Xevolver for Performance Tuning of C Programs ®)

Check for
updates

Hiroyuki Takizawa, Shunpei Sugawara, Yoichi Shimomura, Keichi Takahashi and
Ryusuke Egawa

Abstract We introduce a C interface for standard C programmers to define their own
code transformation rules for performance tuning, mainly assuming loop transfor-
mations. The proposed C interface can support most of important features provided
by the Fortran interface. As a result, performance concerns can be defined separately
as user-defined code transformation rules, and thus the original application code can
be kept unchanged as much as possible.

1 Introduction

High-Performance Computing (HPC) applications are often specialized for their
target platforms to achieve reasonably high performance. Such code specialization
is not only labor-intensive, but also makes it difficult to migrate the applications to
other platforms. One idea to overcome this difficulty is separation of performance
concerns, meaning that the information specific to a particular platform is expressed
separately from the computation. However, in reality, one bad practice heavily used
in HPC application development to achieve high performance on multiple platforms
is a so-called “ifdef” approach that writes multiple code versions within a single file
and uses C macro conditionals for the preprocessor to switch the code versions to

Hiroyuki Takizawa, Yoichi Shimomura and Keichi Takahashi
Cyberscience Center, Tohoku University,
e-mail: takizawa@tohoku.ac. jp, shimomura32@tohoku.ac. jp, keichi@tohoku.ac. jp

Shunpei Sugawara
Graduate School of Information Sciences, Tohoku University,
e-mail: shunpei@hpc.is.tohoku.ac.jp

Ryusuke Egawa
Tokyo Denki University, e-mail: egawa@mail .dendai.ac. jp

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 85
M. M. Resch et al. (eds.), Sustained Simulation Performance 2021,
https://doi.org/10.1007/978-3-031-18046-0_6

mailto:takizawa@tohoku.ac.jp
mailto:shunpei@hpc.is.tohoku.ac.jp
mailto:egawa@mail.dendai.ac.jp
mailto:shimomura32@tohoku.ac.jp
mailto:keichi@tohoku.ac.jp
https://doi.org/10.1007/978-3-031-18046-0_6
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18046-0_6&domain=pdf

86 H. Takizawa, S. Sugawara, Y. Shimomura, K. Takahashi and R. Egawa

be used at the compilation, severely degrading the code maintainability. Therefore,
we need an effective way of expressing platform-specific performance concerns
separately from application codes.

In the Xevolver project [16], we have developed a programming framework for
performance tuning with user-defined code transformations [6, 12]. A high-level
programming interface for standard HPC programmers to describe their own code
transformation rules has also been developed mainly for Fortran codes [10], be-
cause most of legacy HPC applications are written in Fortran. Lately, however, it
is gradually becoming popular to use not only Fortran but also other programming
languages such as C and C++, especially when new HPC applications are developed
from scratch. Moreover, there are many tools such as CIVL [17] available for C and
C++, but not for Fortran. If we need to use such a tool, there is no choice to use
Fortran at the HPC application development. Therefore, we consider that Xevolver
should provide a high-level interface not only for Fortran but also for C.

In this article, we introduce a C interface for standard C programmers to define
their own code transformation rules for performance tuning, mainly assuming loop
transformations. Through various case studies [5, 13, 15], Xevolver’s approach has
been proven to be effective in achieving high performance and code maintainability.
The proposed C interface can support most of important features provided by the
Fortran interface. As a result, performance concerns can be defined separately as
user-defined code transformation rules, and thus the original application code can
be kept unchanged as much as possible.

2 Related work

Software automatic performance tuning, or auto-tuning (AT) for short, is indispens-
able to exploit the performance of modern HPC systems by empirically exploring a
parameter space relevant to performance [7]. To use AT techniques, an application
code must be developed to be auto-tunable [14], and be able to change its behaviors
according to parameter tuning and code version switching. One challenging issue is
that there is no established way of developing a practical application while keeping
it auto-tunable.

