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Sine-Cosine Algorithm EmbeddedMutation
Operations
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1 Introduction

Portfolio optimization is the process in which investors receives appropriate guid-
ance regarding the selection of assets from a variety of other option. The traditional
asset location problem is that of an investor who wants to invest money in the stock
market in such a way that individual can get a reasonable rate of return while
minimizing risk. It is based on modern portfolio theory. MPT, first introduced by
Markowitz in 1950, is also known as mean-variance analysis method, and this is a
mathematical process which allows the investors to maximize returns for a given risk
level. In a study by Zhai et al. [39], hybrid uncertainty, which mixes random returns
and uncertain returns, is analysed using the chance theory. We explore the problem
of optimizing a portfolio with an unknown random variable, which is the total return.

A new mean risk modal based on this criterion to optimization is proposed by
Mehralizade et al. [28], along with a new risk criterion for uncertain random
portfolio selection. To solve the portfolio selection problem with uncertain random
returns, Ahmadzade et al. [2] used the idea of partial divergence metrics. Mehlawat
et al. [27] study uses higher moments to investigate a multi-objective portfolio
optimization issue in a chaotic, uncertain setting. We investigate a case with an
asset universe, in which some assets have recently been listed assets that lack
historical data while others have assets that have historical return data that is
sufficient for modelling as random variables. We incorporate skewness (i.e. the
third moment) in the portfolio optimization model and use mean absolute semi-
deviation as a risk indicator. Ahmadzade and Gao [1] established a mean-variance-
entropy model for uncertain random returns using the idea of covariance of uncertain
random variables. Huang et al.’s [18] study offers the deterministic equivalents of a
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novel uncertain risk index model with background risk. Experts evaluate the security
returns and backdrop asset returns with the assumption that they are uncertain
variables. The portfolio problem between a risk-free and a risky asset in the presence
of background risk was addressed by Brandtner et al. [6], using the convex shortfall
risk measure.

Arhana and Iba [3] proposed a GA-based portfolio optimization method to
generate an investment portfolio. Markowitz has used the mean-variance model
and correlation variation model to present the expected return and risk of portfolio.
This method calculated portfolio value when transaction cost is involved. Bonami
and Lejeune [5] proposed portfolio optimization with PSO and solved the two types
of risky portfolio, unrestricted and restricted. Ma et al. [24] solved the portfolio
optimization problem with cardinally constraint method. Konno and Yamazaki [21]
proposed a portfolio optimization model for huge-scale optimization problem on
real-time basis. Solved the problem on a linear program as opposed to quadratic
programme.

Shiang-Tai-Liu [34] proposed a method to solve the portfolio optimization
problem with returns, a mean-absolute deviation risk function, and Zadeen’s exten-
sion principles are used. Gupta et al. [17] presented the three stages of multiple
decision-making portfolio in this study for financial and ethical criteria. GA
presented an excellent meta-heuristic approach to solve this portfolio optimization
problem [32] invented a interactive genetic algorithm (iGA) has been used to
analyzed the nonlinear problem gives better result than GA. Zhang and Liu [37]
endorse a hybrid version of fuzzy and genetic algorithm solving the fuzzy problems.
It is feasible to solve multigoal issues by remodelling to a single goal. Zhang and Liu
[31, 37] proposed a credibility multi-objective mean-semi entropy model with
background risk for multi-period portfolio selection.

The importance of hybridization is to unite the benefits and to construct a
strong model. Mansini et al. [25] proposed a solution to select a portfolio with
fixed transaction cost and mixed integer linear programming model that used semi-
deviation model to calculate the risk. Konno and Suzuki [22] proposed a mean-
variance-skewness (MVS) portfolio optimization model; in this model, any decreas-
ing utility function allows to maximize the third order approximation of the expected
utility. Singh and Dharmendra [35] presented a credit risk optimization model using
the l norm risk measure that is proposed for a portfolio of credit risky bonds.

Because the proposed model is written as a linear programming problem, it is
computationally efficient for large portfolios. ZhongFeng [38] proposed a hybrid
portfolio optimization and converted it to convex quadratic programming. Ertenlice
and Kalayci [10] conducted swarm intelligence research for portfolio optimization,
discussing algorithms and applications.

