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1 Introduction

The term optimization refers to the process of identifying the most viable solution
and thereby reaching the extreme point of the objective functions. The goal of
identifying these optimal solutions is typically to design a problem to minimize
total cost or to maximize probable reliability, among other things. Because of the
high quality of optimal solutions, we place a high value on optimization approaches
in scientific, engineering, and business decision-making situations. We can divide
optimization approaches into two categories: classic and nontraditional methods.

Traditional methods may not be able to solve such issues due to the presence of
nonlinearity, non-continuity, non-differentiability, and many local/global optimums.

Recently, many nature-inspired and evolutionary algorithms have been created to
handle optimization challenges.

Genetic algorithms, ant colonies, particle swarm optimization, differential evolu-
tion algorithm, artificial bee colony, teaching learning-based algorithm, Jaya algo-
rithms, and firefly algorithms are some of the most common algorithms in use today.

Biogeography-based optimization algorithm also comes in the category of nature-
inspired algorithms. Garg and Deep have proposed LX-BBO in [47]. LX-BBO is
extended for solving constrained optimization problems in [49]. The same algorithm
is proposed after applying mutation strategies in [48].

Differential evolution (DE) algorithm was introduced by Storn and Price in 1997
[1]. It is a prominent, stochastic, and population-based optimization algorithm,
where the population consists of many individuals, each of which represents a
potential solution to the optimization problem. DE produces offspring solution by
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mutation, crossover, and selection operation, which are likely to be nearer to the
optimal result.

A few of the advantages that DE has over other nature-inspired algorithms are
that it is compact, has a small number of control parameters, and is easy to
implement without requiring any special knowledge. Some of its more advanced
capabilities include the capacity to handle nonlinear, discontinuous,
non-differentiable, and multi-objective functions, among other aspects. Engineers
and scientists have successfully used DE to solve a wide range of real-world
problems in the engineering and science fields. Examples include the following:
engineering design difficulties, pattern identification, power engineering, image
processing, and noise detection.

Premature convergence or evolution stagnation, which is fatal to an algorithm that
relies on population difference, is inevitable as the number of generations increases
in a population. Control settings affect DE’s performance as well [2]. In order to find
the optimal value for these control parameters for various optimization problems,
several trials must be performed.

A few of the modified variants of DE during recent years are as follows:
trigonometric mutation-based DE (TDE) [3], fuzzy adaptive DE (FADE) [4], mod-
ified differential evolution (MDE) [5], DE with random localization (DERL) [6],
self-adapting control parameter-based DE (jDE) [7], opposition-based DE (ODE)
[8], accelerating differential evolution [9], mixed mutation strategy embedded DE
[10], self-adaptive DE (SADE) [11], adaptive DE with optional external archive
(JADE) [12], DE with neighborhood mutation [13], DE with Cauchy mutation
(CDE) [14], clustering-based DE (CDE-Cai) [15], learning enhanced DE (LeDE)
[16], DE with proximity-based mutation [17], enhanced mutation strategy (MRLDE)
[18], DE with adaptive population tuning scheme [19], DE with dynamic parameters
selection [20], control parameter and mutation-based DE (CDE) [21], multiple
mutation strategies-based DE [22], multi-population-based DE [23], collective
information-based DE [24], adaptive learning mechanism-based DE [25], novel
DE for constrained [26], parameter adaptation schemes for DE (PaDE) [27], random
perturbation modified DE [28], DE with dual preferred learning mutation [29], DE
with neighborhood-based adaptive evolution mechanism [30], self-adaptive muta-
tion DE with PSO [31], parameter adaptive-based DE [32], DE with adaptive multi-
population inflationary [33], and dual-strategy-based DE (IDE) [34].

A well-prepared literature review of enhancement and applications of differential
evolution algorithm can also be found in [35–38, 46].

In this chapter, a novel modification in selection operation for DE named “DE
with advanced selection operator (DEaS)” is proposed. DEaS works in two ways:
first, it reuses the rejected trial vectors by their superiority, and second, it operates
selection operation in a single array strategy proposed by Babu and Angira in
MDE [5].

Furthermore, this newly proposed selection operation is integrated with two other
DE-enhanced variants such as DERL [6] and MRLDE [18] and named it DERLaS
and MRLDEaS, respectively. The evaluation of proposed modifications has exe-
cuted on benchmark problems as well as real-life applications. The numerical and
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statistical significance of proposed variants is discussed later in the chapter. Here, we
would also like to mention that this work is an extended version of our previous
studies carried out in [39, 40].

