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Preface

This book constitutes the refereed proceedings of the 5th International Workshop on
Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2022,
held in conjunction with the 25th International Conference on Medical Imaging and
Computer-Assisted Intervention, MICCAI 2022.

iMIMIC is a single-track, half-day workshop consisting of high-quality, previously
unpublished papers, presented either orally or as a poster, intended to act as a forum for
research groups, engineers, and practitioners to present recent algorithmic developments,
new results, and promising future directions in interpretability of machine intelligence in
medical image computing. Machine learning systems are achieving remarkable perfor-
mances at the cost of increased complexity. Hence, they are becoming less interpretable,
which may cause distrust, potentially limiting clinical acceptance. As these systems
are pervasively introduced to critical domains, such as medical image computing and
computer assisted intervention, it becomes imperative to develop methodologies allow-
ing insight into their decision making. Such methodologies would help physicians to
decide whether they should follow and trust automatic decisions. Additionally, inter-
pretable machine learning methods could facilitate the definition of the legal framework
for their clinical deployment. Ultimately, interpretability is closely related to AI safety
in healthcare.

This year’s iMIMICwas held on September 22, 2022, in Singapore. There was a very
positive response to the call for papers for iMIMIC 2022. We received 24 full papers and
10 were accepted for presentation at the workshop, where each paper was reviewed by at
least three reviewers in an single-blind process. The accepted papers focus on introduc-
ing the challenges and opportunities related to the topic of interpretability of machine
learning systems in the context of medical imaging and computer assisted intervention.
The high quality of the scientific program of iMIMIC 2022 was due first to the authors
who submitted excellent contributions and second to the dedicated collaboration of the
international Program Committee and the other researchers who reviewed the papers.
We would like to thank all the authors for submitting their contributions and for shar-
ing their research activities. We are particularly indebted to the Program Committee
members and to all the reviewers for their precious evaluations, which permitted us
to set up this publication. We were also very pleased to benefit from the participation
of the invited speakers: Ruth Fong, Princeton University, USA, and Alexander Binder,
University of Oslo, Norway. We would like to express our sincere gratitude to these
world-renowned experts. Also, we would like to thank our sponsor this year, Varian, a
Siemens Healthineers company.

August 2022 Mauricio Reyes
Pedro Henriques Abreu

Jaime Cardoso
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Interpretable Lung Cancer Diagnosis
with Nodule Attribute Guidance
and Online Model Debugging

Hanxiao Zhang1, Liang Chen2, Minghui Zhang1, Xiao Gu3, Yulei Qin4,
Weihao Yu1, Feng Yao2, Zhexin Wang2(B), Yun Gu1,5(B),

and Guang-Zhong Yang1(B)

1 Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
{geron762,gzyang}@sjtu.edu.cn

2 Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong
University, Shanghai, China
wangzhexin001@hotmail.com

3 Imperial College London, London, UK
4 Youtu Lab, Tencent, Shanghai, China

5 Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China

Abstract. Accurate nodule labeling and interpretable machine learning
are important for lung cancer diagnosis. To circumvent the label ambi-
guity issue of commonly-used unsure nodule data such as LIDC-IDRI,
we constructed a sure nodule data with gold-standard clinical diagno-
sis. To make the traditional CNN networks interpretable, we propose
herewith a novel collaborative model to improve the trustworthiness of
lung cancer predictions by self-regulation, which endows the model with
the ability to provide explanations in meaningful terms to a human-
observer. The proposed collaborative model transfers domain knowledge
from unsure data to sure data and encodes a cause-and-effect logic based
on nodule segmentation and attributes. Further, we construct a reg-
ularization strategy that treats the visual saliency maps (Grad-CAM)
not only as post-hoc model interpretation, but also as a rational mea-
sure for trustworthy learning in such a way that the CNN features are
extracted mainly from intrinsic nodule features. Moreover, similar nod-
ule retrieval makes a nodule diagnosis system more understandable and
credible to humans-observers based on the nodule attributes. We demon-
strate that the combination of the collaborative model and regulariza-
tion strategy can provide the best performances on lung cancer prediction
and interpretable diagnosis that can automatically: 1) classify the nodule
patches; 2) analyse and explain a prediction by nodule segmentation and
attributes; and 3) retrieve similar nodules for comparison and diagnosis.

Keywords: Lung cancer · Computer-aided diagnosis · Interpretable
AI
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1 Introduction

Today’s AI systems for CT-based lung cancer diagnosis are highly desirable to
gain the trust of clinicians with high-quality data labels and dependable inter-
pretations [6,10,16]. However, based on standard Convolutional Neural Net-
works (CNNs), most recent approaches [14,20,24,26,27] focus on statistical per-
formance of nodule heterogeneity discrimination within a given nodule dataset
LIDC-IDRI [2], instead of model interpretation and generalizability.

Normally, saliency maps [17,31] can retrospectively provide insight and inter-
pret the prediction by highlighting where the model is looking at. However, this
cannot explain its predictions in the same way as a human, who can classify
objects based on a taxonomy of attributes. This inspired us to design a model
which explains its predictions using a set of human-understandable terms. Dur-
ing the annotation of LIDC-IDRI [2,15], nine nodule attributes were assessed
by multiple radiologists, which are Subtlety (Sub), Internal Structure (IS), Cal-
cification (Cal), Sphericity (Sph), Margin (Mar), Lobulation (Lob), Spiculation
(Spi), Texture (Tex), and Malignancy (Mal). Except for Internal Structure (6
categories) and Calcification (4 categories), each of the attributes is rated on a
five-point scale and holds a degree relation (see Fig. 1). Among these attributes,
the rating of Malignancy is especially subjective due to the lack of pathologically-
proven labels [2]. We term this kind of data as ‘unsure(-annotation) data’ by its
nature of uncertainty. In addition, the outline of each nodule is delineated by
multiple radiologists, providing the knowledge of nodule segmentation which,
together with nodule attributes, can be considered as understandable concepts
for experts to interpret model decisions and make evidence-based diagnoses. This
also calls for the need of fair evaluation with a ‘sure dataset’ that has definite
benign-malignant nodule annotations confirmed by pathological examination.

Moreover, saliency maps typically rely on human-experts to examine the
corresponding results. By disclosing the salient information of a ‘black-box’ AI
system using interpretable tools, one can intuitively observe some failure cases
that the diagnosis model fails to assimilate reliable features from nodule regions
(Sect. 4.3 and Fig. 2). These underlying problems are mainly owing to the limita-
tions of deep learning that its model often learns through superficial correlations
for data fitting, especially with limited supervision (e.g. patch-level labels) [5].
Due to data scarcity, such circumstance is common yet easily overlooked in medi-
cal image analysis [19]. However, saliency maps cannot directly adjust the model
if improper regions of attention are highlighted, leading to false and confound-
ing correlations [28]. This encourages us to endow the model with the ability
of self-regulation that automatically justifies the feature attention monitored by
Grad-CAM [17]. To this end, we use a regularization strategy where Grad-CAM
is regarded not only as a post-hoc interpretation, but also as a participant to
debug model paired with the reference of nodule segmentation maps.

The feasibility of leveraging Grad-CAM to debug a model has three consider-
ations: 1) it passes the sanity checks to highlighting attentions while many other
saliency methods are similar to ‘edge detectors’ [1,4]; 2) it applies to a wide
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variety of CNNs for class-discriminative localization [17]; and 3) it is sensitive
to the properties of the model parameters, which helps to update model [1].

Further, attribute-based nodule retrieval has the potential to improve the
interpretability for lung cancer diagnosis, since it searches for nodules in histor-
ically collected data that share similar human-understandable features relative
to the one being diagnosed. This mimics the clinical procedure, where clini-
cians make diagnoses based on their prior knowledge and experience indicated
by nodule attributes and segmentation.

The main contribution of this work includes: 1) establishment of a collab-
orative model for lung cancer prediction guided by the knowledge of nodule
segmentation and attributes; 2) introduction of model debugging with Grad-
CAM to ensure trustworthiness during training and testing; and 3) provision of
interpretable diagnoses for clinicians by attribute-based nodule retrieval.

2 Materials

Unsure Dataset: According to the practice in [18], we excluded CT scans
in LIDC-IDRI [2] with slice thickness larger than 3 mm and selected nodules
identified by at least three radiologists. On top of that, we only involve 919
solid nodules (average Texture score = 5). In our work, we do not consider
the learning and generating of Internal Structure and Calcification because the
inner-classes of these two attributes are extremely imbalanced in this dataset
[23]. Accordingly, except for Texture, our work performs the regression of the
other six attributes whose average ratings hold sequential degrees. Each nodule
segmentation map is generated according to a 50% consensus criterion [13].

Sure Dataset: The sure dataset consists of 617 solid nodules (316 benign/301
malignant) collected from 588 patients’ CT scans retrospectively in Shanghai
Chest Hospital with ethical approval. CT scans in this dataset were acquired by
multiple manufacturers where the slice thickness ranges from 0.50 to 3.00 mm with
an average of 1.14 (± 0.26) mm and the pixel spacing varied from 0.34 to 0.98 mm
with an average of 0.60 (± 0.22) mm. Each nodule was labeled to a definite class
(benign or malignant) confirmed by pathological-proven examination by surgical
resection. The exact spatial coordinate and radius of each nodule were annotated
by two board-certified radiologists and confirmed by one senior radiologist. In this
study, we only include the nodules with a diameter between 3 and 30 mm [3,7].
Note that although there exist some other sure data from NLST trial [21,22], Kag-
gle’s 2017 Data Science Bowl (DSB) competition1 and LUNGx Challenge dataset
[12], we do not include these datasets in our study due to the lack of complete
annotations such as position coordinates and pathologic diagnosis.

3 Methodology

3.1 Collaborative Model Architecture with Attribute-Guidance

In our study, we train a collaborative model (Fig. 1) to jointly conduct nodule
segmentation and attribute regression tasks based on the annotation knowledge
1 https://www.kaggle.com/c/data-science-bowl-2017/.

https://www.kaggle.com/c/data-science-bowl-2017/
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Fig. 1. The schematic illustration of the proposed collaborative model for joint learn-
ing with sure and unsure data. The basic modules (green bottom color) consist of three
parts for feature extraction, nodule segmentation and feature fusion (follow the set-
tings of [28]). In the next stage (yellow), model encodes interactive features for nodule
attribute regression and classification, which are regulated with the rational measure
of model interpretation (blue). (Color figure online)

of unsure data and perform nodule benign-malignant classification learned from
the nodule ground truth of sure data. The proposed collaborative model consists
of a backbone for nodule feature extraction, a module for nodule segmentation,
a fusion module that combines the features from backbone and segmentation
head, and two interactive branches for nodule attribute regression and benign-
malignancy classification.

The combined feature maps outputted by the fusion module are fed into the
two branches for regression and classification tasks, which act in an interactive
way to improve the discriminative ability for nodule prediction by exploring the
correlation from attributes to benign-malignant classes. To this end, we first use a
fully-connected (FC) layer to generate the intermediate embedding features, and
apply another FC layer to output the six attribute scores, which are supervised
by unsure data labels. For sure data classification, we first extract the attribute
features from the first FC layer of the regression branch, and concatenate these
features in the classification branch to make lung cancer prediction.

Different from other works [9,14], we treat the likelihood of Malignancy as
a normal attribute rather than the outcome to determine whether a nodule is
cancerous or not. This is mainly because: 1) the rating of Malignancy does not
have a one-to-one connection with its binary benign-malignant label and retains
an uncontrollable subjective bias [29,30]; 2) derived from the experts’ knowledge,
Malignancy reflects some observable nodule features such as size, shape and
brightness; and 3) training six nodule attributes together can implicitly model
the internal relationship between them. Such interactive architecture enables
more guidance knowledge from nodule segmentation and attributes for sure data
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to make a decision, although sure data do not have such detailed annotations.
We formulate the loss function for the three aforementioned tasks as follows:

L
(un)sure
tasks =gclogxc+(1−gc)log(1−xc)

︸ ︷︷ ︸

Lsure
cls

+1− 2
∑N

i ys
i g

s
i +θ

∑N
i ys

i +
∑N

i gs
i +θ

︸ ︷︷ ︸

Lunsure
seg

+ ‖yr−gr‖22
︸ ︷︷ ︸

Lunsure
reg

(1)

in which, Lsure
cls is a binary cross-entropy (BCE) loss for the main classification

task where xc is the malignant probability after Sigmoid and gc is the benign-
malignant ground truth of sure data; Lunsure

seg is a Dice coefficient loss for the
auxiliary segmentation task where ys

i and gs
i denote the predicted probability

and class label of the ith voxel, N is the number of voxels, and θ is a smoothing
coefficient that prevents division by zero; Lunsure

reg is a mean square error (MSE)
loss for the auxiliary attribute regression task where yr ∈ R

1×n is the regression
output, gr ∈ R

1×n is the average attribute scores rated by radiologists, and n
equals to 6 (sub, sph, mar, lob, spi and mal).

3.2 Debugging Model with Semantic Interpretation

To deal with the crisis of trustworthiness that happens in the reasoning process
of a black-box model, we propose a controllable strategy to constrain the model
to diagnose ‘nodule’ rather than arbitrary voxels in the sense of statistics. With
the assistance of nodule segmentation map, Grad-CAM [17] is used to interpret
and debug model online for trustworthy learning from nodule-relevant features.

Let fk (x, y, z) represents the unit k at 3D spatial location (x, y, z) of feature
maps with length L, width W and height H outputted by the fusion module in
Fig. 1. To obtain the Grad-CAM, we first compute the gradients of the malignant
probability xc with respect to the feature map fk, ∂xc

∂fk
. Then, the gradients are

global-average-pooled to generate the neuron weights:

ωk =
1

L × W × H

∑

x

∑

y

∑

z

∂xc

∂fk (x, y, z)
(2)

Afterwards, due to using Sigmoid instead of Softmax, we perform a weighted
sum of the feature maps fk to obtain the Grad-CAM map with respect to xc

(benign: xc < 0.5; malignant: xc � 0.5):

Grad-CAM (x, y, z) = (xc − 0.5)
∑

k

ωk fk (x, y, z) (3)

which is then rescaled to [0, 1] by min-max normalization.
To enable trustworthy learning, we regulate the Grad-CAM to concen-

trate attention on the nodule regions. Guided by the online generated nod-
ule segmentation map, the average Grad-CAM values of nodule regions and
background regions can be calculated, which are Grad-CAMavg

ndl ∈ [0, 1], and
Grad-CAMavg

bkg ∈ [0, 1]. To drive the model to express the features of target
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object, we enforce Grad-CAMavg
ndl larger than Grad-CAMavg

bkg , which is formu-
lated as follows:

Lsure
debug = ‖xc − 0.5‖l1

max
{

0, Grad-CAMavg
bkg − Grad-CAMavg

ndl + λ
}

(4)

where λ is a margin parameter (empirically set to 0.5 in this work) and
‖xc − 0.5‖l1

is an adaptive coefficient that encodes the uncertainty of xc so that
model can strengthen the optimization for other tasks if a nodule prediction is
of low confidence. In our practical application, we merged the item of (xc − 0.5)
in Eq. (3) and Eq. (4), and made a simplification.

3.3 Explanation by Attribute-Based Nodule Retrieval

To enable the interpretable lung cancer diagnosis, we can provide explainability
through attribute-based nodule retrieval. Based on the nodule attribute scores
xr ∈ R

1×6 generated by the collaborative model, we can retrieve K most similar
nodules within the historically collected data for the one being diagnosed. The
similarity metric used for retrieval is Euclidean Distance. By reading these closely
related historical nodule cases, clinicians can acquire more understandable evi-
dence and clues. Meanwhile, the auxiliary attribute scores work as assist-proofs
for the diagnosis results and support the user’s final decision.

4 Experiments and Results

4.1 Implementation

In data preprocessing, we first conduct lung segmentation to restrict the valid
nodule regions inside the lungs. Then, inspired by the fact that radiologists
change CT window widths and centers for nodule diagnosis, we mix lung window
[−1000, 400 HU] and mediastinal window [−160, 240 HU] together to generate
the nodule inputs. Each window is normalized to the range of [0, 1] and resampled
to 0.5 mm/voxel along all three axes using spline interpolation. The final image
volume extracted for each nodule is a cube of 64×64×64 voxels with 2 channels.
Data augmentation methods include random flipping, rotation and transposing.

All the experiments are implemented in PyTorch with a single NVIDIA
GeForce GTX 1080 Ti GPU and learned using Adam optimizer [11] with the
learning rate of 1e−3 (100 epochs). The batch size is set to 1 and group normal-
ization [25] is used after each convolution operation. 5-fold cross-validation is
performed, with 20% of the training set used for validation and early stopping.

4.2 Quantitative Evaluation

To provide the detailed evaluation of the model performance, we used evaluation
metrics including Accuracy, AUC, F1-score, Sensitivity, Specificity, Precision,
and Precisionb (Precision in benign class). The results summarized in Table 1
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Table 1. Quantitative classification performance of comparison methods and ablation
study evaluated with sure data by 5-fold cross-validation (threshold = 0.5).

Method Accuracy AUC F1-score Sensitivity Specificity Precision Precisionb

Baselines 1 3D ResNet [8] 64.03 73.26 63.09 64.05 64.00 63.63 65.97

2 Transfer learning [30] 67.26 73.99 65.62 64.09 70.27 67.90 67.31

Ablation 3 - 67.29 76.28 65.85 64.40 70.03 69.00 67.24

4 attr 67.28 77.32 66.03 65.40 69.06 68.56 67.94

5 debug 69.39 76.16 67.92 66.44 72.19 69.77 69.30

6 attr+debug 69.20 76.57 68.86 70.74 67.74 67.98 71.49

7 mal+debug (CAM [31]) 68.24 77.29 67.22 67.39 69.04 68.69 69.56

8 attr+concat 69.70 76.89 69.16 69.72 69.67 69.63 71.08

9 attr+concat+debug 71.16 77.85 71.19 72.73 69.67 70.31 72.88

illustrate the performance of nodule benign-malignancy classification tested on
sure data in fair comparison with a normally-used 3D ResNet [8] and a state-
of-the-art method [30] which also integrates the knowledge of unsure data. The
results show that our best model (the last row) has the ability to predict lung
cancer far better than the two baselines, especially for Accuracy, F1-score and
Sensitivity. To analyze the impact of each component of our proposed method,
we conducted ablation studies in the phase of ‘Model Output & Debugging’
in Fig. 1 for: (3) only with basic modules; (4) only adding attribute regression
(FC: 256 × 6); (5) only adding model debugging; (6) without attribute fea-
ture concatenation; (7) only adding one attribute (‘malignancy’, which is the
most popular one) for regression and applying CAM [31] for debugging [28]; and
(8) without model debugging with Grad-CAM. This shows retaining the single
attribute regression or model debugging can barely exceed the performance of
3D ResNet, Transfer learning and the model only with basic modules. The inte-
gration of feature concatenation and model debugging plays an important role in
improving the performance of nodule benign-malignant discrimination and have
a positive effect on reducing overfitting.

4.3 Trustworthiness Check and Interpretable Diagnosis

Trustworthiness Check: Given the fact that there is no guarantee for a black-
box model to learn nodule-relevant features with respect to model outputs, it is
necessary for the human-experts to examine its trustworthiness before consider-
ing whether to adopt the model decisions. As illustrated in Fig. 2, the saliency
maps (Grad-CAM) of the 1st and 2nd rows present inexplicable patterns scat-
tered in nodule patches. This implies that 3D ResNet and Transfer learning
methods fail our trustworthiness check and can be misleading in real clinical
practice. Compared with the 7th method (the 3rd row), our best method (the
4th row) not only appears more effective constraint to extract reliable features
in nodule regions, but also has a better quality of nodule segmentation (yellow
outline) with a light-weight segmentation module. This benefits from the multi-
attribute guidance for nodule discrimination and the superiority of Grad-CAM
for model debugging, with their weights being updated by better achieving both
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Fig. 2. Examples of saliency maps obtained by methods from Table 1. Examples are
taken from the central slices of their 3D patches, where the scores are the predicted
probabilities to each class and yellow contours denote the nodule segmentation outlines.

nodule segmentation and classification performance. Note that, our method does
not completely inhibit feature learning from nodule background according to the
last row.

Fig. 3. Examples of the attribute-based retrieval for similar nodules (top 3, right part),
with respect to the nodule being diagnosed (left part). Attribute scores and 3D seg-
mentation maps are generated by the pre-trained model.

Interpretable Diagnosis: Figure 3 shows the examples of attribute-based nod-
ule retrieval using our best model. For the nodule being diagnosed, our system,
working as the role of an explainer, can generate its segmentation map and
attribute scores, based on which, historically collected nodules with the most
similar characteristics can be automatically recalled to support the clinicians to
make confident diagnoses.
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5 Conclusions

Under the fair evaluation of sure data, this paper introduced a new formulation
to improve the performance of nodule classification, as well as enhance the trust-
worthiness of model reasoning and explainability for lung cancer diagnosis. Our
superiority mainly comes from the effective cooperation of unsure and sure data
knowledge and regulative application of model online debugging with seman-
tic interpretation (Grad-CAM). These innovations empower a diagnosis system
more credible and practical during collaboration with clinicians. We believe our
formulation can be applied to other classification tasks, where the object seg-
mentation (hand-crafted or automatic) and fine-grained attributes are available
to provide regulation for interpretable learning and understandable diagnosis.
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Abstract. The performance of predicting biological markers from brain
scans has rapidly increased over the past years due to the availabil-
ity of open datasets and efficient deep learning algorithms. There are
two concerns with these algorithms, however: they are black-box mod-
els, and they can suffer from over-fitting to the training data due to their
high capacity. Explainability for visualizing relevant structures aims to
address the first issue, whereas data augmentation and pre-processing are
used to avoid overfitting and increase generalization performance. In this
context, critical open issues are: (i) how robust explainability is across
training setups, (ii) how a higher model performance relates to explain-
ability, and (iii) what effects pre-processing and augmentation have on
performance and explainability. Here, we use a dataset of 1,452 scans
to investigate the effects of augmentation and pre-processing via brain
registration on explainability for the task of brain age estimation. Our
multi-seed analysis shows that although both augmentation and regis-
tration significantly boost loss performance, highlighted brain structures
change substantially across training conditions. Our study highlights the
need for a careful consideration of training setups in interpreting deep
learning outputs in brain analysis.

Keywords: Brain age estimation · Deep learning · Explainability ·
Interpretability · Guided backpropagation

1 Introduction

Estimating the age of the brain is essential for detecting abnormalities in brain
development, such as neurodegenerative disease or cognitive impairment [20],
and has been extensively studied over the past years. As with many other data
processing tasks, the advent of deep learning coupled with large, open datasets
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has significantly increased performance in this domain. These high-performance
models, however, suffer from potential overfitting issues given their high capacity
and also need to be applied in an explainability framework to open the “black
box” [19]. A crucial step for avoiding overfitting has been to use various augmen-
tation strategies that are supposed to increase the robustness and generalizability
of the models [30]. Similarly, pre-processing of brain scans, such as anatomical
registration, can be done to “help” the models perform better. Explainability
methods are then used to create activation maps of those pixels/voxels that are
relevant for the model predictions - typically via gradient methods.

We can therefore evaluate deep learning models by their intrinsic metric (i.e.,
the value of its loss function), but also by their explainability maps (i.e., to what
degree do the highlighted regions correspond to known factors of a biological
change). In this context it is important to note that training of deep learning
models is inherently stochastic due to random weight initialization, dropout,
batch size, randomized data augmentations, and stochastic optimization. Hence,
running a different “seed” will typically lead to a different sets of weights - even
for the same, final loss value. With this in mind, two important open questions
remain for gauging the quality of the resulting explanability activations: (i) to
what degree are explainability maps consistent across different seeds? and (ii)
what effects do pre-processing or augmentation strategies have on explainability?

Here, we present to our knowledge the first, larger-scale study to investigate
the effects of seeds, as well as data augmentation and registration in terms of
both performance and explainability for the task of brain age prediction. Over-
all, our contributions are three-fold: first, making use of the stochastic variabil-
ity across seeds we show that data augmentation results in statistically better
(lower) loss compared to non-augmented training for both registered and non-
registered brain scans. Second, we investigate the explainability maps via Guided-
Backpropagation [31], and find that augmentation results in better-interpretable
models, as different seeds share more common voxels. Third, and most impor-
tantly, our study uncovers significant changes in explainability already for one
deep learning framework across seeds and training setups, highlighting the need
for vigilance in interpreting deep learning models for brain age estimation.

