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Microbes in Restoration of Polluted 
Ecosystems

Fernanda Maria Policarpo Tonelli, Moline Severino Lemos, 
and Flávia Cristina Policarpo Tonelli

1  Introduction

1.1  Why Polluted Ecosystems Are Considered a Threat?

Global climate change and water scarcity are examples of problems humanity is 
facing as harmful after-effects of human actions over the environment ignoring sus-
tainability principles (Santhakumari & Sagar, 2020). Pollution is an important con-
sequence of these actions as it is a serious threat to the ecosystem, including the 
living beings present. Humans, for example, can be highly affected by pollutants in 
a negative manner not only at cellular level but also at the level of organs and sys-
tems (Fig. 1). A large array of organic and inorganic pollutants possesses the capac-
ity to be persistent contaminants, accumulating in polluted areas for long periods of 
time and also entering the food chain (becoming a threat to food security) (Ojuederie 
& Babalola, 2017). This kind of pollution is especially difficult to deal with once the 
effects of legislative control inducing a reduction in new pollutant emissions take a 
long time to be noticed on the environment. The concentrations, for example, of 
these substances in freshwater predators still exceeded the limits considered safe for 
reproduction/survival decades after measures to reduce new emissions of persistent 
contaminants in the water (Kean et al., 2021).

Pesticides, for example, are ubiquitous environmental pollutants that present a 
risk to 64% of global agricultural land and a high risk to 31% of agricultural land 
worldwide. These organic persistent pollutants negatively impact biodiversity, water 
quality, and human health (Tang et  al., 2021). In human organism this kind of 
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Fig. 1 Pollutants as threats to humans’ health – main negative effects pollutants can cause on the 
human body at cellular level (inner circle) and also at the level of organs and systems (outer circle)

substance can impair the functioning of different organs and tissues through cyto-
toxicity and DNA damage, being neurotoxic, hepatotoxic, carcinogenic, disrupting 
endocrine system, and being also teratogenic (Kalyabina et al., 2021). Carbofuran 
[2,3-dihydro-2,2-dimethyl-7-benzofuranyl N-methyl carbamate] is widely used in 
agricultural practices and after inhalation, ingestion, or dermal absorption can do 
severe damage to different living beings causing also their deaths (Mishra 
et al., 2020).

When it comes to textile industry effluents, for example, the large spectrum of 
chemicals used during the process reflects on the polluted wastewater generated. 
Heavy metals and textile dyes present toxic effects on living organisms especially 
from the aquatic biota and to people who will drink the water even after treatment. 
It is common that treatments fail to remove metals on only disperse dyes (Methneni 
et al., 2021).

Heavy metals, for example, can enter human body through inhalation, gastroin-
testinal tract, or skin and cause not only membrane but also DNA damage. By bind-
ing to functional groups in proteins (such as thiol) they can disturb protein/enzyme 
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function (Witkowska et al., 2021). Mercury, for example, is a heavy metal that can 
accumulate in the human’s body as same as in animals’ bodies causing severe prob-
lems. Fish consumption can expose humans to the neurotoxicant methylmercury 
(Moriarity et al., 2020; Novo et al., 2021) poisoning them. This substance is also 
highly toxic to animals (Davis et al., 2021). Activities such as gold mining are also 
risky (Achatz et al., 2021) to allow mercury intoxication. These heavy metals also 
damage plants negatively impacting the photosynthesis rate and the metabolism as 
a whole (Hu et al., 2020).

1.2  Living Beings Performing Remediation: Bioremediation

Physicochemical methods of remediation, such as soil washing, soil flushing, elec-
trokinetic remediation, solvent extraction, incineration, and chemical reduction in 
the gas phase, can be applied to deal with environmental contaminants (Ajiboye 
et al., 2020; Baldissarelli et al., 2019; Cameselle & Gouveia, 2019). However, com-
monly some disadvantages are faced especially when they are applied on a large 
scale. High cost and generation of additional pollution are examples. Bioremediation, 
however, can present interesting advantages regarding the costs and it is also a pro-
cess eco-friendly (Gaur et al., 2018; Gong et al., 2018; Fernando et al., 2019).

Bioremediation can be performed by a large variety of living beings: bacteria, 
fungi, yeasts, microalgae, and plants that can degrade contaminants in a harmless 
state or provide mechanisms to reduce their concentration to levels considered safe 
(Estrada & Quijano, 2020; Ojhaa et  al., 2021). These living systems present the 
ability to modify and/or decompose pollutants and this ability can be naturally 
found on the species or added through genetic engineering strategies (Zhu et al., 
2012; Ye et al., 2017).

