
Women in Engineering and Science

Dipti Singh
Vanita Garg
Kusum Deep Editors

Design and
Applications
of Nature Inspired
Optimization
Contribution of Women Leaders in
the Field

Women in Engineering and Science

Series Editor

Jill S. Tietjen, Greenwood Village, CO, USA

The Springer Women in Engineering and Science series highlights women’s accom-
plishments in these critical fields. The foundational volume in the series provides a
broad overview of women’s multi-faceted contributions to engineering over the last
century. Each subsequent volume is dedicated to illuminating women’s research and
achievements in key, targeted areas of contemporary engineering and science
endeavors.The goal for the series is to raise awareness of the pivotal work women
are undertaking in areas of keen importance to our global community.

Dipti Singh • Vanita Garg • Kusum Deep
Editors

Design and Applications
of Nature Inspired
Optimization
Contribution of Women Leaders in the Field

Editors
Dipti Singh
Department of Applied Mathematics
Gautam Buddha University
Greater Noida, India

Vanita Garg
School of Basic and Applied
Sciences, Galgotias University
Greater Noida, India

Kusum Deep
Department of Mathematics
Indian Institute of Technology Roorkee
Roorkee, India

ISSN 2509-6427 ISSN 2509-6435 (electronic)
Women in Engineering and Science
ISBN 978-3-031-17928-0 ISBN 978-3-031-17929-7 (eBook)
https://doi.org/10.1007/978-3-031-17929-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-17929-7

Preface

Nature-inspired optimization techniques are not only useful but also needed for
solving open-ended problems. Understanding nature-inspired techniques and their
importance for solving real life problems can open many directions for researchers
and academicians.

The main objective of this book is to include the related work about nature-
inspired optimization techniques and their applications.

This book is an attempt to promote women in the field of science and engineering.
Women contributing to the field of technology play a vital role in the overall
sustained society.

This book also includes a survey of the nature-inspired techniques. Besides the
survey, it gives the recent advances in the field of nature-inspired algorithms for
solving real-life problems in various fields related to manufacturing, artificial intel-
ligence, finance, etc. In Chap. 1, an overview of swarm intelligence-based algo-
rithms is presented so that readers can understand the basics of nature-inspired
optimization algorithms. Chapter 2 gives an illustration of one of these swarm
algorithms in manufacturing industry problem. To prove the versatility of the
nature-inspired algorithms, the role of machine learning in bioprocess engineering
is given in Chap. 3. Chapter 4 gives the details about how a simple modification in
one of the operators of a nature-inspired algorithm can enhance the working of the
algorithm. Application of one of the nature-inspired algorithms in profit optimization
is presented in Chap. 5. Chapter 6 provides the empirical results for portfolio-
optimization problem using a recent sine cosine algorithm. Grey wolf optimizer is
another well-known stochastic technique which is used in Chap. 7 for detecting
group shilling profiles in recommender systems. Chapter 8 gives the application in
single image reflection removal. Chapter 9 attempts to use machine learning tech-
niques for social media analysis.

This book will be helpful to aquire the knowledge of nature-inspired optimization
techniques in various field of real life applications.

The vision of this book is highly achieved on the expectations of the editors,
given the quality of the contributions from the authors.

v

vi Preface

The editors would like to express their sincere gratitude to all authors, reviewers,
and Springer, without whose support the quality and standards of the book could not
have been maintained.

Greater Noida, India Dipti Singh
Greater Noida, India Vanita Garg
Roorkee, India Kusum Deep

Contents

1 An Overview of Swarm Intelligence-Based Algorithms 1
Osheen Khare, Sumaiya Ahmed, and Yograj Singh

2 Particle Swarm Optimization and Its Applications
in the Manufacturing Industry . 19
Pinkey Chauhan and Shashi Barak

3 Role of Machine Learning in Bioprocess Engineering: Current
Perspectives and Future Directions . 39
Ashutosh Singh and Barkha Singhal

4 Advanced Selection Operation for Differential Evolution
Algorithm . 55
Pravesh Kumar and Vanita Garg

5 Profit Optimization of Two-Unit Briquetting System
Using Grey Wolf Optimization Algorithm . 75
Divesh Garg and Reena Garg

6 Solving Portfolio Optimization Using Sine-Cosine Algorithm
Embedded Mutation Operations . 89
Mousumi Banerjee, Vanita Garg, and Kusum Deep

7 Detecting Group Shilling Profiles in Recommender Systems:
A Hybrid Clustering and Grey Wolf Optimizer Technique 133
Saumya Bansal and Niyati Baliyan

8 Single Image Reflection Removal Using Deep Learning 163
Sushil Kumar, Peeyush Joshi, Vanita Garg, and Hira Zaheer

vii

viii Contents

9 Social Media Analysis: A Tool for Popularity Prediction
Using Machine Learning Classifiers . 179
Sachin Goel, Monica, Harshita Khurana, and Parita Jain

Appendix . 199

Index . 203

Contributors

Sumaiya Ahmed Department of Mathematics, Lady Shri Ram College for Women,
University of Delhi, New Delhi, India

Niyati Baliyan Department of Information Technology, Indira Gandhi Delhi Tech-
nical University for Women, Delhi, India

Mousumi Banerjee Division of Mathematics, SBAS, School of Basic & Applied
Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India

Saumya Bansal Department of Information Technology, Indira Gandhi Delhi
Technical University for Women, Delhi, India

