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Abstract. Explainable Artificial Intelligence (XAI) is the field of AI
dedicated to promoting trust in machine learning models by helping us
to understand how they make their decisions. For example, image expla-
nations show us which pixels or segments were deemed most important
by a model for a particular classification decision. This research focuses
on image explanations generated by LIME, RISE and SHAP for a model
which classifies breast mammograms as either benign or malignant. We
assess these XAI techniques based on (1) the extent to which they agree
with each other, as decided by One-Way ANOVA, Kendall’s Tau and
RBO statistical tests, and (2) their agreement with the diagnostically
important areas as identified by a radiologist on a small subset of mam-
mograms. The main contribution of this research is the discovery that
the 3 techniques consistently disagree both with each other and with the
medical truth. We argue that using these off-shelf techniques in a medi-
cal context is not a feasible approach, and discuss possible causes of this
problem, as well as some potential solutions.
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1 Introduction

Recent developments in deep learning (DL) have sparked an interest in more
high-stakes applications such as medical diagnostics. Given a medical scan, a
clinician may want to differentiate between healthy and unhealthy tissue, or
between pathologies. However, the black-box nature of DL models means their
conclusions tend not to be trusted by clinicians who cannot determine how
the model came to its decision. Interpretable explanations are therefore cru-
cial. Many medical experts have already expressed their concerns over rising
black-box DL approaches [8].

Explainable AI (XAI) techniques exist to bridge this gap by intuitively high-
lighting the most important features of an input. This gives the model prac-
titioner more information about how to improve the model’s correctness, and
gives the end-user, potentially a non-expert, an idea of how the model came
to its conclusion. Knowing that a model’s conclusion is correct is essential in
medical diagnostics as their outcomes could impact lives.
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Using XAI techniques for medical diagnostics comes with its own set of prob-
lems. Medical datasets are problematic due to differing labelling standards - some
images have complete clinical annotation, while others simply state whether a
tumour is present. Many techniques run into problems for images with small
regions of interest (ROIs), due to their usage of image segmentation. This is the
case for breast mammograms as cancerous regions can be extremely small. [23]
discusses the serious implications of bad explanations in high stakes contexts.
Saliency maps, which are commonly used to visualise image explanations, can
be virtually identical for different classes on the same image [2]. Unreliable and
misleading explanations can have serious negative implications.

We present a case study which focuses on the quality of explanations from 3
widely used XAI techniques, applied to a publicly available CNN-based classifi-
cation model used to identify malignant and benign breast tumours (originally
designed for brain tumour detection [15]), and a public anonymised dataset of
benign and malignant breast mammograms [12]. We assess the XAI techniques
based on (1) the extent to which they agree with each other for the whole
dataset, and (2) evaluation by two independent radiologists on the correctness
of the important regions identified by each of the XAI techniques for 10 mam-
mograms. The XAI techniques used in our study, LIME [20], SHAP [14] and
RiSE [18], are discussed in the next Section.

2 Related Work

Many existing XAI techniques are applicable to the medical context. [31] presents
an exhaustive list of techniques used for medical image analysis - we limit our
consideration here to LIME, SHAP and RISE due to their popularity and ease
of use [5]. We plan to consider other XAI techniques in the future.

LIME - Local Interpretable Model-Agnostic Explanations. LIME [20]
is an XAI technique which can be applied to any model without needing any
information about its structure. LIME provides a local explanation by replacing
a complex neural network (NN) locally with something simpler, for example a
Ridge regression model. LIME creates many perturbations of the original image
by masking out random segments, and then weights these perturbations by their
‘closeness’ to the original image to ensure that drastic perturbations have little
impact. It then uses the simpler model to learn the mapping between the pertur-
bations and any change in output label. This process allows LIME to determine
which segments are most important to the classification decision - these segments
are then shown in the visual explanation output.

RISE - Randomized Input Sampling for Explanations of Black Box
Models. RISE [18] works by first generating many random masks of an image,
multiplying them elementwise with the image, and then feeding them directly
into the original model for label prediction. Saliency maps are generated from
a linear combination of the masks where weights come from the output proba-
bilities predicted by the model. These saliency maps highlight the most impor-
tant pixels of the image regarding its classification. This makes RISE extremely
interpretable. RISE is also model agnostic. We note that RISE is very similar
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to LIME, however it measures saliency based on individual pixels, rather than
superpixels, and therefore may perform better on images with small ROIs (e.g.
mammograms).

