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Abstract. The detection, classification and analysis of emotions has
been an intense research area in the last years. Most of the techniques
applied for emotion recognition are those comprised by Artificial Intel-
ligence, such as neural networks, machine learning and deep learning,
which are focused on the training and learning of models. In this work,
we propose a rather different approach to the problem of detection and
classification of emotion within voice speech, regarding sound files as
information sources in the context of Shannon’s information theory. By
computing the entropy content of each audio, we find that emotion in
speech can be classified into two subsets: positive and negative. To be
able to perform the entropy computation, we first compute the Fourier
transform to digital audio recordings, bearing in mind that the voice
signal has a bandwidth 100 Hz and 4 kHz. The discrete Fourier spec-
trum is then used to set the alphabet and then the occurrence proba-
bilities of each symbol (frequency) is used to compute the entropy for
non-hysterical information sources. A dataset consisting of 1,440 voice
audios performed by professional voice actors was analysed through this
methodology, showing that in most cases, this simple approach is capable
of performing the positive/negative emotion classification.
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1 Introduction

The identification, classification and analysis of emotions is a fertile, active and
open research area within the pattern recognition field. Historically, the widest
source of information to perform emotion detection has been text. However, a
remarkable surge in the availability of text sources for sentiment analysis arrived
in the last two decades with the massive spreading of Internet [1]. Moreover, the
arisal of web-based social networks, particularly designed for the social interac-
tion, eased their usage for the sharing of sentiments, generating massive amounts
of information to be mined for the comprehension of human psyche [1,2]. Tradi-
tionally, as emotions detection and classification has been performed (mostly on
text sources) with different techniques of Artificial Intelligence (AI), sentiment
analysis is commonly regarded as an area of this same field [3].

Furthermore, the rise of social networks also allowed people to find new ways
of expressing their emotions, with the use of content like emoticons, pictures as
memes, audio and video [1,4], showing the necessity of generating methods to
expand the sentiment analysis to this novel sources of information. Accordingly,
much research has been performed in the field of emotion analysis within social
networks content, which is mostly based on the analysis of text/comments with
AI techniques [5–11]. Several applications in this field are healthcare [12,13],
social behavioural assessment [14,15], touristic perception [16], identification
of trends in conflicting versus non-conflicting regions [17], evaluation of influ-
ence propagation models on social networks [18], emotions identification in
text/emoticons/emojis [19], among many others. A review on textual emotion
analysis can be found in [20].

With respect to images, the analysis has been focused on facial emotion recog-
nition mainly through the combination of AI and techniques of digital image pro-
cessing [21]. In [22] a 2D canonical correlation was implemented, [23] combines
the distance in facial landmarks along with a genetic algorithm, [24] used a deep
learning approach to identify the motions of painters with their artwork, [25] used
the maximum likelihood distributions to detect neutral, fear, pain, pleasure and
laugh expressions in video stills, [26] uses a multimodal Graph Convolutional
Network to perform a conjoint analysis of aesthetic and emotion feelings within
images, [27] uses improved local binary pattern and wavelet transforms to assess
the learning states and emotions of students in online learning, [28] uses principal
component analysis and deep learning methods to identify emotion in children
with autism spectrum disorder, [29] used facial thermal images, deep reinforce-
ment learning and IoT robotic devices to assess attention-deficit hyperactivity
disorder in children, while [30] fuzzifies emotion categories in images to assess
them through a deep metric learning. A recent review on the techniques for
emotion detection in facial images is reported in [31].

