-
tion. However in weak-links and in the Field Induced Josephson junctions [10] all
diagonal elements are non-zero and |�| has maximum at �(0) and �(3) that can
be considered as superconducting state of bulk superconductors. Quite naturally,
Field Induced Josephson junction [9] can have special profile of dependence of
superconducting order parameter �(x) on position x with presence of built-in mag-
netic fields in area of junction. It will also have special complex-valued hopping
constants for electron and hole in area of superconductor that will incorporate the
profile of magnetic field present across Josephson junction. Specified Hamiltonian
describing electrostatic interface between superconducting Josephson junction and
semiconductor position-based qubit has the following parameters describing the state
of position based semiconductor qubit Ep1, Ep2, ts = tsr + i tis (4 real valued time
dependent functions), and parameters describing the state of Josephson junction
Ee0, Ee1, Ee2,Ee3, Eh0,Eh1, Eh2,Eh3, �(0), �(1), �(2), �(3), te(1,0), te(2,1), te(2,3),
te(3,0), th(1,0), th(2,1), th(2,3), th(3,0) as well as geometrical parameters describing elec-
trostatic interaction between semiconductor JJ and semiconductor qubit by a and
b. It is worth mentioning that electrostatic interaction taken into account is only
between nodes 1-1s, 1-2s, 2-1s, 2-2s what means 4 channels for Coulomb interac-
tion and simplifies the model greatly so one can find analytical solutions as well.
The assumption with four channels of electrostatic interaction is physically justi-
fiable if one assumes that �(0) �= 0,�(3) �= 0 and (�(1),�(2)) → 0. Therefore
formally we have omitted the following channels of electrostatic interaction 0-1s,
3-1s, 0-2s, 3-2s. It is commonly known that superconducting state especially with
strong superconductivity as in case of bulk superconductor is not supporting and
shielding itself from the external and internal electrostatic field of certain strength
as it naturally protects its ground superconducting macroscopic state. Having estab-
lished the mathematical structure describing the electrostatic interaction between
semiconductor position-based qubit and Josephson junction we can move into first
analytical and numerical calculations. First simplification is that �(1) = �(2) = 0
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Fig. 26 Eigenenergies of semiconductor qubit coupled to Josephson junction in dependence on
distance in tight-binding minimalitic approach

and � = �(0) = �(3) ∈ R so it means that there is no net electric current flowing
via Josephson junction since the electric current flow imposes the condition of phase
difference among superconducting order parameter �(0) and �(3) and in such case
superconducting order parameter is complex valued scalar. Also it implies that there
is no magnetic field in our system since magnetic field brings phase imprint between
�(0) and �(3). Second simplification is that Ep1 = Ep2 = Ep, ts ∈ R. Third sim-
plification is that Ee0 = Ee1 = Ee2 = Ee3 = −Eh0 = −Eh1 = −Eh2 = −Eh3 = V
so it implies electron-hole symmetry in area of ABS that is the middle of Josephson
junction. In such way all hole eigenenergies are corresponding to electron eigenener-
gies with− sign. Last assumption is that electron or hole hopping in the area of ABS
in between nearest neighbours is such that te(k,k+1) �= 0 and th(k,k+1) �= 0 and is 0 oth-
erwise. One can name such feature of transport in Josephson junction as diffusive and
not ballistic what brings the mathematical simplifications. Having established such
facts we can move into analytical and numerical calculations. The Hamiltonian of
physical system has such structure that allows analytic determination of all eigenen-
ergies since Hamiltonian matrix has many symmetries. In particular we can obtain
the spectrum of eigenenergies in dependence on the distance a as depicted in Fig. 26
and spectrum of eigenenergies in dependence of superconducting order parameter as
given in Fig. 27. One can recognize certain similarities with Fig. 6. It simply means
that increase of superconducting order parameter strength brings similar effect as
increase of distance between interaction of semiconductor position based qubit and
Josephson junction.

