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1 Introduction

The stupendous stride to achieve economic and environmental sustainability accel-
erates the rising demand for bioproducts [1]. The harnessing of bioproducts requires
the understanding of holistic development of biological processes from raw mate-
rials to synthesis and purification of bioproducts and valorization of biowaste to
make value-added products at an industrial scale [2, 3]. Therefore, for accomplishing
at such height process, engineering principles integrating with natural sciences, such
as physics, chemistry, biology with chemical, and system engineering, are playing a
pivotal role in translating biological knowledge into making products of commercial
importance. Bioprocess engineering is the thrust area that needs to be updated with
technological innovations, though the past decade has envisaged significant devel-
opments in formulating extensive mechanistic and physiochemical empirical models
for simulating the growth pattern of microbial biomass and product formation,
calculating the fermented broth rheological parameters and dynamics for bioreactor
scale-up, optimization of bioseparation unit designs, synthesis of new enzymes
proteins, and analysis of metabolic flux ([4, 5]. However, the complexity of the
biological system still posits certain inherent challenges that need to be addressed for
industrial purposes [6].

As the fourth industrial revolution industry 4.0 has already gained momentum,
there is a dire need for digitalization and inculcation of advanced process analytics
and computational biology tools for accelerating the arena of bioprocess engineer-
ing. Currently, the paradigmatic shift from physical modeling to data-driven model-
ing using machine learning approaches contributed to the voluminous data
generation in the bioindustry arena [7]. The elucidation of complex biological
relationships in data form demonstrated great potential for the bioprocess research
community and engineers to “scale up” as well as “scale down” the bioprocess for
explicit commercial use. The arena of bioprocess engineering is quite vast consti-
tuting various branches from research and development to biomanufacturing
consisting of metabolic engineering, bioreaction engineering, protein engineering,
synthetic biology, biomaterials, and biocatalysis. The applications of ML are
represented in Fig. 3.1. Currently, various ML algorithms have been utilized to
circumvent the biological complexities during bioprocess optimization; thus, the
accelerating pace of machine learning is invoking a renaissance in this area
[8]. Therefore, the present chapter advocates various embodiments of machine
learning applications in the bioprocess engineering sector and also predicate current
challenges and future prospects. The technology is still evolving; therefore, this
chapter doesn’t cover the comprehensive aspects, but various dimensions of ML
approaches has been described through various case studies of bioprocess
engineering.
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Fig. 3.1 Applications of machine learning is the arena of bioprocess engineering

2 Approaches of Machine Learning in Bioprocess
Engineering

Bioprocess engineering is the application of interdisciplinary field to commercialize
the bioproduct from lab to industry. The process seems to be quite heterogenous due
to the complex requirement of living cells and their prevailed diversity. The com-
mercialization of product various process parameters ingredients and their compo-
sition as well as interactions plays pivotal role. There are numerous challenges
associated with mathematical modeling and simulations due to multi-parametric
nature of biological data. Therefore, applications of ML methods have shown
promising potential in tackling complex problems of bio-production at large scale.
ML algorithms are categorized into four different learning categories, namely,
supervised learning, unsupervised learning, semi-supervised learning, and reinforce-
ment learning. This classification is based on configuration of various data set based
on different problems on which ML algorithm will develop mathematical correlation
to build a model followed by the solution of the defined problem. With rising
technological advancements computational tools generate voluminous data of bio-
logical origin therefore past decade has seen massive growth of various algorithms of
ML in the arena of development and manufacturing of bioproducts. The contribution
of various ML algorithms in the arena of bioproduct development has been summa-
rized in Fig. 3.2.
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Fig. 3.2 Statistical coverage of various machine learning algorithms in bioprocess engineering