2 Related Work

Estimation of age from brain scans evolved from “classic” machine learning
regressors to current deep neural networks. As raw voxel images were not suitable
for the former models to predict age, brain scans were often processed into
features first, which were then regressed onto age [2,4,23,33].

The advent of deep learning and the availability of larger brain datasets also
changed performance in this task: convolutional neural network architectures
showed substantial improvement in age prediction over the past years - both in
2D (analyzing slices of brains, e.g. [13]) or 3D (analyzing the voxels directly, e.g.
[3,5,12,18,25]).

In addition to improvements in model architecture, data augmentation, in
which the model is fed randomly-transformed scans during training, has been
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shown to improve performance and to avoid overfitting [30] (see [3] for brain age
estimation discussion).

Next, explainability has been added to these black-box models [19], since the
prediction of age alone is not sufficient for many applications, as practitioners
would also like to know or cross-check which parts of the brain actually are
involved in aging. Among the many explainability frameworks, GradCAM [29]
and Guided Backpropagation [31] are the most widely-used ones, also in the
context of age estimation [12].

Another critical aspect of deep learning models is their stochastic nature: var-
ious elements of the training are inherently random, which means that different
initializations may lead to different models. Recently, this has led researchers to
analyze several, randomly-initialized models in their tasks. This can be done to
improve performance (ensembling [18]), but also to gauge the statistical robust-
ness of the results [23]. Here, we take the latter approach and launch an in-depth
investigation of explainability across different training setups with seeds used to
better analyze the inherent variability of the resultant models.

3 Methods

This section describes the dataset and training setups for brain age estimation.

Table 1. Left: Dataset demographics. #N = number of scans. Right: age distribution
of train (orange) and test (blue) sets. Y-axis denotes density.

Dataset #N Age Mean(std) Range

IXI [11] 312 50.37 (15.932) 20 - 86
Dallas [24] 273 55.789 (19.478) 20 - 89
Oasis1 [22] 315 65.698 (9.313) 18 - 94
Oasis3 [17] 552 54.048 (21.6965) 42 - 97

Dataset: We used a total of 1,452 brain scans from publicly available datasets
(see Table 1). To better gauge generalizability, we kept the same 10% (146 scans)
as a hold-out test set for all runs. During training, the remaining 90% of the
brains, were split again in a 90 train/10 validation set ratio (with varying seeds)
to introduce variability for each of 100 fixed random seeds.

Preprocessing: All brains were preprocessed starting with skull stripping and
normalization through FreeSurfer 6.0 [8]. We then used dipy [7] to register the
scans onto the standard MNI152 template including symmetric diffeomorphic
registration, removing border voxels outside the brain. All voxels were Min-Max
scaled and the scan was cropped to 96 × 96 × 96 voxels.

Augmentation: To investigate the effects of augmentation, we chose a set of
the three most popular methods: a random mirroring swapped left and right,
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whereas random affine (−10 to 10) and random elastic deformations (number of
control points 7, max displacement 7.5) were used to further increase anatomical
variability. For all augmentations, we used the torchio library [26]. During each
mini-batch, one augmentation method was selected at random.

Training Setup: We used a standard ResNet50 architecture upscaled to 3D [10],
with an Adam optimizer with betas 0.9 and 0.999 and a base-learning rate of
0.0001. The loss was a mean squared error. Given the different data domains,
the ResNet was non-pretrained. For each experiment configuration, 100 different
runs were done on 2 NVIDIA GeForce RTX 2080 Ti via the same 100 random
seeds. Early stopping strategy was applied with 20 epochs of patience triggered
by validation data. Multiple model checkpoints were saved to trace performance
across training. Overall performance for age prediction was only determined on
the hold-out test set. All codes are available at https://github.com/1pha/brain-
age-prediction.

Statistical Testing: To look for the effects of training setups on performance
and epochs, we conducted two-sample t-tests across seeds on the hold-out test set.
From each seed, we chose the last and best metrics during the training procedure.

Explainability: In addition to statistical comparisons, we also used the different
seeds to analyze the consistency of resultant explainability maps. Given a trained
model checkpoint and one brain scan, we applied Guided-Backpropagation
(GBP) [31]. The resultant map of gradients from the mean absolute error (MAE)
loss with respect to the feature map was then upsampled to the original input
brain scan size, 96 × 96 × 96. Obtaining an average explainability map for one
checkpoint started with inferring the 146 brains of the test set, followed by GBP,
z-normalizing, and then averaging.

As the only “objective” metric to compare models is the loss metric, we gath-
ered checkpoints from seeds once they reached one of five pre-defined loss thresh-
olds (called “Phases”, see Table 2 for threshold values), and aggregated their cor-
responding explainability maps. We retrieved two quantities from the maps: con-
sistent voxels and highlighted regions. To create the former, as the explainability
methods assign a higher value to the voxels that influence the prediction, values
lower than the 5% quantile values in the aggregated maps were discarded. In order
to determine consistently-contributing voxels for predicting age, we chose those
that were implicated in more than half of the seeds. The number of agreeing vox-
els was selected as an important metric for the robustness of the explainability
maps. Next, the chosen top 1% percentile values were than aggregated by regions
denoted by the AAL ATLAS [27]. Their results were visualized with nilearn [1].

4 Results

4.1 Performance

Figure 1(a) shows that augmentation overall results in significant improvements
in terms of MAE for both non-registered and registered setups across seed dis-
tributions. This improvement is also visualized in Fig. 1(b), which shows the

https://github.com/1pha/brain-age-prediction
https://github.com/1pha/brain-age-prediction
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evolution of MAE across training for the different setups. As can be expected,
however, augmentation also results in significantly longer training of on average
10 to 13 epochs. We note that prediction performance is somewhat lower com-
pared to other works [18,25], which is likely due to factors including a slightly
smaller dataset as well as less aggressive model optimization. Importantly, how-
ever, our main objective was to focus on relative differences due to augmentation
and pre-processing.

(a) Distribution of best test MAE results
for all seeds.

(b) Mean and standard deviation of MAE
across epochs.

Fig. 1. Mean absolute error statistics on hold-out test dataset. (N.)Aug. = (Non-
)Augmented; (N.)R. = (Non-)Registered

4.2 Voxel Agreement

We expect that voxels that were repeatedly included in the top-quantiles of the
explainability maps across seeds would imply enhanced robustness in explain-
ability. Voxel agreements across conditions are visualized in Fig. 2 - see also
Table 2 for detailed values. Here, we find that the augmented-registered condi-
tion surpassed the other setups. This seems to be a robust finding also throughout
training (Fig. 2), suggesting that this specific training setup identified reliable
voxels early.

For both non-registered conditions (blue curves), the number of agreeing
voxels was considerably lower compared to the registered conditions (red curves).
This is a result that may be expected since models trained with non-aligned
brains would find it harder to localize significant regions.

Similarly, when looking at the effects of augmentation, we also found more
agreement in general across seeds (compare solid versus dashed lines), indicating
that augmentation aids identification of agreeing voxels. Nonetheless, the “effect
size” of augmentation on agreement is lower than that of registration.

4.3 Atlas-Based Analyses

We next conducted an atlas-based analysis using the top-1% saliency values from
each seeds across training procedures and configurations. In this analysis, we chose
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Table 2. Information on explainability maps for different checkpoints across training
setups. Columns denote as follows: #C number of checkpoints reaching given MAE
threshold; #E average training epochs for chosen checkpoints; #L average loss for
chosen checkpoints.

Phase Non-augm./Reg. Augm./Reg.

(Threshold) #C #E #L #C #E #L

1 (32) 100 1.76 29.75 100 1.74 29.82

2 (22) 100 2.03 22.55 100 2.02 22.84

3 (7.27) 100 6.13 7.24 100 10.54 7.23

4 (6.0) 53 36.52 5.92 83 36.86 5.97

5 (5.4) 7 53.42 5.34 26 57.03 5.35

Phase Non-augm./Non-reg. Augm./Non-reg.

(Threshold) #C #E #L #C #E #L

1 (32) 100 1.93 30.35 100 1.89 30.45

2 (22) 100 2.19 24.35 100 2.17 23.95

3 (7.86) 98 16.33 7.83 99 10.78 7.83

4 (6.95) 15 48.66 6.92 96 30.05 6.91

5 (6.1) 0 0 0 23 62.0 6.07

to aggregate all top-1% values, regarding the variability across seeds as noise to be
averaged out. We then averaged the activated voxels in each of the atlas-defined
brain regions and ranked these across training setup and phases - see Fig. 3.

For this type of analysis, the main differences were due to registration setups:
the registered conditions mostly implicated subcortical regions including CSF,
3rd & lateral ventricles, or parahippocampal regions. In contrast, non-registered
models mostly focus on the occipital lobe - cuneus, occipital gyrus and calcarine
fissure. Both setups, however, showed high rankings for the brainstem.

4.4 Region Validation

To check the alignment between the depicted regions from our models and the
brain age literature, here we briefly situate our results in the context of published
results both in the brain imaging and the deep learning literature.

One of the consistently-nominated brain region from previous research is the
lateral ventricle along with the 3rd-ventricle, most notably due to an increase of
width [15,16,32]. This is clearly matching our results in Fig. 3, where these regions
for the augmented-registered model have high-rank with minimal deviations.

Similarly we find reports that cerebellar and brainstem volume shrink with
age [21], alongside a reduction in thalamic volumes [6,14]. Again, all three regions
were implicated in the augmented-registered condition at much higher ranks
compared to other training setups.
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Fig. 2. Evolution of agreement across training. The shaded areas indicate the 95%
confidence interval across seeds.

(a) Ranking Charts of RoI saliency value from Guided-Backpropagation.

(b) Guided-Backpropagation visualization with augmented-registered condi-
tion on the last phase.

Fig. 3. Ranking of region of interest from AAL ATLAS across all seeds.
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Ranked regions were also compared with those other published studies on
brain age prediction with deep learning. [18] and [12] focus on the lateral,
3rd & 4th ventricles and the CSF. The medial temporal structures including
the parahippocampals and brain stem are coherent with [28]. [23] mentioned the
gray matter cortices, whereas our models mainly focused on the subcorticals and
sulci. Overall, significant changes/atrophies in cortical areas could not be found
by our work, even with softened thresholds.

5 Conclusion

In our work, we showed that pre-processing - a process that tries to minimize
anatomical variability for the same voxel - and augmentation - a process that tries
to make the model more sensitive to anatomical variability - both improve the
performance of brain age prediction. Importantly, we showed this by means of a
larger-scale sample that exposed the intrinsic variability of models with different
initialization seeds. Going one step further, we used the resultant explainability
maps at well-defined, comparable loss thresholds to trace the evolution of pre-
dictive brain regions across training phases and training setups. Here, we found
that augmentation on registered brains led to the highest agreement across seeds,
suggesting the most robust explainability results for this condition. The brain
regions implicated in aging for this training setup focused mostly on previously-
implicated subcortical brain areas albeit with little to no activation of cortical
areas. Overall, our results highlight the need for caution in interpreting bio-
markers for brain age prediction (and, similarly, for other tasks) from only one
model - a finding that is also visible in the remarkable variability of brain regions
implicated in other studies.

Overall, we believe that our study is an important first step in making more
replicable and robust statements about bio-markers from brain scans. Future
studies will need to generalize these results with larger brain datasets, test addi-
tional deep learning architectures (as for example transformers [9]), as well as
compare different explainability frameworks.
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Abstract. Decisions of automated systems in healthcare can have far-
reaching consequences such as delayed or incorrect treatment and thus
must be explainable and comprehensible for medical experts. This also
applies to the field of automated Flow Cytometry (FCM) data analysis.
In leukemic cancer therapy, FCM samples are obtained from the patient’s
bone marrow to determine the number of remaining leukemic cells. In
a manual process, called gating, medical experts draw several polygons
among different cell populations on 2D plots in order to hierarchically
sub-select and track down cancer cell populations in an FCM sample.
Several approaches exist that aim at automating this task. However,
predictions of state-of-the-art models for automatic cell-wise classifica-
tion act as black-boxes and lack the explainability of human-created
gating hierarchies. We propose a novel transformer-based approach that
classifies cells in FCM data by mimicking the decision process of med-
ical experts. Our network considers all events of a sample at once and
predicts the corresponding polygons of the gating hierarchy, thus, pro-
ducing a verifiable visualization in the same way a human operator
does. The proposed model has been evaluated on three publicly available
datasets for acute lymphoblastic leukemia (ALL). In experimental com-
parison it reaches state-of-the-art performance for automated blast cell
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identification while providing transparent results and explainable visu-
alizations for human experts.

Keywords: Self-explainable deep learning models · Transformer ·
Flow cytometry gating · Acute lymphoblastic leukemia

1 Introduction

Deep Learning models are applicable to a variety of problems arising in health-
care. However, since wrong predictions can have severe consequences, the inter-
pretability of models in this domain is crucial. The output produced by a model
needs to be transparent, even for clinicians without any knowledge about the
interior of the model. This is also true for the field of automated cell detection
in Flow Cytometry (FCM) data. FCM measures the antigen expression levels
of blood or bone marrow cells. It is used in research as well as in daily clinical
routines for tasks such as immunophenotyping or for monitoring residual num-
bers of cancer cells (minimal residual disease, MRD) during chemotherapy. A
typical sample contains 50–500k cells (also called events) per patient with up
to 15 different features (markers) measured. Each feature corresponds to either
physical properties of a cell (cell size, granularity) or to the expression level of a
specific antigen marker on the cell’s surface [18]. While methods for automated
MRD assessment already reach human expert level performance [30], they lack
interpretability of their predictions. Regardless of a model’s performance, clini-
cians have to manually verify the prediction in a time-consuming process. Using
explainable methods could overcome this issue.

Molnar [19] divides existing explainable AI methods into two categories:
Intrinsically interpretable models are interpretable due to their internal
structures. Linear models, decision trees or naive Bayes are common examples
of this category. Post-hoc interpretation methods analyze a model after
training in order to gather explainable insights. Common examples of this cat-
egory are methods that visualize inner structures of neural networks such as
saliency maps [20] and CNN feature visualization techniques or methods, that
analyze data input and output pairs of a model to build an explaining descrip-
tion such as LIME [23], shapely values [24,25] and partial dependence plots [9].
In [8] a third category self-explaining AI is described, according to which a
self-explaining model yields two outputs: a decision and an explanation of that
decision.

One way to obtain a self-explaining AI system is to reformulate a prediction
task such that the model outputs the same kind of data a domain expert would
create to solve or explain a particular problem instance. Instead of directly pre-
dicting the solution to a given problem instance, the model is asked to predict
a solution path. For instance, to solve a linear equation, one can either directly
state the solution or provide a series of coherent deductive steps that build an
interpretable path to the solution. The latter approach strengthens the trust in
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Fig. 1. All seven gates of the used gating hierarchy are depicted for an arbitrary FCM
sample. Each plot shows a projection of the multidimensional data on two different
features. The automated predicted polygons are drawn black and the human operator-
created ground truth polygons are drawn in a different color per gate.

the correctness of the solution. While not every data domain admits the mod-
eling of such a solution path, in the field of FCM the gating hierarchy can
be chosen as an explainable solution path for the problem of cell identification.
The conventional procedure to analyze FCM data in the clinical routine is to
look at 2D projections of the FCM data and label sub-populations of events by
drawing polygons around them [18]. This procedure is called gating and the
polygons are called gates. As illustrated in Fig. 1, gates act as filters by defining
the events that are subject to further analysis in other 2D projections (events
inside a gate) and the events that will be discarded (events outside the gate).
The target population can then be identified by a boolean combination of gates.
Gates drawn in specific projections are often applied in sequence, such that one
plot only depicts the events selected by the previous plot’s polygon. Sequen-
tially applying these gates allows to identify cancer cell populations in the FCM
sample. The 2D plots of the data space allow to explicitly depict antigen expres-
sions of the cells in the sample, which are known to be relevant in particular
diseases. For example, among other characteristics, CD19 is known to be higher
expressed for B-cells [18]. Gating allows analyzing complex patterns of cell pop-
ulations by a sequence of simpler intermediate steps, which are interpretable
by clinicians. Thus, gating is not only a way for finding biologically meaningful
sub-populations but has also become the standard for the communication and
documentation of FCM sample assessment. Thus it is crucial that the output of
machine learning model is compatible with this standard.

In this work we propose a novel method, based on the transformer network,
that predicts the polygons of a gating hierarchy to identify cancer cells for MRD
assessment in FCM samples of acute lymphoblastic leukemia (ALL) patients.
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Contribution. This work’s contribution is two-fold:

1. A model for ALL blast cell identification is proposed that yields human inter-
pretable visualizations by predicting the polygons of the gating hierarchy
while reaching state-of-the-art performance.

2. The proposed model demonstrates how a self-explaining AI systems can be
obtained in the medical domain by reformulating the objective function to
mimic established human solution procedures.

The remainder of this work is structured as follows. Section 2 gives an
overview of methods for automated MRD assessment in FCM data as well as
of related architectures. In Sect. 3 the proposed model is described in detail.
Section 4 states the conducted experiments, compares the proposed approach to
other methods and discusses the results.

2 Related Work

Numerous approaches have been established to automate the detection of cell
populations in FCM data. The reader is referred to [7] for a more comprehensive
review of current trends in automated FCM data analysis. We divide methods for
the targeted analysis of FCM data into discriminative and holistic approaches.
Approaches that process FCM data event-wise only learn fixed decision regions
and are referred to as discriminative approaches. In contrast, holistic approaches
process a whole FCM sample and, therefore can account for inter-sample vari-
ations, which has been identified as crucial for the correct classification of cell
populations with high variability such as leukemic cells [28].

Discriminative Approaches. In [1] linear discriminant analysis is proposed for
the classification of cell populations as it allows for interpretable performance
and reproducibility. Authors in [12] and [10] use a table of marker expression
patterns in different cell types as a reference dictionary. Methods based on neural
networks include [14,15].

Holistic Approaches. FlowDensity [17] and FlowLearn [16] use an operator’s 2D
gating strategy as a guideline for detecting cell populations. Recently, a one-class
classification approach based on Uniform Manifold Approximation was intro-
duced [29]. Further, Gaussian mixture models (GMM) have proven to be well
suited to model cell populations in FCM data [6,22]. Reiter et al. [22] fit a linear
combination of GMMs with labeled components to an unseen sample by Expec-
tation Maximization (EM). [4,30,31] are approaches based on neural networks
that can process a whole sample at once. Authors in [31] use self-organized maps
to obtain a 2D image that a CNN further processes. CellCNN [4] automatically
learns a concise cell population representation with a 1D-convolution layer fol-
lowed by a pooling layer to aggregate information. More recently, Wödlinger
et al. [30] presented a method based on the transformer architecture [27] that
performs classification on single-cell level, while processing a entire sample in



26 F. Kowarsch et al.

a single neural network forward pass. The attention mechanism of the original
transformer architecture [27] entails a quadratic complexity in the input length
O(n2) of both memory and time, which is unfavorable in the context of FCM
data as one sample can contain up to millions of events. Wödlinger et al. thus
use the concept of the Induced Set Attention Block (ISAB) as introduced in the
set-transformer [13] that reduces the complexity to O(n).

Explainable Approaches. With respect to explainability of results, [10,16,17]
can be listed as their results rely on predicted thresholds and hence are inter-
pretable. Algorithmic Population Descriptions (ALPODS), as proposed in [26],
is designed to provide explainability by fuzzy reasoning rules in a Bayes decision
network expressed in visualizations similar to those generated by domain experts.
Another approach related to explainable AI and the method presented in this
work is GateFinder [2]. Its goal is to find the shortest yet most discriminative
series of 2D polygon gates that lead to a previously specified target population.
Although the goal of GateFinder is not targeted analysis, the underlying idea
of mimicking the gating strategy of domain experts is similar to the approach
presented.

3 Methods

The proposed method consists of a trained neural network that is based on the
transformer architecture. The model expects a single FCM sample as input, i.e.
a set of events E ∈ R

N×m. N defines the number of events (50–500 × 105)
and m denotes the number of markers (typically 10–20). The network’s output
are 7 polygons defined by P = 20 2D points each. The polygons describe the
gating hierarchy for MRD assessment in ALL data, which implies the cell’s class
membership. Table 1 displays the predicted gates and the used markers.

Fig. 2. The network architecture consists of the encoder, decoder, prediction head and
the resulting polygons that form the gating hierarchy for a given input FCM sample.
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Table 1. The gates and their used features of the predicted gating hierarchy

Name Syto Singlets Intact CD19 Blast-A Blast-B Blast-C

Marker y-Axis FSC-A SSC-A SSC-A SSC-A CD10 CD10 CD10

Marker x-Axis Syto41 FSC-W FSC-A CD19 CD45 CD20 CD38

3.1 Architecture

As depicted in Fig. 2, the model’s architecture follows an encoder-decoder schema
as in [5]. A set-transformer similar to [30] is used for the encoder, consisting of two
ISAB blocks. The decoder design is inspired by [5]: for each predicted polygon,
four static object queries are learned. The object queries are applied to the
encoder’s output via cross attention, which is followed by a self-attention layer.
Each element of the 7-element long decoder output set is passed through a two-
layer fully connected neural network called the prediction head. The resulting
20 2D points per element are used as gate polygon for each of the 7 gates in the
ALL gating hierarchy. We empirically evaluated that 20 points are most suitable
for the given task. More than 20 points only slightly increase the performance
(max 1% median F1-Score) while drastically increasing the network size (see
Table 4).

3.2 Preprocessing

The operator-annotated polygons comprise two issues regarding their usage as
ground truth for training: polygons are typically only roughly estimated, with
borders often far away from the nearest events inside the polygon. While this does
not affect the effectiveness of the procedure during clinical routine, it introduces a
source of ambiguity in the gating process by perturbing the relationship between
polygon position and data points. Secondly, for different FCM samples different
feature combinations for some of the plots in the gating hierarchy were used
by the operator since different operators may use slightly different strategies to
track down blast events. However, the model predicts the polygons for a statically
predefined set of 2D plot feature combinations. The selected set reflects the most
common feature combinations for each gate in the given datasets. We address
both issues by computing the convex hull of all events inside the polygon during
preprocessing for each gate. The resulting hull serves as adapted training ground
truth, which can be created for any required combination of 2D plot features
while tightly enclosing the events inside.

3.3 Loss Function

Lpoly(p̂, p) =
P∑

i

‖p̂σ̂(i), pi‖1 with σ̂ = argmin
σ∈SP

P∑

i

‖pi, p̂i‖1 (1)
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The model is trained in a supervised manner. Since the number of polygon
vertices differs from sample to sample in the ground truth but is fixed to P = 20
for the model prediction, we artificially insert or remove points in the ground
truth polygons to obtain P points. Equation 1 states the loss for a predicted
polygon p̂ where σ̂ ∈ SP defines a permutation of the polygon points such that
every predicted point is matched to one corresponding ground truth point using
the Hungarian method [11]. The distance between two points is calculated via
L1 norm. Similar to [3,5] we experienced, an auxiliary loss benefits the model
convergence. The auxiliary loss performs the same computation as the main loss
but after each intermediate layer the following intermediate layers are skipped.

3.4 Data Augmentation

To address the low number of training samples (e.g.: ≤ 60 for the BUE dataset),
to overcome inter-laboratory differences and to facilitate learning the relation-
ship between polygon and cell cluster position, four different data augmentation
steps are applied to the FCM samples during training: For all events and poly-
gons random linear translations of randomly selected features are applied. For
randomly selected gates linear scaling (stretching and squeezing in relation to
the center), linear translation and shearing of polygons and their corresponding
events are used. Further information is given in the Supplementary material 7.

4 Experiments

The same experiments as in [30] have been conducted. In all experiments the
proposed model’s ability to generalize to new unseen FCM samples (in most
cases from different institutes) is tested. The model is implemented in Pytorch
1.10 [21] and trained using the Adam optimizer with a batch size of 12 and a
learning rate of 1×10−3. It consists of 32892 parameters and has been trained on
a NVIDIA Gefore RTX 2080 Ti. One model forward pass takes ≈400 ms on the
used GPU and ≈3000 ms on an Intel i7-10750H CPU. Details about the training
setup can be found in the provided code on GitHub1.