Shashi Barak Jaypee Institute of Information Technology, Noida, India

Pinkey Chauhan Jaypee Institute of Information Technology, Noida, India

Kusum Deep Division of Mathematics, SBAS, School of Basic & Applied Sci-
ences, Galgotias University, Greater Noida, Uttar Pradesh, India

Divesh Garg J.C. Bose University of Science and Technology, YMCA, Faridabad,
India

Reena Garg J.C. Bose University of Science and Technology, YMCA, Faridabad,
India

Vanita Garg Division of Mathematics, SBAS, School of Basic & Applied
Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India

Sachin Goel Department of IT, ABES Engineering College, Ghaziabad, India

Parita Jain Department of CSE, KIET Group of Institution, Ghaziabad, India

Peeyush Joshi Department of Computer Science & Engineering, National Institute
of Technology Warangal, Hanamkonda, Telangana, India

ix

x Contributors

Osheen Khare Department of Mathematics, Lady Shri Ram College for Women,
University of Delhi, New Delhi, India

Harshita Khurana Department of CSE (Data Science), ABES Engineering Col-
lege, Ghaziabad, India

Pravesh Kumar Rajkiya Engineering College Bijnor (AKTU Lucknow), Luck-
now, Uttar Pradesh, India

Sushil Kumar Department of Computer Science & Engineering, National Institute
of Technology Warangal, Hanamkonda, Telangana, India

Monica Department of IT, ABES Engineering College, Ghaziabad, India

Ashutosh Singh School of Biotechnology, Gautam Buddha University, Greater
Noida, Uttar Pradesh, India

Yograj Singh Department of Mathematics, Lady Shri Ram College for Women,
University of Delhi, New Delhi, India

Barkha Singhal School of Biotechnology, Gautam Buddha University, Greater
Noida, Uttar Pradesh, India

Hira Zaheer School of Basic and Applied Sciences, Galgotias University, Greater
Noida, Uttar Pradesh, India

Chapter 1
An Overview of Swarm Intelligence-Based
Algorithms

Osheen Khare, Sumaiya Ahmed, and Yograj Singh

1 Introduction

In the past years, mathematicians, computer scientists, and research scholars have
been increasingly engaged in researching the possibilities of emulating various
natural systems to conceptualize and develop algorithms for the purpose of optimi-
zation. Owing to this trend, a prominent class of optimization techniques, known as
nature-inspired algorithms, has emerged. The framework of such algorithms is
designed to imitate the biological processes observed in nature, such as evolution,
mutation, and societal behavior of insects, to arrive at the optimal solution. One of
the emerging fields within nature-inspired algorithms has been the swarm intelli-
gence (SI)-based algorithms. The term, swarm intelligence, introduced by G. Beni
and J. Wang in 1989 [1] has been used to refer to the branch of optimization
algorithms that models the collective behavior of animal colonies and the interac-
tions (with the environment and other members of the swarm) of the members
present in such a colony.

While the algorithms have gained widespread popularity today, they have been in
work since the late 1980s. Ant colony optimization (ACO) was the first SI algorithm
introduced byM. Dorigo and colleagues in the year 1991 to solve hard combinatorial
optimization problems [10]. After that, J. Kennedy et al. [12, 20, 24] introduced
particle swarm optimization (PSO) simulating the behavior of flocks of birds in
1995. Years later, in 2005, D. Karabago proposed the artificial bee colony algorithm
(ABC) [17] in the family of SI algorithms. Over the years, research has increased the
scope of swarm intelligence by observing and studying different groups of animals
and algorithms, such as cuckoo search (CS), firefly algorithm (FA), dragonfly
algorithm (DA) [30], and grey wolf optimizer (GWO), have emerged. The grey

O. Khare · S. Ahmed (✉) · Y. Singh
Department of Mathematics, Lady Shri Ram College for Women, University of Delhi,
New Delhi, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Singh et al. (eds.), Design and Applications of Nature Inspired Optimization,
Women in Engineering and Science, https://doi.org/10.1007/978-3-031-17929-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17929-7_1&domain=pdf
https://doi.org/10.1007/978-3-031-17929-7_1#DOI

2 O. Khare et al.

wolf optimizer is one of the algorithms which emulates the hierarchical system of an
animal group. In each pack of grey wolves, there is an alpha that dominates the pack
and a beta wolf who leads the pack in the absence of the alpha wolf. The delta and
omega wolves follow the alpha and beta wolves. The algorithm draws inspiration
from the hunting approach of a pack of grey wolves. These wolves hunt in an
efficient manner by following a routine of steps: chasing, encircling, harassing, and
attacking. This enables them to hunt bigger prey. GWO has found applications in
medical and bioinformatics, machine learning, environmental applications, and
networking applications. The developing SI-based algorithms such as the wolf
pack algorithm are gaining wide popularity due to their global convergence and
computational robustness.

The rapidly advancing swarm intelligence techniques can be applied to the
optimization of telecommunication systems and business, military operations, engi-
neering design problems, transportation systems, data mining, image segmentation,
electric machines, and so on [31, 32]. Swarm robotics is a newly emerging field that
draws inspiration from swarm intelligence. The field studies the design and interac-
tions of simple robots with each other and their environment. The goal is to develop a
collective behavior resulting from the coordination of multiple robots as a system.
Such an approach can be applied to various scenarios, such as search and rescue,
mapping, and demining.

