
Sustained Simulation
 Performance

123

2021

Michael M. Resch · Johannes
Gebert · Hiroaki Kobayashi
Wolfgang Bez Editors

Sustained Simulation Performance 2021

Sustained Simulation
Performance 2021
Proceedings of the Joint Workshop
on Sustained Simulation Performance,
University of Stuttgart (HLRS)
and Tohoku University, 2021

Michael M. Resch • Johannes Gebert
Hiroaki Kobayashi • Wolfgang Bez
Editors

Editors
Michael M. Resch Johannes Gebert
High-Performance Computing Center High-Performance Computing Center
University of Stuttgart, HLRS University of Stuttgart
Stuttgart, Germany Stuttgart, Germany

Hiroaki Kobayashi Wolfgang Bez
Graduate School of Information Sciences NEC High Performance Computing
Tohoku University Europe GmbH
Aoba-ku, Japan Düsseldorf, Germany

ISBN 978-3-031-18045-3 ISBN 978-3-031-18046-0 (eBook)
https://doi.org/10.1007/978-3-031-18046-0

Mathematics Subject Classification (2020): 65-XX, 65Exx, 65Fxx, 65Kxx, 68-XX, 68Mxx, 68Uxx,
68Wxx, 70-XX, 70Fxx, 70Gxx, 76-XX, 76Fxx, 76Mxx, 92-XX, 92Cxx

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors
or the editors give a warranty, expressed or implied, with respect to the material contained herein or for
any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-18046-0

Preface

The Workshop on Sustained Simulation Performance was held online at HLRS in
March 2021 and in a hybrid mode at the Cyberscience Center, Tohoku University
in December 2021. The collaboration between the High-Performance Computing
Center Stuttgart, Tohoku University and NEC has been marked by the Covid pan-
demic, in which we demonstrated our ability to adapt to new situations and continue
our partnership. Ultimately, we are happy to continue the relationship that began in
2004 with the establishment of what we called the ‘Teraflop Workshop’. While the
homepage still remembers this name, the workshop evolved into the Workshop on
Sustained Simulation Performance with more than 30 events on two continents.

Perhaps we were able to adapt so quickly to the pandemic because the field of
high-performance computing has always evolved rapidly. While HPC systems were
designed for many years as single processor vector machines, they now are large
cluster systems with fast interconnects and rather typically with a combination of a
variety of processors and accelerators – among them still vector processors. Climate
and weather simulation is one of the scientific fields that has a particularly high
demand for computing power, and research has shown that we want to use our
resources more sustainably. This is at odds with the ever larger systems with ever
higher energy consumption of modern HPC systems. At the same time, however,
there has been a tremendous increase in efficiency. The contributions of this book
and the upcoming workshops will help to continue and accelerate the development
of fast and efficient high-performance computing.

We would like to thank all the contributors and organizers of this book and the
Sustained Simulation Performance Workshops. We especially thank Prof. Hiroaki
Kobayashi for his close collaboration over the past years and look forward to inten-
sifying our cooperation in the future.

Stuttgart, Germany Michael M. Resch
December 2021 Johannes Gebert

v

Contents

Supercomputer for Quest to Unsolved Interdisciplinary Datascience
(SQUID) and its Five Challenges . 1
Susumu Date, Yoshiyuki Kido, Yuki Katsuura, Yuki Teramae and Shinichiro
Kigoshi

Simulating Molecular Docking on the SX-Aurora TSUBASA Vector
Engine . 21
Leonardo Solis-Vasquez, Erich Focht and Andreas Koch

Simulation of Field-induced Chiral Phenomena in Inhomogeneous
Superconductivity . 37
Hirono Kaneyasu, Kouki Otsuka, Singo Haruna, Shinji Yoshida and Susumu
Date

Exploiting Hybrid Parallelism in the LBM Implementation Musubi on
Hawk . 53
Harald Klimach, Kannan Masilamani and Sabine Roller

MPI Continuations And How To Invoke Them . 67
Joseph Schuchart and George Bosilca

Xevolver for Performance Tuning of C Programs . 85
Hiroyuki Takizawa, Shunpei Sugawara, Yoichi Shimomura, Keichi Takahashi
and Ryusuke Egawa

Scalability Evaluation of the CFD Solver CODA on the AMD Naples
Architecture . 95
Michael Wagner

vii

Supercomputer for Quest to Unsolved
Interdisciplinary Datascience (SQUID) and its
Five Challenges

Susumu Date, Yoshiyuki Kido, Yuki Katsuura, Yuki Teramae and Shinichiro
Kigoshi

Abstract The Cybermedia Center at Osaka University started the operation of a su-
percomputing system named Supercomputer for Quest to Unsolved Interdisciplinary
Datascience (SQUID) in May 2021. SQUID is a hybrid supercomputing system com-
posed of three kinds of heterogeneous compute nodes and delivers 16.591 PFlops
as the theoretical performance. This paper overviews the architecture and struc-
ture of SQUID and then explains the five challenges which we have set in designing
SQUID: Tailor-made computing, HPC and HPDA integration, Cloud-interlinked and
-synergized, Secure computing environment, and Data aggregation environment. Af-
ter that, the future issues to be tackled through the actual operation of SQUID are
described.

1 Introduction

Recently, the globalization of academic research has been accelerating. It requires the
aggregation and integration of computing, data and even human resources. Accom-
panied with the globalization of academic research, it would become more common
and general that researchers and scientists who are with different organizations work
together as a team for solving a common scientific problem [4]. This trend is not
exceptional in Osaka University but observed worldwide. For the higher productivity
in globalized academic research, the information and communication technologies
(ICT) would take a role of greater importance. For the reason, the Cybermedia Center
at Osaka University (CMC) which is a supercomputing center and in charge of the
administration and management of ICT infrastructures including supercomputing

Susumu Date and Yoshiyuki Kido,
Cybermedia Center, Osaka University, Japan, e-mail: date@cmc.osaka-u.ac.jp

Yuki Katsuura, Yuki Teramae and Shinichiro Kigoshi
Department of Information and Communication Technology Services, Osaka University, Japan

1© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

M. M. Resch et al. (eds.), Sustained Simulation Performance 2021,

https://doi.org/10.1007/978-3-031-18046-0_1

mailto:date@cmc.osaka-u.ac.jp
https://doi.org/10.1007/978-3-031-18046-0_1
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18046-0_1&domain=pdf

2 S. Date, Y. Kido, Y. Katsuura, Y. Teramae and S. Kigoshi

system for research and education [2], is expected to implement the supercomput-
ing systems well prepared for the rapid expansion and globalization of academic
researches.

Furthermore, high performance data analysis (HPDA) has been increasing its
importance. Today, many researchers and scientists are enthusiastic about applying
data analysis techniques, characterized with keywords such as artificial intelligence
(AI), machine learning (ML) and deep learning (DL), to a large amount of data
set to solve their scientific problems. Such enthusiasm, expectation and concern to
HPDA have triggered the utilization of supercomputing systems by researchers who
have never used any supercomputing system so far. As a result, it is expected that
newly developed supercomputing systems should accommodate the new computing
needs and requirements derived from HPDA as well as traditional high performance
computing (HPC).

In the background above, the CMC has developed and installed a new super-
computing system named Supercomputer for Quest to Unsolved Interdisciplinary
Datascience (SQUID) [13] in May 2021, in a hope that the new supercomputing sys-
tem facilitates researchers and scientists who work on researches for the advancement
of academia and industries to explore unsolved data scientific problems. For realiz-
ing SQUID, we have set the five challenges toward our envisaged next-generation
supercomputing systems. In this paper, we briefly introduce SQUID and then explain
the five challenges.

This paper is structured as follows. Section 2 briefly introduces the hardware
configuration of SQUID. In Section 3 the five challenges set in realizing SQUID
are explained. After that, Section 4 describes the issues to be tackled. Section 5
summarizes this paper.

2 Hardware configuration of SQUID

Figure 1 shows the exterior view of SQUID installed at the CMC. This SQUID is
a hybrid supercomputing system composed of three different architectures; general-
purpose CPU, GPU and vector nodes. All of processors and accelerators deployed
on the compute nodes of SQUID are cooled with DLC (direct liquid cooling) for
stable operation and high performance delivery purpose. For the parallel filesystem,
Lustre-based DDN EXAScaler was adopted to provide users with a single and fast
disk image of 20 PB HDD and 1.2 PB NVMe SSD. Mellanox InfiniBand HDR (200
Gbps) was adopted to connect all of three types of compute nodes and the Lustre
parallel filesystem (Fig. 2). As the topology, the combinational use of the Dragonfly+
and Fat-tree was adopted. As to the Dragonfly+ topology for CPU nodes, 1520 CPU
nodes are divided to three groups (513 nodes, 513 nodes and 494 nodes) and a group
is connected to each of other two groups with 95 IB HDR links (19 Tbps). The
CPU nodes in each group are connected as the Fat-tree topology to take advantage
of full-bisectional bandwidth. On the other hand, the GPU nodes, the vector nodes,
the file servers for Lustre filesystem, and other management servers for SQUID are

SQUID and its Five Challenges 3

Fig. 1: Exterior view of SQUID.

Fig. 2: Overview of the interconnect on SQUID.

connected as the Fat-tree topology to utilize full-bisectional bandwidth. The spine
switches of the Fat-tree interconnect for the GPU node, the vector nodes, the file
servers and other management servers are connected to each group of the CPU nodes
with 36 IB HDR links (7.2 Tbps).

Table 1 shows the system performance and configuration of SQUID. The theoret-
ical performance of SQUID reaches 16.591 PFlops. The major portion of SQUID,
as the table indicates, is the cluster of general-purpose CPU nodes. SQUID has 1520

4 S. Date, Y. Kido, Y. Katsuura, Y. Teramae and S. Kigoshi

Table 1: System performance and configuration of SQUID.

compute node general-purpose CPU nodes CPU: Intel Xeon Platinum 8368
(16.591 PFlops) 1,520 nodes (8.871 PFlops) (Ice Lake / 2.4 GHz 38C) x 2

Memory : 256 GB
GPU nodes CPU: Intel Xeon Platinum 8368
42 nodes (6.797 PFlops) (Ice Lake / 2.4 GHz 38C) x 2

Memory : 512 GB
GPU: NVIDIA HGX A100 8-GPU board (Delta)

vector nodes CPU: AMD EPYC 7402P
36 nodes (0.922 PFlops) (ROME / 2.8 GHz 24C) x 1

Memory : 128 GB
vector: NEC SX-Aurora TSUBASA Type20A x 8

storage DDN EXAScaler(Lustre) HDD: 20.0 PB
NVMe 1.2 PB

interconnect Mellanox InfiniBand HDR (200 Gbps)
front-end node front-end node for HPC CPU: Intel Xeon Platinum 8368

4 nodes (Ice Lake / 2.4 GHz 38C) x 2
Memory : 256 GB

front-end node for HPDA CPU: Intel Xeon Platinum 8368
4 nodes (Ice Lake / 2.4 GHz 38C) x 2

Memory : 512 GB
secure front-end node CPU: Intel Xeon Platinum 8368
1 node (Ice Lake / 2.4 GHz 38C) x 2

Memory : 256 GB

Fig. 3: The internal architecture of a SQUID CPU node.

CPU nodes in total. Figure 3 shows the block diagram of the CPU node. Each CPU
node has 2 Intel Xeon Platinum 8368 (Ice Lake/ 2.4 GHz, 38 Core) processors and
256 GB memory deployed. The two processors are connected on 3 UPI (Ultra Path
Interconnect) links and 8 channels of 16 GB DDR4-3200 DIMMs are connected to

SQUID and its Five Challenges 5

each processor. The memory bandwidth available in each processor is 204.8 GB/s.
Each processor delivers 2.918 TFlops as its theoretical performance and so each
CPU node delivers 5.836 TFlops. Therefore, the total theoretical performance of
CPU nodes on SQUID becomes 8.871 PFlops.

Figure 4 illustrates how CPU nodes are installed. The left is NEC LX103Bj-8,
the blade server equipped with two CPU nodes. These 19 blade servers are mounted
in the blade enclosure (chassis) shown in the center in the figure. Then, the 4 chassis
are mounted to a compute rack. As the result, all of CPU nodes are mounted in 20
compute racks.

Fig. 4: SQUID CPU nodes.

The second major portion in terms of theoretical performance of SQUID is the
cluster of GPU nodes. The total theoretical performance in the cluster of GPU
nodes is 6.797 PFlops. The GPU node was designed so that it has the same type
of processors as CPU nodes. This reason can be explained from the following
experience of our operation of OCTOPUS (Osaka university Cybermedia cenTer
Over-Petascale Universal Supercomputer) [9], which is the supercomputing system
installed in 2017. Throughout the operation of OCTOPUS, we observe the heavy
loaded utilization of general-purpose CPU nodes that have the Intel Xeon processors.
Then, we dynamically change the configuration of the scheduler system so that a
part of user job requests targeting CPU nodes are transferred to GPU nodes, only
when the utilization of GPU nodes are not so high. From this experience, the GPU
node was designed to have 2 Intel Xeon Platinum 8368 (Ice Lake/ 2.4GHz, 38 Core)
processors to seamlessly accommodate the job requests targeting CPU nodes.

6 S. Date, Y. Kido, Y. Katsuura, Y. Teramae and S. Kigoshi

Fig. 5: The internal architecture of a SQUID GPU node.

Fig. 6: SQUID GPU nodes.

Figure 5 shows the block diagram of the GPU node. The two processors are con-
nected on 3 UPIs and 8 channels of 32 GB DDR4-3200 DIMMs are connected to each
processor. The memory bandwidth in each processor is 204.8 GB/s. Remarkably, the
SQUID GPU node has four HDR100 connections to the interconnect, while the CPU
node has a single HDR200 connection to the interconnect. The reason is explained

SQUID and its Five Challenges 7

from the intention that the data traffic from CPU and GPU are distributed symmet-
rically in the GPU node. For the GPU accelerator, NVIDIA HGX A100 8-GPU
board (Delta) is deployed. It is connected to four PCIe Switches through PCIe4.0x16
links as the figure shows. As the name indicates, eight A100 GPUs are deployed
on the board. These A100 GPUs are connected through NVLINK and NVSwitch.
In more detail, a single A100 GPU has 12 NVLINK interconnect, each of which
supports bi-directional 50 GB/s communication connected to NVSwitch. Therefore,
600 GB/s bi-directional communication can be supported [14]. This A100 GPU
delivers 19.5 TFlops (double precision) as the theoretical performance and so each
GPU node reaches 161.836 TFlops. Figure 6 shows how GPU nodes are mounted.
Six 4U rack-mount servers (NEC LX106Rj-4G) shown in the figure are mounted on
a compute rack and thus 7 compute racks in total are installed for SQUID.

The last portion is the cluster of vector nodes. The total theoretical performance of
vector nodes is 0.922 PFlops. This vector node is characterized with NEC SX-Aurora
TSUBASA Type 20A vector engine which is a vector processor. Figure 7 shows the
block diagram of a vector node. It has an AMD EPYC 7402P (2.8 GHz, 24 Core)
processor and 128 GB memory as well as 8 NEC SX-Aurora TSUBASA Type 20A
vector engines deployed. Eight vector engines are connected to the processor through
PCIe Switches on PCIe3.0x16 links. As to the connection to the interconnect, the
processor has two PCIe4.0x16 links to two HDR200 HCAs. The vector engine has
10 vector processor cores, each of which delivers 307 GFlops (double precision),
and 48 GB HBM2 and thus the peak performance of NEC SX-Aurora TSUBASA
Type 20A is 3.07 TFlops. On the other hand, the AMD processor’s theoretical
performance is 2.15 TFlops. Therefore, the total performance of 36 vector nodes
becomes 0.922 PFlops. Figure 8 shows how vector nodes are mounted. Eight NEC
SX-Aurora TSUBASA Type20A are deployed onto a 2U rack-mount server. These
18 servers are mounted on a rack. 36 SQUID vector nodes are mounted in 2 racks.

Fig. 7: The internal architecture of a SQUID vector node.

8 S. Date, Y. Kido, Y. Katsuura, Y. Teramae and S. Kigoshi

Fig. 8: SQUID vector node.

3 Five challenges behind SQUID

In the procurement of SQUID, we have set the following five challenges that makes
SQUID unique and advanced.

1. Tailor-made computing
2. HPC and HPDA integration
3. Cloud-interlinked and -synergized
4. Secure computing environment
5. Data aggregation environment

In this section, these five challenges are explained in terms of the reason why
these challenges are aimed and how the challenges are tackled.

3.1 Tailor-made computing

Researchers want to utilize a supercomputing system in their favorite way. For
example, some researchers may want to perform their own hand-made program,
others may want to utilize open-source software for their analysis. Some researchers
want to use either MPI library or OpenMP for parallelization, others both. Even
if they use the same software and libraries, the required version of software and
libraries give rise a serious problem. Due to the diversification, it is hard and even

SQUID and its Five Challenges 9

impossible to prepare a common software stack that all of the users can satisfy.
In fact, we encountered this type of problems many times on the supercomputing
systems installed in prior to SQUID at the CMC. To solve this problem, we have
adopted SingularityCE [12] as container virtualization technology, so that each
researcher can make their own software stack or convert a docker container image
to the corresponding Singularity image. This challenge is tightly related to HPC and
HPDA integration and secure computing environment challenges described later in
this paper.

3.2 HPC and HPDA integration

As described in Section 1, the computing needs and requirements in the academic
research scene have been diversified. A reason for this diversification can be explained
from the newly emerged computing needs and requirements. Many researchers and
scientists are fascinated by high performance data analysis characterized by keywords
such as AI, ML and DL and have been seeking to apply such HPDA to their scientific
and engineering problems. This recent worldwide trend triggers supercomputing
centers to consider what the supercomputing system is like in near future. In addition,
the fact that there are different types of processors such as Intel, AMD, and ARM and
accelerators such as GPU, vector engine and FPGA also illustrates the diversification.
Moreover, the number of processor cores differs even in the same type of processors.

The supercomputing centers located in universities are expected to provide su-
percomputing systems that can smoothly accommodate the computing needs from
researchers and scientists necessitating large-scale compute resources. Until recently,
the jobs executed on supercomputing systems are mostly numerical analysis and com-
puter simulations that utilize MPI programs written in C or Fortran. Also, these types
of traditional jobs accept a batch-job processing. However, new types of computing
needs derived from HPDA differ from traditional jobs. For example, such comput-
ing needs require Java and Python rather than C and Fortran. Also, researchers and
scientists prefer to use supercomputing systems in an interactive manner because
researchers who utilize HPDA techniques necessitate trial-and-error workflows for
data processing. This fact means that completely different software stacks from
traditional HPC environment becomes necessary for HPDA jobs.

The easiest way to satisfy both types of computing needs might be to separate
compute resources and then provide the different set of resources for each computing
needs. In reality, however, it is too difficult to predict how much computing needs
derived from HPC or HPDA domains in designing a supercomputing system. If the
prediction is not correct, valuable compute resources can be wasted. Even if the
prediction is correct, the usage of the supercomputing system would change during
operation. Furthermore, in the recent academic research scene, researchers have
started to seek for new computing ways of combining HPC and HPDA techniques.
For the reason, the static separation of compute resources in supercomputing systems
is not a better way to satisfy both computing needs and requirements.

10 S. Date, Y. Kido, Y. Katsuura, Y. Teramae and S. Kigoshi

For the reason above, we explored the integration of HPC and HPDA environ-
ments on SQUID so that it can accommodate both types of supercomputing needs.
Specifically, we took the strategy to prepare a set of front-end servers designed for
HPC users and HPDA users respectively (Table 1), rather than separating the compute
nodes of SQUID into two groups. By deploying the software stack targeting HPC
or HPDA on each set of front-end servers, we aimed to satisfy the computing needs
and requirements from each user group and provide better user experience. In detail,
for the HPC users, the corresponding front-end servers provide with a computing
environment where users can develop their HPC codes and then submit jobs in the
same way as until today. On the other hand, for the HPDA users, the corresponding
front-end servers are deployed so that the users can interactively perform their data
analysis workflow, for example using Jupyter Notebook, in a trial-and-error manner.
Importantly and however, even in the case of using the HPDA front-end servers, our
strategy forces the users to wait for compute resources being available when they
perform large-scale data analysis jobs. The reason can be explained from the fact
that compute resources are finite and our policy that our center would like to provide
compute resources fairly for any type of users.

Fig. 9: An example workflow on a HPDA frontend server.

Figure 9 illustrates how the users can utilize SQUID through the use of HPDA
frontend servers. The key point in the HPDA front-end server is the use of Singular-
ityCE [12] for providing each user group with a feeling like as if only they are using
SQUID. When the user utilizes SQUID for HPDA purpose, the user first logins (ssh)
to the HPDA front-end server. After that, the user retrieves the Jupyter Notebook
container image and then starts the container. After the container starts, it displays
an access URL like https://squidhpda1.hpc.cmc.osaka-u.ac.jp:10125 on

https://squidhpda1.hpc.cmc.osaka-u.ac.jp:10125

SQUID and its Five Challenges 11

the user terminal. Then, the user can perform his/her data analysis interactively, by
accessing (https) the access URL from his/her browser and typing his/her user ID
and password onto the Jupyter Notebook. If the user wants to perform large-scale
data analysis on the compute nodes of SQUID, the user needs to submit a Singularity
container job using the qsub command to the job scheduler of SQUID.

3.3 Cloud-interlinked and -synergized

In these days a variety of IaaS (Infrastructure as a Service) cloud have prevailed. Rep-
resentative examples of such cloud include AWS [1], Azure [7] and OCI [11]. The
convenience that allows researchers to dynamically build their favorite computing
environment through an intuitive interface would be accepted by more researchers
in near future. On the other hand, as described, the computing needs and demands
have been increasing. From such a perspective, the functionality of using the cloud
resources on demand when the computing needs from users exceed the on-premise
supercomputing resources is considered necessary in the next-generation supercom-
puting systems.

From the consideration, we have explored the dynamic use of the cloud resources
by introducing a cloud bursting solution onto OCTOPUS, the supercomputing system
built in prior to SQUID. As a result, we have indicated that our developed cloud
bursting solution was feasible in the paper [3]. Also after that, we have continued
to investigate the solution in terms of whether it can be available as a service to
our users by providing it with limited number of users on OCTOPUS. After the
careful investigation, the cloud bursting solution has been deployed as a product-
level functionality onto SQUID.

Figure 10 shows the simplified architecture of the cloud bursting solution deployed
between SQUID and Microsoft Azure. Our cloud bursting solution highly respects
user convenience. In other words, the solution aims to provide users with a computing
environment where users can take advantage of on-premise and cloud compute
resources without being aware of their difference. For the purpose, our cloud bursting
solution simply extends the internal network through the IPSec VPN (Virtual Private
Network) to the cloud and then reinforces the scheduler deployed on SQUID so that
the cloud resources are utilized as if they were on-premise resources.

Technically, our cloud bursting solution leverages NQSV [8], which is a NEC
proprietary job management system deployed on SQUID. NQSV inherently allows
users to submit virtual machine and container jobs. In other words, NQSV enables
the invocation of virtual machines and containers as user jobs. By utilizing this
functionality, our cloud bursting solution dynamically starts virtual machines on the
IaaS cloud when a job request arrives at the cloud bursting queue described below.
For the use of filesystem from the cloud resources, the cloud resources mount the
on-premise filesystem through the use of NFS on VPN. On SQUID, the similar
cloud bursting solution has been deployed between SQUID and OCI although the
bare metal servers are used instead of virtual machines in the case of OCI.

12 S. Date, Y. Kido, Y. Katsuura, Y. Teramae and S. Kigoshi

Fig. 10: Cloud bursting solution between SQUID and Microsoft Azure.

At the time of writing this paper, we assume the use of single cloud bursting
queue where CPU nodes and the cloud resources on Azure or OCI are mapped for
this cloud bursting solution. In this case, the submitted job requests are executed on
either the on-premise resources or the cloud resources. In the case that the job request
is executed onto the cloud resources, it is easily predicted that the executed job incurs
inevitable overhead in performing file I/O operations. From the perspective, we have
been working on the realization of intelligent scheduling algorithms that consider
computational characteristics for workload distribution [16].

3.4 Secure computing environment

Scientists in the research areas treating security-sensitive data, such as medical and
pharmaceutical sciences, have been highly interested in applying high performance
data analysis techniques to their own large amount of scientific data. Taking the sit-
uation into consideration, the CMC has been working on the realization of the com-
puting environment where scientists and researchers in such research area can utilize
supercomputing systems so far [5, 17]. SQUID was designed to provide users with
two functionalities for realizing a secure computing environment where security-
sensitive data can be treated. The first functionality is the secure partitioning and
the second functionality is the secure stating. The secure partitioning functionality
allows the user to perform their computation on fully-isolated virtual environment
where virtual machines are connected on a virtual network partitioned from the

SQUID and its Five Challenges 13

interconnect. The secure staging functionality automatically connects SQUID to a
remote storage where confidential data and container images are stored only while
security-sensitive data is treated.

This mechanism works as follows. To allow users to utilize a secure computing
environment, SQUID provides a secure front-end server (Table 1). When the job
requests submitted from the secure front-end server are executed on SQUID, the
job’s containers are invoked on the compute nodes and then connected to the network
logically partitioned from the interconnect. At this time, if the job requests request
the secure staging functionality to securely access the data on remote storage, the
network between the compute nodes and remote SSD are dynamically established
and the container images and data on the remote SSD becomes available.

3.5 Data aggregation environment

As described in Section 1, in the today’s academic research scene, researchers and
scientists need to collaborate with each other despite the geographical distribution of
compute, data and even human resources. In particular, to solve a scientific problem,
the data infrastructure facilitating the smooth sharing and exchange of research
data has been increasingly more important as well as the computing infrastructure
delivering high performance. This tendency is not exceptional in researches using
supercomputing systems. Until today the CMC has operated the supercomputing
systems to mainly provide a high performance computing service. Most of these
supercomputing systems which the CMC has provided were designed and built as
an isolated and independent computing infrastructure. The reasons for this isolated
computing infrastructure can be explained from the administrators’ intention that
the administrators want to protect the supercomputing systems so that malicious
users cannot attempt to illegally use them. Also, the fact that the administrators want
to invest the budget to compute resources as much as possible for pursuing higher
computational performance may explain the reasons. However, the globalization in
academic research scene now begins to necessitate a data infrastructure that allows
them to easily aggregate data to be analyzed and share the analysis result for higher
productivity of their research activities. The rising expectation and concern to HPDA
has been further increasing this demand.

From the perspective above, we have designed a data infrastructure named Osaka
university Next-generation Infrastructure for Open research and open innovatioN
(ONION) [10]. Figure 12 shows the overview of ONION. ONION was designed to
satisfy the following seven requirements towards the data infrastructure which we
envisage.

1. Scientific data generated on diverse data sources such as scientific devices and
IoT sensors can be easily accommodated and aggregated.

2. Even researchers who do not have any user account on supercomputing systems
can access data on ONION if the users of supercomputing systems want to permit.

14 S. Date, Y. Kido, Y. Katsuura, Y. Teramae and S. Kigoshi

Fig. 11: Overview of ONION.

3. Administration privilege can be delegated to the representative of storage user
group and the representative can issue account to each member of the group.

4. Users’ external storage can be connected to ONION.
5. ONION and the above user’s storage can be viewed as a single disk image to

allow users to easily access data of their interest.
6. I/O performance must be high enough to satisfy HPC and HPDA users’ require-

ments.
7. ONION should have the interoperability with GakuNinRDM [6], a research data

management infrastructure by National Institute of Informatics (NII), Japan.

As the result of our investigation, we have come up to a conclusion that no single
storage solution can satisfy all of these requirements and so we designed ONION by
synergically using DDN EXAScaler, Cloudian HyperStore and NextCloud. These
three storage solutions were designed to interoperate through the S3 (Amazon Simple
Storage Service) protocol. EXAScaler is a Lustre-based parallel filesystem and was
adopted for satisfying requirement (6). In addition to DDN EXAScaler, S3DS was
adopted to support the S3 protocol. Through the use of S3DS, scientists can access
data on EXAScaler even if they do not have user account on SQUID (requirement
(2)). Also, requirements (1) and (7) can be easily satisfied.

Cloudian HyperStore is a S3-compatible object storage designed to manage mas-
sive amounts of unstructured data. It is a Software-Designed Storage (SDS) platform
which runs on any standard x64 server platform. HyperStore supports the S3 protocol
and provides higher scalability, meaning that the administrators can flexibly add the
size and capacity of storage depending on users’ storage needs. Through the use of
the S3 protocol, requirements (1), (2) and (7) can be achieved for the same reason
as S3DS described above. The most critical reason why we adopted HyperStore is
that HyperStore provides multi-tenancy, meaning that it allows the administrator of

SQUID and its Five Challenges 15

HyperStore to delegate a part of administration privilege to each representative of
research groups (requirement (7)). In the case of our university, for example, we
can delegate the administration privilege to the representative for the Department
of Engineering at Osaka University. After that, the representative can make and
delete user accounts without obtaining the further administrator privilege depending
on the department policy. This delegation functionality reduces the administrator’s
workload regarding storage management.

