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Abstract A thermodynamic analysis of the reduction process of iron-based oxide
systems with nickel and cobalt additives in various gaseous media (coke oven gas,
carbon monoxide(II), and hydrogen) has been carried out. The method of mini-
mizing the total thermodynamic potentials was used to calculate the equilibrium
compositions of the products of the process under study. The expediency of using
hydrogen for the reduction of iron oxide is shown. Its optimal concentration and
process temperature are established.
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1 Introduction

Currently, the areas of use of nanodispersed metals and alloys are expanding,
including in environmental technologies [1–5]. One of these materials is nanocom-
posites based on nanoiron, which have high catalytic and adsorption characteristics
in the purification of aqueous media from organic and inorganic contaminants and
highmagnetic characteristics [6]. The efficiency of using suchmaterials is associated
with the high dispersion of iron nanoparticles and, accordingly, their large specific
surface area and chemical activity. Despite many advantages, such systems have a
number of disadvantages, themain ofwhich is significant pyrophoricity, the tendency
of particles to aggregate. One way to slow down these processes is doping nanoiron
particles with transition metal cations and synthesizing composites [7–9]. Therefore,
the presence of cobalt and nickel stabilizes nanosized iron. Thus, the relevance of
the work is pre-determined by the need to improve modern highly efficient photo-
catalysts, catalysts, and adsorbents. There are various technologies for obtaining
dispersed iron. For example, the decomposition of Fe(CO)5 in organic solvents or
in argon. But the most common method is the reduction of Fe2+ or Fe3+ ions from
solutions of their salts with alkali metal borohydrides [10, 11]. The iron obtained
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in this way has a typical so-called “core–shell” structure in which the central part
consists of iron, and the surface is covered with a thin layer of Fe(II) and Fe(III)
oxides, which are formed as a result of oxidative processes. These materials have a
large specific surface area and high reactivity. However, a significant disadvantage is
that nanoiron has a tendency to aggregate and is easily oxidized with the formation of
an oxide layer on the particle surface. These factors reduce the activity and efficiency
of nanoiron [12].

The most common variant of the technology for producing iron powder is the
reduction of iron oxides and hydroxides (Fe2O3, Fe3O4, Fe(OH)3, and α-FeOOH)
with hydrogen [13–15]. In this case, the metal particles mainly retain the shape and
particle size distribution of the original powder during the reduction process under
certain conditions.

The same group of methods includes obtaining oxides through carbonate, oxalate,
oxyhydroxides (goethite, lepidocrocite), or other insoluble but easily decomposing
compounds. The main advantage of these methods is the possibility of obtaining a
pure product even when raw materials of low purity are used.

By calcining powders of coagulatedNi- and Fe-tartrates at 250–400 °C (2 h), ultra-
fine Ni(II) ferrite powders with a particle size of 10 nm were obtained. In powders,
mixtures of Ni- and Fe-tartrates have the chemical properties of individual salts. The
homogeneity of their mixing strongly affects the course of the thermal reaction and
the properties of the resulting powders. The reservoir temperature and particle size
increase with the deterioration of mixing, which initiates an increase in the size of
intermediate phases (α–Fe2O3, NiO, or Ni) [16].

The general scheme for obtaining highly dispersed iron powder can be represented
as follows:

• production of hydroxides
• dehydration of hydroxides to oxides
• reduction of oxides to metallic iron.

In this case, the size and shape of powder particles are mainly determined by the
structure of hydroxides.

The reduction process is the final stage and largely determines the important
parameters such as the granulometric composition of products, the content ofmetallic
iron in them, and the structure of particles [17–19]. These parameters can be signif-
icantly affected by the choice of reducing gas, since it determines the temperature
regime of the process, the composition of the gaseous medium, and, consequently,
the state of the surface of the final product [20].

It is known that the reduction and regeneration of iron oxides can be carried out
not only with hydrogen, carbon monoxide, and ammonia, but also with technically
available gas mixtures: coke, generator, water, etc.
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2 Methodology

For reasonable choice of the optimal gas medium, a thermodynamic analysis of the
reduction process was carried out.

Thermodynamic calculations were carried out according to the method, which
is based on the first variational principle of chemical thermodynamics, using the
ASTRA program.

On the basis of thermodynamic calculations, the equilibrium compositions of
the products of chemical reactions were determined at various initial compositions,
temperatures, and pressures.

The powder with the optimal weight content of the components was taken as the
feedstock. In terms of oxides in wt %: Fe2O3–95, NiO–4, and CoO–1.

