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Abstract In this contribution we look into the efficiency and scalability of our
Lattice Boltzmann implementation Musubi when using OpenMP threads within
an MPI parallel computation on Hawk. The Lattice Boltzmann method enables
explicit computation of incompressible flows and the mesh discretization can be
automatically generated, even for complex geometries. The basic Lattice Boltzmann
kernel is fairly simple and involves only few floating point operations for each lattice
node. A simple loop over all lattice nodes in each partition of the MPI parallel setup
lends to a straight forward loop parallelization with OpenMP. With increased core
counts per compute node, the use of threads on the shared memory nodes is gaining
importance, as it avoids overly small partitions with many outbound communications
to neighboring partitions. We briefly discuss the hybrid parallelization of Musubi
and investigate how the usage of OpenMP threads affects the performance when
running simulations on the Hawk supercomputer at HLRS.

1 The Lattice Boltzmann method

The Lattice Boltzmann method (LBM)[9] offers an efficient explicit method to com-
pute incompressible or weakly compressible flows by modelling the gas with a
discrete velocity space for the Boltzmann equation in a mesoscopic scale. For the
discretization a regular mesh is used, usually with cubic cells, and the connections to
the neighbors offer the discrete velocity directions to be considered in the numerical
method. Hence, LBM can be considered as a stencil method, with similar properties
in communication and parallelization as other mesh-based methods. An advantage
of LBM can be observed in the treatment of boundaries. Due to the use of discrete

Harald Klimach, Kannan Masilamani and Sabine Roller
DLR e.V., Institut für Softwaremethoden zur Produkt-Virtualisierung, Zwickauer Str. 45, 01069
Dresden,
e-mail: harald.klimach@dlr.de,kannan.masilamani@dlr.de,sabine.roller@dlr.de

53

https://doi.org/10.1007/978-3-031-18046-0_4 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 

M. M. Resch et al. (eds.), Sustained Simulation Performance 2021, 

mailto:harald.klimach@dlr.de
mailto:kannan.masilamani@dlr.de
mailto:sabine.roller@dlr.de
https://doi.org/10.1007/978-3-031-18046-0_4
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18046-0_4&domain=pdf


54 H. Klimach, K. Masilamani and S. Roller

velocities, boundaries only have to be considered along those discrete directions and
accurate boundaries can be obtained by intersecting the one dimensional lines in
cubical boundary cells with the surfaces describing geometrical boundaries. Such
line intersections with surfaces can be computed robustly and are, thus, well suited
for automated mesh generations.

The most commonly used stencil in three dimensions are D3Q19 and D3Q27.
The D3Q19 makes use of 18 neighbors together with the state at rest resulting in 19
values of the probability density function to describe the fluid state. In this stencil,
18 neighbors are all immediately connected cells except for those at the corners of
the cube (6 sides and 12 edges of the cube). Other stencil D3Q27 is required in some
LBM approaches which makes use of all 26 immediate neighbors.

The lattice Boltzmann equation with classical collision operator from Bhatnagar,
Gross and Krook BGK[1] is given by

𝑓𝑖 (x + c𝑖Δ𝑡, 𝑡 + Δ𝑡) − 𝑓𝑖 (x, 𝑡) = Ω𝑖 (x, 𝑡) (1)

where 𝑓𝑖 (x, 𝑡) is the probability density function at the position vector x and at time
step 𝑡 along the discrete direction 𝑖; Δ𝑡 is the discrete time step; c𝑖 is the discrete
velocities andΩ𝑖 is the collision operator. There is a multitude of collision operations
available. However, here we will only consider the classical operation described by
Bhatnagar, Gross and Krook (BGK) as

Ω𝑖 = −1
𝜏
( 𝑓𝑖 (x, 𝑡) − 𝑓

𝑒𝑞

𝑖
(x, 𝑡)) (2)

where feq
i is the Maxwell-Boltzmann distribution function. For weakly-compressible

flows, it is given by
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where 𝜔𝑖 are the lattice weights and 𝑐𝑠 = 𝑐/
√

3 is the speed of sound in lattice.
𝑐 = Δ𝑥/Δ𝑡 is the lattice velocity where Δ𝑥 is the discretization size. 𝜌 and u are
macroscopic density and velocities which are computed from probability density
function by

𝜌 =

𝑄∑︁
𝑖=1

𝑓𝑖 (4)

and

𝜌u =

𝑄∑︁
𝑖=1

c𝑖 𝑓𝑖 . (5)

The pressure 𝑃 is calculated from the density 𝜌 using the equation of state relation
as 𝑃 = 𝑐2

𝑠𝜌. The relaxation time 𝜏 in Eq. 2 is related to kinematic viscosity as

𝜈 = 𝑐2
𝑠Δ𝑡 (𝜏 − 0.5) . (6)
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In LBM, Eq. 1 is solved in two steps: streaming and collision. Streaming is
exchanging the probability density functions of the particles along their respective
directions with neighboring cells and collision is computing a new state in each cell
according to collision operator. In general, the collision requires only few floating
point operations per cell.