One of the most interesting feature is tuning the landscape of eigenenergies
by applying small voltage (below the size 2e�) to non-superconducting region of
Josephson junction. In such case one obtains the features as described in Fig. 28.
In the described considerations the spin degree-of-freedom was omitted in case of
Josephson junction as well as in case of semiconductor position based qubit. How-
ever they could be easily included but it would increase the size of matrix describing
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Fig. 27 Eigenenergies of semiconductor qubit coupled to Josephson junction in dependence on
superconducting order parameter in minimalitic approach

Fig. 28 Tunning the spectrum of eigenenergies in electrostatic qubit interacting with Josephson
junction while we are changing the chemical potential of insulator region in Josephson junction at
all nodes 0, 1, 2 and 3 in the same time

interaction between superconductor Josephson junction and semiconductor electro-
static qubit from 16 by 16 to the size 8 * 4 = 32 so one obtains matrix 32 by 32.
Adding strong spin-orbit interaction to the Hamiltonian of Josephson junction under
the presence of magnetic field allows to describe topological Josephson junction. In
such way we can obtain the effective 32 by 32 Hamiltonian for interaction between
semiconductor position based qubit and topological Josephson junction in minimal-
istic way. It shall be also underlined that so far we have used BdGe formalism that is
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suitable for mean field theory domain. However, in our case we have considered very
special interactions between individual (electrons, holes) present in area of Joseph-
son junction and specific individual electron present in area of semiconductor qubit.
Usage of BdGe formalism is therefore first level of possible approximation and fur-
ther more detailed study can be attempted in determination of microscopic processes
present interacting Josephson junction with semiconductor qubit in more detailed
way. It is sufficient to mention that in our case superconductors shall have relatively
small size so we are dealing with relatively small number of electrons and holes
in non-superconducting area. More detailed considerations are however beyond the
scope of this work and requires Density Functional Theory (DFT) methods, etc.

14 Conclusions

The obtained results have meaning in the development of single-electron electro-
static quantum neural networks, quantum gates, such as CNOT, SWAP, Toffoli and
Fredkin gates as well as any other types of quantum gates with N inputs and M
outputs. Single-electron semiconductor devices can be attractive from point of view
of power consumption and they can approach similar performance as Rapid Single
Quantum Flux superconducting circuits [4] having much smaller dimensions than
superconducting circuits. In conducted computations the spin degree-of-freedom
was neglected. However it can be added in straightforward way doubling the size
of Hilbert space. The obtained results allow us to obtain the entanglement of qubit
A (for example) using biparticle Von Neumann entropy S(t)A of qubit A in two
electrostatically interacting qubits with time as given by formula

S(t) = −Tr [ ˆρA(t)(log(ρ̂A(t)))], (185)

where Tr [.] is matrix trace operator and ρA is the reduced density matrix of A qubit
after presence of B qubit was traced out. The obtained results can be mapped to
Schrödinger formalism [11] in order to obtain higher accuracy and resolution in the
description of quantum state dynamics. One can use the results in the determina-
tion of quantum transport in the single electron devices or arbitrary topology, which
can be helpful in optimization of device functionality and sequence of controlling
sequences shaping the electron confinement potential. Topological phase transitions
as described by [12–14] are expected to take place in arrays of coupled electrostatic
qubits due to the similarity of tight-binding applied in semiconductor coupled quan-
tum well model to Josephson model in Cooper pair box superconducting qubits.
All results are straightforward to be generalized for electrons and holes confined in
net of coupled quantum dots (which changes only sign of electrostatic energy so
q2 → −q2) under the assumption that recombination processes do not occur. What
is more the interaction between electrostatic position based qubit and Josephson
junction was formulated and solved in tight-binding model. In a quite straightfor-
ward way one obtains the electrostatically coupled networks of graphs interacting
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with single Josephson junction in analytical way. It will be important in the devel-
opment of interface between semiconductor CMOS quantum computer and already
developed superconducting computer.
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Appendix 1

The simplified Hamiltonian, given by Eq. (120) for two electrostatically interacting
single-electron lines (Fig. 9) has eigenvalues pointed by Formulas ((10)), ((11)) and
has following eigenvectors