Hu et al. [19] studied the usage of evolutionary computation in the discovery of
buying and selling policies in the set of rules of stock buying and selling. They pro-
posed a hybrid technique that mixes the two styles of evaluation demonstrating via
simulations that inventory optimization the use of economic indices (derived from
essential evaluation) may be used to pick shares the pleasant organizations in phrases
of operations with return. De Mighel et.al. [8] provided a general framework for
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identifying portfolios that perform well out of sample even in the presence of
estimated error. This approach uses the sample covariance matrix to solve the
standard minimum variance problem. Califore [7] proposed an opportunity to
selection trees or pattern paths for multilevel portfolio allocation that results in
specific convex confined quadratic programming fashions that may be solved
globally and efficiently. The authors expand the multi-duration mean-variance
version to cope with competing uncertainty eventualities and advocate a worst-
case choice method that mixes a min-max approach with a stochastic optimization
set of rules primarily based totally on situation trees. Pinar [30] and Takriti and
Ahmed [36] proposed robust optimization in the context of two-stage planning
system. An efficient variant of the L-shaped decomposition approach for classical
stochastic linear programming can be used to solve a robust optimization model.

Advances in interior-point methods for some classes of nonlinear convex opti-
mization have made heuristics based on repeated solution of a convex optimization
problem possible. While these methods date back to the late 1960s (see, e.g. Fiacco
and McCormick [11]), Karmarkar’s interior-point method for linear programming
[20], which was shown to be more efficient than the simplex method in terms of
worst-case complexity analysis and in practice, ushered in the modern era.

Sharpe [33] proposed a linear goal programming model for open-end mutual
fund portfolios selection. Orito et al. [29] proposed a new technique to initialize the
population size using bordered Hessian that solved the problem with GA. Daun
[9] proposed the traditional single-goal approach, including the suggest variance
method, which solves the trouble by inclusive of one of the optimization
goals withinside the goal characteristic and stifling the other. When an investor
can promote securities quick in addition to purchase long and while an
element and scenario model of covariance is assumed, the study by Levy and
Markowitz [23] provides speedy algorithms for calculating mean-variance efficient
frontiers.

In this study, an attempt is made to solve the Markowitz’s classical mean-variance
model using a recently introduced algorithm SCA and five versions of SCA. The
result comapred with Laplacian BBO (LX-BBO). A brief literature study on BBO is
done by Garg and Deep [15]. An improved variant of BBO called Laplacian BBO
(LX-BBO) is developed for solving unconstrained optimization problems and is
compared to the unconstrained version of blended BBO [13, 14, 16]. Laplacian BBO
has proved its superiority over blended BBO for unconstrained optimization prob-
lems. Garg and Deep [12] solved the portfolio optimization problem using the
Laplacian biogeography and variant blended biogeography method.

The rest of the paper is organized as follows: Sect. 2 describes the Markowitz
model. The test problems, parameter settings, experimental results, and discussions
are presented in Sect. 3. Section 4 presents briefly about the standard SCA and
proposed approach of SCA. Analysis of result and comparison is presented in Sect.
6. Section 7 gives the conclusion of the present study.
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2 Markowitz Model Based on Historical Stock Price Data

Markowitz Mean-Variance Model

Mean-Vriance Analysis technique to that investors choose which financial instru-
ments to invest is based on the level of risk they are willing to take (Risk tolerance).
Ideally, investors count on better returns after they spend money on riskier assets.
When measuring peril, buyers shouldn’t forget the ability deviation (i.e. the volatility
of the yield generated through an asset) from that asset’s anticipated yield. The
evaluation of suggest variance basically checks the suggest variance of the antici-
pated return on an investment. The mean-variance model embraced with three main
elements:

Rate of Return

Capital return is defined as the rate of return over a time interval or given period of
time. The following equation is used to calculate capital return mathematically:

ri,t =
pi,t - pi,t- 1 þ di,t

pi,t- 1
ð6:1Þ

where i = 1, 2, 3 - - -variety of capitals,

ri, t: returns on the capital over time t
pi, t: during the time period t closing price ith captial
di, t: during the time period t dividend price ith captial

