
ð

�
þ þ

Chapter 2
Particle Swarm Optimization and Its
Applications in the Manufacturing Industry

Pinkey Chauhan and Shashi Barak

1 Introduction to Optimization

The term “optimization” entails the process of optimizing a given mathematical
function or system’s desirable properties while minimizing its undesirable charac-
teristics. In the most basic sense, the optimization process tries to determine the best
possible set of values to attain a given objective by satisfying various restrictions
called constraints.

If we consider only one objective, then the problem is mathematically formulated
as follows:

Minimize (or maximize)

f xð Þ; x= x1, x2, : . . ., xDð Þ 2:1Þ

subject to, usually defined by

F= x 2 Dj hi xð Þ= 0; andgj xð Þ≥ or≤ 0
�

i= 1,2, . . . :,m and j=m 1,m 2, . . . :,p

where f, h1, h2, . . ., hm, gm + 1, gm + 2, . . .gp are real valued functions defined onℜ
D.

The function f(x) that is to be optimized (maximized or minimized) is called the
“objective function.” The equations hi(x) = 0 for i= 1, 2, . . ., m are known as
the equality constraints, and the inequalities gj(x) ≥ or ≤ 0 for j = m+1, m+2,. . .,p
are called inequality constraints. The independent variables xi

's are called decision
variables. A decision vector x = (x1, x2, . . ., xD) 2ℜD satisfying all the constraints is
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called a “feasible point or solution.”A feasible optimal solution is a possible solution
that optimizes the objective function. It is intended to identify the independent
variable values x1, x2, . . . ., xD that optimize the objective function f(x) without
violating any of the constraints specified in problem (2.1)

The problem is known as a “linear programming problem (LPP)” when all of the
functions f(x), hi(x), gj(x) in the optimization problem are linear. The problem is
known as a “nonlinear optimization problem” or a “nonlinear programming problem
(NLPP)” if one or more of these functions are nonlinear. The model is termed an
“integer programming problem” if the solution adds an extra constraint that the
decision variables must be integers. The problem is known as a “mixed integer
programming problem” when some of the variables are integers and others are real.

Local and Global Optimal Solution

The solution of an optimization problem is classified by the quality of the solution.
The two types of solutions are referred to as local optima and global optima. An
optimum x (local or global) is defined as follows: Let x be a solution vector of a given
optimization problem that which satisfies all constraints. Now, let F be a set of all
such solution vectors x, called feasible/solution space. Then, for a minimization
problem, if for x 2 F , there exists an ε-neighborhood Nε xð Þ around x such that
f xð Þ ≥ f xð Þ for each x 2 F \ Nε xð Þ and then x is called a “local minimum” of the
given optimization problem. The functional value f xð Þ will be called the local
minimum value. If, however, x 2 F and f xð Þ ≥ f xð Þ for all x 2 F, then x is called
a “global minimum” of the given optimization problem. The functional value f xð
will be called the global minimum value. The local and global optima of a function
are shown in Fig. 2.1.

If the problem is linear in nature, then the local solution will also play the role of a
global optimum solution. The local optimum solution for an NLPP is guaranteed to
be the global optimal solution, if the objective function for a minimization situation
is convex and the domain of definition specified by the set of constraints is also
convex. Figure 2.1 illustrates an example of a function with local and global optima.
Figure 2.2 shows a function having a unique minimum (an example of a unimodal
function), while Fig. 2.3 shows an example of a function having several local and
global optima (multimodal function).