However, a much lesser studied area within emotion recognition is the emo-
tion analysis within audio sources, specifically in voice/speech. The first attempts
were based on the classification of emotions by parameters of the audio signal;
for instance, for english and malayan voices and for six emotions, the average
pitch, the pitch range and jitter were assessed for signals of both male and
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female voices, finding that the language does not affect the emotional speech
[32], while [33] applied data mining algorithms to prosody parameters extracted
from non-professional voice actors. Also, [34] extracted 65 acoustic parameters
to assess anger, contempt, fear, happiness, interest, lust, neutral, pride, relief,
sadness, and shame emotional stages in over 100 professional actors from five
English-speaking countries. Later, medical technology was applied using func-
tional magnetic resonance images to measure the brain activity while the patient
was giving a speech which in turn was recorded and computer-processed [35].
More algorithmical approaches were developed later, such as fuzzy logic rea-
soners [36,37], discriminant analysis focused on nursing experience [38], the use
of statistical similarity measurements to categorise sentiments in acted, natu-
ral and induced speeches [39,40], the use of subjective psychological criteria to
improve voice database design, parametrisation and classification schemes [41],
among others. Machine learning approaches have also been developed, as the
recognition of positive, neutral and negative emotions on spontaneous speech in
children with autism spectrum disorders through support vector machines [42],
the application of the k-nearest neighbour method to signal parameters as pitch,
temporal and duration on theatrical plays for identification of happy, angry,
fear, and neutral emotions [43], the simultaneous use of ant colony optimisation
and k-nearest neighbour algorithms to improve the efficiency of speech emotion
recognition, focusing only on the spectral roll-off, spectral centroid, spectral flux,
log energy, and formats at few chosen frequency sub-bands [44], as well as the
real time analysis of TV debates’ speech through a deep learning approach in
the parameter space [45]. In the field of neural networks, a neurolinguistic pro-
cessing model based on neural networks to conjointly analyse voice through the
acoustic parameters of tone, pitch, rate, intensity, meaning, etc., along with text
analysis based on linguistic features was developed by [46], while [47] proposes
the use of a multi-layer perceptron neural network to classify emotions by the
Mel frequency Cepstral Coefficient, its scaled spectrogram frequency, chroma
and tonnetz parameters. Moreover, some studies suggest that, when available,
the conjoint analysis of voice and facial expressions could lead to a better per-
formance on emotion classification than the two techniques used separately [48].

As can be observed, there exist two main approaches to the problem of emo-
tion analysis in voice/speech records, which can be used together: the direct
analysis of parameters derived from the sound signal, and the use of AI tech-
niques at many levels to build recognition and classification schemes. The main
drawback of the systems based on AI methods is that they are subject to a train-
ing process that might be prone to bias and that highly depends on the training
dataset, which might be inappropriately split [49]; moreover, the presence of
hidden variables as well as mistaking the real objective are common drawbacks
in the field [49,50]. Collateral drawbacks are likely the large amount of time and
computer resources required to train the AI-based systems. In [51] and [52] the
subject of how to build representative AI models in general is explored.

In this work, we deviate from the traditional approaches to the problem
of emotion analysis in order to explore a novel approach that regards the
voice/speech recording as an information source in the framework of Shannon’s
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information theory [53]. In particular, we compute the information entropy of
a voice/speech signal in order to classify emotion into two categories, positive
and negative emotions, by generating an alphabet consisting on the frequency
content of a human-audible sub-band. Although Shannon entropy has been pre-
viously used to perform pattern recognition in sound, it has been applied mainly
to the heart sounds classification [54,55]. The outcome shows that this approach
is suitable for a very fast automatic classification of positive and negative emo-
tions, which lacks of a training phase by its own nature. This work is organised
as follows: in Sect. 2 we show the theoretical required background as well as the
dataset under use, while in Sect. 3 we show the followed procedure along with
the obtained results. Finally, in Sects. 4 and 5 we pose some final remarks as well
as future possible paths to extend the presented work.

2 Materials and Methods

2.1 Frequency Domain Analysis

Since the inception of the analysis in the frequency domain by Joseph Fourier in
1882 [56], Fourier series for periodic waveforms and Fourier transform for non-
periodic ones have been cornerstones of modern mathematical and numerical
analysis. Fourier transforms place time series in the frequency domain, so they
are able to provide their frequency content. Moreover, both continuous and dis-
crete waveforms are likely to be analysed through Fourier analysis. In this work,
we focus on discrete time series because most of audio sources available nowa-
days are binary files stored, processed and transmitted in digital computers. Let
x(n) be a discrete time series of finite energy, its Fourier transform is given by