Expected Return

The second factor of mean-variance evaluation is anticipated return. This is the
envisioned return that a protection is anticipated to produce, since it’s a primarily
based totally on historical data. The anticipated of return is not always 100%
guaranteed. Mathematically expected return is stated as:

r x1, x2, x3, - - - , xnð Þ=E
Xn
i= 1

Ri½ xi�=
Xn
i= 1

E Ri½ �xi =
Xn
i= 1

rixi ð6:2Þ

where [Ri] is the expectancy cost of random variable. Past data is used to calculate
the value of Ri.
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ri =E Ri½ �= 1
T

XT
t= 1

ri,t ð6:3Þ

Variance

Variance measures how remote or unfold the numbers in a statistics set are from the
mean, or average. A massive variance shows that the numbers are in addition unfold
out. A small variance shows a small unfold of numbers from the mean. The variance
can also be zero, which shows no deviation from the mean. When studying a funding
portfolio, variance can display how the returns of a safety are unfold out for the
duration of a given period. Mathematically, the variance of the ith assets is stated as
follows:

σ2i = δ Rið Þ=E Ri -E Ri½ �Þ2� �
=E Ri - riÞ2

� ��� ð6:4Þ

The covariance σij between asset return Ri and Rj is given as follows:

σij =E Ri -E Ri½ �ð Þ Rj -E Rj

� �� �� � ð6:5Þ

Using the archivable data, covariance σij is calculated as follows:

σij =
1
T

XT
i= 1

ri,t - rið Þ ri,j - rj
� � ð6:6Þ

σij can also be expressed in terms of correlation coefficient (ρij) as follows:

σij = ρijσiσj ð6:7Þ

As a result, the portfolio equation is defined by the equation:

δ x1, x2, - - - - - , xnð Þ=
Xn
i= 1

Xn
j= 1

xixjσij ð6:8Þ
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Portfolio Formulation

Markovitz [26] developed the modern portfolio theory as a financial framework via
the trader’s attempt to take minimum risks and attain most return to a given funding
portfolio. The theory emphasizes that a higher return comes with a higher risk and
that looking at the expected risk and return of a single asset is insufficient. An
individual asset has a higher risk than an asset in a combined portfolio, as long as the
risks of the various assets are not directly related.

The modern portfolio theory assumes that a rational investor wants the maximum
return for a given level of risk and the least risk for a given level of expected return.
As a result, the asset weight vector is the state variable in the asset allocation optimal
solution, showing investors how much to invest in each asset in a given portfolio.
Weight vector x = [x1, x2, x3 - - - - xn] with xi as the weight of asset i is the
portfolio. The expected return for each asset in the portfolio is expressed in the
vector form r = [r1r2, - - -rn] with ri as the mean return of assets i . The portfolio
expected return is calculated using the weighted average of individual asset returnsPn

Statement of the Problem

The formulation of mean-variance method can be defined as:
Minimizing

Xn
i= 1

Xn
j= 1

xixjσij ð6:9Þ

Subject to

n

i= 1
ri = r0Pn

i= 1

xi = 1, xi ≥ 0 i= 1, 2......10 ð6:10Þ

3 Problem Description

The model is implemented using the stock market data obtained from the Indian
National Stock Exchange, Mumbai, by selecting ten companies at random. The data
is taken from the [12] paper proposed to solve the problem using the LX-BBO and
blended BBOmethod and another variant blended biogeography method. The mean-
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variance model is shown in Table 6.9. The formulation of the ten-variable
constrained optimization problem is as follows:

