
Chapter 1
An Overview of Swarm Intelligence-Based
Algorithms

Osheen Khare, Sumaiya Ahmed, and Yograj Singh

1 Introduction

In the past years, mathematicians, computer scientists, and research scholars have
been increasingly engaged in researching the possibilities of emulating various
natural systems to conceptualize and develop algorithms for the purpose of optimi-
zation. Owing to this trend, a prominent class of optimization techniques, known as
nature-inspired algorithms, has emerged. The framework of such algorithms is
designed to imitate the biological processes observed in nature, such as evolution,
mutation, and societal behavior of insects, to arrive at the optimal solution. One of
the emerging fields within nature-inspired algorithms has been the swarm intelli-
gence (SI)-based algorithms. The term, swarm intelligence, introduced by G. Beni
and J. Wang in 1989 [1] has been used to refer to the branch of optimization
algorithms that models the collective behavior of animal colonies and the interac-
tions (with the environment and other members of the swarm) of the members
present in such a colony.

While the algorithms have gained widespread popularity today, they have been in
work since the late 1980s. Ant colony optimization (ACO) was the first SI algorithm
introduced byM. Dorigo and colleagues in the year 1991 to solve hard combinatorial
optimization problems [10]. After that, J. Kennedy et al. [12, 20, 24] introduced
particle swarm optimization (PSO) simulating the behavior of flocks of birds in
1995. Years later, in 2005, D. Karabago proposed the artificial bee colony algorithm
(ABC) [17] in the family of SI algorithms. Over the years, research has increased the
scope of swarm intelligence by observing and studying different groups of animals
and algorithms, such as cuckoo search (CS), firefly algorithm (FA), dragonfly
algorithm (DA) [30], and grey wolf optimizer (GWO), have emerged. The grey

O. Khare · S. Ahmed (✉) · Y. Singh
Department of Mathematics, Lady Shri Ram College for Women, University of Delhi,
New Delhi, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Singh et al. (eds.), Design and Applications of Nature Inspired Optimization,
Women in Engineering and Science, https://doi.org/10.1007/978-3-031-17929-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17929-7_1&domain=pdf
https://doi.org/10.1007/978-3-031-17929-7_1#DOI

2 O. Khare et al.

wolf optimizer is one of the algorithms which emulates the hierarchical system of an
animal group. In each pack of grey wolves, there is an alpha that dominates the pack
and a beta wolf who leads the pack in the absence of the alpha wolf. The delta and
omega wolves follow the alpha and beta wolves. The algorithm draws inspiration
from the hunting approach of a pack of grey wolves. These wolves hunt in an
efficient manner by following a routine of steps: chasing, encircling, harassing, and
attacking. This enables them to hunt bigger prey. GWO has found applications in
medical and bioinformatics, machine learning, environmental applications, and
networking applications. The developing SI-based algorithms such as the wolf
pack algorithm are gaining wide popularity due to their global convergence and
computational robustness.

The rapidly advancing swarm intelligence techniques can be applied to the
optimization of telecommunication systems and business, military operations, engi-
neering design problems, transportation systems, data mining, image segmentation,
electric machines, and so on [31, 32]. Swarm robotics is a newly emerging field that
draws inspiration from swarm intelligence. The field studies the design and interac-
tions of simple robots with each other and their environment. The goal is to develop a
collective behavior resulting from the coordination of multiple robots as a system.
Such an approach can be applied to various scenarios, such as search and rescue,
mapping, and demining.

Though there are ample instances of SI-based optimization techniques being used
to solve real-world problems in the available literature, a little amount of work has
been done with respect to conducting theoretical analysis of the algorithms to
explain how they operate. Besides mathematical analysis, research also needs to
be done in parameter tuning and parameter control to enhance the functioning of the
algorithms.

The chapter aims to conduct an elaborate survey of SI-based algorithms and is
divided into six sections. The first section gives the readers a brief introduction to
SI-based optimization methods. The second section elaborates upon the key features
and characteristics of SI-based algorithms, highlighting their advantages and limi-
tations. The third section lays out the steps for implementing PSO and demonstrates
the process by minimizing the Rosenbrock function. The fourth section details the
stages involved in the execution of ABC and presents how the computational
technique can be employed to minimize the Schwefel’s function. The fifth subsec-
tion illustrates how the algorithms can be compared using the fixed iteration test. The
last section summarizes the paper and presents the concluding remarks along with
the further scope of the study.