X(w) =
∞∑

n=−∞
x(n)e−jwn, (1)

where X(w) represents the frequency spectrum of x(n) [57]. Such frequency con-
tent allows to classify the signal according to its power/energy density spectra,
which are quantitatively expressed as the bandwidth. Fourier transform has been
successfully applied for more than a century, in virtually any field of knowledge
as it can be imagined for signal analysis, such as in medicine [58–61], spec-
troscopy/spectromety [60–69], laser-material interaction [70], image processing
[59,71–73], big data [74], micro-electro-mechanical systems (MEMS) devices [75],
food technology [73,76,77], aerosol characterisation and assessment [78], vibra-
tions analysis [79], chromatic dispersion in optical fiber communications [80],
analysis of biological systems [81], characterisation in geological sciences [82],
data compression [83], catalyst surface analysis [84], profilometry [85], among
several others.

Frequency domain analysis can be applied to any signal from which infor-
mation is to be extracted. In the case of the voice signal herein studied, the
bandwidth is limited to a frequency range 100 Hz and 4 kHz.
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2.2 Shannon’s Entropy Computation

The fundamental problem of communications, i.e. to carry entirely a message
from one point to another, was first posed mathematically in [53]. Within his
theory, messages are considered discrete in the sense that they might be repre-
sented by a number of symbols, regardless of the continuous or discrete nature
of the information source, because any continuous source should be eventually
discretised in order to be further transmitted. The selected set of symbols to
represent certain message is called the alphabet, so that an infinite number of
messages could be coded by such alphabet, regardless of its finitude.

In this sense, different messages coded in the same alphabet use different
symbols, so the probability of appearance of each could vary from each one
to the other. Therefore, the discrete source of information could be considered
as a stochastic process, and conversely, any stochastic process that produces a
discrete sequence of symbols selected from a finite set will be a discrete source
[53]. An example of this is the digital voice signal.

For a discrete source of information in which the probabilities of occurrence of
events are known, there is a measure of how much choice is involved in selecting
the event or how uncertain we are about its outcome. According to theorem 2 of
[53], there should be a function H that satisfies the properties of being contin-
uous on the probabilities of the events (pi), of being a monotonically increasing
function of n and as well as being additive. The logarithmic function meets such
requirements, and it is optimal for considering the influence of the statistics of
very large messages in particular, as the occurrence of the symbols tends to
be very large. In particular, base 2 logarithms are singularly adequate to mea-
sure the information, choice and uncertainty content of digital (binary) coded
messages. Such a function then takes the form

H = −K

n∑

i=1

pilog(pi), (2)

where the positive constant K sets a measurement unit and n is the number of
symbols in the selected alphabet. H is the so called information (or Shannon’s)
entropy for a set of probabilities p1, . . . , pn. It must be noted that the validity
of Eq. 2 relies in the fact that each symbol within the alphabet is equiprobable,
i.e. for information sources that do not possess hysteresis processes. For alpha-
bets with symbols that are not equally probable, Eq. 2 is modified, yielding the
conditional entropy.

Beyond the direct applications of information entropy in the field of communi-
cations systems, it has been also used for assessment and classification purposes.
For instance, [86] evaluates non-uniform distribution of assembly features in
precision instruments, [87] applies it to multi-attribute utility analysis, [88] uses
a generalised maximum entropy principle to identify graphical ARMA models,
[89] studies critical characteristics of self-organised behaviour of concrete under
uniaxial compression, [90] explores interactive attribute reduction for unlabelled
mixed data, [91] improves neighbourhood entropies for uncertainty analysis and
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intelligent processing, [92] proposes an inaccuracy fuzzy entropy measure for a
pair of probability distribution and discuss its relationship with mean codeword
length, [93] develops proofs for quantum error-correction codes, [94] performs
attribute reduction for unlabelled data through an entropy based missclassifica-
tion cost function, [95] applies the cross entropy of mass function in similarity
measure, [96] detects stress-induced sleep alteration in electroencephalographic
records, [97] uses entropy and symmetry arguments to assess the self-replication
problem in robotics and artificial life, [98] applies it to the quantisation of local
observations for distributed detection, etc.

Although the information entropy has been largely applied to typical text
sources, the question of how to apply it to digital sound sources could entail
certain difficulties, as the definition of an adequate alphabet in order to perform
the information measurement. In this work, we first implement a fast Fourier
transform algorithm to a frequency band of digital voice audios in order to set
a frequency alphabet. The symbols of such alphabet are finite as the sound files
are sampled to the same bitrate.