4.1 Data

The proposed model is evaluated on four different datasets collected across three
distinct institutions, measured on three different FCM devices, consisting of over
600 samples in total. From all four datasets, the three datasets VIE14, BLN, BUE
are publicly available2. All samples have been obtained from the bone marrow
of pediatric B-ALL patients on day 15 after induction therapy. The following
markers are used in the experiments as they are shared upon all samples: CD10,
CD19, CD20, CD34, CD38, CD45 and Syto41 as well as FSC-A, FSC-W and

1 Github Repository.
2 flowrepository.org.

https://github.com/CaRniFeXeR/self_explainable_transformerflow
https://flowrepository.org/id/FR-FCM-ZYVT
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SSC-A. For a detailed dataset description, the reader is referred to [22] for VIE14,
BLN and BUE, and to [30] for VIE20. The experiments have been evaluated by
training one network for each dataset.

4.2 Results

Table 2 displays the results compared to [22] and [30]. For each experiment the
cell classification performance (blast cell vs. non-blast cell) of each sample is
summarized with the mean and median F1-Score of all samples in the corre-
sponding test set. The results show that the proposed model is able to reach
state-of-the-art performance for blast identification tested on data across differ-
ent institutes. However, the model under-performs on small training datasets
such as BLN and BUE with 70 and 60 training samples. In these cases, the
model overfitted during training and was not able to generalize well onto new
samples from different sources: Qualitatively inspections revealed that while the
cluster positions were mostly correctly predicted, the model failed to predict the
correct form of unseen polygon shapes.

Table 2. Experiment results of the proposed method compared to GMM [22] and
set-transformer [30]. The table reports mean F1-Score/median F1-Score.

Train Test GMM [22] Transformer [30] Proposed

VIE14 BLN 0.72/0.81 0.77/0.90 0.79/0.88

BUE 0.75/0.90 0.82/0.95 0.78/0.89

VIE20 0.77/0.90 0.80/0.91 0.78/0.87

VIE20 BLN 0.53/0.58 0.68/0.83 0.73/0.85

BUE 0.74/0.88 0.75/0.88 0.82/0.92

VIE14 0.80/0.91 0.84/0.93 0.73/0.88

BLN BUE 0.65/0.76 0.66/0.87 0.69/0.84

VIE14 0.48/0.48 0.82/0.92 0.58/0.73

VIE20 0.53/0.60 0.82/0.91 0.50/0.55

BUE BLN 0.62/0.73 0.64/0.78 0.57/0.69

VIE14 0.66/0.73 0.83/0.92 0.62/0.69

VIE20 0.67/0.78 0.79/0.90 0.65/0.75

The explainable and hierarchical processing of FCM samples in the proposed
model elicits two main benefits: first, during model development, unwanted
model behaviors such as learned biases can be spotted and addressed. For
instance, all applied data augmentation steps were motivated during inspec-
tion of the prediction results in the early development stages. Secondly, during
inference, the model’s prediction can be interpreted. For example, a medical
expert can spot and correct a fault in the blast cell classification due to a miss-
positioning of a specific polygon in the predicted hierarchy. Take, for example,



30 F. Kowarsch et al.

the CD10CD45-Blast-Gate in Fig. 1: a clinician could adjust the predicted poly-
gon such that no events of the seconded cluster are included in the gate.

5 Conclusion

This work proposes a novel transformer-based approach for blast cell detection in
FCM samples of ALL patients. The model visually reveals which cells it identifies
as blast cells by predicting the polygons of the gating hierarchy for a given FCM
sample. This imitates the construction of a gating hierarchy by a human expert
in clinical practice and therefore explains why certain events are detected as blast
cells. While the proposed model fails to generalize well when trained on small
datasets (≤70 samples), its performance is comparable to non-explainable state-
of-the-art approaches on more populated datasets (≥180 samples). Future work
could address this issue by pretraining the model on artificially generated data.
Since the model mimics the decision process of domain experts, it is suitable to
be included in the clinical gating routine in the future. The proposed model is
designed for pediatric ALL, but the underlying concept could be applied to any
disease for which standardized FCM gating hierarchies exist.
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Abstract. Feature-based self-explanatory methods explain their classi-
fication in terms of human-understandable features. In the medical imag-
ing community, this semantic matching of clinical knowledge adds signif-
icantly to the trustworthiness of the AI. However, the cost of additional
annotation of features remains a pressing issue. We address this problem
by proposing cRedAnno, a data-/annotation-efficient self-explanatory
approach for lung nodule diagnosis. cRedAnno considerably reduces the
annotation need by introducing self-supervised contrastive learning to
alleviate the burden of learning most parameters from annotation, replac-
ing end-to-end training with two-stage training. When training with hun-
dreds of nodule samples and only 1% of their annotations, cRedAnno
achieves competitive accuracy in predicting malignancy, meanwhile sig-
nificantly surpassing most previous works in predicting nodule attributes.
Visualisation of the learned space further indicates that the correlation
between the clustering of malignancy and nodule attributes coincides
with clinical knowledge. Our complete code is open-source available:
https://github.com/diku-dk/credanno.

Keywords: Explainable AI · Lung nodule diagnosis · Self-explanatory
model · Intrinsic explanation · Self-supervised learning

1 Introduction

Lung cancer is one of the leading causes of cancer deaths worldwide due to its
high morbidity and low survival rate [9]. In clinical practice, accurate charac-
terisation of pulmonary nodules in CT images is an essential step for effective
lung cancer screening [28]. Modern deep-learning-based “black box” algorithms,
although achieving accurate classification performance [1], are hardly acceptable
in high-stakes medical diagnosis [26].
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Fig. 1. Concept illustration. (a) Previous works are trained end-to-end, where all
parameters are learned from the annotations. (b) Our proposed cRedAnno uses two-
stage training, where most of the parameters are learned during the first stage in a
self-supervised manner. Therefore, in the second stage, only few annotations are needed
to train the predictors.

Amongst recent efforts to develop explainable AI [4] to bridge this gap [24,26],
post-hoc approaches that attempt to explain such “black boxes” are not deemed
trustworthy enough [18]. In contrast, feature-based self-explanatory methods are
trained to first predict a set of well-known human-interpretable features, and
then use these features for the final classification (Fig. 1a) [15,22,23]. This is
believed to be especially valuable in medical applications because such semantic
matching towards clinical knowledge tremendously increases the AI’s trustwor-
thiness [20]. Unfortunately, the required additional annotation on features still
limits the applicability of this approach in the medical domain.

This paper aims to minimise additional annotation need for predicting malig-
nancy and nodule attributes in lung CT images. We achieve this by separating
the training of model’s parameters into two stages, as shown in Fig. 1b. In Stage
1, the majority of parameters are trained using self-supervised contrastive learn-
ing [6,11,12] as an encoder to map the input images to a latent space that
complies with radiologists’ reasoning for nodule malignancy. In Stage 2, a small
random portion of labelled samples is used to train a simple predictor for each
nodule attribute. Then the predicted human-interpretable nodule attributes are
used jointly with the extracted features to make the final classification.

Our experiments on the publicly available LIDC dataset [2] show that with
fewer nodule samples and only 1% of their annotations, the proposed approach
achieves comparable or better performance compared with state-of-the-art meth-
ods using full annotation [7,13,15,16,22], and reaches approximately 90% accu-
racy in predicting all nodule attributes simultaneously. By visualising the learned
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space, the extracted features are shown to be highly separable and correlated
well with clinical knowledge.

2 Method

As the illustrated concept in Fig. 1b, the proposed approach consists of two parts:
unsupervised training of the feature encoder and supervised training to predict
malignancy with human-interpretable nodule attributes as explanations.

Unsupervised Feature Extraction. Due to the outstanding results exhibited
by DINO [6], we adopt their framework for unsupervised feature extraction,
which trains (i) a primary branch {E,H}θpri , composed by a feature encoder E
and a multi-layer perceptron (MLP) prediction head H, parameterised by θpri;
(ii) an auxiliary branch {E,H}θaux , which is of the same architecture as the
primary branch, while parameterised by θaux. After training only the primary
encoder EθE

pri
is used for feature extraction.

The branches are trained using augmented image patches of different scales to
grasp the core feature of a sample. For a given input image x, different augmented
global views V g and local views V l are generated [5]: x → v ∈ V g ∪ V l. The
primary branch is only applied to the global views vpri ∈ V g, producing K dimen-
sional outputs zpri = EθE

pri
◦ HθH

pri
(vpri); while the auxiliary branch is applied to

all views vaux ∈ V g ∪V l, producing outputs zaux = EθE
aux

◦HθH
aux

(vaux) to predict
zpri. To compute the loss, the output in each branch is passed through a Soft-
max function scaled by temperature τpri and τaux: paux = softmax(zaux/τaux),
ppri = softmax((zpri−μ)/τpri), where a bias term μ is applied to zpri to avoid col-
lapse [6], and updated at the end of each iteration using the exponential moving
average (EMA) of the mean value of a batch with batch size N using momentum
factor λ ∈ [0, 1): μ ← λμ + (1 − λ) 1

N

∑N
s=1 z

(s)
pri .

The parameters θaux are learned by minimising the cross-entropy loss between
the two branches via back-propagation [12]:

θaux ← arg min
θaux

∑

vpri∈V g

∑

vaux∈V g∪V l

vaux �=vpri

L (ppri, paux) , (1)

where L(p1, p2) = −∑C
c=1 p

(c)
1 log p

(c)
2 for C categories. The parameters θpri of

the primary branch are updated by the EMA of the parameters θaux with momen-
tum factor m ∈ [0, 1):

θpri ← mθpri + (1 − m)θaux. (2)

In our implementation, the feature encoders E use Vision Transformer (ViT)
[10] as the backbone for their demonstrated ability to learn more generalisable
features. Following the basic implementation in DeiT-S [25], our ViTs consist
of 12 layers of standard Transformer encoders [27] with 6 attention heads each.
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The MLP heads H consist of three linear layers (with GELU activation ) with
2048 hidden dimensions, followed by a bottleneck layer of 256 dimensions, l2
normalisation and a weight-normalised layer [21] to output predictions of K =
65536 dimensions, as suggested by [6].

Supervised Prediction. After the training of feature encoders is completed,
the learned parameters θEpri in the primary encoder are frozen and all other
components are discarded. Given an image x with malignancy annotation ycls
and explanation annotation y

(i)
exp for each nodule attribute i = 1, · · · ,M , its

feature is extracted via the primary encoder: f = EθE
pri

(x).

The prediction of each nodule attribute i is generated by a predictor G
(i)
exp:

z
(i)
exp = G

(i)
exp(f). Then the malignancy prediction zcls is generated by a predictor

Gcls from the concatenation (⊕) of extracted features f and predictions of nodule
attributes:

zcls = Gcls(f ⊕ z(1)exp ⊕ · · · ⊕ z(M)
exp ). (3)

The predictors are trained by minimising the cross-entropy loss between the
predictions and annotations: G

∗(i)
exp = arg minL(y(i)

exp, softmax(z
(i)
exp)), G∗

cls =
arg min L(ycls, softmax(zcls)).

3 Experimental Results

Data Pre-processing. We follow the common pre-processing procedure of
the LIDC dataset [2] summarised in [3]. Scans with slice thickness larger than
2.5mm are discarded for being unsuitable for lung cancer screening according to
clinical guidelines [14], and the remaining scans are resampled to the resolution
of 1mm3 isotropic voxels. Only nodules annotated by at least three radiologists
are retained. Annotations for both malignancy and nodule attributes of each
nodule are aggregated by the median value among radiologists. Malignancy score
is binarised by a threshold of 3: nodules with median malignancy score larger
than 3 are considered malignant, smaller than 3 are considered benign, while the
rest are excluded [3]. For each annotation, only a 2D patch of size 32 × 32 px is
extracted from the central axial slice. Although an image is extracted for each
annotation, our training(70%)/testing(30%) split is on nodule level to ensure no
image of the same nodule exists in both training and testing sets. This results in
276/242 benign/malignant nodules for training and 108/104 benign/malignant
nodules for testing.

Training Settings. Here we briefly state our training settings and refer to our
code repository for further details. The training of the feature extraction follows
the suggestions in [6]. The encoders and prediction heads are trained for 300
epochs with an AdamW optimiser and batch size 128, starting from the weights
pretrained unsupervisedly on ImageNet [19]. The learning rate is linearly scaled
up to 0.00025 during the first 10 epochs and then follows a cosine scheduler to
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Table 1. Prediction accuracy (%) of nodule attributes and malignancy.
The best in each column is bolded for full/partial annotation respectively. Dashes
(-) denote values not reported by the compared methods. Results of our proposed

cRedAnno are highlighted . Observe that cRedAnno in almost all cases outperforms
other methods in nodule attributes significantly, and also shows robustness w.r.t. con-
figurations, meanwhile using the fewest nodules and no additional information.

Nodule attributes

Sub Cal Sph Mar Lob Spi Tex
Malignancy #nodules

No additional

information

Full annotation

HSCNN [22] 71.90 90.80 55.20 72.50 - - 83.40 84.20 4252 ✗c

X-Caps [15] 90.39 - 85.44 84.14 70.69 75.23 93.10 86.39 1149 ✓

MSN-JCN [7] 70.77 94.07 68.63 78.88 94.75 93.75 89.00 87.07 2616 ✗d

MTMR [16] - - - - - - - 93.50 1422 ✗e

cRedAnno (50-NN) 94.93 92.72 95.58 93.76 91.29 92.72 94.67 87.52

cRedAnno (250-NN) 96.36 92.59 96.23 94.15 90.90 92.33 92.72 88.95

cRedAnno (trained) 95.84 95.97 97.40 96.49 94.15 94.41 97.01 88.30

730 ✓

Partial annotation

WeakSup [13] (1:5a ) 43.10 63.90 42.40 58.50 40.60 38.70 51.20 82.40

WeakSup [13] (1:3a ) 66.80 91.50 66.40 79.60 74.30 81.40 82.20 89.10
2558 ✗f

cRedAnno (10%b, 50-NN) 94.93 92.07 96.75 94.28 92.59 91.16 94.15 87.13

cRedAnno (10%b, 150-NN) 95.32 89.47 97.01 93.89 91.81 90.51 92.85 88.17

cRedAnno (1%b, trained) 91.81 93.37 96.49 90.77 89.73 92.33 93.76 86.09

730 ✓

a1 : N indicates that 1
1+N

of training samples have annotations on nodule attributes.
(All samples have malignancy annotations.)
bThe proportion of training samples that have annotations on nodule attributes and
malignancy.
c3D volume data are used.
dSegmentation masks and nodule diameter information are used. Two other traditional
methods are used to assist training.
eAll 2D slices in 3D volumes are used.
fMulti-scale 3D volume data are used.

decay till 10−6. The temperatures for the two branches are set to τpri = 0.04,
τaux = 0.1. The momentum factor λ is set to 0.9, while m is increased from
0.996 to 1 following a cosine scheduler. The predictors G

(i)
exp and Gcls are jointly

trained for 100 epochs with SGD optimisers with momentum 0.9 and batch size
128. The learning rate follows a cosine scheduler with initial value 0.0005 when
using full annotation and 0.00025 when using partial annotation.

The data augmentation for encoder training adapts from BYOL [11] and
includes multi-crop as in [5]. During the training of the predictors, the input
images are augmented following previous works [1,3] on the LIDC dataset.

3.1 Prediction Performance of Nodule Attributes and Malignancy

Two categories of experiments are conducted to evaluate the prediction accu-
racy of both malignancy and each nodule attribute: (i) using k-NN classifiers
to assign a label to each feature f extracted from testing images by comparing
the dot-product similarity with the ones extracted from training images, with-
out any training; (ii) predicting via trained predictors G

(i)
exp and Gcls. For sim-

plicity, predictors G
(i)
exp and Gcls only use one linear layer. Both k-NN classifier
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Fig. 2. Probability of the number of correctly predicted nodule attributes.
The probabilities of other methods are calculated using their reported prediction accu-
racy of individual nodule attributes, as in Table 1, where not-reported values are all
assumed to be 100% accuracy. Observe that cRedAnno shows a significantly larger
probability of simultaneously predicting all 8 nodule attributes correctly.

and trained predictors are evaluated with full/partial annotation, where partial
annotation means only a certain percentage of training samples have annotations
on nodule attributes and malignancy. Each annotation is considered indepen-
dently [22]. The predictions of nodule attributes are considered correct if within
±1 of aggregated radiologists’ annotation [15]. Attribute “internal structure” is
excluded from the results because its heavily imbalanced classes are not very infor-
mative [7,13,15,16,22].

The overall prediction performance is summarised in Table 1, comparing with
the state-of-the-art. In summary, the results show that our proposed approach
can reach simultaneously high accuracy in predicting malignancy and all nod-
ule attributes. This increases the trustworthiness of the model significantly and
has not been achieved by previous works. More specifically, when using only 1%
annotated samples, our approach achieves comparable or much higher accuracy
compared with all previous works in predicting the nodule attributes. Mean-
while, the accuracy of predicting malignancy approaches X-Caps [15] and already
exceeds HSCNN [22], which uses 3D volume data. Note that in this case we
significantly outperform WeakSup(1:5) [13], which uses 100% malignancy anno-
tations and 16.7% nodule attribute annotations. When using full annotation,
our approach outperforms most of the other compared explainable methods in
predicting malignancy and all nodule attributes, except “lobulation”, where ours
is merely worse by absolute 0.6% accuracy. It is worth mentioning that even in
this case, we still use the fewest samples: only 518 among the 730 nodules are
used for training. In addition, the consistent decent performance also indicates
that our approach is reasonably robust w.r.t. to the value k in k-NN classifiers.

To further validate the prediction performance of nodule attributes, for visual
clarity, we select 3 representative configurations of our proposed approach and
compare them with others in Fig. 2. It can be clearly seen that using our app-
roach, approximately 90% nodules have at least 7 attributes correctly predicted.
In contrast, WeakSup(1:5) although reaches over 82.4% accuracy in malignancy
prediction, shows no significant difference compared to random guesses in pre-
dicting nodule attributes – this shows the opposite of trustworthiness.
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Fig. 3. t-SNE visualisation of features extracted from testing images. Data
points are coloured using ground truth annotations. Malignancy shows highly separable
in the learned space, and correlates with the clustering in each nodule attribute.

3.2 Analysis of Extracted Features in Learned Space

We hypothesise the superior performance of our proposed approach can attribute
to the extracted features. So we use t-SNE [17] to further visualise the learned
feature. Feature f extracted from each testing image is mapped to a data point
in 2D space. Figure 3a to 3h correspond to these data points coloured by the
ground truth annotations of malignancy to nodule attribute “texture”, respec-
tively. Figure 3a shows that the samples are reasonably linear-separable between
the benign/malignant samples even in this dimensionality-reduced 2D space.
This provides evidence of our good performance.

Furthermore, the correlation between the nodule attributes and malignancy
can be found intuitively in Fig. 3. For example, the cluster in Fig. 3c indicates
that solid calcification contributes negatively to malignancy. Similarly, the clus-
ters in Fig. 3e and Fig. 3h indicate that poorly defined margin correlates with
non-solid texture, and both of these contribute positively to malignancy. These
findings are in accord with the diagnosis process of radiologists [28] and thus
further support the trustworthiness of the proposed approach.

3.3 Ablation Study

Validation of Components. We ablate our proposed approach by comparing
with different architectures for encoders E, training strategies, and whether to
use ImageNet-pretrained weights. The results in Table 2 show that ViT archi-
tecture benefits more from the self-supervised contrastive training compared to



40 J. Lu et al.

Table 2. Accuracy of malignancy pre-
diction (%). All annotations are used
during training. The highest accuracy is
bolded. The result of our proposed setting
is highlighted. Only cRedAnno and con-
ventional end-to-end trained CNN achieve
higher than 85% accuracy.

Arch #params Training

strategy

ImageNet

pretrain

Acc

ResNet-50 23.5M End-to-end ✗ 86.74∗

Two-stage ✗ 70.48

Two-stage ✓ 70.48

ViT 21.7M End-to-end ✗ 64.24

Two-stage ✗ 79.19

Two-stage ✓ 88.30

∗ This is a representative setting and performance

of previous works using CNN architecture.

Fig. 4. Annotation reduction. Line
colours correspond to settings in Table 2:
“Baseline” uses ResNet-50 architecture
and is trained end-to-end from random
initialisation. cRedAnno shows strong
robustness when annotation reduced.

ResNet-50 as a CNN representative. This observation is in accord with the find-
ings in [6,8]. ViT’s lowest accuracy in end-to-end training reiterates its require-
ment for a large amount of training data [10]. Starting from the ImageNet-
pretrained weights is also shown to be helpful for ViT but not ResNet-50, prob-
ably due to ViT’s lack of inductive bias needs far more than hundreds of training
samples to compensate [10], especially for medical images. In summary, only the
proposed approach and conventional end-to-end training of ResNet-50 achieve
higher than 85% accuracy of malignancy prediction.

Annotation Reduction. We further plot the malignancy prediction accuracy
of the aforementioned winners as the annotations are reduced on a logarith-
mic scale. As shown in Fig. 4, cRedAnno demonstrates strong robustness w.r.t.
annotation reduction. The accuracy of the end-to-end trained ResNet-50 model
decreases rapidly to 74.38% when annotations reach only 1%. In contrast, the
proposed approach still remains at 86.09% accuracy, meanwhile high accuracy
for predicting nodule attributes, as shown in Table 1.

4 Conclusion

In this study, we propose cRedAnno to considerably reduce the annotation need
in predicting malignancy, meanwhile explaining nodule attributes for lung nodule
diagnosis. Our experiments show that even with only 1% annotation, cRedAnno
can reach similar or better performance in predicting malignancy compared
with state-of-the-art methods using full annotation, and significantly outper-
forms them in predicting nodule attributes. In addition, our proposed approach
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is the first to reach over 94% accuracy in predicting all nodule attributes simul-
taneously. Visualisation of our extracted features provides novel evidence that
in the learned space, the clustering of nodule attributes and malignancy is in
accord with clinical knowledge of lung nodule diagnosis. Yet the limitations of
this approach remain in its generalisability to be validated in other medical
image analysis problems.
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Abstract. Interpretability of deep learning is widely used to evaluate
the reliability of medical imaging models and reduce the risks of inac-
curate patient recommendations. For models exceeding human perfor-
mance, e.g. predicting RNA structure from microscopy images, inter-
pretable modelling can be further used to uncover highly non-trivial pat-
terns which are otherwise imperceptible to the human eye. We show that
interpretability can reveal connections between the microscopic appear-
ance of cancer tissue and its gene expression profiling. While exhaustive
profiling of all genes from the histology images is still challenging, we esti-
mate the expression values of a well-known subset of genes that is indica-
tive of cancer molecular subtype, survival, and treatment response in
colorectal cancer. Our approach successfully identifies meaningful infor-
mation from the image slides, highlighting hotspots of high gene expres-
sion. Our method can help characterise how gene expression shapes tissue
morphology and this may be beneficial for patient stratification in the
pathology unit. The code is available on GitHub.

Keywords: Interpretability · Histopathology · Transcriptomics ·
Attention

1 Introduction

The wide variability of existing interpretability methods, in the form of post-hoc
explanations [1,2] or models with ad-hoc transparency constraints [3], has been
mainly dedicated to ensuring the safety and reliability of opaque deep neural
networks. In medical applications such as digital pathology, saliency maps high-
lighted the relevance of anomalous nuclei in the detection of tumorous tissue [4],
and concept-based analyses confirmed that clinically relevant measures on nuclei
area and appearance are learned as intermediate features [5]. Undesired hidden
biases and behaviours were detected and corrected to improve model perfor-
mance [6–8]. Only recently, interpretability techniques were proposed to uncover
unknown insights about models with super-human performance, e.g. the algo-
rithm AlphaZero [9] defeating the world chess master. Similarly, deep learning
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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models can predict biomarkers invisible to the human eye [10,11]. For instance,
DNA mutations [10] and gene expression profiles were inferred from hematoxylin
and eosin (H&E) stained whole slide images (WSIs) [11], demonstrating that
complex transcriptomic patterns can be captured from images without the sup-
port of sophisticated sequencing machines.

While ensuring patient safety remains the top priority in high-risk clinical
environments [12,13], scientific discovery may benefit from unravelling the com-
plex association between RNA expression and tissue microscopy. Identifying the
histological patterns that are predictive of gene expression could have an impor-
tant impact on diagnostic routines, facilitating early patient stratification and
aiding the identification of molecular subtypes that are informative of progno-
sis, survival, and treatment response [14]. For example, clinical trials show that
some colorectal (CRC) cancer patients with hypermutated microsatellite insta-
bility (MSI) may respond better to immunotherapy than chemotherapy [15].