NextCloud is an online storage solution and provides an intuitive web user inter-
face for users’ data access (Fig. 12). Users can access data through web browsers
such as Chrome, Safari and so on. Furthermore, each user can configure his/her
NextCloud environment so that local storage can be connected with external stor-
ages supporting protocols such as WebDAV and S3 and then the whole disk space
can be viewed as a single disk image (requirements (4) and (5)).

Fig. 12: Snapshots of NextCloud on ONION.

These three storage solutions have been integrated so that they interact with one
another through the use of the S3 protocol. Also, the external storages on the remote
research institutions and organizations can be accessed from ONION and vice versa.
Furthermore, S3-compatible IoT sensors can be accommodated on ONION.

4 Future issues towards next-generation infrastructure

The following three issues are currently focused and explored towards our next-
generation supercomputing systems.

16 S. Date, Y. Kido, Y. Katsuura, Y. Teramae and S. Kigoshi

4.1 Tradeoff between user experience and performance for practical
cloud bursting

The cloud bursting functionality on SQUID aims to forward user job requests to the
cloud resources without having users being aware of the environmental difference of
the on-premise and cloud environments. Therefore, the current implementation of
the cloud bursting functionality has sacrificed the achieved performance of user jobs
executed on the cloud. As described in Section 3.3, the VPN connection between the
cloud and on-premise environments causes the degradation of achieved performance
of user jobs executed on the cloud. It is easily predicted that this performance
bottleneck takes place under the current implementation, while our implementation
enables user job requests to be forwarded without modifying any user code and job
script file because the cloud compute nodes are configured to be treated in the same
way as the on-premise compute nodes.

To avoid this performance bottleneck, the possible solution would be to prepare
a dedicated queue on which only cloud resources are mapped and then let users
explicitly submit their jobs to the dedicated queue with the data stating option. This
solution is certainly better than our implementation in terms that the jobs executed
on the cloud can gain higher performance achieved, particularly when the user jobs
are I/O intensive. However, it is harder than the administrators expect for novice
users to distinctively submit their jobs to the cloud, by understanding how data
stating works, how the job script should be modified from the one targeting the
on-premise environment, and so on. In addition to the trade-off problem, we have
to control the monetary cost for using the cloud resources for avoiding the shortage
of the operational cost of supercomputing systems caused from the overuse of the
cloud resource, because the monetary cost is higher than the one for on-premise
resources in the CMC. Otherwise, we cannot help temporarily shutting down the
supercomputing systems. For the reasons, our operation policy of this cloud bursting
functionality is currently to use the cloud resources only when the utilization of
compute nodes becomes high and the user waiting time becomes long. Taking the
ease of providing the cloud resources with users based on the operation policy
into consideration, the cloud bursting queue on our implementation is better with
regard to the monetary cost control. For example, this control can be possible just
by turning off and on the cloud resources mapped to the cloud bursting queue. Note
that the remained jobs in the queue are executed on the on-premise resources after
the shutdown of the cloud resources. On the other hand, in the case of the dedicated
queue, the users have to wait for the cloud being turned on or resubmit the jobs
to the on-premise resources, since the remained queue cannot be executed on the
on-premise. Some technical solution that automatically performs data staging on
behalf of the job requests submitted to the cloud bursting when the job is executed
on the cloud may be a technical issue to solve the above tradeoff problem. Also, the
hybrid use of the cloud bursting queue and the dedicated queue might be a practical
solution. We have been exploring the better solution to balance user experience and
performance through the actual operation of SQUID.

SQUID and its Five Challenges 17

4.2 Software and tools to support integrated way of HPC and HPDA

As described in Section 3.2, researchers have been seeking for new ways of com-
putation. An example of such ways is data assimilation technique. By feeding back
the observed data to the simulation, researchers attempt to raise the accuracy of
computer simulations. Also, there exists researchers who try to judge whether the
simulation computation should be stopped or not by applying AI or ML techniques
to the interim result.

However, our current implementation of integrating HPC and HPDA is still prim-
itive and just provides the environment where HPC and HPDA can be performed
on SQUID. We have recognized that there is much room for improvement and rein-
forcement for supporting the exploration for new computational ways by researchers
like the above examples. For example, some data mechanism that enables jobs to
retrieve data located outside the supercomputing system to the parallel filesystem just
before job execution without degrading the job throughput might become necessary
for the application of data assimilation technique to simulations executed on the
supercomputing system assuming the shared use by multiple research groups [15].
The importance and necessity of such mechanism may be explained also from the
recent prevalence of IoT sensors.

In designing ONION, we aimed to realize the seamless data exchange and sharing
by researchers. As the result, ONION allows them to easily aggregate such data onto
the parallel filesystem and the object storage. Also, it enables researchers to easily
share the computational result with the collaborators who does not have any user
account on SQUID. However, we consider that the software and tools that allow
researchers to benefit from SQUID as the compute infrastructure and ONION as the
data infrastructure. Through the operation of SQUID we would like to clarify the
requirements and needs by the researchers who explore a new way of computation
and then work on the research and development of solutions for such requirements
and needs towards the next-generation supercomputing systems.

4.3 Evaluation of secure computing environment for an operational
point of view

The secure computing environment realized on SQUID, as described in Section 3.4,
provides two functionalities of secure partitioning and secure staging functionality.
However, these functionalities still need to be sophisticated from the perspective of
performance and stable operation. Currently, the secure partitioning functionality is
available on SQUID. However, how much the performance degradation due to the
overhead incurred by the dynamic establishment of the secure computing functional-
ity takes place has not sufficiently evaluated. Also, how secure our secure computing
environment must be quantitatively evaluated. Otherwise, scientists and researchers
cannot trust our secure computing environment for treating security-sensitive data.

18 S. Date, Y. Kido, Y. Katsuura, Y. Teramae and S. Kigoshi

For these issues, we plan to collaborate with the dental scientists in Osaka University
Dental Hospital through the Social Smart Dental Hospital research collaboration
project promoted among the CMC, the hospital and NEC.

5 Summary

In this paper we introduced SQUID, the supercomputing system at the CMC. For
making SQUID unique and advanced, we have set five challenges in a hope that
SQUID delivers ambitious functionalities for the advancement of globalized aca-
demic research. As the result, SQUID not only provides high performance but also
offers the functionalities that allow researchers to perform research collaboration
with researchers in other universities and research institutions in a highly productive
way. For example, by utilizing ONION, which is the data aggregation infrastructure
designed for smooth data exchange and sharing, researchers can easily store scien-
tific data to be analyzed on the parallel filesystem and allows their collaborators to
download the analysis result immediately after computation. Also, by connecting
S3-compatible IoT devices and storages with ONION, each researcher can easily
move data between his/her environment and SQUID. For another example, the cloud
bursting functionality realized on SQUID enables the administrator to offload the
workload to the cloud resources on Azure and OCI in response to the surge in utiliza-
tion of on-premise compute nodes. This functionality contributes to the reduction of
users’ job waiting time and results in higher productivity in academic research. Also,
the secure computing environment established on SQUID can be used for analysis of
security-sensitive data. However, these ambitious features still have to be improved
and reinforced through the actual operation. We continue to work on the research
and development towards the next-generation supercomputing systems.

References

1. AWS. https://aws.amazon.com/.
2. Cybermedia Center, Osaka University, Japan. https://www.cmc.osaka-u.ac.jp/?lang=
en.

3. S. Date, H. Kataoka, S. Gojuki, Y. Katsuura, Y. Teramae and S. Kigoshi. First Ex-
perience and Practice of Cloud Bursting Extension to OCTOPUS. In: Proceedings of
10th International Conference on Cloud Computing and Services Science (2020). doi:
10.5220/0009573904480455

4. S. Date and S. Shimojo. A Vision Towards Future eScience. In: Proceedings of 2019 15th
International Conference on eScience (eScience) (2019). doi: 10.1109/eScience.2019.00096.

5. S. Date, T. Yoshikawa, K. Nozaki, Y. Watashiba, Y. Kido, M. Takahashi, M. Muraki and
S. Shimojo. Towards A Software Defined Secure Data Staging Mechanism. In: M. Resch,
W. Bez, E. Focht, M. Gienger and H. Kobayashi (eds), Sustained Simulation Performance
2017, Springer, Cham (2017). doi: 10.1007/978-3-319-66896-3_2

6. GakuNin RDM. https://rcos.nii.ac.jp/en/service/rdm/
7. Microsoft Azure. https://azure.microsoft.com/.

https://aws.amazon.com/
https://www.cmc.osaka-u.ac.jp/?lang=en
https://www.cmc.osaka-u.ac.jp/?lang=en
https://rcos.nii.ac.jp/en/service/rdm/
https://azure.microsoft.com/

SQUID and its Five Challenges 19

8. NQSV scheduler. https://www.nec.com/en/global/solutions/hpc/articles/
tech08.html

9. OCTOPUS. http://www.hpc.cmc.osaka-u.ac.jp/en/octopus/.
10. ONION. http://www.hpc.cmc.osaka-u.ac.jp/en/onion/
11. ORACLE CLOUD Infrastructure. https://www.oracle.com/cloud/.
12. SingularityCE. https://sylabs.io/singularity.
13. SQUID. http://www.hpc.cmc.osaka-u.ac.jp/en/squid/.
14. W. Tsu. Introducing NVIDIA HGX A100: The Most Powerful Accelerated Server Platform

for AI and High Performance Computing. https://developer.nvidia.com/blog/
introducing-hgx-a100-most-powerful-accelerated-server-platform-for-
ai-hpc/.

15. K. Yamamoto, A. Endo and S. Date. Architecture of an On-Time Data Transfer Framework
in Cooperation with Scheduler System. In: Network and Parallel Computing: 18th IFIP WG
10.3 International Conference, NPC 2021, Paris, France, November 3-5, 2021, Proceedings,
Lecture Notes in Computer Science, vol 13152, Springer (2022). doi: 10.1007/978-3-030-
93571-9_13

16. S. Yasuda, C. Lee and S. Date. An Adaptive Cloud Bursting Job Scheduler based on
Deep Reinforcement Learning. In: Proceedings of 2021 International Conference on High
Performance Big Data and Intelligent Systems (HPBD&IS) (2021). doi: 10.1109/HPB-
DIS53214.2021.9658447

17. T. Yoshikawa et al. Secure Staging System for Highly Confidential Data Built on Recon-
figurable Computing Platform. In: Proceedings of 2019 IEEE International Conference on
Computational Science and Engineering (CSE) and IEEE International Conference on Em-
bedded and Ubiquitous Computing (EUC) (2019). doi: 10.1109/CSE/EUC.2019.00066

https://www.nec.com/en/global/solutions/hpc/articles/tech08.html
https://www.nec.com/en/global/solutions/hpc/articles/tech08.html
http://www.hpc.cmc.osaka-u.ac.jp/en/octopus/
http://www.hpc.cmc.osaka-u.ac.jp/en/onion/
https://www.oracle.com/cloud/
https://sylabs.io/singularity
http://www.hpc.cmc.osaka-u.ac.jp/en/squid/
https://developer.nvidia.com/blog/introducing-hgx-a100-most-powerful-accelerated-server-platform-for-ai-hpc/
https://developer.nvidia.com/blog/introducing-hgx-a100-most-powerful-accelerated-server-platform-for-ai-hpc/
https://developer.nvidia.com/blog/introducing-hgx-a100-most-powerful-accelerated-server-platform-for-ai-hpc/

Simulating Molecular Docking on the
SX-Aurora TSUBASA Vector Engine

Leonardo Solis-Vasquez, Erich Focht and Andreas Koch

Abstract Molecular docking simulations are widely used in computational drug
discovery. These simulations aim to predict molecular interactions at close distances
by executing compute-intensive calculations. In recent years, the usage of hardware
accelerators to speedup such simulations has become essential, since by leveraging
their processing capabilities, the time-consuming identification of potential drug
candidates can be significantly shortened.

AutoDock is one of the most cited software applications for molecular docking
simulations. In this work, we present our experiences in porting and optimizing
an OpenCL-based AutoDock implementation on the SX-Aurora TSUBASA Vector
Engine. For this purpose, we use device-specific coding techniques in order to
leverage the multiple cores on the Vector Engine, as well as its internal vector-based
processing capabilities. Based on our experiments, we achieve 3.6× speedup by using
a SX-Aurora TSUBASA VE 20B model compared to modern multi-core CPUs, while
still achieving competitive performance with respect to modern high-end GPUs.

1 Introduction

Molecular docking simulations are widely used in computational drug discovery. The
aim of these simulations is to predict the binding poses between a small molecule and
a macromolecular target, both referred to as ligand and receptor, respectively. The
purpose of drug discovery is to identify ligands that effectively inhibit the harmful
function of a given receptor [5]. In that context, molecular docking simulations play

Leonardo Solis-Vasquez and Andreas Koch
Technical University of Darmstadt, Darmstadt, Germany,
e-mail: solis@esa.tu-darmstadt.de,koch@esa.tu-darmstadt.de

Erich Focht
NEC Deutschland GmbH, Stuttgart, Germany, e-mail: erich.focht@emea.nec.com

21

https://doi.org/10.1007/978-3-031-18046-0_2

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

M. M. Resch et al. (eds.), Sustained Simulation Performance 2021,

mailto:solis@esa.tu-darmstadt.de
mailto:erich.focht@emea.nec.com
mailto:koch@esa.tu-darmstadt.de
https://doi.org/10.1007/978-3-031-18046-0_2
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18046-0_2&domain=pdf

22 L. Solis-Vasquez, E. Focht and A. Koch

a key role at shortening the preliminary identification of potential drug candidates.
Subsequent wet lab experiments can be carried out using only a narrowed list of
promising ligands, hence reducing the overall cost of experiments.

AutoDock is one of the most cited software applications for molecular docking
simulations. It performs an exploration of molecular poses through its main engine:
a Lamarckian Genetic Algorithm (LGA) [12]. The prediction of the best pose is
based on the score, which quantifies the free energy (kcal/mol) of a ligand-receptor
system. AutoDock is characterized by nested loops with variable upper bounds and
divergent control structures. Moreover, the compute-intensive score evaluations are
typically invoked a couple of million of times within each LGA run. Because of
this, AutoDock suffers from long execution runtimes, which are mainly attributed
to its inability to leverage its embarrassing parallelism. To cope with that, we have
recently developed OpenCL-based implementations of AutoDock for speeding up
these simulations on a variety of devices including multi-core CPUs and GPUs [19],
and even FPGAs [22].

While the aforementioned devices are well-established in the High Performance
Computing (HPC) landscape, we think there are other accelerator technologies worth
exploring. One of them is the NEC SX-Aurora TSUBASA Vector Engine, whose core
technologies are vector-based processing and high-memory bandwidth (1.53 TB/s).
The SX-Aurora TSUBASA system offers a productive alternative through a pro-
gramming framework based on C/C++, and has been recently used to speed up
simulations in different fields including computational dynamics, electromagnetism,
and others [2, 8, 15].

Moving along these lines, in this work, we present our experiences in developing
AutoDock-Aurora, a port and optimization of our OpenCL-based implementation
of AutoDock for the SX-Aurora TSUBASA Vector Engine. For achieving higher
performance, device-specific coding techniques were applied. We believe that with
AutoDock-Aurora, the applicability of the SX-Aurora TSUBASA Vector Engine to
solve scientific problems can be expanded.

This paper is organized as follows: Sect. 2 provides a background on molecular
docking and on the characteristics of the SX-Aurora TSUBASA Vector Engine.
Sect. 3 details how we develop AutoDock-Aurora by describing our porting and
optimization experiences. Sect. 4 presents our performance evaluation on the SX-
Aurora TSUBASA Vector Engine as well as on CPUs and GPUs. Finally, Sect. 5
presents our closing remarks.

2 Background

This section covers the fundamentals of our work. Sect. 2.1 provides a brief overview
of molecular docking and AutoDock’s functionality. Sect. 2.2 describes relevant
features of the SX-Aurora TSUBASA Vector Engine.

Simulating Molecular Docking on the SX-Aurora TSUBASA Vector Engine 23

2.1 Molecular docking

Molecular docking explores the poses adopted by a ligand with respect to a recep-
tor. It aims: first, to predict the ligand poses within a certain binding site on the
receptor surface; and second, to estimate the binding affinity of their corresponding
interactions. A ligand pose can be represented by degrees of freedom experienced
during simulation. For instance, the ligand in Fig. 1a possesses three types of de-
grees of freedom: translation, rotation, and torsion. Typically, such representation
involves many degrees of freedom, and thus, results in a molecular docking explo-
ration suffering from a combinatorial explosion. To cope with that, such simulations
systematically explore the molecular space using heuristic search methods (e.g., ge-
netic algorithms, simulated annealing, etc), which in turn, are assisted by scoring
functions that estimate the binding affinity [11, 25].

A B

C D

E
H

I

J

K

L
M

O

N

FG

Translation (𝑥, 𝑦, 𝑧)

Orientation (𝜙, 𝜃 , 𝛼)

Torsion (𝜓1)

Torsion (𝜓2)

(a)

𝑥 𝑦 𝑧 𝜙 𝜃 𝛼 𝜓1 . . . 𝜓𝑁rot

1
gene

2
gene

3
gene

4
gene

5
gene

6
gene

7
gene . . .

𝑁rot+6

gene

Ligand pose

Genotype

(b)

Fig. 1: (a) Degrees of freedom of a theoretical ligand composed of atoms A, B, C,
. . . , O. Bonds between atoms are depicted as connecting lines. Each rotatable bond
such as E–H and I–J corresponds to a torsion, i.e., rotation of affected ligand atoms
around the rotatable-bond axis. (b) Mapping between a ligand pose (a set of degrees
of freedom) and a genotype (set of genes). The number of rotatable bonds in a ligand
is denoted as 𝑁rot

From an algorithmic standpoint, AutoDock executes a Lamarckian Genetic Al-
gorithm (LGA) that combines two methods: a Genetic Algorithm and a Local
Search [12]. The Genetic Algorithm (GA) maps the molecular docking exploration
into a biological evolution process. In this mapping, each degree of freedom cor-
responds to a gene. The full set of genes conforms a genotype (Fig. 1b), which
represents an individual of a population. A ligand pose is mapped into an individual,
which throughout the evolution, experiences genetic modifications (e.g., crossover,
mutation). Moreover, individuals undergo a selection procedure in which the stronger
ones survive to the next generation.

24 L. Solis-Vasquez, E. Focht and A. Koch

The individual’s strength, i.e., the score of the respective ligand pose, is estimated
with the scoring function. The score quantifies the binding affinity (kcal/mol) by
taking into account atomic interactions (Van der Waals, hydrogen bonding, electro-
statics, desolvation) and loss of ligand entropy upon binding [6].

The Local Search (LS) further optimizes the scores of the poses already generated
via the Genetic Algorithm. For that purpose, during the Local Search execution,
AutoDock subjects a population subset of randomly-chosen individuals to the Solis–
Wets method [20], which aims to minimize the score by performing a number of
adaptive iterations. The Solis–Wets algorithm (Fig. 2) takes a genotype as input, and
generates a new one by adding small changes (constrained random amount) to each
input gene. The scores of the aforementioned genotypes are calculated and compared.
In case the score is not minimized, a second genotype is generated by subtracting
(instead of adding) small changes to each input gene. Similarly, this is followed
by a corresponding score calculation and comparison. The termination criterion of
the Local Search is adapted at runtime according to the number of successful or
failed score-minimization attempts. The poses improved by the Local Search are
re-introduced into the LGA population.

1 w h i l e ((it < it_MAX) && (step > step_MIN)) {
2 ...
3
4 // Updating counts
5 i f (score_lower) {
6 // Updating genotype in one direction
7 genotype = newgenotype_1;
8 succ++;
9 fail = 0;
10 direction = positive;
11 } e l s e {
12
13 // Comparing scores of genotypes
14 i f Score (newgenotype_2) < Score (genotype) {
15 direction = positive;
16 }
17
18 i f (direction = negative) {
19 succ = 0;
20 fail++;
21 direction = positive;
22 } e l s e {
23 // Updating genotype in the opposite direction
24 genotype = newgenotype_2;
25 succ++;
26 fail = 0;
27 direction = negative;
28 }
29 }
30 }

Fig. 2: Pseudo code of the Solis-Wets method employed as Local Search in AutoDock

Figure 3 depicts the functionality of AutoDock, as well as the default values
of its LGA parameters. The Genetic Algorithm is parameterized with the ratios of
crossover (𝑅cross), mutation (𝑅mut), and selection (𝑅sel). The Local Search termina-
tion is controlled by the minimum change step (stepMIN), as well as the maximum
number of iterations (𝑁MAX

LS-iters). A docking job consists of the execution of several

Simulating Molecular Docking on the SX-Aurora TSUBASA Vector Engine 25

independent LGA runs (𝑁LGA-runs). Each of these LGA runs optimizes the scores
of a population of 𝑁pop-size individuals. A single LGA run finishes its execution
when it reaches the maximum number of score evaluations (𝑁MAX

score-evals) or gener-
ations (𝑁MAX

gens), whichever comes first. This figure also shows that the evaluation
of an individual’s score consists of three steps. In Step 2, the generated pose (ex-
pressed as a genotype) is transformed into its corresponding atomic coordinates.
In Step 3 and Step 4, the calculated atomic coordinates are used to compute the
ligand-receptor (intermolecular) and ligand-ligand (intramolecular) interactions. In
addition, the complexity of the score evaluation causes the performance bottleneck,
as the scoring contributes to more than 90 % of the total execution runtime.

AutoDock DOCKING JOB[
𝑁LGA-runs : 50

]

Step 1
GA generation

GENETIC ALGORITHM (GA)[
𝑅cross : 0.80 | 𝑅mut : 0.02 | 𝑅sel : 0.50

]
Step 2-3-4
Individual
scoring

Step 1
LS generation

Step 2-3-4
Individual
scoring

Iterating over selected individuals

LOCAL SEARCH (LS)[
stepMIN : 0.01 | 𝑁MAX

LS-iters : 300
]Iterating over GA generations

LAMARCKIAN GENETIC ALGORITHM (LGA)[
𝑁pop-size : 50 | 𝑁MAX

score-evals : 2′500′000 | 𝑁MAX
gens : 27′000

]
Iterating over independent LGA runs

Input processing

Output pro-
cessing

Step 2
Pose

calculation

Step 3
Ligand-receptor

interaction

Step 4
Ligand-ligand

interaction

< 1 %Typical runtime distribution < 10 % > 90 %

Fig. 3: AutoDock block diagram [21] with default values of LGA parameters

2.2 SX-Aurora TSUBASA Vector Engine

The SX-Aurora TSUBASA Vector Engine, also in this work simply referred to as
VE, is a high-performance accelerator in the shape of a full-profile dual-slot PCIe
card. It is attached via PCIe to a Vector Host (VH), which is an x86 processor
responsible for OS-related tasks as well as for the VE resource management. The
VE has eight cores, where each core possesses two processing units. The scalar
processing unit (SPU) employs a RISC instruction set, out-of-order execution, and

26 L. Solis-Vasquez, E. Focht and A. Koch

L1 & L2 caches. The vector processing unit (VPU) has 64 long vector registers
as well as several vector execution units. In contrast to conventional SIMD and
SIMT architectures, these vector execution units are implemented as 32 × 64-bit
wide SIMD units with 8-cycle deep pipelines. Moreover, the VPU utilizes a vector
length register and 16 vector mask registers. The vector length register controls the
number of elements processed in vector operations, while the mask registers enable
predication. Currently, VE processors of first (VE 10) and second generation (VE 20)
are commercially available [23].

Regarding memory capabilities, the VE features a 48 GB HBM2 RAM, which is
capable of up to 1.53 TB/s of memory bandwidth. All eight cores within the VE are
connected to a 16 MB Last Level Cache (LLC) through a fast 2D network-on-chip.
Moreover, the VE supports two memory-access modes: normal and partitioned.
In the first mode, all VE cores are able to access any part of the LLC and RAM,
i.e., they perform uniform memory accesses (UMA). In the second mode, all VE
cores are split into two equally-sized groups, and by default, they access only their
segment of the LLC and RAM. The usage of the partitioned mode, also known as
the non-uniform memory access (NUMA) mode, can result in performance benefits
as it reduces the memory-port and memory-network conflicts.

In terms of execution models, the VE supports three different ones [8]: VE ex-
ecution, VH offload, and VE offload. In the VE execution model, an application is
executed on the VE, and only system calls are offloaded to the VH. In the VH offload
model, an application is executed on the VE, and system calls and scalar compu-
tations are offloaded to the VH. Finally, in the VE offload or accelerator model,
the application is executed in the VH, and only compute-intensive calculations (i.e.,
kernels) are offloaded to the VE. Furthermore, recent studies have developed hy-
brid programming approaches such as VEDA [24], neoSYCL [7], OpenMP target
offloading [1], and HAM [13].

For this work, we use the accelerator model through the programming model
called Vector Engine Offloading (VEO) [4]. Basically, VEO provides the lowest-
level host APIs that can be used to express kernel offloading and VH-VE data
movement. Moreover, VEO is based on C++ and its host APIs resemble those of
OpenCL.

3 Methodology

This section describes our development of AutoDock-Aurora, and is organized in two
parts describing our porting and optimization methodologies.

Simulating Molecular Docking on the SX-Aurora TSUBASA Vector Engine 27

3.1 Porting

The baseline code of AutoDock-Aurora is ocladock-fpga, an OpenCL implementation
of AutoDock tailored for FPGAs [22]. Essentially, we follow the same code parti-
tioning scheme, based on host and device code, already defined in ocladock-fpga.
By this scheme, the host takes care of the overall program management, while the
device executes the LGA runs offloaded from the host.

Porting for the SX-Aurora TSUBASA Vector Engine requires a proper adapta-
tion of both original host and device codes. For the host code, we adopt the VEO
programming model, and thus, we replace the OpenCL API calls with their VEO
counterparts. For the device code, porting is much more involved due to its complex
implementation in ocladock-fpga, consisting of several OpenCL kernels commu-
nicating via OpenCL pipes (i.e., on-chip FIFO-like structures). To adapt this into
standard C/C++ functions, we remove all OpenCL-specific language qualifiers, as
well as replace OpenCL pipe operations with function calls passing data via pointer
arguments.

The porting just described might appear trivial, but it is not due to the implemen-
tation complexity of the kernel. In fact, the non-determinism (due to randomness)
in the LGA heuristics was the major cause of errors. Therefore, we spent significant
development time verifying that the resulting ligand poses and scores reached the
expected level of convergence, as discussed in [19].

3.2 Optimization

For the device code, we use the NEC compiler that performs an automatic vec-
torization. For loops not vectorized in the initial compiler pass, we apply several
optimizations (e.g., removal of data dependencies) and code re-factoring (e.g., usage
of four-byte int instead of single-byte char for index and loop-control variables).
Consequently, we achieved a full vectorization of the functions computing the ligand-
receptor (Step 3) and ligand-ligand (Step 4) interactions, which largely contribute to
the total execution runtime (Sect. 2.1). Moreover, we leverage the multiple VE cores
in the SX-Aurora TSUBASA by distributing the outermost-loop iterations among
such cores. This is achieved by annotating the loop executing the independent LGA
runs (Fig. 3) with the #pragma omp parallel for compiler directive.

The following subsections organize our optimizations into main and additional
ones.

3.2.1 Main Optimizations

At this point in development, although AutoDock-Aurora’s code was vectorized and
parallelized, it ran ∼2.2× slower compared to the host CPU. This low performance
was due to the vector pipes being leveraged only for the innermost loops, which

28 L. Solis-Vasquez, E. Focht and A. Koch

could be quite short compared to vector length of the VE (= 256 elements, 64-bit
each). In particular, the main loops in the score evaluation iterate over: the number
of required rotations (Step 2), the number of ligand atoms (Step 3), and the number
of atomic pairs contributing to the ligand-ligand interaction (Step 4). For one of
the inputs tested, e.g., 1ig3, the aforementioned loop lengths were 53, 21, and 122,
respectively. Correspondingly, these loop bounds lead to vector lengths shorter than
1/4 th, 1/12 th, and 1/2 th of the maximum vector length of the VE.

In order to increase the vector lengths of the device code, we optimize the em-
ployed OpenCL-to-VE mapping (Sect. 3.1). In the initial implementation, we mapped
each OpenCL thread to a VE core. This mapping was replaced by a scheme that in-
stead maps each OpenCL thread to a vector lane. In coding terms, we can achieve
this by applying the technique called loop pushing to the LGA, and thus, to its main
components, the Genetic Algorithm (GA) and the Local Search (LS).