2 Characteristics of SI-Based Algorithms

The swarm individuals show relatively simple intellectual abilities, but they are able
to survive by using social interactions and certain behavioral patterns. These social
interactions can either take place directly or indirectly. Direct interactions are

1 An Overview of Swarm Intelligence-Based Algorithms 3

through audio or visual signals, such as the communication between birds of a flock.
High-quality vision enables them to search for a food source and pass information
related to it to the rest of the swarm. Indirect interactions are known as stigmergy,
meaning communication through the environment, such as the pheromone trails of
ants. Such a phenomenon occurs when a member of the colony reacts to the changes
in the environment introduced by the other member.

Two of the notable characteristics of SI-based algorithms are division of labor and
self-organization. To ensure proper division of labor, the entire colony is split into
various groups, and each group is assigned a specialized task. Such a strategy results
in a more structured and intensive exploration and exploitation of the search space.
Self-organization indicates that the interactions among the members of the swarm
take place on the basis of purely local information, fluctuations, and positive and
negative feedback.

Over the years, SI algorithms have undergone continuous development, and
hence, there has been a boom in the research exhibiting the rapid evolution of
SI-based algorithms and successful implementation of SI algorithms to real-world
optimization problems. Besides operations research [25], vast and diverse domains,
such as machine learning [24], bioinformatics, medical informatics [8], business, and
finance, have also started using computational modelling of swarms. SI algorithms
are widely applied in problems of function optimization, optimal route and sched-
uling problems, engineering and structural optimization problems, data, and image
analysis [13, 23]. Thus, they are considered to be one of the most promising
optimization techniques owing to their following characteristics:

1. Scalability: SI algorithms are scalable in the sense that they can be applied to
groups with a sufficient number of individuals to thousands of individuals. In
other words, SI algorithms are independent of swarm size, as long as the size of
the swarm isn’t very small [3].

2. Adaptability: Owing to their inherent auto-configuration and self-organization
abilities, SI algorithms are able to facilitate the swift adaptation of an individual to
the variations in the environment on run-time.

3. Collective robustness: A single minor failure in a system can cause the failure of
the entire system. In SI algorithms, such a risk is reduced as there is no single
individual which is essential to the functioning of the colony. This makes SI
algorithms highly robust with high fault tolerance [11].

4. Individual simplicity: SI algorithms comprises individuals who have rather sim-
ple and limited abilities of their own. However, change in the behavior of an
individual level is sufficient to bring change in collective organized group
behavior.

While SI algorithms can solve optimization problems with large data, compared
to the other classes of nature-inspired optimization, they are still at an early stage of
research. SI algorithms have certain demerits, such as:

1. Time-critical applications: SI algorithms are useful when it comes to solving non-
time-critical problems with numerous repetitions of the same activity. Since SI

�

þ

4 O. Khare et al.

algorithms do have predefined and preprogrammed pathways to solutions, they
are not suitable for time-critical applications, such as nuclear reactor temperature
controllers.

2. Parameter tuning: This is one of the biggest drawbacks of SI algorithms. Most of
the parameters involved in SI algorithms are dependent upon the problem; hence,
they are either empirically selected using the trial and error method or adaptively
adjusted on run-time [5].

3. Stagnation: SI algorithms exhibit a lack of central coordination; hence, they often
suffer from stagnation or premature convergence to local optimum. However, the
limitation can be overcome with better parameter tuning.

3 Particle Swarm Optimization Algorithm

PSO is a nature-inspired metaheuristic optimization algorithm that imitates the social
behavior of a flock of birds. This population-based technique makes use of a set of
flying particles that are birds with velocities. When a flock of birds moves in search
of food, each bird adjusts its position according to its own historical performance as
well as the flock’s historical performance, which makes the flock move toward the
most promising areas in the search space. Similarly, the particles in PSO dynami-
cally adjust their position in order to reach the optimal solution efficiently [26, 33].