SHAP - Shapley Additive Explanations. SHAP [14] is another model-
agnostic approach which uses Shapley values, a concept from game theory, to find
the contribution of each feature to the model’s output. The image is segmented to
reduce the number of value computations. Starting from one random segment, we
add one segment at a time until the correct model classification is possible. This
is repeated many times with random orderings to get the importance of each
segment, represented as Shapley values. Large positive SHAP values indicate
that the segment is very important to the classification decision. SHAP is also
a highly interpretable technique. We note that SHAP values are derived from
game theory’s Shapley values - they are not the same, and the mathematical
differences are discussed in detail in [14].

2.1 XAI in Medicine

These methods, as well as other techniques [24,26,27,29,30,33,34], have had
huge success, particularly in the image classification and Natural Language Pro-
cessing fields, however they are only beginning to be evaluated in any medical
context [31]. An important issue to note is that when using larger medical images
such as MRI scans, there is a need to split the images into tiles due to their
extremely high resolutions. XAI techniques then need to be run on each tile,
and the results need to be brought back together. Since we are working with
mammograms, this is not an issue for this research, but is something we plan to
explore in future work.

[25] highlights some of the challenges faced by medical professionals regard-
ing XAI - not all visualisations are interpretable, there is no current definition
for sufficient explainability in the field, and XAI techniques are not satisfactorily
robust [1]. They describe the issue of the knowledge gap between AI and medical
professionals, and the effects this has on techniques. Currently the focus of med-
ical XAI seems to be on diagnosing rare diseases and monitoring health trends
[25]. Some contributions to XAI for tumour classification exist, for example [6]
which focuses on sequencing gene data, and [21] which also focuses on mammo-
grams, though with gradient-based XAI techniques. [11] argues that explanations
generated by LIME and SHAP cause no improvement on human decision making
abilities - when shown an image both with and without an explanation, there
was no statistical difference in the time it took for people to classify the image
by eye, or in the number of mistakes made. This is concerning as the goal of
diagnostic XAI is to make the lives of medical professionals easier, and remove
the need for tedious by-eye classification [10,19].
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(a) INbreast (b) DDSM (c) MIAS

Fig. 1. Example images from each of the three dataset sources.

3 Model Setup

3.1 Data Pre-Processing

For this research we take breast mammograms with cancerous masses from a pub-
lic dataset [12], which takes images from 3 official datasets - INbreast [16], DDSM
[3] and MIAS [28]. When generating this dataset, the creators [13] extracted a
small number of images with masses from each source, and performed data aug-
mentation in the form of image rotation to generate a larger dataset. They also
re-sized images to 227× 227 pixels.

The public dataset [12] we are using is large. The original paper introduc-
ing this dataset [13] details their data augmentation techniques, which includes
rotating and flipping each image to generate 14 variations of itself. This is not
useful for this research - we are not trying to train a model that can cope with
rotated breast scans, as the original scans and therefore any unseen real-world
scans are all of the same orientation. We only use images of the original orienta-
tion. We also only take images from INbreast and DDSM, as the only MIAS scans
present in the dataset were benign, though we plan to include MIAS for evalu-
ation purposes (e.g. Out-Of-Distribution detection (OOD) [17]) in future work
to improve model confidence. The visual difference in original scans between the
3 sources is shown in Fig. 1. After selecting the images of the same orientation
from the INbreast and DDSM sections of the dataset, we have a dataset of 2236
images - 1193 benign and 1043 malignant.

Image Cropping. For maximal model performance, we crop out as much of
the black background as possible, making the breast the focus of each image.
This was performed using basic Python opencv code. Images are then resized to
the original 227× 227 pixel format for consistency.