Figure 4 shows how we apply loop pushing in the GA code. Basically, the out-
ermost loop iterating over all individuals (i.e., over their genotypes) can be pushed
into each component of the scoring function (Step 2, Step 3, Step 4), so that this
loop becomes the innermost, data parallel, and easily vectorizable loop. For optimal
performance, the loop pushing technique is paired with changes in the data layout,
so that the vectorized code accesses data with unit-strides as much as possible.

Original Optimized

1 Genet ic Algor i thm (individuals) {
2
3 f o r all (Npop-size genotypes) {
4 Step1 (genotype)
5
6 // Pose calculation
7 Step2 (genotype) {
8 f o r all (Nrotations) {
9 ...
10 }
11 r e t u r n coords
12 }
13
14 // Ligand-receptor interaction
15 Step3 (coords) {
16 f o r all (Natoms) {
17 ...
18 }
19 r e t u r n score_lig -rec
20 }
21
22 // Ligand-ligand interaction
23 Step4 (coords) {
24 f o r all (Natomic-pairs) {
25 ...
26 }
27 r e t u r n score_lig -lig
28 }
29 }
30 }

1Genet ic Algor i thm (individuals) {
2
3Step1 (Npop-size genotypes)
4
5// Pose calculation
6Step2 {
7f o r all (Nrotations) {
8f o r all (Npop-size genotypes) {
9...
10}
11}
12r e t u r n coords [Npop-size]
13}
14
15// Ligand-receptor interaction
16Step3 {
17f o r all (Natoms) {
18f o r all (Npop-size genotypes) {
19...
20}
21}
22r e t u r n score_lig -rec [Npop-size]
23}
24
25// Ligand-ligand interaction
26Step4 {
27f o r all (Natomic-pairs) {
28f o r all (Npop-size genotypes) {
29...
30}
31}
32r e t u r n score_lig -lig [Npop-size]
33}
34}

Loop pushing

Loop
pushing

Loop
pushing

Fig. 4: Optimization in Genetic Algorithm (GA): pushing the outer loop into the
three components of the scoring function (Step 2, Step 3, Step 4)

Simulating Molecular Docking on the SX-Aurora TSUBASA Vector Engine 29

Figure 5 shows the additional techniques required to successfully apply loop
pushing in the LS code. The reason for this extra work is the divergent nature of
the Solis–Wets method implemented as Local Search (Sect. 2.1). In contrast to the
GA, where all individuals (of the population) undergo a regular evolution (crossover,
mutation, and selection), the individuals in LS can evolve in different directions, or
some might converge (i.e., they meet the termination criteria of Solis–Wets) earlier
than others. The already-converged individuals are removed from the computation,
which in turn, reduces the length of the innermost loop. We are able to apply loop
pushing in the LS code by using predication, as well as by compressing the data of
the non-converged part of the population.

3.2.2 Additional Optimizations

The generation of individuals in both GA and LS requires random numbers, which
in ocladock-fpga [22] used as baseline, are generated with a congruential random
number generator. The disadvantage of such scheme is that each of its generated
random values depends on the previous one, i.e., 𝑋n+1 = 𝑓 (𝑋n), which hinders
vectorization and parallelization. To cope with this, we replaced the congruential
generator with a 64-bit Mersenne Twister pseudo-random generator provided in the
NEC NLC library collection [14].

Regarding the numerical precision, we opt to utilize single-precision floating
point, similarly as in prior work such as ocladock-fpga [22] and AutoDock-GPU [19].
Moreover, in order to vectorize single-precision computations on the SX-Aurora
TSUBASA, we use packed vector instructions where each 64-bit vector element
of a vector register contains two 32-bit float entities. Hence, by enabling packed
vectorization on top of loop pushing, vectors in device code can have lengths of up
to 512 elements, allowing the performance to be doubled.

4 Evaluation

For our experiments, we selected a total of 31 ligand-receptor inputs from [9]. Table 1
shows a subset of ten inputs. Any selected input has less than eight rotatable bonds
(𝑁rot < 8), as that is the maximum number that can be effectively handled by the
Solis–Wets method as Local Search [19].

The following subsections organize our evaluation into execution profiling and
performance comparison against other devices.

30 L. Solis-Vasquez, E. Focht and A. Koch

Original Optimized

1 w h i l e ((it < it_MAX) &&
2 (step > step_MIN)) {
3 ...
4
5 // Updating counts
6 i f (score_lower) {
7 succ++;
8 fail = 0;
9 direction = positive;
10 } e l s e {
11 i f (direction == negative) {
12 succ = 0;
13 fail++;
14 direction = positive;
15 } e l s e {
16 direction = negative;
17 }
18 }
19 } // End of while

1w h i l e (num_active_ls > 0) {
2...
3
4// Building compressed list
5// of active indexes
6act_pop_size = 0;
7f o r (j = 0; j < pop_size; j++) {
8i f (ls_is_active[j]) {
9active_idx[act_pop_size] = j;
10it_compr[act_pop_size] = it[j];
11step_compr[act_pop_size] = step[j];
12succ_compr[act_pop_size] = succ[j];
13...
14act_pop_size++;
15}
16}
17
18...
19
20// Updating array-based counts
21// Scoring leverages loop pushing
22f o r (jj = 0; jj < act_pop_size; jj++) {
23i f (score_lower[jj]) {
24succ_compr[jj]++;
25...
26} e l s e {
27i f (dir_compr[jj] == negative) {
28succ_compr[jj] = 0;
29...
30} e l s e {
31...
32}
33}
34}
35
36...
37
38// Predicating on termination condition
39num_active_ls = act_pop_size;
40f o r (jj = 0; jj < act_pop_size; jj++) {
41i f ((it_compr[jj] > it_MAX) ||
42(step_compr[jj] <= step_MIN)) {
43ls_is_active[active_idx[jj]] = 0;
44num_active_ls --;
45}
46j = active_idx[jj];
47it[j] = it_compr[jj];
48step[j] = step_compr[jj];
49succ[j] = succ_compr[jj];
50...
51}
52} // End of while

Predication

Compression

Compression

Fig. 5: Optimization in Local Search (LS): usage of predication and compression.
In the optimized code, predication updates the number of active individuals. An
example of compression-based optimization is the replacement of the succ scalar
variable with the succ_compr[] array counterpart. In both cases, the number of
successful search attempts is counted. In the optimized code, however, the array
compresses data for all active individuals

Table 1: Subset of ligand-receptor inputs with their respective number of rotatable
bonds (𝑁rot) and atoms (𝑁atom)

Input 1ac8 1hnn 1yv3 1owe 1p62 1n46 1ig3 1t46 2bm2 1mzc

𝑁rot 0 2 2 3 4 5 6 6 7 8
𝑁atom 8 18 23 27 22 28 21 40 33 38

Simulating Molecular Docking on the SX-Aurora TSUBASA Vector Engine 31

Table 2: Execution metrics using the 1ig3 input, before and after applying loop
pushing. Information was obtained using NEC PROGINF [18]

Metric Before After Ratio B / A

Real Time [sec] 307.5 14.5 21.3
User Time [sec] 2’458.1 115.0 21.4
Vector Time [sec] 510.2 104.0 4.91
Inst. Count 5’085’000’001’257 98’888’607’313 51.4
Vec. Inst. Count 120’865’697’285 32’136’492’289 3.76
FLOP Count 4’982’577’754’822 4’826’280’301’843 1.03
MOPS 6’012.0 75’174.3 0.08
MOPS (Real) 48’082.1 597’857.0 0.08
MFLOPS 2’027.0 41’960.7 0.048
MFLOPS (Real) 16’211.5 333’711.3 0.049
Avg. Vec. Length 71.5 216.9 0.33
V. Op. Ratio [%] 66.4 99.2 0.67

4.1 Execution profiling

One important aspect to analyze are the performance metrics resulting out of execu-
tion profiling. For this purpose, we use the PROGINFO and FTRACE utilities [18],
which provide a set of performance counters as well as derived performance met-
rics. As discussed in Sect. 3.2.1, the major optimization in our work consists in
applying loop pushing. Via execution profiling, we can compare relevant execution
metrics before and after applying loop pushing, and thus, analyze the impact of this
technique.

In Table 2, the first three are latency metrics. The real time represents the wall-
clock elapsed time, while the user time represents the time spent by all eight cores
in the VE. As described in Sect. 3.2, the independent LGA runs are distributed
among the eight VE cores, and thus, the user time is ∼8× that of the real time.
The vector time represents the execution runtime for vector instructions. For these
latency metrics, we observed reductions (i.e., improvements) of ∼21× (real and user
time) and ∼4.9× (vector time).

The following metrics represent the instruction and operation count. Particularly,
the number of all executed instructions, i.e., Inst. Count, is reduced ∼51×, while
the number of vector instructions is reduced ∼3.8×. The reduction in the overall
instruction count is attributed to the fact that the initially scalar loops are now
vectorized with larger vector lengths (> 200). On the other hand, the number of vector
instructions is also reduced because the formerly short loops (i.e., with average vector
length of ∼72) are now executed as longer loops (i.e., with average vector length
of ∼217). Moreover, the number of floating-point operations, i.e., FLOP Count,
stays almost the same in both cases (before vs. after). This is because the program
computes the same problem, and hence, it performs roughly the same number of
floating-point operations.

32 L. Solis-Vasquez, E. Focht and A. Koch

Table 3: Technical characteristics of the SX-Aurora TSUBASA VE 20B, GPUs
(RTX2070, V100, A100) and CPUs (EPYC ones) used in the evaluation: semi-
conductor process size (Proc. Size), base clock frequency (Freq), number of cores
(Ncores), FP32 performance (Perf), memory bandwidth (MemBW). Both CPU plat-
forms posses two sockets each

Characteristics VE 20B RTX2070 V100 A100 EPYC 7502 EPYC 7742

Proc. Size [nm] 16 12 12 7 7 7
Freq [GHz] 1.60 1.61 1.23 0.76 2.50 2.25
Ncores 8 2560 5120 6912 32 × 2 64 × 2
Perf [TFLOPS] 4.9 9.1 14.1 19.5 2.6 4.6
MemBW [GB/s] 1530 448 897 1555 204.8 × 2 204.8 × 2

The metric termed MOPS represents the number of overall operations per second,
while MFLOPS represents the number of floating-point operations per second. The
additional metrics, MOPS Real and MFLOPS Real, take into account the eight cores
in the VE. Both MOPS and MFLOPS present a significant increase of 12.5× (= 1/ 0.08)
and 20.4× (= 1/ 0.049), respectively. Both improvements are due to the increase in:
the average vector length (from ∼72 up to ∼217), and in the vector operation ratio
(from 66.4 % up to 99.2 %).

4.2 Performance comparison against CPUs and GPUs

In this section, we compare the execution runtimes achieved on the VE against
those achieved on CPUs and GPUs. Table 3 lists the accelerator devices used in
our benchmark. In order to run dockings on CPUs and GPUs, we use AutoDock-
GPU, the state-of-the-art OpenCL-based implementation of AutoDock. In particular,
for ensuring a fair comparison, we use v1.1 of AutoDock-GPU, which features an
equivalent functionality to that implemented in AutoDock-Aurora in this work. Note
that in Sect. 2.1, we indicated that AutoDock subjects a population subset to Local
Search. However, in our experiments, we set the entire population to undergo Local
Search, as in real-world experiments with AutoDock-GPU.

Figure 6 shows the impact of the population size on the execution runtime. We
observe that larger population sizes result in faster AutoDock-Aurora executions on
the VE. The reason for this are the pushed-in loops that enable longer vector lengths
for larger population sizes. On the other hand, we also notice that population sizes
do not impact much on the other devices. The different performance behavior on
CPUs and GPUs is attributed to the workload distribution employed in AutoDock-
GPU. Particularly, AutoDock-GPU spawns a number of OpenCL work-groups that is
directly determined by the population size: 𝑁WG = 𝑁pop-size×𝑁LGA-run. As described
in Sect. 2.1, the LGA terminates when the number of score evaluations reaches an
upper bound (𝑁MAX

score-evals). Hence, processing larger population sizes requires fewer

Simulating Molecular Docking on the SX-Aurora TSUBASA Vector Engine 33

iterations per LGA run, which compensates for the seemingly bigger workload
imposed by the need to process more individuals. Moreover, larger population sizes
result in additional OpenCL work-groups, which in turn, introduce a synchronization
overhead causing the slight increase of execution runtimes on CPUs and GPUs.

VE 20B RTX2070 V100 A100 2×EPYC-7502 2×EPYC-7742
0

20

40

60

12.7

5.5 3.2 1.5

42.3

24.2

8.5
5.9

3.3 1.4

42.4

24.3

7.3 6.6
3.5 1.4

42.8

24.4

6.8 7.7
3.8 1.5

44.3

25.1Ru
nt

im
e

(s
)

256 512 1024 2048

Fig. 6: Geometric mean of execution runtimes over 31 inputs, comparing the impact
of the chosen population size: 𝑁pop-size = {256, 512, 1024, 2048}. AutoDock-Aurora
was executed on the VE 20B, while AutoDock-GPU v1.1 on the GPUs and CPUs. In
all executions: 𝑁LGA-runs = 100. Other parameters were left at default values

For the sake of clarity, Fig. 7 shows only the results when using a population of
2048 individuals (𝑁pop-size = 2048). This configuration is optimal for the VE, but we
think there is no disadvantage for other devices when using this configuration for a
more detailed comparison. With respect to the CPUs, the VE 20B achieves faster
executions than both dual-socket state-of-the-art AMD EPYC nodes by average
factors of 6.5× (= 44.3/ 6.8) and 3.6× (= 25.1/ 6.8). With respect to the GPUs, executions
on the VE 20B are slightly faster than those on the RTX2070 by an average factor
of 1.1× (= 7.7/ 6.8), but slower than those on the V100 and A100 by average factors
of 1.8× (= 6.8/ 3.8) and 4.5× (= 6.8/ 1.5), respectively. Considering the semiconductor
technology used in the fabrication of the selected devices (Table 3), we can put
the above factors into perspective: the VE 20B (16 nm) outperforms CPUs that are
multiple silicon generations ahead of it (i.e., 7 nm in EPYC), while still achieving
competitive performance with respect to GPUs that are at least one generation ahead
of it (i.e., 12 nm, 12 nm, 7 nm in RTX2070, V100, A100, respectively).

5 Conclusions

In this work, we have developed AutoDock-Aurora, a port of the AutoDock molecular
docking simulation program for the SX-Aurora TSUBASA Vector Engine. Our code
baseline was based on OpenCL, and the porting experience was smooth. However,
the performance optimization required a combination of a number of device-specific
coding techniques. The main technique consisted in increasing the vector lengths
via loop pushing, which involved large code-refactoring in the Local Search part of

34 L. Solis-Vasquez, E. Focht and A. Koch

VE 20B RTX2070 V100 A100 2×EPYC-7502 2×EPYC-7742
0

20

40

60

6.8 7.7 3.8 1.5

44.3

25.1

Ru
nt

im
e

(s
)

Fig. 7: Geometric mean of execution runtimes over 31 inputs. AutoDock-Aurora was
executed on the VE 20B, while AutoDock-GPU v1.1 on the GPUs and CPUs. In all
executions: 𝑁popsize = 2048, 𝑁LGA-runs = 100. Other parameters were left at default
values

AutoDock, but in return, reduced significantly the execution runtimes. As a result,
AutoDock-Aurora running on a VE 20B is in average 3.6× faster than 128-core CPU
servers, while still being competitive to RTX2070, V100, and A100 GPUs.

References

1. T. Cramer, M. Römmer, B. Kosmynin. OpenMP Target Device Offloading for the SX-Aurora
TSUBASA Vector Engine. In: 13th Int. Conf. Parallel Processing and Applied Mathematics
(PPAM), Springer (2019).

2. R. Egawa, S. Fujimoto, T. Yamashita, et al. Exploiting the Potentials of the Second Generation
SX-Aurora TSUBASA. In: Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS), IEEE (2020).

3. FightAIDS@Home. World Community Grid. https://www.worldcommunitygrid.org.
Cited01Jun2021

4. E. Focht. VEO and PyVEO: Vector Engine Offloading for the NEC SX-Aurora Tsubasa. In:
Sustained Simulation Performance 2018 and 2019, Springer (2020).

5. I. Halperin, B. Ma, H. Wolfson, et al. Principles of docking: An overview of search algorithms
and a guide to scoring functions. Proteins: Struct., Funct., Bioinf. 47(4), 409–443 (2002). doi:
10.1002/prot.10115

6. R. Huey, G.M. Morris, A. . Olson, et al. A semiempirical free energy force field with charge-
based desolvation. J. Comput. Chem. 28(6), 1145–1152 doi: 10.1002/jcc.20634

7. Y. Ke, M. Agung and H. Takizawa. neoSYCL: a SYCL implementation for SX-Aurora TSUB-
ASA. In: Int. Conf. on High Performance Computing in Asia-Pacific Region (HPC Asia),
ACM (2021).

8. K. Komatsu, S. Momose, Y. Isobe, et al. Performance Evaluation of a Vector Supercomputer
SX-Aurora TSUBASA. In: Int. Conf. for High Performance Computing, Networking, Storage
and Analysis (SC18), IEEE (2018).

9. S. LeGrand, A. Scheinberg, A.F. Tillack, et al. GPU-Accelerated Drug Discovery with Dock-
ing on the Summit Supercomputer: Porting, Optimization, and Application to COVID-19 Re-
search. Int. Conf. on Bioinformatics, Computational Biology and Health Informatics (BCB),
ACM (2020).

10. List Statistics | TOP500. Top 500 – The List. https://www.top500.org/statistics/
list.Cited01Jun2021

https://www.worldcommunitygrid.org.Cited01Jun2021
https://www.top500.org/statistics/list.Cited01Jun2021
https://www.top500.org/statistics/list.Cited01Jun2021
https://www.worldcommunitygrid.org.Cited01Jun2021

Simulating Molecular Docking on the SX-Aurora TSUBASA Vector Engine 35

11. J. Liu, R. Wang and J. Chem. Classification of Current Scoring Functions. J. Chem. Inf. Model.
55(3), 475–482 (2015). doi: 10.1021/ci500731a

12. G.M. Morris, D.S. Goodsell, R.S. Halliday, et al. Automated docking using a Lamarckian ge-
netic algorithm and an empirical binding free energy function. J. Comput. Chem. 19(14), 1639–
1662 (1998). doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-
B

13. M. Noack , E. Focht and T. Steinke. Heterogeneous Active Messages for Offloading on the NEC
SX-Aurora TSUBASA. In: Int. Parallel and Distributed Processing Symposium Workshops
(IPDPSW), IEEE (2019).

14. Numeric Library Collection 2.3.0 User’s Guide. NEC. https://www.hpc.nec/documents/
sdk/SDK_NLC/UsersGuide/main/en/index.html.Cited01Jun2021

15. A. Onodera, K. Komatsu, S. Fujimoto, et al. Optimization of the Himeno Benchmark for SX-
Aurora TSUBASA. In: Benchmarking, Measuring, and Optimizing (Bench), Springer (2020).

16. OpenPandemics: COVID-19. World Community Grid. https://www.
worldcommunitygrid.org/research/opn1/overview.do.Cited01Jun2021

17. N.S. Pagadala, K. Syed and J. Tuszynski. Software for molecular docking: a review. Biophys.
Rev. 9(2), 91–102 (2017). doi: 10.1007/s12551-016-0247-1

18. PROGINF/FTRACE User Guide. NEC. https://www.hpc.nec/documents/sdk/pdfs/
g2at03e-PROGINF_FTRACE_User_Guide_en.pdf.Cited01Jun2021

19. D. Santos-Martins, L. Solis-Vasquez, A.F. Tillack, et al. Accelerating AutoDock4 with GPUs
and Gradient-Based Local Search. J. Chem. Theory Comput. 17(2), 1060–1073 (2021). doi:
10.1021/acs.jctc.0c01006

20. F.J. Solis and R.J.B. Wets. Minimization by Random Search Techniques. Math. Oper. Res.
6(1), 1–158 (1981). doi: 10.1287/moor.6.1.19

21. L. Solis-Vasquez and A. Koch. A Performance and Energy Evaluation of OpenCL-accelerated
Molecular Docking. In: 5th Int. Workshop on OpenCL (IWOCL), ACM (2017).

22. L. Solis-Vasquez and A. Koch. A Case Study in Using OpenCL on FPGAs: Creating an Open-
Source Accelerator of the AutoDock Molecular Docking Software. In: 5th Int. Workshop on
FPGAs for Software Programmers (FSP), VDE Verlag (2018).

23. Vector Engine Models. NEC. https://www.nec.com/en/global/solutions/hpc/sx/
vector_engine.html.Cited07Mar2022

24. VEDA GitHub repository. https://github.com/SX-Aurora/veda.Cited07Mar2022
25. Z. Wang, H. Sun, X. Yao, et al. Comprehensive evaluation of ten docking programs on a diverse

set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power.
Phys. Chem. Chem. Phys. 18, 12964–12975 (2016). doi: 10.1039/C6CP01555G

https://www.hpc.nec/documents/sdk/SDK_NLC/UsersGuide/main/en/index.html.Cited01Jun2021
https://www.hpc.nec/documents/sdk/SDK_NLC/UsersGuide/main/en/index.html.Cited01Jun2021
https://www.worldcommunitygrid.org/research/opn1/overview.do.Cited01Jun2021
https://www.hpc.nec/documents/sdk/pdfs/g2at03e-PROGINF_FTRACE_User_Guide_en.pdf.Cited01Jun2021
https://www.nec.com/en/global/solutions/hpc/sx/vector_engine.html.Cited07Mar2022
https://github.com/SX-Aurora/veda.Cited07Mar2022
https://www.worldcommunitygrid.org/research/opn1/overview.do.Cited01Jun2021
https://www.hpc.nec/documents/sdk/pdfs/g2at03e-PROGINF_FTRACE_User_Guide_en.pdf.Cited01Jun2021
https://www.nec.com/en/global/solutions/hpc/sx/vector_engine.html.Cited07Mar2022

Simulation of Field-induced Chiral Phenomena
in Inhomogeneous Superconductivity

Hirono Kaneyasu, Kouki Otsuka, Singo Haruna, Shinji Yoshida and Susumu Date

Abstract We explain the field-induced chiral phenomena in inhomogeneous super-
conductivity and perform a computational simulation to demonstrate such phenom-
ena on the basis of the Ginzburg–Landau equation for the inhomogeneous interface
superconductivity of a eutectic system. Field-induced chiral phenomena occur be-
cause of the paramagnetic coupling of an intrinsic magnetization with an external
magnetic field. Applying a magnetic field to a non-chiral state leads to a field-induced
chiral transition with the generation of a paramagnetic chiral current. Numerically
solving the aforementioned equation yields converged solutions and output numer-
ical data obtained through an iterative process. The actual time for this calculation
can be distinctly reduced through acceleration via code optimization that is suitable
for vector parallelization. Reducing the calculation time makes it possible to extend
the simulation to lower temperatures where the inhomogeneous superconductivity
spreads to a greater distance from the interface.

Hirono Kaneyasu, Kouki Otsuka and Shingo Haruna
Graduate School of Science, University of Hyogo, Japan, e-mail: hirono@sci.u-hyogo.ac.jp

Shinji Yoshida
Graduate School of Information Science and Technology, Osaka University, Japan

Susumu Date
Cybermedia Center, Osaka University, Osaka, Japan

37

https://doi.org/10.1007/978-3-031-18046-0_3

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

M. M. Resch et al. (eds.), Sustained Simulation Performance 2021,

mailto:hirono@sci.u-hyogo.ac.jp
https://doi.org/10.1007/978-3-031-18046-0_3
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18046-0_3&domain=pdf

38 H. Kaneyasu, K. Otsuka, S. Haruna, S. Yoshida and S. Date

1 Field-induced chiral phenomena in inhomogeneous
superconductivity

1.1 Chiral state

Superconductivity is a valuable feature of energy and electric technologies. Electric
properties and electromagnetic features are used in power transmission, magnetic,
and quantum devices. The superconducting state appears when the temperature is
lowered and two electrons form a pair known as the Cooper pair. Electromagnetic
features can be understood from the microscopic aspect of electron pairs [1, 25].
The electron pairs condense in the same quantum state, leading to the macroscopic
phenomenon of superconductivity.

The features of a Cooper pair are characterized by the “spin” and “orbital” of the
electrons in the quantum state, as shown in Fig. 1 (a). The spin configuration is anti-
parallel or parallel, referred to as spin-singlet and spin-triplet states, respectively.
Meanwhile, the intrinsic angular momentum 𝐿𝑧 for an orbital of a Cooper pair is
characterized by an intrinsic magnetization denoted by 𝐿𝑧 ≠ 0, i.e., 𝐿𝑧 = ±1,±2, ...,
which reflects a chiral state with the time-reversal symmetry breaking [17, 32].
The superconducting state with intrinsic magnetization causes interesting chiral
phenomena that differ from usual superconductivity.

1.2 Field-induced chiral phenomena

In the chiral state, an electron pair with intrinsic magnetization has a feature response
to an external magnetic field because the intrinsic magnetization couples with the
external magnetic field [23]. A part of this is the field-induced chiral phenomena,
which results from the paramagnetic coupling of the intrinsic magnetization with
an external magnetic field [9, 23]. The paramagnetic coupling of the intrinsic mag-
netization stabilizes the chiral state by generating a paramagnetic chiral current in
the direction opposite to the screening current, as shown in Fig. 1 (b) [9, 23]. By
contrast, the screening current flows to generate a diamagnetic field to the external
magnetic field. This is known as the Meissner effect, which is a general feature of
superconductivity [24]. Such field-induced chiral phenomena occur distinctly in the
case of inhomogeneous superconductivity, which has been reported in a theoretical
study based on the Ginzburg–Landau theory [9].

In inhomogeneous superconductivity, the application of a magnetic field to a
non-chiral state causes the field-induced chiral transition with the generation of a
paramagnetic chiral current, as shown in Fig. 2 (a) [9]. For example, such a non-
chiral state yields an onset temperature of superconductivity as an interface state
nucleating near the interface between superconductivity and a metal, which transits
to a chiral state when the temperature is lowered in a zero field [9,11,12,31]. Such an
interface system is a characteristic of a eutectic superconductor containing multiple

Simulation of Field-induced Chiral Phenomena in Inhomogeneous Superconductivity 39

interfaces between the parent superconductor and metal inclusions. Identifying the
field-induced chiral phenomena in such materials is useful for discovering candidates
for chiral superconductors, because the field-induced chiral phenomena constitute
evidence of chiral superconductivity.

In this study, a computational simulation is conducted to demonstrate the field-
induced chiral phenomena with a paramagnetic chiral current in the inhomogeneous
state. In particular, the field-induced chiral transition is produced in an interface
superconducting model for eutectic Sr2RuO4-Ru [19–21]. The features of the field-
induced chiral phenomena are qualitatively compared with the experimental results
obtained for eutectic Sr2RuO4-Ru [14, 20, 36]. The good agreement with the exper-
imental results serves as evidence of a chiral state in the bulk state of the parent
superconductor Sr2RuO4 [9].

2 Field-induced chiral phenomena in a eutectic superconductor

2.1 Inhomogeneous interface superconductivity

Sr2RuO4 is a potential candidate for chiral superconductors [6, 18, 35]. The par-
ent material of eutectic Sr2RuO4-Ru is Sr2RuO4, which contains micrometer-scale
Ru-metal inclusions [20, 21]. Experiments have reported the nucleation of inho-
mogeneous superconductivity around interfaces between the Ru-metal inclusions
and the parent superconductor Sr2RuO4. Inhomogeneous interface superconductiv-
ity exhibits an intrinsic magnetization below the bulk transition temperature 𝑇bulk
near 𝑇c,SRO = 1.5 K, which is the superconducting transition temperature of pure
Sr2RuO4 [30]. Moreover, theoretical studies have suggested that the superconduct-
ing phenomena are evidence of a chiral state in the parent superconductor Sr2RuO4
[3, 9, 11–13,22, 31].

In the eutectic superconductor Sr2RuO4-Ru, the inhomogeneous interface state
asymptotes to a superconducting state of pure Sr2RuO4 when the temperature is
lowered to 𝑇c,SRO. By contrast, interface superconductivity appears at the onset tem-
perature 𝑇onset, i.e., 3 K above 𝑇bulk. When the temperature is lowered in a zero field,
first, the interface state is a non-chiral state near 𝑇onset; thereafter, the non-chiral state
transits to a chiral state when 𝑇 is lowered toward 𝑇bulk. This interface superconduct-
ing model for explaining the chiral transition is considered for the 3-Kelvin phase
model of eutectic Sr2RuO4-Ru [31]. The interface superconductivity nucleates in
accordance with the increase in the superconducting transition temperature locally
near the interface originating from a particular electron state induced by strain due
to the deposition of Ru-metal inclusions [7, 33, 37]. This interface model is shown
in Fig. 2 (b) [9, 11, 12, 31]. Considering a Ru-metal inclusion in the parent super-
conductor Sr2RuO4, a planar interface perpendicular to a RuO2-layer is set at the
junction Ru/Sr2RuO4.