Algorithms that aim at determining the global solution are called global optimi-
zation algorithms. The practical necessity of global optima in real-life scenarios has
motivated researchers to develop several global search methods for solving NLPP
efficiently. Global search algorithms are categorized into two types: deterministic
and probabilistic techniques. For exhaustively searching the solution space, deter-
ministic approaches rely on a predetermined set of rules. Moreover, the solution
found by a deterministic method always depends on the starting conditions and often
be suboptimal. Probabilistic methods follow a stochastic approach to search the
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feasible space thoroughly for locating global optimal solutions. The deterministic
techniques are applicable to a specific range of functions, such as differentiable or
Lipschitz continuous functions, but Stochastic methods are applicable to a much
broader range of functions. Despite the fact that probabilistic approaches do not
guarantee global optima, they are occasionally recommended over deterministic
methods due to their applicability to a broader class of functions. A detailed study
of deterministic and stochastic methods could be found in [1–6]. A taxonomy of
some global optimization methods is shown in Fig. 2.4
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Fig. 2.3 Visualization of a
multimodal function
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Nature-Inspired Algorithms

Nature-inspired computing is a new computer paradigm that is based on self-
organization and complex systems principles. Techniques that simulate an existing
natural process to discover an optimum solution to a problem that seems to be
resistant to conventional methods are known as nature-inspired optimization algo-
rithms. The behavior or working of biological systems have been inspiring meta-
heuristic search algorithms since its inception, for example, genetic algorithms [7],
ant colony optimization [8, 9], tabu search [10], bacterial foraging
optimization algorithm (BFOA) [11], differential evolution [12], central force opti-
mization [13, 14], artificial bee colony optimization [15], glowworm swarm optimi-
zation [16], and particle swarm optimization [17]. The abovementioned methods
have the advantage of being able to successfully address a variety of standard or
application-based problems without any prior knowledge of the problem space.
Furthermore, these algorithms are more capable of finding a problem’s global
optima. The scope of this chapter is limited to particle swarm optimization (PSO),
which is considered an efficient, simple, and popular nature-inspired optimization
approach. PSO is a swarm intelligence method, which is inspired by the behavior of
fish schools and bird flocks for solving global optimization problems. The next
section will present a detailed description of the simulation and parameters of PSO.

2 Particle Swarm Optimization

Particle swarm optimization (PSO) belongs to the category of swarm intelligence
techniques, inspired from the well-informed social behavior of organisms. The
foraging process of swarm analogies, such as bird flocks and fish schools, is
simulated by PSO. This concept was firstly proposed as an efficient heuristic
technique by Kennedy and Eberhart in 1995 [17]. The benefits of using PSO include
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Fig. 2.4 Taxonomy of global optimization methods

fast convergence to the global optimum, a simple to implement code, as well as a
complex computation-free environment. The searching process in PSO has better
global searching capability at the start of the run and good local searching capability
near the end. PSO is an efficient global optimizer that has gained great attention from
academics since its inception. Because it is an efficient global optimizer, it may be
viewed as an alternative to genetic algorithms (GA) and other evolutionary algo-
rithms (EAs). PSO is an excellent option for dealing with a wide range of problems
appearing in biology, economics, engineering, industry, and other real-world
domains due to its simple and effective searching technique.
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How PSO Works

For a D-dimensional search space, the ith particle of the swarm at time step t is
represented by a D-dimensional vector, xti = xti1, x

t
i2, . . . , x

t
iD

� �T
. The velocity

of this particle at time step t is represented by another D-dimensional vector,
vti = vti1, v

t
i2, . . . , v

t
iD

� �T
. The previously best visited position of the ith particle at

time step t is denoted as pti = pti1, p
t
i2, . . . , p

t
iD

� �T
. This is also called the personal

best position or pbest.
The velocity of the ith particle is updated using the velocity update equation,

given by

vtþ1
id =w�vtid þ c1r1 ptid - xtid

� �þ c2r2 ptgd - xtid

� �
ð2:2Þ

Here “g” is the index of the best particle in the swarm, and Pgd represents the best
particle, i.e., the particle having the best fitness value. This is also called gbest, i.e.,
the global best.