This experience sharing ability of a swarm makes PSO a rather efficient and
successful algorithm for optimization. The algorithm begins with initializing
n random particles with a certain position and velocity in the search space. At each
iteration, in order to calculate the fitness of each of these particles, the objective
function value is evaluated at their current position, and the personal best (pbest) and
the global best (gbest) are identified. Then, the particle updates its velocity to imitate
the gbest and pbest particles by moving closer to them. The formula for updating the
velocity and position is, respectively, given by:

vnþ1 = w � vnð Þ þ c1 � r1 � xpbest - xn
� �� �þ c2 � r2 � xgbest - xn

� ��

xnþ1 = vnþ1 xn

where

• vn+1 denotes the velocity of the successive particle.
• xn+1 denotes the position of the successive particle.
• xn denotes the particle’s current position.
• xpbest denotes the historically personal best position of the particle.
• xgbest denotes the position of the global best particle of the swarm.
• w denotes the given inertia factor, which controls the exploration capabilities of

the algorithm. It strikes a balance between the global and local search.
• r1and r2 are random numbers uniformly generated within the range [0,1].

1 An Overview of Swarm Intelligence-Based Algorithms 5

• c1and c2 are positive parameters called the cognitive and social parameters
respectively. These parameters control the movement of the particle relative to
its personal experience and the experience of the swarm [9]. The value of c1 and
c2 can greatly affect the algorithm by biassing the particle’s position towards
pbest or gbest:

– If c1 > c2, then the search behavior is biased toward the pbest.
– If c1 < c2, then the search behavior is biased toward the gbest.
– When high values of c1 and c2 are selected, then the particle’s new positions

are generated in distant regions of the search space, leading to a better global
exploration, but it might lead to divergence of the particles.

– When small values of c1 and c2 are selected, then the particle’s new positions
are generated close by as a result of limited movement, leading to a refined
local search.

Before an iteration ends, the index of the swarm’s gbest particle is updated in case
the position of any particle in the swarm turns out to be better than the current
position of the swarm’s gbest particle. This iterative process is terminated when the
stopping criterion is met, i.e., the maximum number of iterations is completed or a
good enough fitness value is attained, or the algorithm has been giving the same
result for a number of consecutive iterations. The fitness value of the gbest particle at
the end of the process is taken as the optimized function value.

Pseudocode of PSO

1. Initialize the swarm of n random particles with arbitrary positions and velocity in
the search space.

2. Define the bounds (lb, ub), inertia factor (w), cognitive and social parameters (c1,
c2), and maximum number of iterations to be executed.

3. Calculate the objective function value for each particle at their current position.
4. Update the particle’s best position (xpbest).
5. Identify the swarm’s global best particle and update its position as xgbest.
6. Update the velocity and position of the particle accordingly.
7. Repeat steps 3–6 until the particles converge to an optimal solution or the

stopping criteria is met.

Minimizing Rosenbrock Function Using PSO

The implementation of PSO can be exhibited on a number of test functions. One
such test function is Rosenbrock function, also known as the banana function. The
function has a global minimum in a narrow parabolic valley at (1,1) with f(x) = 0.

i

) 0

6 O. Khare et al.

45000
100=(x12-x2)2+(1-x1)2

40000
35000
30000
25000
20000
15000
10000
5000

�4

�4

�3

�3
�2

�2�1 �10
0

x1

x2
1

1

2

2

3

3

4

4

0

z

Fig. 1.1 Plotting Rosenbrock function using Maxima

Table 1.1 Optimal values
obtained for variables by PSO

Variables Optimal values

x1 1

x2 1

f(x1, x2

Table 1.2 Values observed
for different parameters during
the execution of PSO

Parameters Values

Best value 0

Worst value 4.8625

Mean 0.09602

Standard deviation 0.1635896857

While obtaining this global optimum is easy, the algorithms often get stuck to the
local optimum; hence, it is used to assess the efficiency of optimization algorithms.

The general Rosenbrock function is given as:

f xð Þ=
Xd- 1

i= 1

100 xiþ1 - x2i
� �2 þ xi - 1ð Þ2

h

Here, we will implement PSO on a two-dimensional Rosenbrock function given as:

F= 100 x21 - x2
� �2 þ 1- x1ð Þ2 where- 2:048≤ x1, x2 ≤ 2:048:

The plot of the function can be observed in Fig. 1.1.
The algorithm was executed for 10 runs with 200 iterations. The number of

iterations were fixed after observing the behavior and convergence rate of PSO.
The results obtained while minimizing the Rosenbrock function using PSO can be
summarized by Tables 1.1 and 1.2, and Fig. 1.2:

1 An Overview of Swarm Intelligence-Based Algorithms 7

0.0000
50 100

No. of iterations

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
es

Plotting best mean values over 10 runs with 200 iterations

150 200

0.2500

0.5000

0.7500

1.0000

1.2500

Fig. 1.2 Evolution of best mean results by PSO over 10 runs with 200 iterations

It can be observed that PSO has attained 0 as the best value. Thus, the algorithm
has been successful in minimizing the function to the lowest value that can be
achieved. The worst value and statistical measures, such as mean and standard
deviation, are taken into account while assessing the performance of the algorithm
as they indicate the stability and convergence of the solutions. If an algorithm attains
a mean closer to the optimal value, a lower value for the worst objective function
value and standard deviation, it indicates that the method was efficient and suitable
as it was able to generate appropriately lower values (in case of a minimization
problem) on sufficiently large numbers of iterations.