Strategies of bioremediation can also be applied together with physicochemical 
strategies. The inoculation of microbes such as bacteria can contribute to enhance 
the efficiency of pollutants removal and restoration of ecosystems by reestablishing 
water and/or soil biological function and also in the treatment of contaminated air 
(Chen et al., 2016). Bioactive coatings, for example, allow using microorganisms 
immobilized in bedding nanomaterials to improve air quality (Estrada & 
Quijano, 2020).

Restoration of contaminated areas through bioremediation can be performed ex 
situ (removing samples of the polluted environment, treating and returning it to its 
prior localization – more easily performed when the intention is to remediate soil) 
or in situ (treating the polluted area directly where it is) (Ortiz-Hernández et al., 
2018; Parween et al., 2018).

The efficiency of bioremediation is influenced by various aspects related to the 
living being employed, environmental factors of the contaminated areas, number 
and amount of contaminants as same as their chemical nature, and also by the pro-
tocol of remediation applied (Azubuike et al., 2016). It is common to have a redox 
process involved in remediation promoted by living organisms and consequently 
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addition of organic and inorganic amendments to regulate medium physicochemical 
properties can favor environmental decontamination/restoration (Beiyuan et  al., 
2017). For example, to remediate oily contaminated soil, protocols of bioremedia-
tion can have their efficiency improved by adding biosurfactants and lipases (Kreling 
et  al., 2021). Biochar can be used to immobilize metals and organic pollutants 
enhancing the bioremediation success and this type of strategy has been reported by 
many researchers (Rizwan et al., 2016; Yuan et al., 2017).

2  Microbes Restoring Polluted Ecosystems

There are microbes that can naturally deal well with some types of environmental 
pollutants, metabolizing or sequestering them from contaminated areas (which is a 
process known as natural attenuation). However, it is generally a time-consuming 
strategy to be applied (Cui et al., 2020). In order to improve process’ efficiency and 
speed it, microbes can be submitted to genetic engineering or receive stimulus: from 
substances added to the polluted spot (biostimulation), from aeration of the polluted 
area to increase biodegradation pollutants (bioventing) or from microbial taxa with 
useful biodegradation/detoxification capacity (bioaugmentation) (Gaur et al., 2018; 
Dell’ Anno et al., 2021a).

Among microbes (bacteria, fungi, yeasts, microalgae, and protozoa) bacterium is 
the most applied on bioremediation protocols (Jain & Bajpai, 2012) since the 1980s 
(Delfino & Miles, 1985; Karns et  al., 1986; van der Hoek et  al., 1989) with a 
deserved highlight being directed to genera such as Corynebacterium, 
Staphylococcus, Streptococcus, Shigella, Alcaligenes, Acinetobacter, Escherichia, 
Klebsiella, Enterobacter, Flavobacterium, Pseuodmonas, Bacillus, Alcanivorax, 
Thallassolituus, Cycloclasticus, Oleispira; Vibrio, Pseudoalteromonas and 
Marinobacter specially when it comes to organic pollutants (Haritash & Kaushik, 
2009; Kafilzadeh et al., 2011; Dell’ Anno et al., 2021a, b) (Table 1).

Species naturally able to remediate can use pollutants as nutrient source, surviv-
ing in contaminated areas such as Pseudomonas stutzeri OX1 dealing with tetra-
chlorethylene (Ryoo et al., 2000) and Pseudomonas nitroreducens and Pseudomonas 
putida metabolizing p-coumaric acid and p-hydroxybenzoic acid (Zhang et al., 2010).

Microalgae are also very useful to be used in bioremediation protocols, espe-
cially to remediate environs contaminated by polycyclic aromatic hydrocarbons, but 
also to deal with heavy metals as contaminants. The genera Chlorella, Selenastrum, 
and Scenedemus deserve a highlight. Chlorella pyrenoidosa could efficiently reme-
diate heavy metals (Cr, Cu, Pb, Zn, Cd, Mn, and Ni) from wastewater collected from 
a common effluent treatment plant (Kothari et  al., 2021). Chlorella sorokiniana 
could remediate wastewater contributing to the assimilation of Zn and Ni but also 
nitrogen and phosphorous (Lugo et al., 2020). The main mechanism involved in this 
process is related to reduction in bioavailability (and consequently toxicity) due to 
the exopolysaccharides that make it possible pollutants’ immobilization and/or 
internalization (Dell’ Anno et  al., 2021a). However, some species can use 
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Table 1 Examples of bacteria that can be used to bioremediate environmental pollutants