The position updating rule is given below

xtþ1
id = xtid þ vtþ1

id ð2:3Þ

where d = 1, 2. . .,D represents the dimension and i = 1, 2,. . .,S represents the
particle index. S is the size of the swarm, and c1 and c2 are called cognitive and
social acceleration constants, respectively, and constitute the parameters that have to
be fine-tuned for the PSO to achieve convergence. r1 and r2 are uniform random
numbers in the range [0, 1] and used to randomize the acceleration constants. Due to
the stochastic effect introduced by these numbers, PSO trajectories should be
considered stochastic processes. Equations (2.2) and (2.3) define the classical ver-
sion of PSO algorithm with inertia weight (w).

In the velocity update Eq. (2.2), the new velocity vtþ1
id can be seen as the sum of

three terms:

(i) Momentum: The first term w�vtid is momentum, which functions as memoriza-
tion of the particle’s prior flight direction. This concept restricts the particle
from altering its path abruptly.

(ii) Cognitive Component: The second term c1r1 ptid - xtid
� �

, related to local search,

is proportional to the vector ptid - xtid
� �

and leads back particle to its own best
position. This factor, also known as the cognitive component of the velocity
update equation, controls the step size in the direction of the particle’s personal
best position.

(iii) Social Component: The third term c2r2 ptgd - xtid

� �
is called social component,

which is linked to the global search. This term is proportional to ptgd - xtid

�
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Fig. 2.5 Geometrical visualization of particle’s movement in two-dimensional space

and points to the best position in the neighborhood. This term regulates
maximum step size in the direction of global best particle.

In order to improve the resolution of the search, a constant, Vmax, is introduced
in Eberhart et al. [18] to clamp the velocities of the particles in the range [-Vmax,
Vmax]. The maximum velocity, Vmax, acts as a parameter to restrict the global
exploration ability of a particle. The movement of a particle in two-dimensional
space can be visualized geometrically in Fig. 2.5.

The PSO paradigm follows the five basic principles of swarm intelligence
[17, 19].

• Proximity principle: The proximity principle states that the population should be
able to do simple spatial and time-related calculations.

• Quality principle: The population should be able to adapt to environmental
quality variables.

• Principle of diverse response: The population should not commit its activities
along excessively narrow channels.

• Stability principle: The population’s behavior should not alter in response to
changes in the environment.

• Principle of adaptability: The population must be able to adjust its behavior mode
in response to the computational price.

The PSO’s searching process is elaborated by the algorithm given below:
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Algorithm: Basic PSO
Create and Initialize a D-dimensional swarm, S

For t= 1 to the maximum bound on the number of iterations,
For i=1 to S,

For d=1 to D,
Apply the velocity update equation (2)
Update Position using equation (3)

End- for-d;
Compute fitness of updated position;
If needed, update historical information for Pi and Pg;
End-for-i;

Terminate if Pg meets problem requirements;
End-for-t;

Understanding PSO Parameters

The basic PSO has a number of parameters that should be fine-tuned to regulate the
performance of the algorithm in a desired way. These parameters are briefly defined
as follows [18, 20].

(i) Swarm Size: It refers to the number of random solutions generated initially to
start the searching process. A good and diversified initial swarm leads the
search in a better way, which may affect the performance of PSO significantly.
The swarm size is problem dependent.

(ii) Acceleration Coefficients. These parameters are designated by c1 and c2, and
they measure the stochastic impact of a particle’s personal and social experi-
ences on total velocity per iteration. With particle speed growing without
control, the influence of these settings can make the PSO more or less “respon-
sive” and possibly even unstable. Usually, c1 and c2 are taken as the following:
c1 = c2 = 2.0; c1 = 1.3, c2 = 2.8 and c1 = 2.8, c2 = 1.3.

(iii) Velocity Clamping (Vmax). The concept of velocity clamping was introduced to
limit velocities to the range [-Vmax, +Vmax] for each component of vid. The
value of parameter Vmax is carefully chosen, because it has a significant impact
on the exploration-exploitation trade-off. Vmax’s ideal value is problem-
specific, and there is no fair rule of thumb.