So far, several case studies have demonstrated that Xevolver’s approach can enable
standard HPC programmers to define their own code transformation rules without any
special knowledge about compiler implementation technologies [5,13,15]. Although
an HPC application code is directly modified by hand to adapt to its target platform
in many cases, such manual code modifications can be replaced with code transfor-
mations, and thus the original HPC application code can remain almost unchanged if
Xevolver can translate the original code to its optimized and/or auto-tunable version
right before the compilation process.

Xevolver for Performance Tuning of C Programs 87

Although the original Xevolver framework [12] has only low-level interfaces to
manipulate internal code representation, Xevtgen [10] has been developed to provide
a high-level interface for Fortran programmers to describe code transformation rules
using Fortran syntax. Thanks to the high-level interface, Xevolver enables to develop
a Fortran code without specializing it for any specific platform.

Egawa et al. [4] have presented a database of performance tuning expertise, called
HPC refactoring catalog. Loop optimization techniques in the database are described
along with Fortran sample codes, and the loop optimization is expressed as a code
transformation rule. Sugawara et al. [11] demonstrated that most of those techniques
are also effective for C programs running on recent platforms.

3 Xevolver for C

We are now designing and developing Xevolver for C (Xev-C) for performance
tuning of C programs using user-defined code transformations.

In the original Xevolver framework [12], Abstract Syntax Trees (ASTs) are ex-
pressed in an XML format, called XML-AST. Then, AST-based code transformation
rules are internally expressed also in another XML format, called XSLT, which
is a standardized format to describe transformations of XML data, and hence can
be used for transformation of XML-AST data. Since it is too painful for standard
HPC programmers to describe XSLT rules to define code transformation, Xevtgen
has been developed to define code transformation rules using Fortran syntax fa-
miliar to HPC programmers [10]. AST-based representation of code transformation
is certainly useful for Xevolver to express a wide variety of code transformations.
However, our case studies show that the high-level interface provided by Xevtgen can
cover most cases where Xevolver’s approach is required. Moreover, in the case where
AST-based transformation is appropriate, there are many other tools to express such
a code transformation. Therefore, Xev-C internally uses Clang AST, and implements
only the high-level interface for HPC programmers to define their own code transfor-
mation rules required in practice on a case-by-case basis. Xev-C does not explicitly
expose ASTs to users, and assumes to use Clang tools to develop AST-based code
transformations if necessary.

Unlike the original Xevolver framework built on top of the ROSE compiler
infrastructure [8], Xev-C is implemented using Clang [1]. Xev-C takes two C files
for user-defined code transformations as shown in Figure 1. One of the two C files
is an application code to be transformed, and the other is a code transformation rule
written in C. As with Xevtgen, Xev-C assumes that users provide two versions of a
code fragment to define a code transformation. One is the original version, and the
other is its transformed version. Figure 2 shows an example of code transformation
rule defined using Xev-C. If the rule in Figure 2 is applied to the code in Figure 3,
the first loop is exactly the same as the original code version in the rule, and thus is

88 H. Takizawa, S. Sugawara, Y. Shimomura, K. Takahashi and R. Egawa

Transformation rule

Output code
(transformed)

§emm-

Fig. 1: Overview of Xevolver for C (Xev-C). Xev-C takes two C codes, input code
and transformation rule, and then produces one code, a transformed version of the
input code. All the codes are written in C.

Input code

1 #include "xev_defs.h"

2

3 int i,j;

4 double a[10][10], b[10], c[10];
5

6 int mainQ)

7 {

8 xev_stmt_src("labell™);

9 {

10 for(i=0;i<10;i++){

11 for(j=0;j<10;j++){

12 c[i]l += a[il[j1*b[i];
13 }

14 }

15 }

16

17 xev_stmt_dst("labell™);

{
19 for(int k=0;k<100;k++){

20 i = k/10;

21 i = k%10;

22 c[i] += a[il[j1*b[]1;
3 }

24 }

25}

Fig. 2: A simple transformation rule for loop collapse.

