
MPI Continuations And How To Invoke Them

Joseph Schuchart and George Bosilca

Abstract Asynchronous programming models (APM) are gaining more and more
traction, allowing applications to expose the available concurrency to a runtime sys-
tem tasked with coordinating the execution. While MPI has long provided support
for multi-threaded communication and non-blocking operations, it falls short of ade-
quately supporting the asynchrony of separate but dependent parts of an application
coupled by the start and completion of a communication operation. Correctly and
efficiently handling MPI communication in different APM models is still a challenge.
We have previously proposed an extension to the MPI standard providing operation
completion notifications using callbacks, so-called MPI Continuations. This inter-
face is flexible enough to accommodate a wide range of different APMs. In this
paper, we discuss different variations of the callback signature and how to best pass
data from the code starting the communication operation to the code reacting to its
completion. We establish three requirements (efficiency, usability, safety) and eval-
uate different variations against them. Finally, we find that the current choice is not
the best design in terms of both efficiency and safety and propose a simpler, possibly
more efficient and safe interface. We also show how the transfer of information into
the continuation callback can be largely automated using C++ lambda captures.

1 Background

The Message Passing Interface (MPI) offers a host of nonblocking operations, which
are started in a procedure call that immediately returns and provides a request handle
representing the operation [4]. At the time of this writing, the only way to know
whether an operation has completed is to poll for its completion, either by periodically
testing the request or by blocking until its completion in a waiting procedure call. This

Joseph Schuchart and George Bosilca
Innovative Computing Laboratory (ICL), University of Tennessee Knoxville (UTK),
1122 Volunteer Blvd, Knoxville, TN 37996, U.S.A., e-mail: schuchart@icl.utk.edu

67

https://doi.org/10.1007/978-3-031-18046-0_5

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

M. M. Resch et al. (eds.), Sustained Simulation Performance 2021,

mailto:schuchart@icl.utk.edu
https://doi.org/10.1007/978-3-031-18046-0_5
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18046-0_5&domain=pdf

68 J. Schuchart and G. Bosilca

poses a significant challenge for applications utilizing asynchronous programming
models such as OpenMP [9] or higher level distributed runtime systems managing
communication through MPI because the requests have to be stored and (repeatedly)
passed back into MPI to determine their status.

Over time, several approaches have been proposed that try to hide the synchro-
nizing incurred by waiting for an MPI operation to complete, including TAMPI [6]
and the integration of lightweight threads into MPI libraries [3]. These approaches
attempt to block and switch the execution context until operations have completed.
However, all such approaches are dependent on the support for specific threading
implementations and thus not portable.

MPI Continuations, on the other hand, have been proposed as a way to minimize
the request management overhead in applications or runtime systems by attaching a
callback to a single or a set of continuations [7]. The callback will be executed once
all of the operations the continuation was attached to have completed. The application
or runtime system can then react to that change in state inside the callback, e.g., by
enqueuing a new task or releasing resources associated with that operation. This
approach has shown promising results in both OpenMP task-based applications as
well as when integrated with the PaRSEC runtime system [8].

A similar approach, dubbed MPI Detach, has been proposed concurrently [5].
While conceptually similar to the MPI Continuations proposal, the callback interface
proposed passes a status (or an array of statuses) into the continuations, which would
require additional memory management by the MPI library.

In this work, we explore the design of the callback signature of MPI Continuations,
focusing on usability, potential performance pitfalls, and safety concerns stemming
from the necessary memory management. The rest of this paper is structured as
follows: Section 2 provides a short overview over the current state of the continuations
proposal. Section 3 discusses various requirements we impose on the design of the
callback signature. Section 4 discusses various variations of the callback interface
together with their benefits and drawbacks. Section 5 demonstrates the use of the
continuations interface in the context of C++. Section 6 draws our conclusions from
this exploration.