Dataset Split. Our dataset of 2236 images is split into a (Train-
ing/Validation/Testing) ratio of (2124/56/56). The Validation set will be used
for all intermediate experiments - deciding how many epochs to train the model
for, and tuning parameters for LIME. A small test set was chosen to ensure
sufficient model training due to the small dataset size.
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3.2 Model Architecture

We use an existing public CNN [15] which was originally used for binary clas-
sification of brain scans regarding the presence of a tumour. We use this model
as it was specifically designed for the domain of tumours in medical scans, and
was therefore reliable in the sense that it was likely to perform well on data like
ours - noisy black and white scans containing cancerous legions. In the original
study the model achieved 88.7% accuracy on the test set. The model takes an
image and outputs a decimal value between 0 and 1, where 0 is benign, and 1 is
malignant. We have taken 0.5 to be the threshold value for these classifications.
The CNN contains 8 layers, using ReLU activation.

To avoid overfitting, we train four models differing only in numbers of epochs,
and evaluate their performances on the Validation set. The performances of these
models are described in Table 1 (Appendix A.1) in the form of their Accuracy
and F1 Score. These statistics are based on a Validation set of 56 images. We
proceed with the 75 epoch model as it has the highest performance scores. On
the Test set, the 75 epoch model has an Accuracy of 0.9643 and an F1 Score of
0.9642. For training, we use Keras with the adam optimizer and binary cross-
entropy loss function. We use a Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz
processor laptop for our experiments.

Although the accuracy of the model on the test set is high (96.43%), it is
not clear whether the model infers classifications using the correct image fea-
tures. In medical diagnostics, it is imperative that a clinician is able to interpret
and understand the reasons for the classification label. Explanations from XAI
techniques are meant to address this need.

4 Explanations

We generated individual explanations using each of the 3 XAI techniques, for a
test set of 56 images. For illustration, we show explanations for the same 6 benign
and 6 malignant examples with each XAI technique in Appendix A.8 (LIME
Fig. 6, RISE Fig. 7, SHAP Fig. 8). Code associated with generating explanations
can be found at https://anonymous.4open.science/r/EvaluatingXAI-11DF/.

4.1 LIME

Our Python code for generating LIME explanations follows the steps described
by [20]. For image segmentation, we used Python’s scikit-image quickshift algo-
rithm with empirically chosen parameters. When generating explanations, we
highlight the boundaries of the L most important features for visibility. L was
empirically chosen.

Choosing Segmentation Parameters. For segmentation we use the scikit-
image quickshift algorithm, which has 3 tuneable parameters - kernel size, max-
dist, and ratio. These parameters and their effects are detailed in their documen-
tation [7]. We use a small kernel size of 2, a default max-dist value of 10, and a
small ratio value of 0.1. This was because we wanted many small segments with
little emphasis on colour boundaries, to ensure that we consider small regions of
interest (ROIs), and do not quantify the pixels at the boundary of the breast as
incorrectly important.

https://anonymous.4open.science/r/EvaluatingXAI-11DF/
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Choosing L. We define L as the number of most important features used
in LIME explanations. The L value will determine the features shown in our
LIME explanations, and also how many pixels are compared in the later One-
Way ANOVA analysis. We will be comparing lists of most important pixels as
decided by each XAI technique - the lengths of these lists will be equal for the
3 techniques, and will be the number of pixels within the L most important
LIME features for a given image. We will then calculate the % pixel agreement
between each pair of methods, defined as the proportion of pixels the lists have in
common. To determine our L value, we calculate the average % pixel agreements
between methods using L values of 3, 4, 5, 6 and 7. Averages are taken over the
first 30 images in the Validation set for the sake of time. The results are shown in
Fig. 4 (Appendix A.2). As L increases, average pixel agreement increases between
each pairwise technique comparison. It is infeasible to keep increasing L as we are
trying to compare only the most important pixels. We have chosen L to be 6 as
the first decrease in average agreement between all three techniques occurs at L
= 7. Also, in the case of the pairwise comparisons LIME-SHAP and LIME-RISE,
the jump in agreement from 6 to 7 is much smaller than from 5 to 6.

Observations. Figure 6 (Appendix A.8) shows 12 examples of LIME explana-
tions - 6 for benign scans and 6 for malignant. For both classes, some explanations
highlight undesirable features such as the image background. This is likely due
to the variance in breast shape throughout the dataset, which can clearly be
seen in these examples. This effect could be reduced by using larger datasets
in the future. Looking at these explanations without ground truth tells us lit-
tle about whether they are highlighting genuine cancerous regions. To evaluate
LIME’s performance, we compare its outputs to those of RISE and SHAP, and
to a radiologist’s evaluation.