Our central question is whether we can clarify which regions in CRC H&E
slides are the most informative about RNA transcriptomics by using a train-
able attention mechanism [16]. It is yet unclear whether the existing algo-
rithms [11,17] infer the bulk average expression of RNA from hotspots of high
expression or as a uniform distribution on the entire slide. To obtain inter-
pretable insights, we learn the expression of individual genes rather than the
entire transcriptomic profile at once, training several attention-based multiple
instance regression models independently. This enables a fine grained analy-
sis of each gene individually and reduces the need for extremely large dataset
sizes [11,17] In our results, the attention mechanism brings transparency to the
morphological patterns in the tissue that are learned by the model. Hotspots
of high expression are highlighted in most of our visualisations and hypotheses
can be formulated to relate the histological appearance of tissue to varying gene
expression. We show that meaningful information is successfully filtered from the
WSIs by the attention, leading to more accurate gene expression estimates and
patient stratification. A reduction of 10% in the regression error is seen across
genes and patients.

2 Methods

2.1 Datasets

We use images of colon adenocarcinoma (COAD) and rectal adenocarcinoma
(READ) that are publicly available together with matched transcriptomic pro-
files at The Cancer Genome Atlas (TCGA)1. Each biopsy sample is split into
three adjacent portions, two of which are used to generate H&E-stained frozen
tissue slides, called top-section (TS) and bottom-section (BS), used to verify
the presence of sufficient tumour content before sequencing. The central section
is used for RNA sequencing. Differently from [11,17], we focus on frozen tissue
sections rather than on diagnostic slides, since they are directly adjacent to the

1 https://portal.gdc.cancer.gov, as accessed in June 2022.

https://portal.gdc.cancer.gov
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sequenced tissue, and thus constitute the best available representation of the
RNA profiles [18]. The WSIs are preprocessed with HistoQC [19] to mask out
the background and blurred locations.

Gene expression profiles are obtained from the UCSC Xena Browser [20],
which links to the Genomic Data Commons [21] version of the TCGA COAD
and READ projects. The High Throughput-Sequencing (HT-Seq) raw counts
are log2-based Fragments per Kilobase of transcript per Million mapped reads
(FPKM) normalised. Because of a distributional shift among institutions, we
retain all the patient measurements from a single institution, ignoring duplicates
for 23 patients. We focus on the 45 genes in the ColoType signature [22], a gene
set that is predictive of CRC prognosis [23] and clinico-pathological variables [24].
The list of genes is in the Appendix Table 1. Single-cell RNA sequencing data
are also used for validation2. Namely, we use the profiling of 969 single-cells from
the CRC resected primary tumours of 11 patients in [25].

As in [26], we exclude patients in preoperative therapy and the rare subtypes
of neuroendocrine and signet cell tumours. In total, we use 774 WSIs at 20X
magnification from 364 patients. The test set is built by selecting randomly 82
patients and the remaining 282 patients are used for five-fold cross validation.

2.2 Multiple Instance Regression of Gene Expression

Fig. 1. Attention-based Multiple Instance Learning for the semi-transparent regression
of RNA gene expression from H&E WSIs.

Our model is an adaptation of the attention-based multiple instance learning
approach in [16], which follows the implementation in [27]. We consider a patient
p with associated H&E-stained scans of the top and bottom frozen tissue sections
xt and xb, both images in R

w×h, where w is the image width and h is the height.
The associated bulk-RNA expression for a given gene g is yg ∈ R. To deal with
the large input sizes of WSIs, xt and xb are represented as a single collection of N
non-overlapping adjacent patches obtained by a sliding window {xi}Ni=0 [28]. The
task is to learn a permutation invariant mapping to the real-valued gene label yg
from this joint collection. We assume that each collection contains at least one
instance associated with the label [29]. The gene expression yg can be obtained as
a linear-weighted combination of the yi,g predictions for each of the xi patches,

2 The dataset is available at https://www.weizmann.ac.il/sites/3CA/colorectal.

https://www.weizmann.ac.il/sites/3CA/colorectal
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where the weights are given by the trainable attention. Differently from [16,27],
the attention weights {ai,g}Ni=0 are optimised to predict the continuous gene
expression label rather than a binary outcome.

The model, illustrated in Fig. 1, comprises: (i) a convolutional backbone to
obtain low-dimensional representations of the input patches, i.e. a ResNet18 [30]
pretrained on ImageNet [31]; (ii) a dense layer to predict the gene expression
yi,g for each input xi; (iii) an attention network to learn the attention weights.

The output of our model is the expression of a single gene, and we train a
different model for each gene in our selection. This is opposed to the approach of
the SoA [11], where regression values for over 30000 gene outputs are optimised
in a single training. To allow for a fair comparison with the SoA, we adapt
their model to output the expression of a single gene at a time. The adapted
model predicts the gene expression for each patch, and the predictions are then
aggregated by a weighted average with larger weights given to large-valued patch
predictions as in [11]. Our trainable attention removes the need for this heuristic.

2.3 Attention-Based Model Interpretability

The trainable attention provides transparency on how the model filters the infor-
mation in the WSIs. Salient regions are identified without the need for an explicit
localisation module [16,32]. However, recent debate argued that multiple plau-
sible attention-based explanations may exist and that attention should be inter-
preted carefully [33,34]. The research in [35] addressed that debate, mentioning
that attention weights learned by multiple models should be ensembled by either
max or average pooling to reduce the risks of obtaining misleading interpreta-
tions. We thus average the attention weights of the models trained on the five
folds, ensuring a trustworthy interpretation that focuses only on signal-bearing
instances.

2.4 Evaluation of Performance and Interpretability

Model performance is evaluated in multiple ways. First, the Median Average
Percentage Error (MAPE) of our predictions is compared against the SoA. Both
models are also compared to the lower bound of random guessing given by pre-
dicting the mean of the training labels. Finally, the significance of our results
is verified by computing the non-parametric one-tailed Wilcoxon test between
the patient-wise percentage error made by our model and the SoA. Successfully
regressed genes are identified as in [11] by evaluating the Pearsons’s correlation
coefficient ρ between the true and the predicted labels.

The evaluation of model interpretability is non-trivial [17,35]. For morpho-
logical patterns that are known to be associated with RNA abnormal expression,
e.g. mucinous tissue showing high levels of MUC2, we verify that our explana-
tions confirm the existing knowledge. For the newly identified patterns, how-
ever, there is little to no ground truth available. In this case, we evaluate how
well patch-wise attention weights correlate to the ground truth obtained from
analysing single-cell data. We identify, for instance, genes that are co-expressed
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Fig. 2. Median difference between the test set errors by our method and the SoA.
Statistical significance is shown for p-value <0.05. Lower is better.

in single-cell data according to their Pearson’s correlation, and we verify that the
patch-wise attentions in overlapping WSI locations correlate for those models.
Finally, the benefits of the attention are quantified by quantifying the perfor-
mance improvement on an auxiliary task, i.e. inferring MSI status. The higher
the quality of the attention-based localisation, the more accurate we expect to
be the MSI-based stratification of the patients.

3 Experiments and Results

3.1 Network Training

The models are trained by optimising the mean squared error loss between the
predicted gene expression value ŷg and the label yg. Stochastic gradient descent
(SGD) is used with standard hyperparameters (learning rate 0.0001, momentum
0.9, weight decay 0.01) and early stopping (12 epochs patience). The gradient
updates affect only the dense layers and the attention mechanism. MSI status is
learned in Sect. 3.4 by two additional dense layers trained by SGD minimisation
of the weighted binary cross-entropy. For a single model trained on a GPU Tesla
V100 for 5 h, we estimate a carbon footprint of 0.65 kgCO2 [36].

3.2 Quantitative Model Evaluation

The gene expression estimates obtained by our method are more accurate than
the SoA. Across all genes and patients, our model obtains a reduction of 10% in
the MAPE, i.e. 0.65±0.08 in our model against 0.72±0.12 in the SoA. Random
guessing as described in Sect. 2.4 achieves MAPE 0.94 ± 13.0, showing that
both methods are capturing meaningful signals from the WSIs. Computing the
Pearson’s correlation with the ground-truth labels further confirms the accuracy
of our model. MGP achieves the highest ρ with 0.71 against 0.69 of the SoA
(p-value < 0.0001). The predictions for CCDC80, NRP2, and RAB34 also show
strong correlation with the ground-truth, with ρ 0.65, 0.62 and 0.61 against the
SoA ρ at 0.61, 0.61 and 0.55 respectively. The median differences in the errors
made by the two models are shown in Fig. 2. The statistical significance of the
Wilcoxon test is reported for the individual patient-wise error differences. The
detailed results on the full gene set are provided in the Appendix Fig. 6 and
Table 2.
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Fig. 3. Localised ensemble attention on an unseen test image for six genes.

The largest improvement is observed for SPINK4, where the MAPE decreases
to 0.62 ± 1.9 from 0.88 ± 3.1 of the SoA (p-value < 0.001). QPRT, MUC2,
AOC3 and SDC2 report significantly better MAPE than the SoA, achieving
respectively 0.74 ± 1.3, 0.73 ± 1.2, 0.55 ± 1.3 and 0.64 ± 1.4 against 0.98 ± 1.1,
0.95 ± 1.9, 0.65 ± 3.7 and 0.81 ± 2.3 (p-value < 0.05). The Pearson’s ρ for
QPRT and MUC2, in particular, increase respectively to 0.43 and 0.46 (p-value
< 0.0001) from 0.35 and 0.13 for the SoA.

3.3 Attention-Based Identification of Hotspots and Patterns

Figures 3 and 4 show the predictions and the distribution of the attention for
our best gene models on the input WSI. The attention identifies hotspot regions,
rather than being uniformly distributed over all patches. Figure 5 visualises more
in detail the morphological patterns in the highlighted hotspots of high and low
gene expression. We retrieve, for instance, the patches that received the highest
normalised attention weights, namely the highest Npai,g∀i, p in the testing set,
where i = 1, . . . , Np, and Np is the total number of patches for patient p3.
Additional visualisations are in the Appendix and the code repository4.

Genes that are co-expressed in single-cell data show high attention on the
same WSI areas. For example, NRP2 and MUC2 show a correlation value of ρ =
0.40 at the single-cell gene expression level. Similarly, they display a correlation
of 0.63 in the patch-wise attention values. Conversely, MUC2 is not co-expressed
at the single-cell level with AOC3 and COL8A2, and the attention localise on

(a) NRP2 (b) MUC2

Fig. 4. Left-to-right order: Original input WSI, raw spatial predictions and attention-
weighted predictions. Blue and red show low and high expression respectively. (Color
figure online)

3 The normalisation enables the comparison across patients, since
∑Np

i=0 ai,g = 1.
4 GitHub link masked for blind submission.
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(a) NRP2 (b) COL8A2 (c) MUC2

Fig. 5. Patches with highest attention for predicted low (blue box) and high (red box)
expression. Differing patterns are visible across genes and expression levels. (Color
figure online)

different regions, with 0.16 and 0.12 patch-wise correlations respectively. The
results for all gene couples are in the Appendix Fig. 10.

3.4 Quantitative Evaluation of the Attention

The MSI status is inferred from the gene expression values regressed from the
H&E slides. The input noise is reduced by selecting only the genes that were
predicted with Pearson’s p-value < 0.05 by each method. This leads to 37 genes
with our method and 35 with the SoA from the initial pool of 45 genes. We
perform 5 × 2 cross-validation to obtain more stable estimates through repeti-
tions on non-overlapping training sets [37]. We observe an increase in the AUC
from 0.60 ± 0.08 of the SoA to 0.71 ± 0.05 with our attention-based model. In
comparison, using the ground-truth sequencing data yields AUC 0.86 ± 0.04.

4 Discussion

The experiments in Sect. 3.2 quantify the accuracy of our bulk-RNA predictions
from WSIs in terms of the prediction error, i.e. MAPE, and correlation with the
ground-truth labels, i.e. Pearson correlation ρ. Our trainable attention mecha-
nism reduces the error for the majority of the analysed genes, achieving signif-
icant improvements over the SoA for the SPINK4, QPRT, MUC2, SDC2 and
AOC3 genes. Besides accuracy improvements, learning the attention removes
the use of a priori heuristic choices and hyperparameter tuning in [11].

The main contribution is the analysis of the signals that are picked by the
models to obtain our performance improvements. Focusing on one gene at a time
enables a fine-grained analysis of the model attention patterns since the entire
model capacity is optimised to capture salient features of individual genes. The
attention maps in Sect. 3.3 give interesting insights. For instance, Fig. 3 shows
that the attention localises over hotspot regions rather than being uniformly
spread across the slide. This answers the questions raised in [17] regarding the
distribution of the information related to gene expression. As expected, high
attention is seen in overlapping WSI regions for genes that are co-expressed in the
same cell and in differing regions for genes that are not co-expressed. Moreover,



Interpretable Regression of Gene Expression in Histology 51

the highest attention weights point to visibly different histological patterns, as
shown in Fig. 5. For example, the high-expression patches of COL8A2 present
higher concentrations of stroma than the low-expression ones.

An interesting example is that of MUC2, a particularly well-known gene that
impacts tissue histology. MUC2 over-expression leads to high amounts of visible
intra- and extra-cellular mucin, characterizing the tissue as mucinous adenocar-
cinoma. An example of mucinous adenocarcinoma is shown in Fig. 4b. Our model
predicts high values of MUC2 for the regions in the slides where the mucinous
tissue is the most visible. When these are further weighted by the attention,
the localisation is highly focused on a few hotspots of high expression. From a
quantitative standpoint, the impact of the attention mechanism for this specific
gene is remarkably significant. The SoA predictions for MUC2 are similar to ran-
dom guessing (with MAPE 0.95 and ρ 0.13), whereas our method significantly
reduces the MAPE to 0.73 and the correlation with ground truth values, i.e. ρ,
to 0.46 with p-value < 0.0001. This result is also beneficial to the prediction of
MSI, which is known to correlate with the presence of mucin [26].

5 Conclusion

We proposed an attention-based multiple instance regression model to infer bulk
gene expression of tissue sections from H&E histology slides of colorectal adeno-
carcinoma. The automated regression of transcriptomics from H&E is not yet a
feasible replacement for sequencing the tissue, but the analysis of interpretability
patterns can highlight some histological patterns associated with specific gene
expression levels. We show here how the attention mechanism successfully filters
informative content from the vast amount of information in the WSIs, leading
to significantly lower errors and interesting insights into how gene expression
impacts tissue morphology. Further developments of this method should intro-
duce pathologists in the loop to validate the identified patterns and further inves-
tigate their association to differentially expressed genes. In turn, this could help
pathologists to identify cancer molecular subtypes from WSIs and consequently
stratify patients for targeted treatment.

Acknowledgements. This work was supported by the Swiss National Science
Foundation Sinergia project (CRSII5 193832) and the EU H2020 project AI4Media
(951911).
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A Description of Selected Genes

Table 1. Summary of the 45 genes considered in this study, including the ColoType
signature and biomarkers of colorectal adenocarcinoma.

Gene Expression level Associated CMS Ref. Description

ASPHD2 HIGH CMS1 [22] Dioxygenase activity

ATP9A LOW CMS1 [22] Membran trafficking of cargo proteins

AXIN2 LOW CMS1 [22] Regulation of beta-catenin stability in
WNT pathway

CDHR1 LOW CMS1 [22] Cadherin superfamily, cell adhesion

CTTNBP2 LOW CMS1 [22] Cortacting binding protein

DACH1 LOW CMS1 [22] Chromatin associated protein

GNLY HIGH CMS1 [22] Antimicrobial protein that kills
intracellular pathogens

HPSE HIGH CMS1 [22] Enhances angiogenesis

SEMA5A LOW CMS1 [22] Promotes angiogenesis by cell
proliferation and migration and
inhibites apoptosis

WARS HIGH CMS1 [22] Regulates ERK, Akt, and eNOS
pathways, associated with
angiogenesis

CEL HIGH CMS2 [22]

DDX27 HIGH CMS2 [22] Probable ATP-dependent RNA
helicase

DUSP4 LOW CMS2 [22] Regulates mitogenic signal
transduction

FSCN1 LOW CMS2 [22] Organizes filamentous actin into
parallel bundles

LYZ LOW CMS2 [22]

PLAGL2 HIGH CMS2 [22]

POFUT1 HIGH CMS2 [22]

QPRT HIGH CMS2 [22]

TP53RK HIGH CMS2 [22]

TRIB2 LOW CMS2 [22]

ASRGL1 HIGH CMS3 [22]

B3GNT6 HIGH CMS3 [22] Plays an important role in the
synthesis of mucin-type O-glycans in
digestive organs

CAPN9 HIGH CMS3 [22]

FBN1 LOW CMS3 [22]

(continued)
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Table 1. (continued)

Gene Expression level Associated CMS Ref. Description

FCGBP HIGH CMS3 [22]

RASD1 HIGH CMS3 [22]

RBMS1 LOW CMS3 [22]

SPINK4 HIGH CMS3 [22]

TIMP3 LOW CMS3 [22]

VAV2 LOW CMS3 [22]

AOC3 HIGH CMS4 [22] Participates in lymphocyte
extravasation and recirculation

ARMCX1 HIGH CMS4 [22] Regulates mitochondrial transport
during axon regeneration

CCDC80 HIGH CMS4 [22] Promotes cell adhesion and matrix
assembly

COL8A2 HIGH CMS4 [22] Necessary for migration and
proliferation of vascular smooth
muscle cells

MGP HIGH CMS4 [22] Thought to act as inhibitor of bone
formation

NRP2 HIGH CMS4 [22] May play a role in cardiovascular
development, axon guidance, and
tumorigenesis

RAB34 HIGH CMS4 [22]

SDC2 HIGH CMS4 [22] participates in cell proliferation, cell
migration and cell-matrix interactions

TGFB3 HIGH CMS4 [22] Involved in embryogenesis and cell
differentiation

TNS1 HIGH CMS4 [22]

DNMT3B UNK UNK [23] Required for genome-wide de novo
methylation. Seems to be involved in
gene silencing

CDKN2A UNK UNK [24] Many studies suggest poorer
prognostic outcome for patients with
hypermethylation in colorectal, liver,
and younger lung cancer patients

CEACAM5 UNK UNK [24] Cell adhesion, intracellular signaling
and tumor progression

CXCR4 UNK UNK [24] Essential for the vascularization of the
gastrointestinal tract

MUC2 UNK UNK [24] Coats the epithelia in the colon. May
exclude bacteria from the inner mucus
layer
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B Detailed Model Evaluation

Fig. 6. Absolute Percentage Error on the test set for the baseline model (in blue) and
our method (in green). The models are trained on five training folds and the final
prediction is obtained as the ensembled average of the predictions. The red horizontal
line shows the performance of random prediction. The lower the better. (Color figure
online)

Detailed results are reported in Table 2, which was not included in the main
paper because of the limited space. The model of the gene expression for NRP2
leads to the best results overall, with MAPE = 0.47 ± 1.19 and ρ = 0.62 against
the SoA MAPE = 0.51 ± 1.17 and ρ = 0.61 of the baseline.

C Additional Visualizations

Additional visualizations of the spatialized prediction maps with and without
attention-based weighting are given in Fig. 7. Figures 8 and 9 show in detail the
histologic patterns selected by the attention for the genes COL8A2 and MUC2
respectively.

D Single-Cell Co-expression

The co-expression of genes in single-cell RNA sequencing data is summarized in
Fig. 11. Figure 10 compares the correlation of the attention weights in overlap-
ping patches to the co-expression of genes in single-cell data in terms of their
Pearson’s correlation.

The couples (i) CCD80, TIMP3 ; (ii) CCDC80, MGP ; (iii) TIMP3, MGP ; (iv)
FCGBP, MUC2 report high correlation with Pearson’s rho being 0.85, 0.77, 0.69,
0.62 respectively. These couples show high correlation in the attention patterns.
Figure 12 shows the similarity in the attention patterns for FCGBP and MUC2.
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Table 2. Comparison of the Test MAPE. Standard deviation reported in brackets.

Gene MAPE ↓
SoA Ours

NRP2 0.51 (1.2) 0.47 (1.2)

COL8A2 0.54 (4.1) 0.49 (3.5)

CEACAM5 0.59 (0.8) 0.52 (0.9)

WARS 0.55 (6.5) 0.52 (12.3)

CCDC80 0.56 (2.0) 0.54 (1.5)

TNS1 0.54 (1.3) 0.54 (1.0)

ASPHD2 0.58 (1.9) 0.55 (2.7)

AOC3 0.65 (3.7) 0.55 (1.3)

POFUT1 0.70 (0.9) 0.55 (1.4)

TGFB3 0.67 (6.2) 0.57 (2.7)

CXCR4 0.65 (3.2) 0.60 (4.1)

TIMP3 0.66 (3.4) 0.60 (2.6)

VAV2 0.74 (1.3) 0.61 (1.3)

FBN1 0.58 (1.6) 0.61 (1.9)

PLAGL2 0.74 (1.0) 0.61 (1.4)

B3GNT6 0.76 (5.0) 0.62 (2.8)

SPINK4 0.88 (3.1) 0.62 (1.9)

AXIN2 0.71 (0.7) 0.63 (0.7)

DNMT3B 0.65 (9.3) 0.64 (10.5)

SDC2 0.81 (2.3) 0.64 (1.4)

MGP 0.64 (1.6) 0.65 (3.0)

SEMA5A 0.80 (1.7) 0.65 (1.4)

RBMS1 0.72 (1.1) 0.65 (1.7)

RASD1 0.69 (5.8) 0.66 (4.5)

APC 0.71 (2.1) 0.67 (2.0)

GNLY 0.62 (4.8) 0.67 (3.5)

ASRGL1 0.74 (4.1) 0.68 (4.1)

HPSE 0.71 (6.7) 0.68 (5.0)

CDKN2A 0.67 (36.1) 0.69 (29.8)

CAPN9 0.82 (5.1) 0.69 (2.6)

RAB34 0.69 (2.3) 0.69 (5.5)

ATP9A 0.64 (0.9) 0.70 (1.0)

FSCN1 0.62 (5.0) 0.70 (4.8)

TP53RK 0.74 (1.2) 0.71 (0.9)

CTTNBP2 0.76 (3.0) 0.71 (2.2)

DDX27 0.68 (1.0) 0.72 (2.1)

CEL 0.77 (1.2) 0.72 (1.4)

ARMCX1 0.66 (15.1) 0.73 (15.1)

MUC2 0.95 (1.9) 0.73 (1.2)

TP53 0.76 (0.9) 0.74 (0.9)

DUSP4 0.78 (3.1) 0.74 (3.5)

QPRT 0.98 (1.1) 0.74 (1.3)

CDHR1 0.87 (1.2) 0.76 (1.2)

FCGBP 0.89 (2.5) 0.77 (2.5)

DACH1 1.02 (2.9) 0.90 (2.2)
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Fig. 7. Additional spatialized prediction maps for AOC3

Fig. 8. High-attention patches against gene expression levels (gex) for COL8A2
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Fig. 9. High-attention patches against gene expression levels (gex) for MUC2

(a) (b) Zoomed in detail from (a)

Fig. 10. Correlation of attention patterns in overlapping WSIs regions for co-expressed
genes with correlation p-value < 0.05.
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Fig. 11. Summary of gene co-expression in single-cells. Each cell in the matrix repre-
sents the Pearson’s correlation of the gene expressions.

(a) FCGBP (b) MUC2

Fig. 12. Attention-weighted predictions for co-expressed genes.
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Abstract. Deep neural networks have become the gold-standard app-
roach for the automated segmentation of 3D medical images. Their full
acceptance by clinicians remains however hampered by the lack of intel-
ligible uncertainty assessment of the provided results. Most approaches
to quantify their uncertainty, such as the popular Monte Carlo dropout,
restrict to some measure of uncertainty in prediction at the voxel level. In
addition not to be clearly related to genuine medical uncertainty, this is
not clinically satisfying as most objects of interest (e.g. brain lesions) are
made of groups of voxels whose overall relevance may not simply reduce
to the sum or mean of their individual uncertainties. In this work, we
propose to go beyond voxel-wise assessment using an innovative Graph
Neural Network approach, trained from the outputs of a Monte Carlo
dropout model. This network allows the fusion of three estimators of
voxel uncertainty: entropy, variance, and model’s confidence; and can be
applied to any lesion, regardless of its shape or size. We demonstrate the
superiority of our approach for uncertainty estimate on a task of Multiple
Sclerosis lesions segmentation.