2 Current state

The Continuations proposal introduces two new concepts into MPI: Continuations
and Continuation Requests (CRs). Continuations are a tuple of a callback function
and a state on which the callback function operates. Similar concepts can be found in
other instances employing the concept of continuations, e.g., continuations proposed
for C++ futures in the form of std::future<T>::then() [1], which accepts a
callable object (e.g., a lambda with it’s capture context) that takes the value of type T
of the future as its sole parameter. Here, the code in the lambda’s body is the callback

MPI Continuations And How To Invoke Them 69

function while its captured context and the value of type T are the state to operate
on. The HPX and UPC++ programming systems relies heavily on continuations on
C++ futures [2, 10].

2.1 Continuations

MPI Continuations are created using either MPI_Continue or MPI_Continueall
which will attach a continuation to a single request or a set of requests, respectively.
Since MPI currently only provides C and Fortran interfaces, automatic C++-style
context captures cannot be directly supported. Thus, a user-provided data pointer is
accepted that will be passed to the continuation callback. This data pointer represents
the context of the continuation and is never dereferenced by MPI. It is thus of little
relevance to the discussion in this work.

However, an operation in MPI is represented by a request and further information
about the outcome of the operation can be gathered from status objects obtained for
each request upon its completion (e.g., the tag and sender process rank in the case
of a receive operation, or an error code in case of faults). In the case of MPI_Wait,
a request is passed together with a pointer to a status object. The status object is
optional and the application may pass MPI_STATUS_IGNORE instead, in which case
no further information about the operation will be made available. In its current
form, a pointer to a single status object or an array of status objects may be passed
to MPI_Continue and MPI_Continueall, respectively, and the status objects will
be set before the continuation is invoked. This pointer will then also be passed as an
argument to the continuation.

2.2 Continuation Requests (CR)

Continuation Requests serve a dual purpose. First, they provide an abstract handle
to a set of continuations registered with this CR, allowing the application to poll
for the completion of all registered continuations and (by extension) the associated
operations. Once all registered continuations have completed, a wait or test procedure
call on that CR will signal its completion (by returning from wait or setting flag = 1
in a test). Second, CRs provide a facility for progressing outstanding communication
operations and to execute eligible continuations.

The relation between CRs, continuations, and operations is shown in Figure 1:
multiple continuations may be registered with one continuation request but each
continuation may only be registered with a single CR. The latter is a consequence
of the fact that continuations are not accessible explicitly through a handle and their
lifetime is managed entirely by MPI. Similarly, a continuation may be attached to
multiple MPI operations at once, causing the callback to be executed once all of
the are complete. However, each MPI operation may only be associated with one

70 J. Schuchart and G. Bosilca

continuation. The transitive closure of these relations is that a CR represents one or
many MPI operations and that a successful test on a CR implies the completion of
all MPI operations associated with continuations registered with that CR.

Fig. 1: Relations between Continuation Requests (CR), Continuations, and MPI Op-
erations: multiple continuations can be registered with the same CR (left) and a
Continuation can be attached to multiple operations (right). However, only continu-
ation can be attached to any given MPI Operation.

2.3 Current API design

Listing 1 shows the current API as proposed. The ownership of non-persistent
requests is returned to MPI and the respective entry in the array is set to
MPI_REQUEST_NULL. The ownership of persistent requests is not changed. This
behavior is similar to that of an optional array of status(es) (or MPI_STATUS[ES]_
IGNORE otherwise) is passed to the function. The statuses will be set to the statuses
of the completed MPI operations before the continuation callback is invoked and the
pointer to the statuses provided by the user is passed as the first argument.

As a second argument, the user_data pointer is passed to the callback. This
pointer may reference any state the continuation may require for its execution.

In addition to requests, statuses, the callback function pointer, and the user-
provided state, the two functions listed in Listing 1 also accept a set of OR-combined
flags that control different aspects of the continuation. Among these flags is
MPI_CONT_IMMEDIATE to control whether the continuation may be executed imme-
diately if all operations have completed already. If that flag is not set, the continuation
will be enqueued for later execution, e.g., when waiting on the continuation request.
However, the details of these flags are still fluid and beyond the scope of this paper
and not relevant for the ensuing discussion.

As a last argument, the continuation request described in Section 2.2 is passed to
the attaching functions.