Though there are ample instances of SI-based optimization techniques being used
to solve real-world problems in the available literature, a little amount of work has
been done with respect to conducting theoretical analysis of the algorithms to
explain how they operate. Besides mathematical analysis, research also needs to
be done in parameter tuning and parameter control to enhance the functioning of the
algorithms.

The chapter aims to conduct an elaborate survey of SI-based algorithms and is
divided into six sections. The first section gives the readers a brief introduction to
SI-based optimization methods. The second section elaborates upon the key features
and characteristics of SI-based algorithms, highlighting their advantages and limi-
tations. The third section lays out the steps for implementing PSO and demonstrates
the process by minimizing the Rosenbrock function. The fourth section details the
stages involved in the execution of ABC and presents how the computational
technique can be employed to minimize the Schwefel’s function. The fifth subsec-
tion illustrates how the algorithms can be compared using the fixed iteration test. The
last section summarizes the paper and presents the concluding remarks along with
the further scope of the study.

2 Characteristics of SI-Based Algorithms

The swarm individuals show relatively simple intellectual abilities, but they are able
to survive by using social interactions and certain behavioral patterns. These social
interactions can either take place directly or indirectly. Direct interactions are

1 An Overview of Swarm Intelligence-Based Algorithms 3

through audio or visual signals, such as the communication between birds of a flock.
High-quality vision enables them to search for a food source and pass information
related to it to the rest of the swarm. Indirect interactions are known as stigmergy,
meaning communication through the environment, such as the pheromone trails of
ants. Such a phenomenon occurs when a member of the colony reacts to the changes
in the environment introduced by the other member.

Two of the notable characteristics of SI-based algorithms are division of labor and
self-organization. To ensure proper division of labor, the entire colony is split into
various groups, and each group is assigned a specialized task. Such a strategy results
in a more structured and intensive exploration and exploitation of the search space.
Self-organization indicates that the interactions among the members of the swarm
take place on the basis of purely local information, fluctuations, and positive and
negative feedback.

Over the years, SI algorithms have undergone continuous development, and
hence, there has been a boom in the research exhibiting the rapid evolution of
SI-based algorithms and successful implementation of SI algorithms to real-world
optimization problems. Besides operations research [25], vast and diverse domains,
such as machine learning [24], bioinformatics, medical informatics [8], business, and
finance, have also started using computational modelling of swarms. SI algorithms
are widely applied in problems of function optimization, optimal route and sched-
uling problems, engineering and structural optimization problems, data, and image
analysis [13, 23]. Thus, they are considered to be one of the most promising
optimization techniques owing to their following characteristics:

1. Scalability: SI algorithms are scalable in the sense that they can be applied to
groups with a sufficient number of individuals to thousands of individuals. In
other words, SI algorithms are independent of swarm size, as long as the size of
the swarm isn’t very small [3].

2. Adaptability: Owing to their inherent auto-configuration and self-organization
abilities, SI algorithms are able to facilitate the swift adaptation of an individual to
the variations in the environment on run-time.

3. Collective robustness: A single minor failure in a system can cause the failure of
the entire system. In SI algorithms, such a risk is reduced as there is no single
individual which is essential to the functioning of the colony. This makes SI
algorithms highly robust with high fault tolerance [11].

4. Individual simplicity: SI algorithms comprises individuals who have rather sim-
ple and limited abilities of their own. However, change in the behavior of an
individual level is sufficient to bring change in collective organized group
behavior.

While SI algorithms can solve optimization problems with large data, compared
to the other classes of nature-inspired optimization, they are still at an early stage of
research. SI algorithms have certain demerits, such as:

1. Time-critical applications: SI algorithms are useful when it comes to solving non-
time-critical problems with numerous repetitions of the same activity. Since SI

�

þ

4 O. Khare et al.

algorithms do have predefined and preprogrammed pathways to solutions, they
are not suitable for time-critical applications, such as nuclear reactor temperature
controllers.

2. Parameter tuning: This is one of the biggest drawbacks of SI algorithms. Most of
the parameters involved in SI algorithms are dependent upon the problem; hence,
they are either empirically selected using the trial and error method or adaptively
adjusted on run-time [5].

3. Stagnation: SI algorithms exhibit a lack of central coordination; hence, they often
suffer from stagnation or premature convergence to local optimum. However, the
limitation can be overcome with better parameter tuning.

3 Particle Swarm Optimization Algorithm

PSO is a nature-inspired metaheuristic optimization algorithm that imitates the social
behavior of a flock of birds. This population-based technique makes use of a set of
flying particles that are birds with velocities. When a flock of birds moves in search
of food, each bird adjusts its position according to its own historical performance as
well as the flock’s historical performance, which makes the flock move toward the
most promising areas in the search space. Similarly, the particles in PSO dynami-
cally adjust their position in order to reach the optimal solution efficiently [26, 33].

This experience sharing ability of a swarm makes PSO a rather efficient and
successful algorithm for optimization. The algorithm begins with initializing
n random particles with a certain position and velocity in the search space. At each
iteration, in order to calculate the fitness of each of these particles, the objective
function value is evaluated at their current position, and the personal best (pbest) and
the global best (gbest) are identified. Then, the particle updates its velocity to imitate
the gbest and pbest particles by moving closer to them. The formula for updating the
velocity and position is, respectively, given by:

vnþ1 = w � vnð Þ þ c1 � r1 � xpbest - xn
� �� �þ c2 � r2 � xgbest - xn

� ��

xnþ1 = vnþ1 xn

where

• vn+1 denotes the velocity of the successive particle.
• xn+1 denotes the position of the successive particle.
• xn denotes the particle’s current position.
• xpbest denotes the historically personal best position of the particle.
• xgbest denotes the position of the global best particle of the swarm.
• w denotes the given inertia factor, which controls the exploration capabilities of

the algorithm. It strikes a balance between the global and local search.
• r1and r2 are random numbers uniformly generated within the range [0,1].