Problem 1

Minimize z= 0:00338x21 þ 0:4225x22 þ 0:00615x23 þ 0:00429x24

þ 0:00686x25 þ 0:00260x26 þ 0:00275x27 þ 0:00224x28 þ 0:01036x29

þ 0:00178x210 - 0:01584x1x2 þ 0:00712x1x3 þ 0:00404x1x4
þ 0:00374x1x5 þ 0:00294x1x6 þ 0:00610x1x7 þ 0:00170x1x8
þ 0:00384x1x9 þ 0:00192x1x10 - 0:01350x2x3 - 0:00236x2x4
þ 0:00614x2x5 þ 0:00298x2x6 þ 0:00236x2x7 þ 0:00622x2x8
þ 0:00384x2x9 þ 0:00192x2x10 þ 0:00586x3x4 þ 0:00456x3x5
þ 0:00472x3x6 þ 0:00182x3x7 þ 0:00396x3x8 þ 0:00648x3x9
þ 0:00178x3x10 þ 0:00884x4x5 þ 0:00516x4x6 þ 0:00190x4x7
þ 0:00464x4x8 þ 0:01158x4x9 þ 0:00288x4x10 þ 0:00696x5x6
þ 0:00362x5x7 þ 0:00530x5x8 þ 0:0124x5x9 þ 0:00384x5x10
þ 0:0017x6x7 þ 0:0040x6x8 þ 0:00766x6x9 þ 0:00284x6x10
þ 0:00190x7x8 þ 0:00324x7x9 - 0:00082x7x10 þ 0:00694x8x9
þ 0:00180x8x10 þ 0:0054x9 ð6:11Þ

Subject to r0 = 0:00728x1 - 0:03613x2 - 0:02414x3 þ 0:00706x4
- 0:00458x5 þ 0:00372x6 - 0:00461x7 þ 0:00413x8 - 0:0248x9
þ 0:00562x10 ð6:12Þ

x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 þ x8 þ x9 þ x10 = 1 ð6:13Þ
xi ≥ 0,i= 1,2,- - - - - - - - - ,10: 6:14

The above optimization approach is solved using sine-cosine algorithm-based
optimization.

Problem 2

The model is implemented using the stock market data (1 April 2020 to 31 March
2021) obtained from the Indian National Stock Exchange, Mumbai, by selecting ten
companies at random. Table 6.18 shows the monthly asset return. According to the
mean-variance model provided, Table 6.19 shows the expected returns calculated by
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Eq. 6.3. Equation 6.4 is used to calculate the variance, and Eq. 6.5 is used to calculate
the covariance.

Minimize z= 0:087175x21 þ 0:03x22 þ 0:0061x23 þ 0:001x24 þ 0:0056x25

þ 0:0056x26 þ 0:003841x27 þ 0:010814x28 þ 0:0169x29 þ 0:005133x210
- 0:0038x1x2 þ 0:0013x1x3 þ 0:005x1x4 þ 0:00238x1x5 þ 0:0022x1x6
þ 0:0023x1x7 þ 0:0041x1x8 þ 0:00509x1x9 - 0:00259x1x10
þ 0:00398 x2x3 - 0:0000000236x2x4 - 0:00250x2x5 - 0:000601x2x6
- 0:00088x2x7 þ 0:00142x2x8 þ 0:000841x2x9 þ 0:000375x2x10
- 0:00145x3x4 - 0:001x3x5 þ 0:00114x3x6 þ 0:00000332x3x7
þ 0:00000361x3x8 - 0:0017x3x9 þ 0:00026x3x10 þ 0:000202x4x5
þ 0:000676x4x6 þ 0:000706x4x7 þ 0:002142x4x8 þ 0:002336x4x9
þ 0:00257x4x10 - 0:00022x5x6 þ 0:000192x5x7 þ 0:000464x5x8
- 0:00336x5x9 - 0:00078x5x10 þ 0:000464x6x7 þ 0:002499x6x8
þ 0:007323x6x9 - 0:00336x6x10 þ 0:008177x7x8 þ 0:005679x7x9
- 0:00593x7x10 - 0:00418x8x9 - 0:00358x8x10 - 0:00418x9x10 ð6:15Þ

Subject to r0 = 0:13036x1 - 0:0265x2 - 0:1065x3 - 0:01833x4
- 0:0200x50:0252x6 - 0:00038x7 - 0:0153x8 - 0:0412x9 - 0:07308x10 ð6:16Þ

x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 þ x8 þ x9 þ x10 = 1 ð6:17Þ
xi ≥ 0,i= 1,2,- - - - - - - - - ,10 6:18

The above optimization problem is solved using sine-cosine algorithm-based
optimization.