Organization of the chapter is as follows: The introduction of basic DE algorithm
is given in Sect. 2. The proposed advanced selection operation and functioning of
DERLaS and MRLDEaS are explained in Sect. 3. In Sect. 4, benchmark functions,
real-life applications, and experimental settings are given.

The results and comparison of the algorithms is given in detail in Sect. 5, and the
chapter is finally concluded in Sect. 6 with its future scope.

2 Basic Differential Evolution (DE)

In this section, the basic concept and working of differential evolution algorithm
(DE/rand/1/bin) is illustrated. DE works in four steps, such as initialization, muta-
tion, crossover, and selection operation, for which the details are presented as below:

(i) Initialization Phase: The first phase of DE algorithm is to initialize a uniform
random set of solutions called population. Here, each solution is a d-dimensional
vector also called an individual. Equation 4.1 generate the initial population
Pop= { Pi

(gen), i=1,2,...N} of d-dimensional N vectors.

P 0ð Þ
i =PLB þ rand 0, 1ð Þ× PUB -PLB½ � 4:1Þ

Here:

• rand (0, 1) is the uniform random number between 0 and 1
• PUB and PLB are the upper and lower bound, respectively, of search space.

(ii) Mutation Phase: To perform the mutation operation, three mutually separate
vectors, say Pa

(gen), Pb
(gen), and Pc

(gen,, are selected at random from Pop=
{Pi

(gen), i=1,2,...N} corresponding to a target vector Pi
gen, such that a ≠ b ≠ c

≠ i, and then a new vector Mi
gen =(m1,i, m2,i. . ., md,i), also called mutant or

perturbed vector, is generated by Eq. 4.2:

M genð Þ
i =P genð Þ

a þ SF × P genð Þ
b -P genð Þ

c

h i
ð4:2Þ

Here:

• SF is the scaling factor and use to controls the amplification of the difference
[Pb

(gen) – Pa
(gen)].

• It may have a value between [0 and 2] to as per suggested by Storn and Price.
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(iii) (gen)Crossover Phase: In crossover operation, a trial vector Ti =(t1,I, t2,i. . ., td,i)
is generated corresponding to the target and mutant vector. It is defined in
Eq. 4.2:

t genð Þ
j,i =

m genð Þ
j,i , if CR< randj8j= = Ij

p genð Þ
j,i otherwise

8<
ð4:3Þ

Here,

• CR is the crossover constant having value between 0 and 1.
• randj [0, 1] is the uniform random number between 0 and 1.
• Ij : randomly chosen index from 1, 2, . . .d. to make sure that at least one

component of trial vector will pick from mutant vector.

(iv) Selection Phase: Selection operation is performed at the end of any generation
of DE and ensures that fitter vector has chosen for next generation between trial
vector and target vector. Equation 4.4 describes the selection operation between
trail and target vector.

P genþ1ð Þ
i =

T genð Þ
i , if fun T genð Þ

i

� �
< fun P genð Þ

i

� �

P genð Þ
i otherwise

8<
ð4:4Þ

3 Proposed Modification

Advance Selection Strategy

The basic selection technique of DE is based on a tournament selection between trail
and target vector. The vector with the lowest fitness value is considered as a winner
and goes to next-generation population. Here, it can be noticed that during this type
of one-on-one competition, a rejected trial vector may have better fitness value than
some other target vectors in the population, but there is no additional feature for such
rejected trail vectors to prove their efficiency in the space. Also, every time-rejected
trial vector takes up extra space in computer memory and may lead to low computer
processor speed. Therefore, some additional inspection measures should be done so
that more of these fitted trial vectors can be selected and also reduce extra space in
memory. Our proposed advance selection approach offers such additional charac-
teristic to the old selection operation of DE.

In advance selection operation, first we perform the old selection operation by
comparing trail and target vector and chose the fittest vector for the next generation.
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Fig. 4.1 Working design of advance selection operation

In case of rejection of trail vector, it further compares with the worst vector (having
highest fitness value) of the population and swap on that place, if it has a lower
fitness value than the worst vector. After updating the worst vector, this process will
continue for the next trail vector.

Furthermore, a single array strategy proposed by Babu and Angira [5] also has
employed with our modified selection technique. The single array strategy helps to
reduce the memory space. Consequently, the proposed selection operation com-
presses the searching region in every generation, and hence it boosts up in the
convergence speed to achieve the desire result.

The advance selection operation is demonstrated graphically in Fig. 4.1.