1 An Overview of Swarm Intelligence-Based Algorithms 5

• c1and c2 are positive parameters called the cognitive and social parameters
respectively. These parameters control the movement of the particle relative to
its personal experience and the experience of the swarm [9]. The value of c1 and
c2 can greatly affect the algorithm by biassing the particle’s position towards
pbest or gbest:

– If c1 > c2, then the search behavior is biased toward the pbest.
– If c1 < c2, then the search behavior is biased toward the gbest.
– When high values of c1 and c2 are selected, then the particle’s new positions

are generated in distant regions of the search space, leading to a better global
exploration, but it might lead to divergence of the particles.

– When small values of c1 and c2 are selected, then the particle’s new positions
are generated close by as a result of limited movement, leading to a refined
local search.

Before an iteration ends, the index of the swarm’s gbest particle is updated in case
the position of any particle in the swarm turns out to be better than the current
position of the swarm’s gbest particle. This iterative process is terminated when the
stopping criterion is met, i.e., the maximum number of iterations is completed or a
good enough fitness value is attained, or the algorithm has been giving the same
result for a number of consecutive iterations. The fitness value of the gbest particle at
the end of the process is taken as the optimized function value.

Pseudocode of PSO

1. Initialize the swarm of n random particles with arbitrary positions and velocity in
the search space.

2. Define the bounds (lb, ub), inertia factor (w), cognitive and social parameters (c1,
c2), and maximum number of iterations to be executed.

3. Calculate the objective function value for each particle at their current position.
4. Update the particle’s best position (xpbest).
5. Identify the swarm’s global best particle and update its position as xgbest.
6. Update the velocity and position of the particle accordingly.
7. Repeat steps 3–6 until the particles converge to an optimal solution or the

stopping criteria is met.

Minimizing Rosenbrock Function Using PSO

The implementation of PSO can be exhibited on a number of test functions. One
such test function is Rosenbrock function, also known as the banana function. The
function has a global minimum in a narrow parabolic valley at (1,1) with f(x) = 0.

i

) 0

6 O. Khare et al.

45000
100=(x12-x2)2+(1-x1)2

40000
35000
30000
25000
20000
15000
10000
5000

�4

�4

�3

�3
�2

�2�1 �10
0

x1

x2
1

1

2

2

3

3

4

4

0

z

Fig. 1.1 Plotting Rosenbrock function using Maxima

Table 1.1 Optimal values
obtained for variables by PSO

Variables Optimal values

x1 1

x2 1

f(x1, x2

Table 1.2 Values observed
for different parameters during
the execution of PSO

Parameters Values

Best value 0

Worst value 4.8625

Mean 0.09602

Standard deviation 0.1635896857

While obtaining this global optimum is easy, the algorithms often get stuck to the
local optimum; hence, it is used to assess the efficiency of optimization algorithms.

The general Rosenbrock function is given as:

f xð Þ=
Xd- 1

i= 1

100 xiþ1 - x2i
� �2 þ xi - 1ð Þ2

h

Here, we will implement PSO on a two-dimensional Rosenbrock function given as:

F= 100 x21 - x2
� �2 þ 1- x1ð Þ2 where- 2:048≤ x1, x2 ≤ 2:048:

The plot of the function can be observed in Fig. 1.1.
The algorithm was executed for 10 runs with 200 iterations. The number of

iterations were fixed after observing the behavior and convergence rate of PSO.
The results obtained while minimizing the Rosenbrock function using PSO can be
summarized by Tables 1.1 and 1.2, and Fig. 1.2:

1 An Overview of Swarm Intelligence-Based Algorithms 7

0.0000
50 100

No. of iterations

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
es

Plotting best mean values over 10 runs with 200 iterations

150 200

0.2500

0.5000

0.7500

1.0000

1.2500

Fig. 1.2 Evolution of best mean results by PSO over 10 runs with 200 iterations

It can be observed that PSO has attained 0 as the best value. Thus, the algorithm
has been successful in minimizing the function to the lowest value that can be
achieved. The worst value and statistical measures, such as mean and standard
deviation, are taken into account while assessing the performance of the algorithm
as they indicate the stability and convergence of the solutions. If an algorithm attains
a mean closer to the optimal value, a lower value for the worst objective function
value and standard deviation, it indicates that the method was efficient and suitable
as it was able to generate appropriately lower values (in case of a minimization
problem) on sufficiently large numbers of iterations.

Figure 1.3 displays code snippets for executing PSO algorithm in MATLAB.

4 Artificial Bee Colony Algorithm

ABC is one of the most widely used SI-based optimization methods, which has been
successfully applied to solve diverse complex numerical problems. The framework
of the algorithm designed to emulate the foraging behavior of honeybees was first
proposed by Karaboga in 2005 [15].