Figure 1.3 displays code snippets for executing PSO algorithm in MATLAB.

4 Artificial Bee Colony Algorithm

ABC is one of the most widely used SI-based optimization methods, which has been
successfully applied to solve diverse complex numerical problems. The framework
of the algorithm designed to emulate the foraging behavior of honeybees was first
proposed by Karaboga in 2005 [15].

In ABC, the colony of bees is composed of three categories, i.e., employed,
onlooker bees, and scout bees [18]. Employed bees find and exploit a particular food
source. Here, the food source represents a feasible solution within the search space.
Every employed bee produces a modification and assesses the nectar amount of a
specific food source, i.e., fitness of the solution. After evaluating the quality of the
food source, they pass this information to other bees in the hive. Onlooker bees, on
receiving information related to the position, directions, and the quality of the food

f

8 O. Khare et al.

Fig. 1.3 Implementing PSO using MATLAB

sources, select a food source based on a probability proportional to its fitness value.
After a food source has been completely exhausted, it is abandoned, and the
employed bee associated with that particular food source becomes a scout bee,
which randomly chooses a new food source to exploit. Thus, it can be concluded
that, while onlooker and employed bees perform the job of exploitation, scout bees
ensure that the entire global region is intensively searched for an optimal solution.

To understand the method in-depth, we would now have a closer look at the three
stages of the algorithm:

1. Employed Bees Phase: The process is initialized by generating random food
source positions or feasible solutions within the search space. The parameters
of the algorithms such as the swarm size, number of food sources, and limit are
also defined. Each employed bee is assigned a particular food source to exploit.
To examine the quality of the food source, the objective value function
corresponding to the source/solution is calculated. The fitness values (fiti) o
the food sources are then derived using the following formula with the help of the
objective function values (fi) [16]:

if f i ≥ 0,then fiti =
1

1þ f i

if < 0, then = 1þ j j

1 An Overview of Swarm Intelligence-Based Algorithms 9

f i fiti f i

The employed bees alter the positions of the food sources to produce new solutions
(Xnew) by arbitrarily selecting a partner solution (Xp) and modifying a random
variable (jth variable) of the initial solution (X) with the help of the given formula:

Xj
new =Xj þ rand - 1, 1ð Þ � Xj -Xj

p

� �

The bees then implement greedy selection to discard the less suitable solutions. After
retaining the richer food sources, the employed bees disseminate information
concerning the quality of the food sources among the onlooker bees.

2. Onlooker Bees Phase: The onlooker bees, on the basis of the information
received from the employed bees about the fitness of the solutions (8n = 1,
2,, SN), select a particular food source according to the probability (pi)
value assigned to it with the help of the given formula:

pi =
fitiPSN
n= 1fitn

This ensures selection of better food sources. After choosing a food source to exploit,
onlooker bees produce a modification in the food position, similar to the one carried
by the employed bees. To determine which food sources to retain and which to
abandon, the onlooker bees execute the greedy selection. At the end of the stage, the
best solution obtained in the ongoing iteration is stored.

3. Scout Bees Phase: If the position of a particular food source hasn’t been
modified or if a solution hasn’t been improved for a predetermined number of
iterations/cycles (represented by the limit parameter), the food source is aban-
doned. The employed bee associated with the food source becomes a scout bee,
which undertakes the random generation of new solutions to be exploited in the
next iteration.

The same iterative process is continued till the loop is terminated and the stopping
criterion is met, i.e., when the desired accuracy is attained, or a number of iterations
get completed.

Minimizing Schwefel’s Function Using Artificial Bee Colony
Algorithm

aTo examine the efficiency and utility of ABC, the algorithm has been implemented
to minimize the rotated hyper-ellipsoid function, which is popularly known as the

10 O. Khare et al.

Schwefel’s function. The benchmark function is continuous, convex, and unimodal
in nature and produces rotated hyper-ellipsoids when plotted. The function has been
defined as:

f xð Þ=
Xn
i= 1

Xn
j= 1

X2
j

The search area is usually restricted to -65.536 ≤ xi ≤ 65.536 for i = 1, . . ., n. The
function attains its global minima, f(x) = 0, at xi = 0 for i = 1, . . ., n.