Pseudo Code of DEaS Algorithm
BEGIN

Generate uniformly distributed random population Pop= {Pi
(gen), i=1,2,...

N}.
FOR i=1:N

{
Pi

(0) = PLB + rand(0,1)*(PUB –PLB)
}/*END FOR */

Evaluate fun{Pi
(gen)}

WHILE (Termination criteria is met )

(continued)
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{
FOR i=1:N

{
Execute mutation operation by Eq-2
Execute crossover operation and generate trial vector Ti

(gen)

Evaluate fun(Ti
(gen))

//** Advance Selection Operation with Single Array strategy***////
IF ( fun(Ti

(gen))< fun(Pi
(gen)))

{
Pi

(gen+1)= Ti
(gen)

}
ELSE

{
IF ( fun(Ti

(gen))< fun(Pmax
(gen)))

{
Pmax

(gen)= Ti
(g)

}
Update Pmax

(gen)

}
}/* END FOR loop*/

} /* END WHILE loop*/
END

Proposed DERLaS and MRLDEaS

In order to verify the effect of proposed advance selection operation on other
variants, it has embedded with DERL and MRLDE. A short description of DERL
and MRLDE is given as below:

DERL [6]: It is a mutation-based enhanced variants of DE. Here, first three mutually
separate vectors are select randomly from the population and then chose the best
fitted vector among these three has used as a base vector in the mutation
operation. A detail description and its effectiveness of can be read in its original
paper [6].

MRLDE [18]: It is our previously proposed DE variant, which is also a mutation-
based enhanced variant of DE. In MRLDE, the whole population is divided into
three regions, and then the base vector is selected randomly from the region of the
best individuals. A details explanation and effectiveness of MRLDE in solving
various real-life optimization problems can be study in the literature [41–45].

The pseudo code of proposed DERLas and MRLDEaS is given below:
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Pseudo Code of DERLaS and MRLDEaS Algorithm
BEGIN

Generate uniformly distributed random population Pop= {Pi
(g), i=1,2,...

N}.
WHILE (Termination criteria is met )
{
FOR i=1:N

{
/*Working of DERLaS*/

Select three random vectors Pa
(gen), Pb

(gen) and Pc
(gen)

Select best of Pa
(gen), Pb

(gen) and Pc
(gen) and use as base vector in

mutation
operation.

/*Working of MRLDEaS*/
Divide Population in three sub-regions of N1,N2 and N3 size of best,

medium
and worst sub-region respectively according fitness.
Select Pa

(gen), Pb
(gen) and Pc

(gen) from best, medium and worst
sub-region

respectively.
Execute Mutation Operation
Execute crossover operation
Execute Advance selection operation

}/* END FOR loop*/
} /* END WHILE loop*/

END

4 Experimental Settings

In this section, selected benchmark problems, real-life applications, performance
criteria, and parameter settings for the evaluation of proposed variants are given.

Test Functions

Fifteen traditional benchmark problems and three real-life applications are selected
from the literature to test the effect of the proposed advance selection on DE, DERL,
and MRLDE and also the comparison with the other enhanced DE variants. The
mathematical models and properties of these are given in Appendix.
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Performance Criteria

The following evaluation criterias are taken from various literatures [12, 16, 18], and
to evaluate the performance and comparisons of our proposed algorithms

Number of function evaluation (NFE): The NFEs are obtained when a fixed
accuracy (VTR) is attained before reaching the maximum NFE. That is, we set
the termination criteria as jFopt - Fglobqal j ≤ VTR and record the average NFE of
successful run over 50 runs.

Error: The average and standard deviation of the minimum error f(P)-f(P*) i
observed after fixed maximum NFEs are attained of 50 runs.

Acceleration rate (AR): It is used to compare the convergence speeds of two
algorithms. For two algorithms A and B, AR is defined as follows:

AR= 1-
NFEB

NFEA

� �
%

ically in terms of fitness value with respect to iteration in any run.

Parameter Setting

In the study, similar parameter settings as per Table 4.1 have been taken for each
algorithm for a fair evaluation and comparison.

All experiments are carried out on a computer with 2.66 GHz 10th Gen Intel®

Core™ i3, 4GB of RAM, and software Dev-C++ was used to implement the
programming.