2.3 Voice Signals Dataset

The dataset used in this work was obtained from the Ryerson Audio-Visual
Database of Emotional Speech and Song (RAVDESS) [99], and it consists of
1,440 audio-only WAV files, performed of 24 professional voice actors (12 women,
12 men), who vocalise English matching statements with a neutral American
accent.

Each actor performs calm, happy, sad, angry, fearful, surprised, disgusted,
and neutral expressions. Each expression is performed at two levels of emotional
intensities: normal and loud. Each actor vocalised two different statements: 1
stands for “Kids are talking by the door” and 2 for “Dogs are sitting by the
door”. Finally, each vocalisation was recorded twice which is stated as 1st or 2nd

repetition. Each audio is approximately 3 s long. Table 1 shows the classification
of the voice dataset, in which it can be observed that such emotions have been
separated into two subsets of positive and negative emotions.

Table 1. Number of files within the voice dataset, distributed by emotions, which are
separated in positive and negative emotions subsets.

Emotions Total

Positive Negative Neutral

Happy Surprised Calm Sad Fearful Disgusted Angry

Message 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Loud 1st 24 24 24 24 24 24 24 24 24 24 24 24 24 24 - - 336

2nd 24 24 24 24 24 24 24 24 24 24 24 24 24 24 - - 336

Normal 1st 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 384

2nd 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 384

Total 96 96 96 96 96 96 96 96 96 96 96 96 96 96 48 48 1440

192 192 192 192 192 192 192 96
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3 Development and Results

The methods in the aforementioned section were implemented with the Python
programming language. First, the librosa library, which is focused on the pro-
cessing of audio and music signals [100], was implemented to obtain the sampled
data of the audio at a sampling bitrate of 22,050 Hz. In order to obtain the
frequency spectrum, the Fast Fourier Transform (FFT) algorithm was used to
perform the discrete fourier transform. FFT was implemented through the SciPy
library, a collection of mathematical algorithms and functions built on top of the
NumPy extension to Python, adding significant enhancement by providing high-
level commands and classes for manipulating and displaying data [101]. SciPy is
a system prototyping and data processing environment that rivals systems like
MATLAB, IDL, Octave, R-Lab, and SciLab [101].

As the audios were all sampled to a bitrate of br = 22, 050 Hz, if their duration
is of t s, then the number of time samples they possess is just br ·t, which conform
a br · t-sized vector. Then, the scipy.fft.rfft function is used to compute the 1D
discrete Fourier transform (DFT) of n points of such real-valued vector [102].

In order to compute the value of entropy of each voice source with the
described alphabet, the probability of each symbol (frequency values available in
the Fourier spectra) is computed and then the entropy through Eq. (2) is finally
calculated, as each frequency does not depend on the occurrence of another, i.e.
the sound information source can be regarded as non-hysterical.

3.1 Entropy Analysis

After the processing of the data set (Table 1), the entropy outcome of each
audio was analysed for the following emotions: calm, happy, sad, angry, afraid,
surprised and disgusted. As neutral expression does not express any emotion
intentionally, it was discarded from the analysis. Due to the length of the dataset,
here we only show some representative graphics of the obtained results. We also
display the average results in what follows.

(a) Message 1 on 2nd repetition. (b) Message 2 on 1st repetition.

Fig. 1. Comparison of the average entropy for all actors on each emotion.
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The first analysis is over the average of the entropy of all the actors comparing
the loud against the normal emotional intensities. Results can be observed for
both messages in Fig. 1, where the results are presented in ascending order with
respect to normal emotional intensity values of entropy.

Table 2 shows in detail the average values of the entropy obtained from all
of the 24 actors, including the cases of Fig. 1, classified according to intensity
(loud and normal). The values are in ascending order in accordance with normal
intensity. The values obtained in each repetition (1st and 2nd) of the messages
are shown separately.

Table 2. Average entropy of all actors comparing intensity.