Figure 2 shows the flow of ownership in the current API design. The call to
MPI_Isend allocates a request object and passes its ownership back to the caller
(who borrows it), who is then responsible for releasing that request in a call to
MPI_Test or MPI_Wait. If the request is passed to MPI_Continue, its ownership
is transferred back to the MPI library, who is then responsible for releasing the
associated internal resources. If a status argument other than MPI_STATUS_IGNORE
is provided, the ownership of the status buffer is transferred to MPI and the application
should not modify the buffer before the continuation is invoked, which implies the

MPI Continuations And How To Invoke Them 71

typedef void (MPI_Continue_cb_function)(MPI_Status *statuses,
void *user_data);

(a) Callback signature.

int MPI_Continue(
MPI_Request *op_req,
MPI_Continue_cb_funtion *cb,
void *user_data,
int flags,
MPI_Status *status,
MPI_Request cont_req);

(b) Attaching to single operation.

int MPI_Continueall(
int count,
MPI_Request op_req[],
MPI_Continue_cb_funtion *cb,
void *user_data,
int flags,
MPI_Status statuses[],
MPI_Request cont_req);

(c) Attaching to multiple operations.

Listing 1: API for attaching a continuation to a single or multiple MPI operations.

Fig. 2: Flow of ownership if passing a user-provided array of statuses to the contin-
uation.

72 J. Schuchart and G. Bosilca

transfer of ownership of that buffer back to the application. While transient in nature,
ownership of the request buffer is transferred into MPI_Isend and implicitly returned
at the end of the call. We have included these transient ownership transfers for the
sake of completeness.

We note that if MPI_STATUS_IGNORE is provided instead of a status buffer the
only object(s) whose ownership is transferred are the requests. In that case, no
borrowed ownership remain after the call to MPI_Continue.

3 Callback interface requirements

Fig. 3: Usability, efficiency, and safety are often detrimental in the design of APIs,
requiring carefully balancing of these three requirements.

We outline three main requirements for the continuations API that we believe
should be fundamental to the design of the continuations API. As shown in Figure 3,
requirements for a safe, efficient, and easily usable API are often detrimental and
need careful balancing.

3.1 Efficiency

The complexity of polling for the completion of requests using existing mechanisms
such as MPI_Testall and MPI_Waitall involves checking the status of each re-
quest and progressing communication if required. MPI implementations have been
carefully optimized to avoid dynamic memory management in such critical execution
paths.

The cost of attaching a continuation to a set of requests and managing its execution
should be equally low. In particular, requiring memory allocations that are not
strictly necessary and copying objects (e.g., requests and statuses) should be avoided
wherever possible. Ideally, no dynamic memory management would be required on

MPI Continuations And How To Invoke Them 73

the part of the application, at least in the simplest of use-cases. Similarly, requiring
the allocation of buffers inside MPI to hold requests or statuses in the design of the
API would negatively impact performance even for simple cases.

3.2 Safety

While APIs for the C language rarely can eliminate all possible mistakes made
by programmers, good API design aims at minimizing complexities and reducing
the probability of such mistakes. In the context of asynchronous execution APIs
such as continuations, likely sources of errors are accessing memory in the callback
that points to the stack of the function that started the operation and attached the
continuation, e.g., trying to access the request or status objects. Ideally, the MPI Con-
tinuations API helps users avoid the pitfalls of memory lifetime issues by eliminating
disambiguities about object lifetime and ownership.

3.3 Usability

While a clean interface with little or no potential pitfalls certainly contributes to
the usability of an interface, some simplifications in the API may require additional
steps to achieve complex setups, e.g., management of additional memory (with a
potential impact on performance) or set up of custom data structures and the resulting
additional code that has to be written and maintained. On the other hand, a complex
callback design providing a rich set of information (request handles, status objects,
datatypes, message element counts) directly to the callback function may reduce the
work on the part of the application since all relevant information is provided directly.
However, most application may not need the provided information in their callbacks,
resulting in overhead in memory space and time that does not yield any benefits for
these applications.