(iv) Inertia Weight (w): Shi and Eberhart [21] introduced it as an explicit parameter
to alter the momentum of a particle to a certain extent. The inertia weight
governs the contribution of the previous velocity so that particles do not change
their directions drastically and head toward good regions. When w>1.0, the
particle will accelerate to its maximum velocity Vmax (or -Vmax) and then
jump off the feasible space, while a value w<1.0 will force the particles to slow
down until its velocity drops to zero, resulting in localized stagnation. There-
fore, the value of w in the range [0.4, 1.0] is preferred more often.
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(a) Star Topology                                      (b) Wheel Topology

(c) Ring Topology                                     (d) Van-Neumann Topology

Fig. 2.6 Social networks for particle-to-particle interaction

(v) Particle’s Social Interaction: The interaction methods show how the particles
are interconnected with each other for information exchange. Some common
structures are given below and are illustrated in Fig. 2.6.

• Star Topology: The star social structure is shown in Fig. 2.6, in which all particles
are linked to each other and hence the communication occurs within the entire
swarm. In this situation, every particle is drawn to the optimal solution traced by
the entire swarm. As a result, each particle mimics the overall ideal solution. The
“gbest PSO” is the initial version of the PSO, which utilized a star network
structure. It has been observed that the gbest PSO converges more quickly than
other communication networks but is more prone to becoming stuck in local
minima. The “gbest PSO” shows better performance for problems having single
optima.
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• Ring or Circle Topology: The ring social structure is shown in Fig. 2.6c. The
communication between each particle and its closest neighbors occurs within the
ring social structure. By advancing toward the neighborhood’s best solution, each
particle makes an effort to emulate its best neighbor. Due to the link between
limited number of particles, the convergence occurs more slowly as compared to
star structure, but a bigger portion of the search space is covered in this structure.
The above quality of ring social structure recommends it for multimodal prob-
lems. The first implementation of PSO using ring structure was named “lbest
PSO.”

• Wheel Topology: The wheel social structure isolates individuals living in a
neighborhood from one another. As shown in Fig. 2.6b, one particle serves as
the focal point, via which all information is transmitted. The focus particle
evaluates all of the neighbors’ performances and shifts its position toward the
best neighbor. If the focal particle’s changed position leads to improved perfor-
mance, then the entire neighborhood is informed about the improvement.

• Von Neumann or Square Topology: The von Neumann social structure, as shown
in Fig. 2.6d, has particles connected in a grid pattern.

There is no single structure that works best for all problems. It has been observed
[20] that ring topology performs better for unimodal problems and star topology
provides better results for multimodal problems. Particle indices are commonly used
to define neighborhood size.

Binary Particle Swarm Optimization

PSO was originally developed for continuous optimization problems, but it has now
been expanded to discrete and binary-valued problem spaces. Kennedy and Eberhart
[22] created the first discrete version of PSO for binary issues as a result of their
initiative. The core particle searching mechanism is the same in binary PSO as in the
continuous version, with the exception of a change in the position update equation,
which in the case of binary PSO becomes a binary number generator. To determine
whether xid, the d

th component of xi, should be evaluated as “0” or “1,” the velocity
is employed as a probability threshold. A mapping rule, from vid to a probability in
the range [0, 1] must be defined for each vid 2ℜ. This is accomplished by squashing
velocities into a range of [0, 1] using a function called “sigmoid function.” The
sigmoid function is defined by the following mathematical equation:

sigm vidð Þ= 1
1þ exp - vidð Þ ð2:4Þ

The shape of the sigmoid function resembles the shape of the letter “S” as shown
below in Fig. 2.7. The sigmoid function trajectory serves the purpose of a probability
generating function for deciding a bit (from 0 to 1 and vice versa).
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Fig. 2.7 Visualization of sigmoid function