2 The Musubi implementation

Musubi[3] is our open source implementation of the Lattice Boltzmann method,
mostly written in Fortran 2003 and primarily parallelized with via the Message
Passing Interface (MPI) [6]. It makes use of an octree mesh discretization with
cubical cells. Cells in the mesh are sorted according to the Morton or Z curve
[5], which provides some maintaining of the multi dimensional locality in the one
dimensional sorted list of cells. The solver works on the cells according to that
ordering and the mesh partitioning is achieved by splitting the ordered list of cells
into equally sized chunks. A double buffer is used to hold the state and allow the
access to the previous iteration in the streaming step. Some additional arrays are
used to hold further auxiliary values for all cells. All in all we find a computational
intensity of around 1/3 floating point operations per Byte.

Meshes can be created with the mesh generator Seeder [2], which provides the
mesh in this form of an ordered list of cells or for simple meshes. This allows
for a distributed reading of the mesh information as each process can identify the
part of the file it needs to read with little information on the mesh. Alternatively,
simple meshes like the ones we will consider here, can also be generated by Musubi
itself. The list of cells may be sparse and thus, explicit neighborhood information is
needed to address the stencil cells. Hence, the stencil implementation here behaves
as an unstructured mesh with indirect addressing of the stencil cells. However,
the known topology of the octree and the ordering according to the space-filling
curve enables the identification of neighbor cells across partitions in the distributed
memory parallel computation. Therefore, nearly arbitrary stencils can be employed
and Musubi makes use of that in the implementation of the various LBM schemes.
Meshes might have cells on different levels of the octree refinement, but on each level
the kernel just acts as if working on uniform mesh. This is achieved by ghost cells
that provide interpolated values from other refinement levels. Due to this behavior
it is possible to perform some assessment of fundamental properties of this kind of
kernel in a single level uniform mesh, which we look at in this contribution.
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2.1 OpenMP in Musubi

The OpenMP parallelization[8] in Musubi is incomplete and various features do
not yet benefit from it. But the parallelization of the fundamental kernel is straight
forward, as it essentially is a single loop over all cells to update the lattice nodes.
An OpenMP parallel region is put around these loops to realize the shared memory
parallelism within MPI processes. The MPI communication itself is not put into a
parallel region and does not profit from shared memory parallelization. With a static
schedule the loop parallelism this way results in a partitioning similar to the MPI
partitioning as the cells are sorted according to the space-filling curve. Accordingly
the expectation is that the degree of parallelism can be shifted interchangeably
between the one and the other.

3 Hybrid parallelization

In supercomputing systems a hierarchy of parallelism and data access can be ob-
served. The most obvious decomposition can be observed in the construction of large
clusters from individual nodes. Where individual nodes provide shared memory ac-
cess between all processing units within it. The number of processing units within
such a node mostly depends on the number of cores we find in the employed proces-
sors. And accordingly, we observe a growing degree of shared memory parallelism
within those nodes as the number of cores in modern processors increases. Using
a distributed memory parallelization concept uniformly for all processing units is
possible, but results in small partitions that end up with many individual neighbor
partitions that may be located on other nodes. This results in a larger number of
smaller network communications between nodes. A strategy to minimize this effect
and obtain larger MPI partitions with fewer, but larger network communications,
is to resemble this two-level hierarchy of the hardware in the application. With
OpenMP in each MPI partition processing units can be dedicated to parallel work in
a reduced number of distributed memory partitions. Such a strategy than results in a
less fragmented communication pattern across the network of the cluster.

Unfortunately, there are also some downsides involved in the hybrid paralleliza-
tion. The management of threads results in some overheads and we increase the risk
encounter resource conflicts in commonly used resources in the node, like shared
caches or memory interfaces. As long as there are parts of the code that do not benefit
from OpenMP parallelization, we face the problem that some parts do not benefit
from a larger number of threads, but would benefit from more MPI processes. In the
end the optimal choice depends at least on the system, the application is run on. It
also depends on the specific setup to be run, but here we want to look at properties
of the fundamental kernel, which may also be instructive in a wider context.
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4 Performance assessment on Hawk

To evaluate the effect of shifting parallelism between MPI and OpenMP on Hawk,
we run Musubi for various problem sizes on a range of node counts. These runs are
performed with different numbers of threads per process, such that always all cores
are participating in the computation.