4 Sine-Cosine Algorithm

Sine-cosine is constructed on mathematical capabilities of sine-cosine function and
discovering new feasible space using the two terms explore and exploit of search
space. The SCA method is not usually tormented by the importance and nonlinear
nature of the problem and even in other global strategies displays early convergence;
the SCA reveals the best solution with more efficaciousness with a quicker conver-
gence rate. The stability among the exploration and exploitation is the gain of this
optimization technique. For this purpose, SCA makes use of trigonometric sine and
cosine functions. At every step of the calculation, it updates the answers in line with
the subsequent equations: The equation are as follows:
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X tþ1ð Þ
ij = X tð Þ

ij þr1 cos r2ð Þjr3P tð Þ
ij -X tð Þ

ij j, r4 ≥ 0:5
X tð Þ
ij þr1 sin r2ð Þjr3P tð Þ

ij -X tð Þ
ij j, r4 ≤ 0:5

ð6:19Þ

where X tð Þ
ij represents the current individual I at iteration t. P tð Þ

ij shows the best
individual position at iteration t, and r1, r2, r3, and r4 are random parameters.

r1 = a-
ta

T max
ð6:20Þ

where t denotes the iteration and r1 is the main parameter that balances the explo-
ration and exploitation phase, decreasing linearly from a constant value a to 0 by
each iteration by Eq. 6.10, and r2 and r3 are random numbers.

The competency of SCA is different from other metaheuristic technique:

1. SCA works with a group of solution that benefit from the phenomenon of parallel
exploration.

2. It simultaneously investigates several regions of solution space for sine and
cosine function values outside the range [-1,1].

3. SCA investigates several promising solutions simultaneously during the explor-
atory process with sine-cosine value in the range [-1,1].

4. The best solution at a given point in the calculations is saved in a variable and
becomes the problem’s target ensuring that it never gets lost during the optimi-
zation phase.

5. The optimization process is convergent in nature (Table 6.1).

Table 6.1 Pseudo code of sine-cosine algorithm

Initiate {Evaluate the position Xi(i = 1, 2,- - - - n) and asses the objective function
Set the current best position Pt

i
Set Tmax to the maximum number of iterations.
While T< Tmax
for i = 1 : n
Update the parameter r1, r2,r3 and r4
Update Xi using equation (8)
if f Xtþ1

i

� �
< f Xt

i

��
))

refresh the current best position Pt
i

end if
end for
t = t + 1
end while
Return
the best solution Pi
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Mutation

Mutation is a vital operator in genetic algorithms (GAs), because it ensures renova-
tion of diversity in the evolving populations of GAs. It performs a crucial position in
making the general search efficient. GAs are both simple and powerful in terms of
computation, because they make no assumption about the solution space; genetic
algorithm is an excellent tool for solving optimization problem.

The affinity of GAs is one of their advantages. GA uses a population of individual
to search a solution space, making it less likely for them to become stuck in the local
optimum. This comes at a price, which is the computational time. The longer runtime
of Gas, on the other hand, can be reduced by terminating the evaluation earlier in
order to obtain a satisfactory solution. Banerjee and Garg [4], incorporated five
mutation operators power mutation, Polynomial mutation, Random mutation,
Cauchy mutation & Gaussian mutation in SCA and presented a new version of
SCA where cauchy & Random mutation performed better with constraint and
unconstrained problems.

Power Mutation

Power mutation is a new form of SCA that incorporates the power mutation reported
in (Banerjee and Garg). The power mutation p is set for 0.25 and p = 0.50. The
mutation’s strength is determined by the mutation’s index ( p). The smaller value of p
should result in less fluctuation in the solution, while the larger value of p should
result in more diversity. The mutation operator that has been proposed is based on
power distribution. It’s known as power mutation. Its distribution function is defined
as follows:

f xð Þ= pxp- 1,0≤ x≤ 1 ð6:21Þ

And the density function is presented by:

F xð Þ= xp,0≤ x≤ 1 ð6:22Þ

The index of the distribution is denoted by p. The PM is used to generate a
solution y near a parent solution z that follows the previously mentioned distribution.
The mutated solution is then created using this formula below.

y= x- z x- xlð Þ if r< t
x- z xu - xð Þ if r≥ t

ð6:23Þ
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Polynomial Mutation

Polynomial muatation (Banerjee & Garg 2022) presented incorporated in SCA. A
new version of SCA in called Poly-SCA. To confound a solution in the
neighbourhood of a parent, a polynomial probability distribution is used; the muta-
tion operator adjusted the probability distribution to the left and right of a variable
value so that no value outside the specific range [a, b] is created. For a given parent
solution xE[xl, xu], mutated solution x’ is constructed.

x0 = xþδi x- xlð Þ if u≤ 0:5
xþδi xu - xð Þ if u> 0:5

, ð6:24Þ

Where uE[0, 1] is a random number. The values δl and δr are computed as given by
the formula.