In BPSO, the particle velocities (vid) are fed as input to the sigmoid function,
which normalizes them to be produced in the range [0, 1]. The generated values are
further employed as the probability threshold for selecting bits 0 or 1. The binary
PSO (BPSO) position update equation is now a probabilistic update equation:

xtþ1
id =

1 if U 0, 1ð Þ< sigm vtid
� �

0 otherwise

�
ð2:5Þ

where is a quasi-random number generated from a uniform distribution with values
between 0 and 1. If sigm (vid) = 0, xid will remain 0 as shown in Eq. (2.5) (for
convenience, the time scripts are dropped). This occurs when either vid <-10 or vid
> 10 [23]. To overcome this situation, it has been advised to set vid in the range
[-4, 4] and to use velocity clamping with Vmax = 4. set vid and employ velocity
clamping with Vmax = 4.

Research Developments in PSO

PSO, like several other population-based methods, faces problems while dealing
with a certain class of problems, e.g., multimodal and complex real-world problems
having a large number of decision variables. Two common drawbacks/shortcomings
detected are as follows: premature convergence, when the algorithm converges to a
solution which is not optimum; stagnation, when the algorithm shows no
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improvement in the fitness value although new particles are generated. These issues
arise when the swarm enters a suboptimal state in which the algorithm is no longer
capable of producing solutions that improve to the desired accuracy. The main
reason behind the occurrence of these problems is the loss of diversity which in
turn arises due to an imbalance between exploration (exploring different parts of the
search space in order to find a good optimum) and exploitation (ability to narrow
down a search to a feasible region in order to fine-tune a potential solution). The
focus of this thesis is to develop improved PSO variants so that they can be applied
to different problems arising in process industries.

According to the literature, the modification strategies for developing improved
PSO variants may be broadly classified as:

(i) Hybridizing PSO with ideas borrowed from other heuristics or traditional
methods

(ii) Disturbing the searching process of PSO by introducing some dynamics, e.g.,
chaotic maps

(iii) Proposing new strategies for parameter selection in PSO

A brief introduction on the developments of PSO using different strategies is
presented below:

Mutation Embedded PSO Variants The idea of mutation was originally
suggested for genetic algorithms to create perturbation in the population. The
work of a mutation operator is to perturb the individuals so as to increase the
diversity of the population and to pull out the particles, which are probably stuck
in some local optimizer. Many mutation operators have been implemented in PSO so
far, including Gaussian, Cauchy, Uniform, Levy, Power, and others [24, 25], to
improve its performance and the notion reportedly provided satisfactory results.

Inertia Weight-Based PSO Variants In order to improve PSO’s performance, Shi
and Eberhart [26] added a new parameter called “inertia weight” to the original PSO,
which was designed to manage the swarm’s exploration and exploitation abilities by
weighting particle motion. In addition, Shi and Eberhart [26] empirically analyzed
the effects of inertial weight and maximum velocity on PSO performance, taking
into account various parameter settings. Early studies suggested a constant inertial
weight throughout the search, whereas later research focused on dynamic changes in
inertial weight that dynamically regulated search capabilities. The various inertial
weight approaches can be categorized as follows:

Linear Strategy: During a run, an inertia weight that decreases linearly from a
reasonably large value to a small value has more global searching capacity at
the start and more local searching ability near the finish. Several investigations
[27–29] have documented the linear method to choose inertia weight, which
depends on time.

Nonlinear Strategy: A nonlinear strategy that changes dynamically over time or
iterations, based on the performance of a swarm or particle, was tested in several
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experiments and shown to be superior to the linear strategy. This approach gave
better results with fewer iterations [30, 31].

Exponential Strategy: Exponential functions, which are faster and decreasing than
linear and nonlinear functions, have attracted a lot of attention as a possible
alternative for a lowering inertia weight strategy [32, 33]. The findings of the
experiments reveal that exponential techniques converged faster than linear
strategies early in the search process and produced better solutions.

Adaptive or Self-Adaptive Strategies: Choosing an inertia weight that adjusts to the
needs of the particle is seen to be a preferable alternative, and researchers have
presented a number of adaptive and self-adaptive ways for choosing an inertia
weight that considerably improves PSO performance [32, 34, 35].