Coke oven gas based on, (composition: 57% CH4, 34% H2, 3% CO, 4.4% (CO2

+ N2), 0.4 O2, 1.2% heavy hydrocarbons), CO and hydrogen. The amounts of gases
were taken in excess of the stoichiometric amount.

The calculation was carried out in the temperature range 300–1100K at a pressure
of 0.1 MPa. During the calculation, the influence of the composition of the reducing
gaseousmediumon the course of the processwas studied. The calculationwas carried
out taking into account the possibility of formation of the following products: Fe2O3,
Fe3O4, FeO, CoO, NiO, Fe, C, Fe3C, Co, and Ni in the condensed phase and H, H2,
H2O, NH3, CO, CO2, CH4, CH3, C2H2, C6H6, CH2O, N2C, and HCN in the gas
phase. The concentrations of substances were expressed in mol/kg of the system
under study.

3 Results and Its Discussion

The temperature dependence of the equilibriumcomposition of the Fe2O3–CoO–NiO
oxide system during reduction with coconut gas is shown in Fig. 1.

From the analysis of the dependence, it follows that the complete reduction of
iron oxides to metal occurs at 700 K, and with a further increase in temperature, its
amount decreases due to the formation of iron carbide. Nickel oxides are completely
reduced at 400 K and cobalt at 900 K.

Figure 2 shows the temperature dependence of the equilibrium compositions of
the same system during the reduction of carbon monoxide(II).

As can be seen from Fig. 2, the reduction of oxides begins at 500 K; however, the
degree of reduction strongly depends on temperature and is maximum at 1000 K.

Nickel oxide is reduced at 400 K and cobalt oxide at 800 K. At 900 K, the
existence of iron carbide is thermodynamically possible. The reducing properties of
the released carbon appear at a temperature of 1000 K.

Figure 3 shows the results of thermodynamic calculations of the chemisorbent
reduction process in a hydrogen medium. Nickel oxide is completely reduced to
metal at 400 K, at 600 K oxides of iron and cobalt.



26 L. Frolova and B. Blyuss

10-6

10-5

10-4

10-3

10-2

10-1

100

101

300 400 500 600 700 800 900 1000 1100

Т, К

С, mol/kg

N2k*Fe

k*FeO

k*Co

k*Ni

NH
3

N2

H 2

CH3 H2O

CH3C2H4

k*Fe3C
k*C

Fe3O4

k*Fe2O3

k*CoO

CO2

CO

N2C

C2H6

Fig. 1 Dependence of the equilibrium composition of the Fe–Co–Ni–C–N–O–H system on
temperature during reduction with coke oven gas, pressure 0.1 MPa
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Fig. 2 Dependence of the equilibrium composition of the Fe–Co–Ni–C–N–O–H system on
temperature during CO reduction, pressure 0.1 MPa
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Fig. 3 Dependence of the equilibrium composition of the Fe–Co–Ni–O–H system on temperature
during hydrogen reduction, pressure 0.1 MPa

To clarify the optimal hydrogen concentrations, which allow the reduction of
the complex Fe–Co–Ni oxide system at lower temperatures, the influence of the
hydrogen content in the gas mixture on the temperature of the complete reduction of
oxides was studied.

Figure 4 shows the generalized temperature dependence of the total concentrations
of two solid phases. The first contains metal oxides, and the second contains metals
at different hydrogen concentrations.

Fig. 4 Dependence of the
total concentrations of the
solid phase of the
Fe–Co–Ni–C–N–O–H
system on temperature at P
= 0.1 MPa, the gaseous
medium is hydrogen;
1–3—total concentration of
metals; 1*–3*—total
concentration of metal
oxides; 1–1*—90% H2,
2–2*—60% H2, and
3–3*—20% H2
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Comparing the presented results, we can conclude that with an increase in the
hydrogen content in the gas mixture, the temperature region of the existence of
a solid solution of iron, cobalt, and nickel increases, and the temperature of the
complete reduction of oxides shifts to lower temperatures.

According to the results obtained from thermodynamic calculations, hydrogen is
the optimal gas medium, since it provides complete reduction of iron, cobalt, and
nickel oxides tometals at 600K (hydrogen concentration 60%wt.), while the product
is not cracked by carbon and iron carbide. Thus, the highly developed porous surface
of the catalyst, the structure of the particles, and, as a result, the good adsorption
capacity of the metal powder are preserved.
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