4.2 RISE

Our Python code for RISE follows the steps described by [18]. Figure 7
(Appendix A.8) shows 12 examples of RISE explanations - 6 for benign scans
and 6 for malignant. In these heatmaps, the most important pixels are shown
as red, and the least important are shown as blue. We note that images have
different importance value scales.

Observations. RISE generally assigns background pixels a medium relative
importance. We expect that this is again due to irregular breast shapes. LIME
and RISE seem to generate poor results for the same images - we define
poor results as explanations which highlight background regions as important.
Figure 7(j) shows a case where RISE performs poorly for a malignant scan. LIME
also performs poorly on this image, shown in Fig. 6(j). This image has an irregu-
lar shape, which supports our thoughts. Figure 7(c) and Fig. 6(c) show the same
issue for a benign scan.

4.3 SHAP

Our SHAP explanation code follows the steps described by [14]. Default val-
ues were used for image segmentation, and SHAP’s Kernel Explainer was used.
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Figure 8 (Appendix A.8) shows 12 examples of SHAP explanations - 6 for benign
scans and 6 for malignant. Segments that contribute the most to the classifica-
tion of the image are shown as green. The least important segments are shown
as red. We note that SHAP value scales are not consistent across images.

Observations. Figure 8(j) shows that SHAP performs poorly for the 4th malig-
nant scan, much like LIME and RISE - heavily influential segments exist at the
top-left corner of the image, which are background pixels. In most cases, the
superpixels outside the boundary of the breast seem to have low SHAP values.
SHAP seems to generally disregard background pixels with more success than
RISE.

(a) LIME
(b) RISE (c) SHAP

Fig. 2. Explanations by LIME, RISE and SHAP for a benign mammogram.

5 Evaluating Explanations

Looking at the 3 explanations side-by-side for an image, as in Fig. 2, we can
start to infer some agreement. However, due to the different explanation for-
mats between techniques, the amount of agreement is unclear. In addition to
visualisations, we use statistical analysis to compare the importance rankings of
pixels between XAI techniques.

Visualising Agreement. We use the 6 most important features in our LIME
explanations, and denote n to be the number of pixels within these features.
We visualise overlap between the n most important pixels given by each XAI
technique, as in Fig. 3. Generally, there are always areas which all 3 techniques
identify as highly important. However there are more regions where they dis-
agree. Sub-figures (b) and (d) from Fig. 3 show cases where explanations have
performed poorly - defined as identifying background pixels as most important.
This is likely due to irregular breast shapes within the dataset. Figures 3(a) and
(c) show cases where explanations have multiple clear points of agreement.
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(a) Benign 1 (b) Benign 2 (c) Malignant 1 (d) Malignant 2

Fig. 3. Overlap between the 3 XAI techniques regarding the n most important pixels.
SHAP is blue, RISE is red, LIME is green. (Color figure online)

5.1 One-Way ANOVA

One-Way ANOVA [22] compares the means of two or more groups for a depen-
dent variable. Our input groups are 3 lists of % pixel agreements between meth-
ods for each test set image, labelled LIME-RISE, LIME-SHAP, and RISE-SHAP.
To generate these lists, we identify the n most important pixels according to each
technique, where n is the number of pixels within the top 6 LIME features for
a given image. This is because LIME outputs binary values for each pixel (pres-
ence in the L most important features) while RISE and SHAP assign decimal
importance values. We then calculate the % pixel agreement across each pair
of pixel lists for each image. We define % pixel agreement as the proportion of
pixels the lists have in common. Results are in Table 2 in Appendix A.3.

The only statistically significant test is Test 2, shown in Table 2. This tells
us that of all pairwise comparisons, there is only statistically significant differ-
ence in average pixel agreement between the comparisons of LIME-RISE and
RISE-SHAP. Analysing the statistical composition of the pixel agreement lists
supports this conclusion. Figure 5 (Appendix A.4) visualises these results. The
largest difference in mean (green triangles) is between LIME-RISE and RISE-
SHAP. Figure 5 and Table 3 (in Appendix A.4) show that the average pixel agree-
ment between techniques is startlingly low - 20–30% on pairwise comparisons,
and under 10% when comparing all three. However, these values still represent
significant numbers of pixels, as our images are large and have small ROIs.