3 Why Machine Learning Strategies Are Needed
in Bioprocess Engineering

The essence of bioprocess engineering is the scale-up of cellular factories for the
overproduction of commercial metabolites. The scale-up is a multistep method
commencing the fermentation and optimization of cells from bench scale
(~250 mL–5 L) to pilot scale (~20–200 L) to industrial-scale processes
(>1000 L). The fermentation of cells at a larger scale is considered to be a complex
and multi-parametric process, in which different process variables, such as pH,
temperature, aeration rate, media composition, mixing regime, fermentation time,
and feed rate, is affecting the cell growth, product formation, and host cell physiol-
ogy. Therefore, at industrial scale, the fermentation process is unpredictable; there-
fore, the central task of scale-up is to fine-tune all these process variables to perform
the stable and robust production of desired bioproducts, because the slight change in
any process variables confers significant impact on the overall productivity of cells
[9, 10]. Thus, scale-up is a time-consuming and costly process; therefore, the
industry needs advanced computational scientific methods for accelerating the
fermentation process in bioreactors beyond the classical methods. The advent of
automation, sensors for controlling, and monitoring the process parameters, com-
prehensive data collection, and archiving revolutionize the modern fermentation
process [11]. Therefore, these huge data can be leveraged for various machine
learning algorithms for better prediction, finding the bioprocess failure points, and
improving the process outcomes in lieu of better product yield. However, the main
bottlenecks of bioprocess data constituting heterogeneity in terms of collection of
both online pH, oxygen uptake rate, dissolved oxygen, optical (cell) density, flow
rate, off-gas production, etc.) and offline data (various metabolite concentrations,
substrate consumption rates). Apart from that, certain data are binary or categorical
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(ON/OFF nutrient feed setting), and some data such as the concentration of product
has been collected at the final time point. The high variability in data sets with
respect to fermentation time and fermentation runs necessitates the preprocessing of
data for extracting temporal trends for training into machine learning premises
[12, 13].

The research studies reported various preprocessing methods, such as wavelet
decomposition methods [14], mean envelope filter methods, vector casting method
[15], and Fourier transform and symbolic aggregate approximation (SAX) method,
that represents temporal data profile as representative segments for the analysis
through machine learning approaches [16]. Initially, decision trees, ANN, and
genetic algorithm-based ML were applied for fermentative modeling and identifica-
tion of optimum input variables by analyzing the data of 69 fed-batch fermentation
for predicting the process output, including product concentration, biomass density,
and volumetric productivity [17]. Similarly, ANN-based modeling followed by
optimization through a genetic algorithm was reported for the production of xylitol.
The predictive models for xylose consumption, biomass concentration, and xylitol
production were based on analyzing the data of 27 fermentation batches with
multiple inputs, and the product titer was enhanced from 59.4 to 65.7 g/L
[18]. More recently, the advancement in bioreactor designing enables the generation
of continuous online data that is being used for the optimum control and optimiza-
tion of bioprocess by reinforcement learning. However, this method suffered the
limitation of being built on fixed models while requiring continuous updates and
improvement with respect to surplus data generation in automated fermentation
systems [19]. Therefore, to improvise model-free reinforcement, learning methods
have been developed and successfully applied for controlling final ethanol titers
during yeast fermentations. Moreover, these methods have been instrumental in
controlling coculture species biomass abundances, controlling reactor temperatures
[20], optimizing product yields [21], and optimizing a downstream product separa-
tion unit [22]. However, the requirement of a large amount of data limits its wider
utilization, but there is still a scope of improvement by seeing the marvelous
credentials of ML approaches [23]. Thus, despite current challenges, the data of
various fermentation systems gives an appealing opportunity to develop various ML
algorithms for finding the most appropriate process conditions.

4 Applications of Machine Learning in Bioprocess
Engineering (Case Studies)

Approaches of Machine Learning in Biorefinery: A Case Study

The rising demand of environmental pollution, reduction in fossil fuels, and increas-
ing ecosystem resilience paved the way for finding various avenues for renewable
energy sources. Among various sources, lignocellulosic biomass is offering the most
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promising feedstock for the development of the bioenergy paradigm. Though
bioethanol and biodiesel are the most preferentially utilized product from the
lignocellulosic biomass, the compositional variability among various biomass
sources offers a diverse array of products that leads to the conception of multiproduct
biorefinery [24]. The major operational bottleneck of the biorefinery is the natural
heterogeneity and spatial variability of biomass. Recently, machine learning and data
analytics has been envisaged as a prospective tool for predicting this biomass
variability and easing the way of standardization of biomass properties that leads
to the consistency in the biorefining process. Though advanced sophisticated ana-
lytical techniques, such as rapid near-infrared (NIR) spectroscopy and hyperspectral
imaging, have been used for predicting the chemical composition of the biomass and
its conversion performances, these techniques are unable to correlate a large amount
of data and higher complexity of biomass [25]. Thus, a machine learning framework
based on an ANN has been recently implied for correlating biomass chemical
composition and their conversion performances and finding a correlation of physical
properties of tissue powders along with handling and grinding performances [26]. It
is envisioned that the predictive models will be used to produce conversion ready
and highly flowable feedstock and provide decision centric view to researchers and
multiple stakeholders. More recently, machine learning approaches, such as random
forest, artificial neural networks (ANNs), and classification trees (CTs), have been
used for alleviating one of the critical bottlenecks for bioethanol production that is
enzymatic hydrolysis. The simultaneous saccharification and fermentation (SSF)
process posit a prominent and feasible strategy for reducing the capital cost for the
production of bioethanol from lignocellulosic biomass [29].