δl = 2uð Þ 1
1þρ - 1 u≤ 0:5

δr = 1- 2 1- uðð ÞÞ 1
1þρ u> 0:5

where ρm [20, 100] is the user-defined parameter.

Random Mutation

Random mutation is incorporated in SCA.A new version of SCA is called
Rand-SCA. Suppose x is any given solution, then a rand mutation operator is used
as x 2 [xl,xu], and a random solution h is created using a neighbourhood of the
replaced solution.

h= xl þ xu - xlð Þ � rand ð6:25Þ

where rand [0, 1] represents a uniform distribution.

Gaussian Mutation

Gaussian mutation causes a small random change in the population. A random
number from Gaussian distribution N (0,1) with parameter 0 as a mean and 1 as
std. dev. is generated. X(i, j) is chosen; then, find a new generated position.

z=X i, jð Þ þ Ni 0, 1ð Þ ð6:26Þ
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Cauchy Mutation

Cauchy mutation is defined in SCA as the same way as G-SCA. Suppose a random
number is generated from the Cauchy distribution and defined by δi(t). The scale
parameter is represented by t, where t > 0. Consider the value t = 1 as used in
SCA-Cauchy. X(i, j) is chosen; then, find a new generated position

z=X i, jð Þ þ δi 1ð Þ ð6:27Þ

5 Numerical Analysis of Results Obtained by the Proposed
Version of SCA

Problem 1

The optimization problem described below is solved in two stages. The goal of the
first stage is to figure out what the value of an unknown r0 is in the restriction, given
in Eq. 6.16. r0 values are calculated for the upper and lower bounds, and this r0 range
is used in stage 2. The goal of stage 2 is to find the most cost-effective solution to the
optimization problem. Different portfolios are created by considering various ro
values. These portfolios are then used to find the most cost-effective solution to
the portfolio optimization problem.

Using SCA and variant of SCA, the value of undetermined r0 is calculated in
segment 1. The optimization problem is solved by removing the equality constraint
in Eq. 6.17. r0 min calculates the minimum value. The upper bound of r0, denoted by
rmax, is calculated by investing all of one’s money in the highest-returning asset. The
r0 values obtained are shown in Tables 6.2, 6.3, 6.4, 6.5, 6.6, and 6.7 for five the
versions of SCA (Table 6.8).

In segment 2, five distinct portfolios are considered, namely, Portfolio 1, Portfolio
2, Portfolio 3, Portfolio 4, and Portfolio 5, in the same way that five different values
r0 are considered. These values of r0 have to lie withinside the range (rmin,rmax)
acquired in segment 1. The solution of those optimization problem using SCA and
the variant of SCA is acquired with populace size 30, 50, and 100. Result obtained
by the algorithms are tabulated in Tables 6.9, 6.10, 6.11, 6.12, 6.13, 6.14, 6.15, 6.16,
and 6.17.

Table 6.8 depicts the expected rate of return is calculated over a specified range
for different population sizes 30, 50, and100 and applied five versions of sine-cosine
algorithm, compared the values with LX-BBO.

Result analysis for population size 30:
Figure 6.1 shows the Gaussian version of SCA gives an optimal portfolio with

min risk 0.0012 for population size 30. The graph depicts that risk increases as return
also increases while the difference between the maximum and minimum average
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Table 6.2 For various population sizes, the range of r0