The algorithm has been executed to minimize the function in a two-dimensional
space, where it takes the form of f(x) = (x1)

2 + ((x1)
2 + (x2)

2).
The plot of the function can be observed in Fig. 1.4.
Tables 1.3 and 1.4, and Fig. 1.5 summarize the observations and results attained

while minimizing Schwefel’s function using ABC over 10 runs with 200 iterations:
It can be observed that the best value obtained by ABC while minimizing the

function is 0. Thus, the algorithm has been successful in minimizing the function to
the lowest value that can be achieved.

Figure 1.6 provides a glimpse into how MATLAB can be programmed to
implement ABC.

Fig. 1.4 Plotting Schwefel’s function using Maxima

) 0

1 An Overview of Swarm Intelligence-Based Algorithms 11

Table 1.3 Optimal values
obtained for variables by ABC

Variables Optimal values

x1 0

x2 0

f(x1, x2

Table 1.4 Values observed
for different parameters during
the execution of ABC

Parameters Values

Best value 0

Worst value 2.22184299

Mean 0.007044136895

Standard deviation 0.08366737868

Fig. 1.5 Evolution of best mean results by ABC over 10 runs with 200 iterations

5 Comparative Analysis Using Fixed Iteration Test

The section lays out the framework to compare the performances of the algorithm
using the fixed iteration test, wherein the results obtained over a specified no. of
iterations and runs are analyzed to determine which algorithm performs better than
its counterpart.

To establish a comparison between PSO and ABC algorithms, a fixed iteration
test was conducted, wherein both SI-based computational methods were executed to
minimize the axis parallel hyper-ellipsoid function. It is a continuous, convex, and
unimodal function with a global minimum and no other local minima.

The general formulation of the function is given by:

12 O. Khare et al.

Fig. 1.6 Implementing ABC using MATLAB

1 An Overview of Swarm Intelligence-Based Algorithms 13

f xð Þ=
Xd
i= 1

ix2i

Here, we will be implementing the two algorithms on a two-dimensional sum
squares function given by:

f xð Þ= x21 þ 2x22

The function attains the minimum value of 0 at (0,0). Figure 1.7 shows the plot of the
function.

The performances of the algorithm were evaluated and compared on the basis of
the best and worst objective function value achieved and statistical parameters such
as mean and standard deviation. With respect to optimization problems involving
minimization of the given objective function value, the algorithm attaining a lower
best objective function value and a higher worst objective function value is consid-
ered better. While mean reflects the average value achieved in an iteration, standard
deviation measures the variability and dispersion of the dataset around the mean.
These statistical parameters give an insight into the efficiency of the search processes
employed in the algorithm. A mean closer to the optimal value with a lower standard
deviation value indicates that the algorithm has higher convergence rates as it has
been successful in producing lower objective functions close to the optimal value on
a greater number of iterations.

Fig. 1.7 Plotting axis parallel hyper-ellipsoid function using Maxima

14 O. Khare et al.

Table 1.5 Comparison between performances of ABC and PSO

Parameters of comparison PSO ABC

Best value 0 0

Worst value 0.02119116 0.6271

Mean 0.000229697115 0.0015

Standard deviation 0.001051627142 0.01923517001

Fig. 1.8 Comparing best objective function values attained over 30 runs with 200 iterations

From Table 1.5 and Fig. 1.8, it can be concluded that PSO performs better than
ABC while optimizing, and the given function as a higher worst value is achieved in
case of ABC when compared to PSO. The mean calculated in the case of PSO is
closer to the optimal value than ABC, which also obtains a greater value for standard
deviation.

To further assess the suitability of the systems with respect to solving the
minimization problem, the best variable values computed at each iteration were
also compared.

By analyzing the results obtained for individual variables with respect to the
predetermined parameters from Tables 1.6 and 1.7, Figs. 1.9 and 1.10, it can be
deduced that PSO obtains better results in comparison to ABC. Thus, PSO is a more
robust and efficient optimization tool than ABC for minimizing the sum squares
function.