Keywords: MS lesion · Detection · Deep learning · Interpretabilty ·
Prediction

1 Introduction

Magnetic Resonance Imaging (MRI) is the standard imaging modality for the
diagnosis and follow-up of Multiple Sclerosis (MS). It allows a direct observa-
tion of brain lesions produced by the disease and provides information about the
pathology stage or treatment efficiency. Deep Learning (DL) approaches, based
on a trained U-Net-like neural network, are invaluable tools to automatically
delineate MS lesions [18]. Although powerful and versatile, these models pro-
vide segmentation maps that are typically opaque, with no indication regarding
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their certainty. This hinders full acceptance of DL models in clinical routine,
for which uncertainty attached to the computerized results is essential for their
interpretation and to avoid misleading predictions.

A variety of methods have been proposed to quantify the uncertainty attached
to deep neural networks [1]. Among them, the Monte Carlo (MC) dropout stands
out as one of the simplest approach, as it can be applied to any model trained
with the dropout technique [20]. Such a model can be interpreted as a Bayesian
neural network, giving access to the interesting properties of these probabilis-
tic models regarding quantification of their uncertainty [4]. More particularly at
inference, for a given input, multiple stochastic forward passes are computed by
keeping dropout activated, corresponding to empirical samples from the approx-
imated predictive distribution. This produces a set of softmax probabilities that
can further be used to compute uncertainty estimates. Applied to MRI segmen-
tation, the MC dropout method produces uncertainty metrics for each voxel in
the volume, resulting in so-called voxel-wise uncertainty maps [6,12,17]. The
clinically-relevant information, however, is at a higher level, typically at the
instance (lesion, tissue) level.

Natural ways to obtain such instance-wise uncertainties, meaning the uncer-
tainties attached to each connected component within the output segmentation,
are through a post hoc aggregation of voxel-wise uncertainty estimations. Exist-
ing approaches include computing the mean uncertainty of voxels belonging to
the same class in the segmentation [16] (thus producing one uncertainty estimate
per class, rather than per connected component). In the context of MS, lesion-
wise uncertainty was also estimated using the logsum of the connected voxels
uncertainties [12]. Using the mean implies that each component uncertainty con-
tributes equally to the overall instance score, while the use of the logsum assumes
that connected voxels are conditionally independent, given that they belong to
the same instance. These highly simplified assumptions may degrade the quality
of instance uncertainty computation. To go further, a side-learner called MetaSeg
has been proposed to predict the Intersection Over Unions (IoU) of each indi-
vidual segmented instance with the ground truth [15]. For this task, a Linear
Regression Model is trained based on a series of features derived from a standard
segmentation model’s output probabilities. The predicted score is then used as
a marker of instance uncertainty. Yet, the input features of MetaSeg consist in
averaged voxel-wise metrics, leading to the same restrictions than the previously-
described post hoc aggregation methods. Additionally, it has been proposed to
train an auxiliary Graph (Convolutional) Neural Network (GCNN) using the
outputs of a MC dropout U-Net (i.e. voxel-wise segmentation and uncertainty
maps) to refine the predicted masks [19]. This approach, however, remains at
the voxel level and focuses on 2D segmentation tasks.

In this work, we propose to build from the two last methods to overcome
their respective limitations. Indeed, we implement a GCNN at the output of a
trained MC dropout U-Net model. Using the predicted 3D segmentation out-
puts, each individual segmented lesion is modeled by a graph whose voxels are
the interconnected nodes. Node features are determined by the input and output
of the U-Net, comprising the voxel image intensities, the voxel predicted label,
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and voxel-wise uncertainty maps. We implement two alternative variants of the
proposed GCNN, either classification or regression, to quantify lesions uncer-
tainty. We test our framework on a task of 3D binary segmentation on MS data.
Results demonstrate the superiority of our approach compared to known methods.

2 Our Framework: Graph Modelization for Lesion
Uncertainty Quantification

Overview: Consider an input image X and a trained MC dropout segmentation
model N with parameters W that produces a segmentation Y = N (X,W ) and
a set of voxel-wise uncertainty maps Ui (e.g. entropy, variance, PCS, etc.). Our
objective is to quantify the uncertainty of each instance (i.e. lesion) in Y. To do
so, we propose to train an auxiliary GCNN to predict this uncertainty directly
from X, Y, and Ui (see Fig. 1).

Fig. 1. Illustration of the proposed framework for learning lesion uncertainty from the
outputs of a Monte Carlo dropout model. See the text for details of each block.

2.1 Monte Carlo Dropout Model and Voxel-Wise Uncertainty

We use a generic 3D U-Net [2] for its simplicity and popularity within the field,
although our method can be employed with any segmentation model trained
with dropout. We add 3D dropout [21] with a rate of p = 0.2 at the end of
each encoding and decoding block. The model is trained on annotated datasets
composed of pairs of images: (i) input T2-weighted FLAIR MRI sequences X and
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(ii) associated ground truth MS lesions segmentation Y . At inference, dropout
is kept activated and T forward passes are made for a new input volume x∗.
We chose T = 20, as it allows an optimal counterpart between inference time
and quality of uncertainty estimates [13]. From this set of predictions, several
well-known voxel-related uncertainty metrics are extracted: (see Fig. 1, part A):
the entropy [5], the variance [7] and the Predicted Confidence Score (PCS) [23].

2.2 Graph Dataset Generation

Inference on Validation Dataset and Connected Component Analysis.
After training, the MC dropout U-Net is subsequently used to generate segmen-
tation and uncertainty maps on the set-aside validation set of images. These
predictions are used to generate training data for the auxiliary GCNN. We use
a Connected Component Analysis (CCA) to identify each lesion in the segmen-
tation masks using 26-connectivity—meaning that a lesion is defined by voxels
that are interconnected by their faces, edges, or corner. For each lesion identified
by CCA, we compute the Adjusted Intersection Over Union (IoUadj) [15] with
the ground truth lesions (see Fig. 1, part B). This variant of the IoU is suited for
brain-abnormalities segmentation, where a connected component in the ground
truth can be divided into several pieces in the predicted segmentation.

Identified lesions can exhibit a wide range of shape and size. To learn from
these data, we must thus design a neural network that can be employed regardless
of the shape and size of the input structure. GCNNs, which can be interpreted
as a generalization of the classic convolutional networks to non-Euclidean and
irregular data, are thus particularly suitable for this task.

From Voxels to Graphs. We first slightly dilate each lesion mask to include
surrounding voxels at the border between classes, which typically convey useful
information about uncertainty. We then convert the dilated mask into a graph
by representing its voxels by nodes and neighborhood relationships by edges.
Each node is further defined by a set of n + 4 features: (i) the intensity of its
corresponding voxel in each of the n input MRI sequences, (ii) its binarized label
(1 for the observed lesion class and 0 for all other classes), and its 3 voxel-wise
uncertainty estimates: (iii) entropy, (iv) variance and (v) PCS (see Fig. 1, part
C). In agreement with the aforementioned 26-connectivity CCA, each node (i.e.
voxel) is connected in the graph to its 26 nearest neighbors.

2.3 GCNN Architecture and Training

Here, we use a lightweight GCNN architecture composed of 2 consecutive Graph
Convolutional layers with a hidden dimension of h = 64, followed by a Linear
layer (see Fig. 1, part D). The model is trained using the graph dataset gener-
ated from the validation images, composed of graphs (transformed connected
components obtained from the segmentation model) along with their associated
ground truth (IoUadj). As in [15], we propose two versions of our model:
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– In the classification approach (GCNNClassif), the IoUadj labels are first bina-
rized as follows: FP if IoUadj(graph) < ε, and TP if IoUadj(graph) ≥ ε. ε is a
hyperparameter that we set to 0.1 in our experiments, so that lesions with an
IoUadj very close to 0 are not wrongly considered as TP. The network is then
trained using the Cross-Entropy Loss. At inference, structural uncertainty is
quantified by the graph FP probability.

– In the regression approach (GCNNReg), the model is directly trained to pre-
dict the graph ̂IoUadj , using the MSE loss. At inference, we use 1 − ̂IoUadj

as the structural uncertainty score.

3 Material and Method

3.1 Data

We combine two open-source MS datasets: from the University Hospital of Ljubl-
jana (MSLUB) [10] and from the MICCAI 2016 MS segmentation challenge
(MSSEG 2016) [3]. We thus use 83 manually-annotated 3D T2-FLAIR sequences.
Images are resampled to a 1mm isotropic resolution of 160× 192× 160 to focus
on brain tissues, and intensities are normalized to zero mean and unit variance.
We opt for a 4-fold cross-validation scheme due to the limited number of images.
In each fold, we put aside 25% of the images for testing. From the remaining
images, we use 20% for validation and 80% to train the model. During evalua-
tion, results are averaged over the 4 folds. Due to the limited number of images,
we extensively use Data Augmentation to train our models, comprising flipping,
rotation, contrast alteration, gaussian noise and blurring.

3.2 Comparison with Known Approaches

To evaluate the relevance of our proposed GCNNClassif and GCNNReg
approaches, we implement in parallel known approaches to obtain instance uncer-
tainty from the U-Net. We use the mean and logsum of the voxel-wise uncer-
tainty of each lesions, with the 3 different types of uncertainty. We name these
methods Entropymean, Variancemean, PCSmean, Entropylogsum, Variancelogsum,
and PCSlogsum.

As pointed out in [12], using the logsum assigns a higher uncertainty to small-
size lesions. This appears sub-optimal as small lesions could be segmented with
high confidence, especially in the case of MS lesions. To verify this point, we
implement a naive approach, named Size, which attributes a lesion uncertainty
inversely proportional to its size. The lesion size (number of voxels composing
it) being S, its uncertainty is computed as 1/S.

Lastly, we implement an approach inspired from the MetaSeg framework [15].
We extract a series of features from each connected component in the validation
dataset, consisting in the mean entropy, variance and PCS, as well as the size
of the lesion. We then train a Logistic Regression classifier from these 4 fea-
tures to distinguish between True Positive (TP) and FP lesions (MetaSegClassif).
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Alternatively, we train a Linear Regression model to directly predict ̂IoUadj

(MetaSegReg). We use the outputs of these models to obtain lesion uncertainty
as described for the GCNN approach.

3.3 Evaluation Setting

For medical applications, the ideal uncertainty quantification should attribute a
higher uncertainty to FP lesions than TP, to allow for proper interpretation and
evaluation of the results. To evaluate this properly, we use Accuracy-Confidence
curves [9]. Briefly, the principle is to set aside the τ% of the most uncertain
predicted lesions among the test dataset, and measure the performance of the
model on the remaining lesions by counting the number of FP and TP lesions.
The threshold τ fluctuates between 0 (all lesions are kept) and 100 (all lesions are
removed). By plotting the couples (FP, TP) at different thresholds, we obtain an
Accuracy-Confidence curve and compute the AUC (Area Under the Curve) score
reflecting the quality of the estimated lesion uncertainty. FP and TP counts are
normalized in the range [0, 1] by dividing by the counts obtained without filtering
(at τ = 0). This metric only depends on the ranking of uncertainties, thus is
independent of the uncertainty ranges of each method ensuring a fair comparison.
We additionally evaluate the segmentation performance of the U-Net on the
test datasets using the Dice coefficient, as well as the total number of TP and
FP lesions. Finally, for each method, we control the correlation between the
estimated uncertainty and the lesion size using the Spearman’s rank correlation
coefficient (ρ).

Table 1. U-Net segmentation performance on the MS dataset and number of TP and
FP lesions for each fold.

Fold 0 1 2 3

Dice 0.672 0.645 0.705 0.693
# TP lesions 829 597 715 871
# FP lesions 525 294 353 454

3.4 Implementation Details

3D Segmentation U-Net. Our segmentation framework was implemented
using PyTorch [14]. We opt for a patch approach to train the segmentation U-
Net, meaning that the 160× 192× 160 MRI volumes are split into 3d patches of
160×192×32, decreasing the memory cost of training. We use a batch size of 5.
The U-Net is trained with a combination of the Dice [11] and Cross-Entropy loss,
using the ADAM optimizer [8] with a learning rate of 1e−4 until convergence.
For the training of the segmentation models, a single NVIDIA T4 GPU was
used.
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Graph Neural Networks. We use the Deep Graph Library [22] to implement
and train the GCNN models. The training procedure of our GCNN is standard:
we use the ADAM optimizer with a learning rate of 1e−2 at the start of train-
ing, and progressively decreasing to 1e−5. Graphs are presented to the network
in the form of batches, composed of 10 graphs. Due to the small size of the
GCNN models, they were trained on CPU, which took a couple of minutes in
our experiments.

Fig. 2. Accuracy-Confidence curves for the different methods. The associated AUC
scores are indicated in brackets in the graphs legends.

4 Results and Discussion

Accuracy-Confidence curves are presented in Fig. 2 along with the corresponding
AUC values. Segmentation performance and correlation coefficients are presented
in Tables 1 and 2. Experimental results show that both models of the proposed
framework outperform the classical methods by a significant margin, and that
their performances are similar with a very small advantage for the classification
version. The naive Size approach achieves the lowest performance. Similarly, the
logsum approaches, also strongly correlated with the lesion size, have poorer
performance than the mean counterparts. Not surprisingly, in the context of MS
lesions, the lesion size is not a satisfying proxy for uncertainty as small lesions
can be segmented with high confidence. In our experimental setting, MetaSeg
models do not outperform simpler methods. This is probably due to the overall
simplicity of these models, failing to fully learn the relationships between the
different input features.

Results show that our graph-based framework can be efficiently used to flag
uncertain lesions, that are more likely to result in False Positives. The classifica-
tion variant slightly outperforms regression. We hypothesize that this is due to
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the increased difficulty of predicting the exact IoUadj , compared to the binary
classification setting. One drawback of our approach is that it requires an addi-
tional validation set containing enough lesions (typically a few hundreds) to allow
GCNN training. However, as most DL pipelines rely on a set-aside validation
set to control overfitting during training, these data can then be used for this
purpose (as it was the case in this work). The requirement is thus not prohibitive
and only necessitates a sufficiently large validation set.

Overall, our framework is computationally light as CCA is computed only
once per MRI, followed by the graph generation step that can be parallelized
among the lesions. Additionally, in the context of MS, most brain lesions are
relatively small (less than 1000 voxels), which results in small graphs that are
fast to generate. Finally we use 26-connectivity, meaning that a voxel is only
connected to its closest neighbors, which reduces the computational burden.

Our approach enhances the binary voxel-wise predictions of the segmentation
model with reliable and readable lesion-wise uncertainty estimates. In the clas-
sification setting, uncertainty is cast as the probability of a lesion being a false
positive, which is a straightforward and intelligible definition. In a real world clin-
ical application, this may help the clinician examine the automated segmentation
in the light of the model’s confidence, hence allowing a better interpretability of
the provided results and a more trustable usage of the algorithm.

Future work will study the extension to multi-class segmentation, and inclu-
sion of additional features such as the global location of the lesion within the
MRI volume. Indeed, for brain disorders such as MS, the location of the lesion
within the brain conveys information concerning uncertainty, as false positives
tend to be concentrated in specific brain regions.

Table 2. Evaluation of uncertainty estimates (AUC values). ρ represents Spearman’s
rank correlation coefficient ρ.

AUC (%) Spearman’s ρ

GCNNClassif 87.32 −0.78
GCNNReg 87.10 −0.77
Entropymean 83.80 −0.42
Entropylogsum 83.72 −0.97
Variancemean 83.14 −0.44
Variancelogsum 82.99 −0.99
PCSmean 83.79 −0.44
PCSlogsum 83.88 −0.98
Size 80.30 −1.00
MetaSegClassif 83.10 −0.76
MetaSegReg 83.42 −0.77
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5 Conclusion

This paper presents an innovative graph-based framework to quantify lesion-wise
uncertainty. We demonstrate, with our approach, improvement of the predicted
uncertainty, when compared to various known methods. The strength of our
solution is its generic nature, making it compatible with any segmentation model
trained with dropout.
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Abstract. Do black-box neural network models learn clinically relevant
features for fracture diagnosis? The answer not only establishes reliabil-
ity, quenches scientific curiosity, but also leads to explainable and ver-
bose findings that can assist the radiologists in the final and increase
trust. This work identifies the concepts networks use for vertebral frac-
ture diagnosis in CT images. This is achieved by associating concepts to
neurons highly correlated with a specific diagnosis in the dataset. The
concepts are either associated with neurons by radiologists pre-hoc or
are visualized during a specific prediction and left for the user’s interpre-
tation. We evaluate which concepts lead to correct diagnosis and which
concepts lead to false positives. The proposed frameworks and analysis
pave the way for reliable and explainable vertebral fracture diagnosis.
The code is publicly available (https://github.com/CAMP-eXplain-AI/
Interpretable-Vertebral-Fracture-Diagnosis).

Keywords: Vertebral fracture diagnosis · Interpretability

1 Introduction

Osteoporosis is regarded as one of the most relevant diseases of the elderly, with
22 million women and 5.5 million men affected in the EU alone [5,14]. Early
detection of incidental osteoporotic fractures in routinely-acquired computed
tomography (CT) scans is important, as these often remain clinically silent for a
long time [12]. Furthermore, osteoporotic fractures are an independent predictor
of further fractures with an approx. 12-fold increased risk and are associated with
an 8-fold increased mortality [6,24]. The sequelae include major socioeconomic
consequences and an individual reduction in quality of life [4,7,13,16]. Despite
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the clinical significance, around 85% of osteoporotic fractures are not adequately
described in the radiological reports of routinely acquired CT scans, possibly as
a result of a disproportionate increase in radiologists’ workload [2,31].

Automatic detection of vertebral body fractures with deep learning models
can remedy this and increase incidental findings. However, most of these methods
are black-box models that do not give insights into the decision-making process.
Revealing the inside of these models can allow for investigation of failure cases
and, when addressed, increase robustness and trust in the system.

Thus far, interpretable diagnosis is mostly investigated via feature attribution
(saliency) approaches [19] such as class activation maps [36]. These interpreta-
tions reveal where important features for the prediction are located. Although
being a valuable tool for running a sanity check on the network inference mech-
anism, feature attribution does not disclose further information regarding pre-
diction. Moreover, only knowing about the location of important features is not
useful information for fracture diagnosis as it is easy to see where the fracture
is located, and it is of interest to know “what” features are important.

To this end, we leverage the network dissection [3] approach and analyze
the internal units of the neural network and their associated clinical concepts,
inspired by its applications in chest radiography [19] and mammography [32]. Sub-
sequently, we ask the clinicians to identify the concepts associated with highly cor-
related activations by inspecting the inputs that activate those neurons the high-
est. We investigate what concepts the network has learned and whether they are
aligned with what clinicians use. Moreover, we visualize the concepts used for pre-
diction on a single input to get a conceptual understanding of the decision-making
mechanism of the model. We perform the analysis for on the open-source VerSe
[29] dataset and a larger private dataset procured at our hospitals. The objective
of this work is to investigate what features the network uses for fracture diagnosis,
whether they overlap with clinical knowledge, and how they can be used for more
verbose and explainable fracture diagnosis.

1.1 Related Work

Vertebral Fracture Detection. Most approaches use Convolutional Neural
Networks (CNN) on Computer Tomography (CT) spine images. CNN-based
methods can be categorized into 2D and 3D convolutions. 2D methods usually
rely on a feature aggregation with Recurrent Neural Networks to model inter-
slice dependencies [1,30]. Husseini et al. [15] reformat the image to use the most
informative mid-sagittal slice of each vertebra and, in addition to fracture detec-
tion, grade fractures using an ordinal regression loss for representation learning.
Pisov et al. [27] also reformat the 3D volume to retrieve a spine-centered 2D
image and detect key points for measuring the compression of each vertebra,
detecting and grading fractures.

Detecting fractures on a voxel-level and then post-processing, Nicolaes et al.
[26] for the first time used 3D convolutions for the detection of vertebral frac-
tures. More recent works using 3D convolutions include modeling the dependency
between the 3D volumes of each vertebra with a sequence-to-sequence model [8]
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and detecting osteoporotic fractures on a patient-level [33]. Related to the task
of fracture detection and grading, recently Li et al. [22], and Feng et al. [10]
explored the distinction between benign and malign vertebral fractures.

Interpretability of models is narrowly explored in the domain of vertebral frac-
ture diagnosis and [34] interprets the models by feature attribution (saliency)
approaches to identify which regions in the input contributed to the predic-
tion. In fact, in most medical image analysis applications, feature attribution
is the dominant approach [19]. However, attribution methods are limited in
the information they can disclose regarding the decision-making mechanism of
the model. Moreover, the feature attribution problem remains largely unsolved,
and although there are many attribution approaches (CAM [36], LRP [25],
DeepSHAP [23], IBA [20,28,35]...), the methods disagree with the identified
important features [17,18,35]. This disagreement problem is a caveat for domain
experts while utilizing these attribution methods. Thus there is a need for inter-
pretation approaches that are reliable and reveal more information than “which
region is important.” Network Dissection [3,19,32] allows to identify the con-
cepts encoded by internal units (neurons) of the network. Methodologically, our
work differs from [3,19] in that we do not use an annotation dataset and instead
identify the highly correlated neurons with the output. Furthermore, the main
contribution of this work is establishing trust by investigating the alignment
between the learned concepts and vertebrae fracture analysis domain knowledge.

2 Methodology

2.1 Vertebral Fracture Detection

We model the vertebral fracture detection task as a binary classification problem,
where the positive class indicates a fracture. The network function is defined as
fΘ(x) : RH×W×D → R. The predicted probability is ŷ = sigmoid(fΘ(x)). We
use a 3D U-Net [9] for the vertebral fracture classification task, replacing its
upsampling path with a classification head.

2.2 Semantic Concept Extraction (Correlation)

In neural networks, each neuron is activated by a specific input pattern. The cor-
responding pattern of each neuron can be equivalently deemed as its associated
concept. In convolutional neural networks, each neuron can be considered either
as an activation map or an activation unit within the map. As the activation
units within an activation map all represent the same function (only for differ-
ent spatial locations), they represent the same concept [3]. For our purposes, we
refer to the output of a convolutional filter after the activation function as a unit.
We denote the output activations of the final convolutional layer of the network
by the tensor A ∈ R

H
′ ×W

′×K where K represents the number of channels in
that layer. After computing the distribution of individual unit activations ak, we



74 P. Engstler et al.

determine the top quantile level Tk for each unit k such that P (ak > Tk) = 0.005
[3]. We then derive the binary segmentation mask Mk(xxx) := Ak(xxx) > Tk and
denote the set of enabled units for an input xxx as Ex := {k |

∑
Mk(xxx) > 0}.

Positive Prediction Correlation. Some units might capture concepts that
are highly useful to determine whether a sample is fractured, establishing a
stronger correlation with a true positive prediction than other units. To find
these units, we compute:

ck :=
∑

x∈P 111Ex
(k)

|P | (1)

where P is the set of positive samples and 111 is the indicator function. With
ck1 > ck2 > ..., k1 is the unit most strongly correlated with a true positive
prediction, followed by k2.

2.3 Visualization of Highly Correlating Concepts at Inference

Due to the variability of observed defects in fractured vertebrae, different con-
cepts are relevant during the inference of a sample. We compute the relevance
of a unit k during inference of input xxx as follows:

rk :=
∑

Mk(xxx) � Ak(xxx) (2)

For units k1, k2 with rk1 > rk2 , k1 is more relevant for the inference of xxx than k2.
Now, when visualizing highly correlated concepts for a sample xxx, we compute
the inference relevance of each detector unit and display the activation maps
Ak1(x), Ak2(x), ... with rk1 > rk2 > ..., showing the corresponding responses for
the input sample xxx.

3 Experimental Setup

Data Preparation. The network is trained on the VerSe dataset [29] as well as
an in-house dataset acquired at Hospital A and Hospital B. The latter includes
465 patients with a median age of ∼ 69(±12) years, containing a heterogeneous
collection of field of views, scanner settings, and healthy and fractured vertebra,
including metallic implants and foreign materials. This combined dataset con-
tains CT scans of patients with healthy and fractured vertebrae of osteoporotic
or malignant nature from a heterogeneous collection of CT scanners. To address
the inherent class imbalance in the data, negative samples are undersampled
and positive (fractured) samples are oversampled in training to achieve a perfect
class balance each epoch. As osteoporotic and malignant fractures rarely occur
in cervical vertebrae (C1–C7), they are excluded from the dataset. We extract
96 × 96 × 96 sized 3D patches for each vertebrae with a 1mm resolution. These
patches are centered on the vertebral body and oriented along the spine by
aligning the vertical axis with a spline constructed with the vertebral centroids
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provided by the dataset similar to [15]. The intensity values of the resulting crops
are cropped to a Hounsfield Unit range of [−1000, 1000] and then scaled to [0, 1].
During training, intensity (Gaussian noise, smoothing, and contrast) and heavy
spatial data augmentations (similarity transformation and elastic deformation)
are applied. For these tasks, NiBabel 3.2.1 and MONAI 0.8.0 are used.