The size of the population for SCA riskmin rmin rmax

30 0.001428 0.000213 0.00612

50 0.0008 0.000312 0.00612

100 0.00033 0.00000003 0.0878

Table 6.3 For various population sizes, the range of r0

The size of the population for PMSCA riskmin rmin rmax

30 0.0012 0.0000000567 0.909

50 0.0006 0.00000343 0.00989

100 0.00055 0.001528 0.909

Table 6.4 For various population sizes, the range of r0

The size of the population for Cauchy SCA riskmin rmin rmax

30 0.0001256 0.00009 0.909

50 0.00065 0.000676 0.8889

100 0.00076 0.00009 0.89876

Table 6.5 For various population sizes, the range of r0

The size of the population for Poly SCA riskmin rmin rmax

30 0.001278 0.00009 0.909

50 0.00057 0.000676 0.8889

100 0.00039 0.00009 0.89876

Table 6.6 For various population sizes, the range of r0

The size of the population for Gaussian SCA riskmin rmin rmax

30 0.0012 0.0000765 0.9998

50 0.00055 0.000098 0.565

100 0.00058 0.000089 0.8988

Table 6.7 For various population sizes, the range of r0

The size of the population for RM SCA riskmin rmin rmax

30 0.0015 0.0000011 0.007

50 0.00082 0.000121 0.6789

100 0.0004 0.0000343 0.00564
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Table 6.8 Comparison with
other NIA

Algorithm Population size rmin rmax

LX-BBO 30 0.000221 0.00728

50 0.00518 0.00728

100 -9E-06 0.0072

SCA 30 0.00213 0.00612

50 0.000312 0.00612

100 0.0000003 0.0878

PM-SCA 30 0.00000567 0.909

50 0.00000343 0.00989

100 0.001528 0.909

R-SCA 30 0.0000011 0.007

50 0.000121 0.6789

100 0.0000343 0.00564

C-SCA 30 0.0009 0.909

50 0.00676 0.8809

100 0.00009 0.89876

G-SCA 30 0.000765 0.9998

50 0.000098 0.565

100 0.000089 0.8988

Poly-SCA 30 0.00009 0.909

50 0.000676 0.8989

100 0.00009 0.89876

annual returns of the portfolio set decreases. The risk-reward trade-off is a trading
principle that connects the high risk and high return. The best risk-return trade-off is
determined by a number of factors, including the investor’s risk tolerance and the
ability to replace lost funds.

Result analysis for population size 50:
Figure 6.2 depicts SCA gives the best result with min risk 0.0005; it gives a set of

optimal portfolios to strike a balance between an investment’s expected return and its
defined level of risk.

Result analysis for population size 100:
Poly-SCA variant of SCA anticipated range of expected return of different

portfolio gives a good return with min risk 0.0013 for population size 100. Investing
your money across a range of asset classes and securities to lower the portfolio's
overall risk (Fig. 6.3 and Tables 6.18, 6.19, and 6.20).
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Fig. 6.1 Optimal portfolio for population size 30
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Fig. 6.3 Optimal portfolio for population size 100

Problem 2

The numerical analysis of the result is described similarly as in Sect. 5. Using SCA
and the variant of SCA, the value of undetermined r0 is calculated in segment 1. The
optimization problem is solved by removing the equality constraint in Eq. 6.16.
r0 min calculates the minimum value. The upper bound of r0, denoted by rmax, is
calculated by investing all of one’s money in the highest-returning asset. The
r0 values obtained are shown in Tables 6.21, 6.22, 6.23, 6.24, 6.25, and 6.26 for
the five versions of SCA.

In segment 2, five distinct portfolios are considered, namely, Portfolio 1, Portfolio
2, Portfolio 3, Portfolio 4, and Portfolio 5, in the same way that five different values
r0 are considered. These values of r0 have to lie withinside the range (rmin,rmax)
acquired in segment I. The solution of those optimization problem using SCA and
the variant of SCA is acquired with populace size 30, 50, and 100. The results
obtained by the algorithms are tabulated in Tables 6.27, 6.28, 6.29, 6.30, 6.31, 6.32,
6.33, 6.34, 6.35, and 6.36.

Table 6.37 depicts the expected rate of return that is calculated over a specified
range for different population sizes 30, 50, and100 and applied five versions of sine-
cosine algorithm, which compared the values with LX-BBO.

Result analysis for population size 30:
PM-SCA and poly-SCA give the best convergence graph with min risk 0.0013

and 0.0022 for population size 30, which is shown in Fig. 6.4.
Result analysis for population size 50:
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Table 6.19 Expected return
of individual stocks

Security name Expected return

BAL 0.13036

CL -0.0265

APL -0.1065

GIL -0.01833

ACL -0.0200

HDFC 0.0252

HUL -0.003811

KMBL -0.01533

SBI -0.0412

WL -0.07308

Figure 6.5 depicts Cauchy-SCA gives the best result for population size 50.
Result analysis for population size 100:
This poly-SCA gives the best result with 100 population size in the year

2015–2016 and 2020–2021. As a result, portfolio optimization performed effec-
tively with 100 population size (Fig. 6.6).