In ABC, the colony of bees is composed of three categories, i.e., employed,
onlooker bees, and scout bees [18]. Employed bees find and exploit a particular food
source. Here, the food source represents a feasible solution within the search space.
Every employed bee produces a modification and assesses the nectar amount of a
specific food source, i.e., fitness of the solution. After evaluating the quality of the
food source, they pass this information to other bees in the hive. Onlooker bees, on
receiving information related to the position, directions, and the quality of the food

f

8 O. Khare et al.

Fig. 1.3 Implementing PSO using MATLAB

sources, select a food source based on a probability proportional to its fitness value.
After a food source has been completely exhausted, it is abandoned, and the
employed bee associated with that particular food source becomes a scout bee,
which randomly chooses a new food source to exploit. Thus, it can be concluded
that, while onlooker and employed bees perform the job of exploitation, scout bees
ensure that the entire global region is intensively searched for an optimal solution.

To understand the method in-depth, we would now have a closer look at the three
stages of the algorithm:

1. Employed Bees Phase: The process is initialized by generating random food
source positions or feasible solutions within the search space. The parameters
of the algorithms such as the swarm size, number of food sources, and limit are
also defined. Each employed bee is assigned a particular food source to exploit.
To examine the quality of the food source, the objective value function
corresponding to the source/solution is calculated. The fitness values (fiti) o
the food sources are then derived using the following formula with the help of the
objective function values (fi) [16]:

if f i ≥ 0,then fiti =
1

1þ f i

if < 0, then = 1þ j j

1 An Overview of Swarm Intelligence-Based Algorithms 9

f i fiti f i

The employed bees alter the positions of the food sources to produce new solutions
(Xnew) by arbitrarily selecting a partner solution (Xp) and modifying a random
variable (jth variable) of the initial solution (X) with the help of the given formula:

Xj
new =Xj þ rand - 1, 1ð Þ � Xj -Xj

p

� �

The bees then implement greedy selection to discard the less suitable solutions. After
retaining the richer food sources, the employed bees disseminate information
concerning the quality of the food sources among the onlooker bees.

2. Onlooker Bees Phase: The onlooker bees, on the basis of the information
received from the employed bees about the fitness of the solutions (8n = 1,
2,, SN), select a particular food source according to the probability (pi)
value assigned to it with the help of the given formula:

pi =
fitiPSN
n= 1fitn

This ensures selection of better food sources. After choosing a food source to exploit,
onlooker bees produce a modification in the food position, similar to the one carried
by the employed bees. To determine which food sources to retain and which to
abandon, the onlooker bees execute the greedy selection. At the end of the stage, the
best solution obtained in the ongoing iteration is stored.

3. Scout Bees Phase: If the position of a particular food source hasn’t been
modified or if a solution hasn’t been improved for a predetermined number of
iterations/cycles (represented by the limit parameter), the food source is aban-
doned. The employed bee associated with the food source becomes a scout bee,
which undertakes the random generation of new solutions to be exploited in the
next iteration.

The same iterative process is continued till the loop is terminated and the stopping
criterion is met, i.e., when the desired accuracy is attained, or a number of iterations
get completed.

Minimizing Schwefel’s Function Using Artificial Bee Colony
Algorithm

aTo examine the efficiency and utility of ABC, the algorithm has been implemented
to minimize the rotated hyper-ellipsoid function, which is popularly known as the

10 O. Khare et al.

Schwefel’s function. The benchmark function is continuous, convex, and unimodal
in nature and produces rotated hyper-ellipsoids when plotted. The function has been
defined as:

f xð Þ=
Xn
i= 1

Xn
j= 1

X2
j

The search area is usually restricted to -65.536 ≤ xi ≤ 65.536 for i = 1, . . ., n. The
function attains its global minima, f(x) = 0, at xi = 0 for i = 1, . . ., n.

The algorithm has been executed to minimize the function in a two-dimensional
space, where it takes the form of f(x) = (x1)

2 + ((x1)
2 + (x2)

2).
The plot of the function can be observed in Fig. 1.4.
Tables 1.3 and 1.4, and Fig. 1.5 summarize the observations and results attained

while minimizing Schwefel’s function using ABC over 10 runs with 200 iterations:
It can be observed that the best value obtained by ABC while minimizing the

function is 0. Thus, the algorithm has been successful in minimizing the function to
the lowest value that can be achieved.

Figure 1.6 provides a glimpse into how MATLAB can be programmed to
implement ABC.

Fig. 1.4 Plotting Schwefel’s function using Maxima

) 0

1 An Overview of Swarm Intelligence-Based Algorithms 11

Table 1.3 Optimal values
obtained for variables by ABC

Variables Optimal values

x1 0

x2 0

f(x1, x2

Table 1.4 Values observed
for different parameters during
the execution of ABC

Parameters Values

Best value 0

Worst value 2.22184299

Mean 0.007044136895

Standard deviation 0.08366737868

Fig. 1.5 Evolution of best mean results by ABC over 10 runs with 200 iterations

5 Comparative Analysis Using Fixed Iteration Test

The section lays out the framework to compare the performances of the algorithm
using the fixed iteration test, wherein the results obtained over a specified no. of
iterations and runs are analyzed to determine which algorithm performs better than
its counterpart.

To establish a comparison between PSO and ABC algorithms, a fixed iteration
test was conducted, wherein both SI-based computational methods were executed to
minimize the axis parallel hyper-ellipsoid function. It is a continuous, convex, and
unimodal function with a global minimum and no other local minima.