Ĥ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q11 1 0 1 0 0 0 0 0
1 q12 1 0 1 0 0 0 0
0 1 q13 0 0 1 0 0 0
1 0 0 q12 1 0 1 0 0
0 1 0 1 q11 1 0 1 0
0 0 1 0 1 q12 0 0 1
0 0 0 1 0 0 q13 1 0
0 0 0 0 1 0 1 q12 1
0 0 0 0 0 1 0 1 q11

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (186)

|E1〉 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1,
0,
0,
0,

−1,
0,
0,
0,
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |E2〉 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0,
1,
0,

−1,
0,

−1,
0,
1,
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,



Analytical Solutions for N -Electron Interacting System … 159

∣∣E3(4)
〉 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1,
1
4 (q11 − q12 ±√

8 + (q11 − q12)2),
0,

1
4 (q11 − q12 ±√

8 + (q11 − q12)2),
0,

− 1
4 (q11 − q12 ±√

8 + (q11 − q12)2),
0,

− 1
4 (q11 − q12 ±√

8 + (q11 − q12)2),
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (187)

∣∣E5(6)
〉 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1,
1
4 (q12 − q13 ±√

8 + (q12 − q13)2),
0,

1
4 (q12 − q13 ±√

8 + (q12 − q13)2),
0,

− 1
4 (q12 − q13 ±√

8 + (q12 − q13)2),
0,

− 1
4 (q12 − q13 ±√

8 + (q12 − q13)2),
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(188)

∣∣Ek=(7...9)
〉 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1,
(Ek=(7...9) − q11)/2,

(−Ek=(7...9)+q11 )(−2+E2
k=(7...9)+q11q12−Ek=(7...9)(q11+q12 ))

2(−3Ek=(7...9)+q11+2q13 )
,

(Ek=(7...9) − q11)/2,
2,

(Ek=(7...9) − q11)/2,
2,

(−Ek=(7...9)+q11)(−2+E2
k=(7...9)+q11q12−Ek=(7...9)(q11+q12 ))

2(−3Ek=(7...9)+q11+2q13 )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(189)

It is important to recognize that in the case of electrons partly or wholly localized at
the nodes of 2-SEL system, such that all hoping constants ts1,kl and ts2,r ′u′ are zero,
we have no quantum entanglement between 2-SELs if it populates one energetic level
and its Hamiltonian becomes diagonal. It brings the following energy eigenstates:
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|E1〉 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . |E9〉 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (190)

and Hamiltonian of system simulating two electrostatically charged insulators has
the following structure

Ĥ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q11 0 0 0 0 0 0 0 0
0 q12 0 0 0 0 0 0 0
0 0 q13 0 0 0 0 0 0
0 0 0 q12 0 0 0 0 0
0 0 0 0 q11 0 0 0 0
0 0 0 0 0 q12 0 0 0
0 0 0 0 0 0 q13 0 0
0 0 0 0 0 0 0 q12 0
0 0 0 0 0 0 0 0 q11

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(191)

what brings following eigenenergy values

E1 = q11 , E2 = q12 , E3 = q13 , E4 = q12 , E5 = q11 ,

E6 = q12 , E7 = q13 , E8 = q12 , E9 = q11 .

(192)

Appendix 2: Details of Analytical Solution for Case
of Coupled SELs

We continue derivation of the equation of motion imposed by classical picture of
2-SELs and from Hamiltonian 137 we obtain the following expression for velocity
of interacting particles with positions x1(t) = −x2(t) and velocity vs time as

∫
dv√

q4(Ec − mv2))4 − d2(Ec − mv2)6
= d2

q4

∫
du√

(
Ecd
q − u)

1

u2
√
1 − u2

= s1

∫
du√

(s − u)

1

u2
√
1 − u2

.