40 H. Kaneyasu, K. Otsuka, S. Haruna, S. Yoshida and S. Date

Fig. 1: (a) Chiral state of the Cooper pair in configurations of spin and angular
momentum. The intrinsic angular momentum for the orbital of the Cooper pair is
𝐿𝑧 ≠ 0, i.e., 𝐿𝑧 = ±1,±2, (b) Field-induced chiral phenomena in inhomogeneous
superconductivity. The chiral state is stabilized by applying an external magnetic
field with the generation of a paramagnetic chiral supercurrent that flows in the
direction opposite to the screening supercurrent, whose field is diamagnetic to the
external magnetic field.

Simulation of Field-induced Chiral Phenomena in Inhomogeneous Superconductivity 41

chiral
Metal (Ru)

+- +- +-
ηt

+ +

-
i

Metal (Ru)

ηt ηp

-

Superconductor
(Sr2RuO4)

non-chiral

∗
<

+

-
±i

∗
>x-y plane

Superconductor
(Sr2RuO4)

Chiral transition

Zero field

non-chiral

Field-induced

chiral transition

chiral

External
Magnetic field

Paramagnetic coupling

RuO2-layer

Fig. 2: (a) Field-induced chiral transition in inhomogeneous superconductivity. The
chiral state stabilizes owing to the paramagnetic coupling of an intrinsic magne-
tization with an external magnetic field, and it generates a paramagnetic chiral
supercurrent. (b) Order parameter 𝜼 of inhomogeneous superconductivity near an
interface between a metal and a superconductor, i.e., Ru/Sr2RuO4. The chiral state is
represented by two components 𝜂𝑡 and 𝜂𝑝 in the 𝑥𝑦-plane parallel to the RuO2-layer,
and this is common to the chiral states 𝑘𝑧𝑥 ± 𝑖𝑘𝑦𝑧 and 𝑘𝑥 ± 𝑖𝑘𝑦 in the projection to
the 𝑥𝑦-plane. Here, 𝜂𝑡 and 𝜂𝑝 denote the tangential and perpendicular components,
respectively. A two-component state with both 𝜂𝑡 and 𝜂𝑝 and a one-component
state with only 𝜂𝑡 correspond to the chiral and non-chiral states, respectively. The
chiral transition corresponds to a transition from the one-component state to the
two-component state due to yielding the second component 𝜂𝑝 [31].

2.2 Chiral transition represented with order parameter

Here, we assume that a chiral state for a bulk state below 𝑇𝑏𝑢𝑙𝑘 is identical to that for
pure Sr2RuO4, as shown in Fig. 2 (b). Considering a point group 𝐷4ℎ for a perovskite
structure of pure Sr2RuO4, some of the possible chiral states are a chiral 𝑑-wave,
𝑑𝑧𝑥 ± 𝑖𝑑𝑦𝑧 , and a chiral 𝑝-wave state, 𝑝𝑥 ± 𝑖𝑝𝑦 , protected by the symmetry of crystal
structure, as well as a chiral 𝑑-wave, 𝑑𝑥2−𝑦2 ± 𝑖𝑑𝑥𝑦 in accidental degeneracy [5,15].
In a traditional classification, 𝑑𝑧𝑥 ± 𝑖𝑑𝑦𝑧 and 𝑑𝑥2−𝑦2 ± 𝑖𝑑𝑥𝑦 are the spin-singlet state,
while 𝑝𝑥 ± 𝑖𝑝𝑦 is the spin-triplet state [32]. Their intrinsic magnetization is parallel

42 H. Kaneyasu, K. Otsuka, S. Haruna, S. Yoshida and S. Date

to the 𝑧-axis, corresponding to an angular momentum 𝐿𝑧 ≠ 0 for the Cooper pair.
The crystalline structure along the 𝑧-axis is perpendicular to the RuO2 layers on
the 𝑥𝑦-plane, leading to the two-dimensional electron property. Projecting onto the
𝑥𝑦-plane of the RuO2-layer, the components of the order parameter on the 𝑥𝑦-plane
are common to both chiral states with 𝑑𝑧𝑥 ± 𝑖𝑑𝑦𝑧 and 𝑝𝑥 ± 𝑖𝑝𝑦 represented using
𝑘𝑧𝑘𝑥 ± 𝑖𝑘𝑦𝑘𝑧 and 𝑘𝑥 ± 𝑖𝑘𝑦 , respectively, as shown in Fig. 2 (b) [9, 11, 12, 22, 31].

The chiral states with the time-reversal symmetry breaking are denoted with
a combination of two orbital symmetries with a pure imaginary number 𝑖, corre-
sponding to 𝜂𝑡 + 𝑖𝜂𝑝 in the expression of a superconducting order parameter. Here,
the components 𝜂𝑡 and 𝜂𝑝 of the order parameters correspond to the tangential and
perpendicular components of interface Sr2RuO2/Ru, respectively. By contrast, a non-
chiral state is represented with only one component 𝜂𝑡 . Therefore, a chiral transition
indicates a transition from the one-component state with 𝜂𝑡 to the two-component
state with 𝜂𝑡 + 𝑖𝜂𝑝 , yielding the second component 𝜂𝑝 [32].

This interface model sets a superconducting transition temperature that increases
near the interface; moreover, it sets boundary conditions for the suppression of the
perpendicular components at the interface in the extrapolates of superconductivity
to the interface between the Ru-metal and the Sr2RuO4-superconductor [9, 11, 12,
22, 31]. The nucleation of superconductivity at the interface originates from the
local enhancement of the superconducting transition temperature in a narrow range
at the interface on the side of Sr2RuO4. In addition, the component 𝜂𝑝 , which is
perpendicular to the interface, is suppressed by the boundary conditions for the
interface. In this situation, the non-chiral state is stabilized with the nucleation of
only one component 𝜂𝑡 in a zero field at 𝑇onset = 3 K. This non-chiral state with one
component 𝜂𝑡 transits to the chiral state with two components 𝜂𝑡 + 𝑖𝜂𝑝 at 𝑇∗ = 2.3 K
by yielding the second component 𝜂𝑝 , owing to the lowering of the temperature in
the zero field.

As 𝑇∗ is a chiral transition temperature due to the lowering of the temperature in
the zero field above 𝑇∗, the non-chiral state is stabilized with one component 𝜂𝑡 in
the zero field. When a magnetic field 𝐻𝑧 is applied to this non-chiral state with one
component 𝜂𝑡 above 𝑇∗, it transits to the chiral state with two components 𝜂𝑡 + 𝑖𝜂𝑝
by yielding the second component 𝜂𝑝 as the field-induced chiral transition.

In addition to their chiral state candidates, theoretical studies have also suggested
other candidates [4, 15, 26, 28, 29, 34].

2.3 Simulation of field-induced chiral transition

Assuming the chiral states 𝑑𝑧𝑥 ± 𝑖𝑑𝑦𝑧 and 𝑝𝑥 ± 𝑖𝑝𝑦 as a bulk phase in the eutectic
Sr2RuO4-Ru, the simulation demonstrates the field-induced chiral phenomena in the
inhomogeneous interface phase by applying a 𝑧-axis magnetic field 𝐻𝑧 parallel to an
intrinsic magnetization of the chiral Cooper pair, as shown in Figs. 3, 4, and 5. By
numerically solving the Ginzburg–Landau equation, which is set using parameters
common to 𝑘𝑧𝑘𝑥 ± 𝑖𝑘𝑦𝑘𝑧 and 𝑘𝑥 ± 𝑖𝑘𝑦 for 𝑑𝑧𝑥 ± 𝑖𝑑𝑦𝑧 and 𝑝𝑥 ± 𝑖𝑝𝑦 , respectively,

Simulation of Field-induced Chiral Phenomena in Inhomogeneous Superconductivity 43

−0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5

ηp
ηt

x /ξ0

T=2.65 K Hz/H0=1.25

 Hz/H0=1

 Hz/H0=0.75

 Hz/H0=0.5

 Hz/H0=0.25

 Hz/H0=0

Fig. 3: Two components 𝜂𝑡 and 𝜂𝑝 of the order parameter dependent on 𝑥 at 𝑇 =
2.65 K. The perpendicular component 𝜂𝑝 is plotted with solid lines, whereas the
tangential component 𝜂𝑡 is plotted with dashed lines. An external magnetic field 𝐻𝑧
parallel to the 𝑧-axis varies in units of 𝐻0, where 𝐻0 is the critical field and 𝜉0 is the
coherence length of pure Sr2RuO4 at𝑇 = 0. The magnetic field 𝐻𝑧 is given in units of
𝐻0 = 0.075 T, compared with the experimental critical field of Sr2RuO4-Ru [9, 36].
The non-chiral state is stabilized with the nucleation of only one component 𝜂𝑡 in a
zero field at 𝑇 = 2.65 K, as this temperature is above the chiral transition temperature
𝑇∗ = 2.3 K due to lowering temperature in a zero field. The non-chiral state, i.e.,
the state with one component 𝜂𝑡 , transits to the chiral state, i.e., the state with two
components 𝜂𝑡 + 𝑖𝜂𝑝 , by yielding the second component 𝜂𝑝 under the application of
the magnetic field 𝐻𝑧 , indicating a field-induced chiral transition.

the two components, 𝜂𝑝 and 𝜂𝑡 , of the superconducting order parameters and the
vector potential 𝑨 are obtained as numerical solutions [9, 11, 12, 22, 31]. The chiral
transition is shown with 𝜂𝑝 and 𝜂𝑡 in Fig. 3, and 4, and paramagnetic and screening
supercurrents are calculated from 𝜂𝑝 , 𝜂𝑡 , and 𝑨 [9], as shown in Fig. 5.

An interface model sets the critical superconducting temperature enhancing near
the interface, as well as the boundary conditions such that a perpendicular component
𝜂𝑝 is suppressed at the interface [9, 11, 12, 22, 31]. According to this setting, 𝜂𝑡 and
𝜂𝑝 depend on the position 𝑥 from the interface, as shown in Fig.2 (b); thus a
superconducting order parameter and a vector potential 𝑨 depend on the position 𝑥.
As the intrinsic magnetization and the external field are parallel to the 𝑧-axis, and

44 H. Kaneyasu, K. Otsuka, S. Haruna, S. Yoshida and S. Date

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1.25 2.5 3.75 5 6.25

T=2.15 K

T=2.25 K

T=2.35 K

T=2.45 K

T=2.55 K

T=2.65 K

T=2.75 K

T=2.85 K

T=2.95 K

ηp

ηt

Hz/H0

Fig. 4: Dependence of the maximum values of the two components 𝜂𝑡 and 𝜂𝑝 on
an external magnetic field 𝐻𝑧 . When the magnetic field is applied to the non-chiral
state above 𝑇∗ = 2.3 K, a chiral transition occurs by yielding 𝜂𝑝 .

the 𝑨 includes an intrinsic magnetic field and an external magnetic field 𝐻𝑧 parallel
to a 𝒛-axis, setting 𝑨 = (0, 𝐴𝑦 , 0) connects to a total magnetic field 𝐵𝑧 through
𝑩 = ∇ × 𝑨.

In this one-dimensional model, the following is the Ginzburg–Landau equation
with the two components, 𝜂𝑡 and 𝜂𝑝 , of the order parameter for the chiral state
[9, 11, 12, 22, 31]

𝑎𝜂𝑡 +
1
4
𝑏𝜂𝑡 (3𝜂2

𝑡 + 𝜂2
𝑝) − 𝐾2𝜕

2
𝑥𝜂𝑡 + 𝛾2𝐴2

𝑦𝐾1𝜂𝑡 − 𝛾𝐾3,4 (𝜕𝑥𝜂𝑝𝐴𝑦 + 𝐴𝑦𝜕𝑥𝜂𝑝) = 0,

𝑎𝜂𝑝 +
1
4
𝑏𝜂𝑝 (3𝜂2

𝑝 + 𝜂2
𝑡) − 𝐾1𝜕

2
𝑥𝜂𝑝 + 𝛾2𝐴2

𝑦𝐾2𝜂𝑝 + 𝛾𝐾3,4 (𝜕𝑥𝜂𝑡 𝐴𝑦 + 𝐴𝑦𝜕𝑥𝜂𝑡) = 0,

(1)

Simulation of Field-induced Chiral Phenomena in Inhomogeneous Superconductivity 45

−0.004

−0.003

−0.002

−0.001

 0

 0.001

 0.002

 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

Jscr

Jpar,c

x /ξ0

−0.004

−0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 1 2 3 4 5

T=2.65 K Hz/H0=1.25

 Hz/H0=1

 Hz/H0=0.75

 Hz/H0=0.5

 Hz/H0=0.25

 Hz/H0=0

Jscr

Jpar,c

x /ξ0

T=2.65 K Hz/H0=1.25

 Hz/H0=1

 Hz/H0=0.75

 Hz/H0=0.5

 Hz/H0=0.25

 Hz/H0=0

Fig. 5: Field-induced supercurrents dependent on 𝑥 at 𝑇 = 2.65 K. The upper panel
shows the overall view, and the lower panel shows partial magnification. The para-
magnetic chiral current 𝐽par,c is plotted with solid lines, and the screening current
𝐽𝑠𝑐𝑟 is plotted with dashed lines. An external magnetic field 𝐻𝑧 parallel to the 𝑧-axis
varies in units of 𝐻0, where 𝐻0 is the critical field and 𝜉0 is the coherence length of
pure Sr2RuO4 at 𝑇 = 0. Both currents have extremely small values, i.e., nearly zero
in a zero field, and both currents are induced in a magnetic field. The paramagnetic
current 𝐽par,c increases by stabilizing a chiral state by strengthening the magnetic
field visible in the order parameter, as shown in Fig. 3, while the screening current
also increases by shielding the strengthening magnetic field.

46 H. Kaneyasu, K. Otsuka, S. Haruna, S. Yoshida and S. Date

where the parameters for gradient terms are set as 𝐾2 = 𝐾3,4 = 𝐾1/3. The coefficient
𝑎 is set as 𝑎 = 𝑎(𝑇) = 𝑎′(𝑇 − 𝑇c (𝑥))/𝑇c,SRO with 𝑎′ > 0 and a 𝑥-dependent
critical superconducting temperature 𝑇c (𝑥) [9, 11, 12, 22, 31]. An onset of interface
superconductivity at 3 K sets with 𝑇c (𝑥) = 𝑇c,SRO +𝑇0/cosh(𝑥/𝑤) through arranging
the narrow width 𝑤 and the enhancement 𝑇0 [9, 11, 12]. In contrast, the bulk phase
is below the superconducting transition temperature 𝑇c,SRO of the pure Sr2RuO4.

On the other hand, the boundary conditions at the interface at 𝑥 = 0 are set for
the interface superconductivity [9] as follows

𝐾1𝜕𝑥𝜂𝑝 (𝑥)
��
𝑥=0 =

1
𝑙𝑝
𝜂𝑝 (0) + 𝛾𝐴𝑦 (0)𝐾3,4𝜂𝑡 (0),

𝐾2𝜕𝑥𝜂𝑡 (𝑥) |𝑥=0 = −𝛾𝐴𝑦 (0)𝐾3,4𝜂𝑝 (0), (2)

where 𝑙𝑝 is an extrapolation length in which the superconductivity extrapolates to
the Ru-metal through the interface; meanwhile, the perpendicular component 𝜂𝑝 is
suppressed at the interface. The formulation of the supercurrent [9] is as follows,

𝑗𝑦 (𝑥) = 8𝜋
[
−𝛾2𝐴𝑦 (𝐾1 |𝜂𝑝 |2 + 𝐾2 |𝜂𝑡 |2) + 𝛾𝐾3,4 (𝜂𝑡𝜕𝑥𝜂𝑝 − 𝜂𝑝𝜕𝑥𝜂𝑡)

]
,

(3)

where the 𝐾3,4-term is a paramagnetic chiral current, and the 𝐾1, 𝐾2-term is a
screening current.

Note that the Ginzburg–Landau equation, i.e., Eq. (1), for 𝑑𝑧𝑥±𝑖𝑑𝑦𝑧 and 𝑝𝑥±𝑖𝑝𝑦 ,
has a symmetry common to that of 𝑑𝑥2−𝑦2 ± 𝑖𝑑𝑥𝑦 , while the parameters for 𝑑𝑧𝑥 ± 𝑖𝑑𝑦𝑧
and 𝑝𝑥 ± 𝑖𝑝𝑦 differ from those of 𝑑𝑥2−𝑦2 ± 𝑖𝑑𝑥𝑦 . This common symmetry leads
to qualitatively identical field-induced chiral phenomena despite the difference in
parameters.

Demonstrating the field-induced chiral transition by applying𝐻𝑧 , Fig. 3 shows the
components of the order parameter depending on the distance 𝑥 from the interface
Sr2RuO4/Ru. The change in the two components 𝜂𝑡 and 𝜂𝑝 depends on the magnetic
field, which leads to a field-induced chiral transition at 𝑇 = 2.65 K. In a zero field
𝐻 = 0, the state at 𝑇 = 2.65 K is a non-chiral state that stabilizes near 𝑇onset as
the onset temperature. The non-chiral state represents only one component 𝜂𝑡 of the
order parameter, i.e., the tangential component, which is enhanced near the interface,
whereas the perpendicular component 𝜂𝑝 becomes zero by suppression through the
effect of the interface. On applying a magnetic field to the non-chiral state in a
zero field, the perpendicular component 𝜂𝑝 increases from zero and appears as the
second component. Subsequently, a transition to a chiral state occurs, representing
both the components 𝜂𝑡 and 𝜂𝑝 , which is the field-induced chiral transition. Here,
the components of the order parameter are enhanced near an interface because the
inhomogeneous interface state is localized near a Ru-metal inclusion that originates
from the enhancement of the superconducting transition temperature near a Ru-
metal/Sr2RuO4-superconductor interface. In this model, it is assumed that a chiral
state exists in the bulk state below 𝑇bulk.

Simulation of Field-induced Chiral Phenomena in Inhomogeneous Superconductivity 47

Fig. 4 shows the field dependence of the maximum values of the two components
𝜂𝑡 and 𝜂𝑝 with respect to the distance. The non-chiral state appears with only one
component 𝜂𝑡 above 𝑇∗ = 2.3 K in a zero field 𝐻 = 0. When an external magnetic
field is applied to the non-chiral state, the second component 𝜂𝑝 newly appears owing
to the field-induced chiral transition. The value of vertical component 𝜂𝑝 increases
by the strengthening the magnetic field, indicating that the further stabilization of the
chiral state. In contrast, the tangential component 𝜂𝑡 decreases under the application
of the field. Additionally, by further strengthening the field, 𝜂𝑡 and 𝜂𝑝 decrease, and
then both are reduced to zero when the magnetic field is strengthened to the critical
magnetic field H𝑐2, where the superconductivity vanishes.

The computational simulation shows the field-induced chiral transition, i.e., a
non-chiral state transits to a chiral state under the application of a magnetic field
parallel to an intrinsic magnetization in a model that assumes that the bulk phase is
in a chiral state. An existing study has reported field-induced chiral stability with the
𝐻-𝑇 phase diagram in detail [9], which qualitatively consists of the field dependence
of a zero-bias anomaly in a differential conductance of quasi-particles, observed via
tunneling spectroscopy for the interface of Ru/Sr2RuO4 [14,36]. There is a qualitative
agreement between the theoretical and experimental results under the assumption
that the bulk state is in a chiral state; this is evidence that a pure Sr2RuO4 has a chiral
state [9].

2.4 Paramagnetic chiral supercurrent

Next, we show the paramagnetic chiral supercurrent in Sr2RuO4-Ru in Fig. 5. The
field-induced chiral stability causes paramagnetic supercurrents. Moreover, the in-
version of chirality occurs at a certain distance. The total supercurrent comprises
both the paramagnetic chiral current and the screening current. The paramagnetic
current can be attributed to the paramagnetic coupling with an external magnetic
field. By contrast, the screening current persists because the superconductivity ejects
the external magnetic field [9, 11].

3 Computation of field-induced chiral phenomena

The Ginzburg–Landau equation in Eq. (1) is a variational equation derived from
the Ginzburg–Landau free energy. It is a simultaneous differential equation with
boundary conditions at the interface. The numerical calculation for solving the equa-
tion involves the use of the quasi-Newton method. The flowchart of the calculation
process for the algorithm is shown in Fig. 6 (a). As solutions of the simultaneous
equation, we obtain two components 𝜂𝑡 and 𝜂𝑝 of the order parameter and a vector
potential 𝐴𝑦 , which corresponds to 𝐻𝑧 through 𝑩 = ∇ × 𝑨. Consistent solutions
are obtained when the iterative calculation process converges, as shown in Fig. 6

48 H. Kaneyasu, K. Otsuka, S. Haruna, S. Yoshida and S. Date

(b). The supercurrent is calculated using three solutions: 𝜂𝑡 , 𝜂𝑝 , and 𝐴𝑦; a paramag-
netic chiral current 𝐽par,c and a screening current 𝐽scr are thus obtained. Meanwhile,
the two components 𝜂𝑡 and 𝜂𝑝 are expressed as changes in the order parameter
responsible for the field-induced chiral transition. In addition, the dependence of
the order parameter on the distance from the interface indicates an inversion of the
intrinsic magnetization as a change in the sign of one component, i.e., 𝜂𝑡 [10]. The
field-induced chiral transition, paramagnetic chiral current, and inversion of intrin-
sic magnetization with the distance originate from the paramagnetic coupling of an
intrinsic magnetization with an external magnetic field, and the three field-induced
phenomena are related by a calculation based on the convergent solutions of the
Ginzburg–Landau equation, as shown in Fig. 6 (b).

The long calculation time required for obtaining solutions to the quasi-Newton
method depends on the size of the calculation, which varies with the temperature and
magnetic field, as well as the mesh number used to divide the distance. We performed
this calculation using SX-ACE and the SX-Aurora TSUBASA at the Cybermedia
Center, Osaka University, and Cyberscience Center, Tohoku University [2, 16]. The
iteration for mesh numbers greater than 240 is performed using vectorization with a
vector engine. A long time is required for the numerical calculation when the tem-
perature and magnetic field are sufficiently varied for evaluating the field-induced
chiral stability in inhomogeneous superconductivity. Moreover, the required calcu-
lation time increases by considering a greater distance to evaluate the dependence
of the order parameter on the distance from the interface. In order to reduce this
calculation time, code-tuning improves the vectorization rate from 94.4% to 99.4%,
significantly reducing the calculation time by 68% [38].

Acceleration via code-tuning makes it possible to analyze the field-induced chiral
phenomena in a shorter calculation time. To study the field dependence of the chiral
state near the bulk phase, a long distance must be set in the calculation because the
order parameter further away from the interface when the temperature is lowered
toward 𝑇bulk. Moreover, to evaluate the gradient terms of the equation in detail, the
mesh number must be increased because the order parameter and vector potential
vary depending on the distance. This requires a longer calculation time. Reducing
the calculation time is an effective method to increase the distance, and it is possible
to extend the simulation to a lower temperature region toward Tbulk. At this point, it
is valuable to reduce the calculation time through acceleration via optimized code
tuning that is suitable for the vector parallelization in the SX-Aurora TSUBASA
[38].

4 Summary

As described in this paper, a simulation based on the Ginzburg–Landau equation
demonstrated the field-induced chiral phenomena due to paramagnetic coupling of
an intrinsic magnetization with an external magnetic field in inhomogeneous su-
perconductivity, such as that in a eutectic system and systems with dislocation or

Simulation of Field-induced Chiral Phenomena in Inhomogeneous Superconductivity 49

(, ,

,

,

,

,

, ⇒

,

Fig. 6: (a) Field-induced chiral phenomena are the chiral stability, paramagnetic
chiral current, and inversion of chirality, accompanied by the gain in the free energy
owing to paramagnetic coupling. The simulation based on the Ginzburg–Landau
theory shows the relation between the three field-induced phenomena, owing to the
chiral response to an external magnetic field. (b) Flowchart of numerical calculation
based on the quasi-Newton method.

stress. The simulation demonstrates these phenomena in the interface supercon-
ducting model of eutectic Sr2RuO4-Ru, and the results of the field-induced chiral
transition serve as evidence of the chiral state in the bulk state owing to their good
agreement with the experimental results. Using a high-performance computer, the
SX-Aurora TSUBASA, for the simulation, the calculation time was reduced through
acceleration via code optimization that is suitable for vector parallelization. This
reduction of calculation time makes it possible to extend the simulation to a lower-
temperature region, which requires the evaluation to be performed considering a
longer distance. In addition to Sr2RuO4 [19, 21], the simulation can be extended
to analyze the inhomogeneous state in other chiral superconductors; field-induced
chiral phenomena can also be expected in the inhomogeneous state in other candi-
dates of chiral superconductors, such as UTe2 with a point group 𝐷2ℎ for a crystal
structure [8, 27].

50 H. Kaneyasu, K. Otsuka, S. Haruna, S. Yoshida and S. Date

Acknowledgements H.K. is grateful to M. Sigrist for the valuable suggestions regarding the
theoretical aspects on this work, and acknowledges A. Ramires and Y. Fukaya for the valuable
discussions on superconducting states. This work was performed using SQUID at the Cybermedia
Center, Osaka University. Further, it was partly performed on the supercomputer SX-ACE at the
Cybermedia Center, Osaka University, and Tohoku University. In addition, this study was supported
by the Joint Usage and Research of JHPCN (No. jh200032). For the comparison, the performance
of the code was evaluated on the supercomputer FUGAKU through the Startup Preparation Project
(No. hp200216) of HPCI. This work is also supported by the JSPS Core-to-Core Program No.
JPJSCCA20170002.