Thus, ML approaches have been used for visualizing the effects of time, temper-
ature, inoculum size, and biomass on bioethanol fermentation in SSF.

ANN Based Model
An ANN-based model is used for predicting the yield of bioethanol by implementing
three layers of data sets and finding optimum conditions using R software and
AMORE library (http://cran.r-project.org/web/packages/AMORE/). The coefficient
of determination (R) [2], reduction of root mean squared error (RMSE), and absolute
average deviation (AAD) have been calculated by Eqs. (3.1), (3.2), and (3.3),
respectively.
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where n= number of points, Yi
calc= predicted value, Yi

exp= experimental value, Ym
= average value of all experimental data, and MSE = mean square error.

Based on these equations, the optimal ethanol concentration and the optimal
ethanol conversion value were found that lead to the determination of optimal
volumetric productivity of ethanol by Eq. (3.4) [27],
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where Ij= relative importance of jth input variable on the ethanol conc.; Ni and Nh=
number of input and hidden neurons, respectively; Ws = connection weights; sub-
scripts i, h, and O refer to input, hidden, and output layers, respectively; and
subscripts k, m, and n represent input, hidden, and output neurons, respectively.

Random Forest Model
This model has been used for predicting the effects of variables in SSF using the
library of R language [28]. A total of 1000 RFs comprising different numbers of trees
and variables in each of the branches has been assessed. The assessment of the
optimal RF model was performed using two rando data sets having 2/3 for training
and 1/3 for test, and the values of R[2], RMSE, and AAD have been calculated [29].

Classification Tress-Based Model
This model has been used for making decisions based on the entropy of the process.
The current study includes the C5.0 script that has been used by utilizing the default
library of R (http://cran.r-project.org/web/packages/C50/) for predicting the concen-
tration of ethanol [29].

Thus, by the above discussion, it has been clearly seen that ML methodologies
have tremendous potential to evaluate the various process parameters for bioethanol
production without prior knowledge of kinetics and inhibition process. An overview
of applications of ML approaches in biorefinery sector has been represented in
Fig. 3.3. Thus, in the futuristic scenario, more comprehensive studies have been
warranted for overcoming the various technical gaps for the commercialization of
biorefineries.

http://cran.r-project.org/web/packages/C50/
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Fig. 3.3 An overview of applications of machine learning approaches in biorefinery

Approaches of Machine Learning in Monoclonal Antibody
Production: A Case Study

The past decade has seen a stupendous ride in the production of biotherapeutics,
more preferably monoclonal antibodies, for the treatment of a variety of chronic
disorders like cancers and autoimmune and inflammatory diseases [30]. This con-
tinuous surge has been attributed to higher efficacy, specificity, reduced toxicity, and
less side effects conferred by monoclonal antibodies. Apart from that, the production
of monoclonal antibodies is considered to be a costly, time-consuming, and fastid-
ious endeavor due to the requirement of the high standards and stability during
production, storage, and transportation [31–34]. Due to the proteinaceous nature,
these antibodies always remain susceptible to various physical and chemical degra-
dation pathways with varied conditions encountered during the whole life cycle
[35, 36]. Thus, there is a pressing need to overcome these challenges for the
sustainable production of this important class of biotherapeutics. There are various
avenues from the design and prediction of antigen specificity of monoclonal anti-
bodies to the prediction of various liquid formulations for effective delivery of these
compounds inside the body in which various domains of machine learning have been
used. Recently, the structure-based deep learning for antibodies (DLAB) database
has been developed for virtual screening and prediction of putative binding of
antibodies against antigen as a target [37]. Based on this database, Reddy et al.
reported the prediction of antigen specificity of therapeutic antibody trastuzumab
against human epidermal growth factor receptor 2 (HER2) as an antigen. The studies
involved the screening of thousands of lead molecules by analyzing 1 × 108
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Fig. 3.4 Use of machine learning methods in commercial production of monoclonal antibodies

trastuzumab variants against 1 × 106 variants of HER2 based on viscosity, solubility,
clearance, and immunogenicity [38]. Similarly, more comprehensive studies related
to the determination of molecular descriptors affecting the viscosity of monoclonal
antibodies have been reported by Trout et al. A decision tree-based machine learning
framework has been used for predicting the net charge and high viscosity index of
monoclonal antibodies [39].