Message 1 Message 2

Emotion Normal Loud Emotion Normal Loud

1st Repetition

Happy 13.62937 13.78712 Happy 13.86193 13.99179

Surprise 13.67065 13.93201 Sad 13.89544 13.94124

Sad 13.72977 13.65707 Surprise 13.93365 14.04495

Calm 13.74445 13.91538 Fear 14.00737 13.89378

Fear 13.78522 13.72170 Calm 14.02606 14.09250

Angry 13.99452 14.01461 Angry 14.15280 14.06335

Disgusted 14.04117 14.18401 Disgusted 14.26644 14.28761

2nd Repetition

Happy 13.62500 13.80204 Surprise 13.87808 14.07231

Surprise 13.65754 13.85815 Happy 13.91507 13.94989

Calm 13.71306 13.80327 Sad 13.96764 13.93037

Sad 13.71528 13.74593 Fear 13.99382 13.84644

Fear 13.80536 13.70516 Calm 14.03019 14.12940

Disgusted 14.00738 14.14444 Angry 14.19368 14.12245

Angry 14.00800 14.01744 Disgusted 14.22615 14.33484

In order to explore the entropic content of the audios by gender, we compared
the loud and normal intensities for both gender, whose graphics are in ascending
order with respect to normal intensity, here shown in Figs. 2a and 2b for men
and Figs. 2c and 2d for women.

Table 3a shows in detail the average values of the entropy obtained from the
12 male interpreters, as well as in Table 3b for women, which include the cases
shown in Fig. 2. Both tables classify the entropy values according to intensity
(normal and loud) in ascending order with respect to normal intensity, featuring
separately the values of the 1st and 2nd repetitions of the messages.
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(a) Men’s message 1 on 1st repetition. (b) Men’s message 2 on 1st repetition.

(c) Women’s message 1 on 2nd repetition. (d) Women’s message 2 on 1st repetition.

Fig. 2. Normal vs loud intensity for both gender interpreters.

Table 3. Average entropy for both genders and messages, comparing intensity.

(a) Male interpreters

Message 1 Message 2

Emotion Normal Loud Emotion Normal Loud

1st Repetition

Happy 13.49931 13.75591 Happy 13.80846 14.02408

Surprised 13.57929 13.85501 Surprised 13.83677 13.91841

Calm 13.60234 13.87002 Sad 13.86316 13.91226

Sad 13.60938 13.60310 Fearful 13.94512 13.97890

Fearful 13.73046 13.72030 Calm 13.97587 14.12232

Disgusted 14.00011 14.11143 Angry 14.09121 14.03747

Angry 14.01447 14.00702 Disgusted 14.25447 14.31288

2nd Repetition

Happy 13.48353 13.73792 Surprised 13.79324 13.97323

Surprised 13.54198 13.84495 Happy 13.86438 13.93191

Calm 13.63455 13.70720 Fearful 13.90677 13.91836

Sad 13.64754 13.54204 Sad 13.94234 13.83481

Fearful 13.76416 13.75924 Calm 13.96887 14.02359

Disgusted 13.97689 14.17172 Disgusted 14.14322 14.39701

Angry 14.00588 14.06509 Angry 14.15684 14.10251

(continued)
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Table 3. (continued)

(b) Female interpreters

Message 1 Message 2

Emotion Normal Loud Emotion Normal Loud

1st Repetition

Happy 13.75942 13.81833 Happy 13.91540 13.95950

Surprised 13.76201 14.00901 Sad 13.92772 13.97022

Fearful 13.83999 13.72310 Surprised 14.03053 14.17150

Sad 13.85016 13.71104 Fearful 14.06962 13.80866

Calm 13.88657 13.96074 Calm 14.07626 14.06269

Angry 13.97456 14.02220 Angry 14.21440 14.08923

Disgusted 14.08223 14.25659 Disgusted 14.27841 14.26233

2nd Repetition

Happy 13.76648 13.86615 Surprised 13.96292 14.17139

Surprised 13.77310 13.87135 Happy 13.96576 13.96787

Sad 13.78301 13.94982 Sad 13.99293 14.02593

Calm 13.79157 13.89934 Fearful 14.08087 13.77452

Fearful 13.84656 13.65107 Calm 14.09151 14.23521

Angry 14.01012 13.96978 Angry 14.23052 14.14239

Disgusted 14.03787 14.11715 Disgusted 14.30908 14.27268

In what follows, we present the results of the average entropy for message 1
against message 2, for the same motional intensity. The general results for the
24 actors are observed in Fig. 3, where each plot is ordered in ascending order
with respect to message 1.