(193)
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Setting s1 = d2

q4 and s = Ecd
q , we obtain the integral s1

∫
du√
(s−u)

1
u2

√
1−u2

that has the
solution as

s1

∫
du√

(s − u)

1

u2
√
1 − u2

= s1

s
√
1 − u2

[
(
u2 − 1

)√
s − u

u
+

+
i(s − 1)

√
s − u

√
u−1
s−1

(
EllipticE

(
i sinh−1

(√
u−s
s+1

)
, s+1
s−1

)
− EllipticF

(
i sinh−1

(√
u−s
s+1

)
, s+1
s−1

))

√
u−s
u+1

+

+
is

√
s − u

√
u−1
s−1 EllipticF

(
i sinh−1

(√
u−s
s+1

)
, s+1
s−1

)

√
u−s
u+1

−

(√
s − 1 + √

s + 1
) (√

s − 1 − √
s − u

)2
√ √

s−1
(√

s+1−√
s−u

)
(√

s−1+√
s+1

)(√
s−1−√

s−u
)
√ √

s−1
(√

s−u+√
s+1

)
(√

s−1−√
s+1

)(√
s−u−√

s−1
)

√
s
(
s − √

s − 1
√
s + 1 − 1

) ×

×
√√

s − 1
√
s − u − √

s + 1
√
s − u + s − √

s − 1
√
s + 1 − 1(√

s − 1 + √
s + 1

) (√
s − 1 − √

s − u
) ×

×
[ (√

s − 1 + √
s
)
EllipticF

⎛

⎝sin−1

⎛

⎝

√√√√
(√

s − 1 − √
s + 1

) (√
s − 1 + √

s − u
)

(√
s − 1 + √

s + 1
) (√

s − 1 − √
s − u

)

⎞

⎠ ,

(√
s − 1 + √

s + 1
)2

(√
s − 1 − √

s + 1
)2

⎞

⎠

− 2
√
s − 1×

× EllipticPi

[ (√s − 1 − √
s
) (√

s − 1 + √
s + 1

)
(√

s − 1 + √
s
) (√

s − 1 − √
s + 1

) , sin−1

⎛

⎝

√√√√
(√

s − 1 − √
s + 1

) (√
s − 1 + √

s − u
)

(√
s − 1 + √

s + 1
) (√

s − 1 − √
s − u

)

⎞

⎠ ,

(√
s − 1 + √

s + 1
)2

(√
s − 1 − √

s + 1
)2
]

−

(√
s − 1 + √

s + 1
) (√

s − 1 − √
s − u

)2
√ √

s−1
(√

s+1−√
s−u

)
(√

s−1+√
s+1

)(√
s−1−√

s−u
)
√ √

s−1
(√

s−u+√
s+1

)
(√

s−1−√
s+1

)(√
s−u−√

s−1
)

√
s
(−s + √

s − 1
√
s + 1 + 1

) ×

×
√√

s − 1
√
s − u − √

s + 1
√
s − u + s − √

s − 1
√
s + 1 − 1(√

s − 1 + √
s + 1

) (√
s − 1 − √

s − u
) ×

×
[ (√

s − 1 − √
s
)
EllipticF

⎛

⎝sin−1

⎛

⎝

√√√√
(√

s − 1 − √
s + 1

) (√
s − 1 + √

s − u
)

(√
s − 1 + √

s + 1
) (√

s − 1 − √
s − u

)

⎞

⎠ ,

(√
s − 1 + √

s + 1
)2

(√
s − 1 − √

s + 1
)2

⎞

⎠
]

− 2
√
s − 1EllipticPi

[ (√s − 1 + √
s
) (√

s − 1 + √
s + 1

)
(√

s − 1 − √
s
) (√

s − 1 − √
s + 1

) ,

sin−1

⎛

⎝

√√√√
(√

s − 1 − √
s + 1

) (√
s − u + √

s − 1
)

(√
s − 1 + √

s + 1
) (√

s − 1 − √
s − u

)

⎞

⎠ ,

(√
s − 1 + √

s + 1
)2

(√
s − 1 − √

s + 1
)2
]]

, (194)

where EllipticF[., .] is the elliptic integral of the first kind, EllipticE[., .] is the elliptic
integral of the second kind and EllipticPi[., .] is the complete elliptic integral of
the third kind as in accordance with nomenclature used by Mathematica symbolic
software [15].