5.2 Kendall’s Tau

Kendall’s Tau [9] is a measure of the degree of correlation between two ranked
lists. The purpose of Kendall’s Tau is to discover whether two ordered lists are
independent. We perform this test using the built-in Python scipy method, and
set the inputs to be the ordered lists of pixels and their importance values for
each of the 3 XAI techniques, in the form “(x, y): value”.

We apply Kendall’s Tau to each test set image 3 times - on the full pixel list,
on the top n most important pixels, and on the top 1000. We want to discover
any statistically significant correlation regarding the most important pixels to
the classification between techniques - if there is, and the Tau values are positive,
this implies agreement. Results are shown in Table 5 (in Appendix A.6). We use
an alpha value of 0.05. From Table 5 we can conclude that the only instances
of statistically significant correlation come from the LIME-SHAP comparison -
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both on the full length pixel list and the top n pixels. Positive Tau values imply a
positive correlation. The LIME-RISE comparison yields results closer to the 0.05
threshold while RISE-SHAP yields the worst results. In Fig. 5, we saw that for
the top n pixel lists, LIME and RISE have the highest mean pixel agreements.
This implies that while LIME and RISE have higher pixel agreement regarding
the presence of the same pixels in the top n pixel lists, LIME and SHAP agree
the most regarding pixel order.

We also evaluated our explanations using the RBO statistical test [32] to
compare pixel rankings. The results of this test are shown and discussed in
Appendix A.5.

5.3 Radiologist Evaluation

To assess our explanations with respect to the medical truth as understood by
a clinician, we consulted 2 independent radiologists and provided them with a
subset of 10 images - 5 with benign and 5 with malignant classification, each
of them associated with explanations from the 3 different techniques. We were
unable to gather an expert evaluation for the entire test set due to limited
availability of the radiologists, though we intend to expand this form of XAI
technique evaluation in future work.

The results gathered from this evaluation with 10 images for the first and
second radiologists are shown in Tables 6 and 7 (in Appendix A.7). In these
tables,‘B’ in the column heading refers to a benign image and ‘M’ refers to
a malignant image. We requested the radiologists to score each explanation
between 0 and 3 to represent its agreement to radiologist identified image regions.
The definition of the scores provided to the radiologists are as follows:

0 = Explanation completely differs from expert opinion
1 = Explanation has some similarities, but mostly differs from expert opinion
2 = Explanation mostly agrees with expert opinion, though some areas differ
3 = Explanation and expert opinion completely agree

It is worth noting that no explanation earned a label of 3 from either radiol-
ogist - each explanation either identified erroneous regions or missed important
sections. LIME appears to perform the worst within this subset of 10 images,
while RISE performs the best. This is likely because RISE is the only method
which uses pixels rather than superpixels and is therefore more fine grained when
examining image regions and less likely to miss small regions of interest. There
does not seem to be any difference in explanation quality between benign and
malignant images for any technique.
The radiologists noted the following limitations with the explanation techniques:

– None of the explanations could identify the entire tumour region. Explanation
methods only highlight fragmented relevant regions and this is along with
many irrelevant regions.

– Explanations for both malignant and benign tumours are distributed all over
the image and fail to take into account clinical features, like shapes of masses,
margins, the density of tissues, and structural distortion.

Our radiologist evaluation using 10 mammograms may not be representative of
a real world dataset. However, the issues highlighted by these comments are
consistent problems - this will be discussed in Sect. 6.
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5.4 Threats to Validity

This research uses a small dataset of breast mammograms which may not be
representative of the population. We limit our classification task to benign or
malignant - in reality there are many types of lesion for both classes, which would
appear differently in mammograms. In future work, using a non-binary classifier
alongside a more thorough radiologist evaluation may allow us to better analyse
the failures of our techniques. We have assumed that the low cohesion between
XAI techniques paired with the high model test accuracy indicates that failures
are due to the XAI techniques, and not the model itself. In future work we will
utilise multiple models and explore alternate XAI evaluation techniques [4] in
order to back up this claim. All empirical analysis regarding LIME parameter
tuning and the choice of L was based solely on the patterns within our data.
They may not hold up when compared to a larger dataset. Our XAI techniques
by definition utilise randomization when generating masks, therefore re-running
our code will generate slightly different results to the ones displayed here. This
variation is not hugely impactful as we generally discuss average values in our
statistical tests. Our code for LIME, RISE and SHAP is not the only way of
implementing these techniques - there are many public examples which imple-
ment the steps described in the literature in slightly different ways. Because of
this, another researcher’s code may yield different results to the ones shown here.