Bacterium species Pollutant Reference

Pseudomonas stutzeri OX1 Tetrachlorethylene Ryoo et al. (2000)
Pseudomonas nitroreducens, 
Pseudomonas putida, and 
Rhodotorula glutinis

p-coumaric acid and 
p-hydroxybenzoic acid

Zhang et al. (2010)

Pseudomonas sp. strain ADP Atrazine and cyanuric 
acid

Neumann et al. (2004)

Thalassolituus oleivorans Aliphatic 
hydrocarbons from C7 
to C20 carbons

Yakimov et al. (2004)

Flavobacterium sp. Organophosphate 
pesticides

Ortiz-Hernandez et al. (2004)

Cycloclasticus spp. Polycyclic aromatic 
hydrocarbons

Niepceron et al. (2009)

Achromobacter sp. WM111, 
Rhodococcus TE1, Pseudomonas 
sp. 50,432, Sphingomonas sp. strain 
SB5, Enterobacter sp., Burkholderia 
sp. PLC3, Bacillus sp., and 
Cupriavidus sp. ISTL7

Carbofuran Karns et al. (1986), Behki et al. 
(1994), Chaudhry et al. (2002), 
Kim et al. (2004); Park et al. 
(2006), Mohanta et al. (2012), 
Plangklang and Reungsang 
(2013), Onunga et al. (2015), 
Gupta et al. (2019)

Staphylococcus succinus HLJ-10 D-cyphenothrin Huang et al. (2020)
Novosphingobium sp. PCY, 
Microbacterium sp. BPW, Ralstonia 
sp. BPH, Alcaligenes sp. SSK1B, 
and Achromobacter sp. SSK4, PCY

Polycyclic aromatic 
hydrocarbons (PAHs)

Wongwongsee et al. (2013)

Species from Streptomyces gender Chlordane Cuozzo et al. (2012)
Alcaligenes faecalis Endosulfan Kong et al. (2013)
Sphingobium wenxiniae strain JZ-1 3-phenoxybenzoate Cheng et al. (2015)
Corynebacterium variabilis Sh42 2-hydroxybiphenyl 

(2-HBP), catechol, and 
benzoic acid

Younis et al. (2020)

Staphylococcus aureus V329 Uranium (VI) Shukla et al. (2020)
Bacillus cereus WHX-1 Chromium (VI) Chen et al. (2021)
Escherichia coli, Streptococcus 
pyogenes, and Streptococcus 
pneumoniae

Zoxamide Ahmad et al. (2020)

Shigella flexneri FB5 Fomesafen Yang et al. (2020)
Species from the genus Alcaligenes Cu2+, Cd2+, Cr6+, Ni2+, 

and Zn2+

Sodhi et al. (2020)

Oleispira antarctica RB-8 Hydrocarbons Gregson et al. (2020)
Acinetobacter sp. Fluoride Shanker et al. (2020)
Klebsiella variicola Chromium VI Yu et al. (2021)
Enterobacter sp. MN17 Petroleum 

hydrocarbons
Ali et al. (2020)

Alcanivorax borkumensis Oil hydrocarbons Shaikhulova et al. (2021)
Vibrio fluvialis Mercury Saranya et al. (2017)
Pseudoalteromonas sp. SCSE709-6 Cadmium Zhou et al. (2013)
Marinobacter sp. Hydrocarbons Al-Wahaib et al. (2016)
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non- chlorinated hydrocarbons as carbon source degrading petroleum hydrocarbons 
(Chekroun et al., 2014). Selenastrum capricornutum and Scenedesmus acutus could 
efficiently promote the biodegradation of benzo(a)pyrene (de Llasera et al., 2016).