4.1 The Hawk computing system

The Hawk computing system installed at the High Performance Computing Center
Stuttgart (HLRS) is based on the AMD EPYC 7742 processor[7], which has 64 cores
operating at 2.25 GHz and AVX2 vector instructions, yielding a theoretical peak
performance of 2.3 TFLOPS. Each node has two of these processors and, thus,
has a total of 128 physical cores. There are groups of 4 cores that share their L3
cache and build a so called CoreCompleX. Two of those CoreCompleXs are paired
together and share one of the 8 memory channels in the processor. Finally two of
those memory channels are put into a NUMA node per socket. Accordingly we see
16 physical cores in each NUMA node and with the two sockets in each computing
node a total of 8 NUMA nodes. We will consider an OpenMP parallelism of up
to 16 threads per MPI process, which corresponds to one MPI process per NUMA
node. A further increase in the degree of shared memory parallelism is expected
to incur degrading performance in comparison to a distributed memory strategy,
due to the strong hierarchical structure of the memory access paths. Because of the
shared L3 cache, a natural choice for the degree of shared memory parallelism in
this system is 4 threads per process, putting all cores in a CoreCompleX to work on
a shared memory region. Each memory channel provides a bandwidth of around 24
GB/s resulting in a total of 192 GB/s per socket or 384 GB/s per node to access the
capacity of 256 GB.

4.2 The Musubi setup

For this contribution we use Musubi in version 9ccba4387413 [4]. It is using the
environment offered by the modules gcc/9.2.0 and mpt/2.23 and with OpenMP
support. The simulation setup is a small initial pressure pulse in a cubic domain of
edge length 10 that is periodic in all directions. This simple mesh can be generated by
Musubi during the simulation and can be easily scaled up in factors of 8. The initial
spherical pulse is located in the center of the domain, has an amplitude of 1.2 over a
background value of 1 and a halfwidth of 1. As collision operator we use BGK and
we look at the D3Q19 and D3Q27 stencils. Each simulation is executed for at least
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5 minutes of running time. The executable is run with the following command, with
𝑛𝑝𝑟𝑜𝑐𝑠 representing the number of MPI processes and tpp the number of OpenMP
threads per process:

mpirun -np $nprocs omplace -tm pthreads -nt $tpp

4.3 Results

Performance for Lattice Boltzmann methods is usually measured in million lattice
updates per second MLUPS and we consider this measure here per node. This
measure is independent of the actual running time and allows for a comparison
between different runs and simulations.
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Fig. 1: Performance for D3Q19 on a single node, utilizing all 128 cores.

As described above we perform runs with varying problem sizes on a node and
record the resulting performance measure in MLUPS. Figure 1 shows the resulting
graph for the D3Q19 stencil on a single node. This form of representation nicely
shows the variation of the performance with the problem size. Overheads, like
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communication, dominate for very small problem sizes at the left end of the graph.
Then a peak can be observed where the overall problem is still sufficiently small to
completely fit into the caches, avoiding slower memory accesses. Finally, a relatively
flat performance plateau is reached for larger problem sizes, until it does not fit into
the memory of the node anymore.

What we can observe in this single node analysis is that in the region with
memory access with more than a million cells, there is basically no performance
difference between 1, 2, 4 and 8 OpenMP threads per MPI process. With 16 threads
the performance is clearly reduced, which seems to indicate that it is important for
Musubi that an MPI process is not spread across multiple memory channels. In the
cache region we also see a clear diminishing of the performance for 8 OpenMP
threads, where the shared memory of a process spans across two CoreCompleXs and
accordingly two shared L3 caches.

For the D3Q27 stencil a similar behavior can be seen in figure 2. With 27 discrete
velocity directions to represent the state, more memory is required to represent the
state in each cell and less cells fit into the memory of the single node than with 19
directions only. The largest domain that still fit into memory for the D3Q19 stencil
(134, 217, 728 cells), therefore, does not fit here anymore and the graphs, and the
largest mesh we compute is 16, 777, 216 cells large. Note, that this is a lot smaller
than what would fit into the memory, which would be more than 90 million cells.

This single node analysis shows the principal behavior of the LBM implementation
in Musubi on each node of Hawk and illustrates the performance impact of the
different parallelization strategies on the hierarchical memory layout of the system.
We can note that the use of 4 OpenMP threads on as many cores yields roughly
the same performance as a MPI-only parallelization and in the region with memory
access up to 8 threads can be used interchangeably to MPI parallelism.