Appendix 3: Details of Anticorrelation Function Calculation
for the Case of WeakMeasurement Performed on the 2-SELs

We refer to the Hamiltonian of 2-SEL system coupled to flying qubit given by Eq.
(152) and we recognize that the time-dependent Hamiltonian ĤAC(t) and evolution
operator based on it is as follows
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e
1

�i

∫ t
0 (ĤAC (t ′)× ÎB )dt ′ = (195)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e
1

�i

∫ t
0 Ec1′′ 1 (t ′ )dt ′ 0 0 0 0 0 0 0

0 e
1

�i

∫ t
0 Ec1′′ 1dt ′ 0 0 0 0 0 0

0 0 e
1

�i

∫ t
0 Ec2′′ 1 (t ′ )dt ′ 0 0 0 0 0

0 0 0 e
1

�i

∫ t
0 Ec2′′ 1 (t ′ )dt ′ 0 0 0 0

0 0 0 0 e
1

�i

∫ t
0 Ec1′′ 2 (t ′ )dt ′ 0 0 0

0 0 0 0 0 e
1

�i

∫ t
0 Ec1′′ 2 (t ′ )dt ′ 0 0

0 0 0 0 0 0 e
1

�i

∫ t
0 Ec2′′ 2 (t ′ )dt ′ 0

0 0 0 0 0 0 0 e
1

�i

∫ t
0 Ec2′′ 2 dt ′

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now we are defining the correlation function for 2-SELs in case of the system
interaction with the external flying qubit given by the matrix

CAB,C = ÎC × ĈAB =
(
1 0
0 1

)
×

⎛

⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞

⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 +1 0 0 0 0
0 0 0 0 +1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 +1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(196)

Now we construct Hamiltonian for non-interacting C and AB physical systems
given as

Ĥ = ÎC × ĤAB + ĤC × ÎAB =

=
(
ĤAB 0̂4×4

0̂4×4 ĤAB

)
+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ĤC [1, 1] 0 0 0 ĤC [1, 2] 0 0 0

0 ĤC [1, 1] 0 0 0 ĤC [1, 2] 0 0

0 0 ĤC [1, 1] 0 0 0 ĤC [1, 2] 0

0 0 0 ĤC [1, 1] 0 0 0 ĤC [1, 2]
ĤC [2, 1] 0 0 0 ĤC [2, 2] 0 0 0

0 ĤC [2, 1] 0 0 0 ĤC [2, 2] 0 0

0 0 ĤC [2, 1] 0 0 0 ĤC [2, 2] 0

0 0 0 ĤC [2, 1] 0 0 0 ĤC [2, 2]

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ep1 + Ep1′ + Ec1 ts1′2′ ts12 0 0 0 0 0

t∗s1′2′ Ep1 + Ep2′ + Ec2 0 ts12 0 0 0 0

t∗s12 0 Ep2 + Ep1′ + Ec2 ts1′2′ 0 0 0 0

0 t∗s12 t∗s1′2′ Ep2 + Ep2′ + Ec1 0 0 0 0

0 0 0 0 Ep1 + Ep1′ + Ec1 ts1′2′ ts12 0

0 0 0 0 t∗s1′2′ Ep1 + Ep2′ + Ec2 0 ts12
0 0 0 0 t∗s12 0 Ep2 + Ep1′ + Ec2 ts1′2′

0 0 0 0 0 ts12 t∗s1′2′ Ep2 + Ep2′ + Ec1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ep1′′ 0 0 0 ts1′′2′′ 0 0 0