That studies significantly contribute for the assessment of rheological behavior
that affects the delivery of these therapeutic molecules. More recently, a Bayesian
optimization algorithm has been developed for the screening of formulations of
mAbs. The formulation comprises various excipients such as thermal stabilizers,
amino acids buffering agents, surfactants and tonicity modifiers that imparts a
significant effect on the stability of proteins and their storage [40]. Thus, this
approach of ML leads to the acceleration in the design of formulations with optimum
excipients and parallelization of operations in mAbs development. Figure 3.4 is
representing the applications of ML algorithms in monoclonal antibody
manufacturing.

Thus, based on the above discussion, it is conceivable to comprehend that ML
approaches provide a novel, innovative, and accelerated platform for the discovery,
development, and manufacturing of monoclonal antibodies and can be used for other
biotherapeutics.



48 A. Singh and B. Singhal

Approaches of Machine Learning for Antibiotic Production:
A Case Study

The serendipitous discovery of penicillin as a life-saving drug during world war has
been proved to be a cornerstone discovery in modern medicine. Then, the golden era
of antibiotics has been visualized, but their overwhelming use leads to a deadly
menace of antibiotic resistance, and it is estimated that by 2050, 10 million death per
year will occur due to drug resistance diseases [41]. The discovery of novel
antibiotics is from a natural source, which is plagued by dereplication problems
[42]. Thus, the approaches of machine learning are proving to be eye-opening
methods that have the capacity to search large amounts of data with accelerating
speed. Recently, genotype-based machine learning models, such as support vector
machine (SVM) and set covering machine (SCM), have been used as a promising
diagnostic tool to predict the resistance of commonly used antibiotics, including
tetracycline, ampicillin, sulfisoxazole, trimethoprim, and enrofloxacin, against the
whole genome of 96 isolates of Actinobacillus pleuropneumoniae [43]. Moreover,
halicin molecule was identified through the screening of 6000 chemical compounds
that not only have the potency to treat diabetes but also found to exhibit strong
activity against Mycobacterium tuberculosis and other hard-to-treat microbes
[44]. ML is not only to accelerate the discovery of novel antibiotics, but different
algorithms can be helpful for predicting the susceptibility towards antibiotics.
Figure 3.5 represents the role of ML in antibiotic discovery for finding novel
antimicrobials. Recently, the single centric study was performed to assess the eight
algorithms of ML for predicting the resistance toward antimicrobials by taking

Fig. 3.5 Applications of machine learning methods in antibiotic production
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demographic data from patients, gram staining, and site of infection [45]. These
studies will be helpful for clinicians in the selection of appropriate antibiotic therapy.
Thus, in the future ML holds tremendous potential to alleviate the global threat of
antibiotic resistance and is helpful in maintaining the stewardship of antibiotics.

Machine Learning in Protein Engineering: A Case Study

The continuous surge in the production of bioproducts needs sustainable
bioprocessing portfolios. The development of industrial strains requires a thorough
understanding of genome organization, cellular metabolism, and enzymes. The
overproduction of various products requires engineering of their biosynthetic path-
way and enzymes that are still unknown to the scientific community. Thus, the
development of novel biosynthetic pathways and the engineering of enzymes can
spur the overproduction of industrially important metabolites. Recently, catalytic
turnover (Kcat) of enzymes has been evaluated in E. coli through machine learning
approaches. The diverse properties of enzymes, such as structural properties, net-
work properties, assay conditions, and biochemical mechanism information, have
been considered for generating ML models. This in vivo and in vitro prediction of
Kcat will be helpful for implementing the information of genome-scale metabolic
models for correlating the expression of the proteome in E. coli. [46] Furthermore,
the scope of substrate specificity of enzymes has also been predicted with ML
models. Four machine learning models, along with molecular modeling and docking
tools, namely, support vector machines, random forest, logistic regression, and
gradient-boosted decision trees, have been developed for evaluating the substrate
specificity of bacterial nitrilases that hydrolyzed the nitrile compounds to the
corresponding carboxylic acids and ammonia. The accuracy of substrate prediction
leads to a better catalytic activity of enzymes that facilitates the overproduction of
metabolites [47]. Recently, the affinities of protein-ligand binding have been
performed with deep learning ML models, including three-dimensional (3D)-
convolutional neural networks (3D-CNNs), spatial graph neural networks
(SG-CNNs), and their fusion models. These models predicted the binding free
energies based on docking pose coordinates, docking scores, and molecular
mechanic/generalized Born surface area (MM/GBSA) calculations. [48]. An over-
view of the utilization of ML methods in the realm of protein engineering has been
summarized in Fig. 3.6. These studies will be playing a pivotal role in the drug
discovery paradigm. Thus, based on the above discussion, enzyme engineering is the
backbone in improving the bioprocess design and development and fosters the path
for sustainable biomanufacturing.
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Fig. 3.6 An overview of applications of machine learning methods in protein engineering

