
Chapter 8
Single Image Reflection Removal Using
Deep Learning

Sushil Kumar, Peeyush Joshi, Vanita Garg, and Hira Zaheer

1 Introduction

It is often the case that the subject that we are trying to photograph is on the other
side of the glass and we end up taking a photograph through a glass, as the glass in
between is simply unavoidable or the hassle is not worth the efforts. Photographs,
thus, taken contain undesirable reflections and degrade the visibility of the scene by
blurring, obstructing or deforming the background scene and may result in failure or
degradation of processing and analysing capabilities of computer-vision algorithms,
such as object detection, event detection, object recognition, image segmentation,
video tracking, etc. The problem of getting reflection-free images taken through
glass is of great interest in the image processing and computer vision community and
has practical demands.

I=Rþ B ð8:1Þ

where
I: n × m × 3 matrix which represents the reflection-contaminated image
R: n × m × 3 matrix which represents the reflection layer
B: n × m × 3 matrix which represents the background layer
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Fig. 8.1 Reflection-contaminated image “I”, background layer “B” and reflection layer “R”

The goal of the work is to approximate the background layer B from the acquired
image I. Figure 8.1 illustrates the reflection-contaminated image as well as the
ground truth for the background and the reflection layers.

The problem of removing reflection from a single image is ill-posed as, for a
given reflection-contaminated image, there could be infinite possible decomposi-
tions into the background layer and the reflection layer; the same is illustrated with
the help of an example image in Fig. 8.2. Also, lack of sufficient labelled data for
training and reflection and background layers containing data from natural scenes
adds to the ill-posedness of the problem.

Most of the existing methods to remove reflection use specialized hardware or
multiple images to make the problem less ill-posed and produce. Recently, some
research works used deep learning methods, which outperform the existing methods,
but, still, they use very complex architectures and blur out or degrade the quality of
the images and fail in cases when the background and the reflection layers are very
similar in terms of brightness and structural appearance.

Our contributions to address the above-mentioned issues are as follows:

• We have trained a relatively simpler architecture end-to-end neural network to
estimate the background layer.

• We have created a loss function based on SSIM score, which is better suited when
comparing the similarities between images.

• We have created a larger labelled training dataset using data from multiple
sources.
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Fig. 8.2 Three possible separations of a reflection-contaminated image into the background and the
reflection layers

2 Literature Survey

The problem of how to remove reflection artefacts from an image has been widely
researched in the image processing and computer vision community. Existing work
can be classified into two categories based on the number of inputs required to
produce a single reflection-free image. The first category includes methods requiring
multiple inputs (such as multiple images or the use of specialized hardware to
capture the image), and the second category includes methods requiring single
image as the input. Single image methods can be further classified based on the
approach they use to solve the problem, conventional mathematical approaches or
learning-based approaches.

Multi-image Methods

Multiple related images can be used to make the problem of reflection removal less
ill-posed and easier to solve but make the process of capturing images difficult. Guo
et al. [1] and Y. Li and M. S. Brown [2] use images taken from slightly different
angles or video sequence. Agrawal et al. [3] use image pairs taken with and without
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firing flash. Schechner et al. [4] use polarizer to obtain multiple polarized images.
Kong et al. [5] use image pairs with the subject in and out of focus. These methods
produce state-of-the-art results but are highly limited in practicability due to the
complex process of capturing the images.

Single Input Methods

When compared with multi-image approaches, trying to suppress or remove reflec-
tion artefacts from a single image is difficult because of the constrained data.

Traditional Approaches

The following approaches use conventional mathematical approaches to remove the
reflection.

Levin et al. [6] proposed an oversimplified approach based on local features of
corners and edges considering gradient sparsity prior. Authors proposed a method
that decomposes the reflection-contaminated image into two images such that the
total number of corners and edges is minimized. However, this method performs
poorly as the complexity in the images texture rises. Levin et al. [7] rely on user
assistance to simplify the problem. Although this method successfully manages to
separate the reflections from a single image to a certain degree, manually marking
the image for the presence of reflection is difficult and is only practical for a small
number of images. Shih et al. [8] reduce the ill-posedness by the use of ghosting cues
and exploit the Gaussian mixture model (GMM) to learn image priors. Ghosting
cues are the double reflections shifted by some distance, arising due to light being
reflected at both the surfaces of a glass pane. Ghosting cues arise mostly in case of
double pane glass or if the glass is quite thick, so this method works only on a small
subset of images containing reflection. Wan et al. [9] assume prior that the back-
ground layer contains sharp and well-defined edges and the reflection layer is
relatively smoother and use this relative difference in the smoothness as a cue to
create a depth of field (DoF) confidence map, which then is used to classify edges as
part of either the background layer or the reflection layer. This method cannot
remove reflection from images with tiny textures or small reflection artefacts.