4 Callback interface variations

We will discuss a set of variations in the design of the current API described in
Section 2.3, using a simple example

Using the current API, Listing 2 provides an example of attaching a continuation
to a nonblocking receive operation. All the continuation does is to enqueue a task that
will process the message and release the buffer. The buffer is not processed directly
in order to keep the duration of the callback as short as possible and to potentially
defer the processing of the message to another thread. There is no use of the status
provided when attaching the continuation and the message buffer is passed directly

74 J. Schuchart and G. Bosilca

1 /* Continuation request, initialized elsewhere */
2 MPI_Request cont_req;
3
4 void complete_cb(MPI_Status *status, void *buffer) {
5 enqueue_processing_task(buffer);
6 }
7
8 void start_receive(void *buffer, int from, int size){
9 MPI_Request op_req;

10 MPI_Irecv(buffer, size, MPI_BYTE, from, /*tag=*/101,
11 MPI_COMM_WORLD, &op_req);
12 MPI_Continue(&op_req, &complete_cb, buffer, 0,
13 MPI_STATUS_IGNORE, cont_req);
14 }

Listing 2: Simple example of a continuation attached to a nonblocking receive.

1 /* Continuation request, initialized elsewhere */
2 MPI_Request cont_req;
3
4 void complete_cb(MPI_Status *status, void *buffer) {
5 int msg_size;
6 MPI_Get_count(status,MPI_BYTE, &msg_size);
7 enqueue_processing_task(buffer, msg_size);
8 free(status);
9 }

10
11 void start_receive(void *buffer, int from, int buffer_size){
12 MPI_Request op_req;
13 MPI_Status *status = malloc(sizeof(MPI_Status));
14 MPI_Irecv(buffer, buffer_size, MPI_BYTE, from, /*tag=*/101,
15 MPI_COMM_WORLD, &op_req);
16 MPI_Continue(&op_req, &complete_cb, buffer, 0,
17 status, cont_req);
18 }

Listing 3: Simple example of a continuation attached to a nonblocking receive
operation, querying the status of the operation.

on to the continuation. The value provided for the status parameter of the callback
will be MPI_STATUS_IGNORE. No dynamic has to be allocated in this example. We
note that the cont_req used in this and the following examples would have been
initialized at an earlier point.

Listing 3 provides a variation of this example where start_receive posts a
receive for a message with a maximum size and uses the status of the operation
to query the size of the message actually received. The status is allocated on the
heap (using malloc in Line 13) to ensure that the memory remains valid until the
continuation has executed. The allocated status is subsequently freed in Line 8.

A more complex example employing a persistent receive operation is provided in
Listing 4. When attaching the continuation, a status is passed that will be set before
the callback is invoked. Like before, the status is allocated on the heap. Instead of

MPI Continuations And How To Invoke Them 75

1 /* Wrapper around data needed in the callback */
2 typedef struct callback_data_t {
3 MPI_Request op_req; /* persistent operation request */
4 void *msg; /* message buffer */
5 } callback_data_t;
6
7 void complete_cb(MPI_Status *status, void *user_data) {
8 int cancelled;
9 int msg_size;

10 MPI_Test_cancelled(status, &cancelled);
11 if (cancelled) { /* nothing to be done */
12 free(user_data);
13 free(status);
14 return;
15 }
16 MPI_Get_count(status,MPI_BYTE, &msg_size);
17 /* copy the message and restart the receive */
18 callback_data_t* cb_data = (callback_data_t*)user_data;
19 copy_msg_and_enqueue_task(cb_data->msg, msg_size);
20 MPI_Start(&op_req->op_req);
21 MPI_Continue(&op_req->op_req, &complete_cb,
22 user_data, 0, status, cont_req);
23 }
24
25 MPI_Request
26 start_recurring_receive(void *buffer, int from, int size) {
27 /* Allocate the callback data */
28 callback_data_t *cbdata = malloc(sizeof(callback_data_t));
29 /* Allocate the status object */
30 MPI_Status *status = malloc(sizeof(MPI_Status));
31 cbdata->msg = buffer;
32 MPI_Recv_init(buffer, size, MPI_BYTE, from, /*tag=*/101,
33 MPI_COMM_WORLD, &cbdata->op_req);
34 /* start the operation and attach continuation */
35 MPI_Start(&cbdata->op_req);
36 MPI_Continue(&op_req->op_req, &complete_cb,
37 cbdata, 0, status, cont_req);
38 return op_req->op_req;
39 }
40
41 void stop_recurring_receive(MPI_Request op_req) {
42 MPI_Cancel(&op_req);
43 MPI_Request_free(&op_req);
44 }