1 An Overview of Swarm Intelligence-Based Algorithms 15

Table 1.6 Comparison between performances of ABC and PSO for x1

Parameters of comparison PSO ABC

Best value 0 0

Worst value 0.1258 0.4663

Mean 0.000613 0.000642

Standard deviation 0.01077988038 0.01921224285

Table 1.7 Comparison between performances of ABC and PSO for x2

Parameters of comparison PSO ABC

Best value 0 0

Worst value -0.0986 0.5517

Mean -0.0001 0.0003

Standard deviation 0.007526091968 0.02382160177

Fig. 1.9 Comparing best x1 values attained over 30 runs with 200 iterations

6 Conclusion

The chapter offers a thorough overview of SI-based algorithms by highlighting its
key features and points of merit and demerits and detailing and demonstrating the
stages involved in implementing PSO and ABC to optimize unconstrained problems.
The chapter also provides the readers with a blueprint for comparing algorithms by
laying out the steps and requirements involved in conducting fixed interaction tests.

It is worth noting that both the algorithms attained an accurate optimal solution
with their original structure, but their full potential can be unlocked only when
necessary, and modifications are made to their structure. Hybridization of ABC with
an evolutionary framework, stochastic methods, or deterministic methods can make

16 O. Khare et al.

Fig. 1.10 Comparing best x2 values attained over 30 runs with 200 iterations

the algorithm more efficient in the search process and allow parallel processing for
time-saving. In order to improve the convergence rate of ABC, modifications in the
production of new neighbor can be proposed. The search pool can be diversified with
new strategies in the scout production phase. New selection strategies can also
enhance the performance of ABC. On the other hand, hybridization of PSO with
an evolutionary algorithm like genetic algorithm (GA) where the population of one
algorithm is used as the initial population for the other one, instead of random
population generation, produced finer results [28]. Adoption of new strategies of
updating the velocity and particle position can lead to an increased efficiency of
PSO. Along with this, further research can be conducted on fine parameter tuning for
both PSO and ABC, since the results of the algorithms are heavily dependent on their
parameters.

PSO and ABC have been evolving with time. The enhanced versions of the two
algorithms have found them a place in a large number of applications. They have a
huge scope in the field of neural networks [14], image and video analysis [4, 7],
bioinformatics and medical applications [27], data mining [29], and much more [19].

While PSO and ABC are the most common examples of SI optimization algo-
rithms, several other SI-based techniques of optimizations have been introduced in
the recent years such as bacterial foraging [26], cat swarm optimization [6], artificial
immune system [2], and glowworm swarm optimization [21, 22]. It should be
interesting to realize that all these algorithms take inspiration from nature and help
simulate an environment to solve real-world problems. At the same time, this very
reason makes SI algorithms relatively weaker, because there exists an inadequacy of
the theoretical analysis. The study of SI algorithms seems to be at an early stage, but
with their growing popularity, one can believe that research and depth analysis will
only improve the state of SI algorithms in the future.

1 An Overview of Swarm Intelligence-Based Algorithms 17

References

1. Ahmed, H., Glasgow, J.: Swarm Intelligence: Concepts, Models and Applications. School of
Computing, Queens University Technical Report (2012)

2. Bakhouya, M., Gaber, J.: An immune inspired-based optimization algorithm: application to the
traveling salesman problem. Adv. Model. Optim. 9(1), 105–116 (2007)

3. Bela, M., Gaber, J., El-Sayed, H., Almojel, A.: Swarm Intelligence. In: Handbook of
Bio-inspired Algorithms and Applications, CRC Computer & Information Science, vol.
7. Chapman & Hall (2006)

4. Benala, T.R., Villa, S.H., Jampala, S.D., Konathala, B.: A novel approach to image edge
enhancement using artificial bee colony optimization algorithm for Hybridized Smoothening
Filters. In: World Congress on Nature & Biologically Inspired Computing, pp. 1071–1076.
IEEE (2009

5. Bonabeau, E., Meyer, C.: Swarm intelligence: a whole new way to think about business. Harv.
Bus. Rev. 79(5), 105–115 (2001)

6. Buck, F.: Cooperative Problem Solving with a Distributed Agent System-Swarm Intelligence.
(2007)

7. Chu, S.C., Tsai, P.W., Pan, J.S.: Cat swarm optimization. In: Pacific Rim International
Conference on Artificial Intelligence, pp. 854–858. Springer (2006)