Implementation Details. The 3D U-Net is implemented in PyTorch Lightning
1.5.10 on top of PyTorch 1.10.2, and trained using the Adam [21] optimizer
(learning rate 0.001) without weight decay. Training is concluded if the validation
F1 score has not improved for 50 epochs. Dropout with probability 0.3 is applied.

4 Results and Discussion

In the following, we first evaluate the performance of our vertebral fracture
detection neural network before dissecting it into its individual detector units.
We then validate detector units highly correlated with a true positive prediction
by showing that they represent clinically meaningful concepts. Lastly, we present
a system to display the units most relevant to a single inference.

Vertebral Fracture Detection. We consider the threshold-based evaluation
metrics F1-score and accuracy, evaluated at the vertebra level. To remove the
dependence on a manually chosen threshold whose optimum might vary between
trained networks, the area under curve (AUC) and average precision (AP) met-
rics are also evaluated. We report the mean and standard deviation of these
metrics from five separate training trials for each model (Table 1).

Table 1. Performance of the trained neural networks on the test holdout of the smaller
VerSe dataset as well as the combined dataset, comprised of VerSe and non-public data
acquired from Hospital A and Hospital B. In total, the VerSe dataset contains 3,920
non-cervical vertebrae (254 of which are fractured), whereas the combined dataset
comprises 10,675 T1-L5 vertebrae (1,246 fractured).

Training Testing F1 (%) Acc. (%) AUC (%) AP (%)

VerSe VerSe 71.2 ± 10.8 78.2 ± 12.0 84.5 ± 9.1 76.4 ± 14.5

VerSe, in-house VerSe 86.1 ± 2.6 90.9 ± 1.690.9 ± 1.690.9 ± 1.6 96.2 ± 0.996.2 ± 0.996.2 ± 0.9 94.1 ± 1.6

VerSe, in-house VerSe, in-house 88.0 ± 0.788.0 ± 0.788.0 ± 0.7 88.0 ± 0.4 94.7 ± 0.5 95.0 ± 0.495.0 ± 0.495.0 ± 0.4

For networks trained on the smaller VerSe dataset, we observe performance
akin to “naive” two-dimensional vertebral fracture detection approaches on the
same dataset [15], and a high dependence on a beneficial random seed. These
networks, however, do not yield detector units that exhibit any discerning pat-
terns. This is achieved by training a network with the larger dataset, combining
VerSe and in-house data collected at Hospital A and Hospital B, that is reliably
superior in performance. Its detector units exhibit a variety of patterns that are
investigated in the subsequent sections.
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Table 2. Visualization of the detector units most strongly correlated with a true
positive prediction along with an interpretation of their activations by clinical experts.
All displayed samples are fractured and represented by a slice with high activation
after thresholding.

4.1 Clinical Meaningfulness of Extracted Semantic Concepts

Given the network trained on the larger dataset, we extract its semantic concepts
with Network Dissection [3], which we extended to the three-dimensional space.
To reduce the 512 detector units of the 3D U-Net to a tractable number, we
determine the top ten units highly correlated with a true positive prediction
as detailed in Sect. 2.2. For these units, we exported a single-slice collage of
25 strongly activating fractured samples serving as an overview of the units’
activations. For the five samples that activated the unit most strongly, all two-
dimensional slices as well as three-dimensional NIfTI files are exported, allowing
for a detailed inspection.
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Based on these exports, we consulted two clinical experts with a combined
experience of 22 years in spine imaging about the clinical meaningfulness of
these detector units. Omitting three units where no immediate association was
possible, we show the detector units identified by their correlation rank with
their corresponding clinical explanation in Table 2. The provided samples show
a diverse collection of detector unit activations, with each unit exhibiting con-
sistent patterns across multiple samples. We also observe that these units’ main
focus is the primary vertebra, even if there is some activation in the surround-
ings. It is noteworthy that the patterns align with the bone anatomy and present
themselves in clinically significant locations. As severe fractures are associated
with changes in the superior and inferior vertebral endplates, we find the major-
ity of activations in these regions. Although multiple detector units target these
areas, they focus on different locations and exhibit varying sizes of regions of
interest, with some integrating further information from the intervertebral discs
as well as the adjacent vertebra. These insights are clinically meaningful to detect
moderate and severe vertebral deformations (Genant grade 1 or higher [11]), and
thus show that our network learned concepts that have a clinical correspondence.

For the omitted cases, we observed either no statistically significant acti-
vations, i.e. Mk(xxx) = 000, or sporadic activations that do not present any clear
patterns, even though they are highly correlated with a true positive prediction.
Overall, such detector units represent a minority and can therefore be disre-
garded in light of those that exhibit tangible patterns.

4.2 Single-Inference Concept Visualization

Having shown that the network learns clinically relevant concepts, we have vali-
dated its ability to make use of conducive features. We further seek to illuminate
the black box decision-making process of the network by providing the user with
a visual explanation for a single inference. To this end, we propose a system
that visualizes the concepts considered most important by the network during
inference.

Using the method described in Sect. 2.3 to identify the units representing the
most relevant concepts, we retrieve their respective top activating images from
our combined dataset. We then display two visualizations for each unit: (i) the
activations of those units for the input sample, and (ii) the activations for their
corresponding top images. This provides the user with a detector unit’s particular
response for the given input sample as well as a larger context to understand
its general concept. For both visualizations, a single slice with high activation
(after thresholding) is shown. An example of (i) is given with Table 3, which
gives evidence of the network corroborating its prediction with a diverse set of
concepts. These concepts illustrate the network accurately identifying relevant
indications for the wedge-shaped deformity and incorporating information from
an adjacent vertebra.

This system enables users to comprehend the network’s decision making,
increasing trust in the system and allowing them to identify failure cases more
easily. Furthermore, this approach does not require any prior concept matching
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Table 3. Visualization of the most relevant detector units during class prediction of
the sample shown on the left, which the network correctly predicted as fractured. Each
detector unit is represented by a single slice activation for that particular sample. We
also show its ranking in units highly correlated with a true positive prediction. We
observe that the network uses concepts associated with wedge-shaped deformity and
incorporates information from an adjacent vertebra

by experts, as the user is able to interpret the general concept of a detector unit
and make informed judgements about its importance for a particular sample.

5 Conclusion

We show that a 3D U-Net learns a diverse set of concepts to tackle the task of
detecting vertebral fractures. To gauge their meaningfulness, we first proposed
a method to identify units highly correlated with a fracture detection. Then, we
showed the overlap of these units with clinical concepts as validated by experts.
Finally, we introduced a system to visually explain a single inference by showing
the concepts most relevant for the classification of the sample, giving users insight
into the network’s decision making process. Further extensions of this system are
conceivable, such as pre-filling a radiology report based on activations in a group
of semantically similar detector units.
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Abstract. Explainable artificial intelligence (XAI) is increasingly used
to analyze the behavior of neural networks. Concept activation uses
human-interpretable concepts to explain neural network behavior. This
study aimed at assessing the feasibility of regression concept activation
to explain detection and classification of multi-modal volumetric data.

Proof-of-concept was demonstrated in metastatic prostate cancer
patients imaged with positron emission tomography/computed tomog-
raphy (PET/CT). Multi-modal volumetric concept activation was used
to provide global and local explanations.

Sensitivity was 80% at 1.78 false positive per patient. Global explana-
tions showed that detection focused on CT for anatomical location and
on PET for its confidence in the detection. Local explanations showed
promise to aid in distinguishing true positives from false positives. Hence,
this study demonstrated feasibility to explain detection and classification
of multi-modal volumetric data using regression concept activation.

Keywords: Explainable artificial intelligence · Interpretable deep
learning · Medical image analysis · Prostate cancer · PET/CT

1 Introduction

Deep learning has revolutionized medical image analysis. The neural networks
used in deep learning typically consist of many layers connected via many non-
linear intertwined connections. Even if one was to inspect all these layers and
connections, it is impossible to fully understand how the neural network reached
its decision [17]. Hence, deep learning is often regarded as a ‘black box’ [17].
In high-stakes decision-making such as medical applications, this can have far-
reaching consequences [18].
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Medical experts have voiced their concern about this black box nature, and
called for approaches to better understand the black box [11]. Such approaches are
commonly referred to as interpretable deep learning or explainable artificial intel-
ligence (XAI) [1]. Visual explanation is the most frequently used XAI [21]. There
is increasing evidence that the saliency maps that provide this visual explanation
are to be used with caution [2,3,6]. For example, they can be incorrect and not cor-
respond to what the end-user expected from the explanation (i.e., low validity) or
lack robustness [21]. Hence, such methods may not be as interpretable as desired.

In response to “uninterpretable” XAI, Kim et al. proposed to use human-
interpretable concepts for explaining models (e.g. a neural network) [12]. Exam-
ples of such concepts are a spiculated tumor margin – a sign of malignant breast
cancer [8] – or the short axis of a metastatic lymph node in a prostate cancer
patient, which has been related to patient prognosis [16]. Using concepts, Kim
et al. were able to test how much a concept influenced the decision of the model
(i.e., concept activation) [12].

Concept activation has been used in medical image analysis to explain clas-
sification techniques using binary concepts [12] – such as the presence of micro-
aneurysms in diabetic retinopathy – and continuous concepts (i.e., regression
concept activation) [9] – such as the area of nuclei in breast histopathology. To
the best of our knowledge, the promise of concept activation has not yet been
shown in detection, 3-dimensional volumetric data, or multi-modal data.

The aim of this study was to assess the feasibility of regression concept acti-
vation to explain detection and classification of multi-modal volumetric data. We
demonstrated proof-of-concept in patients who had metastatic prostate cancer.

2 Data

A total of 88 consecutively included male patients with oligometastatic (i.e., five
or less metastatic lymph nodes) prostate cancer from the University Medical
Center Utrecht were analysed. All patients gave written informed consent and
the study was approved by the local medical ethics committee [22]. Median age
was 71 years with an interquartile interval of 67–74 years.

Patients were imaged using 68Ga prostate-specific membrane antigen
positron emission tomography and computed tomography (PSMA-PET/CT)
(Fig. 1). The in-plane voxel size of the PET scans ranged from 1.5 mm2 to
4.1 mm2, slice thickness ranged from 1.5 mm to 5.0 mm. The in-plane voxel size
of the CT scans ranged from 0.84 mm2 to 1.4 mm2, slice thickness was 2.0 mm.

Metastatic lymph nodes were delineated by a radiation oncologist in consen-
sus with a nuclear medicine physician. Furthermore, lymph nodes were confirmed
on magnetic resonance imaging.

3 Method

In short, we first detected the metastases and subsequently filtered out false pos-
itive detections at high sensitivity using classification. XAI was used on both the
detection and the classification to provide global and local explanation (Fig. 2).
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Fig. 1. Example of a prostate cancer patient with three metastatic lymph nodes. Left:
maximum intensity projection (MIP) of prostate-specific membrane antigen positron
emission tomography (PSMA-PET) showing three metastatic lymph nodes. Right:
region of interest (ROI) showing one of the metastatic lymph nodes on PSMA-PET
and on computed tomography (CT).

3.1 Preprocessing

PET scans were registered to the CT scans. Data was split into 70 patients for
training/validation and 18 patients for testing. This resulted in 109 metastatic
lymph nodes for training and 30 for testing.

3.2 Detection

nnDetection [4] was used to detect the metastatic lymph nodes. Input to nnDe-
tection were PET/CT images, output were 3D bounding boxes with correspond-
ing intersection-over-union and confidence scores. Hyperparameters were opti-
mized by nnDetection.



Multi-modal Volumetric Concept Activation 85

Fig. 2. Schematic overview of the method. First, nnDetection detects metastatic lymph
nodes on multi-modal volumetric positron emission tomography and computed tomog-
raphy (PET/CT) images. These detections are then refined using EfficientNet. An
XAI – multi-modal volumetric concept activation – is used to provide global and local
explanations. CS = confidence score.

The results of nnDetection were evaluated using Free-response Receiver
Operating Characteristics. To ensure high metastatic lymph node detection
rate, the intersection-over-union and confidence scores were thresholded at high
sensitivity.

3.3 Classification

EfficientNet [19] was used to subsequently filter out false positive detections by
classifying bounding boxes originating from nnDetection. PET/CT volumes of
96×96×96 (i.e., patches) were extracted. These patches were input to Efficient-
Net, output were binary classes representing whether there was a metastatic
lymph node present or not. EfficientNet was trained using Adam optimizer and
cross entropy loss. The initial learning rate was set as 0.001 and decreased step-
wise by 0.10 every 5 epochs. EfficientNet was trained for 25 epochs with early-
stopping. Augmentation included horizontal and vertical flipping, translation,
scaling and rotation. Weighted random sampling was used to minimize the effect
of class imbalance.
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The results of EfficientNet were evaluated using Receiver Operating Charac-
teristics. To preserve true positives while reducing false positive that originated
from nnDetection, the posterior probability per patch was thresholded at high
sensitivity.

3.4 Explainable AI

We provided explanations of both nnDetection and EfficientNet using volumetric
regression concept attribution.

Volumetric regression concept attribution yields global explanations, i.e.,
which concepts explain the overall behavior of the neural network, and local
explanations, i.e., which concepts explain how the neural network came to a
decision for a specific lymph node.

The concepts used in this study were extracted using PyRadiomics [20]. This
yields human-interpretable concepts per lymph node such as volume, circularity
in 3D, and intensity on PET and CT, but also less interpretable concepts such
as higher order texture features. The concepts were calculated from PET and
CT, after applying masks which were automatically generated using an adaptive
PET threshold of 40% [7,10].

Global explanations were provided using four measures that quantify volu-
metric regression concept attribution:

1. Pearson’s correlation coefficient ρ was calculated between each feature and
either the confidence scores in case of nnDetection or the posterior probability
in case of EfficientNet.

2. The regression coefficient and regression concept vector were assessed per
feature by fitting a linear model between layer activations and feature values.
For each layer in the neural network, a regression coefficient can be quantified
per concept, revealing the learning behavior of the neural network.

3. Sensitivity scores were calculated which indicate the influence of the concept
on the outcome of the neural network result.

4. The bidirectional relevance was calculated for each concept by taking the
product of the regression coefficient and the inverse of the coefficient of vari-
ation of the sensitivity scores.

Local explanations were provided by comparing the sensitivity score of a
concept per input image to the mean sensitivity of that concept. The difference
between these sensitivity scores can be used as a similarity measure of that input
image to an output class (e.g., metastatic lymph node).

Computation: Deep learning was done in PyTorch 1.8 on an NVIDIA GeForce
2080Ti. Code will be available at https://github.com/basvandervelden/mmvca.

https://github.com/basvandervelden/mmvca
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4 Results

4.1 Detection

Fig. 3. At an intersection-over-union (IoU) of 0.1, 0.80 sensitivity was obtained at 2.66
false positives per patient (top line).

At an intersection-over-union of 0.1, a sensitivity of 0.80 was obtained at an
average of 2.66 false positive per patient (Fig. 3). In total, 24 out of 30 lymph
nodes were detected at the cost of 48 false positives.

4.2 Classification

EfficientNet showed an additional reduction of 16 of the 48 false positives that
originated from nnDetection (33% reduction), while maintaining all true posi-
tives. Hence, the final amount of false positives per patient was 1.78.

4.3 Explainable AI

Global Explanations: Table 1 shows the top ten concepts with the highest
Pearson’s correlation coefficient ρ between the concepts and confidence scores
of the bounding boxes from nnDetection. All these top ten concepts originate
from the PET scan. Figure 4 shows the top ten bidirectional relevance scores for
nnDetection. All these top ten concepts originate from the CT scan.

Table 2 shows the top ten concepts with the highest Pearson’s correlation
coefficient ρ between the concept and the posterior probability of a metastatic
lymph node in the patch. Figure 4 shows which concepts influence the classifica-
tion results the most. These top ten concepts for both XAI measures originate
from the PET scan.
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Table 1. All of the top ten correlations between concepts and the confidence scores of
the bounding boxes originate from the positron emission tomography (PET) scan.
GLCM = Gray Level Cooccurence Matrix, First order = First order statistics,
GLSZM = Gray Level Size Zone Matrix, GLRLM = Gray Level Run Length Matrix,
GLDM = Gray Level Dependence Matrix.

Concept ρ P-value

PET GLCM DifferenceAverage 0.186 � 0.001

PET GLCM DifferenceEntropy 0.185 � 0.001

PET Firstorder Range 0.185 � 0.001

PET GLSZM SizeZoneNonUniformity 0.176 � 0.001

PET Firstorder Maximum 0.175 � 0.001

PET GLRLM RunEntropy 0.168 � 0.001

PET Firstorder Entropy 0.152 � 0.001

PET GLCM SumEntropy 0.148 � 0.001

PET Firstorder MeanAbsoluteDeviation 0.147 � 0.001

PET GLDM SmallDependenceEmphasis 0.140 � 0.001

Fig. 4. The top ten concepts with the highest bidirectional relevance originate from
the computed tomography (CT) scan for nnDetection (left) and from the positron
emission tomography (PET) scan for EfficientNet (right). GL = Gray level, Norm =
normalized, GLRLM = Gray Level Run Length Matrix, GLSZM = Gray Level Size
Zone Matrix, First order = First order statistics, GLCM = Gray Level Cooccurence
Matrix, GLDM = Gray Level Dependence Matrix. (Color figure online)

Local Explanations: Figure 5 shows how the local explanations can be used by
a physician. Each case was ranked according to its similarity with a metastatic
lymph node and its top ten concepts.

To further investigate the six undetected lymph nodes from nnDetection, we
also evaluated these in a post hoc analysis with EfficientNet. Four of the six
(66%) false negatives were correctly classified as a lymph node. Local explana-
tions showed that the two incorrectly classified lymph nodes had low similarity
with the class metastatic lymph node, according to the top ten concepts.
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Table 2. All of the top ten correlations between concepts and the posterior probability
of a metastatic lymph node in the patch originate from the positron emission tomogra-
phy (PET) scan. First order = First order statistics, GLCM = Gray Level Cooccurence
Matrix.

Concept ρ p-value

PET First order Range 0.449 � 0.001

PET GLCM SumAverage 0.444 � 0.001

PET GLCM JointAverage 0.444 � 0.001

PET First order Median 0.442 � 0.001

PET First order Maximum 0.436 � 0.001

PET First order Mean 0.430 � 0.001

PET First order RootMeanSquared 0.429 � 0.001

PET GLCM MCC 0.428 � 0.001

PET First order 10Percentile 0.425 � 0.001

PET First order 90Percentile 0.423 � 0.001

Fig. 5. True positive (left) and false positive finding (right) with their correspond-
ing local explanation underneath. It can be seen that the sensitivity scores of the left
PET/CT patch reflects the class sensitivity scores. In the right PET/CT patch the sen-
sitivity scores differ substantially from the class sensitivity scores. Hence, this local expla-
nation can give an extra confirmation to the physician to rule this a false positive. GLCM
= Gray Level Cooccurence Matrix, GLRLM = Gray Level Run Length Matrix, GLDM =
Gray Level Dependence Matrix, First order = First order statistics. (Color figure online)
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5 Discussion

This study showed feasibility of regression concept activation to explain detec-
tion and classification of multi-modal volumetric data. In 88 oligometastatic
prostate cancer patients, our method was able to provide realistic global and
local explanations.

The global explanations for nnDetection yielded plausible results. Confidence
scores of nnDetection’s bounding boxes were all positively correlated with con-
cepts from the PET scan, whereas the concepts that influenced the position of
the bounding boxes came from the CT scan. In other words, the CT scan pro-
vides detailed anatomical information explaining in which region of the patient
lymph nodes could be present, whereas the PET scan influences how confident
the network is that the detection is actually a metastatic lymph node. Since
PSMA-PET is designed for this specific goal, these explanations are plausible.

The global explanations for EfficientNet also yielded plausible results. The
posterior probability whether a metastatic lymph node was present in a patch
was mostly correlated with concepts from the PET scan. This again makes sense,
since the volume of interest was already narrowed down, making the anatomical
information from the CT scan less important in this part of the analysis.

Local explanations were aimed at providing a framework for physicians to
evaluate on an individual lesion basis how the algorithm came to its conclusion,
and whether they trust the algorithms decision. This has potential for decision
support in the more difficult lesion in which the physician is potentially unsure.

This study has some limitations. Firstly, nnDetection misses six metastatic
lymph nodes, leading to a sensitivity of 80%. This is, however, similar to sen-
sitivities reported in literature [13]. The local explanations yielded insight into
why these six false negative lymph nodes were not detected: Their concepts
showed a large contrast with for example the detected lymph nodes. By taking
this into account, in future work, the explanations can be used to further opti-
mize the neural network [14,15]. Secondly, we did not evaluate our explanations
with end-users such as radiation oncologists. Future work should evaluate these
explanations with intended end-users, i.e., application-grounded evaluation [5].
Lastly, we demonstrate our approach in a single center study population. Larger
validation would be desired in future research.

6 Conclusion

To conclude, we showed that it is feasible to explain detection and classification
of multi-modal volumetric data using regression concept activation.
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Abstract. In this work, a kernel attention module is presented for the
task of EEG-based emotion classification with neural networks. The pro-
posed module utilizes a self-attention mechanism by performing a kernel
trick, demanding significantly fewer trainable parameters and compu-
tations than standard attention modules. The design also provides a
scalar for quantitatively examining the amount of attention assigned
during deep feature refinement, hence help better interpret a trained
model. Using EEGNet as the backbone model, extensive experiments
are conducted on the SEED dataset to assess the module’s performance
on within-subject classification tasks compared to other SOTA atten-
tion modules. Requiring only one extra parameter, the inserted mod-
ule is shown to boost the base model’s mean prediction accuracy up to
more than 1% across 15 subjects. A key component of the method is
the interpretability of solutions, which is addressed using several differ-
ent techniques, and is included throughout as part of the dependency
analysis.

Keywords: Kernel attention · EEG · Emotion classification

1 Introduction

Correctly identifying human emotion using classification strategies has long been
a topic of interest in brain computer interfaces (BCI) and their applications.
According to the review [17] on classification algorithms utilized in EEG studies,
there are five major categories of classifiers currently under investigation, which
are: i) conventional classifiers [13–15,20], ii) matrix and tensor based classifiers
[5], iii) transfer learning based methods [2,7], iv) deep learning algorithms and
advanced statistical approaches [4,19], and v) multi-label classifiers [3,18,21].
While many classification approaches have been explored in the context of EEG
signal processing, the classification pipeline itself has still frequently involved
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extensive manual preprocessing and feature engineering, often requiring inter-
vention from domain experts as well as the experimental operators involved in
the acquisition of the EEG signals themselves.

The success of neural network tools has been shown to alleviate some of
limitations in the classical pipeline by providing, for example, faster predictions
and reducing the need to manually preprocess data. One problem that remains
however, is that the scale of learnable parameters in a classification network can
be too large relative to the input data size. That is, in contrast to areas such as
image classification, the availability of clean and open-sourced EEG data sets is
comparably quite small in size. As a consequence, basic research calls specifically
for data efficient and parameter efficient, as well as human interpretable models
in order to provide penetrating insight into human emotion classification given
relatively sparse data sampling.

2 Related Work

Below we briefly review some salient results in the literature relevant to the
present work.

Fig. 1. The basic self-attention mechanism.

Self-attention: Self-attention was
originally introduced in the field of
natural language processing (NLP)
[1], where the self-attention mecha-
nism operates as a key component in
transformer modules. These standard
self-attention designs rely on MLPs,
instead of the more conventionally
used convolutional layers, to gener-
ate an attention matrix. Adapting the
concept of self-attention to computer

vision has been remarkably successful, and has demonstrated impressive per-
formance to date on a variety of different tasks, e.g. [6,16]. As a consequence,
through self-attention approaches, the field of image classification—long domi-
nated by an assortment of solutions utilizing convolution neural networks—has
discovered a promising new tool for (potentially) broad application.