Listing 4: A more complex example attaching a continuation to a persistent receive.
An incoming message will be copied and a task processing it enqueued. The persistent
receive is then restarted before the continuation is attached anew. Eventually, the
persistent receive will be canceled, which will be detected inside the continuation in
Lines 8–14.

76 J. Schuchart and G. Bosilca

just passing the message pointer, this time a structure of type callback_data_t is
allocated that wraps the pointer to the message and the persistent operation request,
both of which are accessed inside the continuation callback. In contrast to C++ lambda
captures, such capturing has to be done manually in C.

The start-attach cycle is broken once the persistent receive is cancelled (Lines 41–
44) and the check of the status in Line 10 detects the cancellation. The heap memory
is released and no task is enqueued to process the message (Lines 12 – 13).

It is not hard to see that the current variant is neither fool-proof nor the most
efficient solution. A subtle change to the way the status is allocated can lead to
disastrous consequences. If instead of allocating the status on the heap the status
was allocated on the stack (as is commonly the case when calling MPI_Test), the
memory pointed to by status in the callback is invalid as it points to the stack
of start_recurring_receive that is no longer active. Changing the code of
Listing 4 accordingly, yields

MPI_Status status;
...
MPI_Continue(&op_req->op_req, &complete_cb,

cbdata, 0, &status, cont_req);

Unfortunately, this rather subtle bug is not easy to spot and in practice would likely
slip through a code review. It is not unnatural for users to believe that the status
argument of the callback points to a status object provided by MPI, instead of simply
being the status pointer provided while attaching the continuation. Thus, this is a
potential source of grave errors that (as all bugs related to memory management)
would be hard to debug.

In terms of efficiency, it is questionable why the status should be allocated
separately. It would indeed be more efficient to allocate the status as part of the
callback_data_t structure. However, since a pointer to that structure is already
passed to the callback, passing a separate pointer to the callback function seems
superfluous. In essence, the status pointer has to be stored and passed twice. Con-
sequently, the current interface breaks with some of the requirements laid out in
Section 3, both potentially impairing safety and efficiency.

4.1 Passing requests and user data

Instead of passing the pointer to the status object, it might be tempting to pro-
vide request (or array of requests) to the callback and query their status using
MPI_Request_get_status. After all, unlike the status argument the (array of) re-
quest(s) is a non-optional parameter to MPI_Continue and MPI_Continueall. This
would remove the status from the continuations interface altogether and avoid the
potential access out-of-scope stack memory from within the continuation callback.

In principle, two sub-variants of this approach are possible.

MPI Continuations And How To Invoke Them 77

4.1.1 MPI-provided Request Buffer

The first sub-variant is to allocate an MPI-internal buffer and copy the request or
requests passed to MPI_Continue or MPI_Continueall into it. The ownership
of non-persistent requests would still be transferred back to MPI and their handle
be replaced by MPI_REQUEST_NULL in order to make them inaccessible outside
of the continuation callback. This buffer of copied request handles would then be
passed into the continuation callback and (together with all non-persistent requests)
destroyed after the continuation completes. The flow of ownership is depicted in
Figure 4.

Fig. 4: Flow of ownership if passing an array of copied request handles to the
continuation.

A significant drawback of this approach is the required copying of requests and
additional dynamic memory management inside the MPI library since the number
of requests to which a continuation is attached is not known a priori.