6 Observations and Discussion

Each Technique Performs Poorly on the Same Images. Our explanations
highlight the quality variation within the test set. Each XAI technique performed
poorly (highlighted background pixels as most important) on the same images,
usually mammograms with irregular breast shapes. This is likely due to our
small dataset and the effect of blurring and image re-sizing. It’s interesting to
note that these problems don’t seem to impede the model accuracy, only the
quality of explanations.

Percentage Pixel Agreement Between XAI Techniques is Extremely
Low. LIME and RISE appear to have the most pixel agreement according to
One-Way ANOVA. However, these values are not high, with an average agree-
ment of 28%. Combining Kendall’s Tau with One-Way ANOVA, we find that
while LIME and RISE consistently highlight the highest proportion of the same
important pixels, LIME and SHAP have the most similar pixel orderings. This
is supported by RBO.

Radiologist Evaluation Revealed Explanations from All Three Tech-
niques Were Unhelpful. The radiologists found that RISE performed
marginally better than the other two techniques. Explanations from all three
techniques, however, do not consider clinical features within mammograms that
are used to diagnose benign or malignant tumours, such as shape of mass, bound-
ary, and density. The explanations do not highlight the entire tumour as impor-
tant, but instead sparsely pick parts of the tumour along with many irrelevant
regions. The XAI techniques we have used have low levels of agreement with
each other, as well as low levels of agreement with the medical truth.
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6.1 Discussion

The goal of this research was to determine whether taking off-shelf XAI tech-
niques and applying them to breast tumour classification was a feasible approach
that would hold up in the real world. Bringing together our observations tells us
that this is not the case.

Though LIME and SHAP have the highest agreement in pixel orderings,
these agreement levels are still very low. Explanations from these techniques
highlight some common areas, though have significant disagreements and are
therefore unreliable for use in diagnostics. The most likely reason that LIME
and SHAP have the highest pixel ordering agreement is that these methods
both utilise superpixels, while RISE does not. Discussing similarities in pixel
orderings is problematic in this context, due to the differing ways in which each
of the 3 XAI techniques assign importance values to pixels. We note that these
differences come from both the underlying properties of each technique, and
from our code architecture. LIME’s binary scoring method is likely the reason
behind the slightly higher % pixel agreement statistics for pairwise comparisons
involving LIME.

Each XAI technique works differently, and resulting explanations depend
on many different factors - segmentation, mask randomization, and tuneable
parameters. While this is an expected reason for some result variation, a higher
level of cohesion in explanations was to be expected. We identified that each
technique incorrectly highlighted background regions as being most important
on images with irregular breast shapes. While this may have been caused by
the small size of the dataset, and image quality after pre-processing, we would
have expected the model’s accuracy to also decline to reflect this, and it did not.
We also note that the techniques showed no difference in explanation quality for
images from the benign or malignant classes.

Regarding the medical truth according to a radiologist, RISE seems to pro-
duce the most medically correct explanations, while the results of LIME and
SHAP are often entirely incorrect. This is likely because RISE involves no image
segmentation. No explanations were labelled as perfect - areas are always missed
or incorrectly highlighted. We therefore conclude that explanations generated by
LIME, RISE and SHAP are in disagreement with respect to both each other, and
to the medical truth, and so do not perform reliably in this context. The results
of these explanation techniques do not match or consider what a radiologist
would want in a real-world context. Instead of pixels or superpixels, techniques
should identify clinically defined regions. This is a gap that needs to be bridged
- we highlight the need for specific, carefully defined techniques for explaining
tumour images that take clinical features into account.