References

1. J. Bardeen, L.N. Cooper and J.R. Schrieffer. Theory of Superconductivity. Phys. Rev. 108, 1175
(1957). DOI 10.1103/PhysRev.108.1175. URL https://link.aps.org/doi/10.1103/
PhysRev.108.1175

2. R. Egawa, K. Komatsu, S. Momose, Y. Isobe, A. Musa, H. Takizawa and H. Kobayashi.
Potential of a modern vector supercomputer for practical applications: performance evaluation
of SX-ACE. The Journal of Supercomputing 73(9), 3948 (2017). DOI 10.1007/s11227-017-
1993-y. URL https://doi.org/10.1007/s11227-017-1993-y

3. S.B. Etter, H. Kaneyasu, M. Ossadnik and M. Sigrist. Limiting mechanism for critical cur-
rent in topologically frustrated Josephson junctions. Phys. Rev. B 90, 024515 (2014). DOI
10.1103/PhysRevB.90.024515. URL https://link.aps.org/doi/10.1103/PhysRevB.
90.024515

4. Y. Fukaya, T. Hashimoto, M. Sato, Y. Tanaka and K. Yada. Spin susceptibility for orbital-
singlet Cooper pair in the three-dimensional Sr2RuO4 superconductor. Phys. Rev. Research 4,
013135 (2022). DOI 10.1103/PhysRevResearch.4.013135. URL https://link.aps.org/
doi/10.1103/PhysRevResearch.4.013135

5. V. Grinenko, D. Das, R. Gupta, B. Zinkl, N. Kikugawa, Y. Maeno, C.W. Hicks, H.H. Klauss,
M. Sigrist and R. Khasanov. Unsplit superconducting and time reversal symmetry breaking
transitions in Sr2RuO4 under hydrostatic pressure and disorder. Nature Communications
12(1), 3920 (2021). DOI 10.1038/s41467- 021-24176-8. URL https://doi.org/10.1038/
s41467-021-24176-8

6. V. Grinenko, S. Ghosh, R. Sarkar, J.C. Orain, A. Nikitin, M. Elender, D. Das, Z. Guguchia,
F. Brückner, M.E. Barber, J. Park, N. Kikugawa, D.A. Sokolov, J.S. Bobowski, T. Miyoshi,
Y. Maeno, A.P. Mackenzie, H. Luetkens, C.W. Hicks and H.H. Klauss. Split supercon-
ducting and time-reversal symmetry-breaking transitions in Sr2RuO4 under stress. Nature
Physics 17, 748 (2021). DOI 10.1038/s41567-021-01182-7. URL https://doi.org/10.
1038/s41567-021-01182-7

7. Y. Imai, K. Wakabayashi and M. Sigrist. Effect of the RuO6 Octahedron Rotation at the
Sr2RuO4 Surface on Topological Property. Journal of the Physical Society of Japan 83(12),
124712 (2014). DOI 10.7566/JPSJ.83.124712. URL https://doi.org/10.7566/JPSJ.
83.124712

8. L. Jiao, S. Howard, S. Ran, Z. Wang, J.O. Rodriguez, M. Sigrist, Z. Wang, N.P. Butch and
V. Madhavan. Chiral superconductivity in heavy-fermion metal UTe2. Nature 579, 523 (2020).
DOI 10.1038/s41586-020-2122-2. URLhttps://doi.org/10.1038/s41586-020-2122-
2

9. H. Kaneyasu, Y. Enokida, T. Nomura, Y. Hasegawa, T. Sakai and M. Sigrist. Properties of
the 𝐻 − 𝑇 phase diagram of the 3 − 𝐾 phase in eutectic Sr2RuO4-Ru: Evidence for chiral
superconductivity. Phys. Rev. B 100, 214501 (2019). DOI 10.1103/PhysRevB.100.214501.
URL https://link.aps.org/doi/10.1103/PhysRevB.100.214501

https://link.aps.org/doi/10.1103/PhysRev.108.1175
https://link.aps.org/doi/10.1103/PhysRev.108.1175
https://doi.org/10.1007/s11227-017-1993-y
https://link.aps.org/doi/10.1103/PhysRevB.90.024515
https://link.aps.org/doi/10.1103/PhysRevB.90.024515
https://link.aps.org/doi/10.1103/PhysRevResearch.4.013135
https://link.aps.org/doi/10.1103/PhysRevResearch.4.013135
https://doi.org/10.1038/s41467-021-24176-8
https://doi.org/10.1038/s41467-021-24176-8
https://doi.org/10.1038/s41567-021-01182-7
https://doi.org/10.1038/s41567-021-01182-7
https://doi.org/10.7566/JPSJ.83.124712
https://doi.org/10.7566/JPSJ.83.124712
https://doi.org/10.1038/s41586-020-2122-2
https://doi.org/10.1038/s41586-020-2122-2
https://link.aps.org/doi/10.1103/PhysRevB.100.214501

Simulation of Field-induced Chiral Phenomena in Inhomogeneous Superconductivity 51

10. H. Kaneyasu, Y. Enokida, T. Nomura, Y. Hasegawa, T. Sakai and M. Sigrist. Features
of Chirality Generated by Paramagnetic Coupling to Magnetic Fields in the 3 K-Phase
of Sr2RuO4. JPS Conf. Proc. 30, 011039 (2020). DOI 10.7566/JPSCP.30.011039. URL
https://journals.jps.jp/doi/10.7566/JPSCP.30.011039

11. H. Kaneyasu, S.B. Etter, T. Sakai and M. Sigrist. Evolution of the filamentary 3-Kelvin
phase in Pb − Ru − Sr2RuO4 Josephson junctions. Phys. Rev. B 92, 134515 (2015). DOI
10.1103/PhysRevB.92.134515. URL https://link.aps.org/doi/10.1103/PhysRevB.
92.134515

12. H. Kaneyasu, N. Hayashi, B. Gut, K. Makoshi and M. Sigrist. Phase Transition in the 3-Kelvin
Phase of Eutectic Sr2RuO4–Ru. Journal of the Physical Society of Japan 79, 104705 (2010).
DOI 10.1143/JPSJ.79.104705. URL https://doi.org/10.1143/JPSJ.79.104705

13. H. Kaneyasu and M. Sigrist. Nucleation of Vortex State in Ru-Inclusion in Eutectic Ruthe-
nium Oxide Sr2RuO4–Ru. Journal of the Physical Society of Japan 79, 053706 (2010). DOI
10.1143/JPSJ.79.053706. URL https://doi.org/10.1143/JPSJ.79.053706

14. M. Kawamura, H. Yaguchi, N. Kikugawa, Y. Maeno and H. Takayanagi. Tunneling Properties
at the Interface between Superconducting Sr2RuO4 and a Ru Microinclusion. Journal of the
Physical Society of Japan 74, 531 (2005). DOI 10.1143/JPSJ.74.531. URL https://doi.
org/10.1143/JPSJ.74.531

15. S.A. Kivelson, A.C. Yuan, B. Ramshaw and R. Thomale. A proposal for reconciling diverse
experiments on the superconducting state in Sr2RuO4. npj Quantum Materials 5(1), 43 (2020).
DOI 10.1038/s41535-020-0245-1. URLhttps://doi.org/10.1038/s41535-020-0245-
1

16. K. Komatsu, S. Momose, Y. Isobe, O. Watanabe, A. Musa, M. Yokokawa, T. Aoyama, M. Sato
and H. Kobayashi. Performance Evaluation of a Vector Supercomputer SX-Aurora TSUBASA.
In: SC18: International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 685–696 (2018). DOI 10.1109/SC.2018.00057

17. A.J. Leggett. A theoretical description of the new phases of liquid 3He. Rev. Mod. Phys. 47, 331
(1975). DOI 10.1103/RevModPhys.47.331. URL https://link.aps.org/doi/10.1103/
RevModPhys.47.331

18. G.M. Luke, Y. Fudamoto, K.M. Kojima, M.I. Larkin, J. Merrin, B. Nachumi, Y.J. Uemura,
Y. Maeno, Z.Q. Mao, Y. Mori, H. Nakamura and M. Sigrist. Time-reversal symmetry-breaking
superconductivity in Sr2RuO4. Nature 394, 558 (1998). DOI 10.1038/29038. URL https:
//doi.org/10.1038/29038

19. A.P. Mackenzie, T. Scaffidi, C.W. Hicks and Y. Maeno. Even odder after twenty-three years: the
superconducting order parameter puzzle of Sr2RuO4 npj Quantum Materials 2, 40 (2017). DOI
10.1038/s41535-017-0045-4. URL https://doi.org/10.1038/s41535-017-0045-4

20. Y. Maeno, T. Ando, Y. Mori, E. Ohmichi, S. Ikeda, S. NishiZaki and S. Nakatsuji. Enhancement
of Superconductivity of Sr2RuO4 to 3 K by Embedded Metallic Microdomains. Phys. Rev.
Lett. 81, 3765 (1998). DOI 10.1103/PhysRevLett.81.3765. URL https://link.aps.org/
doi/10.1103/PhysRevLett.81.3765

21. Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J.G. Bednorz and F. Lichtenberg.
Superconductivity in a layered perovskite without copper. Nature 372, 1476 (1994). DOI
10.1038/372532a0. URL https://www.nature.com/articles/372532a0

22. M. Matsumoto, C. Belardinelli and M. Sigrist. Upper Critical Field of the 3 Kelvin
Phase in Sr2RuO4. Journal of the Physical Society of Japan 72, 1623 (2003). DOI
10.1143/JPSJ.72.1623. URL https://doi.org/10.1143/JPSJ.72.1623

23. M. Matsumoto and M. Sigrist. Quasiparticle States near the Surface and the Domain Wall in
a 𝑝𝑥 ± 𝑖 𝑝𝑦-Wave Superconductor. Journal of the Physical Society of Japan 68, 994 (1999).
DOI 10.1143/JPSJ.68.3120. URL https://doi.org/10.1143/JPSJ.68.3120

24. W. Meissner and R. Ochsenfeld. Ein neuer Effekt bei Eintritt der Supraleitf’́ahigkeit. Natur-
wissenschaften 21, 787 (1933). DOI 10.1007/BF01504252. URL https://doi.org/10.
1007/BF01504252

25. H.K. Onnes. Further experiments with liquid helium. D. On the change of electrical resistance
of pure metals at very low temperatures, etc. V. The disappearance of the resistance of mercury.
Akad. van Wetenschappen (Amsterdam) 14, 113–115 (1911).

https://journals.jps.jp/doi/10.7566/JPSCP.30.011039
https://link.aps.org/doi/10.1103/PhysRevB.92.134515
https://link.aps.org/doi/10.1103/PhysRevB.92.134515
https://doi.org/10.1143/JPSJ.79.104705
https://doi.org/10.1143/JPSJ.79.053706
https://doi.org/10.1143/JPSJ.74.531
https://doi.org/10.1143/JPSJ.74.531
https://doi.org/10.1038/s41535-020-0245-1
https://doi.org/10.1038/s41535-020-0245-1
https://link.aps.org/doi/10.1103/RevModPhys.47.331
https://link.aps.org/doi/10.1103/RevModPhys.47.331
https://doi.org/10.1038/29038
https://doi.org/10.1038/29038
https://doi.org/10.1038/s41535-017-0045-4
https://link.aps.org/doi/10.1103/PhysRevLett.81.3765
https://link.aps.org/doi/10.1103/PhysRevLett.81.3765
https://www.nature.com/articles/372532a0
https://doi.org/10.1143/JPSJ.72.1623
https://doi.org/10.1143/JPSJ.68.3120
https://doi.org/10.1007/BF01504252
https://doi.org/10.1007/BF01504252

52 H. Kaneyasu, K. Otsuka, S. Haruna, S. Yoshida and S. Date

26. A. Ramires and M. Sigrist. Superconducting order parameter of Sr2RuO4: A microscopic
perspective. Phys. Rev. B 100, 104501 (2019). DOI 10.1103/PhysRevB.100.104501. URL
https://link.aps.org/doi/10.1103/PhysRevB.100.104501

27. S. Ran, C. Eckberg, Q.P. Ding, Y. Furukawa, T. Metz, S.R. Shanta, I.L. Lin, M. Zic, H. Kim,
J. Paglione and N.P. Butch. Nearly ferromagnetic spin-triplet superconductivity. Science 365,
684 (2019). DOI 10.1126/science.aav8645. URL https://www.science.org/doi/abs/
10.1126/science.aav8645

28. A.T. Rømer, P.J. Hirschfeld and B.M. Andersen. Superconducting state of Sr2RuO4
in the presence of longer-range Coulomb interactions. Phys. Rev. B 104, 064507
(2021). DOI 10.1103/PhysRevB.104.064507. URL https://link.aps.org/doi/10.
1103/PhysRevB.104.064507

29. A.T. Rømer, D.D. Scherer, I.M. Eremin, P.J. Hirschfeld and B.M. Andersen. Knight Shift
and Leading Superconducting Instability from Spin Fluctuations in Sr2RuO4. Phys. Rev.
Lett. 123, 247001 (2019). DOI 10.1103/PhysRevLett.123.247001. URLhttps://link.aps.
org/doi/10.1103/PhysRevLett.123.247001

30. T. Shiroka, R. Fittipaldi, M. Cuoco, R. De Renzi, Y. Maeno, R.J. Lycett, S. Ramos, E.M. For-
gan, C. Baines, A. Rost, V. Granata and A. Vecchione. 𝜇SR studies of superconductivity in
eutectically grown mixed ruthenates. Phys. Rev. B 85, 134527 (2012). DOI 10.1103/Phys-
RevB.85.134527. URL https://link.aps.org/doi/10.1103/PhysRevB.85.134527

31. M. Sigrist and H. Monien. Phenomenological Theory of the 3 Kelvin Phase in Sr2RuO4.
Journal of the Physical Society of Japan 70, 2409 (2001). DOI 10.1143/JPSJ.70.2409. URL
https://doi.org/10.1143/JPSJ.70.2409

32. M. Sigrist and K. Ueda. Phenomenological theory of unconventional superconductivity. Rev.
Mod. Phys. 63, 239 (1991). DOI 10.1103/RevModPhys.63.239. URL https://link.aps.
org/doi/10.1103/RevModPhys.63.239

33. A. Steppke, L. Zhao, M.E. Barber, T. Scaffidi, F. Jerzembeck, H. Rosner, A.S. Gibbs, Y. Maeno,
S.H. Simon, A.P. Mackenzie and C.W. Hicks. Strong peak in 𝑇𝑐 of Sr2RuO4 under uniaxial
pressure. Science 355(6321), eaaf9398 (2017). DOI 10.1126/science.aaf9398. URL https:
//www.science.org/doi/abs/10.1126/science.aaf9398

34. H.G. Suh, H. Menke, P.M.R. Brydon, C. Timm, A. Ramires and D.F. Agterberg. Stabilizing
even-parity chiral superconductivity in Sr2RuO4. Phys. Rev. Research 2, 032023 (2020).
DOI 10.1103/PhysRevResearch.2.032023. URL https://link.aps.org/doi/10.1103/
PhysRevResearch.2.032023

35. J. Xia, Y. Maeno, P.T. Beyersdorf, M.M. Fejer and A. Kapitulnik. High Resolution Polar Kerr
Effect Measurements of Sr2RuO4: Evidence for Broken Time-Reversal Symmetry in the Super-
conducting State. Phys. Rev. Lett. 97, 167002 (2006). DOI 10.1103/PhysRevLett.97.167002.
URL https://link.aps.org/doi/10.1103/PhysRevLett.97.167002

36. H. Yaguchi, K. Takizawa, M. Kawamura, N. Kikugawa, Y. Maeno, T. Meno, T. Akazaki,
K. Semba and H. Takayanagi. Spectroscopy of Sr2RuO4/Ru Junctions in Eutectic. AIP
Conference Proceedings 850, 543 (2006). DOI 10.1063/1.2354825. URL https://aip.
scitation.org/doi/abs/10.1063/1.2354825

37. Y. Ying, N. Staley, Y. Xin, K. Sun, X. Cai, D. Fobes, T.J. Liu, Z.Q. Mao and Y. Liu. Enhanced
spin-triplet superconductivity near dislocations in Sr2Ru𝑂 . Nat. Com. 4, 2596 (2013). DOI
10.1038/ncomms3596. URL https://www.nature.com/articles/ncomms3596

38. S. Yoshida, A. Endo, H. Kaneyasu and S. Date. First Experience of Accelerating a Field-
Induced Chiral Transition Simulation Using the SX-Aurora TSUBASA. Supercomput. Front.
and Innov. 8, 43 (2021). DOI 10.14529/jsfi210203. URL https://superfri.org/index.
php/superfri/article/view/383

https://link.aps.org/doi/10.1103/PhysRevB.100.104501
https://www.science.org/doi/abs/10.1126/science.aav8645
https://www.science.org/doi/abs/10.1126/science.aav8645
https://link.aps.org/doi/10.1103/PhysRevB.104.064507
https://link.aps.org/doi/10.1103/PhysRevB.104.064507
https://link.aps.org/doi/10.1103/PhysRevLett.123.247001
https://link.aps.org/doi/10.1103/PhysRevLett.123.247001
https://link.aps.org/doi/10.1103/PhysRevB.85.134527
https://doi.org/10.1143/JPSJ.70.2409
https://link.aps.org/doi/10.1103/RevModPhys.63.239
https://link.aps.org/doi/10.1103/RevModPhys.63.239
https://www.science.org/doi/abs/10.1126/science.aaf9398
https://www.science.org/doi/abs/10.1126/science.aaf9398
https://link.aps.org/doi/10.1103/PhysRevResearch.2.032023
https://link.aps.org/doi/10.1103/PhysRevResearch.2.032023
https://link.aps.org/doi/10.1103/PhysRevLett.97.167002
https://aip.scitation.org/doi/abs/10.1063/1.2354825
https://aip.scitation.org/doi/abs/10.1063/1.2354825
https://www.nature.com/articles/ncomms3596
https://superfri.org/index.php/superfri/article/view/383
https://superfri.org/index.php/superfri/article/view/383

Exploiting Hybrid Parallelism in the LBM
Implementation Musubi on Hawk

Harald Klimach, Kannan Masilamani and Sabine Roller

Abstract In this contribution we look into the efficiency and scalability of our
Lattice Boltzmann implementation Musubi when using OpenMP threads within
an MPI parallel computation on Hawk. The Lattice Boltzmann method enables
explicit computation of incompressible flows and the mesh discretization can be
automatically generated, even for complex geometries. The basic Lattice Boltzmann
kernel is fairly simple and involves only few floating point operations for each lattice
node. A simple loop over all lattice nodes in each partition of the MPI parallel setup
lends to a straight forward loop parallelization with OpenMP. With increased core
counts per compute node, the use of threads on the shared memory nodes is gaining
importance, as it avoids overly small partitions with many outbound communications
to neighboring partitions. We briefly discuss the hybrid parallelization of Musubi
and investigate how the usage of OpenMP threads affects the performance when
running simulations on the Hawk supercomputer at HLRS.

1 The Lattice Boltzmann method

The Lattice Boltzmann method (LBM)[9] offers an efficient explicit method to com-
pute incompressible or weakly compressible flows by modelling the gas with a
discrete velocity space for the Boltzmann equation in a mesoscopic scale. For the
discretization a regular mesh is used, usually with cubic cells, and the connections to
the neighbors offer the discrete velocity directions to be considered in the numerical
method. Hence, LBM can be considered as a stencil method, with similar properties
in communication and parallelization as other mesh-based methods. An advantage
of LBM can be observed in the treatment of boundaries. Due to the use of discrete

Harald Klimach, Kannan Masilamani and Sabine Roller
DLR e.V., Institut für Softwaremethoden zur Produkt-Virtualisierung, Zwickauer Str. 45, 01069
Dresden,
e-mail: harald.klimach@dlr.de,kannan.masilamani@dlr.de,sabine.roller@dlr.de

53

https://doi.org/10.1007/978-3-031-18046-0_4

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

M. M. Resch et al. (eds.), Sustained Simulation Performance 2021,

mailto:harald.klimach@dlr.de
mailto:kannan.masilamani@dlr.de
mailto:sabine.roller@dlr.de
https://doi.org/10.1007/978-3-031-18046-0_4
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18046-0_4&domain=pdf

54 H. Klimach, K. Masilamani and S. Roller

velocities, boundaries only have to be considered along those discrete directions and
accurate boundaries can be obtained by intersecting the one dimensional lines in
cubical boundary cells with the surfaces describing geometrical boundaries. Such
line intersections with surfaces can be computed robustly and are, thus, well suited
for automated mesh generations.

The most commonly used stencil in three dimensions are D3Q19 and D3Q27.
The D3Q19 makes use of 18 neighbors together with the state at rest resulting in 19
values of the probability density function to describe the fluid state. In this stencil,
18 neighbors are all immediately connected cells except for those at the corners of
the cube (6 sides and 12 edges of the cube). Other stencil D3Q27 is required in some
LBM approaches which makes use of all 26 immediate neighbors.

The lattice Boltzmann equation with classical collision operator from Bhatnagar,
Gross and Krook BGK[1] is given by

𝑓𝑖 (x + c𝑖Δ𝑡, 𝑡 + Δ𝑡) − 𝑓𝑖 (x, 𝑡) = Ω𝑖 (x, 𝑡) (1)

where 𝑓𝑖 (x, 𝑡) is the probability density function at the position vector x and at time
step 𝑡 along the discrete direction 𝑖; Δ𝑡 is the discrete time step; c𝑖 is the discrete
velocities andΩ𝑖 is the collision operator. There is a multitude of collision operations
available. However, here we will only consider the classical operation described by
Bhatnagar, Gross and Krook (BGK) as

Ω𝑖 = −1
𝜏
(𝑓𝑖 (x, 𝑡) − 𝑓

𝑒𝑞

𝑖
(x, 𝑡)) (2)

where feq
i is the Maxwell-Boltzmann distribution function. For weakly-compressible

flows, it is given by

𝑓
𝑒𝑞

𝑖
(𝜌, u) = 𝜔𝑖𝜌

(
1 + (c𝑖 · u)

𝑐2
𝑠

+ (c𝑖 · u)2

2𝑐4
𝑠

− (u · u)
2𝑐2
𝑠

)
, (3)

where 𝜔𝑖 are the lattice weights and 𝑐𝑠 = 𝑐/
√

3 is the speed of sound in lattice.
𝑐 = Δ𝑥/Δ𝑡 is the lattice velocity where Δ𝑥 is the discretization size. 𝜌 and u are
macroscopic density and velocities which are computed from probability density
function by

𝜌 =

𝑄∑︁
𝑖=1

𝑓𝑖 (4)

and

𝜌u =

𝑄∑︁
𝑖=1

c𝑖 𝑓𝑖 . (5)

The pressure 𝑃 is calculated from the density 𝜌 using the equation of state relation
as 𝑃 = 𝑐2

𝑠𝜌. The relaxation time 𝜏 in Eq. 2 is related to kinematic viscosity as

𝜈 = 𝑐2
𝑠Δ𝑡 (𝜏 − 0.5) . (6)

Hybrid Musubi on Hawk 55

In LBM, Eq. 1 is solved in two steps: streaming and collision. Streaming is
exchanging the probability density functions of the particles along their respective
directions with neighboring cells and collision is computing a new state in each cell
according to collision operator. In general, the collision requires only few floating
point operations per cell.

2 The Musubi implementation

Musubi[3] is our open source implementation of the Lattice Boltzmann method,
mostly written in Fortran 2003 and primarily parallelized with via the Message
Passing Interface (MPI) [6]. It makes use of an octree mesh discretization with
cubical cells. Cells in the mesh are sorted according to the Morton or Z curve
[5], which provides some maintaining of the multi dimensional locality in the one
dimensional sorted list of cells. The solver works on the cells according to that
ordering and the mesh partitioning is achieved by splitting the ordered list of cells
into equally sized chunks. A double buffer is used to hold the state and allow the
access to the previous iteration in the streaming step. Some additional arrays are
used to hold further auxiliary values for all cells. All in all we find a computational
intensity of around 1/3 floating point operations per Byte.

Meshes can be created with the mesh generator Seeder [2], which provides the
mesh in this form of an ordered list of cells or for simple meshes. This allows
for a distributed reading of the mesh information as each process can identify the
part of the file it needs to read with little information on the mesh. Alternatively,
simple meshes like the ones we will consider here, can also be generated by Musubi
itself. The list of cells may be sparse and thus, explicit neighborhood information is
needed to address the stencil cells. Hence, the stencil implementation here behaves
as an unstructured mesh with indirect addressing of the stencil cells. However,
the known topology of the octree and the ordering according to the space-filling
curve enables the identification of neighbor cells across partitions in the distributed
memory parallel computation. Therefore, nearly arbitrary stencils can be employed
and Musubi makes use of that in the implementation of the various LBM schemes.
Meshes might have cells on different levels of the octree refinement, but on each level
the kernel just acts as if working on uniform mesh. This is achieved by ghost cells
that provide interpolated values from other refinement levels. Due to this behavior
it is possible to perform some assessment of fundamental properties of this kind of
kernel in a single level uniform mesh, which we look at in this contribution.

56 H. Klimach, K. Masilamani and S. Roller

2.1 OpenMP in Musubi

The OpenMP parallelization[8] in Musubi is incomplete and various features do
not yet benefit from it. But the parallelization of the fundamental kernel is straight
forward, as it essentially is a single loop over all cells to update the lattice nodes.
An OpenMP parallel region is put around these loops to realize the shared memory
parallelism within MPI processes. The MPI communication itself is not put into a
parallel region and does not profit from shared memory parallelization. With a static
schedule the loop parallelism this way results in a partitioning similar to the MPI
partitioning as the cells are sorted according to the space-filling curve. Accordingly
the expectation is that the degree of parallelism can be shifted interchangeably
between the one and the other.

3 Hybrid parallelization

In supercomputing systems a hierarchy of parallelism and data access can be ob-
served. The most obvious decomposition can be observed in the construction of large
clusters from individual nodes. Where individual nodes provide shared memory ac-
cess between all processing units within it. The number of processing units within
such a node mostly depends on the number of cores we find in the employed proces-
sors. And accordingly, we observe a growing degree of shared memory parallelism
within those nodes as the number of cores in modern processors increases. Using
a distributed memory parallelization concept uniformly for all processing units is
possible, but results in small partitions that end up with many individual neighbor
partitions that may be located on other nodes. This results in a larger number of
smaller network communications between nodes. A strategy to minimize this effect
and obtain larger MPI partitions with fewer, but larger network communications,
is to resemble this two-level hierarchy of the hardware in the application. With
OpenMP in each MPI partition processing units can be dedicated to parallel work in
a reduced number of distributed memory partitions. Such a strategy than results in a
less fragmented communication pattern across the network of the cluster.

Unfortunately, there are also some downsides involved in the hybrid paralleliza-
tion. The management of threads results in some overheads and we increase the risk
encounter resource conflicts in commonly used resources in the node, like shared
caches or memory interfaces. As long as there are parts of the code that do not benefit
from OpenMP parallelization, we face the problem that some parts do not benefit
from a larger number of threads, but would benefit from more MPI processes. In the
end the optimal choice depends at least on the system, the application is run on. It
also depends on the specific setup to be run, but here we want to look at properties
of the fundamental kernel, which may also be instructive in a wider context.

Hybrid Musubi on Hawk 57

4 Performance assessment on Hawk

To evaluate the effect of shifting parallelism between MPI and OpenMP on Hawk,
we run Musubi for various problem sizes on a range of node counts. These runs are
performed with different numbers of threads per process, such that always all cores
are participating in the computation.

4.1 The Hawk computing system

The Hawk computing system installed at the High Performance Computing Center
Stuttgart (HLRS) is based on the AMD EPYC 7742 processor[7], which has 64 cores
operating at 2.25 GHz and AVX2 vector instructions, yielding a theoretical peak
performance of 2.3 TFLOPS. Each node has two of these processors and, thus,
has a total of 128 physical cores. There are groups of 4 cores that share their L3
cache and build a so called CoreCompleX. Two of those CoreCompleXs are paired
together and share one of the 8 memory channels in the processor. Finally two of
those memory channels are put into a NUMA node per socket. Accordingly we see
16 physical cores in each NUMA node and with the two sockets in each computing
node a total of 8 NUMA nodes. We will consider an OpenMP parallelism of up
to 16 threads per MPI process, which corresponds to one MPI process per NUMA
node. A further increase in the degree of shared memory parallelism is expected
to incur degrading performance in comparison to a distributed memory strategy,
due to the strong hierarchical structure of the memory access paths. Because of the
shared L3 cache, a natural choice for the degree of shared memory parallelism in
this system is 4 threads per process, putting all cores in a CoreCompleX to work on
a shared memory region. Each memory channel provides a bandwidth of around 24
GB/s resulting in a total of 192 GB/s per socket or 384 GB/s per node to access the
capacity of 256 GB.

4.2 The Musubi setup

For this contribution we use Musubi in version 9ccba4387413 [4]. It is using the
environment offered by the modules gcc/9.2.0 and mpt/2.23 and with OpenMP
support. The simulation setup is a small initial pressure pulse in a cubic domain of
edge length 10 that is periodic in all directions. This simple mesh can be generated by
Musubi during the simulation and can be easily scaled up in factors of 8. The initial
spherical pulse is located in the center of the domain, has an amplitude of 1.2 over a
background value of 1 and a halfwidth of 1. As collision operator we use BGK and
we look at the D3Q19 and D3Q27 stencils. Each simulation is executed for at least

58 H. Klimach, K. Masilamani and S. Roller

5 minutes of running time. The executable is run with the following command, with
𝑛𝑝𝑟𝑜𝑐𝑠 representing the number of MPI processes and tpp the number of OpenMP
threads per process:

mpirun -np $nprocs omplace -tm pthreads -nt $tpp

4.3 Results

Performance for Lattice Boltzmann methods is usually measured in million lattice
updates per second MLUPS and we consider this measure here per node. This
measure is independent of the actual running time and allows for a comparison
between different runs and simulations.

103 104 105 106 107 108
0

100

200

300

400

500

600

700

800

Cells per node

M
LU

PS
pe

rn
od

e

1 Thread
2 Threads
4 Threads
8 Threads
16 Threads

Fig. 1: Performance for D3Q19 on a single node, utilizing all 128 cores.

As described above we perform runs with varying problem sizes on a node and
record the resulting performance measure in MLUPS. Figure 1 shows the resulting
graph for the D3Q19 stencil on a single node. This form of representation nicely
shows the variation of the performance with the problem size. Overheads, like

Hybrid Musubi on Hawk 59

communication, dominate for very small problem sizes at the left end of the graph.
Then a peak can be observed where the overall problem is still sufficiently small to
completely fit into the caches, avoiding slower memory accesses. Finally, a relatively
flat performance plateau is reached for larger problem sizes, until it does not fit into
the memory of the node anymore.

What we can observe in this single node analysis is that in the region with
memory access with more than a million cells, there is basically no performance
difference between 1, 2, 4 and 8 OpenMP threads per MPI process. With 16 threads
the performance is clearly reduced, which seems to indicate that it is important for
Musubi that an MPI process is not spread across multiple memory channels. In the
cache region we also see a clear diminishing of the performance for 8 OpenMP
threads, where the shared memory of a process spans across two CoreCompleXs and
accordingly two shared L3 caches.

For the D3Q27 stencil a similar behavior can be seen in figure 2. With 27 discrete
velocity directions to represent the state, more memory is required to represent the
state in each cell and less cells fit into the memory of the single node than with 19
directions only. The largest domain that still fit into memory for the D3Q19 stencil
(134, 217, 728 cells), therefore, does not fit here anymore and the graphs, and the
largest mesh we compute is 16, 777, 216 cells large. Note, that this is a lot smaller
than what would fit into the memory, which would be more than 90 million cells.

This single node analysis shows the principal behavior of the LBM implementation
in Musubi on each node of Hawk and illustrates the performance impact of the
different parallelization strategies on the hierarchical memory layout of the system.
We can note that the use of 4 OpenMP threads on as many cores yields roughly
the same performance as a MPI-only parallelization and in the region with memory
access up to 8 threads can be used interchangeably to MPI parallelism.