Xevolver for Performance Tuning of C Programs 89

1 #include <stdio.h>

2

3 int i,j,n;

4 double a[10][10], b[10], c[10], d[10];
5

6 int main(Q)

7 A{

8

read_data_from_file(a,b,c,d);

10 for(i=0;i<10;i++){

11 for(j=0;j<10;j++){

12 c[i] += al[il[j1*b[jl;
13 }

14 }

15

16 for(i=0;i<10;i++){

17 for(n=0;n<10;n++) {

18 d[i] += a[il[n]*c[n];
19 }

20 }

21

22 write_data_to_file(a,b,c,d);
23

24 return 0;

25 }

Fig. 3: A simple code to be transformed.

replaced with the transformed version. As a result, in this particular example, loop
collapse is applied to the first loop in Figure 3, but not to the second loop whose
loop index of the innermost loop is n.

The transformation rule in Figure 2 is just text replacement and transforms a
loop only if the loop is exactly identical to the original version in the rule. A large
number of rules would be required if performance tuning is done only with such
text replacement rules. To achieve performance tuning with as few rules as possible,
Xev-C provides special variables, called Xev variables, so that a rule can be defined
not for a particular code fragment but for a code pattern. Figure 4 shows a rule of
loop collapse similar to the rule in Figure 2. In Figure 4, Xev variables xi, xj, and
stmt are defined and used in the rule. Since xi and xj represent any expressions,
they match any variables. Even if the loop index has a different name, the rule can be
applied to the loop. Similarly, since stmt represents any statements, statements in
the loop body do not affect to determine if the rule is applied. If the rule is applied,
the loop body is unchanged and simply copied to the transformed version. As a
result, in Figure 3, the second loop as well as the first one will be transformed by the
rule.

90 H. Takizawa, S. Sugawara, Y. Shimomura, K. Takahashi and R. Egawa
1 #include "xev_defs.h"

2

3 int i,j;

4 xev_expr xi,xj;

5 xev_stmt* stmt;

6

7 int mainQ)

8 {

9 xev_stmt_src();
10 {

11 for(xi=0;xi<10;xi++){
12 for(xj=0;xj<10;xj++){
13 stmt;

14 }

15 }

16 }

17

18 xev_stmt_dst();

{
20 for(int k=0;k<100;k++){

21 xi = k/10;
22 xj = k%10;
23 stmt;

24 }

25 }

26 }

Fig. 4: A simple transformation rule with Xev variables for loop collapse.

4 Evaluation and discussions

In this work, we have examined that the performance tuning expertise recorded in
HPC refactoring catalog [4] can be expressed using the current design of Xev-C.
As discussed in [11], Fortran codes in 28 out of 31 cases in the catalog can be
translated into C. The three cases not translated into C use either of using built-in
Fortran functions or libraries available only in Fortran. Most of the performance
tuning techniques in the catalog are vectorization-aware loop optimizations mainly
targeting the previous-generation vector systems, SX-9 [9] and SX-ACE [3]. In the
following evaluation, the performance gains by the techniques are evaluated on the
latest vector systems, two generations of SX-Aurora TSUBASA [2]. The system
specifications are summarized in Table 1.

Xev-C does not support all the features provided by Xevtgen yet. However, we have
confirmed that all the code transformation rules in the 28 C codes can be expressed
as Xev-C rules. Therefore, we believe that the expressive ability of the current design
of Xev-C is high enough at least for vectorization-aware loop optimizations.

Figure 5 shows the performance gains by the code transformations for SX-Aurora
TSUBASA. The vertical axis shows the speedup ratio of the transformed code
to the original code for each system. Each code is complied with either of -02
or -04, to discuss how compiler optimization affects the performance. Overall,
most of vectorization-aware loop optimizations for the previous-generation systems

Xevolver for Performance Tuning of C Programs 91

Table 1: Specifications of the two generations of SX-Aurora TSUBASA used in the
evaluation.