Learning-Based Approaches

Recent works have leveraged deep learning capabilities to solve the reflection
removal problem.
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Fan et al. [10] follow the same prior assumption as [9], i.e. reflection layer is
off-focus and blurry. They created a synthetic dataset that mimics the assumed prior
and proposed a two-stage cascaded network. The first stage predicts the edges of the
background layer, and the predicted edges are used by the second layer to guide the
background layer recovery. Wan et al. [11] improved [10] two stages into a single
end-to-end concurrent network to predict the edges and separate the layers. Zhang
et al. [12] combined three losses (feature loss, adversarial loss and exclusion loss) to
train the proposed end-to-end network. The network and the losses are tuned to
exploit both low-level and high-level information; still, this method performs poorly
on images with high exposure. Recently GAN (Generative Adversarial Networks)-
based methods [13, 14] have yielded good results, but still have issues handling
images with extreme exposures, and [13] produces fails to produce images with
natural colours as the colour tone is altered when the parts of reflection appear in the
background. Also, the problem inherent with GANs is their complexity, both in
terms of network architecture and the time and parameter tuning required to train the
network. Some other related articles [15–20], and proposed deep learning-based IoT
methods to solve different problems.

3 Proposed Method

Training Dataset

All the existing learning-based single image reflection removal methods fail to fully
take advantage of their respective proposed models due to the lack of labelled
training data. Lack of labelled training data is a common problem in computer
vision community and though there are some workarounds even they are limited
in cases in which they can be applied. The most common workaround is creating a
synthetic dataset. The problem with creating a synthetic dataset is that they usually
fail to truly mimic the wide range and variety of classes present in natural datasets,
which in turn limits the capabilities of the method to deal with naturally occurring
images. Another workaround is assuming priors and proposing a method consider-
ing the priors. Priors usually restrict the scope of the approach by setting some
bounds on the input and thereby making the approach more tailored towards dealing
with inputs from the smaller range. Such methods may or may not perform equiv-
alently for inputs outside this range.

We have followed the first approach, i.e. to expand the dataset using synthetic
images. We have used data from multiple sources to accomplish this and merged it
with images from already available datasets to train a reflection removal model.

PASCAL Visual Object Classes (VOC) dataset [15] is used to create synthetic
images with reflection artefacts. To synthesize one image, two images are selected
from the dataset and cropped into 256 × 256-sized patches. Then, one patch is
selected as the background, and the other one as the reflection. Both the images are
merged using the following equation:
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Fig. 8.3 Image triplet (B, R, I) from the training dataset

I=α � Bþ β � G� Rð Þ 8:2Þ

where
I, B and R are n × m × 3 matrices representing the resulting synthetic image, the

background patch, and the reflection patch, respectively
α: blending weight for the background patch
β: blending weight for the reflection patch and β = (1 – α)
G: represents the Gaussian blur operation applied on reflection patch

Reflection patch is blurred out using Gaussian blur, and then blending weight α 2
[0.6, 0.8] is used to combine both the images. The generated dataset contains 50,000
synthetic images. An image triplet (containing the background, the reflection and the
final blended result) from the training dataset can be seen in Fig. 8.3.

Model Description (Table 8.1)

Loss Function

Loss value is a measure of how off the predictions are from true values. Loss
function reflects the performance of the model and provides a quantitative measure
of accuracy. The loss function is a key aspect in determining how good a solution the
trained model is as the objective function being realized while in training phase is to
minimize the loss. Therefore, the loss function must be chosen in a way that
minimization of the loss value results in the model predicting value close to the
true values, and for this to happen the loss function must be tailored to the problem
being solved. As images are at the centre of reflection removal problem, we will first
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Table 8.1 Model architecture

#
Filters

Kernel
size

conv2d_1(Conv2D) conv2d[0][0] 64 9 × 9 ReLU 256 × 256 × 64

conv2d_2 (Conv2D) conv2d_1[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_3 (Conv2D) conv2d_2[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_4 (Conv2D) conv2d_3[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_5 (Conv2D) conv2d_4[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_6 (Conv2D) conv2d_5[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_7 (Conv2D) conv2d_6[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_8 (Conv2D) conv2d_7[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_9 (Conv2D) conv2d_8[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_10 (Conv2D) conv2d_9[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_11 (Conv2D) conv2d_10[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_12 (Conv2D) conv2d_11[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_13 (Conv2D) conv2d_12[0][0] 64 5 × 5 ReLU 256 × 256 × 64

tf_op_layer_add
(TensorFlowOpLayer)

conv2d_9[0][0],
conv2d_13[0][0]