0 Ep1′′ 0 0 0 ts1′′2′′ 0 0

0 0 Ep1′′ 0 0 0 ts1′′2′′ 0

0 0 0 Ep1′′ 0 0 0 ts1′′2′′

t∗s1′′2′′ 0 0 0 Ep2′′ 0 0 0

0 t∗s1′′2′′ 0 0 0 Ep2′′ 0 0

0 0 t∗s1′′2′′ 0 0 0 Ep2′′ 0

0 0 0 t∗s1′′2′′ 0 0 0 Ep2′′

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ep1 + Ep1′ + Ec1 ts1′2′ ts12 0 ts1′′2′′ 0 0 0

t∗s1′2′ Ep1 + Ep2′ + Ec2 0 ts12 0 ts1′′2′′ 0 0

t∗s12 0 Ep2 + Ep1′ + Ec2 ts1′2′ 0 0 ts1′′2′′ 0

0 t∗s12 t∗s1′2′ Ep2 + Ep2′ + Ec1 0 0 0 ts1′′2′′

t∗s1′′2′′ 0 0 0 Ep1 + Ep1′ + Ec1 ts1′2′ ts12 0

0 t∗s1′′2′′ 0 0 t∗s1′2′ Ep1 + Ep2′ + Ec2 0 ts12
0 0 t∗s1′′2′′ 0 t∗s12 0 Ep2 + Ep1′ + Ec2 ts1′2′

0 0 0 t∗s1′′2′′ 0 ts12 t∗s1′2′ Ep2 + Ep2′ + Ec1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

+ diag(Ep1′′ , Ep1′′ , Ep1′′ , Ep1′′ , Ep2′′ , Ep2′′ , Ep2′′ , Ep2′′ ).
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We recognize that diagonal elements of ÎC × ĤAB + ĤC × ÎAB are

(Ep1 + Ep1′ + Ec1 + Ep1′′ , Ep1 + Ep2′ + Ec2 + Ep1′′ , Ep2 + Ep1′ + Ec2 + Ep1′′ , Ep2 + Ep2′ + Ec1 + Ep1′′ ,
Ep1 + Ep1′ + Ec1 + Ep2′′ , Ep1 + Ep2′ + Ec2 + Ep2′′ , Ep2 + Ep1′ + Ec2 + Ep2′′ , Ep2 + Ep2′ + Ec1 + Ep2′′ ).

Now we consider the interaction between qubits C and A denoted by HCA and it will
be incorporated into global Hamiltonian ĤC A × ÎB that has the following diagonal
matrix representation

ĤC A =

⎛

⎜⎜⎝

Ec1′′1(t) 0 0 0
0 Ec1′′2(t) 0 0
0 0 Ec2′′1(t) 0
0 0 0 Ec2′′2(t)

⎞

⎟⎟⎠ (197)

and consequently

ĤC A × ÎB =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ec1′′1(t) 0 0 0 0 0 0 0
0 Ec1′′1(t) 0 0 0 0 0 0
0 0 Ec1′′2(t) 0 0 0 0 0
0 0 0 Ec1′′2(t) 0 0 0 0
0 0 0 0 Ec2′′1(t) 0 0 0
0 0 0 0 0 Ec2′′1(t) 0 0
0 0 0 0 0 0 Ec2′′2(t) 0
0 0 0 0 0 0 0 Ec2′′2(t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(198)
We have the total Hamiltonian for the flying qubit interacting with 2-SELs given as

Ĥ = ÎC × ĤAB + ĤC × ÎAB + Ĥ(t)CA × ÎB . (199)

We recognize that the diagonal terms of totalmatrix are given as a following sequence

(Ep1 + Ep1′ + Ec1 + Ep1′′ + Ec1′′1(t), Ep1 + Ep2′ + Ec2 + Ep1′′ + Ec1′′1(t), Ep2 + Ep1′ + Ec2

+ Ep1′′ + Ec1′′2(t), Ep2 + Ep2′ + Ec1 + Ep1′′ + Ec1′′2(t),

Ep1 + Ep1′ + Ec1 + Ep2′′ + Ec2′′1(t), Ep1 + Ep2′ + Ec2 + Ep2′′
+ Ec2′′1(t), Ep2 + Ep1′ + Ec2 + Ep2′′ + Ec2′′2(t), Ep2