(a) Normal intensity. (b) Loud intensity.

Fig. 3. Message 1 vs 2 on 1st repetition.

Likewise, Table 4 shows all the average values of the entropy obtained from
the 24 actors, including the cases shown in Fig. 3, classified in accordance to
the type of message (1 or 2). The values are presented in ascending order with
respect to the normal intensity. The values obtained in each repetition (1st and
2nd) of the messages are clearly separated.
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Table 4. Average entropy of all actors comparing type of message.

Normal Loud

Emotion Mgs 2 Mgs 1 Emotion Mgs 2 Mgs 1

1st Repetition

Happy 13.86193 13.62937 Sad 13.94124 13.65707

Surprise 13.93365 13.67065 Fear 13.89378 13.72170

Sad 13.89544 13.72977 Happy 13.99179 13.78712

Calm 14.02606 13.74445 Calm 14.09250 13.91538

Fear 14.00737 13.78522 Surprise 14.04495 13.93201

Angry 14.15280 13.99452 Angry 14.06335 14.01461

Disgusted 14.26644 14.04117 Disgusted 14.28761 14.18401

2nd Repetition

Happy 13.91507 13.62500 Fear 13.84644 13.70516

Surprise 13.87808 13.65754 Sad 13.93037 13.74593

Calm 14.03019 13.71306 Happy 13.94989 13.80204

Sad 13.96764 13.71528 Calm 14.12940 13.80327

Fear 13.99382 13.80536 Surprise 14.07231 13.85815

Disgusted 14.22615 14.00738 Angry 14.12245 14.01744

Angry 14.19368 14.00800 Disgusted 14.33484 14.14444

Moreover, the average entropy comparison between messages 1 and 2 (with
the same emotional intensity) is then shown for men in Figs. 4a and 4b and in
Figs. 4c and 4d for women. Each graph is ordered in ascending order with respect
to message 1.

(a) Men’s normal intensity on 1st repeti-
tion.

(b) Men’s loud intensity on 2nd repeti-
tion.

(c) Women’s normal intensity on 2nd rep-
etition.

(d) Women’s loud intensity on 1st repeti-
tion.

Fig. 4. Message 1 vs 2 with the same intensity for both gender interpreters.
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Table 5a shows in detail the average values of the entropy obtained from the
12 male interpreters, classified according to the message 1 or 2. The values are in
ascending order with respect to the normal intensity. The values obtained in each
repetition (1st and 2nd) of the messages were separated. The exact same setup
for the average values of the entropy obtained from the 12 female interpreters
can be observed in Table 5b. The cases shown in Fig. 4 are also include here.

Table 5. Average entropy for both gender actors comparing type of message.