8. Das, S., Abraham, A., Konar, A.: Spatial information based image segmentation using a
modified particle swarm optimization algorithm. In: 6th International Conference on Intelligent
Systems Design and Applications, vol. 2, pp. 438–444. IEEE (2006)

9. Das, S., Abraham, A., Konar, A.: Swarm intelligence algorithms in bioinformatics. In: Com-
putational Intelligence in Bioinformatics, pp. 113–147. Springer (2008)

10. Del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.C., Harley, R.G.:
Particle swarm optimization: basic concepts, variants and applications in power systems.
IEEE Trans. Evol. Comput. 12(2), 171–195. IEEE (2008)

11. Dorigo, M.: Optimization, Learning and Natural Algorithms (1992)
12. Dorigo, M.: Editorial. Swarm Intell. J. 1(1) (2007)
13. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: MHS’95 Pro-

ceedings of the Sixth International Symposium on Micro Machine and Human Science,
pp. 39–43. IEEE (1995)

14. Engelbrecht, A.P.: Computational Intelligence: An Introduction. Wiley (2007)
15. Irani, R., Nasimi, R.: Application of artificial bee colony-based neural network in bottom hole

pressure prediction in underbalanced drilling. J. Petrol. Sci. Eng. 78(1), 6–12. Elsevier (2011)
16. Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical

report-TR06. Technical Report, Erciyes University (2005)
17. Karaboga, D., Akay, B.: Artificial bee colony algorithm for large-scale problems and engineer-

ing design optimization. J. Intell. Manuf. 23, 1001–1014 (2010)
18. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimi-

zation: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471. Springer (2007)
19. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl.

Soft Comput. 8(1), 687–697 (2008)
20. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: Artificial Bee

Colony (ABC) algorithm and applications. Artif. Intell. Rev. 42(1), 21–57. Springer (2014)
21. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of International Con-

ference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)
22. Krishnanand, K., Ghose, D.: Glowworm swarm optimization for searching higher dimensional

spaces. Innov. Swarm Intell. 61–75. Springer (2009)
23. Kulkarni, V.R., Desai, V.: ABC and PSO: a comparative analysis. In: IEEE International

Conference on Computational Intelligence and Computing Research, pp. 1–7. IEEE (2016)
24. Lim, C.P., Dehuri, S.: Innovations in Swarm Intelligence, vol. 248. Springer Science &

Business Media (2009)

18 O. Khare et al.

25. Olivas, E.S., Guerrero, J.D.M., Martinez-Sober, M., Magdalena, B., Jose, R., Serrano, L.:
Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods,
and Techniques. IGI Global (2009)

26. Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimization and Intelligence: Advances
and Applications. IGI Global (2010)

27. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE
Control Syst. Magaz. 22(3), 52–67. IEEE (2002)

28. Veeramachaneni, K., Osadciw, L.A., Varshney, P.K.: An adaptive multimodal biometric
management algorithm. IEEE Trans. Syst. Man Cybern. C. Appl. Rev. 35(3), 344–356. IEEE
(2005)

29. Veeramachaneni, K., Peram, T., Mohan, C.K., Osadciw, L.A.: Optimization using particle
swarms with near neighbor interactions. In: Genetic and Evolutionary Computation Confer-
ence, pp. 110–121. Springer (2003)

30. Wu, S., Lei, X., Tian, J.: Clustering PPI network based on functional flow model through
artificial bee colony algorithm. In: 7th International Conference on Natural Computation, vol.
1, pp. 92–96. IEEE (2011)

31. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving
single-objective, discrete, and multi-objective problems. Neural Comput. & Applic. 27,
1053–1073 (2016)

32. Jevtić, A., Andina, D.: Swarm intelligence and its applications in swarm robotics. In: 6th
WSEAS International Conference on Computational Intelligence, Man-Machine Systems and
Cybernetics, pp. 41–46 (2007)

33. Shi, Y.: Feature article on particle swarm optimization. IEEE Neural Netw. Soc., 8–13 (2004)

	Chapter 1: An Overview of Swarm Intelligence-Based Algorithms
	1 Introduction
	2 Characteristics of SI-Based Algorithms
	3 Particle Swarm Optimization Algorithm
	Pseudocode of PSO
	Minimizing Rosenbrock Function Using PSO

	4 Artificial Bee Colony Algorithm
	Minimizing Schwefel´s Function Using Artificial Bee Colony Algorithm

	5 Comparative Analysis Using Fixed Iteration Test
	6 Conclusion
	References