Table 4.1 Parameter setting [12, 16, 18]

Size of population (N ) 100

Dimension (d ) for benchmark functions 30

Scale factor (SF) and 0.5

Crossover rate (CR) 0.9

Max NFE 500,000

Size of N1, N2, and N3 for MRLDE and MRLDEaS 20%, 40%, and 40%, respectively

Total run 50
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5 Result and Discussion

Result on Benchmark Problems

(a) Effect of Advance Selection on DE, DERL, and MRLDE

In this section, an analysis of the effect of proposed selection operation on DE,
DERL, and MRLDE algorithm has been carried out. The results are given in
numerical and statistical significance terms. The numerical results are given in
terms of the average NFE and average error with a standard deviation of 50 runs
in Tables 4.2 and 4.3, respectively, while the results for acceleration rate (AR) and
statistical significance are given in Table 4.4.

From Table 4.2, it is clear that the algorithm with advance selection, i.e., DEaS,
DERLaS, and MRLDEas, takes less NFEs compared to their original variants,
respectively, for all function, except function F8 and F9. None of the algorithm has
obtained the desired accuracy for function F8 and F9. The total NFEs obtained by
DE, DERL, and MRLDE are 2142410, 1233200, and 768000, respectively, while
the total NFEs obtained by DEaS, DERLaS, and MRLDEaS are 1886900, 985900,
and 670000, respectively, for all function, except function F8 and F9.

Now from Table 4.3, it can be easily observed that results are more accurate
obtained by algorithms with advance selection operation in terms of average error
also. Here, we can obtain the results for function F8 and F9, also for which Deas and
DERLaS give better results; however, MRLDE gives a minimum error than
MRLDEas for function F9. For function F6, all algorithms perform the same.

In Table 4.4, results are given in terms of AR for NFEs given in Table 4.2 and
statistical significance on average error and standard deviation obtained in Table 4.3.

Table 4.2 Numerical results in terms of the average NFEs of 50 runs

Fun VTR DE DEaS DERL DERLaS MRLDE MRLDEaS

F1 10-09 105600 94100 54800 46600 40400 33400
F2 10-09 175400 158800 91900 77600 66900 57800
F3 10-09 404200 389500 215900 188900 156800 136600
F4 10-03 137900 116600 147200 110500 65200 62500
F5 10-09 440400 376800 271900 184400 138500 122900
F6 10-09 32680 29500 19000 14500 12900 10400
F7 10-02 200390 146600 92500 77900 38600 33600
F8 10-03 NA NA NA NA NA NA

F9 10-03 NA NA NA NA NA NA

F10 10-09 164600 146400 86200 72400 62600 53900
F11 10-09 108500 95600 58100 48300 40400 35900
F12 10-09 95600 83400 49400 41600 37100 31900
F13 10-09 102200 93400 55600 47400 39900 33500
F14 10-09 68400 62300 35600 28600 27900 22700
F15 10-09 106600 93900 55100 47200 40800 34900
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Table 4.3 Numerical results in terms of the average error and standard deviation of 50 runs

Max
NFE

F1 150K 5.80E-13
(2.62E-14)

5.80E-16
(2.62E-16)

2.43E-29
(2.82E-29)

5.80E-36
(2.62E-36)

8.35E-43
(8.61E-43)

1.67E-50
(2.31E-50)

F2 200K 3.06E-10
(6.70E-10)

1.12E-11
(5.34E-12)

1.15E-20
(4.08E-20)

9.11E-25
(7.44E-25)

5.15E-29
(6.61E-29)

3.37E-34
(4.19E-34)

F3 500K 2.79E-11
(4.21E-11)

3.56E-12
(3.12E-13)

5.22E-25
(3.32E-25)

2.88E-28
(5.43E-28)

1.12E-37
(5.04E-38)

4.25E-40
(3.13E-40)

F4 500K 2.41E-01
(9.45E-02)

3.50E-03
(1.11E-03)

4.83E-07
(2.64E-07)

2.88E-10
(5.43E-10)

2.56E-28
(2.23E-28)

3.76E-31
(4.33E-31)

F5 200K 1.17E+01
(7.41E-01)

5.75E+00
(2.13E-01)

1.01E-03
(2.75E-03)

6.22E-11
(4.45E-11)

2.16E-19
(2.43E-19)

3.12E-24
(1.43E-24)

F6 50K (0.0E+00)
(0.0E+00)

(0.0E+00)
(0.0E+00)

(0.0E+00)
(0.0E+00)

(0.0E+00)
(0.0E+00)

(0.0E+00)
(0.0E+00))

(0.0E+00)
(0.0E+00)

F7 300K 2.81E-02
(5.61E-03)