The analysis on a single node, however, does not show how the use of OpenMP
threads influences the network communication between nodes. As stated above a
motivation to make use of OpenMP parallelism is to reduce the number of indi-
vidual communication partners with whom comparably small messages need to be
exchanged. To assess this, we repeat these runs on larger node counts with 8, 64 and
512 nodes. Incrementing by a factor of 8 yields here the same problem sizes per
node again, and allows for a direct comparison of the individual data points.

For brevity we only depict the corresponding graphs for 512 nodes. In this case
we have 65, 536 cores working in parallel. This analysis is shown in figure 3 for
D3Q19 and in figure 4 for D3Q27. As can be seen in these figures, the behavior on
512 nodes is quite similar to the one on a single node. However, we also observe
some differences. Most importantly we now see that for small problem sizes per
node a higher performance is achieved with 2 and 4 threads and not with the pure
MPI parallel computation.

In confirmation to the observation for a single node it appears reasonable to make
use of a single MPI process for each CoreCompleX with the cores that share their
L3 cache also sharing their memory address space. Shared memory parallelization
beyond that diminishes the performance in the cache region with small cell counts
per node, but for larger problems with the need to access the memory, also larger

60 H. Klimach, K. Masilamani and S. Roller

103 104 105 106 107
0

100

200

300

400

500

Cells per node

M
LU

PS
pe

rn
od

e
1 Thread
2 Threads
4 Threads
8 Threads
16 Threads

Fig. 2: Performance for D3Q27 on a single node, utilizing all 128 cores.

shared memory processes with up to 8 cores (sharing one memory channel) can be
utilized. Though for smaller problems, where all elements would fit into the caches,
a larger performance decrease can be observed for those shared memory partitions
spanning more than a single CoreCompleX.

Using 16 cores, spanning two memory channels in a NUMA node, as a shared
memory parallel group within an MPI incurs too many drawbacks in the memory
access of the hierarchical processor design to be used efficiently by Musubi also on
512 nodes.

For the scaling we look at the D3Q27 stencil as the more memory and com-
munication intensive scheme and stick to the parallelization with one MPI process
per CoreCompleX and 4 OpenMP threads per process to allow concurrent compu-
tation on the 4 physical cores. As we have seen in the above measurements this
configuration nicely fits the physical properties of the processor and provides good
performance across problem sizes.

We also include the computation on 2048 nodes here, though these do not result
in exactly the same number of cells per node as the other runs. This is the maximal
number of nodes available to users in the regular queue on Hawk and provides
262, 144 physical cores for parallel execution. The resulting performance per node
is illustrated in figure 5.

Hybrid Musubi on Hawk 61

103 104 105 106 107 108
0

100

200

300

400

500

Cells per node

M
LU

PS
pe

rn
od

e
1 Thread
2 Threads
4 Threads
8 Threads
16 Threads

Fig. 3: Performance per node for D3Q19 on 512 nodes, utilizing all 65, 536 cores.

This illustration shows that there is a significant performance degradation per
node in the region of small problem size that fit into the cache from 450 MLUPS on
a single node to 293 MLUPS per node on 2048 nodes. Due to the fast computation
without accessing memory outside the caches, the necessary communication on the
larger node counts increasingly dominates the execution time in this region. Never-
theless, there is still a higher performance observed in this cache region than when
accessing the memory for larger problems per node. Without OpenMP parallelism
the performance drops further down to 255 MLUPS per node. In the region with
memory access, however, the performance degradation is relatively small dropping
from 190 MLUPS on a single node to 166 MLUPS per node on 512 nodes for
16, 777, 216 cells per node.

As observed above, the OpenMP parallelism does not have much of an influence
for problem sizes per node and for other numbers of threads a similar behavior is
observed. And the performance for 16, 777, 216 cells per node on 512 nodes does
not vary much with the number of threads per process. This is summarized in table
1.

Of a little more interest in this respect is the strong scaling, where the problem
size per node decreases with growing numbers of nodes. Figure 7 shows the strong
scaling efficiency for the various number of threads per process. Aside from the rapid

62 H. Klimach, K. Masilamani and S. Roller

103 104 105 106 107
0

50

100

150

200

250

300

Cells per node

M
LU

PS
pe

rn
od

e
1 Thread
2 Threads
4 Threads
8 Threads
16 Threads

Fig. 4: Performance per node for D3Q27 on 512 nodes, utilizing all 65, 536 cores.

Table 1: Performance per node on 512 nodes for 16, 777, 216 cells per node

Threads per process MLUPS per node

1 168
2 166
4 166
8 163
16 153

decline in the parallel efficiency beyond the peak in the cache region we see that the
use of OpenMP threads here allows for a better scaling to small problems per node,
with 4 threads per process, matching the CoreCompleX yielding the highest parallel
efficiency on 512 nodes. Note, that this graph is somewhat truncated due to the few
cells fitted on a single node, though more than 6 times as many could fit into the
memory.

Hybrid Musubi on Hawk 63

103 104 105 106 107 108
0

100

200

300

400

Cells per node

M
LU

PS
pe

rn
od

e
1 Node
8 Nodes
64 Nodes
512 Nodes
2048 Nodes

Fig. 5: Performance per node for D3Q27 with 4 OpenMP threads per MPI process.

5 Conclusion

We have presented a basic analysis of the performance behavior of Musubi on
the HLRS computing system Hawk. It reveals that up to 4 OpenMP threads per
process can be used interchangeably with MPI parallelism and can slightly improve
the performance in strong scaling for very small problems per node. This number
of threads corresponds to the CoreCompleX of the AMD EPYC 7742 processors,
which groups 4 physical cores that share a L3 cache together. The largest problem
computed in this analysis contained 68, 719, 476, 736 cells and was computed on
262, 144 cores.

Acknowledgements We thank the High-Performance Computing Center Stuttgart (HLRS) for the
computing time on Hawk to perform the presented analysis.

64 H. Klimach, K. Masilamani and S. Roller

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Number of nodes

Pa
ra

lle
le

ffi
ci

en
cy

Fig. 6: Weak scaling parallel efficiency for D3Q27 with 4 OpenMP threads per MPI
process and 16, 777, 216 cells per node (linear interpolated for 2048 nodes.

References

1. P.L. Bhatnagar, E.P. Gross and M. Krook. A Model for Collision Processes in Gases. I. Small
Amplitude Processes in Charged and Neutral One-Component Systems. Phys. Rev. 94(3),
511–525, (1954).

2. D. Harlacher, M. Hasert, H. Klimach, S. Zimny and S. Roller. Tree Based Voxelization of STL
Data. In: High Performance Computing on Vector Systems 2011, M. Resch, X. Wang, W. Bez,
E. Focht, H. Kobayashi and S. Roller, pp. 81–92, Springer Berlin (2012).

3. M. Hasert, K. Masilamani, S. Zimny, H. Klimach, J. Qi, J. Bernsdorf and S. Roller. Complex
fluid simulations with the parallel tree-based Lattice Boltzmann solver Musubi. J. Comp. Sci.
5(5), 784–794, (2014).

4. H. Klimach. Musubi Mercurial Repository.
https://osdn.net/projects/apes/scm/hg/musubi/. Accessed 2022-03-25.

5. G.M. Morton. A computer oriented geodetic data base and a new technique in flie sequencing.
Technical report, IBM Ltd. (1966).

6. MPI: A Message Passing Interface 4.0.
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf. Accessed 2022-03-
25.

7. NASA: HECC Knowlegebase: AMD Rome Processors.
https://www.nas.nasa.gov/hecc/support/kb/amd-rome-processors_658.html.
Accessed 2022-03-25.

https://osdn.net/projects/apes/scm/hg/musubi/
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.nas.nasa.gov/hecc/support/kb/amd-rome-processors_658.html

Hybrid Musubi on Hawk 65

100 101 102 103
0

0.5

1

1.5

2

Number of nodes

Pa
ra

lle
le

ffi
ci

en
cy

1 Thread
2 Threads
4 Threads
8 Threads
16 Threads

Fig. 7: Strong scaling parallel efficiency for D3Q27 and 16, 777, 216 cells in total.

8. OpenMP Application Programming Interface 5.2.
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-
2.pdf. Accessed 2022-03-25.

9. S. Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford Univ. Press
(2001).

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf

MPI Continuations And How To Invoke Them

Joseph Schuchart and George Bosilca

Abstract Asynchronous programming models (APM) are gaining more and more
traction, allowing applications to expose the available concurrency to a runtime sys-
tem tasked with coordinating the execution. While MPI has long provided support
for multi-threaded communication and non-blocking operations, it falls short of ade-
quately supporting the asynchrony of separate but dependent parts of an application
coupled by the start and completion of a communication operation. Correctly and
efficiently handling MPI communication in different APM models is still a challenge.
We have previously proposed an extension to the MPI standard providing operation
completion notifications using callbacks, so-called MPI Continuations. This inter-
face is flexible enough to accommodate a wide range of different APMs. In this
paper, we discuss different variations of the callback signature and how to best pass
data from the code starting the communication operation to the code reacting to its
completion. We establish three requirements (efficiency, usability, safety) and eval-
uate different variations against them. Finally, we find that the current choice is not
the best design in terms of both efficiency and safety and propose a simpler, possibly
more efficient and safe interface. We also show how the transfer of information into
the continuation callback can be largely automated using C++ lambda captures.

1 Background

The Message Passing Interface (MPI) offers a host of nonblocking operations, which
are started in a procedure call that immediately returns and provides a request handle
representing the operation [4]. At the time of this writing, the only way to know
whether an operation has completed is to poll for its completion, either by periodically
testing the request or by blocking until its completion in a waiting procedure call. This

Joseph Schuchart and George Bosilca
Innovative Computing Laboratory (ICL), University of Tennessee Knoxville (UTK),
1122 Volunteer Blvd, Knoxville, TN 37996, U.S.A., e-mail: schuchart@icl.utk.edu

67

https://doi.org/10.1007/978-3-031-18046-0_5

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

M. M. Resch et al. (eds.), Sustained Simulation Performance 2021,

mailto:schuchart@icl.utk.edu
https://doi.org/10.1007/978-3-031-18046-0_5
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18046-0_5&domain=pdf

68 J. Schuchart and G. Bosilca

poses a significant challenge for applications utilizing asynchronous programming
models such as OpenMP [9] or higher level distributed runtime systems managing
communication through MPI because the requests have to be stored and (repeatedly)
passed back into MPI to determine their status.

Over time, several approaches have been proposed that try to hide the synchro-
nizing incurred by waiting for an MPI operation to complete, including TAMPI [6]
and the integration of lightweight threads into MPI libraries [3]. These approaches
attempt to block and switch the execution context until operations have completed.
However, all such approaches are dependent on the support for specific threading
implementations and thus not portable.

MPI Continuations, on the other hand, have been proposed as a way to minimize
the request management overhead in applications or runtime systems by attaching a
callback to a single or a set of continuations [7]. The callback will be executed once
all of the operations the continuation was attached to have completed. The application
or runtime system can then react to that change in state inside the callback, e.g., by
enqueuing a new task or releasing resources associated with that operation. This
approach has shown promising results in both OpenMP task-based applications as
well as when integrated with the PaRSEC runtime system [8].

A similar approach, dubbed MPI Detach, has been proposed concurrently [5].
While conceptually similar to the MPI Continuations proposal, the callback interface
proposed passes a status (or an array of statuses) into the continuations, which would
require additional memory management by the MPI library.

In this work, we explore the design of the callback signature of MPI Continuations,
focusing on usability, potential performance pitfalls, and safety concerns stemming
from the necessary memory management. The rest of this paper is structured as
follows: Section 2 provides a short overview over the current state of the continuations
proposal. Section 3 discusses various requirements we impose on the design of the
callback signature. Section 4 discusses various variations of the callback interface
together with their benefits and drawbacks. Section 5 demonstrates the use of the
continuations interface in the context of C++. Section 6 draws our conclusions from
this exploration.

2 Current state

The Continuations proposal introduces two new concepts into MPI: Continuations
and Continuation Requests (CRs). Continuations are a tuple of a callback function
and a state on which the callback function operates. Similar concepts can be found in
other instances employing the concept of continuations, e.g., continuations proposed
for C++ futures in the form of std::future<T>::then() [1], which accepts a
callable object (e.g., a lambda with it’s capture context) that takes the value of type T
of the future as its sole parameter. Here, the code in the lambda’s body is the callback

MPI Continuations And How To Invoke Them 69

function while its captured context and the value of type T are the state to operate
on. The HPX and UPC++ programming systems relies heavily on continuations on
C++ futures [2, 10].

2.1 Continuations

MPI Continuations are created using either MPI_Continue or MPI_Continueall
which will attach a continuation to a single request or a set of requests, respectively.
Since MPI currently only provides C and Fortran interfaces, automatic C++-style
context captures cannot be directly supported. Thus, a user-provided data pointer is
accepted that will be passed to the continuation callback. This data pointer represents
the context of the continuation and is never dereferenced by MPI. It is thus of little
relevance to the discussion in this work.

However, an operation in MPI is represented by a request and further information
about the outcome of the operation can be gathered from status objects obtained for
each request upon its completion (e.g., the tag and sender process rank in the case
of a receive operation, or an error code in case of faults). In the case of MPI_Wait,
a request is passed together with a pointer to a status object. The status object is
optional and the application may pass MPI_STATUS_IGNORE instead, in which case
no further information about the operation will be made available. In its current
form, a pointer to a single status object or an array of status objects may be passed
to MPI_Continue and MPI_Continueall, respectively, and the status objects will
be set before the continuation is invoked. This pointer will then also be passed as an
argument to the continuation.

2.2 Continuation Requests (CR)

Continuation Requests serve a dual purpose. First, they provide an abstract handle
to a set of continuations registered with this CR, allowing the application to poll
for the completion of all registered continuations and (by extension) the associated
operations. Once all registered continuations have completed, a wait or test procedure
call on that CR will signal its completion (by returning from wait or setting flag = 1
in a test). Second, CRs provide a facility for progressing outstanding communication
operations and to execute eligible continuations.

The relation between CRs, continuations, and operations is shown in Figure 1:
multiple continuations may be registered with one continuation request but each
continuation may only be registered with a single CR. The latter is a consequence
of the fact that continuations are not accessible explicitly through a handle and their
lifetime is managed entirely by MPI. Similarly, a continuation may be attached to
multiple MPI operations at once, causing the callback to be executed once all of
the are complete. However, each MPI operation may only be associated with one

70 J. Schuchart and G. Bosilca

continuation. The transitive closure of these relations is that a CR represents one or
many MPI operations and that a successful test on a CR implies the completion of
all MPI operations associated with continuations registered with that CR.

Fig. 1: Relations between Continuation Requests (CR), Continuations, and MPI Op-
erations: multiple continuations can be registered with the same CR (left) and a
Continuation can be attached to multiple operations (right). However, only continu-
ation can be attached to any given MPI Operation.

2.3 Current API design

Listing 1 shows the current API as proposed. The ownership of non-persistent
requests is returned to MPI and the respective entry in the array is set to
MPI_REQUEST_NULL. The ownership of persistent requests is not changed. This
behavior is similar to that of an optional array of status(es) (or MPI_STATUS[ES]_
IGNORE otherwise) is passed to the function. The statuses will be set to the statuses
of the completed MPI operations before the continuation callback is invoked and the
pointer to the statuses provided by the user is passed as the first argument.

As a second argument, the user_data pointer is passed to the callback. This
pointer may reference any state the continuation may require for its execution.

In addition to requests, statuses, the callback function pointer, and the user-
provided state, the two functions listed in Listing 1 also accept a set of OR-combined
flags that control different aspects of the continuation. Among these flags is
MPI_CONT_IMMEDIATE to control whether the continuation may be executed imme-
diately if all operations have completed already. If that flag is not set, the continuation
will be enqueued for later execution, e.g., when waiting on the continuation request.
However, the details of these flags are still fluid and beyond the scope of this paper
and not relevant for the ensuing discussion.

As a last argument, the continuation request described in Section 2.2 is passed to
the attaching functions.

Figure 2 shows the flow of ownership in the current API design. The call to
MPI_Isend allocates a request object and passes its ownership back to the caller
(who borrows it), who is then responsible for releasing that request in a call to
MPI_Test or MPI_Wait. If the request is passed to MPI_Continue, its ownership
is transferred back to the MPI library, who is then responsible for releasing the
associated internal resources. If a status argument other than MPI_STATUS_IGNORE
is provided, the ownership of the status buffer is transferred to MPI and the application
should not modify the buffer before the continuation is invoked, which implies the

MPI Continuations And How To Invoke Them 71

typedef void (MPI_Continue_cb_function)(MPI_Status *statuses,
void *user_data);

(a) Callback signature.

int MPI_Continue(
MPI_Request *op_req,
MPI_Continue_cb_funtion *cb,
void *user_data,
int flags,
MPI_Status *status,
MPI_Request cont_req);

(b) Attaching to single operation.

int MPI_Continueall(
int count,
MPI_Request op_req[],
MPI_Continue_cb_funtion *cb,
void *user_data,
int flags,
MPI_Status statuses[],
MPI_Request cont_req);

(c) Attaching to multiple operations.

Listing 1: API for attaching a continuation to a single or multiple MPI operations.

Fig. 2: Flow of ownership if passing a user-provided array of statuses to the contin-
uation.

72 J. Schuchart and G. Bosilca

transfer of ownership of that buffer back to the application. While transient in nature,
ownership of the request buffer is transferred into MPI_Isend and implicitly returned
at the end of the call. We have included these transient ownership transfers for the
sake of completeness.

We note that if MPI_STATUS_IGNORE is provided instead of a status buffer the
only object(s) whose ownership is transferred are the requests. In that case, no
borrowed ownership remain after the call to MPI_Continue.

3 Callback interface requirements

Fig. 3: Usability, efficiency, and safety are often detrimental in the design of APIs,
requiring carefully balancing of these three requirements.

We outline three main requirements for the continuations API that we believe
should be fundamental to the design of the continuations API. As shown in Figure 3,
requirements for a safe, efficient, and easily usable API are often detrimental and
need careful balancing.

3.1 Efficiency

The complexity of polling for the completion of requests using existing mechanisms
such as MPI_Testall and MPI_Waitall involves checking the status of each re-
quest and progressing communication if required. MPI implementations have been
carefully optimized to avoid dynamic memory management in such critical execution
paths.

The cost of attaching a continuation to a set of requests and managing its execution
should be equally low. In particular, requiring memory allocations that are not
strictly necessary and copying objects (e.g., requests and statuses) should be avoided
wherever possible. Ideally, no dynamic memory management would be required on

MPI Continuations And How To Invoke Them 73

the part of the application, at least in the simplest of use-cases. Similarly, requiring
the allocation of buffers inside MPI to hold requests or statuses in the design of the
API would negatively impact performance even for simple cases.

3.2 Safety

While APIs for the C language rarely can eliminate all possible mistakes made
by programmers, good API design aims at minimizing complexities and reducing
the probability of such mistakes. In the context of asynchronous execution APIs
such as continuations, likely sources of errors are accessing memory in the callback
that points to the stack of the function that started the operation and attached the
continuation, e.g., trying to access the request or status objects. Ideally, the MPI Con-
tinuations API helps users avoid the pitfalls of memory lifetime issues by eliminating
disambiguities about object lifetime and ownership.

3.3 Usability

While a clean interface with little or no potential pitfalls certainly contributes to
the usability of an interface, some simplifications in the API may require additional
steps to achieve complex setups, e.g., management of additional memory (with a
potential impact on performance) or set up of custom data structures and the resulting
additional code that has to be written and maintained. On the other hand, a complex
callback design providing a rich set of information (request handles, status objects,
datatypes, message element counts) directly to the callback function may reduce the
work on the part of the application since all relevant information is provided directly.
However, most application may not need the provided information in their callbacks,
resulting in overhead in memory space and time that does not yield any benefits for
these applications.

4 Callback interface variations

We will discuss a set of variations in the design of the current API described in
Section 2.3, using a simple example

Using the current API, Listing 2 provides an example of attaching a continuation
to a nonblocking receive operation. All the continuation does is to enqueue a task that
will process the message and release the buffer. The buffer is not processed directly
in order to keep the duration of the callback as short as possible and to potentially
defer the processing of the message to another thread. There is no use of the status
provided when attaching the continuation and the message buffer is passed directly

74 J. Schuchart and G. Bosilca

1 /* Continuation request, initialized elsewhere */
2 MPI_Request cont_req;
3
4 void complete_cb(MPI_Status *status, void *buffer) {
5 enqueue_processing_task(buffer);
6 }
7
8 void start_receive(void *buffer, int from, int size){
9 MPI_Request op_req;

10 MPI_Irecv(buffer, size, MPI_BYTE, from, /*tag=*/101,
11 MPI_COMM_WORLD, &op_req);
12 MPI_Continue(&op_req, &complete_cb, buffer, 0,
13 MPI_STATUS_IGNORE, cont_req);
14 }

Listing 2: Simple example of a continuation attached to a nonblocking receive.

1 /* Continuation request, initialized elsewhere */
2 MPI_Request cont_req;
3
4 void complete_cb(MPI_Status *status, void *buffer) {
5 int msg_size;
6 MPI_Get_count(status,MPI_BYTE, &msg_size);
7 enqueue_processing_task(buffer, msg_size);
8 free(status);
9 }

10
11 void start_receive(void *buffer, int from, int buffer_size){
12 MPI_Request op_req;
13 MPI_Status *status = malloc(sizeof(MPI_Status));
14 MPI_Irecv(buffer, buffer_size, MPI_BYTE, from, /*tag=*/101,
15 MPI_COMM_WORLD, &op_req);
16 MPI_Continue(&op_req, &complete_cb, buffer, 0,
17 status, cont_req);
18 }

Listing 3: Simple example of a continuation attached to a nonblocking receive
operation, querying the status of the operation.

on to the continuation. The value provided for the status parameter of the callback
will be MPI_STATUS_IGNORE. No dynamic has to be allocated in this example. We
note that the cont_req used in this and the following examples would have been
initialized at an earlier point.

Listing 3 provides a variation of this example where start_receive posts a
receive for a message with a maximum size and uses the status of the operation
to query the size of the message actually received. The status is allocated on the
heap (using malloc in Line 13) to ensure that the memory remains valid until the
continuation has executed. The allocated status is subsequently freed in Line 8.

A more complex example employing a persistent receive operation is provided in
Listing 4. When attaching the continuation, a status is passed that will be set before
the callback is invoked. Like before, the status is allocated on the heap. Instead of

MPI Continuations And How To Invoke Them 75

1 /* Wrapper around data needed in the callback */
2 typedef struct callback_data_t {
3 MPI_Request op_req; /* persistent operation request */
4 void *msg; /* message buffer */
5 } callback_data_t;
6
7 void complete_cb(MPI_Status *status, void *user_data) {
8 int cancelled;
9 int msg_size;

10 MPI_Test_cancelled(status, &cancelled);
11 if (cancelled) { /* nothing to be done */
12 free(user_data);
13 free(status);
14 return;
15 }
16 MPI_Get_count(status,MPI_BYTE, &msg_size);
17 /* copy the message and restart the receive */
18 callback_data_t* cb_data = (callback_data_t*)user_data;
19 copy_msg_and_enqueue_task(cb_data->msg, msg_size);
20 MPI_Start(&op_req->op_req);
21 MPI_Continue(&op_req->op_req, &complete_cb,
22 user_data, 0, status, cont_req);
23 }
24
25 MPI_Request
26 start_recurring_receive(void *buffer, int from, int size) {
27 /* Allocate the callback data */
28 callback_data_t *cbdata = malloc(sizeof(callback_data_t));
29 /* Allocate the status object */
30 MPI_Status *status = malloc(sizeof(MPI_Status));
31 cbdata->msg = buffer;
32 MPI_Recv_init(buffer, size, MPI_BYTE, from, /*tag=*/101,
33 MPI_COMM_WORLD, &cbdata->op_req);
34 /* start the operation and attach continuation */
35 MPI_Start(&cbdata->op_req);
36 MPI_Continue(&op_req->op_req, &complete_cb,
37 cbdata, 0, status, cont_req);
38 return op_req->op_req;
39 }
40
41 void stop_recurring_receive(MPI_Request op_req) {
42 MPI_Cancel(&op_req);
43 MPI_Request_free(&op_req);
44 }

Listing 4: A more complex example attaching a continuation to a persistent receive.
An incoming message will be copied and a task processing it enqueued. The persistent
receive is then restarted before the continuation is attached anew. Eventually, the
persistent receive will be canceled, which will be detected inside the continuation in
Lines 8–14.

76 J. Schuchart and G. Bosilca

just passing the message pointer, this time a structure of type callback_data_t is
allocated that wraps the pointer to the message and the persistent operation request,
both of which are accessed inside the continuation callback. In contrast to C++ lambda
captures, such capturing has to be done manually in C.

The start-attach cycle is broken once the persistent receive is cancelled (Lines 41–
44) and the check of the status in Line 10 detects the cancellation. The heap memory
is released and no task is enqueued to process the message (Lines 12 – 13).

It is not hard to see that the current variant is neither fool-proof nor the most
efficient solution. A subtle change to the way the status is allocated can lead to
disastrous consequences. If instead of allocating the status on the heap the status
was allocated on the stack (as is commonly the case when calling MPI_Test), the
memory pointed to by status in the callback is invalid as it points to the stack
of start_recurring_receive that is no longer active. Changing the code of
Listing 4 accordingly, yields

MPI_Status status;
...
MPI_Continue(&op_req->op_req, &complete_cb,

cbdata, 0, &status, cont_req);

Unfortunately, this rather subtle bug is not easy to spot and in practice would likely
slip through a code review. It is not unnatural for users to believe that the status
argument of the callback points to a status object provided by MPI, instead of simply
being the status pointer provided while attaching the continuation. Thus, this is a
potential source of grave errors that (as all bugs related to memory management)
would be hard to debug.

In terms of efficiency, it is questionable why the status should be allocated
separately. It would indeed be more efficient to allocate the status as part of the
callback_data_t structure. However, since a pointer to that structure is already
passed to the callback, passing a separate pointer to the callback function seems
superfluous. In essence, the status pointer has to be stored and passed twice. Con-
sequently, the current interface breaks with some of the requirements laid out in
Section 3, both potentially impairing safety and efficiency.

4.1 Passing requests and user data

Instead of passing the pointer to the status object, it might be tempting to pro-
vide request (or array of requests) to the callback and query their status using
MPI_Request_get_status. After all, unlike the status argument the (array of) re-
quest(s) is a non-optional parameter to MPI_Continue and MPI_Continueall. This
would remove the status from the continuations interface altogether and avoid the
potential access out-of-scope stack memory from within the continuation callback.

In principle, two sub-variants of this approach are possible.

MPI Continuations And How To Invoke Them 77

4.1.1 MPI-provided Request Buffer

The first sub-variant is to allocate an MPI-internal buffer and copy the request or
requests passed to MPI_Continue or MPI_Continueall into it. The ownership
of non-persistent requests would still be transferred back to MPI and their handle
be replaced by MPI_REQUEST_NULL in order to make them inaccessible outside
of the continuation callback. This buffer of copied request handles would then be
passed into the continuation callback and (together with all non-persistent requests)
destroyed after the continuation completes. The flow of ownership is depicted in
Figure 4.

Fig. 4: Flow of ownership if passing an array of copied request handles to the
continuation.

A significant drawback of this approach is the required copying of requests and
additional dynamic memory management inside the MPI library since the number
of requests to which a continuation is attached is not known a priori.

78 J. Schuchart and G. Bosilca

4.1.2 User-provided Request Buffer

Instead of allocating a buffer inside the MPI implementation, the API could
also directly pass on the pointer to the request(s) provided to MPI_Continue or
MPI_Continueall. As stated in Section 2.3, the ownership of non-persistent re-
quests is returned to MPI. In this case, if the application wanted to access the status
of an operation, it would have to request that the request handles are retained. This
could be accomplished by introducing and passing a flag such as MPI_CONT_RETAIN,
requesting that even non-persistent requests are retained until the continuation is in-
voked. The flow of ownership in this case is depicted in Figure 5.

Fig. 5: Flow of ownership if passing the user-provided array of requests to the
continuation.

Since ownership would remain with the application, it is necessary to either
implicitly (at the end of the continuation) or explicitly return ownership at the end
of the callback by invoking MPI_Request_free on each non-persistent request. In
the interest of efficiency (and symmetry with test and wait functions), the addition
of MPI_Request_freeall should be considered in this case. For continuations that

MPI Continuations And How To Invoke Them 79

do not inquire the status of the operation, another flag should be introduced that
prevents the implementation from storing and passing on the pointer to the request.
This is especially important for requests that were located on the stack, as is the case
in Listings 2 and 3. However, a new handle will have to be introduced to pass as an
invalid pointer to a request handle.1

It becomes apparent that passing the request instead of the status into the contin-
uation breaks with the requirements outlined in Section 3. Either the MPI library is
required to allocate internal memory for each continuation, or the issue of pointers
potentially pointing to invalid (stack) memory is shifted from the status object to
the request objects. On top of that, the added complexity of properly managing the
lifetime of requests through flags and additional release of requests opens the door
for additional errors in user code and potentially impairs usability.