6 Result Analysis

A sensitivity analysis, performed with population size 30, 50, 100 and an algorithm,
is applied in five different versions of SCA. Five different portfolios are presumed in
the numerical problem for two data set year 2015–2016 and year 2020–2021. The
convergence graphs for all of the cases derived with different population sizes. It is
seen that portfolio theory attitude depends entirely on the size of the population.
Because when the size of the population achieves 30, the risk goes up at the very
same speed as the rates of return. Whenever the population size is placed to 50, the
risk increases as the rates of return rise, but at a varying rates. When the size of the
population reaches 100, the risk would be almost consistent as the rates of return
enhance.

7 Conclusion

In this paper, we presented a novel attempt to solve the model of portfolio optimi-
zation for five variants of SCA. Portfolio diversification is one of the most important
tenets of investing and is essential for risk management. Diversification has numer-
ous advantages. It must, however, be done with caution. Modern investors do not
concentrate their wealth in a single security or a single type of security; instead, they
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Table 6.21 For various population sizes, the range of r0

The size of the population for SCA riskmin rmin rmax

30 0.0005 0.000323 0.323

50 0.0017 0.0000545 0.8878

100 0.0112 0.0000897 0.8878

Table 6.22 For various population sizes, the range of r0

The size of the population for PMSCA riskmin rmin rmax

30 0.0013 0.0000343 0.9298

50 0.0013 0.000032 0.333

100 0.0025 0.0000434 0.5656

Table 6.23 For various population sizes, the range of r0

The size of the population Cauchy SCA riskmin rmin rmax

30 0.0022 0.00011 0.7773

50 0.00085 0.0000343 0.323

100 0.0013 0.000088 0.7766

Table 6.24 For various population sizes, the range of r0

The size of the population for Poly SCA riskmin rmin rmax

30 0.0022 0.000211 0.676

50 0.0011 0.00232 0.576

100 0.0013 0.0000656 0.576

Table 6.25 For various population sizes, the range of r0

The size of the population for Gaussian SCA riskmin rmin rmax

30 0.0056 0.0000332 0.9998

50 0.0012 0.0011 0.4434

100 0.0012 0.00011 0.8988

Table 6.26 For various population sizes, the range of r0

The size of the population for RM SCA riskmin rmin rmax

30 0.0037 0.000111 0.777

50 0.0056 0.000343 0.323

100 0.0012 0.00011 0.7766
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Table 6.37 Comparison with
other NIA – 2020–21

Algorithm Population size rmin rmax

LX-BBO 30 0.000221 0.00728

50 0.00518 0.00728

100 -9E-06 0.0072

SCA 30 0.000343 0.9298

50 0.00032 0.333

100 0.0000434 0.5656

PM-SCA 30 0.0000343 0.9298

50 0.000032 0.333

100 0.0000434 0.5656

R-SCA 30 0.00011 0.7777

50 0.000343 0.323

100 0.00011 0.7766

C-SCA 30 0.00011 0.7773

50 0.00000343 0.323

100 0.000088 0.7766

G-SCA 30 0.0000332 0.9998

50 0.0011 0.4434

100 0.00011 0.8988

Poly-SCA 30 0.000211 0.676

50 0.00232 0.576

100 0.0000656 0.576

0.0026

0.0031

0.0036

0.0041

0.0046

0.0051

0.0056

1 2 3

RI
SK

RETURN
SCA PM-SCA R-SCA G-SCA C-SCA POLY-SCA

Fig. 6.4 Optimal portfolio for population size 30
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Fig. 6.6 Optimal portfolio for population size 100

diversify their portfolio by investing in a variety of securities. Portfolio’s variance
can be reduced by proper diversification for a given level of return. Diversification’s
benefits in terms of maintaining a portfolio’s expected return (while reducing
portfolio risk at the same time) can be seen when assets with low or even negative
correlation are combined. The sensitivity analysis on five algorithms for different
population sizes concludes that poly-SCA performed better than another variant of
SCA for portfolio-based optimization.
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