4.91E-03
(4.88E-04)

2.41E-03
(4.81E-04)

2.64E-03
(6.33E-04)

2.09E-03
(9.65E-04)

2.01E-03
(5.47E-04)

F8 500K 6.96E+03
(1.18E
+03)

4.73E+03
(8.51E
+02)

1.11E+03
(6.20E
+02)

3.55E+02
(3.25E
+02)

6.95E+02
(8.21E
+02)

1.18E+02
(1.31E
+02)

F9 500K 7.97E+01
(1.83E
+01)

6.09E+01
(2.23E
+01)

1.52E+01
(4.61E-01)

1.06E+01
(3.66E
+00)

9.01E+00
(4.16E
+00)

1.62E+01
(9.38E-01

F10 50K 6.41E-02
(3.43E-03)

2.25E-02
(2.61E-03)

1.18E-04
(5.36E-06)

1.23E-05
(3.36E-06)

9.18E-06
(4.28E-07)

9.96E-08
(2.45E-08)

F11 50K 2.11E-01
(1.40E-02)

1.18E-02
(3.09E-03)

2.88E-06
(3.21E-06)

1.23E-09
(3.36E-09)

1.60E-10
(2.08E-10)

1.17E-14
(5.35E-14)

F12 50K 3.34E-03
(2.15E-03)

1.12E-03
(1.05E-03)

8.37E-08
(4.45E-08)

3.42E-11
(4.56E-12)

4.86E-13
(2.88E-13)

1.59E-15
(3.46E-15)

F13 50K 2.45E-02
(1.25E-02)

8.23E-03
(5.41E-03)

9.19E-08
(3.53E-10)

6.91E-10
(4.33E-10)

1.11E-11
(2.05E-11)

3.21E-14
(1.79E-14)

F14 50K 1.56E-06
(6.73E-06)

3.81E-07
(4.53E-07)

1.01E-11
(8.31E-12)

8.83E-14
(1.25E-14)

4.79E-16
(3.94E-16)

2.20E-18
(1.52E-18)

F15 50K 3.18E-02
(7.91E-03)

6.62E-03
(1.17E-03)

2.79E-07
(1.07E-07)

5.83E-10
(3.42E-10)

1.07E-11
(6.5E-12)

4.47E-14
(4.24E-14)

From the table, we can see a fast convergent speed in terms of AR for each function
by each algorithm with advance selection operation. The average AR of DEaS with
respect to DE is 11.93%, AR of DERL with respect to DERLaS is 20.05%, and AR
of MRLDEaS with respect to MRLDE is 12.76%. Here, AR of MRLDEas is also
obtained with respect to DERLaS and DEaS, which are 64.49% and 32.04%,
respectively.

The statistical significance of results is also presented in Table 4.4. DEaS
performs statistical better than DE for all function, except F6 and F14 for which
there is no significance difference between the performances.

Similarly, DERLaS gives an equal performance for function F6 and is signifi-
cantly better for other functions compared with DERL.
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Table 4.4 Numerical results in terms of acceleration rate (AR) and statistically significance

DERLaS/
DERL

MRLDEaS/
MRLDE

MRLDEaS/
DEaS

MRLDEaS/
DERLaS

AR Sig. AR Sig AR Sig AR Sig. AR Sig

F1 10.89 + 14.96 + 17.33 + 64.51 + 28.33 +

F2 9.46 + 15.56 + 13.60 + 63.60 + 25.52 +

F3 3.64 + 12.51 + 12.88 + 64.93 + 27.69 +

F4 15.45 + 24.93 + 4.14 + 46.40 + 43.44 +

F5 14.44 + 32.18 + 11.26 + 67.38 + 33.35 +

F6 9.73 = 23.68 = 19.38 = 64.75 = 28.28 =
F7 26.84 + 15.78 + 12.95 = 77.08 + 56.87 =
F8 NA + NA + NA + NA + NA +

F9 NA + NA + NA - NA + NA -
F10 11.06 + 16.01 + 13.90 + 63.18 + 25.55 +

F11 11.89 + 16.87 + 11.14 + 62.45 + 25.67 +

F12 12.76 + 15.79 + 14.02 + 61.75 + 23.32 +

F13 8.61 + 14.75 + 16.04 + 64.13 + 29.32 +

F14 8.92 = 19.66 + 18.64 + 63.56 + 20.63 +

F15 11.91 + 14.34 + 14.46 + 62.83 + 26.06 +

Avg
w/l/t

11.93 13/0/2 20.05 14/0/1 12.76 12/1/2 64.49 14/0/1 32.04 12/1/2

“+”, “-”, and “=” mean significantly better, lower, and equal, respectively

MRLDEaS performs significantly better than MRLDE for all functions, except
F6, F7, and F9. In the case of F6 and F7, there is no significant difference between the
performances of both, while MRLDE is significantly better than MRLDEaS in the
case of function F9.