The general formulation of the function is given by:

12 O. Khare et al.

Fig. 1.6 Implementing ABC using MATLAB

1 An Overview of Swarm Intelligence-Based Algorithms 13

f xð Þ=
Xd
i= 1

ix2i

Here, we will be implementing the two algorithms on a two-dimensional sum
squares function given by:

f xð Þ= x21 þ 2x22

The function attains the minimum value of 0 at (0,0). Figure 1.7 shows the plot of the
function.

The performances of the algorithm were evaluated and compared on the basis of
the best and worst objective function value achieved and statistical parameters such
as mean and standard deviation. With respect to optimization problems involving
minimization of the given objective function value, the algorithm attaining a lower
best objective function value and a higher worst objective function value is consid-
ered better. While mean reflects the average value achieved in an iteration, standard
deviation measures the variability and dispersion of the dataset around the mean.
These statistical parameters give an insight into the efficiency of the search processes
employed in the algorithm. A mean closer to the optimal value with a lower standard
deviation value indicates that the algorithm has higher convergence rates as it has
been successful in producing lower objective functions close to the optimal value on
a greater number of iterations.

Fig. 1.7 Plotting axis parallel hyper-ellipsoid function using Maxima

14 O. Khare et al.

Table 1.5 Comparison between performances of ABC and PSO

Parameters of comparison PSO ABC

Best value 0 0

Worst value 0.02119116 0.6271

Mean 0.000229697115 0.0015

Standard deviation 0.001051627142 0.01923517001

Fig. 1.8 Comparing best objective function values attained over 30 runs with 200 iterations

From Table 1.5 and Fig. 1.8, it can be concluded that PSO performs better than
ABC while optimizing, and the given function as a higher worst value is achieved in
case of ABC when compared to PSO. The mean calculated in the case of PSO is
closer to the optimal value than ABC, which also obtains a greater value for standard
deviation.

To further assess the suitability of the systems with respect to solving the
minimization problem, the best variable values computed at each iteration were
also compared.

By analyzing the results obtained for individual variables with respect to the
predetermined parameters from Tables 1.6 and 1.7, Figs. 1.9 and 1.10, it can be
deduced that PSO obtains better results in comparison to ABC. Thus, PSO is a more
robust and efficient optimization tool than ABC for minimizing the sum squares
function.

1 An Overview of Swarm Intelligence-Based Algorithms 15

Table 1.6 Comparison between performances of ABC and PSO for x1

Parameters of comparison PSO ABC

Best value 0 0

Worst value 0.1258 0.4663

Mean 0.000613 0.000642

Standard deviation 0.01077988038 0.01921224285

Table 1.7 Comparison between performances of ABC and PSO for x2

Parameters of comparison PSO ABC

Best value 0 0

Worst value -0.0986 0.5517

Mean -0.0001 0.0003

Standard deviation 0.007526091968 0.02382160177

Fig. 1.9 Comparing best x1 values attained over 30 runs with 200 iterations

6 Conclusion

The chapter offers a thorough overview of SI-based algorithms by highlighting its
key features and points of merit and demerits and detailing and demonstrating the
stages involved in implementing PSO and ABC to optimize unconstrained problems.
The chapter also provides the readers with a blueprint for comparing algorithms by
laying out the steps and requirements involved in conducting fixed interaction tests.

It is worth noting that both the algorithms attained an accurate optimal solution
with their original structure, but their full potential can be unlocked only when
necessary, and modifications are made to their structure. Hybridization of ABC with
an evolutionary framework, stochastic methods, or deterministic methods can make

16 O. Khare et al.

Fig. 1.10 Comparing best x2 values attained over 30 runs with 200 iterations

the algorithm more efficient in the search process and allow parallel processing for
time-saving. In order to improve the convergence rate of ABC, modifications in the
production of new neighbor can be proposed. The search pool can be diversified with
new strategies in the scout production phase. New selection strategies can also
enhance the performance of ABC. On the other hand, hybridization of PSO with
an evolutionary algorithm like genetic algorithm (GA) where the population of one
algorithm is used as the initial population for the other one, instead of random
population generation, produced finer results [28]. Adoption of new strategies of
updating the velocity and particle position can lead to an increased efficiency of
PSO. Along with this, further research can be conducted on fine parameter tuning for
both PSO and ABC, since the results of the algorithms are heavily dependent on their
parameters.

PSO and ABC have been evolving with time. The enhanced versions of the two
algorithms have found them a place in a large number of applications. They have a
huge scope in the field of neural networks [14], image and video analysis [4, 7],
bioinformatics and medical applications [27], data mining [29], and much more [19].

While PSO and ABC are the most common examples of SI optimization algo-
rithms, several other SI-based techniques of optimizations have been introduced in
the recent years such as bacterial foraging [26], cat swarm optimization [6], artificial
immune system [2], and glowworm swarm optimization [21, 22]. It should be
interesting to realize that all these algorithms take inspiration from nature and help
simulate an environment to solve real-world problems. At the same time, this very
reason makes SI algorithms relatively weaker, because there exists an inadequacy of
the theoretical analysis. The study of SI algorithms seems to be at an early stage, but
with their growing popularity, one can believe that research and depth analysis will
only improve the state of SI algorithms in the future.