2nd generation SX-Aurora TSUBASA
VE |Model NEC Vector Engine Type 20B
Core Count 8
Peak Performance [TFLOPS] 2.45
Memory Bandwidth [TB/s] 1.535
Memory Capacity [GB] 48
Compiler ncc-3.4.0
VH|Model Intel Xeon Silver 4208
Core Count 8
Memory Capacity [GB] 192
Ist generation SX-Aurora TSUBASA
VE [Model NEC Vector Engine Type 10C
Core Count 8
Peak Performance [TFLOPS] 2.15
Memory Bandwidth [TB/s] 0.750
Memory Capacity [GB] 24
Compiler ncc-3.4.0
VH|Model Intel Xeon Gold 6126
Core Count 12
Memory Capacity [GB] 96

are still effective even for SX-Aurora TSUBASA. However, because of advances
in compiler technologies, it is worth mentioning that some performance tuning
techniques are no longer effective or even harmful on performance, meaning that the
compiler can perform the same or even better optimizations especially with higher-
level optimization flag, -04. For example, for Case No. 20, the loop optimization
technique in the catalog is still effective if the code is compiled with the -02 flag,
and thus the speedup ratio exceeds 1. However, when the -04 flag is used, the
performance is degraded by applying the same loop optimization technique, because
the compiler can optimize the loop better than the technique. This clearly indicates
that a performance tuning technique should not directly be applied to an application
code because it could become ineffective or even harmful in the future. Accordingly,
Xevolver’s approach to separation of performance concerns is promising to improve
the code maintainability and make it possible to develop an application in a future-
proof way.

Since Xev-C is designed for C programs, it can work together with other tools
developed for C. For example, in [11], Xev-C is combined with a formal verification
tool, CIVL [17], to check if a user-defined code transformation keeps the execution
result of the transformed code unchanged. This code equivalence checking is an
important feature for our code transformation framework, even though some techni-
cal issues remain unsolved. Therefore, user-defined code transformation with code
equivalence checking will further be discussed in our future work. Combining Xev-C
with other tools could also be interesting research topics.

92 H. Takizawa, S. Sugawara, Y. Shimomura, K. Takahashi and R. Egawa

1000

100

Speedup Ratio
3

-

AL

— AN N T INDNN0O0OOO A M N OO AW ON~NSO O — A
000000000~ aadadaaaaAm oo
ZzZ ZZZZZzZZZ 60000 OOOOOOOOoOOoOOoOOoOOoOOoOo oo

2 Z2Z2Z2ZZ2Z2Z2Z2Z2Z2Z2Z2Z2Z2Z2Z22Z2Z22Z2

m10C-02 m10C-04 m20B-02 20B -O4

Fig. 5: Speedup ratio by code transformation, which is the performance ratio of
the transformed code to the original code. A code transformation could degrade
the performance because it represents a performance tuning technique for previous-
generation vector systems.

5 Conclusions

This article has introduced Xev-C, which is a C interface to describe user-defined
code transformation rules using C. Our evaluation results show that Xev-C can
already express important features to express vectorization-aware loop optimizations,
and achieve separation of performance concerns by defining code transformation
rules separately from application codes. As compiler’s optimization capability could
change over time, a performance tuning technique could become ineffective or even
harmful. Therefore, separation of performance concerns is important, and the case
study in this article has demonstrated that Xevolver can contribute to the separation.

Acknowledgements This work is partially supported by MEXT Next Generation High-Performance
Computing Infrastructures and Applications R&D Program “R&D of a Quantum-Annealing-
AssistedNext Generation HPC Infrastructure and its Applications,” and JSPS KAKENHI Grant
Numbers JP20H00593 and JP21H03449.

Xevolver for Performance Tuning of C Programs 93

References

Do -

11.

13.

14.

15.

16.
17.