Fuzzy Rules-Based Strategy: A fuzzy system-based technique for dynamically
adjusting inertia weight as developed by [36]. The input variables are the current
best performance evaluation and the current inertia weight, whereas the output
variable is the change in inertia weight. [37] developed another fuzzy-based
technique in which the inertia weight is dynamically changed using fuzzy sets
and rules.

Distribution-Based Random Adjustments: Some implementations used tactics based
on probability distribution functions, which were found to be beneficial on a
number of levels. Pant et al. [38] proposed a new Gaussian-based inertia weight
based on the absolute value of half of the Gaussian random number, as well as
discussing the likelihood of utilizing Gaussian and exponential distributions for
producing the initial swarm. When the algorithm is likely to be stuck in local
optima, Zhu et al. [39] developed a random adjustment for determining inertia
weight with an adaptive initialization technique. The modified version was then
used to solve the path planning problem for UAVs (unmanned aerial vehicles)
and produced effective results.

Chaotic Inertia Weight Strategies: Some methods [40, 41] took advantage of
dynamic systems to determine an adaptive inertia weight that would improve
swarm diversity and convergence speed of method. The strategies incorporated
chaotic terms as an additional parameter to increase randomness and, as a result,
population diversity.

Some review reports have also been published by researchers [32, 42, 43] t
analyze various existing inertia weight strategies and their performances. These
review studies are always been very helpful to researchers, when selecting an
existing strategy or proposing a new one.

Chaotic PSO Variants Chaos is a bounded unstable dynamic phenomenon in
nonlinear systems that is sensitive to initial conditions and comprises infinite
unstable periodic motions. It occurs in a deterministic nonlinear system under
deterministic conditions, despite the fact that it appears to be stochastic. Chaos
was introduced by many researchers as a disturbance term to enhance the capability
of PSO for finding global optima. Chaos was added for handling premature conver-
gence [44, 45], parameter adaptation [46], enhancing exploitation, maintaining
population diversity [47], and preventing stagnation phenomena [48]. Many
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researchers [49–51] have also developed application-based variants of PSO by
adding chaos at suitable points.

Binary PSO Variants Binary PSO was introduced by Kennedy and Eberhart [22]
for handling binary and mixed integer problems. Binary PSO has the same searching
process as its continuous version, therefore, having issues of premature convergence,
and stagnation as well. To overcome the above shortcomings in binary PSO,
researchers had come up with new modifications intending to improve the perfor-
mance of binary PSO. Basic binary PSO uses sigmoid function for generating binary
numbers. Some researchers have employed other functions as linear probability
function [52], Boolean function [53], and bit change mutation [54, 55]. The sigmoid
function is substituted by the Gompertz function in the study by [56], which has
characteristics of both sigmoid and linear functions. The computational results
shows that the novel approach is efficient over binary PSO and turns out as an
efficient and handy algorithm for solving binary-valued problems.

Binary PSO has been extended in a number of studies [57–59] to solve integer or
combinatorial optimization problems that arise in a variety of sectors, including
science, engineering, and industry.

3 Application of PSO Manufacturing Industry

Large-scale, high-dimensional, nonlinear, and extremely unpredictable nature are all
characteristics of industrial problems. Complex optimization problems are fre-
quently solved using traditional methods such as “trial and error.” Due to intrinsic
limitations in describing and exploiting the available problem information, these
methods frequently produce suboptimal results. In addition, the exploration of
design space is restricted. Nature-inspired optimization approaches are gaining
popularity for tackling real-world issues due to its stochastic features and wider
applicability to a variety of functions (without any condition of continuity or
differentiability). These methods are capable of delivering high-quality solutions
and resolving some of the more complicated issues that arise in real-world problems.
Some examples where PSO and other have been applied to different problems
occurring in industries are given in a tabular form in Table 2.1.