A Appendix

A.1 Model Training Results

The results of the experiment used to choose the 75 epoch model when con-
sidering the impact of overfitting on our CNN, as discussed in Sect. 3.2 of this
report.
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Table 1. Validation accuracy and F1 Score for CNNs trained with different numbers
of epochs.

Epochs Accuracy F1 score
25 0.8214 0.7917
50 0.8214 0.7917
75 0.8750 0.8571
100 0.8036 0.7660

A.2 Choosing L Parameter for LIME

The results of the experiment used to choose L, as discussed in Sect. 4.1
of this report.

Fig. 4. Average % pixel agreement values between techniques taken over 30 images
from the Validation set.

A.3 One-Way ANOVA Results

We present here the statistical hypotheses used for the One-Way ANOVA test, as
well as the results gathered. This statistical test and its implications is discussed
in Sect. 5.1 of this report. The results are shown in Table 2.

The hypotheses for One-Way ANOVA are as follows:

– H0: There is no statistically significant difference between the means of the
groups.

– H1: There is a statistically significant difference between the means of the
groups.
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Table 2. Results of One-Way ANOVA tests as described in the text. Bold results are
statistically significant (alpha value 0.05).

Test Methods compared F-statistic p-value
1 LIME-RISE, LIME-SHAP 3.7823 0.0544
2 LIME-RISE, RISE-SHAP 9.1855 0.0031
3 RISE-SHAP, LIME-SHAP 1.6193 0.2060

A.4 Pixel Agreement Statistics

Figure 5 presents a box plot representation of the % pixel agreement values
between XAI techniques, taken over all images in our test set. These results
are discussed in Sect. 5.1 of this report. Table 3 also represents these agreement
values.

Fig. 5. % Pixel Agreement between techniques for n most important pixels. Medians
are orange lines, means are green triangles. (Color figure online)

A.5 Ranked Biased Overlap (RBO) Results

RBO [32] weights each rank position by considering the depth of the ranking
being examined, minimising the effect of the least important pixels. Taking two
ranked lists as inputs, RBO outputs a value between 0 and 1, where 0 indicates
that the lists are disjoint, and 1 indicates that they are identical. The results of
RBO depend on the tuneable parameter p [32]. Small p values place more weight
on items at the top of an ordered list. While this is desirable, we must consider
the difference in pixel importance value allocation methods between techniques.
RISE applies a decimal score to each pixel. SHAP applies the same decimal score
to each pixel within a given image segment. LIME uses binary values indicating



Evaluating XAI for Breast Tumour Classification 117

Table 3. Statistical overview of percentage pixel agreements for all method compar-
isons.

Techniques Mean Std Min Max
LIME-RISE 28.27% 10.13% 7.74% 52.19%
LIME-SHAP 24.73% 8.75% 8.73% 48.16%
RISE-SHAP 22.45% 9.82% 0.00% 44.97%
ALL 9.48% 6.18% 0.00% 25.88%

whether the pixels are in the top 6 most important features. We use large p
values to properly encompass similarities between larger groups of pixels with
identical values.

Table 4 shows the average, minimum and maximum RBO values for each
pairwise pixel list comparison. The average RBO values for each comparison tell
us that the pixel lists are almost disjoint. This is expected due to the differ-
ing pixel importance allocation methods as discussed. Instead we consider the
maximum values - LIME and SHAP generate lists that are hugely identical for
at least one instance in the test set, with maximum RBO values in the range
0.69–0.78. The other pairwise comparisons do not come close to these numbers.
This observation supports Kendall’s Tau - both tests have identified LIME and
SHAP as the techniques with the highest agreement regarding pixel orderings.

Table 4. RBO results performed on full ordered pixel importance lists for each tech-
nique, with differing p values. Values shown to 3 decimal places, though we note here
that these values are never exactly zero, just extremely small.