Alternative Attention Approaches: In addition to self-attention, there exists
many other types of attention modules in the field of computer vision. Two
prominent examples of these are the Squeeze-and-Excitation (SE) network [10]
and the Convolutional Block Attention Module (CBAM) [22], where the SE
network won the ImageNet2017 championship, while CBAM sequentially infers
attention maps along both channel and spatial dimensions for adaptive feature
refinement. These methods, and others, are indicative of the increased contempo-
rary importance attention-style approaches are having within computer vision.

EEGNet: EEGNet was proposed in [12] for a compact network design aimed
at finding better generalizations across different BCI paradigms. Using depth-
wise/separable convolution layers, the EEGNet network contains considerably
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fewer trainable parameters than models constructed with regular convolutional
layers, while still showing commensurate performance. EEGNet is also equipped
with a convolutional layer of kernel size equal to the total number of EEG chan-
nels, enabling the ability to investigate spatial patterns learned during training
in order to elucidate underlying electrophysical principles. Because of both the
effectiveness and parsimonious nature of the EEGNet design, we adopt it as the
backbone network for comparing and interpreting different attention modules.

SEED: The SEED dataset [23] includes multiple physiological signals that eval-
uate self-reported emotional responses, classified into Positive, Neutral, and Neg-
ative reactions taken from 15 participants, and is one of the standard datasets
for benchmarking EEG signal classification strategies. The data was collected
with 62 EEG channels using the 10–20 international standard.

Our Work: In this paper we consider a self-attention mechanism for boosting
the backbone model’s performance in a parameter efficient way and for pro-
viding better interpretation. However, at the outset, it is worth noting that
several potential difficulties arise when conceptualizing the incorporation of a
self-attention mechanism into the EEGNet framework. First, as discussed in [6],
transformers tend to be quite data hungry models, failing to outperform regu-
lar convolution-based networks when the dataset’s size is not large enough. In
the area of emotion classification using EEG signals, this data-thirst require-
ment can become prohibitive. One of the reasons for this “data hungry” aspect
of transformers is due to the MLP layers generally involved in the attention
mechanism. These dense layers, not surprisingly, tend to contain many more
parameters than convolutional layers that comprise popular emotion classifica-
tion frameworks. Consequently, a difficulty arises when self-attention is applied
directly to frameworks such as EEGNet, since the resulting hybrid frameworks
tend to substantially undermine the primary advantage of the underlying base
models; for example, EEGNet would no longer be a lightweight and compact
model, but instead become a data hungry model focusing entirely on accuracy
over pragmatic utility.

Thus, the primary goal of the present work is to find a way to incorporate
the self-attention mechanism into EEGNet in a way that can still preserve EEG-
Net’s pragmatic utility by maximizing the parameter efficiency in the design of
the attention module. The solution presented in this paper is called a Kernel
Attention network Module (KAM), and can be described as:

1. Utilizing a kernel function to produce the proper attention matrix instead
of relying on MLP layers; thus reducing the number of both parameters and
computations required. Moreover, benefiting from the one parameter design,
specific techniques are then able to be employed for more effective inter-
pretability techniques as well.

2. With the proposed module inserted along with only one additional parameter,
the predictive performance of the baseline model—in our case, EEGNet—
can be boosted up to more than 3% for some subjects on within-subject
classifications and more than 1% overall on mean performance.
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3 Kernel Attention Module

Figure 1 gives a simple illustration of how the basic self-attention mechanism
works when applied on some feature x. First, the feature x is mapped to three
different features of the same size via q = φq(x), k = φk(x), and v = φv(x). The
mappings φj for j ∈ {q, k, v} are achieved using MLP blocks. Next, an attention
matrix is formed by computing qkT which will then be used as a prefactor
on v to produce the attention output. Computationally, this procedure can be
summarized as: x ← [φq(x)φk(x)T ]φv(x).

Fig. 2. EEGNet with KAM
inserted. Some important hyper-
parameters, kernel shapes and
tensor sizes are also shown.

In the case where x has large feature
dimension n, the attention is applied on
segments of x in parallel with the result-
ing feature pieces subsequently concatenated
afterwards—a mechanism referred to as multi-
head self-attention. For more details on the
underlying algorithms we refer the reader to
[6]. Using the above basic self-attention for-
mat, KAM is constructed by replacing the
inner product form φq(x)φk(x)T with a ker-
nel matrix MK(x; θ) subject to some param-
eter θ. For example, a Gaussian type ker-
nel function can be used to generate M ij

K =
exp(−αd(xi, xj)2), where d(·, ·) denotes some
distance metric, xi is the ith row or column
of feature block x depending on whether MK

is multiplied to x by left or right, θ = α is
the learnable parameter during training. In
the KAM design, φv can be simply dropped
to reduce the number of total parameters.
Finally, a skip connection is included in the
KAM design that offers several potential ben-
efits. On one hand, an additional skip can
help better backpropagation of gradients to
the blocks in front of the KAM. On the other,
it provides an easy interface to quantitatively
measure how much attention is actually being
applied, requiring only an examination on the values of θ. For example, when
α → +∞ then MK(x; θ) → I, meaning no cross attention among features is
applied. However, if α → 0, then MK(x; θ) → J which is an attention matrix
whose off-diagonal entries Jij = 1, i �= j, meaning deep features now equally
contribute to others for refinement during training. The above procedure leads
to our Kernel Attention Module (KAM) design as shown in Fig. 2, where its
symbolic form can be summarized as:

x ← x + MK(x; θ)x = (I + MK(x; θ))x. (1)
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The proposed KAM mechanism can also be easily applied with multiple
heads. We further note that in the implementation in Sect. 4, an extended form
is used for M ij

K = exp(−αd(xi, xj)2), where α ∈ (a,∞). If the lower bound is set
to a = 0, the case can be readily interpreted as α = 1/σ2 where the parameter
can be understood as a kind of “standard deviation”. Setting a less than zero
allows off-diagonal entries in MK to have values greater than one, in which case
a should be close to zero, i.e. a ≈ −ε for ε small, to prevent numerical blow-up
during training from poor matrix conditioning.

4 Experiments

In this research, we focused on model’s performance on subject dependent classi-
fication tasks. In the spirit of [23] the data set was divided into non-overlapping
epochs, each lasting one second, yielding ∼3300 epochs per trial, per subject,
and ∼1060 epochs per labelled emotion. However, in contrast to [23], and most
other studies where the training and testing data are manually split and models
evaluated in a single pass, we adopt a cross-validation (CV) approach to improve
evaluation robustness.

In the following benchmark using EEGNet with KAM, the data from each
subject is split, taking 1/6 for validation during training. Five-fold cross valida-
tion (5-CV) is then performed on the remaining 5/6 of the data. Theses ratios
are chosen to make the validation and test set roughly the same size during cross
validation. For any model test, initial weights are set to the same values across
each of the five folds. The network is trained for each fold over a maximum of
80 epochs, and the best model is selected at the epoch with the best validation
accuracy. All experiments are trained with the same Adam optimizer configu-
ration of an initial learning rate of 10−2 and a decay rate of 0.75, which only
activates when no accuracy improvement is seen on the validation set in the past
10 epochs. A total of 5 × 15 = 45 training runs are conducted for each model
compared in our benchmark. The code used for models’ training and evaluation
will be made available at https://github.com/dykuang/BCI-Attention.

Fig. 3. Overall mean prediction perfor-
mance across 15 subjects.

Benchmark: For benchmarking
we compared five models: a) EEG-
Net, b) the basic QKV type atten-
tion from Fig. 1, c) SE attention, d)
CBAM attention, and e) KAM(a =
−0.1). All implementations herein are
inserted at the same location shown
in Fig. 2. Note that the basic QKV
attention module does not perform
well here, which is likely due to it, as
mentioned in [6], being data thirsty
and SEED not being a large enough
dataset to quench. It is also worth
mentioning here that the version of

https://github.com/dykuang/BCI-Attention
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KAM with α’s lower bound a = 0 gives mean accuracy of 91.74% ± 3.02%
which is slightly worse than the case of a = −0.1. This suggests that the exten-
sion of the lower bound to a negative value can potentially help during deep
feature refinement. We also observe in our experiments that the training proce-
dure for some subjects will push α slightly below zero for minimizing the loss
function (see Fig. 5).

Table 1. Mean accuracy reported from different models.

Models EEGNet +QKV +SE +CBAM +KAM(a = −0.1)
Parameters 3851 4940 3933 4033 3852

Acc(%) 90.34 ± 3.69 86.81 ±4.19 91.20 ±3.42 90.40 ±3.97 91.89 ±2.76

Channel Attention: The inserted KAM module can potentially change the
kernel weight originally designed in EEGNet during the model’s decision process.
Particularly, kernel weights in the first depthwise convolution layer (see Fig. 2)
were treated as a representation for relative attention across different channels1
in [12]. They can be affected when different attention modules are inserted. As
the depthwise convolution applies one kernel to each of the eight channels, there
are eight kernels associated to the architecture in Fig. 2. For clarity here, to
illustrate the effect of these kernels on the network, we only examine the kernel
applied on the first feature channel.

Fig. 4. Kernel weights mapped onto scalp maps. The first row shows the normalized
mean. The second row shows the normalized standard deviation from the 5-CV.

To visualize the different spatial attention patterns discovered represented by
the selected kernel weights of different models, we present scalp maps in Fig. 4.
1 These are kernel weights in the first depthwise convolutional layer. The shape is of

(1, 62) and can be directly associated with the 62 EEG sensor locations on scalp.
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These maps are generated by training the models under 5-CV for subject S01,
where mean and standard deviations are shown. It can be clearly seen overall
that different modules can result in different channel attention patterns. While
it may be difficult to immediately associate the mean value mappings to infor-
mative clinical interpretations, the spatial magnitude of the standard deviation
does provide a way to measure different models’ confidence in assigning kernel
weights across different regions. For example, one thing to observe here is that
all models visualized high mean attention values around the T7 region with rel-
atively low uncertainty (represented by the std value). This observation seems
to support some studies reporting correlations between emotional deficiency and
memory development with specific temporal lobe function, such as in the diathe-
sis of schizophrenia, e.g. [8], and in types of memory enhancement in forms of
dementia, e.g. [11]. As an alternative research direction, how to enforce one’s
prior knowledge on task related scalp patterns so that the posterior learned pat-
terns are robust to inserted attention modules is also important for building a
better human interpretable model.

Dependency on α: For better interpret the effect of module parameter α
from KAM in trained models, we organised this section. Figure 5(A) shows the
distribution over learned α during 5-CV for each subject. Among these, only
experiments with data from subject S02 and S13 yield instances where α < 0,
while all other trainings find α ≥ 0. However, per subject speaking, the change
in the lower bound on α does have a noticeable impact. For example, in the data
from subject S05, S06, and S13 the learned α values cluster at locations close
to zero, but we observed from our experiments that this small deviation from
zero results in noticeable accuracy differences. This may because of the fact that
small α will correspond to the case with large σ, i.e. further away from zero
attention as explained above in Sect. 3.

Fig. 5. A: Distribution of learned α value during the 5CV with EEGNet+KAM across
the 15 subjects. B: Change of accuracy with varying value of α while freezing other
parameters in the selected model (marked as red in first column i.e. subject S01 of A).
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The one-parameter KAM design also makes it easy to analyze prediction
accuracy as a function of the module parameter α. As an example, we choose the
model trained from the first fold (marked with a red dot in Fig.5(A)) for subject
S01 and gather data from three trials each with a different emotion label for the
dependency analysis. By varying α values in KAM while keeping other model
parameters frozen, we can examine how α conditionally effects the prediction.
In Fig. 5(B), it is interesting to see that the learned value (black vertical line) in
KAM happens at a location where the overall accuracy line first rises to stabilize
in this case. It is also interesting to observe that crossover between accuracy lines
for “neutral" and “negative" happens at the same location of learned α.2.

This dependency can also be examined via the distribution of ∂fi(x)
∂α |x for

varying α, where x is the input and fi(x) is the output of the corresponding
neuron (before activation) from the last dense layer for label i ∈ {1, 2, 3}, i.e.
positive, neutral, and negative emotion labels respectively. The result is gath-
ered in Fig. 6(A–C) computed with the same data mentioned in the previous
paragraph. Of note, the partial dependencies appear to show very similar pat-
terns. That is, the variance in each is a decreasing function for α ∈ [0, 0.1]. This
can be explained by the fact that α is packaged inside an exponential form that
maintains its character through differentiation. Finally, Fig. 6(D) shows a close
look at the histogram of how these distributions differ at the learned α = 0.0406
from the model’s selection during training.

Fig. 6. A–C: Distribution at different α values corresponding to label “Positive”, “Neu-
tral” and “Negative”. The mean is linked by dashed line. D: Distribution at learned
α = 0.0406 for different emotion labels.

2 This might be an interesting coincidence since we also had other cases in our exper-
iments where they do not meet exactly.
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Prediction Transition Curve: In this section, we would like to explore how
different models react when the input sample to be predicted is gradually trans-
formed to another sample via some morphing operation g. In other words, we
try to examine and interpret how different models react under a particularly
selected “attack” g. Let {x0, x1, x2} denote 3 samples with labels 0, 1 and 2, and
�pi = {pj

i} = F (xi) with j = 0, 1, 2 denoting model F ’s confidence (here using a
softmax score of the last dense layer) assigning input xi for label j. Then clearly
by construction

∑
j pj

i = 1 for any i. Further let gj
i (u), u ∈ [0, 1] denote an mor-

phing operation between samples parameterized by u such that xi = gj
i (0) ∗ xi

and xj = gj
i (1) ∗ xi. The symbol ∗ here stands for certain abstract action opera-

tion. In trinary classification tasks, as u increases, F [gj
i (u)] will draw a curve in

the hyperplane x+y+z = 1 inside the triangle formed by [1, 0, 0], [0, 1, 0], [0, 0, 1].
By checking these curves (we call them prediction transition curves, PTC ), one
can have an idea that how the trained model F reacts with respect to the mor-
phing operation g on selected samples. The idea can be generated to higher
dimensional cases with class categories n > 3, but it then becomes harder to
visualize these cases as simple curves being embedded in higher dimensional
simplices. This prediction transition curve provides a way for visualizing and
interpreting model’s predicting behavior under “attack” g for given inputs.

Fig. 7. The prediction transition curves from the three models on the same selected
samples. From left to right: EEGNet, EEGNet+SE, EEGNet+KAM.

As a demonstration, we select three samples each with a different label, and
EEGNet, EEGNet+SE, EEGNet+KAM all predict correctly on them. For sim-
plicity, we choose the straightforward linear interpolation between samples for
g, i.e. gj

i (u) ∗ xi = (1 − u)xi + uxj . Notice that this definition of g is symmetric
in terms of gj

i (u) ∗ xi = gi
j(1 − u) ∗ xj . So morphing from xi to xj and xj from

xi end up with the sample path (regardless of the direction). Other types of
morphing operations can also be used depending on one’s prior on the (known
or inferred) underlying relationships between samples. The prediction transition
curves obtained from morphing with g are summarized in Fig. 7. It can be seen
that all three compared models have almost straight PTCs for the connection of
“Negative- Neutral” and “Negative-Positive”, meaning that when one input sam-
ple is slowly morphing to the other, the model transits its confidence between
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the two labels almost linearly while leaving the third label almost untouched.
Curves linking “Neutral-Positive” are all curved to the center at different extents,
suggesting that models are in some sense “hesitating” to assign “Negative” for
intermediate samples generated by morphing between ‘Neutral” and “Positive”.
This example is consistent with the observations in Fig. 6 D) and provides a dif-
ferent angle suggesting that the trained models find it more difficult to separate
“Positive” from “Neutral” emotions than separating “Negative” from “Positive”
or “Neutral” from “Negative” emotions for the subject data under examination.
An interesting followup question is whether this observation bears clinical sig-
nificance as well, something which undoubtedly deserves consideration.

5 Conclusion

In this work, we present a kernel attention module that can be inserted into a
network for deep feature refinement. Using EEGNet as the backbone model, the
performance of KAM are benchmarked against several SOTA attention modules
under cross validation with SEED dataset. With only one additional parameter,
the idea behind KAM has demonstrated good potential for developing parameter
efficient models that can simultaneously help human interpretation on trained
models. Many follow-up studies are possible in this context, including investigat-
ing the effects of different kernels (other than Gaussian) alongside more exhaus-
tive dependency analyses. Additionally, examining different training strategies,
such as the masked-autoencoder discussed in [9], might also be beneficial.
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Abstract. Explainable Artificial Intelligence (XAI) is the field of AI
dedicated to promoting trust in machine learning models by helping us
to understand how they make their decisions. For example, image expla-
nations show us which pixels or segments were deemed most important
by a model for a particular classification decision. This research focuses
on image explanations generated by LIME, RISE and SHAP for a model
which classifies breast mammograms as either benign or malignant. We
assess these XAI techniques based on (1) the extent to which they agree
with each other, as decided by One-Way ANOVA, Kendall’s Tau and
RBO statistical tests, and (2) their agreement with the diagnostically
important areas as identified by a radiologist on a small subset of mam-
mograms. The main contribution of this research is the discovery that
the 3 techniques consistently disagree both with each other and with the
medical truth. We argue that using these off-shelf techniques in a medi-
cal context is not a feasible approach, and discuss possible causes of this
problem, as well as some potential solutions.

Keywords: Machine learning · Breast tumour classification ·
Explainable AI · LIME · RISE · SHAP

1 Introduction

Recent developments in deep learning (DL) have sparked an interest in more
high-stakes applications such as medical diagnostics. Given a medical scan, a
clinician may want to differentiate between healthy and unhealthy tissue, or
between pathologies. However, the black-box nature of DL models means their
conclusions tend not to be trusted by clinicians who cannot determine how
the model came to its decision. Interpretable explanations are therefore cru-
cial. Many medical experts have already expressed their concerns over rising
black-box DL approaches [8].

Explainable AI (XAI) techniques exist to bridge this gap by intuitively high-
lighting the most important features of an input. This gives the model prac-
titioner more information about how to improve the model’s correctness, and
gives the end-user, potentially a non-expert, an idea of how the model came
to its conclusion. Knowing that a model’s conclusion is correct is essential in
medical diagnostics as their outcomes could impact lives.
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M. Reyes et al. (Eds.): iMIMIC 2022, LNCS 13611, pp. 104–123, 2022.
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Using XAI techniques for medical diagnostics comes with its own set of prob-
lems. Medical datasets are problematic due to differing labelling standards - some
images have complete clinical annotation, while others simply state whether a
tumour is present. Many techniques run into problems for images with small
regions of interest (ROIs), due to their usage of image segmentation. This is the
case for breast mammograms as cancerous regions can be extremely small. [23]
discusses the serious implications of bad explanations in high stakes contexts.
Saliency maps, which are commonly used to visualise image explanations, can
be virtually identical for different classes on the same image [2]. Unreliable and
misleading explanations can have serious negative implications.

We present a case study which focuses on the quality of explanations from 3
widely used XAI techniques, applied to a publicly available CNN-based classifi-
cation model used to identify malignant and benign breast tumours (originally
designed for brain tumour detection [15]), and a public anonymised dataset of
benign and malignant breast mammograms [12]. We assess the XAI techniques
based on (1) the extent to which they agree with each other for the whole
dataset, and (2) evaluation by two independent radiologists on the correctness
of the important regions identified by each of the XAI techniques for 10 mam-
mograms. The XAI techniques used in our study, LIME [20], SHAP [14] and
RiSE [18], are discussed in the next Section.

2 Related Work

Many existing XAI techniques are applicable to the medical context. [31] presents
an exhaustive list of techniques used for medical image analysis - we limit our
consideration here to LIME, SHAP and RISE due to their popularity and ease
of use [5]. We plan to consider other XAI techniques in the future.

LIME - Local Interpretable Model-Agnostic Explanations. LIME [20]
is an XAI technique which can be applied to any model without needing any
information about its structure. LIME provides a local explanation by replacing
a complex neural network (NN) locally with something simpler, for example a
Ridge regression model. LIME creates many perturbations of the original image
by masking out random segments, and then weights these perturbations by their
‘closeness’ to the original image to ensure that drastic perturbations have little
impact. It then uses the simpler model to learn the mapping between the pertur-
bations and any change in output label. This process allows LIME to determine
which segments are most important to the classification decision - these segments
are then shown in the visual explanation output.

RISE - Randomized Input Sampling for Explanations of Black Box
Models. RISE [18] works by first generating many random masks of an image,
multiplying them elementwise with the image, and then feeding them directly
into the original model for label prediction. Saliency maps are generated from
a linear combination of the masks where weights come from the output proba-
bilities predicted by the model. These saliency maps highlight the most impor-
tant pixels of the image regarding its classification. This makes RISE extremely
interpretable. RISE is also model agnostic. We note that RISE is very similar
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to LIME, however it measures saliency based on individual pixels, rather than
superpixels, and therefore may perform better on images with small ROIs (e.g.
mammograms).

SHAP - Shapley Additive Explanations. SHAP [14] is another model-
agnostic approach which uses Shapley values, a concept from game theory, to find
the contribution of each feature to the model’s output. The image is segmented to
reduce the number of value computations. Starting from one random segment, we
add one segment at a time until the correct model classification is possible. This
is repeated many times with random orderings to get the importance of each
segment, represented as Shapley values. Large positive SHAP values indicate
that the segment is very important to the classification decision. SHAP is also
a highly interpretable technique. We note that SHAP values are derived from
game theory’s Shapley values - they are not the same, and the mathematical
differences are discussed in detail in [14].

2.1 XAI in Medicine

These methods, as well as other techniques [24,26,27,29,30,33,34], have had
huge success, particularly in the image classification and Natural Language Pro-
cessing fields, however they are only beginning to be evaluated in any medical
context [31]. An important issue to note is that when using larger medical images
such as MRI scans, there is a need to split the images into tiles due to their
extremely high resolutions. XAI techniques then need to be run on each tile,
and the results need to be brought back together. Since we are working with
mammograms, this is not an issue for this research, but is something we plan to
explore in future work.

[25] highlights some of the challenges faced by medical professionals regard-
ing XAI - not all visualisations are interpretable, there is no current definition
for sufficient explainability in the field, and XAI techniques are not satisfactorily
robust [1]. They describe the issue of the knowledge gap between AI and medical
professionals, and the effects this has on techniques. Currently the focus of med-
ical XAI seems to be on diagnosing rare diseases and monitoring health trends
[25]. Some contributions to XAI for tumour classification exist, for example [6]
which focuses on sequencing gene data, and [21] which also focuses on mammo-
grams, though with gradient-based XAI techniques. [11] argues that explanations
generated by LIME and SHAP cause no improvement on human decision making
abilities - when shown an image both with and without an explanation, there
was no statistical difference in the time it took for people to classify the image
by eye, or in the number of mistakes made. This is concerning as the goal of
diagnostic XAI is to make the lives of medical professionals easier, and remove
the need for tedious by-eye classification [10,19].
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(a) INbreast (b) DDSM (c) MIAS

Fig. 1. Example images from each of the three dataset sources.

3 Model Setup

3.1 Data Pre-Processing

For this research we take breast mammograms with cancerous masses from a pub-
lic dataset [12], which takes images from 3 official datasets - INbreast [16], DDSM
[3] and MIAS [28]. When generating this dataset, the creators [13] extracted a
small number of images with masses from each source, and performed data aug-
mentation in the form of image rotation to generate a larger dataset. They also
re-sized images to 227× 227 pixels.

The public dataset [12] we are using is large. The original paper introduc-
ing this dataset [13] details their data augmentation techniques, which includes
rotating and flipping each image to generate 14 variations of itself. This is not
useful for this research - we are not trying to train a model that can cope with
rotated breast scans, as the original scans and therefore any unseen real-world
scans are all of the same orientation. We only use images of the original orienta-
tion. We also only take images from INbreast and DDSM, as the only MIAS scans
present in the dataset were benign, though we plan to include MIAS for evalu-
ation purposes (e.g. Out-Of-Distribution detection (OOD) [17]) in future work
to improve model confidence. The visual difference in original scans between the
3 sources is shown in Fig. 1. After selecting the images of the same orientation
from the INbreast and DDSM sections of the dataset, we have a dataset of 2236
images - 1193 benign and 1043 malignant.

Image Cropping. For maximal model performance, we crop out as much of
the black background as possible, making the breast the focus of each image.
This was performed using basic Python opencv code. Images are then resized to
the original 227× 227 pixel format for consistency.