4 Conclusion

The basic need in different spheres of life is seeking a better solution if possible.
Therefore, finding a global optimal solution for real-life problems is required for
exploiting available resources to its best without wasting available human resources,
money, natural resources, etc. Since most of the problems arising in various indus-
tries can be modeled as optimization problems, therefore efficient techniques are
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Table 2.1 Application of PSO in manufacturing industry

Application of PSO in product processing using machining
Production
process

Objective References and methods

Hard turning Finding optimal value of cutting speed and
feed rate, depth of

] (NSGA-II and PSO- NN);
[cut in hard turning
[60
61] (PSO); [62] PSO)

Milling Finding the optimal value of ro

49

tation
speed, feed rate, and depth of cutting

[63] (ABC, PSO, SA); [64, 65]
(PSO)

Multi-pass turn-
ing, facing, and
drilling

Finding the optimal value of cutting speed,
feed rate, and depth of cut

[66] (EC); [ ] (PSO)

Grinding Finding the optimal value of wheel speed,
work speed, traverse speed, in feed, dress
depth, and dressing lead

[67] (PSO, GSA, SCA); [68]
(PSO)

High-speed
machining

Finding the optimal value of bonding
wear, feed per tooth, and axial depth of cut

[69] (PSO), [70] (PSO-BP neu-
ral network), [71] (PSO)

Drilling Finding optimal value of Cutting speed,
feed rate, and cutting environment

[72] (PSO); [73] (PSO)

Multi-pass
turning

Finding the optimal value of cutting speed,
feed rate, and depth of cut

[74] (PSO); [75] (PSO); [49]
(Chaotic PSO)

Application of PSO in the paper industry
Problem Objective References and methods
Paper making
process

Minimizing energy cost and production
rate with constrained environment. Opti-
mizing paper making process

[76] (Advanced GA) [77]
(Advanced GA); [78]
(Advanced GA)

Paper making
process

Minimizing trim loss and production cost [79] (2007) (SA-PSO), [34, 80]
(PSO)

Application of PSO in the production industry
Problem Objective References and methods
Scheduling Optimal scheduling of polymer batch

plants; scheduling of complex products
with multiple resource constraints and
deep product structure; optimal power
generation to short-term hydrothermal
scheduling; multi-objective job-shop
scheduling; trust worthy workflow sched-
uling in a large-scale grid with rich service
resources; optimal generation schedule of
the real operated cascaded hydroelectric
system

[81] (PSO); [82] (PSO); [83]
(Fuzzy PSO); [84] (Rotary
PSO); [85] (PSO)

Production
planning

Optimal production planning to meet time-
varying stochastic demand; optimizing the
cost of the filter, filters loss, the total
demand distortion of harmonic currents,
and total harmonic distortion of voltages at
each bus simultaneously; assembly
sequence planning of complex products;
production and distribution planning of a
multi-echelon unbalanced supply chain

[86] (SQP-PSO); [87] (CPSO);
[88] (PSO)
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needed to deal with these problems irrespective of their mathematical nature. The
present study starts with a general introduction of optimization and then leads to the
introduction of PSO along with its parameters, some developments, and applications
in the manufacturing industry. The manufacturing industry focuses on optimizing
the production processes which further benefits it in different aspects, such as
increasing profits and minimizing costs/waste material. As the field is very wide,
the present study covers a brief review of optimization problems arising in various
industries with the aim of paving a path for implementing PSO and other nature-
inspired techniques in the concerned field.

The current study is making an effort of offering research direction in the process
industry using nature-inspired algorithms. The review highlights processes, objec-
tives, process parameters, and implemented algorithms. The objectives of this
chapter in brief are:

(i) To discuss the scope of particle swarm optimization algorithms for obtaining
the global optimal solution of continuous as well as binary optimization
problems

(ii) Developments in PSO over the decades
(iii) To provide information on various industrial processes along with objectives

and parameters
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