4.2 Passing only user data

To avoid the potential mistakes in the lifetime management of statuses and requests
and the potential efficiency issues outlined in the previous sections, the state passed
to the continuation should be reduced to a single pointer. This removes any ambiguity
regarding the ownership of the status and request objects and avoids any additional
memory allocations.

The code of Listing 4 adapted to only passing the user pointer is provided in
Listing 5. It should be noted that while this interface removes potential issues around
memory management (and thus provides improved safety and efficiency) a slightly
higher burden is put on users in that all state of the continuation has to be collected
in a single structure. However, we believe that this is a cost that is worth paying in
exchange for the reduced potential of memory management mistakes and efficiency
issues.

In order to further reduce the risk of using out-of-scope stack variables in con-
tinuations (e.g., from users allocating callback_data_t on the stack), the MPI
Continuations interface would again have to copy the contents of the user-provided
buffer into an internal buffer and pass that buffer to the callback. However, as stated
earlier, this may compromise efficiency and safety and does not guarantee that nested
pointers do not point to variables on the out-of-scope stack.

With this interface, the simple code in Listing 2 will remain the same, except
that the MPI_Status* argument to the callback disappears. No dynamic memory
allocation would be required in this case. The code in Listing 3 will have to allocate
a structure containing the pointer to the message buffer and the status. The allocation
is thus shifted from the status object to the user-provided data pointer.

1 MPI does not typically employ the NULL pointer but instead defines special values for all invalid
handles.

80 J. Schuchart and G. Bosilca

1 typedef struct callback_data_t {
2 MPI_Request op_req; /* persistent operation request */
3 MPI_Status status; /* status of the operation */
4 void *msg; /* the message to be received */
5 } callback_data_t;
6
7 void complete_cb(void *user_data) {
8 callback_data_t* cbdata = (callback_data_t*)user_data;
9 int cancelled;

10 MPI_Test_cancelled(&cbdata->status, &cancelled);
11 if (cancelled) { /* nothing to be done */
12 free(cbdata);
13 return;
14 }
15 enqueue_process_process(cbdata->msg);
16 MPI_Start(&op_req->op_req);
17 MPI_Continue(&op_req->op_req, &complete_cb,
18 cbdata, 0, status, cont_req);
19 }
20
21 MPI_Request
22 start_recurring_receive(void *buffer, int from, int size) {
23 callback_data_t *cbdata = malloc(sizeof(callback_data_t));
24 cbdata->msg = buffer;
25 MPI_Recv_init(buffer, size, MPI_BYTE, from, /*tag=*/101,
26 MPI_COMM_WORLD, &cbdata->op_req);
27 MPI_Start(&cbdata->op_req);
28 MPI_Continue(&op_req->op_req, &complete_cb,
29 cbdata, 0, &cbdata->status, cont_req);
30 return cbdata->op_req;
31 }

Listing 5: The example of Listing 4 passing the user data pointer as the only state to
the continuation callback.

5 C++ lambda capture

A variation of the code of Listing 5 using C++ lambda captures is listed in Listing 6.
In this case, the compiler captures all data necessary inside the lambda defined in
Lines 30 – 35. Unfortunately, the status of the operation cannot be automatically
captured by the lambda because it’s values is known only once the callback is invoked.
Thus, the status is encapsulated inside a wrapper cb_t that makes it accessible both
inside and outside the lambda.

All other variables are captured by value (including the operation request) and
stored as part of the fn member of cb_t. The lambda is marked as mutable
because both MPI_Start and MPI_Continue take a non-const pointer to it. The
static invoke member function of cb_t (Lines 10 – 19) will be called by MPI,
which then checks for cancellation and invokes the lambda, passing a reference to
itself, allowing the lambda to reattach the continuation using the same object.

MPI Continuations And How To Invoke Them 81

1 /* Callback wrapper typed on the callable’s type */
2 template<typename Fn>
3 struct cb_t {
4 /* Status must be accessible outside the callable */
5 MPI_Status status;
6 Fn fn;
7 cb_t(Fn&& fn) : fn(std::forward<Fn>(fn)) {}
8 /* static function invoked from MPI,
9 dispatching to the provided callable */

10 static void invoke(void*data) {
11 cb_t* cb = static_cast<cb_t*>(data);
12 int cancelled;
13 MPI_Test_cancelled(&cb.status, &cancelled);
14 if (cancelled) {
15 delete cb; /* cleanup the wrapper */
16 return;
17 }
18 cb->fn(*cb);
19 }
20 };
21
22 MPI_Request
23 start_recurring_receive(void *buffer, int from, int size) {
24 MPI_Request op_req;
25 MPI_Recv_init(buffer, size, MPI_BYTE, from, /*tag=*/101,
26 MPI_COMM_WORLD, &op_req);
27 MPI_Start(&op_req);
28 auto cb = new cb_t(
29 /* Marked mutable to pass op_req as non-const. */
30 [=](auto& cb) mutable {
31 process(buffer);
32 MPI_Start(&op_req);
33 MPI_Continue(&op_req, &cb.invoke,
34 &cb, 0, &cb.status, cont_req);
35 });
36 MPI_Continue(&op_req, &cb->invoke,
37 cb, 0, &cb->status, cont_req);
38 return op_req;
39 }

Listing 6: The example of Listing 4 using C++ lambda capture. The status must
be accessible inside and outside the lambda expression and thus cannot be captured.
Instead it is held in a wrapper object through which the lambda is invoked.

We have deliberately avoided the use std::function in order to provide the
compiler with the opportunity to inline the code in the lambda, further reducing the
overhead of the call. While the use of std::function would remove the template
parameter Fn from cb_t, it introduces a second indirect call in the continuation (in
addition to the indirect call to invoke inside the MPI library).

82 J. Schuchart and G. Bosilca

We note that the templating of cb_t makes it easily composable and reusable,
allowing it to be used with different lambdas throughout the an application. While not
entirely void of complexity, the use of C++ lambda captures with MPI Continuations
removes the hassle of manually transferring data from the callsite into the callback
through custom structures, as is required when using C.

6 Conclusions

In this paper, we have discussed several variants of the MPI Continuations API and
how state relevant to the execution of the continuation callback can be captured and
passed to the callback. We set out a three requirements (usability, efficiency, and
safety) that at times are at odds with each other. We found that the interface cur-
rently proposed encourages inefficient (by separately allocating the status object(s))
and potentially unsafe (by passing stack-based variables) code. We believe that an
interface that requires the aggregation of all variables accessed inside the continua-
tion callback into a single structure yields a safer and potentially more efficient API
design. We have also shown that by employing modern C++ lambda captures, this
task can be mostly automated. Based on our findings, we will adapt the interface
in our MPI Continuations proposal to only pass a single state pointer and to avoid
potential confusions about lifetime and ownership of status objects present in the
current proposal.

References

1. N. Gustafsson, A. Laksberg, H. Sutter and S. Mithani. N3857: Improvements to
std::future<T> and Related APIs. Tech. Rep. N3857 (2014).

2. H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio and D. Fey. HPX: A Task Based Program-
ming Model in a Global Address Space. In: Proceedings of the 8th International Conference
on Partitioned Global Address Space Programming Models, PGAS ’14, pp. 6:1–6:11, ACM
(2014). DOI 10.1145/2676870.2676883

3. H. Lu, S. Seo and P. Balaji. MPI+ULT: Overlapping Communication and Computation with
User-Level Threads. In: 2015 IEEE 17th International Conference on High Performance
Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace
Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and
Systems (2015). DOI 10.1109/HPCC-CSS-ICESS.2015.82

4. MPI: A Message-Passing Interface Standard, Version 4.0. Tech. rep. (2021). URL https:
//www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

5. J. Protze, M.A. Hermanns, A. Demiralp, M.S. Müller and T. Kuhlen. MPI Detach – Asyn-
chronous Local Completion. In: 27th European MPI Users’ Group Meeting, EuroMPI/USA
’20, Association for Computing Machinery (2020). DOI 10.1145/3416315.3416323

6. K. Sala, X. Teruel, J.M. Perez, A.J. Peña, V. Beltran and J. Labarta. Integrating blocking and
non-blocking MPI primitives with task-based programming models. Parallel Computing 85,
153–166 (2019). DOI 10.1016/j.parco.2018.12.008

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

MPI Continuations And How To Invoke Them 83

7. J. Schuchart, C. Niethammer and J. Gracia. Fibers are not (P)Threads: The Case for Loose
Coupling of Asynchronous Programming Models and MPI Through Continuations. In: 27th
European MPI Users’ Group Meeting EuroMPI/USA ’20, pp. 39–50, Association for Com-
puting Machinery (2020). DOI 10.1145/3416315.3416320

8. J. Schuchart, P. Samfass, C. Niethammer, J. Gracia and G. Bosilca. Parallel Computing 106,
102793 (2021). https://doi.org/10.1016/j.parco.2021.102793. URL https://
www.sciencedirect.com/science/article/pii/S0167819121000466

9. J. Schuchart, K. Tsugane, J. Gracia and M. Sato. The Impact of Taskyield on the Design
of Tasks Communicating Through MPI. In: Evolving OpenMP for Evolving Architectures
(Springer International Publishing, 2018), pp. 3–17. DOI 10.1007/978-3-319-98521-3_1.
Awarded Best Paper

10. Y. Zheng, A. Kamil, M.B. Driscoll, H. Shan and K. Yelick. UPC++: A PGAS Extension
for C++. In: 2014 IEEE 28th International Parallel and Distributed Processing Symposium,
pp. 1105–1114 (2014). DOI 10.1109/IPDPS.2014.115

https://doi.org/10.1016/j.parco.2021.102793
https://www.sciencedirect.com/science/article/pii/S0167819121000466
https://www.sciencedirect.com/science/article/pii/S0167819121000466

Xevolver for Performance Tuning of C Programs

Hiroyuki Takizawa, Shunpei Sugawara, Yoichi Shimomura, Keichi Takahashi and
Ryusuke Egawa

Abstract We introduce a C interface for standard C programmers to define their own
code transformation rules for performance tuning, mainly assuming loop transfor-
mations. The proposed C interface can support most of important features provided
by the Fortran interface. As a result, performance concerns can be defined separately
as user-defined code transformation rules, and thus the original application code can
be kept unchanged as much as possible.

1 Introduction

High-Performance Computing (HPC) applications are often specialized for their
target platforms to achieve reasonably high performance. Such code specialization
is not only labor-intensive, but also makes it difficult to migrate the applications to
other platforms. One idea to overcome this difficulty is separation of performance
concerns, meaning that the information specific to a particular platform is expressed
separately from the computation. However, in reality, one bad practice heavily used
in HPC application development to achieve high performance on multiple platforms
is a so-called “ifdef” approach that writes multiple code versions within a single file
and uses C macro conditionals for the preprocessor to switch the code versions to

Hiroyuki Takizawa, Yoichi Shimomura and Keichi Takahashi
Cyberscience Center, Tohoku University,
e-mail: takizawa@tohoku.ac.jp,shimomura32@tohoku.ac.jp,keichi@tohoku.ac.jp

Shunpei Sugawara
Graduate School of Information Sciences, Tohoku University,
e-mail: shunpei@hpc.is.tohoku.ac.jp

Ryusuke Egawa
Tokyo Denki University, e-mail: egawa@mail.dendai.ac.jp

85

https://doi.org/10.1007/978-3-031-18046-0_6

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

M. M. Resch et al. (eds.), Sustained Simulation Performance 2021,

mailto:takizawa@tohoku.ac.jp
mailto:shunpei@hpc.is.tohoku.ac.jp
mailto:egawa@mail.dendai.ac.jp
mailto:shimomura32@tohoku.ac.jp
mailto:keichi@tohoku.ac.jp
https://doi.org/10.1007/978-3-031-18046-0_6
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18046-0_6&domain=pdf

86 H. Takizawa, S. Sugawara, Y. Shimomura, K. Takahashi and R. Egawa

be used at the compilation, severely degrading the code maintainability. Therefore,
we need an effective way of expressing platform-specific performance concerns
separately from application codes.

In the Xevolver project [16], we have developed a programming framework for
performance tuning with user-defined code transformations [6, 12]. A high-level
programming interface for standard HPC programmers to describe their own code
transformation rules has also been developed mainly for Fortran codes [10], be-
cause most of legacy HPC applications are written in Fortran. Lately, however, it
is gradually becoming popular to use not only Fortran but also other programming
languages such as C and C++, especially when new HPC applications are developed
from scratch. Moreover, there are many tools such as CIVL [17] available for C and
C++, but not for Fortran. If we need to use such a tool, there is no choice to use
Fortran at the HPC application development. Therefore, we consider that Xevolver
should provide a high-level interface not only for Fortran but also for C.

In this article, we introduce a C interface for standard C programmers to define
their own code transformation rules for performance tuning, mainly assuming loop
transformations. Through various case studies [5, 13, 15], Xevolver’s approach has
been proven to be effective in achieving high performance and code maintainability.
The proposed C interface can support most of important features provided by the
Fortran interface. As a result, performance concerns can be defined separately as
user-defined code transformation rules, and thus the original application code can
be kept unchanged as much as possible.

2 Related work

Software automatic performance tuning, or auto-tuning (AT) for short, is indispens-
able to exploit the performance of modern HPC systems by empirically exploring a
parameter space relevant to performance [7]. To use AT techniques, an application
code must be developed to be auto-tunable [14], and be able to change its behaviors
according to parameter tuning and code version switching. One challenging issue is
that there is no established way of developing a practical application while keeping
it auto-tunable.

So far, several case studies have demonstrated that Xevolver’s approach can enable
standard HPC programmers to define their own code transformation rules without any
special knowledge about compiler implementation technologies [5,13,15]. Although
an HPC application code is directly modified by hand to adapt to its target platform
in many cases, such manual code modifications can be replaced with code transfor-
mations, and thus the original HPC application code can remain almost unchanged if
Xevolver can translate the original code to its optimized and/or auto-tunable version
right before the compilation process.

Xevolver for Performance Tuning of C Programs 87

Although the original Xevolver framework [12] has only low-level interfaces to
manipulate internal code representation, Xevtgen [10] has been developed to provide
a high-level interface for Fortran programmers to describe code transformation rules
using Fortran syntax. Thanks to the high-level interface, Xevolver enables to develop
a Fortran code without specializing it for any specific platform.

Egawa et al. [4] have presented a database of performance tuning expertise, called
HPC refactoring catalog. Loop optimization techniques in the database are described
along with Fortran sample codes, and the loop optimization is expressed as a code
transformation rule. Sugawara et al. [11] demonstrated that most of those techniques
are also effective for C programs running on recent platforms.

3 Xevolver for C

We are now designing and developing Xevolver for C (Xev-C) for performance
tuning of C programs using user-defined code transformations.

In the original Xevolver framework [12], Abstract Syntax Trees (ASTs) are ex-
pressed in an XML format, called XML-AST. Then, AST-based code transformation
rules are internally expressed also in another XML format, called XSLT, which
is a standardized format to describe transformations of XML data, and hence can
be used for transformation of XML-AST data. Since it is too painful for standard
HPC programmers to describe XSLT rules to define code transformation, Xevtgen
has been developed to define code transformation rules using Fortran syntax fa-
miliar to HPC programmers [10]. AST-based representation of code transformation
is certainly useful for Xevolver to express a wide variety of code transformations.
However, our case studies show that the high-level interface provided by Xevtgen can
cover most cases where Xevolver’s approach is required. Moreover, in the case where
AST-based transformation is appropriate, there are many other tools to express such
a code transformation. Therefore, Xev-C internally uses Clang AST, and implements
only the high-level interface for HPC programmers to define their own code transfor-
mation rules required in practice on a case-by-case basis. Xev-C does not explicitly
expose ASTs to users, and assumes to use Clang tools to develop AST-based code
transformations if necessary.

Unlike the original Xevolver framework built on top of the ROSE compiler
infrastructure [8], Xev-C is implemented using Clang [1]. Xev-C takes two C files
for user-defined code transformations as shown in Figure 1. One of the two C files
is an application code to be transformed, and the other is a code transformation rule
written in C. As with Xevtgen, Xev-C assumes that users provide two versions of a
code fragment to define a code transformation. One is the original version, and the
other is its transformed version. Figure 2 shows an example of code transformation
rule defined using Xev-C. If the rule in Figure 2 is applied to the code in Figure 3,
the first loop is exactly the same as the original code version in the rule, and thus is

88 H. Takizawa, S. Sugawara, Y. Shimomura, K. Takahashi and R. Egawa

�����

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

�������

���	
 ���

����������
�����	��

�	
�	
����
�
����������

Fig. 1: Overview of Xevolver for C (Xev-C). Xev-C takes two C codes, input code
and transformation rule, and then produces one code, a transformed version of the
input code. All the codes are written in C.

1 #include "xev_defs.h"
2
3 int i,j;
4 double a[10][10], b[10], c[10];
5
6 int main()
7 {
8 xev_stmt_src("label1");
9 {

10 for(i=0;i<10;i++){
11 for(j=0;j<10;j++){
12 c[i] += a[i][j]*b[j];
13 }
14 }
15 }
16
17 xev_stmt_dst("label1");
18 {
19 for(int k=0;k<100;k++){
20 i = k/10;
21 j = k%10;
22 c[i] += a[i][j]*b[j];
23 }
24 }
25 }

Fig. 2: A simple transformation rule for loop collapse.

Xevolver for Performance Tuning of C Programs 89

1 #include <stdio.h>
2
3 int i,j,n;
4 double a[10][10], b[10], c[10], d[10];
5
6 int main()
7 {
8 read_data_from_file(a,b,c,d);
9

10 for(i=0;i<10;i++){
11 for(j=0;j<10;j++){
12 c[i] += a[i][j]*b[j];
13 }
14 }
15
16 for(i=0;i<10;i++){
17 for(n=0;n<10;n++){
18 d[i] += a[i][n]*c[n];
19 }
20 }
21
22 write_data_to_file(a,b,c,d);
23
24 return 0;
25 }

Fig. 3: A simple code to be transformed.

replaced with the transformed version. As a result, in this particular example, loop
collapse is applied to the first loop in Figure 3, but not to the second loop whose
loop index of the innermost loop is n.

The transformation rule in Figure 2 is just text replacement and transforms a
loop only if the loop is exactly identical to the original version in the rule. A large
number of rules would be required if performance tuning is done only with such
text replacement rules. To achieve performance tuning with as few rules as possible,
Xev-C provides special variables, called Xev variables, so that a rule can be defined
not for a particular code fragment but for a code pattern. Figure 4 shows a rule of
loop collapse similar to the rule in Figure 2. In Figure 4, Xev variables xi, xj, and
stmt are defined and used in the rule. Since xi and xj represent any expressions,
they match any variables. Even if the loop index has a different name, the rule can be
applied to the loop. Similarly, since stmt represents any statements, statements in
the loop body do not affect to determine if the rule is applied. If the rule is applied,
the loop body is unchanged and simply copied to the transformed version. As a
result, in Figure 3, the second loop as well as the first one will be transformed by the
rule.

90 H. Takizawa, S. Sugawara, Y. Shimomura, K. Takahashi and R. Egawa

1 #include "xev_defs.h"
2
3 int i,j;
4 xev_expr xi,xj;
5 xev_stmt* stmt;
6
7 int main()
8 {
9 xev_stmt_src("label1");

10 {
11 for(xi=0;xi<10;xi++){
12 for(xj=0;xj<10;xj++){
13 stmt;
14 }
15 }
16 }
17
18 xev_stmt_dst("label1");
19 {
20 for(int k=0;k<100;k++){
21 xi = k/10;
22 xj = k%10;
23 stmt;
24 }
25 }
26 }

Fig. 4: A simple transformation rule with Xev variables for loop collapse.

4 Evaluation and discussions

In this work, we have examined that the performance tuning expertise recorded in
HPC refactoring catalog [4] can be expressed using the current design of Xev-C.
As discussed in [11], Fortran codes in 28 out of 31 cases in the catalog can be
translated into C. The three cases not translated into C use either of using built-in
Fortran functions or libraries available only in Fortran. Most of the performance
tuning techniques in the catalog are vectorization-aware loop optimizations mainly
targeting the previous-generation vector systems, SX-9 [9] and SX-ACE [3]. In the
following evaluation, the performance gains by the techniques are evaluated on the
latest vector systems, two generations of SX-Aurora TSUBASA [2]. The system
specifications are summarized in Table 1.

Xev-C does not support all the features provided by Xevtgen yet. However, we have
confirmed that all the code transformation rules in the 28 C codes can be expressed
as Xev-C rules. Therefore, we believe that the expressive ability of the current design
of Xev-C is high enough at least for vectorization-aware loop optimizations.

Figure 5 shows the performance gains by the code transformations for SX-Aurora
TSUBASA. The vertical axis shows the speedup ratio of the transformed code
to the original code for each system. Each code is complied with either of -O2
or -O4, to discuss how compiler optimization affects the performance. Overall,
most of vectorization-aware loop optimizations for the previous-generation systems

Xevolver for Performance Tuning of C Programs 91

Table 1: Specifications of the two generations of SX-Aurora TSUBASA used in the
evaluation.

2nd generation SX-Aurora TSUBASA
VE Model NEC Vector Engine Type 20B

Core Count 8
Peak Performance [TFLOPS] 2.45
Memory Bandwidth [TB/s] 1.535
Memory Capacity [GB] 48
Compiler ncc-3.4.0

VH Model Intel Xeon Silver 4208
Core Count 8
Memory Capacity [GB] 192

1st generation SX-Aurora TSUBASA
VE Model NEC Vector Engine Type 10C

Core Count 8
Peak Performance [TFLOPS] 2.15
Memory Bandwidth [TB/s] 0.750
Memory Capacity [GB] 24
Compiler ncc-3.4.0

VH Model Intel Xeon Gold 6126
Core Count 12
Memory Capacity [GB] 96

are still effective even for SX-Aurora TSUBASA. However, because of advances
in compiler technologies, it is worth mentioning that some performance tuning
techniques are no longer effective or even harmful on performance, meaning that the
compiler can perform the same or even better optimizations especially with higher-
level optimization flag, -O4. For example, for Case No. 20, the loop optimization
technique in the catalog is still effective if the code is compiled with the -O2 flag,
and thus the speedup ratio exceeds 1. However, when the -O4 flag is used, the
performance is degraded by applying the same loop optimization technique, because
the compiler can optimize the loop better than the technique. This clearly indicates
that a performance tuning technique should not directly be applied to an application
code because it could become ineffective or even harmful in the future. Accordingly,
Xevolver’s approach to separation of performance concerns is promising to improve
the code maintainability and make it possible to develop an application in a future-
proof way.

Since Xev-C is designed for C programs, it can work together with other tools
developed for C. For example, in [11], Xev-C is combined with a formal verification
tool, CIVL [17], to check if a user-defined code transformation keeps the execution
result of the transformed code unchanged. This code equivalence checking is an
important feature for our code transformation framework, even though some techni-
cal issues remain unsolved. Therefore, user-defined code transformation with code
equivalence checking will further be discussed in our future work. Combining Xev-C
with other tools could also be interesting research topics.

92 H. Takizawa, S. Sugawara, Y. Shimomura, K. Takahashi and R. Egawa

���

�

��

���

����

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
�	

�
�
�

�
�
��

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��

�
�
��
	

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��

�
�
��
	

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
�
�
�
�
�
��
�
��
�

������� ������	 ��
���� ��
���	

Fig. 5: Speedup ratio by code transformation, which is the performance ratio of
the transformed code to the original code. A code transformation could degrade
the performance because it represents a performance tuning technique for previous-
generation vector systems.

5 Conclusions

This article has introduced Xev-C, which is a C interface to describe user-defined
code transformation rules using C. Our evaluation results show that Xev-C can
already express important features to express vectorization-aware loop optimizations,
and achieve separation of performance concerns by defining code transformation
rules separately from application codes. As compiler’s optimization capability could
change over time, a performance tuning technique could become ineffective or even
harmful. Therefore, separation of performance concerns is important, and the case
study in this article has demonstrated that Xevolver can contribute to the separation.

Acknowledgements This work is partially supported by MEXT Next Generation High-Performance
Computing Infrastructures and Applications R&D Program “R&D of a Quantum-Annealing-
AssistedNext Generation HPC Infrastructure and its Applications,” and JSPS KAKENHI Grant
Numbers JP20H00593 and JP21H03449.

Xevolver for Performance Tuning of C Programs 93

References

1. Clang https://clang.llvm.org/
2. R. Egawa, S. Fujimoto, T. Yamashita, D. Sasaki, Y. Isobe, Y. Shimomura and H. Takizawa.

Exploiting the potentials of the second generation SX-Aurora TSUBASA. In: 2020 IEEE/ACM
Performance Modeling, Benchmarking and Simulation of High Performance Computer Sys-
tems (PMBS), pp. 39–49 (2020).

3. R. Egawa, K. Komatsu, S. Momose, Y. Isobe, A. Musa, H. Takizawa and H. Kobayashi.
Potential of a modern vector supercomputer for practical applications: performance evaluation
of SX-ACE. The Journal of Supercomputing 73, 3948–3976 (2017).

4. R. Egawa, K. Komatsu and H. Takizawa. Designing an open database of system-aware code
optimizations. In: CANDAR, pp. 369–374 (2017).

5. K. Komatsu, R. Egawa, S. Hirasawa, H. Takizawa, K. Itakura and H. Kobayashi. Translation
of large-scale simulation codes for an OpenACC platform using the Xevolver framework.
International Journal of Networking and Computing 6(2), 167–180 (2016).

6. K. Komatsu, A. Gomi, R. Egawa, D. Takahashi, R. Suda and H. Takizawa. Xevolver: A
code transformation framework for separation of system-awareness from application codes.
Concurrency and Computation: Practice and Experience 32(7), 1–20 (2019).

7. K. Naono, K. Teranishi, J. Cavazos and R. Suda (eds.) Software Automatic Tuning – From
Concepts to State-of-the-Art Results. Springer-Verlag, New York (2010).

8. ROSE Compiler, http://rosecompiler.org/
9. T. Soga, A. Musa, Y. Shimomura, R. Egawa, K. Itakura, H. Takizawa, K. Okabe and

H. Kobayashi. Performance evaluation of NEC SX-9 using real science and engineering
applications. In: The Conference on High Performance Computing Networking, Storage and
Analysis (SC09) (2009).

10. R. Suda, H. Takizawa and S. Hirasawa. Xevtgen: Fortran code transformer generator for
high performance scientific codes. International Journal of Networking and Computing 6(2),
263–289 (2016).

11. S. Sugawara, Y. Shimomura, R. Egawa and H. Takziawa. Portability of vectorization-aware
performance tuning expertise across system generations. In: 14th International Symposium on
Embedded Multicore/Many-core Systems-on-Chip (MCSoC) (2021).

12. H. Takizawa, S. Hirasawa, Y. Hayashi, R. Egawa and H. Kobayashi. Xevolver: An XML-based
code translation framework for supporting HPC application migration. In: The 21st annual
IEEE International Conference on High Performance Computing (HiPC 2014) (2014).

13. H. Takizawa, T. Reimann, K. Komatsu, T. Soga, R. Egawa, A. Musa and H. Kobayashi.
Vectorization-aware loop optimization with user-defined code transformations. In: 2017 IEEE
International Conference on Cluster Computing (CLUSTER) (2017).

14. H. Takizawa, D. Sato, S. Hirasawa and H. Kobayashi. Making a legacy code auto-tunable
without messing it up. In: Poster presentation at ACM/IEEE Supercomputing Conference
(SC16), pp. 1–2 (2016).

15. H. Takizawa, D. Sato, S. Hirasawa and D. Takahashi. A customizable auto-tuning scenario
with user-defined code transformations. In: 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pp. 1372–1378, IEEE (2017).

16. Xevolver: CREST. https://xev.sc.cc.tohoku.ac.jp/
17. M. Zheng, M.S. Rogers, Z. Luo, M.B. Dwyer and S.F. Siegel. CIVL: Formal verification

of parallel programs. In: 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE) (2015).

https://clang.llvm.org/
http://rosecompiler.org/
https://xev.sc.cc.tohoku.ac.jp/

Scalability Evaluation of the CFD Solver CODA
on the AMD Naples Architecture

Michael Wagner

Abstract Computational fluid dynamics (CFD) simulations are an increasingly
important part of aircraft design. They allow in-depth insight into the aerodynamic
behavior of components and help reducing cost and time in development. CODA is a
next-generation CFD solver for aerodynamic simulations of fully equipped aircraft.
It is developed by the German Aerospace Center (DLR), the French Aerospace Lab
(ONERA), and Airbus, and is one of the key applications represented in the European
Centre of Excellence for Engineering Applications (Excellerat). This work evaluates
the CODA CFD solver on the CARA HPC system based on the AMD Naples
architecture. The evaluation includes an assessment of the scalability on the largest
available partition of the production system with the NASA common research model
in a strong scaling scenario, a comparison of different hybrid-parallel setups suitable
for the specific memory and NUMA layout and a comparison of the results with the
Intel Cascade Lake architecture. Furthermore, it demonstrates the impact of node
placement and unfavorable network loads on large scale runs.