Fungi are capable of degrading environmental pollutants, especially organic 
ones (such as pesticides, dyes, and hydrocarbons) through mycodegradation, biore-
mediating environs (Bhattacharya et al., 2012). Important genera when it comes to 
this activity are Aspergillus, Curvularia, Drechslera, Fusarium, Lasiodiplodia, 
Mucor, Penicillium, Rhizopus, and Trichoderma (Dell’ Anno et  al., 2021a). 
Aspergillus niger could efficiently deal with environmental contaminant 2-chloro- 
N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide, as same as the bacterium 
Xanthomonas axonopodis (Ahmad et  al., 2020). The dead Aspergillus niger O-5 
biomass could also remediate Pt4+ from polluted samples (Lombana-Fraguela et al., 
2020). Aspergillus sp. A31 and Curvularia geniculata P1 favored the growth and 
development of Oryza sativa L. under mercury stress by sequestrating the heavy 
metal (de Siqueira et  al., 2021). Penicilium chrysogenum, as same as Alternaria 
alternata, efficiently promoted polyaromatic hydrocarbons’ degradation, bioreme-
diating contaminated samples (Hamad et  al., 2021). Drechslera sp. strain 678 
proved to be an interesting option to the remediation of methyl tertiary-butyl ether, 
a common additive of gasoline (d’Errico et al., 2021). Fusarium solani exhibited 
high tolerance to Zn2+ ions and was capable of promoting their biotransformation 
(El Sayed, 2020);  the capacity of this species to remediate metal-contaminated 
waste could be enhanced by the presence of the gram-negative bacterium 
Comamonas aquatica (Qurbani & Hamzah, 2020). Lasiodiplodia theobromae could 
remediate polluted samples containing benzo[a]pyrene by using enzymes such as 
lignin peroxidase and laccase (Cao et  al., 2020). Mucor irregularis strain bpo1 
proved to be able to promote the biodegradation of fluorene (Bankole et al., 2020) 
and Mucor hiemalis could deal well with acetaminophen, especially after pH adjust-
ment (Esterhuizen et al., 2021). Rhizopus stolonifer could remediate samples pol-
luted with Cd in an efficient manner, and when associated with the bacterium 
Bacillus megaterium also proved to be highly efficient to deal with Pb pollution 
(Njoku et al., 2020). 2,4,6-trinitrotoluene could be degraded by Trichoderma viride 
eradicating the toxicity associated with the pollutant (Alothman et al., 2020).

Yeasts are particularly relevant when it comes to remediating pollution caused by 
heavy metals (Sun et al., 2020). For example, Diutina rugosa standed out among 
213 strains by its capacity to remediate Zn pollution (García-Béjar et al., 2020). 
However, organic pollutants can also be metabolized by yeasts, such as aflatoxin B1 
by Rhodotrorula mucilaginosa (García-Béjar et  al., 2020) and azodyes by 
Sterigmatomyces halophilus SSA-1575 (Al-Tohamy et al., 2020).

The mechanisms applied by microbes to remediate (that depends on the pool of 
genes and consequently proteins/enzymes available) can influence the process’ effi-
ciency. However, accessibility and bioavailability of the contaminants as same as 
environment characteristics (salinity, temperature, pH, and redox potential) can also 
interfere on this capacity (Gaur et al., 2018; Fernando et al., 2019).
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3  Microbes Assisting Bioremediation Promoted by Plants

Phytoremediation involves the use of plants to restore environs polluted by environ-
mental contaminants. However, there are some researchers that also consider the 
microbes associated with plant roots as part of the process. That is due to the impor-
tance that plant growth-promoting rhizobacteria and plant endophytes possess in 
improving the remediations’ efficiency making it easier for plants to deal with com-
plex scenarios such as dealing with a large array of different types of contaminants 
in the same area (He et al., 2020).

Phytostabilization and rhizodegradation are examples of  phytoremediation 
mechanisms in which the participation of microbes is crucial. For example, 
Funneliformis mosseae (a fungus species) could improve the capacity of the plant 
species Robinia pseudoacacia to remediate Pb contamination through phytostabili-
zation. The microbe promoted Pb’s immobilization, consequently reducing this 
heavy metal’s toxicity to the vegetal species phytoremediating it (Huang et  al., 
2019). Alcanivorax and Bacteroidetes are microbes that can live well in stressful 
situation regarding salt level and also present the capacity to metabolize some 
organic contaminants. They proved to be important tools to favor remediation of 
petroleum hydrocarbons by plant species Hylotelephium spectabile (Cheng et al., 
2019). In fact, a large array of petrochemical pollutants, and hydrocarbon in gen-
eral, contaminating water and soil environment could be remediated by phytoreme-
diation assisted by microbes through different mechanisms/strategies (Asemoloye 
et al., 2019; Singh et al., 2021).