The analysis on a single node, however, does not show how the use of OpenMP
threads influences the network communication between nodes. As stated above a
motivation to make use of OpenMP parallelism is to reduce the number of indi-
vidual communication partners with whom comparably small messages need to be
exchanged. To assess this, we repeat these runs on larger node counts with 8, 64 and
512 nodes. Incrementing by a factor of 8 yields here the same problem sizes per
node again, and allows for a direct comparison of the individual data points.

For brevity we only depict the corresponding graphs for 512 nodes. In this case
we have 65, 536 cores working in parallel. This analysis is shown in figure 3 for
D3Q19 and in figure 4 for D3Q27. As can be seen in these figures, the behavior on
512 nodes is quite similar to the one on a single node. However, we also observe
some differences. Most importantly we now see that for small problem sizes per
node a higher performance is achieved with 2 and 4 threads and not with the pure
MPI parallel computation.

In confirmation to the observation for a single node it appears reasonable to make
use of a single MPI process for each CoreCompleX with the cores that share their
L3 cache also sharing their memory address space. Shared memory parallelization
beyond that diminishes the performance in the cache region with small cell counts
per node, but for larger problems with the need to access the memory, also larger
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Fig. 2: Performance for D3Q27 on a single node, utilizing all 128 cores.

shared memory processes with up to 8 cores (sharing one memory channel) can be
utilized. Though for smaller problems, where all elements would fit into the caches,
a larger performance decrease can be observed for those shared memory partitions
spanning more than a single CoreCompleX.

Using 16 cores, spanning two memory channels in a NUMA node, as a shared
memory parallel group within an MPI incurs too many drawbacks in the memory
access of the hierarchical processor design to be used efficiently by Musubi also on
512 nodes.

For the scaling we look at the D3Q27 stencil as the more memory and com-
munication intensive scheme and stick to the parallelization with one MPI process
per CoreCompleX and 4 OpenMP threads per process to allow concurrent compu-
tation on the 4 physical cores. As we have seen in the above measurements this
configuration nicely fits the physical properties of the processor and provides good
performance across problem sizes.

We also include the computation on 2048 nodes here, though these do not result
in exactly the same number of cells per node as the other runs. This is the maximal
number of nodes available to users in the regular queue on Hawk and provides
262, 144 physical cores for parallel execution. The resulting performance per node
is illustrated in figure 5.
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Fig. 3: Performance per node for D3Q19 on 512 nodes, utilizing all 65, 536 cores.

This illustration shows that there is a significant performance degradation per
node in the region of small problem size that fit into the cache from 450 MLUPS on
a single node to 293 MLUPS per node on 2048 nodes. Due to the fast computation
without accessing memory outside the caches, the necessary communication on the
larger node counts increasingly dominates the execution time in this region. Never-
theless, there is still a higher performance observed in this cache region than when
accessing the memory for larger problems per node. Without OpenMP parallelism
the performance drops further down to 255 MLUPS per node. In the region with
memory access, however, the performance degradation is relatively small dropping
from 190 MLUPS on a single node to 166 MLUPS per node on 512 nodes for
16, 777, 216 cells per node.

As observed above, the OpenMP parallelism does not have much of an influence
for problem sizes per node and for other numbers of threads a similar behavior is
observed. And the performance for 16, 777, 216 cells per node on 512 nodes does
not vary much with the number of threads per process. This is summarized in table
1.

Of a little more interest in this respect is the strong scaling, where the problem
size per node decreases with growing numbers of nodes. Figure 7 shows the strong
scaling efficiency for the various number of threads per process. Aside from the rapid
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Fig. 4: Performance per node for D3Q27 on 512 nodes, utilizing all 65, 536 cores.

Table 1: Performance per node on 512 nodes for 16, 777, 216 cells per node

Threads per process MLUPS per node

1 168
2 166
4 166
8 163
16 153

decline in the parallel efficiency beyond the peak in the cache region we see that the
use of OpenMP threads here allows for a better scaling to small problems per node,
with 4 threads per process, matching the CoreCompleX yielding the highest parallel
efficiency on 512 nodes. Note, that this graph is somewhat truncated due to the few
cells fitted on a single node, though more than 6 times as many could fit into the
memory.
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Fig. 5: Performance per node for D3Q27 with 4 OpenMP threads per MPI process.

5 Conclusion

We have presented a basic analysis of the performance behavior of Musubi on
the HLRS computing system Hawk. It reveals that up to 4 OpenMP threads per
process can be used interchangeably with MPI parallelism and can slightly improve
the performance in strong scaling for very small problems per node. This number
of threads corresponds to the CoreCompleX of the AMD EPYC 7742 processors,
which groups 4 physical cores that share a L3 cache together. The largest problem
computed in this analysis contained 68, 719, 476, 736 cells and was computed on
262, 144 cores.
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