- RISE-SHAP LIME-SHAP LIME-RISE
p 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max 0.000 0.000 0.077 0.697 0.763 0.782 0.002 0.023 0.265
Avg 0.000 0.000 0.003 0.019 0.027 0.045 0.000 0.001 0.011

A.6 Kendall’s Tau Results

We present here the statistical hypotheses used for the Kendall’s Tau test, as
well as the results gathered. This statistical test and its implications is discussed
in Sect. 5.2 of this report. The results are shown in Table 5.
The following hypotheses are used:

– H0: There is no statistically significant correlation, the lists are independent.
– H1: There is a statistically significant correlation in pixel orderings between

lists, they are not independent.
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Table 5. Kendall’s Tau comparison results. n is defined in the text. Values are aver-
ages taken over the test set, shown to 3 decimal places. Bold results are statistically
significant.

Techniques p-values Tau
Full n 1000 Full n 1000

RISE-SHAP 0.123 0.125 0.249 0.003 0.002 0.001
LIME-SHAP 0.000 0.048 0.067 0.154 0.106 0.293
LIME-RISE 0.066 0.055 0.133 0.004 −0.006 0.014

A.7 Radiologist Opinions
Here we present the results as received from two independent radiologists, as
well as definitions of the scoring system used to evaluate explanations,

We requested each explanation be scored between 0 and 3 to represent its
agreement to radiologist identified image regions. The definition of the scores
provided to the radiologists are as follows:
0 = Explanation completely differs from expert opinion
1 = Explanation has some similarities, but mostly differs from expert opinion
2 = Explanation mostly agrees with expert opinion, though some areas differ
3 = Explanation and expert opinion completely agree

Table 6. Radiologist evaluation regarding explanations generated on a subset of 10
images. B denotes benign, and M denotes malignant.

Image B1 B2 B3 B4 B5 M1 M2 M3 M4 M5
LIME 0 1 0 1 1 0 0 1 0 0
RISE 0 1 1 1 1 2 1 1 1 2
SHAP 0 0 0 1 2 0 1 1 1 0

Table 7. Second radiologist evaluation regarding explanations generated on a subset
of 10 images. B denotes benign, M denotes malignant.

Image B1 B2 B3 B4 B5 M1 M2 M3 M4 M5
LIME 0 2 0 1 1 0 0 0 0 0
RISE 0 0 0 1 1 2 0 0 0 0
SHAP 0 2 0 1 0 1 0 1 1 1

We note that the opinions of the two radiologists above do not entirely agree
with each other - this is due to the fact that identifying all cancerous regions by
eye, especially on benign mammograms, is extremely difficult. The scans are also
fairly noisy and in parts blurry by nature. The purpose of this form of evaluation
was not to have radiologists perfectly highlight all cancerous regions - the goal
was to simply analyse their responses to explanations generated by each XAI
technique, in order to judge the usefulness of the techniques as diagnostic tools.
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A.8 Explanation Examples

This section contains examples of image explanations as generated by LIME,
RISE and SHAP, described in this report. Figure 6 shows LIME explanations,
Fig. 7 shows RISE explanations, and Fig. 8 shows SHAP explanations.

(a) Ben LIME 1 (b) Ben LIME 2 (c) Ben LIME 3

(d) Ben LIME 4 (e) Ben LIME 5 (f) Ben LIME 6

(g) Mal LIME 1 (h) Mal LIME 2 (i) Mal LIME 3

(j) Mal LIME 4 (k) Mal LIME 5 (l) Mal LIME 6

Fig. 6. Examples of LIME explanations generated for benign (Ben) and malignant
(Mal) breast mammograms.
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(a) Ben RISE 1 (b) Ben RISE 2 (c) Ben RISE 3

(d) Ben RISE 4 (e) Ben RISE 5 (f) Ben RISE 6

(g) Mal RISE 1 (h) Mal RISE 2 (i) Mal RISE 3

(j) Mal RISE 4 (k) Mal RISE 5 (l) Mal RISE 6

Fig. 7. Examples of RISE explanations generated for benign (Ben) and malignant
(Mal) breast mammograms.
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(a) Ben SHAP 1 (b) Ben SHAP 2 (c) Ben SHAP 3

(d) Ben SHAP 4 (e) Ben SHAP 5 (f) Ben SHAP 6

(g) Mal SHAP 1 (h) Mal SHAP 2 (i) Mal SHAP 3

(j) Mal SHAP 4 (k) Mal SHAP 5 (l) Mal SHAP 6

Fig. 8. Examples of SHAP explanations generated for benign (Ben) and malignant
(Mal) breast mammograms.
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