1 An Overview of Swarm Intelligence-Based Algorithms 17

References

1. Ahmed, H., Glasgow, J.: Swarm Intelligence: Concepts, Models and Applications. School of
Computing, Queens University Technical Report (2012)

2. Bakhouya, M., Gaber, J.: An immune inspired-based optimization algorithm: application to the
traveling salesman problem. Adv. Model. Optim. 9(1), 105–116 (2007)

3. Bela, M., Gaber, J., El-Sayed, H., Almojel, A.: Swarm Intelligence. In: Handbook of
Bio-inspired Algorithms and Applications, CRC Computer & Information Science, vol.
7. Chapman & Hall (2006)

4. Benala, T.R., Villa, S.H., Jampala, S.D., Konathala, B.: A novel approach to image edge
enhancement using artificial bee colony optimization algorithm for Hybridized Smoothening
Filters. In: World Congress on Nature & Biologically Inspired Computing, pp. 1071–1076.
IEEE (2009

5. Bonabeau, E., Meyer, C.: Swarm intelligence: a whole new way to think about business. Harv.
Bus. Rev. 79(5), 105–115 (2001)

6. Buck, F.: Cooperative Problem Solving with a Distributed Agent System-Swarm Intelligence.
(2007)

7. Chu, S.C., Tsai, P.W., Pan, J.S.: Cat swarm optimization. In: Pacific Rim International
Conference on Artificial Intelligence, pp. 854–858. Springer (2006)

8. Das, S., Abraham, A., Konar, A.: Spatial information based image segmentation using a
modified particle swarm optimization algorithm. In: 6th International Conference on Intelligent
Systems Design and Applications, vol. 2, pp. 438–444. IEEE (2006)

9. Das, S., Abraham, A., Konar, A.: Swarm intelligence algorithms in bioinformatics. In: Com-
putational Intelligence in Bioinformatics, pp. 113–147. Springer (2008)

10. Del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.C., Harley, R.G.:
Particle swarm optimization: basic concepts, variants and applications in power systems.
IEEE Trans. Evol. Comput. 12(2), 171–195. IEEE (2008)

11. Dorigo, M.: Optimization, Learning and Natural Algorithms (1992)
12. Dorigo, M.: Editorial. Swarm Intell. J. 1(1) (2007)
13. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: MHS’95 Pro-

ceedings of the Sixth International Symposium on Micro Machine and Human Science,
pp. 39–43. IEEE (1995)

14. Engelbrecht, A.P.: Computational Intelligence: An Introduction. Wiley (2007)
15. Irani, R., Nasimi, R.: Application of artificial bee colony-based neural network in bottom hole

pressure prediction in underbalanced drilling. J. Petrol. Sci. Eng. 78(1), 6–12. Elsevier (2011)
16. Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical

report-TR06. Technical Report, Erciyes University (2005)
17. Karaboga, D., Akay, B.: Artificial bee colony algorithm for large-scale problems and engineer-

ing design optimization. J. Intell. Manuf. 23, 1001–1014 (2010)
18. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimi-

zation: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471. Springer (2007)
19. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl.

Soft Comput. 8(1), 687–697 (2008)
20. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: Artificial Bee

Colony (ABC) algorithm and applications. Artif. Intell. Rev. 42(1), 21–57. Springer (2014)
21. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of International Con-

ference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)
22. Krishnanand, K., Ghose, D.: Glowworm swarm optimization for searching higher dimensional

spaces. Innov. Swarm Intell. 61–75. Springer (2009)
23. Kulkarni, V.R., Desai, V.: ABC and PSO: a comparative analysis. In: IEEE International

Conference on Computational Intelligence and Computing Research, pp. 1–7. IEEE (2016)
24. Lim, C.P., Dehuri, S.: Innovations in Swarm Intelligence, vol. 248. Springer Science &

Business Media (2009)

18 O. Khare et al.

25. Olivas, E.S., Guerrero, J.D.M., Martinez-Sober, M., Magdalena, B., Jose, R., Serrano, L.:
Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods,
and Techniques. IGI Global (2009)

26. Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimization and Intelligence: Advances
and Applications. IGI Global (2010)

27. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE
Control Syst. Magaz. 22(3), 52–67. IEEE (2002)

28. Veeramachaneni, K., Osadciw, L.A., Varshney, P.K.: An adaptive multimodal biometric
management algorithm. IEEE Trans. Syst. Man Cybern. C. Appl. Rev. 35(3), 344–356. IEEE
(2005)

29. Veeramachaneni, K., Peram, T., Mohan, C.K., Osadciw, L.A.: Optimization using particle
swarms with near neighbor interactions. In: Genetic and Evolutionary Computation Confer-
ence, pp. 110–121. Springer (2003)

30. Wu, S., Lei, X., Tian, J.: Clustering PPI network based on functional flow model through
artificial bee colony algorithm. In: 7th International Conference on Natural Computation, vol.
1, pp. 92–96. IEEE (2011)

31. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving
single-objective, discrete, and multi-objective problems. Neural Comput. & Applic. 27,
1053–1073 (2016)

32. Jevtić, A., Andina, D.: Swarm intelligence and its applications in swarm robotics. In: 6th
WSEAS International Conference on Computational Intelligence, Man-Machine Systems and
Cybernetics, pp. 41–46 (2007)

33. Shi, Y.: Feature article on particle swarm optimization. IEEE Neural Netw. Soc., 8–13 (2004)

ð

�
þ þ

Chapter 2
Particle Swarm Optimization and Its
Applications in the Manufacturing Industry

Pinkey Chauhan and Shashi Barak

1 Introduction to Optimization

The term “optimization” entails the process of optimizing a given mathematical
function or system’s desirable properties while minimizing its undesirable charac-
teristics. In the most basic sense, the optimization process tries to determine the best
possible set of values to attain a given objective by satisfying various restrictions
called constraints.