It is well known, for example, that microbes can favor the removal of heavy met-
als and radionuclides (that generally come from industrial and municipal solid 
waste) performed by plants. And in situation in which removal is difficult, they can 
favor neutralization or conversion into less toxic substances by biotransforming, 
biosorbing, and biomineralizing (Thakare et al., 2021). Enterobacter cloacae ATCC 
13047, an endophytic bacteria isolated from Ficus septica, for example, could reme-
diate soil contaminated with Cr (VI) reducing the pollutant to Cr3+ and contributing 
to the survival of the vegetal species (Rohmah et al., 2020). Streptomyces pactum 
and Bacillus sp. co-application could improve Brassica juncea’s growth and also 
favored phytoextraction of Cd, Cu, Pb, and Zn promoted by the plant (Jeyasundar 
et al., 2021).

It is also interesting to mention that microbes associated with plants can also 
favor the vegetal’s development besides improving remediation potential. For 
example, Klebsiella pneumoniae AWD5 not only enhanced the capacity of Jatropha 
curcas to deal with aromatic hydrocarbon’s pollution, but also favored plant’s 
growth in pyrene-contaminated soil (Rajkumari et al., 2018).

Not only plants are influenced by the microbes associated with them, but they 
can also stimulate the growth and development of microorganisms present in the 
rhizosphere through chemical substances such as growth factors (Dominguez 
et al., 2019).
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It is also possible to genetically modify plants, using sequences of DNA origi-
nally present in microbes’ DNA, or in other organisms, to improve the efficiency of 
phytoremediation (Ozyigit et al., 2021). Arabidopsis thaliana could have its capac-
ity to promote mercury phytoextraction improved after genetically engineering the 
plant to express the bacterial mercury transporter MerC fused with SYP121 (a plant 
SNARE that favors protein transportation to cell membrane) under the control of a 
root epidermis-specific promoter. Mercury accumulation was enhanced in shoots 
and phytoremediation’s efficiency was successfully improved (Uraguchi et al., 2019).

4  Engineered Microbes Restoring Polluted Ecosystems

The development of fields related to genomics, metagenomics, metabolomics, tran-
scriptomics, proteomics, and genome editing technologies is crucial to the advance-
ment of bioremediation techniques (Jaiswal et al., 2019; Marco & Abram, 2019). 
Synthetic biology, for example, presents strategies applicable for bioremediation 
that involve cell-mediated detection of pollutants and remediation by genetic circuit 
and microbial biosensor (Jaiswal & Shukla, 2020). Metabolic reconstruction, for 
example, can allow the generation of microorganisms with improved catabolic 
activities by genetic engineering, offering elegant strategies for the remediation of 
contaminated ecosystems (Janssen & Stucki, 2020).

Various examples of protocols to generate genetically modified bacteria (GMB) 
to perform bioremediation are available in the literature and new ones are still being 
proposed nowadays. Phytochelatin synthase from Pyrus calleryan, when overex-
pressed in Escherichia coli, allowed remediation of Cd, Cu, and Hg and also 
increased tolerance to the heavy metals’ presence (Li et al., 2015). The expression 
of the azoreductase from Enterococcus sp. L2 (product of azoA gene) in E. coli 
DH5α and Pseudomonas fluorescens PfO- allowed decolorization of recalcitrant 
azo dyes. This process has its efficiency enhanced by coexpression of azoA with fdh 
from Mycobacterium vaccae N10 (Rathod et al., 2017). Deinococcus radiodurans 
(a radiation-resistant bacterium) was recently engineered to overexpress the smtA 
gene from Synechococcus elongatus fused to sequences from the surface layer pro-
teins Hpi and SlpA. The gene is responsible to encode the metal-binding metallo-
thionein protein that is naturally located in the cell’s cytoplasm but fusion proteins 
took it to cell surface. This strategy offered a extraction of cadmium 1.5–3 times 
higher when compared to the one performed by organisms expressing only the cyto-
solic version of the metal binding metallothionein protein and cell-free preparations 
presented a potential for uranium remediation (Misra et al., 2021). Recombinant 
Rhodococcus erythropolis expressing ammonia monooxygenase and hydroxyl-
amine oxidase offered optimized results on the remediation of pollution associated 
with landfill leachate (Bai & Tian, 2021).