+ Ep2′ + Ec1 + Ep2′′ + Ec2′′2(t)). (200)

Setting Ep1 = Ep1′ = Ep1′′ = Ep2 = Ep2′ = Ep2′′ = Ep, we obtain diagonal
terms as

(Ec1 + 3Ep + Ec1′′1(t), Ec2 + 3Ep + Ec1′′1(t), Ec2 + 3Ep + Ec1′′2(t), 3Ep + Ec1 + Ec1′′2(t),
Ec1 + 3Ep + Ec2′′1(t), 3Ep + Ec2 + Ec2′′1(t), 3Ep + Ec2 + Ec2′′2(t), 3Ep + Ec1 + Ec2′′2(t)). (201)
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Substracting element 3Ep + Ec1 we obtain

Ec1′′1(t), Ec2 − Ec1 + Ec1′′1(t), Ec2 − Ec1 + Ec1′′2(t), Ec1′′2(t),

Ec2′′1(t), Ec2 − Ec1 + Ec2′′1(t), Ec2 − Ec1 + Ec2′′2(t), Ec2′′2(t)). (202)

Now we are constructing the density matrix for the case of non-interacting qubit C
with 2-SELs denoted as AB system. We assume that qubit C is in the ground state
and that symmetric 2-SELs line is populated at energy E1 or E2. In such a case, the
density matrices are as follows

ρ̂C =
(+ 1

2 − 1
2− 1

2 + 1
2

)
, ρ̂AB =

⎛

⎜⎜⎝

+ 1
2 0 0 − 1

2
0 0 0 0
0 0 0 0

− 1
2 0 0 + 1

2

⎞

⎟⎟⎠ (203)

Therefore, the density matrix of non-interacting qubit C with 2-SELs line denoted
as AB system is given as

ρ̂ABC =
(+ 1

2 − 1
2− 1

2 + 1
2

)
×

⎛

⎜⎜⎝

+ 1
2 0 0 − 1

2
0 0 0 0
0 0 0 0

− 1
2 0 0 + 1

2

⎞

⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ 1
4 0 0 − 1

4 − 1
4 0 0 + 1

4
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

− 1
4 0 0 + 1

4 + 1
4 0 0 − 1

4− 1
4 0 0 + 1

4 + 1
4 0 0 − 1

4
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

+ 1
4 0 0 − 1

4 − 1
4 0 0 + 1

4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (204)

The density matrix follows the equation of motion

ρ(t) = e
1
i�

∫ t
0 H(t ′)dt ′

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ 1
4 0 0 − 1

4 − 1
4 0 0 + 1

4
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

− 1
4 0 0 + 1

4 + 1
4 0 0 − 1

4− 1
4 0 0 + 1

4 + 1
4 0 0 − 1

4
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

+ 1
4 0 0 − 1

4 − 1
4 0 0 + 1

4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e− 1
i�

∫ t
0 H(t ′)dt ′ . (205)

Since the structure of the Hamiltonian matrix Ĥ(t) = ÎC × ĤAB + ĤC × ÎAB +
ĤC A(t) × ÎB describing the interaction of three electrons confined to the flying
position-based qubit C and 2-SEL system is known at all instances of time in the
analytical way as well as the operators e± 1

i�

∫ t
0 H(t ′)dt ′ are known in the analytical way,

the structure of the density matrix is known in the analytical way. This implies our
full knowledge of the qubit C state and 2-SELs system at any instance of time thanks
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to the Formula (149). Such reasoning opens the perspective of analytical approach
towards quantum N -body electron (hole) system confined to the three disconnected
graphs of quantum dots of any topology in the 3D space subjected to the steering
mechanism from voltage polarization applied to CMOS gates, as depicted in Fig. 2.
It is thus the subject of the future more detailed studies with use of both analytical
and numerical tools. It also opens the perspective on new experiments and new tech-
nological novelties in the area of cryogenic CMOS single-electron device electronics
[16] that have both importance in the implementation of quantum computer as well
as in the development of classical single electron electronics.
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