. Clang https://clang.1llvm.org/
. R. Egawa, S. Fujimoto, T. Yamashita, D. Sasaki, Y. Isobe, Y. Shimomura and H. Takizawa.

Exploiting the potentials of the second generation SX-Aurora TSUBASA. In: 2020 IEEE/ACM
Performance Modeling, Benchmarking and Simulation of High Performance Computer Sys-
tems (PMBS), pp. 39-49 (2020).

. R. Egawa, K. Komatsu, S. Momose, Y. Isobe, A. Musa, H. Takizawa and H. Kobayashi.

Potential of a modern vector supercomputer for practical applications: performance evaluation
of SX-ACE. The Journal of Supercomputing 73, 3948-3976 (2017).

. R. Egawa, K. Komatsu and H. Takizawa. Designing an open database of system-aware code

optimizations. In: CANDAR, pp. 369-374 (2017).

. K. Komatsu, R. Egawa, S. Hirasawa, H. Takizawa, K. Itakura and H. Kobayashi. Translation

of large-scale simulation codes for an OpenACC platform using the Xevolver framework.
International Journal of Networking and Computing 6(2), 167-180 (2016).

. K. Komatsu, A. Gomi, R. Egawa, D. Takahashi, R. Suda and H. Takizawa. Xevolver: A

code transformation framework for separation of system-awareness from application codes.
Concurrency and Computation: Practice and Experience 32(7), 1-20 (2019).

. K. Naono, K. Teranishi, J. Cavazos and R. Suda (eds.) Software Automatic Tuning — From

Concepts to State-of-the-Art Results. Springer-Verlag, New York (2010).

. ROSE Compiler, http://rosecompiler.org/
. T. Soga, A. Musa, Y. Shimomura, R. Egawa, K. Itakura, H. Takizawa, K. Okabe and

H. Kobayashi. Performance evaluation of NEC SX-9 using real science and engineering
applications. In: The Conference on High Performance Computing Networking, Storage and
Analysis (§C09) (2009).

. R. Suda, H. Takizawa and S. Hirasawa. Xevtgen: Fortran code transformer generator for

high performance scientific codes. International Journal of Networking and Computing 6(2),
263-289 (2016).

S. Sugawara, Y. Shimomura, R. Egawa and H. Takziawa. Portability of vectorization-aware
performance tuning expertise across system generations. In: /4th International Symposium on
Embedded Multicore/Many-core Systems-on-Chip (MCSoC) (2021).

. H. Takizawa, S. Hirasawa, Y. Hayashi, R. Egawa and H. Kobayashi. Xevolver: An XML-based

code translation framework for supporting HPC application migration. In: The 21st annual
IEEE International Conference on High Performance Computing (HiPC 2014) (2014).

H. Takizawa, T. Reimann, K. Komatsu, T. Soga, R. Egawa, A. Musa and H. Kobayashi.
Vectorization-aware loop optimization with user-defined code transformations. In: 2017 IEEE
International Conference on Cluster Computing (CLUSTER) (2017).

H. Takizawa, D. Sato, S. Hirasawa and H. Kobayashi. Making a legacy code auto-tunable
without messing it up. In: Poster presentation at ACM/IEEE Supercomputing Conference
(SC16), pp. 1-2 (2016).

H. Takizawa, D. Sato, S. Hirasawa and D. Takahashi. A customizable auto-tuning scenario
with user-defined code transformations. In: 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pp. 1372-1378, IEEE (2017).

Xevolver: CREST. https://xev.sc.cc.tohoku.ac.jp/

M. Zheng, M.S. Rogers, Z. Luo, M.B. Dwyer and S.F. Siegel. CIVL: Formal verification
of parallel programs. In: 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE) (2015).

https://clang.llvm.org/
http://rosecompiler.org/
https://xev.sc.cc.tohoku.ac.jp/

	Xevolver for Performance Tuning of C Programs
	1 Introduction
	2 Related work
	3 Xevolver for C
	4 Evaluation and discussions
	5 Conclusions
	References