1 Introduction

One of the key challenges in aviation is the aim for climate-neutral, low-noise air
transport by the middle of the century. The European Commission, for instance,
defines in its vision for Europe’s aviation several goals to, among others, increase
affordable and reliable connectivity within the European Union and at the same time
mitigate the adverse impact of aviation on society and environment. These goals
include a reduction of 75 % of CO2 emissions, 90 % of NOx emissions, and 65 % of
perceived aircraft noise by 2050; in comparison to a typical new aircraft in 2000 [2].

Michael Wagner
German Aerospace Center (DLR), Institute of Software Methods for Product Virtualization,
e-mail: m.wagner@dlr.de

95

https://doi.org/10.1007/978-3-031-18046-0_7

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

M. M. Resch et al. (eds.), Sustained Simulation Performance 2021,

mailto:m.wagner@dlr.de
https://doi.org/10.1007/978-3-031-18046-0_7
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-18046-0_7&domain=pdf

96 M. Wagner

To attain these goals, new aircraft have to become significantly lighter and more
aerodynamically efficient, in combination with the introduction of innovative flight
control and an intelligent mix of alternative propulsion system concepts. This will
require a disruptive approach including step-changing aircraft technology and new
design principles. Thus, future aircraft designs may be driven by unconventional
layouts such as the low noise aircraft model (LNA), the blended wing body aircraft,
or the flying wing configuration.

For these unconventional layouts flight characteristics will be dominated by non-
linear effects. In this case, high-fidelity numerical simulations become inevitable for
the design and assessment of new aircraft designs to provide reliable insight into new
aircraft technologies and reach best overall aircraft performance through integrating
aerodynamics, structural mechanics and systems design.

Another challenge on the road to climate-neutral aviation is the reduction of
development time for new aviation technology. The development, testing and pro-
duction of new aircraft involve significant time and financial investments and risks.
The huge time and financial investment in aircraft development and the resulting
long aircraft operation spans slow down the introduction of progressive technology
and dynamic improvements. For this reason, the German Aerospace Center (DLR)
is putting the virtual product at the heart of its scientific work in its guiding concepts
for aeronautics research. The virtual product, i.e., high-precision mathematical and
numerical representation of a new aircraft and all its characteristics and components,
allows faster development cycles; starting from product development up to approval,
production, maintenance and decommissioning [4].

Computational fluid dynamics (CFD) simulations for aircraft aerodynamics are
already today imperative in the aircraft design process. Not only do they allow to
reduce cost and time of aircraft development by omitting unnecessary prototyping,
wind tunnel experiments and real flight tests, but allow a more in-depth insight
into components and systems. Especially for future aircraft design driven by step-
changing technology, new design principles and, consequently, non-linear effects in
flight characteristics, highly accurate and efficient CFD simulations are essential.

CODA is a CFD solver for the solution of the Reynolds-Averaged Navier–Stokes
equations on unstructured grids based on second-order finite-volume and higher-
order Discontinuous-Galerkin (DG) discretization. The implementation addresses
the efficient usage of current and upcoming high performance computing (HPC)
systems and emerging technologies such as GPUs. CODA is developed in a joint
effort of the German Aerospace Center (DLR), the French Aerospace Lab (ONERA)
and Airbus and is one of the key next-generation engineering applications in the
European Centre of Excellence for Engineering Applications (Excellerat) [3].

In this work, the CODA CFD solver is evaluated on the German Aerospace
Center’s CARA HPC system based on the Naples architecture from AMD. The con-
tribution of this work is, first, an assessment of the scalability on the largest available
partition of the production system with the NASA common research model in a
strong scaling scenario. Second, a comparison of different hybrid-parallel setups
suitable for the memory and NUMA layout of the AMD Naples architecture and a
comparison of the results with the Intel Cascade Lake architecture. Third, a demon-

Scalability Evaluation of the CFD Solver CODA on the AMD Naples Architecture 97

stration of the impact of node placement and network interference on large scale
runs. This contribution serves, on the one hand, as best practice recommendation
for the CFD solver CODA on the CARA HPC system and, on the other hand, it
may provide guidance for researchers and developers in their efforts to execute their
applications on the AMD Naples architecture.

The following sections provide background on the CFD solver CODA (Sect. 2),
the used test case (Sect. 3) and the CARA HPC system (Sect. 4). Sect. 5 presents the
results of the scalability assessment and the comparison of different hybrid-parallel
setups. Finally, Sect. 6 summarizes the presented work and draws conclusions.

2 The CFD solver CODA

At the German Aerospace Center (DLR), CFD codes have been developed for
decades, many of them in regular industrial use. One of them is the DLR TAU
code [8], which is in production in the European aircraft industry, research organiza-
tions and academia since more than 15 years. It was, for instance, used for the Airbus
A380 and A350 wing design. TAU implements a classical MPI parallelization to
simulate steady as well as unsteady external aerodynamic flows using a second order
finite-volumes discretization.

In 2012 DLR initiated the development of a new, flexible, unstructured CFD solver
called Flucs [6], which held the opportunity to design a modern, comprehensive con-
cept for HPC from scratch. Next to HPC, the focus was set on algorithmic efficiency
using strong implicit solvers, higher-order spatial discretization via the Discon-
tinuous Galerkin method featuring hp-adaptation in addition to finite volumes with
maximum code share, and seamless integration into Python-based multi-disciplinary
process chains via FlowSimulator [7].

Though the Flucs development had been started at DLR, it has become part of a
larger cooperation that is driven by Airbus, the French aerospace lab ONERA, and
DLR. After Airbus expressed its interest for a new generation CFD solver that is
co-developed by ONERA and DLR in 2015, in May 2017 all three parties reached an
agreement pursuing the joint effort. The joint development of the CFD solver based
on Flucs was named CODA (CFD for ONERA, DLR and Airbus) to honor the new
collaboration and the involvement of all three partners.

Similar to TAU, CODA implements classical domain decomposition to make use
of distributed-memory parallelism via MPI and, additionally, the GASPI [1] imple-
mentation GPI-2 as an alternative to MPI. This Partitioned Global Address Space
(PGAS) library features efficient one-sided communication to reduce network traf-
fic and latency. Furthermore, CODA features overlapping halo-data communication
with computation to hide network latency and, thus, improve scalability. In addition
to classical domain decomposition, CODA uses a hybrid two-level parallelization.
CODA implements sub-domain decomposition, where each domain is further par-
titioned into sub-domains, each of which being processed by a dedicated software

98 M. Wagner

thread that is mapped one-to-one to a hardware thread to maximize data locality.
This allows utilizing shared-memory parallelism and provide a flexible adaption to
different hardware architectures (as can be seen in Sect. 5) [11].

An integral part of CODA is the Sparse Linear Systems Solver (Spliss) [5] that is
used for solving linear equation systems for implicit time integration methods, e.g.
for the test case used in this work. Spliss is a linear solver library that, on the one
hand, is tailored to the requirements of CFD applications but, on the other hand,
independent of the particular CFD solver. Focusing on the specific task of solving
linear equation systems allows for integrating more advanced, but also more complex,
hardware-specific optimizations, while at the same time hiding this complexity from
a CFD solver such as CODA.

3 The test case for external aerodynamics

The test case for the scalability evaluation is based on the NASA Common Research
Model from the fifth AIAA CFD Drag Prediction Workshop [10]. This test case
simulates steady airflow at subsonic speed and computes typical characteristics like
air velocity and direction, pressure and turbulence. Fig. 1 visualizes the output of
the test case with the aircraft configuration and mesh on the left and the airflow
around the wing and fuselage with air pressure on the aircraft on the right. It is well
studied and provides experimental data as well as numerical solutions by other CFD
applications for comparison.

Fig. 1: Visualization of the test case simulation: aircraft configuration with mesh
(left) and airflow around wing and fuselage (right); both with air pressure as color
gradient.

For the CRM test case, CODA solves the Reynolds-averaged Navier–Stokes equa-
tions (RANS) with a Spalart–Allmaras one-equation turbulence model in its negative
form (SAneg). It uses a second-order finite-volume spatial discretization with an im-
plicit Euler time integration. For the linear problem, a block-Jacobi solver with LU

Scalability Evaluation of the CFD Solver CODA on the AMD Naples Architecture 99

decomposition is applied. The flow conditions are outlined by the following param-
eters: the Mach number is set to 0.2, the Reynolds number to 5e6, and a fixed 2.5°
angle of attack is set.

The input of the test case is a rather small unstructured mesh with 5.2 million
points and 10.2 million prisms that is obtained by splitting each hexahedron in
the original mesh into two prisms such that the geometry’s surface mesh is purely
triangular. Please note that this rather small mesh (one order of magnitude smaller
than industrial cases) was chosen to allow a strong scalability analysis at relatively
small core counts, i.e., neither the purely prismatic volumes nor the small number
of cells allow high CFD accuracy in the boundary layer.

4 The CARA HPC system

The Computer for Advanced Research in Aerospace (CARA) is the German
Aerospace Center’s current main HPC system installed by NEC. It was ranked at
221 in the Top500 list of 11/2019 providing 1.7 TFlop/s out of 2.6 Tflop/s theoretical
peak performance [9]. The system is primarily used for production simulations and
research in the fields of aerospace and mobility.

The CARA HPC system offers 2280 compute nodes, which are connected by an
Infiniband HDR network. Each compute node consists of two AMD EPYC 7601
(32 cores at 2.2 GHz) with four dies of eight cores each. The system has two-way
simultaneous multi-threading (SMT) enabled, i.e. there are two hardware threads
running on each core. In total, the system offers 145,920 compute cores.

With respect to memory access, the AMD Naples architecture presents rather com-
plex characteristics. The architecture includes eight NUMA (non-uniform memory
access) domains and three NUMA distances: first, to the memory of the seven other
cores on the same die, second, to the memory on the three other dies on the same
chiplet (socket) and, third, to the memory located on the other chiplet. In addition,
only four of eight cores on each die share a last level cache (L3 cache) leading to
an additional difference in memory access latency depending on the locality of the
data; weather it is in the shared L3 cache of the according core or in the adjoining
L3 cache on the same die. The complex NUMAness and the split L3 cache per die
should be put in consideration when it comes to data locality and memory access, in
particular, for shared-memory parallelization and thread synchronization.

100 M. Wagner

5 Evaluation

This section first outlines the measurement setup and then presents scalability results
for different hybrid-parallel setups, different mesh sizes, analyzes the impact of node
placement and unfavorable network loads, and concludes with a comparison of the
AMD Naples and Intel Cascade Lake architectures with respect to their impact on
threading performance.

5.1 Measurement setup

Prior to the launch of the CARA system, it was already established for CODA that, in
general, a hybrid-parallel execution of the code using MPI and threads provides best
performance. In particular for higher core counts, a suitable utilization of shared-
memory parallelization via threads reduces the total number of MPI ranks, the
number of MPI operations and cost for MPI global communication (e.g. collectives)
since less MPI ranks are involved. However, it was also established for CODA that
threading performance is impacted by the memory hierarchy, in particular, data
locality and the size of NUMA domains.

Therefore, for the scalability evaluation, first, all software threads are bound to
a hardware thread to ensure thread affinity. Second, three different hybrid-parallel
setups are evaluated to identify the impact of the memory hierarchy:

• 16 MPI processes per node with 4 OpenMP threads each. This way all four threads
are in the same NUMA domain and share the same L3 cache.

• 8 MPI processes per node with 8 OpenMP threads each. This way all eight threads
are in the same NUMA domain but are split across two L3 caches.

• 4 MPI processes per node with 16 OpenMP threads each. This way the 16 threads
are split across two NUMA domains.

Please note that other combinations such as 1 MPI process with 64 threads each,
i.e. threads split across two sockets, were tested but not included in the full evaluation
since they did perform inferior to the above setups, which was already established
before, and did not provide any further inside into the Naples architecture itself.

As stated before, on the AMD Epyc architecture each core can be over-subscribed
to use two hardware threads on each core, i.e. two-way simultaneous multi-threading
(SMT). This allows running two software threads on each core, scheduled by the
operating system, and may help increasing performance by increasing the number
of independent instructions in the execution pipeline. In addition to the above setups
using one hardware thread per core, the according setups with simultaneous multi-
threading are recorded, too. For these setups the number of OpenMP threads per
MPI process is doubled, e.g. the version with 16 MPI process and 4 OpenMP threads
each is also measured with 16 MPI processes and 8 OpenMP threads each, whereas
the 8 OpenMP threads run on the same 4 cores as the 4 OpenMP threads.

Scalability Evaluation of the CFD Solver CODA on the AMD Naples Architecture 101

All measurements were executed only one time due to the large core counts,
according costs and wait times in the queue. This must be kept in mind when dis-
cussing the significance of individual data points. In general, the recorded runtimes
are consistent in themselves; nonetheless, the data points should not be taken as exact
values but rather as basis for general trends. Parallel runtimes are affected, amongst
others, by the applied scheduling to nodes and the overall load on the system. In that
sense, the recorded runtimes reflect typical behavior that users would see in normal
production mode; not isolated benchmark runs in a near-perfect environment.

5.2 Evaluation of different hybrid-parallel setups

Fig. 2 shows the parallel speedup for the different setups of MPI processes to
OpenMP threads without and with enabled hyper-threading for 1 to 512 nodes,
i.e. 64 to 32.768 cores; whereas 512 nodes was the largest partition that could be
reasonably used during normal production of the system. The figure highlights the
general scaling behavior of the various setups.

 0

 128

 256

 384

 512

 0 128 256 384 512

S
p
e
e
d
u
p

#nodes (x64 cores)

ideal
setup 4:16
setup 8:8
setup 16:4

 0

 128

 256

 384

 512

 0 128 256 384 512

S
p
e
e
d
u
p

#nodes (x64 cores)

ideal
setup 4:32
setup 8:16
setup 16:8

Fig. 2: Speedup for 1 to 512 nodes (64 to 32.768 cores) for different MPI rank to
OpenMP thread ratios: without (left) and with simultaneous multi-threading (right).

Without simultaneous multi-threading (Fig. 2, left) CODA achieves about 90 %
parallel efficiency at 4096 cores and 59 % parallel efficiency at 32,768 cores. This
represents very good strong scaling behavior for such a small mesh, where at 32,768
cores on average only 312 elements are assigned to each software thread; an extreme
case that is usually not approached in production simulations. As expected, based on
the architecture, the best setup is with four threads per MPI process, so that all four
threads are executed on the four cores that share a last level cache. The second-best

102 M. Wagner

setup is with eight threads per MPI process, so that all eight threads are executed
within a single NUMA domain. The execution of threads across NUMA domains
leads to further reduced performance.

With enabled simultaneous multi-threading (Fig. 2, right) CODA achieves about
88 % parallel efficiency at 4096 cores and 47 % parallel efficiency at 32,768 cores.
This again represents very good strong scaling behavior for such a small mesh,
where on average only 150 elements are assigned to each software thread at 32,768
cores. Consequently, the scalability is slightly reduced since each thread has only
half the computational load. In that sense, computing a test case with 10.2 million
prisms across 65,536 threads sets an extreme case and highlights the excellent scaling
behavior of CODA even on very little computation load per thread. In comparison,
typical workloads used in production simulation have one or two orders of magnitude
more elements per thread.

Although the setups with enabled simultaneous multi-threading show slightly
lower parallel efficiency at scale, they provide significantly better compute perfor-
mance. Comparing the individual simultaneous multi-threading setups with their
non-simultaneous multi-threading counterparts, the setups with enabled simultane-
ous multi-threading have a 15 - 20 % reduced runtime, which might also be a factor
in the slightly reduced scalability.

5.3 Evaluation of different mesh sizes and node placement

To evaluate the scalability relative to the number of mesh elements, the strong
scalability of CODA is measured for three different mesh sizes: tiny with 1.2 million
prisms, medium with 10.2 million prisms (same mesh as above) and fine with 34.5
million prisms. All use the setup with 16 MPI processes per node and 4 OpenMP
threads each (disabled simultaneous multi-threading).

The left side of Fig. 3 shows the parallel speedup for the different mesh sizes. It
highlights the general scaling behavior relative to the number of mesh elements. As
expected, the larger the mesh size, the better the scaling behavior. However, scala-
bility relative to the number of elements per thread does not increase proportionally.
Hence, additional factors, except the decreasing workload per thread, impact over-
all scalability, especially, for large core counts, were MPI communication becomes
an increasingly limiting factor, for instance, the non-linear scaling of global MPI
collectives and network interference.

Indeed, on a production system such as CARA, the fluctuating network load can
significantly impact application performance for large core counts. The right side of
Fig. 3 compares the scalability of CODA with three levels of network interference
for the medium mesh: First, the typical network interference for a typical CODA run
as seen in the previous results. In this case, the job scheduler places the application
on the first available set of nodes (random placement in Fig. 3). Second, reduced
network interference that is achieved by using a set of nodes that is connected by
a minimal number of network switches (good placement). This can be realized, for

Scalability Evaluation of the CFD Solver CODA on the AMD Naples Architecture 103

 0

 128

 256

 384

 512

 0 128 256 384 512

S
p
e
e
d
u
p

#nodes (x64 cores)

ideal
tiny (1.2M)
medium (10.2M)
fine (34.5M)

 0

 128

 256

 384

 512

 0 128 256 384 512

S
p
e
e
d
u
p

#nodes (x64 cores)

ideal
interference
random placement
good placement

Fig. 3: Speedup for 1 to 512 nodes (64 to 32.768 cores) for different mesh sizes
(left) and for different node placements and unfavorable network loads leading to
interference (right).

instance, with the according use of the switches option in the Slurm job scheduler.
Third, increased network interference that can be reproduced by using the random
node placement and running another large-scale network-heavy application at the
same time, e.g. another large CODA simulation.

With the improved node placement CODA achieves about 93 % (vs. 90 %) parallel
efficiency at 4096 cores and 71 % (vs. 59 %) parallel efficiency at 32,768 cores.
However, with default node placement and unfavorable network loads CODA only
achieves about 88 % parallel efficiency at 4096 cores and 20 % parallel efficiency
at 32,768 cores. The huge span from 20 % (heavy network interference) to 59 %
(typical network interference) to 71 % (reduced network interference) underlines the
significant impact on application performance for large core counts that can occur
unwillingly and possibly unnoticed on a production system. As a consequence,
today, Slurm’s switches option with a moderate wait time is set by default for all jobs
submitted on CARA.

5.4 Comparison of AMD Naples and Intel Cascade Lake architectures

To better understand the threading performance on the AMD Naples architecture, the
results are compared to results achieved on the Intel Cascade Lake architecture. The
AMD Naples nodes consist of two AMD Epyc 7601 with 32 cores and 64 hardware
threads each and has a total power consumption of 360 W. The Intel Cascade Lake
architecture consists of two Intel Xeon Platinum 9242 with 48 cores and 96 hardware
threads each and has a total power consumption of 700 W. To fairly compare the two
architectures, two AMD Naples nodes are set against one Intel Cascade Lake node
to match power consumption, which is often a limiting factor in computing centers

104 M. Wagner

and mainly influences operational costs. While this comparison based on power
gives the AMD a slight benefit of 20 W, it can still be considered fair since the Intel
architecture was released almost two years later.

 0

 10

 20

 30

2 4 8 16 24 32 48 64

ru
n
ti
m

e
 (

in
 m

in
u
te

s
)

#threads per MPI rank

AMD Naples
Intel Cascade Lake

Fig. 4: Threading performance on two AMD Naples nodes vs. one Intel Cascade
Lake node.

Fig. 4 shows the runtime for the test case with the tiny mesh of 1.2 million ele-
ments for different hybrid-parallel setups with enabled two-way simultaneous multi-
threading or hyper-threading, respectively. In general, both architectures achieve very
similar performance. However, as seen before, CODA performs less efficiently on
the AMD Naples architecture the more threads per MPI process are used; with the
optimum being four threads per process and a significant increase towards using
one MPI process and 64 threads per socket. For the Intel Cascade Lake architecture,
the test case shows much less variance between the different setups; reaching its
optimum at 16 threads per MPI rank but comparable performance up to one MPI
process and 48 threads per socket.

These results put the AMD Naples architecture at a disadvantage for large scale
runs, where good threading parallelism is a crucial factor, since it allows reducing
the number of MPI processes and, thus, the impact of MPI communications.

6 Conclusion

This work presents an evaluation of the scalability of CODA, a CFD solver for air-
craft aerodynamics. This evaluation includes an assessment of the scalability on the
largest available partition of DLR’s CARA HPC system. The test case based on the
NASA common research model achieves 93 % parallel efficiency at 4096 cores and
71 % parallel efficiency at 32,768 cores in a strong scaling scenario despite running

Scalability Evaluation of the CFD Solver CODA on the AMD Naples Architecture 105

on a very small mesh with very little computational load per thread; an extreme case
that is usually not approached in production simulations. Furthermore, the evalua-
tion compares different hybrid-parallel setups suitable for the specific memory and
NUMA layout of the AMD Naples architecture. It highlights that best hybrid-parallel
performance is reached when using only four threads per MPI process, so that these
threads share the same last level cache. This stands in contrast to the Intel Cascade
Lake architecture, where comparable performance for all hybrid setups was obtained.
Lastly, an assessment of node placement and network interference underlines the sig-
nificant impact of unfavorable network loads on application performance resulting
in up to a factor of 3.5 divergence in parallel efficiency.

Acknowledgements This work has been supported by the EXCELLERAT project, which has
received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No. 823691.

References

1. T. Alrutz, J. Backhaus, T. Brandes, V. End, T. Gerhold, A. Geiger, D. Grünewald, V. Heuveline,
J. Jägersküpper, A. Knüpfer, O. Krzikalla, E. Kügeler, C. Lojewski, G. Lonsdale, R. Müller-
Pfefferkorn, W.E. Nagel, L. Oden, F.-J. Pfreundt, M. Rahn, M. Sattler, M. Schmidtobreick,
A. Schiller, C. Simmendinger, T. Soddemann, G. Sutmann, H. Weber and J.-P. Weiss. GASPI
– A Partitioned Global Address Space Programming Interface. In: Facing the Multicore-
Challenge III, LNCS 7686, pp. 135–136 (2013). DOI: https://doi.org/10.1007/978-
3-642-35893-7_18

2. Directorate-General for Mobility and Transport (European Commission), Directorate-General
for Research and Innovation (European Commission). Flightpath 2050: Europe’s vision for
aviation: maintaining global leadership and serving society’s needs (2012). DOI: https:
//doi.org/10.2777/15458

3. The European Centre of Excellence for Engineering Applications (EXCELLERAT).
http://www.excellerat.eu [Online; accessed 2022-02-08]

4. Guiding concepts for DLR aeronautics research.
https://www.dlr.de/EN/research/aeronautics/guiding-concepts.html [Online;
acc. 2022-02-08]

5. O. Krzikalla, A. Rempke, A. Bleh, M. Wagner and T. Gerhold. Spliss: A Sparse Linear
System Solver for Transparent Integration of Emerging HPC Technologies into CFD Solvers
and Applications. In: New Results in Numerical and Experimental Fluid Mechanics XIII,
pp. 635–645 (2021). DOI: https://doi.org/10.1007/978-3-030-79561-0

6. T. Leicht, D. Vollmer, J. Jägersküpper, A. Schwöppe, R. Hartmann, J. Fiedler and T. Schlauch.
DLR-Project Digital-X – Next Generation CFD Solver ‘Flucs’. In: Deutscher Luft- und Raum-
fahrtkongress (2016).

7. M. Meinel and G. Einarsson. The FlowSimulator Framework for Massively Parallel CFD
Applications. In: PARA 2010, (2010).

8. D. Schwamborn, T. Gerhold and R. Heinrich. The DLR TAU Code: Recent Applications
in Research and Industry. In: Proc. of the European Conference on Computational Fluid
Dynamics, ECCOMAS CFD (2006).

9. E. Strohmaier, J. Dongarra, H. Simon and M. Meuer. The 54th Top500 list (2019). https:
//www.top500.org/lists/top500/2019/11/ [Online; accessed 2022-02-08]

https://doi.org/10.1007/978-3-642-35893-7_18
https://doi.org/10.1007/978-3-642-35893-7_18
https://doi.org/10.2777/15458
https://doi.org/10.2777/15458
http://www.excellerat.eu
https://www.dlr.de/EN/research/aeronautics/guiding-concepts.html
https://doi.org/10.1007/978-3-030-79561-0
https://www.top500.org/lists/top500/2019/11/
https://www.top500.org/lists/top500/2019/11/

106 M. Wagner

10. J. Vassberg. A Unified Baseline Grid about the Common Research Model Wing/Body for the
Fifth AIAA CFD Drag Prediction Workshop. 29th AIAA Applied Aerodynamics Conference
(2011). DOI: https://doi.org/10.2514/6.2011-3509

11. M. Wagner, J. Jägersküpper, D. Molka and T. Gerhold. Performance Analysis of Complex
Engineering Frameworks In: Tools for High Performance Computing, pp. 123–138 (2021).
DOI: https://doi.org/10.1007/978-3-030-66057-4

https://doi.org/10.2514/6.2011-3509
https://doi.org/10.1007/978-3-030-66057-4

	Preface
	Contents
	Supercomputer for Quest to Unsolved Interdisciplinary Datascience (SQUID) and its Five Challenges
	1 Introduction
	2 Hardware configuration of SQUID
	3 Five challenges behind SQUID
	3.1 Tailor-made computing
	3.2 HPC and HPDA integration
	3.3 Cloud-interlinked and -synergized
	3.4 Secure computing environment
	3.5 Data aggregation environment

	4 Future issues towards next-generation infrastructure
	4.1 Tradeoff between user experience and performance for practical cloud bursting
	4.2 Software and tools to support integrated way of HPC and HPDA
	4.3 Evaluation of secure computing environment for an operational point of view

	5 Summary
	References

	Simulating Molecular Docking on the SX-Aurora TSUBASA Vector Engine
	1 Introduction
	2 Background
	2.1 Molecular docking
	2.2 SX-Aurora TSUBASA Vector Engine

	3 Methodology
	3.1 Porting
	3.2 Optimization
	3.2.1 Main Optimizations
	3.2.2 Additional Optimizations

	4 Evaluation
	4.1 Execution profiling
	4.2 Performance comparison against CPUs and GPUs

	5 Conclusions
	References

	Simulation of Field-induced Chiral Phenomena in Inhomogeneous Superconductivity
	1 Field-induced chiral phenomena in inhomogeneous superconductivity
	1.1 Chiral state
	1.2 Field-induced chiral phenomena

	2 Field-induced chiral phenomena in a eutectic superconductor
	2.1 Inhomogeneous interface superconductivity
	2.2 Chiral transition represented with order parameter
	2.3 Simulation of field-induced chiral transition
	2.4 Paramagnetic chiral supercurrent

	3 Computation of field-induced chiral phenomena
	4 Summary
	References

	Exploiting Hybrid Parallelism in the LBM Implementation Musubi on Hawk
	1 The Lattice Boltzmann method
	2 The Musubi implementation
	2.1 OpenMP in Musubi

	3 Hybrid parallelization
	4 Performance assessment on Hawk
	4.1 The Hawk computing system
	4.2 The Musubi setup
	4.3 Results

	5 Conclusion
	References

	MPI Continuations And How To Invoke Them
	1 Background
	2 Current state
	2.1 Continuations
	2.2 Continuation Requests (CR)
	2.3 Current API design

	3 Callback interface requirements
	3.1 Efficiency
	3.2 Safety
	3.3 Usability

	4 Callback interface variations
	4.1 Passing requests and user data
	4.1.1 MPI-provided Request Buffer
	4.1.2 User-provided Request Buffer

	4.2 Passing only user data

	5 C++ lambda capture
	6 Conclusions
	References

	Xevolver for Performance Tuning of C Programs
	1 Introduction
	2 Related work
	3 Xevolver for C
	4 Evaluation and discussions
	5 Conclusions
	References

	Scalability Evaluation of the CFD Solver CODA on the AMD Naples Architecture
	1 Introduction
	2 The CFD solver CODA
	3 The test case for external aerodynamics
	4 The CARA HPC system
	5 Evaluation
	5.1 Measurement setup
	5.2 Evaluation of different hybrid-parallel setups
	5.3 Evaluation of different mesh sizes and node placement
	5.4 Comparison of AMD Naples and Intel Cascade Lake architectures

	6 Conclusion
	References