78 J. Schuchart and G. Bosilca

4.1.2 User-provided Request Buffer

Instead of allocating a buffer inside the MPI implementation, the API could
also directly pass on the pointer to the request(s) provided to MPI_Continue or
MPI_Continueall. As stated in Section 2.3, the ownership of non-persistent re-
quests is returned to MPI. In this case, if the application wanted to access the status
of an operation, it would have to request that the request handles are retained. This
could be accomplished by introducing and passing a flag such as MPI_CONT_RETAIN,
requesting that even non-persistent requests are retained until the continuation is in-
voked. The flow of ownership in this case is depicted in Figure 5.

Fig. 5: Flow of ownership if passing the user-provided array of requests to the
continuation.

Since ownership would remain with the application, it is necessary to either
implicitly (at the end of the continuation) or explicitly return ownership at the end
of the callback by invoking MPI_Request_free on each non-persistent request. In
the interest of efficiency (and symmetry with test and wait functions), the addition
of MPI_Request_freeall should be considered in this case. For continuations that

MPI Continuations And How To Invoke Them 79

do not inquire the status of the operation, another flag should be introduced that
prevents the implementation from storing and passing on the pointer to the request.
This is especially important for requests that were located on the stack, as is the case
in Listings 2 and 3. However, a new handle will have to be introduced to pass as an
invalid pointer to a request handle.1

It becomes apparent that passing the request instead of the status into the contin-
uation breaks with the requirements outlined in Section 3. Either the MPI library is
required to allocate internal memory for each continuation, or the issue of pointers
potentially pointing to invalid (stack) memory is shifted from the status object to
the request objects. On top of that, the added complexity of properly managing the
lifetime of requests through flags and additional release of requests opens the door
for additional errors in user code and potentially impairs usability.

4.2 Passing only user data

To avoid the potential mistakes in the lifetime management of statuses and requests
and the potential efficiency issues outlined in the previous sections, the state passed
to the continuation should be reduced to a single pointer. This removes any ambiguity
regarding the ownership of the status and request objects and avoids any additional
memory allocations.

The code of Listing 4 adapted to only passing the user pointer is provided in
Listing 5. It should be noted that while this interface removes potential issues around
memory management (and thus provides improved safety and efficiency) a slightly
higher burden is put on users in that all state of the continuation has to be collected
in a single structure. However, we believe that this is a cost that is worth paying in
exchange for the reduced potential of memory management mistakes and efficiency
issues.

In order to further reduce the risk of using out-of-scope stack variables in con-
tinuations (e.g., from users allocating callback_data_t on the stack), the MPI
Continuations interface would again have to copy the contents of the user-provided
buffer into an internal buffer and pass that buffer to the callback. However, as stated
earlier, this may compromise efficiency and safety and does not guarantee that nested
pointers do not point to variables on the out-of-scope stack.

With this interface, the simple code in Listing 2 will remain the same, except
that the MPI_Status* argument to the callback disappears. No dynamic memory
allocation would be required in this case. The code in Listing 3 will have to allocate
a structure containing the pointer to the message buffer and the status. The allocation
is thus shifted from the status object to the user-provided data pointer.

1 MPI does not typically employ the NULL pointer but instead defines special values for all invalid
handles.

80 J. Schuchart and G. Bosilca

1 typedef struct callback_data_t {
2 MPI_Request op_req; /* persistent operation request */
3 MPI_Status status; /* status of the operation */
4 void *msg; /* the message to be received */
5 } callback_data_t;
6
7 void complete_cb(void *user_data) {
8 callback_data_t* cbdata = (callback_data_t*)user_data;
9 int cancelled;

10 MPI_Test_cancelled(&cbdata->status, &cancelled);
11 if (cancelled) { /* nothing to be done */
12 free(cbdata);
13 return;
14 }
15 enqueue_process_process(cbdata->msg);
16 MPI_Start(&op_req->op_req);
17 MPI_Continue(&op_req->op_req, &complete_cb,
18 cbdata, 0, status, cont_req);
19 }
20
21 MPI_Request
22 start_recurring_receive(void *buffer, int from, int size) {
23 callback_data_t *cbdata = malloc(sizeof(callback_data_t));
24 cbdata->msg = buffer;
25 MPI_Recv_init(buffer, size, MPI_BYTE, from, /*tag=*/101,
26 MPI_COMM_WORLD, &cbdata->op_req);
27 MPI_Start(&cbdata->op_req);
28 MPI_Continue(&op_req->op_req, &complete_cb,
29 cbdata, 0, &cbdata->status, cont_req);
30 return cbdata->op_req;
31 }

Listing 5: The example of Listing 4 passing the user data pointer as the only state to
the continuation callback.