Fungi and yeast can also be genetically modified to offer optimizations in the 
results of bioremediation protocols. However, yeasts are more easily genetically 
modified than fungi, being more applied in remediation protocols. They can deal, 
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for example, with heavy metals’ pollution promoting their accumulation, precipita-
tion, and changing their redox state (Ayangbenro and Babalola, 2017). The gene 
EpNramp from Exophiala pisciphila encodes a metal transporter; yeasts expressing 
this protein could enhance their natural capacity to accumulate Cd2+  (Wei et  al., 
2016). The gene lac I that encodes a laccase from the fungus Phlebia brevispora 
BAFC 633 could be successfully expressed in Pichia pastoris, and the enzyme 
exhibited high tolerance to diverse solvents and NaCl, being also capable of degrad-
ing recalcitrant synthetic dyes (Fonseca et al., 2018). When the dye-decolorizing 
peroxidase from Pleurotus ostreatus (a white rot basidiomycete) was expressed in 
the filamentous fungus Trichoderma atroviride it allowed decolorization of mono- 
azo, di-azo, anthraquinone, and anthracenedione dyes (Cuamatzi-Flores et al., 2019).

Microalgae can also be modified to enhance bioremediation potential. 
Overexpression of CrMTP4 gene in Chlamydomonas reinhardtii increased the 
potential of the organism to remediate Cd pollution. The gene encodes for a member 
of the Mn-CDF clade of the cation diffusion facilitator family of metal transporters 
(Ibuot et  al., 2017). The potential to promote remediation of Cd2+ and Zn2+ ions 
could be enhanced in this species after recombinant expression of a protein 
from Arabidopsis thaliana: the AtHMA4 C-terminal domain protein (Ibuot et al., 
2020). Cd2+ bioremediation could also be optimized through the expression by 
C. reinhardtii of a synthetic gene (gshA) encoding for a gamma-glutamylcysteine 
synthetase (Piña-Olavide et al., 2020).

5  Recovering Soil Microbial Community to Promote 
Ecosystems Restoration

It is also possible to apply microbes in other types of protocols aiming restoration 
of polluted ecosystems. For example, improving soil aggregation by influencing 
beneficial communities of microorganisms. The functional recovery of the soil 
microbial community (SMC) is essential for ecological restoration. Incorporating 
SMC measurement and monitoring into the study designs is a challenge, once there 
is still not available a metric that represents the diverse functional and composi-
tional complexity inherent in the SMC. Focus must change from trying to composi-
tionally recreate the “reference” SMC for the creation of functionally robust SMCs 
that provide ecosystem functioning and provide ongoing ecological resilience in 
restored ecosystems (Hart et al., 2020). Soil inoculation is a common form of micro-
bial reforestation, which consists of moving soil from target sites to restoration sites 
(Wubs et al., 2016). This practice is known as “the whole community” rewilding, 
and although it is evident in soil inoculation studies, is very little researched outside 
of soil transplants and therefore rarely considered during restoration. The desired 
sites are on the practitioner’s premises criterion; so they can adapt the community 
built on the base of any site they choose. However, a summary of community-wide 
reforestation for restoration purposes highlights that nearby remaining sites are 
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chosen more often, which conforms to conventional restoration paradigms (Contos 
et al., 2021; Mcdonald et al., 2016).

6  Conclusions

Physicochemical methods to restore polluted areas may present some disadvantages 
(such as the high cost to be performed on large scale) that can be surpassed by bio-
remediation strategies. Among bioremediation strategies is a large array of proto-
cols applying microbes as tools to remove environmental pollutants and contribute 
to the restoration of ecosystems. There are strategies that use only microbes on their 
wild form, protocols applying genetically modified versions of these organisms to 
optimize results, and strategies associating microbes and phytoremediation, among 
other types of protocols. Microorganisms proved to be efficient in performing reme-
diation of contaminants from diverse chemical nature in different environments.

7  Future Perspectives

In order to enhance the opportunity of innovative protocols using microbes to promote 
remediation, it is essential that the metabolism of microbes be known in a deep way. 
So, advancements in the field of molecular biology and in omics platforms are highly 
relevant to the proposal of new rapid, eco-friendly, safe, and cost-effective technologies 
of bioremediation of polluted ecosystems by microbes. The improvements on the pos-
sibility of efficiently engineering the DNA of these organisms, for example, are directly 
dependent on these advancements. Biosafety related to the field use of microbes in 
bioremediation also needs to receive special attention considering also the impact of 
microbe-assisted bioremediation on the ecosystem as a whole.
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