Normal Loud

Emotion Mgs 2 Mgs 1 Emotion Mgs 2 Mgs 1

(a) Male interpreters

1st Repetition

Happy 13.97587 13.49931 Sad 14.02408 13.60310

Surprise 13.86316 13.57929 Fear 14.03747 13.72030

Calm 13.80846 13.60234 Happy 14.12232 13.75591

Sad 13.94512 13.60938 Surprise 13.97890 13.85501

Fear 14.25447 13.73046 Calm 14.31288 13.87002

Disgusted 13.81052 14.00011 Angry 13.91841 14.00702

Angry 13.83677 14.01447 Disgusted 13.91226 14.11143

2nd Repetition

Happy 13.94234 13.48353 Sad 13.83481 13.54204

Surprise 13.96887 13.54198 Calm 14.02359 13.70720

Calm 14.15684 13.63455 Happy 13.93191 13.73792

Sad 13.86438 13.64754 Fear 13.91836 13.75924

Fear 13.79324 13.76416 Surprise 13.97323 13.84495

Disgusted 13.90677 13.97689 Angry 14.10251 14.06509

Angry 14.14322 14.00588 Disgusted 14.39701 14.17172

(b) Female interpreters

1st Repetition

Happy 14.07626 13.75942 Sad 14.17150 13.71104

Surprise 13.91540 13.76201 Fear 13.80866 13.72310

Fear 14.03053 13.83999 Happy 14.26233 13.81833

Sad 14.21440 13.85016 Calm 14.08923 13.96074

Calm 13.88075 13.88657 Surprise 13.97022 14.00901

Angry 14.06962 13.97456 Angry 14.06269 14.02220

Disgusted 13.92772 14.08223 Disgusted 13.95950 14.25659

2nd Repetition

Happy 14.08087 13.76648 Fear 14.23521 13.65107

Surprise 13.99293 13.77310 Happy 14.14239 13.86615

Sad 14.09151 13.78301 Surprise 13.96787 13.87135

Calm 13.96576 13.79157 Calm 14.27268 13.89934

Fear 14.23052 13.84656 Sad 14.02593 13.94982

Angry 13.88605 14.01012 Angry 13.77452 13.96978

Disgusted 14.30908 14.03787 Disgusted 14.17139 14.11715
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4 Discussion and Conclusions

In this work, a different approach to the analysis of emotion was proposed,
since instead of applying the widely common methods of AI, a classification of
emotions into positive and negative categories within speech sources is proposed
through a tool of the theory of the information: the frequency-based Shannon’s
entropy. In order to compute information entropy, an alphabet based on the
frequency symbols generated by the decomposition of original audio time series
through the FFT algorithm is generated. Then, the probability of appearance
of each frequency symbol is obtained from the Fourier spectrum so to finally
compute the non-hysterical Shannon’s entropy (see Eq. (2)).

As already mentioned in Sect. 1, the typical sources of information in which
entropy calculation is performed are texts where the average entropy value ranges
between 3 and 4. However, as it was observed in the average values herein pro-
vided, they range between 13 and 15. This is clearly due to the nature of the
alphabet developed here. Given that in the texts, alphabets are composed of a
number of symbols of the order of tens, they yield small values of entropy. How-
ever, in the frequency domain, sound signals generate much larger alphabets,
yielding average entropies for a voice signal that are considerably higher than
that of a text. It is also clear that if richer sound sources would be analysed
through this method, as music files and not only speech, they would certainly
yield larger values of entropy. It must be considered that a value of about 14 is
much greater than the typical values of text entropy of 3–4, given the logarithmic
function that characterises the computation of entropy.

As it can be observed through Sect. 3, a general tendency of positive emo-
tions (happy, surprise and calm) to have lower values of entropy than the negative
emotions (sad, fear, disgust and anger) is present. Thus, large values of entropy
generally characterise negative emotions while lower values are typical of pos-
itive emotions, allowing to perform a pre-classification of emotions into these
two categories, without the necessity of going to a training phase as in general
machine learning algorithms.

Table 6. Average entropy classified by positive and negative emotion according to
intensity.

Case Study Positive Emotion Negative Emotion

Normal Loud Normal Loud

All actors 13.80708 13.94823 13.98687 13.97565

Men 13.71571 13.89704 13.94074 13.96713

Women 13.89846 13.99942 14.03300 13.98416

In order to better grasp the main result, in Table 6 we feature the average
entropy values according to the (normal and loud) intensities, by considering
both the positive and negative categories of emotions covered by this work.
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Such values are presented for all of the actors, as well as separated by gender.
It can be clearly observed that for the normal intensity, for the three averages
(for all actors, for men and for women), positive emotions yield smaller values
of entropy than those given by the negative emotions.

It is important to remember that for an information source within the context
of Shannon’s theory of information, symbols with lower probabilities to occur, are
the ones that represent more information, since the number of symbols required
to represent a certain message is less. If the symbols are more equiprobable for
a message, the entropic content will be small. In other words, when there are
symbols that occur infrequently, the entropic content would be higher. Also,
the longitude of the message plays an important role since for short messages,
the entropy will vary compared to a long ones, where the entropy will tend to
stabilise [103]. In this sense, it can be clearly observed from Table 6 that the
entropy values for the same intensity, comparing men against women, turn out
larger for women, in both positive and negative emotions (normal intensity).
This fact is consistent with the previous observation, because women in general
excite a narrower frequency bandwidth, thus making more unfrequently symbols
available, yielding to larger values of entropy.