Dataset Split. Our dataset of 2236 images is split into a (Train-
ing/Validation/Testing) ratio of (2124/56/56). The Validation set will be used
for all intermediate experiments - deciding how many epochs to train the model
for, and tuning parameters for LIME. A small test set was chosen to ensure
sufficient model training due to the small dataset size.
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3.2 Model Architecture

We use an existing public CNN [15] which was originally used for binary clas-
sification of brain scans regarding the presence of a tumour. We use this model
as it was specifically designed for the domain of tumours in medical scans, and
was therefore reliable in the sense that it was likely to perform well on data like
ours - noisy black and white scans containing cancerous legions. In the original
study the model achieved 88.7% accuracy on the test set. The model takes an
image and outputs a decimal value between 0 and 1, where 0 is benign, and 1 is
malignant. We have taken 0.5 to be the threshold value for these classifications.
The CNN contains 8 layers, using ReLU activation.

To avoid overfitting, we train four models differing only in numbers of epochs,
and evaluate their performances on the Validation set. The performances of these
models are described in Table 1 (Appendix A.1) in the form of their Accuracy
and F1 Score. These statistics are based on a Validation set of 56 images. We
proceed with the 75 epoch model as it has the highest performance scores. On
the Test set, the 75 epoch model has an Accuracy of 0.9643 and an F1 Score of
0.9642. For training, we use Keras with the adam optimizer and binary cross-
entropy loss function. We use a Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz
processor laptop for our experiments.

Although the accuracy of the model on the test set is high (96.43%), it is
not clear whether the model infers classifications using the correct image fea-
tures. In medical diagnostics, it is imperative that a clinician is able to interpret
and understand the reasons for the classification label. Explanations from XAI
techniques are meant to address this need.

4 Explanations

We generated individual explanations using each of the 3 XAI techniques, for a
test set of 56 images. For illustration, we show explanations for the same 6 benign
and 6 malignant examples with each XAI technique in Appendix A.8 (LIME
Fig. 6, RISE Fig. 7, SHAP Fig. 8). Code associated with generating explanations
can be found at https://anonymous.4open.science/r/EvaluatingXAI-11DF/.

4.1 LIME

Our Python code for generating LIME explanations follows the steps described
by [20]. For image segmentation, we used Python’s scikit-image quickshift algo-
rithm with empirically chosen parameters. When generating explanations, we
highlight the boundaries of the L most important features for visibility. L was
empirically chosen.

Choosing Segmentation Parameters. For segmentation we use the scikit-
image quickshift algorithm, which has 3 tuneable parameters - kernel size, max-
dist, and ratio. These parameters and their effects are detailed in their documen-
tation [7]. We use a small kernel size of 2, a default max-dist value of 10, and a
small ratio value of 0.1. This was because we wanted many small segments with
little emphasis on colour boundaries, to ensure that we consider small regions of
interest (ROIs), and do not quantify the pixels at the boundary of the breast as
incorrectly important.

https://anonymous.4open.science/r/EvaluatingXAI-11DF/
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Choosing L. We define L as the number of most important features used
in LIME explanations. The L value will determine the features shown in our
LIME explanations, and also how many pixels are compared in the later One-
Way ANOVA analysis. We will be comparing lists of most important pixels as
decided by each XAI technique - the lengths of these lists will be equal for the
3 techniques, and will be the number of pixels within the L most important
LIME features for a given image. We will then calculate the % pixel agreement
between each pair of methods, defined as the proportion of pixels the lists have in
common. To determine our L value, we calculate the average % pixel agreements
between methods using L values of 3, 4, 5, 6 and 7. Averages are taken over the
first 30 images in the Validation set for the sake of time. The results are shown in
Fig. 4 (Appendix A.2). As L increases, average pixel agreement increases between
each pairwise technique comparison. It is infeasible to keep increasing L as we are
trying to compare only the most important pixels. We have chosen L to be 6 as
the first decrease in average agreement between all three techniques occurs at L
= 7. Also, in the case of the pairwise comparisons LIME-SHAP and LIME-RISE,
the jump in agreement from 6 to 7 is much smaller than from 5 to 6.

Observations. Figure 6 (Appendix A.8) shows 12 examples of LIME explana-
tions - 6 for benign scans and 6 for malignant. For both classes, some explanations
highlight undesirable features such as the image background. This is likely due
to the variance in breast shape throughout the dataset, which can clearly be
seen in these examples. This effect could be reduced by using larger datasets
in the future. Looking at these explanations without ground truth tells us lit-
tle about whether they are highlighting genuine cancerous regions. To evaluate
LIME’s performance, we compare its outputs to those of RISE and SHAP, and
to a radiologist’s evaluation.

4.2 RISE

Our Python code for RISE follows the steps described by [18]. Figure 7
(Appendix A.8) shows 12 examples of RISE explanations - 6 for benign scans
and 6 for malignant. In these heatmaps, the most important pixels are shown
as red, and the least important are shown as blue. We note that images have
different importance value scales.

Observations. RISE generally assigns background pixels a medium relative
importance. We expect that this is again due to irregular breast shapes. LIME
and RISE seem to generate poor results for the same images - we define
poor results as explanations which highlight background regions as important.
Figure 7(j) shows a case where RISE performs poorly for a malignant scan. LIME
also performs poorly on this image, shown in Fig. 6(j). This image has an irregu-
lar shape, which supports our thoughts. Figure 7(c) and Fig. 6(c) show the same
issue for a benign scan.

4.3 SHAP

Our SHAP explanation code follows the steps described by [14]. Default val-
ues were used for image segmentation, and SHAP’s Kernel Explainer was used.
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Figure 8 (Appendix A.8) shows 12 examples of SHAP explanations - 6 for benign
scans and 6 for malignant. Segments that contribute the most to the classifica-
tion of the image are shown as green. The least important segments are shown
as red. We note that SHAP value scales are not consistent across images.

Observations. Figure 8(j) shows that SHAP performs poorly for the 4th malig-
nant scan, much like LIME and RISE - heavily influential segments exist at the
top-left corner of the image, which are background pixels. In most cases, the
superpixels outside the boundary of the breast seem to have low SHAP values.
SHAP seems to generally disregard background pixels with more success than
RISE.

(a) LIME
(b) RISE (c) SHAP

Fig. 2. Explanations by LIME, RISE and SHAP for a benign mammogram.

5 Evaluating Explanations

Looking at the 3 explanations side-by-side for an image, as in Fig. 2, we can
start to infer some agreement. However, due to the different explanation for-
mats between techniques, the amount of agreement is unclear. In addition to
visualisations, we use statistical analysis to compare the importance rankings of
pixels between XAI techniques.

Visualising Agreement. We use the 6 most important features in our LIME
explanations, and denote n to be the number of pixels within these features.
We visualise overlap between the n most important pixels given by each XAI
technique, as in Fig. 3. Generally, there are always areas which all 3 techniques
identify as highly important. However there are more regions where they dis-
agree. Sub-figures (b) and (d) from Fig. 3 show cases where explanations have
performed poorly - defined as identifying background pixels as most important.
This is likely due to irregular breast shapes within the dataset. Figures 3(a) and
(c) show cases where explanations have multiple clear points of agreement.
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(a) Benign 1 (b) Benign 2 (c) Malignant 1 (d) Malignant 2

Fig. 3. Overlap between the 3 XAI techniques regarding the n most important pixels.
SHAP is blue, RISE is red, LIME is green. (Color figure online)

5.1 One-Way ANOVA

One-Way ANOVA [22] compares the means of two or more groups for a depen-
dent variable. Our input groups are 3 lists of % pixel agreements between meth-
ods for each test set image, labelled LIME-RISE, LIME-SHAP, and RISE-SHAP.
To generate these lists, we identify the n most important pixels according to each
technique, where n is the number of pixels within the top 6 LIME features for
a given image. This is because LIME outputs binary values for each pixel (pres-
ence in the L most important features) while RISE and SHAP assign decimal
importance values. We then calculate the % pixel agreement across each pair
of pixel lists for each image. We define % pixel agreement as the proportion of
pixels the lists have in common. Results are in Table 2 in Appendix A.3.

The only statistically significant test is Test 2, shown in Table 2. This tells
us that of all pairwise comparisons, there is only statistically significant differ-
ence in average pixel agreement between the comparisons of LIME-RISE and
RISE-SHAP. Analysing the statistical composition of the pixel agreement lists
supports this conclusion. Figure 5 (Appendix A.4) visualises these results. The
largest difference in mean (green triangles) is between LIME-RISE and RISE-
SHAP. Figure 5 and Table 3 (in Appendix A.4) show that the average pixel agree-
ment between techniques is startlingly low - 20–30% on pairwise comparisons,
and under 10% when comparing all three. However, these values still represent
significant numbers of pixels, as our images are large and have small ROIs.

5.2 Kendall’s Tau

Kendall’s Tau [9] is a measure of the degree of correlation between two ranked
lists. The purpose of Kendall’s Tau is to discover whether two ordered lists are
independent. We perform this test using the built-in Python scipy method, and
set the inputs to be the ordered lists of pixels and their importance values for
each of the 3 XAI techniques, in the form “(x, y): value”.

We apply Kendall’s Tau to each test set image 3 times - on the full pixel list,
on the top n most important pixels, and on the top 1000. We want to discover
any statistically significant correlation regarding the most important pixels to
the classification between techniques - if there is, and the Tau values are positive,
this implies agreement. Results are shown in Table 5 (in Appendix A.6). We use
an alpha value of 0.05. From Table 5 we can conclude that the only instances
of statistically significant correlation come from the LIME-SHAP comparison -



112 A. Rafferty et al.

both on the full length pixel list and the top n pixels. Positive Tau values imply a
positive correlation. The LIME-RISE comparison yields results closer to the 0.05
threshold while RISE-SHAP yields the worst results. In Fig. 5, we saw that for
the top n pixel lists, LIME and RISE have the highest mean pixel agreements.
This implies that while LIME and RISE have higher pixel agreement regarding
the presence of the same pixels in the top n pixel lists, LIME and SHAP agree
the most regarding pixel order.

We also evaluated our explanations using the RBO statistical test [32] to
compare pixel rankings. The results of this test are shown and discussed in
Appendix A.5.

5.3 Radiologist Evaluation

To assess our explanations with respect to the medical truth as understood by
a clinician, we consulted 2 independent radiologists and provided them with a
subset of 10 images - 5 with benign and 5 with malignant classification, each
of them associated with explanations from the 3 different techniques. We were
unable to gather an expert evaluation for the entire test set due to limited
availability of the radiologists, though we intend to expand this form of XAI
technique evaluation in future work.

The results gathered from this evaluation with 10 images for the first and
second radiologists are shown in Tables 6 and 7 (in Appendix A.7). In these
tables,‘B’ in the column heading refers to a benign image and ‘M’ refers to
a malignant image. We requested the radiologists to score each explanation
between 0 and 3 to represent its agreement to radiologist identified image regions.
The definition of the scores provided to the radiologists are as follows:

0 = Explanation completely differs from expert opinion
1 = Explanation has some similarities, but mostly differs from expert opinion
2 = Explanation mostly agrees with expert opinion, though some areas differ
3 = Explanation and expert opinion completely agree

It is worth noting that no explanation earned a label of 3 from either radiol-
ogist - each explanation either identified erroneous regions or missed important
sections. LIME appears to perform the worst within this subset of 10 images,
while RISE performs the best. This is likely because RISE is the only method
which uses pixels rather than superpixels and is therefore more fine grained when
examining image regions and less likely to miss small regions of interest. There
does not seem to be any difference in explanation quality between benign and
malignant images for any technique.
The radiologists noted the following limitations with the explanation techniques:

– None of the explanations could identify the entire tumour region. Explanation
methods only highlight fragmented relevant regions and this is along with
many irrelevant regions.

– Explanations for both malignant and benign tumours are distributed all over
the image and fail to take into account clinical features, like shapes of masses,
margins, the density of tissues, and structural distortion.

Our radiologist evaluation using 10 mammograms may not be representative of
a real world dataset. However, the issues highlighted by these comments are
consistent problems - this will be discussed in Sect. 6.
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5.4 Threats to Validity

This research uses a small dataset of breast mammograms which may not be
representative of the population. We limit our classification task to benign or
malignant - in reality there are many types of lesion for both classes, which would
appear differently in mammograms. In future work, using a non-binary classifier
alongside a more thorough radiologist evaluation may allow us to better analyse
the failures of our techniques. We have assumed that the low cohesion between
XAI techniques paired with the high model test accuracy indicates that failures
are due to the XAI techniques, and not the model itself. In future work we will
utilise multiple models and explore alternate XAI evaluation techniques [4] in
order to back up this claim. All empirical analysis regarding LIME parameter
tuning and the choice of L was based solely on the patterns within our data.
They may not hold up when compared to a larger dataset. Our XAI techniques
by definition utilise randomization when generating masks, therefore re-running
our code will generate slightly different results to the ones displayed here. This
variation is not hugely impactful as we generally discuss average values in our
statistical tests. Our code for LIME, RISE and SHAP is not the only way of
implementing these techniques - there are many public examples which imple-
ment the steps described in the literature in slightly different ways. Because of
this, another researcher’s code may yield different results to the ones shown here.

6 Observations and Discussion

Each Technique Performs Poorly on the Same Images. Our explanations
highlight the quality variation within the test set. Each XAI technique performed
poorly (highlighted background pixels as most important) on the same images,
usually mammograms with irregular breast shapes. This is likely due to our
small dataset and the effect of blurring and image re-sizing. It’s interesting to
note that these problems don’t seem to impede the model accuracy, only the
quality of explanations.

Percentage Pixel Agreement Between XAI Techniques is Extremely
Low. LIME and RISE appear to have the most pixel agreement according to
One-Way ANOVA. However, these values are not high, with an average agree-
ment of 28%. Combining Kendall’s Tau with One-Way ANOVA, we find that
while LIME and RISE consistently highlight the highest proportion of the same
important pixels, LIME and SHAP have the most similar pixel orderings. This
is supported by RBO.

Radiologist Evaluation Revealed Explanations from All Three Tech-
niques Were Unhelpful. The radiologists found that RISE performed
marginally better than the other two techniques. Explanations from all three
techniques, however, do not consider clinical features within mammograms that
are used to diagnose benign or malignant tumours, such as shape of mass, bound-
ary, and density. The explanations do not highlight the entire tumour as impor-
tant, but instead sparsely pick parts of the tumour along with many irrelevant
regions. The XAI techniques we have used have low levels of agreement with
each other, as well as low levels of agreement with the medical truth.
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6.1 Discussion

The goal of this research was to determine whether taking off-shelf XAI tech-
niques and applying them to breast tumour classification was a feasible approach
that would hold up in the real world. Bringing together our observations tells us
that this is not the case.

Though LIME and SHAP have the highest agreement in pixel orderings,
these agreement levels are still very low. Explanations from these techniques
highlight some common areas, though have significant disagreements and are
therefore unreliable for use in diagnostics. The most likely reason that LIME
and SHAP have the highest pixel ordering agreement is that these methods
both utilise superpixels, while RISE does not. Discussing similarities in pixel
orderings is problematic in this context, due to the differing ways in which each
of the 3 XAI techniques assign importance values to pixels. We note that these
differences come from both the underlying properties of each technique, and
from our code architecture. LIME’s binary scoring method is likely the reason
behind the slightly higher % pixel agreement statistics for pairwise comparisons
involving LIME.

Each XAI technique works differently, and resulting explanations depend
on many different factors - segmentation, mask randomization, and tuneable
parameters. While this is an expected reason for some result variation, a higher
level of cohesion in explanations was to be expected. We identified that each
technique incorrectly highlighted background regions as being most important
on images with irregular breast shapes. While this may have been caused by
the small size of the dataset, and image quality after pre-processing, we would
have expected the model’s accuracy to also decline to reflect this, and it did not.
We also note that the techniques showed no difference in explanation quality for
images from the benign or malignant classes.

Regarding the medical truth according to a radiologist, RISE seems to pro-
duce the most medically correct explanations, while the results of LIME and
SHAP are often entirely incorrect. This is likely because RISE involves no image
segmentation. No explanations were labelled as perfect - areas are always missed
or incorrectly highlighted. We therefore conclude that explanations generated by
LIME, RISE and SHAP are in disagreement with respect to both each other, and
to the medical truth, and so do not perform reliably in this context. The results
of these explanation techniques do not match or consider what a radiologist
would want in a real-world context. Instead of pixels or superpixels, techniques
should identify clinically defined regions. This is a gap that needs to be bridged
- we highlight the need for specific, carefully defined techniques for explaining
tumour images that take clinical features into account.

A Appendix

A.1 Model Training Results

The results of the experiment used to choose the 75 epoch model when con-
sidering the impact of overfitting on our CNN, as discussed in Sect. 3.2 of this
report.
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Table 1. Validation accuracy and F1 Score for CNNs trained with different numbers
of epochs.

Epochs Accuracy F1 score
25 0.8214 0.7917
50 0.8214 0.7917
75 0.8750 0.8571
100 0.8036 0.7660

A.2 Choosing L Parameter for LIME

The results of the experiment used to choose L, as discussed in Sect. 4.1
of this report.

Fig. 4. Average % pixel agreement values between techniques taken over 30 images
from the Validation set.

A.3 One-Way ANOVA Results

We present here the statistical hypotheses used for the One-Way ANOVA test, as
well as the results gathered. This statistical test and its implications is discussed
in Sect. 5.1 of this report. The results are shown in Table 2.

The hypotheses for One-Way ANOVA are as follows:

– H0: There is no statistically significant difference between the means of the
groups.

– H1: There is a statistically significant difference between the means of the
groups.
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Table 2. Results of One-Way ANOVA tests as described in the text. Bold results are
statistically significant (alpha value 0.05).

Test Methods compared F-statistic p-value
1 LIME-RISE, LIME-SHAP 3.7823 0.0544
2 LIME-RISE, RISE-SHAP 9.1855 0.0031
3 RISE-SHAP, LIME-SHAP 1.6193 0.2060

A.4 Pixel Agreement Statistics

Figure 5 presents a box plot representation of the % pixel agreement values
between XAI techniques, taken over all images in our test set. These results
are discussed in Sect. 5.1 of this report. Table 3 also represents these agreement
values.

Fig. 5. % Pixel Agreement between techniques for n most important pixels. Medians
are orange lines, means are green triangles. (Color figure online)

A.5 Ranked Biased Overlap (RBO) Results

RBO [32] weights each rank position by considering the depth of the ranking
being examined, minimising the effect of the least important pixels. Taking two
ranked lists as inputs, RBO outputs a value between 0 and 1, where 0 indicates
that the lists are disjoint, and 1 indicates that they are identical. The results of
RBO depend on the tuneable parameter p [32]. Small p values place more weight
on items at the top of an ordered list. While this is desirable, we must consider
the difference in pixel importance value allocation methods between techniques.
RISE applies a decimal score to each pixel. SHAP applies the same decimal score
to each pixel within a given image segment. LIME uses binary values indicating
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Table 3. Statistical overview of percentage pixel agreements for all method compar-
isons.

Techniques Mean Std Min Max
LIME-RISE 28.27% 10.13% 7.74% 52.19%
LIME-SHAP 24.73% 8.75% 8.73% 48.16%
RISE-SHAP 22.45% 9.82% 0.00% 44.97%
ALL 9.48% 6.18% 0.00% 25.88%

whether the pixels are in the top 6 most important features. We use large p
values to properly encompass similarities between larger groups of pixels with
identical values.

Table 4 shows the average, minimum and maximum RBO values for each
pairwise pixel list comparison. The average RBO values for each comparison tell
us that the pixel lists are almost disjoint. This is expected due to the differ-
ing pixel importance allocation methods as discussed. Instead we consider the
maximum values - LIME and SHAP generate lists that are hugely identical for
at least one instance in the test set, with maximum RBO values in the range
0.69–0.78. The other pairwise comparisons do not come close to these numbers.
This observation supports Kendall’s Tau - both tests have identified LIME and
SHAP as the techniques with the highest agreement regarding pixel orderings.

Table 4. RBO results performed on full ordered pixel importance lists for each tech-
nique, with differing p values. Values shown to 3 decimal places, though we note here
that these values are never exactly zero, just extremely small.

- RISE-SHAP LIME-SHAP LIME-RISE
p 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max 0.000 0.000 0.077 0.697 0.763 0.782 0.002 0.023 0.265
Avg 0.000 0.000 0.003 0.019 0.027 0.045 0.000 0.001 0.011

A.6 Kendall’s Tau Results

We present here the statistical hypotheses used for the Kendall’s Tau test, as
well as the results gathered. This statistical test and its implications is discussed
in Sect. 5.2 of this report. The results are shown in Table 5.
The following hypotheses are used:

– H0: There is no statistically significant correlation, the lists are independent.
– H1: There is a statistically significant correlation in pixel orderings between

lists, they are not independent.
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Table 5. Kendall’s Tau comparison results. n is defined in the text. Values are aver-
ages taken over the test set, shown to 3 decimal places. Bold results are statistically
significant.

Techniques p-values Tau
Full n 1000 Full n 1000

RISE-SHAP 0.123 0.125 0.249 0.003 0.002 0.001
LIME-SHAP 0.000 0.048 0.067 0.154 0.106 0.293
LIME-RISE 0.066 0.055 0.133 0.004 −0.006 0.014

A.7 Radiologist Opinions
Here we present the results as received from two independent radiologists, as
well as definitions of the scoring system used to evaluate explanations,

We requested each explanation be scored between 0 and 3 to represent its
agreement to radiologist identified image regions. The definition of the scores
provided to the radiologists are as follows:
0 = Explanation completely differs from expert opinion
1 = Explanation has some similarities, but mostly differs from expert opinion
2 = Explanation mostly agrees with expert opinion, though some areas differ
3 = Explanation and expert opinion completely agree

Table 6. Radiologist evaluation regarding explanations generated on a subset of 10
images. B denotes benign, and M denotes malignant.

Image B1 B2 B3 B4 B5 M1 M2 M3 M4 M5
LIME 0 1 0 1 1 0 0 1 0 0
RISE 0 1 1 1 1 2 1 1 1 2
SHAP 0 0 0 1 2 0 1 1 1 0

Table 7. Second radiologist evaluation regarding explanations generated on a subset
of 10 images. B denotes benign, M denotes malignant.

Image B1 B2 B3 B4 B5 M1 M2 M3 M4 M5
LIME 0 2 0 1 1 0 0 0 0 0
RISE 0 0 0 1 1 2 0 0 0 0
SHAP 0 2 0 1 0 1 0 1 1 1

We note that the opinions of the two radiologists above do not entirely agree
with each other - this is due to the fact that identifying all cancerous regions by
eye, especially on benign mammograms, is extremely difficult. The scans are also
fairly noisy and in parts blurry by nature. The purpose of this form of evaluation
was not to have radiologists perfectly highlight all cancerous regions - the goal
was to simply analyse their responses to explanations generated by each XAI
technique, in order to judge the usefulness of the techniques as diagnostic tools.
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A.8 Explanation Examples

This section contains examples of image explanations as generated by LIME,
RISE and SHAP, described in this report. Figure 6 shows LIME explanations,
Fig. 7 shows RISE explanations, and Fig. 8 shows SHAP explanations.

(a) Ben LIME 1 (b) Ben LIME 2 (c) Ben LIME 3

(d) Ben LIME 4 (e) Ben LIME 5 (f) Ben LIME 6

(g) Mal LIME 1 (h) Mal LIME 2 (i) Mal LIME 3

(j) Mal LIME 4 (k) Mal LIME 5 (l) Mal LIME 6

Fig. 6. Examples of LIME explanations generated for benign (Ben) and malignant
(Mal) breast mammograms.
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(a) Ben RISE 1 (b) Ben RISE 2 (c) Ben RISE 3

(d) Ben RISE 4 (e) Ben RISE 5 (f) Ben RISE 6

(g) Mal RISE 1 (h) Mal RISE 2 (i) Mal RISE 3

(j) Mal RISE 4 (k) Mal RISE 5 (l) Mal RISE 6

Fig. 7. Examples of RISE explanations generated for benign (Ben) and malignant
(Mal) breast mammograms.
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(a) Ben SHAP 1 (b) Ben SHAP 2 (c) Ben SHAP 3

(d) Ben SHAP 4 (e) Ben SHAP 5 (f) Ben SHAP 6

(g) Mal SHAP 1 (h) Mal SHAP 2 (i) Mal SHAP 3

(j) Mal SHAP 4 (k) Mal SHAP 5 (l) Mal SHAP 6

Fig. 8. Examples of SHAP explanations generated for benign (Ben) and malignant
(Mal) breast mammograms.
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