5 C++ lambda capture

A variation of the code of Listing 5 using C++ lambda captures is listed in Listing 6.
In this case, the compiler captures all data necessary inside the lambda defined in
Lines 30 – 35. Unfortunately, the status of the operation cannot be automatically
captured by the lambda because it’s values is known only once the callback is invoked.
Thus, the status is encapsulated inside a wrapper cb_t that makes it accessible both
inside and outside the lambda.

All other variables are captured by value (including the operation request) and
stored as part of the fn member of cb_t. The lambda is marked as mutable
because both MPI_Start and MPI_Continue take a non-const pointer to it. The
static invoke member function of cb_t (Lines 10 – 19) will be called by MPI,
which then checks for cancellation and invokes the lambda, passing a reference to
itself, allowing the lambda to reattach the continuation using the same object.

MPI Continuations And How To Invoke Them 81

1 /* Callback wrapper typed on the callable’s type */
2 template<typename Fn>
3 struct cb_t {
4 /* Status must be accessible outside the callable */
5 MPI_Status status;
6 Fn fn;
7 cb_t(Fn&& fn) : fn(std::forward<Fn>(fn)) {}
8 /* static function invoked from MPI,
9 dispatching to the provided callable */

10 static void invoke(void*data) {
11 cb_t* cb = static_cast<cb_t*>(data);
12 int cancelled;
13 MPI_Test_cancelled(&cb.status, &cancelled);
14 if (cancelled) {
15 delete cb; /* cleanup the wrapper */
16 return;
17 }
18 cb->fn(*cb);
19 }
20 };
21
22 MPI_Request
23 start_recurring_receive(void *buffer, int from, int size) {
24 MPI_Request op_req;
25 MPI_Recv_init(buffer, size, MPI_BYTE, from, /*tag=*/101,
26 MPI_COMM_WORLD, &op_req);
27 MPI_Start(&op_req);
28 auto cb = new cb_t(
29 /* Marked mutable to pass op_req as non-const. */
30 [=](auto& cb) mutable {
31 process(buffer);
32 MPI_Start(&op_req);
33 MPI_Continue(&op_req, &cb.invoke,
34 &cb, 0, &cb.status, cont_req);
35 });
36 MPI_Continue(&op_req, &cb->invoke,
37 cb, 0, &cb->status, cont_req);
38 return op_req;
39 }

Listing 6: The example of Listing 4 using C++ lambda capture. The status must
be accessible inside and outside the lambda expression and thus cannot be captured.
Instead it is held in a wrapper object through which the lambda is invoked.

We have deliberately avoided the use std::function in order to provide the
compiler with the opportunity to inline the code in the lambda, further reducing the
overhead of the call. While the use of std::function would remove the template
parameter Fn from cb_t, it introduces a second indirect call in the continuation (in
addition to the indirect call to invoke inside the MPI library).

82 J. Schuchart and G. Bosilca

We note that the templating of cb_t makes it easily composable and reusable,
allowing it to be used with different lambdas throughout the an application. While not
entirely void of complexity, the use of C++ lambda captures with MPI Continuations
removes the hassle of manually transferring data from the callsite into the callback
through custom structures, as is required when using C.