The same pattern from the normal intensity is observed for the loud intensity
for the average of all actors as well as for the average of men (see Table 6). It
should be noted that for the loud intensities, the gap between the positive and
negative emotions is smaller than for the normal intensity of the message. This
is clearly because at a loud intensity, the amplitude of the time series is larger,
thus in general increasing the probabilities of occurrence of each symbol. The
particular case of female interpreters in which the loud intensity has a lower value
for the negative emotion than for the positive emotion is likely because when
women shout, they narrow their voices’ frequency bandwidth, thus yielding less
symbols with larger probabilities. This is not the case of male interpreters, that
when they shout, tend to excite a larger portion of the spectrum, yielding lower
values of entropy.

On the other side, Table 7 also shows the average values of entropy for the
positive and negative categories of emotions, but according to the type of mes-
sage. It could be noted that the general results are coherent because in general,
message 2 has larger values of entropy than message 1. This could be explained
subjectively because people could tend to be more expressive with his emotions
when talking about animals (dogs, in the case of message 2) than when talk-
ing about kids (message 1). Moreover, the high values of entropy for message
2 could be due to the fact that naturally, persons are more susceptible to get
negative emotions to animals. These facts could have influenced the actors when
vocalising message 2 with respect to message 1. Moreover, Table 7 confirms that
for all the cases (all of the actors, the men and the women), the entropy values
of positive emotions are lower than the values of entropy for negative emotions,
regardless of the analysed message, confirming the results shown in Table 6.
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Table 7. Average entropy classified by positive and negative emotion according to
message.

Case Study Positive Emotion Negative Emotion

Message 1 Message 2 Message 1 Message 2

All actors 13.76150 13.99381 13.89231 14.07021

Men 13.67599 13.93675 13.85805 14.04983

Women 13.84700 14.05087 13.92657 14.09059

Various sound classification applications using AI techniques are based on
the implementation of neural network variants, such as Deep Neural Network
(DNN) [104], Convolutional Neural Networks (CNN) [105,106], Recurrent Neural
Networks (RNN) [107], among others. Although the use of AI techniques allows
predicting the behaviour of the data from an exhaustive training of the chosen
algorithm, fixed parameters such as entropy always allows an analysis without
estimates or predictions. Thus, entropy values gives a clear idea of the behaviour
of the signal from itself, yielding a more reliable and direct result [108].

Although not directly related to information classification, entropy calcula-
tion is useful in the context of communication systems, as it represents a measure
of the amount of information that can be transmitted. Parameters such as chan-
nel capacity, joint entropy, data transmission rate, error symbol count, among
others, use entropy to be determined [53]. These parameters become important
when the information already classified or processed needs to be transmitted.
Various applications such as those exposed in [109] and [110] combine the clas-
sification of information with its use in communication systems, especially those
that require direct interaction with humans. Despite Shannon’s entropy has been
previously used to perform pattern recognition in sound, it has been mainly
applied to the heart sounds classification [54,55], and not in the context herein
studied.

As final remarks, in this work we find Shannon’s information to be a reliable
tool that is able to perform a very quick classification of emotions into positive
and negative categories. The computation of entropy based on the Fourier fre-
quency spectrum also allows to categorise a message considering the amplitude
of the original time series (if it is vocalised in normal or loud manner) as well
as into male and female broadcaster. However, as previously mentioned through
this section, further experiments with larger speech datasets should be performed
in order to find stabilised entropy values to pose limiting quantitative criteria.
In this way, for its simplicity and quickness, this novel approach could also serve
as a pre-classification system for emotions in order to prepare training datasets
for more complex machine learning algorithms to perform finer classifications of
sentiments.
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5 Future Work

This research can be extended in the following pathways:

– To expand this analysis to longer voice records as complete speeches.
– To expand this proposal to perform emotion analyses in analogical voice sig-

nals.
– To extend this analysis to assess the entropic content of voice audios in lan-

guages different than English.
– To explore the entropic content of other sound sources as music.
– To complement this approach with further tools of information theory [53]

and signal analysis techniques, in order to be able to perform a finer emotion
classification.
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