ReLU 256 × 256 × 64

conv2d_14 (Conv2D) tf_op_layer_add
[0][0]

64 5 × 5 ReLU 256 × 256 × 64

conv2d_15 (Conv2D) conv2d_14[0][0] 64 5 × 5 ReLU 256 × 256 × 64

tf_op_layer_add_1
(TensorFlowOpLayer)

conv2d_7[0][0],
conv2d_15[0][0]

ReLU 256 × 256 × 64

conv2d_16 (Conv2D) tf_op_layer_add_1
[0][0]

64 5 × 5 ReLU 256 × 256 × 64

conv2d_17 (Conv2D) conv2d_16[0][0] 64 5 × 5 ReLU 256 × 256 × 64

tf_op_layer_sub
(TensorFlowOpLayer)

conv2d_5[0][0],
conv2d_17[0][0]

ReLU 256 × 256 × 64

conv2d_18 (Conv2D) tf_op_layer_sub[0]
[0]

64 5 × 5 ReLU 256 × 256 × 64

conv2d_19 (Conv2D) conv2d_18[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_20 (Conv2D) conv2d_19[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_21 (Conv2D) conv2d_20[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_22 (Conv2D) conv2d_21[0][0] 64 9 × 9 ReLU 256 × 256 × 64

conv2d_23 (Conv2D) conv2d_22[0][0] 3 9 × 9 ReLU 256 × 256 × 3

Padding = “same”
Strides = (1,1)
Total params: 2,744,131
Trainable params: 2,744,131
Non-trainable params: 0

take a metric that can precisely measure the similarities between two images and use
it inside the loss function to calculate the loss value.

Structural similarity (SSIM) index provides the quantitative measure of structural
similarity between images and is formulated on a similar basis using which the
human visual system assess the similarity between two scenes. Our visual system has
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Fig. 8.4 Original image, increased contrast, blurred image

evolved to extract structural information from the scene; therefore, calculating the
structural resemblance between two images can provide a decent approximation of
actual similarity between them.

SSIM provides better similarity estimation than other measures for images as
every pixel is weighted equally in case of peak signal-to-noise ratio (PSNR) and
mean squared error (MSE), irrespective of the fact that any change in its value will be
noticeable to the human observer or not. This could lead high variations in MSE and
PSNR scores for the image pairs when the contrast or brightness changes in one of
the image, even though these modifications don’t have a significant effect on human
observer assessing image similarity as can be seen in Fig. 3.2. Therefore, structural
similarity index is more likely to find such image pairs more similar, as the structural
information in the image pair would resemble closely, as the SSIM index is
calculated on various windows of an image (Fig. 8.4).

SSIM index ranges from 0 to 1, 0 meaning that the images share no structural
similarity and 1 meaning perfect structural similarity between images, which is only
possible for identical images. Three components, namely, luminance, contrast and
structure, are used in the process of calculating SSIM index for two perfectly aligned
images of same size x and y.

Luminance comparison l(x, y) is given by:

l x, yð Þ= 2μxμy þ C1

μ2x þ μ2y þ C1
ð8:3Þ

Contrast comparison c(x, y) is given by:

c x, yð Þ= 2σxσy þ C2

σ2x þ σ2y þ C2
ð8:4Þ

Structure comparison s(x, y) is given by:

s x, yð Þ= σxy þ C3

σxσy þ C3
ð8:5Þ

where
μx is the average of intensities of x, μy is the average of intensities of y,

https://doi.org/10.1007/978-3-031-17929-7_3


σ 2 is the variance of intensities of x, σ 2 is the variance of intensities of y,
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x y

σxy is the covariance of intensities of x and y, and
C1, C2 and C3 are used to avoid instability when denominators are close to zero.
C1 = (K1 L )

2, C2 = (K2 L )
2, C3 = C2/2,

K1 << 1 and K2 << 1, and L is the dynamic range.

Using the above-mentioned three components, SSIM index is calculated as
follows:

SSIM x, yð Þ= l x, yð Þ ∙ c x, yð Þ ∙ s x, yð Þ ð8:6Þ

Substituting the values of l(x,y), c(x,y) and s(x,y) in the above equation, we get

SSIM x, yð Þ= 2μxμy þ C1
� �

2σxy þ C2
� �

μ2x þ μ2y þ C1

� �
σ2x þ σ2y þ C2

� � ð8:7Þ

This can be converted into loss function to calculate the loss between the
estimated background layer and the actual background layer as follows:

lossSSIM ytrue, ypred
� �

= 1- SSIM ytrue, ypred
� � ð8:8Þ

4 Experiment and Results

In this section, we present the details of the experiments performed and their
evaluation. Detailed discussion on the impact of various parameters of the proposed
approach on the overall performance is also included.