5 Current Challenges and Future Prospects

The world is moving toward digitalization and bioproduct development, and
manufacturing is no longer the exception for adoption of advanced technologies.
Though machine learning methodologies have proven their mettle in other sectors in
an efficient manner, biomanufacturing sector is still reluctant to adopt ML as the
standardized tool for the development of bioprocess. The skepticism related to
catastrophic consequences of defective products inhibited their wider adoption.
There are technological challenges such as lack of representative datasets for
development, eating, and validation of model limits their operability at commercial
scale. The uncertainty of prediction due to the multi-parametric nature of biological
data confers additional roadblock for the acceptance. The complexity of models
further limits their correlation analysis with biological process. Inspite of these
challenges, rising technological innovations in ML and computing will definitely
overcome these challenges, and it is clearly envisioned that the ML approaches hold
a bright future in upscaling the development of bioproducts through process engi-
neering approaches.

6 Conclusion

Machine learning not only transformed the scientific paradigm but also leads to a
gigantic leap in the productivity of industrial manufacturing. The digitalization
accompanied with machine learning approaches creates novel history in the
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biomanufacturing too. The various approaches such as unsupervised and supervised
models both are quite useful in various facets from process development to purifi-
cation of bioproducts from living cells. The present chapter entails the current
application of ML in various bioproducts and their commercial manufacturing
through process engineering principles. The chapter represents various case studies
of diversified bioproducts portfolios from high value to low value. The immersive
applications of ML proved its utility in reducing the cost and time of industry that is
considered to be a major economic consideration. The road of utilizing ML is not
smooth currently, but in future, the vision of using these concepts for bringing the
transformations in bioprocess engineering sector is certainly on horizon.
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Glossary

Antibiotics It is a class of antimicrobial substances that are
used to kill infectious bacteria.

Antibiotic resistance It is the type of resistance that is developed by
microorganism against the effect of an
antibiotic.

Biomanufacturing It is a type of industrial production that utilizes
biological systems to create commercially-
important bioproducts.

Bioprocess engineering A bioprocess is any method that uses living
cells or their elements (e.g., enzymes, chloro-
plasts) to produce a product, whereas engineer-
ing is the science of coming up with complex
machines or processes.

Bioreactor It is an apparatus used to grow microorganisms
in a controlled environment.

Docking It is a tool for predicting the interaction, confor-
mation, and orientation of a ligand in binding
site of protein.

Entropy It is a measurable property that is associated
with the degree of randomness of a system.

Fermentation Fermentation is the process by which molecules
such as glucose are broken down into a simpler
substance.

Hyperspectral imaging It is a spectroscopic technique that captures and
processes an image at very large number of
wavelengths.

Monoclonal antibodies These are laboratory-made proteins that can be
used as substitutes for antibodies to enhance or
modify the immune system.
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Near-infrared spectroscopy It is a spectroscopic technique that deals with
the electromagnetic spectrum within the near-
infrared area (780–2500 nm).

Protein engineering It is the method of developing novel proteins
with desired properties.

Scale-up It is the process of increasing the scale of
fermentation.

Scale-down It is the process of decreasing the scale of
fermentation.

Simultaneous saccharification and fermentation It is a procedure that mixes enzymatic hydroly-
sis with fermentation to gain value-added prod-
ucts in an individual step.

Surfactants These are the chemical compounds that are used
to lower down the surface tension between two
phases.

Synthetic biology It is a multidisciplinary research area that
involves engineering of organisms for produc-
ing novel useful substances.

Tonicity It is the potential of a solution to change the
water content surrounding the cell.

Viscosity It is a measure of resistance of a fluid toward
deformation by shear stress.
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