6 Conclusions

In this paper, we have discussed several variants of the MPI Continuations API and
how state relevant to the execution of the continuation callback can be captured and
passed to the callback. We set out a three requirements (usability, efficiency, and
safety) that at times are at odds with each other. We found that the interface cur-
rently proposed encourages inefficient (by separately allocating the status object(s))
and potentially unsafe (by passing stack-based variables) code. We believe that an
interface that requires the aggregation of all variables accessed inside the continua-
tion callback into a single structure yields a safer and potentially more efficient API
design. We have also shown that by employing modern C++ lambda captures, this
task can be mostly automated. Based on our findings, we will adapt the interface
in our MPI Continuations proposal to only pass a single state pointer and to avoid
potential confusions about lifetime and ownership of status objects present in the
current proposal.

References

1. N. Gustafsson, A. Laksberg, H. Sutter and S. Mithani. N3857: Improvements to
std::future<T> and Related APIs. Tech. Rep. N3857 (2014).

2. H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio and D. Fey. HPX: A Task Based Program-
ming Model in a Global Address Space. In: Proceedings of the 8th International Conference
on Partitioned Global Address Space Programming Models, PGAS ’14, pp. 6:1–6:11, ACM
(2014). DOI 10.1145/2676870.2676883

3. H. Lu, S. Seo and P. Balaji. MPI+ULT: Overlapping Communication and Computation with
User-Level Threads. In: 2015 IEEE 17th International Conference on High Performance
Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace
Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and
Systems (2015). DOI 10.1109/HPCC-CSS-ICESS.2015.82

4. MPI: A Message-Passing Interface Standard, Version 4.0. Tech. rep. (2021). URL https:
//www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

5. J. Protze, M.A. Hermanns, A. Demiralp, M.S. Müller and T. Kuhlen. MPI Detach – Asyn-
chronous Local Completion. In: 27th European MPI Users’ Group Meeting, EuroMPI/USA
’20, Association for Computing Machinery (2020). DOI 10.1145/3416315.3416323

6. K. Sala, X. Teruel, J.M. Perez, A.J. Peña, V. Beltran and J. Labarta. Integrating blocking and
non-blocking MPI primitives with task-based programming models. Parallel Computing 85,
153–166 (2019). DOI 10.1016/j.parco.2018.12.008

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

MPI Continuations And How To Invoke Them 83

7. J. Schuchart, C. Niethammer and J. Gracia. Fibers are not (P)Threads: The Case for Loose
Coupling of Asynchronous Programming Models and MPI Through Continuations. In: 27th
European MPI Users’ Group Meeting EuroMPI/USA ’20, pp. 39–50, Association for Com-
puting Machinery (2020). DOI 10.1145/3416315.3416320

8. J. Schuchart, P. Samfass, C. Niethammer, J. Gracia and G. Bosilca. Parallel Computing 106,
102793 (2021). https://doi.org/10.1016/j.parco.2021.102793. URL https://
www.sciencedirect.com/science/article/pii/S0167819121000466

9. J. Schuchart, K. Tsugane, J. Gracia and M. Sato. The Impact of Taskyield on the Design
of Tasks Communicating Through MPI. In: Evolving OpenMP for Evolving Architectures
(Springer International Publishing, 2018), pp. 3–17. DOI 10.1007/978-3-319-98521-3_1.
Awarded Best Paper

10. Y. Zheng, A. Kamil, M.B. Driscoll, H. Shan and K. Yelick. UPC++: A PGAS Extension
for C++. In: 2014 IEEE 28th International Parallel and Distributed Processing Symposium,
pp. 1105–1114 (2014). DOI 10.1109/IPDPS.2014.115

https://doi.org/10.1016/j.parco.2021.102793
https://www.sciencedirect.com/science/article/pii/S0167819121000466
https://www.sciencedirect.com/science/article/pii/S0167819121000466

	MPI Continuations And How To Invoke Them
	1 Background
	2 Current state
	2.1 Continuations
	2.2 Continuation Requests (CR)
	2.3 Current API design

	3 Callback interface requirements
	3.1 Efficiency
	3.2 Safety
	3.3 Usability

	4 Callback interface variations
	4.1 Passing requests and user data
	4.1.1 MPI-provided Request Buffer
	4.1.2 User-provided Request Buffer

	4.2 Passing only user data

	5 C++ lambda capture
	6 Conclusions
	References