Training Details

Trained the network with the following parameters:

Number of epochs: 65
Batch size: 32
Validation split: 0.2
Shuffle: True
Optimizer: Adam (α = 0.0001, β1 = 0.9, β2 = 0.999)
Loss function: MSE, loss_SSIM

A combination of MSE and our custom loss function based on SSIM index has
been used during training. The process of training was carried out in two phases: in
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Fig. 8.5 Training and validation loss vs epoch graph – Phase I
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Fig. 8.6 Training and validation loss vs epoch graph – Phase II

the first phase, we have used the entire training dataset with MSE as the loss function
and trained the network for 40 epochs, and, in the second phase, the network was
trained for a total of 25 epochs on smaller subsets of the training dataset with SSIM-
based loss function (Figs. 8.5 and 8.6).

Experimental Set-Up

Experiments were carried out on the system with the following configurations:

CPU: Intel Xeon Silver 4114
Memory: 64 GB DDR4
GPU: NVIDIA Quadro P5000



GPU Memory: 16 GB GDDR5X
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Storage: 4 TB
Operating system: Ubuntu 18.04.4 LTS (Bionic Beaver)

Deep learning libraries used: Keras with TensorFlow backend, TensorFlow 2.1.0,
CUDA 10.1, cuDNN 7.6.

Programming language and major libraries used: Python 3.6, NumPy, OpenCV,
Matplotlib.

Performance Evaluation Metrics

For performance evaluation, the most common metrics in comparing two images are
PSNR value and SSIM score (refer to Sect. 3.3 for a detailed description of SSIM
index). Peak signal-to-noise ratio (PSNR) is the ratio between a signal’s maximum
power and the power of corrupting noise that affects the quality of images and
videos. Generally, PSNR is conveyed on a logarithmic decibel scale. The formula for
PSNR between the original image and the noisy image is given in the following
equation:

PSNR= 20 � log 10
max fffiffiffiffiffiffiffiffiffiffi
MSE

p ð8:9Þ

where
maxf – maximum signal value present in the original image

Mean squared error (MSE) is

MSE=
1
mn

Xm- 1

0

Xn- 1

0

k f i, jð Þ- g i, jð Þk2 ð8:10Þ

where
f – original image in matrix form
g – predicted image in matrix form
m – number of rows in input images
n – number of columns in input images
i, j – co-ordinates of a current pixel location in input images

Testing Dataset

Benchmarking SIR2 dataset [16] with images containing real scenes is used to assess
the performance and capabilities of the trained network. SIR2 dataset is released by
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Table 8.2 Comparison of
average SSIM scores for pro-
posed and competing methods

Method SSIM

LB14 [2] 0.793

AY07 [7] 0.834

SK15 [8] 0.785

WS16 [9] 0.862

FAN17 [10] 0.854

XR18 [12] 0.823

Proposed (after Phase I) 0.7855682

Proposed (after Phase II) 0.81121135

Table 8.3 Comparison of
average PSNR values for pro-
posed and competing methods

Method PSNR

LB14 [2] 21.735

AY07 [7] 21.436

XR18 [12] 20.28

Proposed (after Phase I) 15.966344

Proposed (after Phase II) 16.880268

Rapid-Rich Object Search (ROSE) Lab, NTU, Singapore. It has a large number of
diverse images containing a reflection, along with the corresponding ground truth of
their reflection and background layers. It contains both indoor (controlled) scenes
and outdoor (wild) scenes. Indoor scenes include postcards and solid objects used in
day-to-day life, such as fruits, toys, mugs, etc. Outdoor scenes contain real-world
entities, such as trees, gardens, cars, buildings, etc. with varying illuminations, scales
and distances. SIR2 dataset contains a total of 500 image triplets with 200 triplets
each for postcard dataset and solid object dataset and 100 triplets for wild scene
dataset (Table 8.2 and 8.3 and Fig. 8.7).

5 Conclusion and Future Work

In this dissertation, we have studied the single image reflection removal problem and
proposed a method to suppress the reflection and recover the background layer. Our
approach focuses mainly on using simple network architecture along with a loss
function tailored to the demands of the problem. To address the issue of lack of
labelled training data, we have created and used synthetic dataset for training our
network.

Experimental results validate the efficacy and efficiency of our approach. A
similar approach can be used in solving the problems, such as super resolution,
where the current approaches use complex network architectures, including
autoencoders and generative adversarial networks.
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Fig. 8.7 Reflection removal results on test images by the proposed model



176 S. Kumar et al.

Fig. 8.7 (continued)

Our method has produced decent results but still fails to outperform the state-of-
the-art method. Future works can focus on using the ground truth of the reflection
layer in addition to the ground truth of the background layer to further improve the
effectiveness of the approach.
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