The last row of Table 4.4 shows the total number of win/loss/tie performance of
algorithms on all functions. The w/l/t performance of DEaS vs DE is 13/0/2,
DERLaS vs DERL is 14/0/1, MRLDEaS vs MRLDE is 12/1/2, MRLDEaS vs
DEaS is 14/0/1, and MRLDEaS vs DERLas is 12/1/2.

(b) Comparison of MRLDEaS with Other Enhanced DE Variants

In this section, comparison of MRLDEas is discussed with some other well-
known enhanced DE variants, such as jDE [7], ODE [8], CDE-Cai [15], and LEDE
[16]. The comparison is given in Table 4.5 in terms of NFE. The results for ODE,
jDE, CDE-Cai, and LeDE are taken from [16]. All parameter settings have also taken
similar from [16] for fair comparison.

From the table, we can see that our proposed MRLDEaS takes less NFE for all
benchmark function, except F7, F8, and F9 for which CDE-Cai and JDE perform best
from others. The corresponding rank is also given for each function in the table. The
average rank of ODE, jDE, CDE-Cai, and LEDE is 4.54, 3.62, 2.92, and 2.15,
respectively, while the rank of MRLDEaS is 1.77, which proved the effectiveness of
it compared to all others.
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Table 4.6 Wilcoxon sign rank test for MRLDEaS vs ODE, jDE, CDE, and LEDE

Algorithms ∑R+ ∑R- W value Critical value at 5% level Significance

MRLDEaS vs ODE 70 21 21 21 +

jDE 66 25 25 17 +

CDE-
Cai

65 26 26 21 +

LeDE 65 26 26 21 +

In Table 4.6, a nonparametric Wilcoxon sign rank test is also performed to check
the pair-wise comparison of MRLDEas with another algorithm. From the table, we
can see that our proposed MRLDEaS provides an overall significance superior
performance than ODE, jDE, CDE-Cai, and LeDE.

Result on Real-Life Application

In this section, the evaluation of the proposed variants on real-life applications is
discussed. In Table 4.7, the results are obtained in terms of worst, best, mean, and
standard deviation of fitness value in 50 runs. The best results obtained by algorithms
are given in bold cases. We can see that the proposed variants with advance selection
operation perform better than their original variants in all terms. The statistical test
value is also given in the table, which also proved the significance of proposed
variants over the original variants, respectively.

Convergence Graphs

In this section, the convergence speed of algorithms is represented graphically by the
convergence graphs in Fig. 4.2. Here, convergence graphs are given for function F1,
F2, F5, F10, F11, and F14. RF1 and RF2. From Fig. 4.2, we can easily observe that DE,
DERL, and MRLDE obtain a fast convergence speed when applying proposed
advance selection operation with these algorithms. We can also see that MRLDEaS
provides a faster convergence speed compared to all other variants.

6 Conclusions

In the present chapter, an advance selection strategy for DE algorithm named DEaS
is proposed. This advance selection operation gives an additional opportunity to the
rejected trail vectors to prove their efficiency over other target vectors. This approach
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Fig. 4.2 Convergence graphs in terms of error and NFEs

condenses the searching space in every generation and helps to obtain better
convergence speed as well as diminishes the redundant memory space.

Next, the proposed selection operation is embedded with other enhanced variants,
named DERLaS and MRLDEaS.

The performances of proposed variants are evaluated on 15 traditional benchmark
problems and 3 real-life applications. The numerical results for DEaS, DERLaS, and
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Fig. 4.2 (continued)

MRLDEaS are compared with the original variant DE, DERL, and MRLDE,
respectively. Furthermore, the performance of MRLDEaS is also compared with
other enhanced DE variants, such as ODE, jDE, CDE-Cai, and LeDE.
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Fig. 4.2 (continued)

The numerical, statistical, and graphical results have proved the effectiveness and
robustness of the proposed advance selection operation with DE and other variants
DERL and MRLDE.

In future, the effect of this advance selection operation can be verified on other
evolutionary algorithms for solving real-life optimization problems.
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Fig. 4.2 (continued)
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