If we consider only one objective, then the problem is mathematically formulated
as follows:

Minimize (or maximize)

f xð Þ; x= x1, x2, : . . ., xDð Þ 2:1Þ

subject to, usually defined by

F= x 2 Dj hi xð Þ= 0; andgj xð Þ≥ or≤ 0
�

i= 1,2, . . . :,m and j=m 1,m 2, . . . :,p

where f, h1, h2, . . ., hm, gm + 1, gm + 2, . . .gp are real valued functions defined onℜ
D.

The function f(x) that is to be optimized (maximized or minimized) is called the
“objective function.” The equations hi(x) = 0 for i= 1, 2, . . ., m are known as
the equality constraints, and the inequalities gj(x) ≥ or ≤ 0 for j = m+1, m+2,. . .,p
are called inequality constraints. The independent variables xi

's are called decision
variables. A decision vector x = (x1, x2, . . ., xD) 2ℜD satisfying all the constraints is

P. Chauhan (✉) · S. Barak
Jaypee Institute of Information Technology, Noida, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Singh et al. (eds.), Design and Applications of Nature Inspired Optimization,
Women in Engineering and Science, https://doi.org/10.1007/978-3-031-17929-7_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17929-7_2&domain=pdf
https://doi.org/10.1007/978-3-031-17929-7_2#DOI

Þ

20 P. Chauhan and S. Barak

called a “feasible point or solution.”A feasible optimal solution is a possible solution
that optimizes the objective function. It is intended to identify the independent
variable values x1, x2,, xD that optimize the objective function f(x) without
violating any of the constraints specified in problem (2.1)

The problem is known as a “linear programming problem (LPP)” when all of the
functions f(x), hi(x), gj(x) in the optimization problem are linear. The problem is
known as a “nonlinear optimization problem” or a “nonlinear programming problem
(NLPP)” if one or more of these functions are nonlinear. The model is termed an
“integer programming problem” if the solution adds an extra constraint that the
decision variables must be integers. The problem is known as a “mixed integer
programming problem” when some of the variables are integers and others are real.

Local and Global Optimal Solution

The solution of an optimization problem is classified by the quality of the solution.
The two types of solutions are referred to as local optima and global optima. An
optimum x (local or global) is defined as follows: Let x be a solution vector of a given
optimization problem that which satisfies all constraints. Now, let F be a set of all
such solution vectors x, called feasible/solution space. Then, for a minimization
problem, if for x 2 F , there exists an ε-neighborhood Nε xð Þ around x such that
f xð Þ ≥ f xð Þ for each x 2 F \ Nε xð Þ and then x is called a “local minimum” of the
given optimization problem. The functional value f xð Þ will be called the local
minimum value. If, however, x 2 F and f xð Þ ≥ f xð Þ for all x 2 F, then x is called
a “global minimum” of the given optimization problem. The functional value f xð
will be called the global minimum value. The local and global optima of a function
are shown in Fig. 2.1.

If the problem is linear in nature, then the local solution will also play the role of a
global optimum solution. The local optimum solution for an NLPP is guaranteed to
be the global optimal solution, if the objective function for a minimization situation
is convex and the domain of definition specified by the set of constraints is also
convex. Figure 2.1 illustrates an example of a function with local and global optima.
Figure 2.2 shows a function having a unique minimum (an example of a unimodal
function), while Fig. 2.3 shows an example of a function having several local and
global optima (multimodal function).

Algorithms that aim at determining the global solution are called global optimi-
zation algorithms. The practical necessity of global optima in real-life scenarios has
motivated researchers to develop several global search methods for solving NLPP
efficiently. Global search algorithms are categorized into two types: deterministic
and probabilistic techniques. For exhaustively searching the solution space, deter-
ministic approaches rely on a predetermined set of rules. Moreover, the solution
found by a deterministic method always depends on the starting conditions and often
be suboptimal. Probabilistic methods follow a stochastic approach to search the

2 Particle Swarm Optimization and Its Applications in the Manufacturing Industry 21

Local Minimum
Global Minimum

Global Maximum

Local
Maxima

Fig. 2.1 Local optimum and global optimum

Fig. 2.2 Visualization of a
unimodal function

5
54

43
3

x1

x2
2 2

1 1

�1

�0.5

0.5

0

feasible space thoroughly for locating global optimal solutions. The deterministic
techniques are applicable to a specific range of functions, such as differentiable or
Lipschitz continuous functions, but Stochastic methods are applicable to a much
broader range of functions. Despite the fact that probabilistic approaches do not
guarantee global optima, they are occasionally recommended over deterministic
methods due to their applicability to a broader class of functions. A detailed study
of deterministic and stochastic methods could be found in [1–6]. A taxonomy of
some global optimization methods is shown in Fig. 2.4

22 P. Chauhan and S. Barak

Fig. 2.3 Visualization of a
multimodal function

0x2

x1

1
0

10

20

30

40

50

�1 �1
�0.5

0.5
1

0

Nature-Inspired Algorithms

Nature-inspired computing is a new computer paradigm that is based on self-
organization and complex systems principles. Techniques that simulate an existing
natural process to discover an optimum solution to a problem that seems to be
resistant to conventional methods are known as nature-inspired optimization algo-
rithms. The behavior or working of biological systems have been inspiring meta-
heuristic search algorithms since its inception, for example, genetic algorithms [7],
ant colony optimization [8, 9], tabu search [10], bacterial foraging
optimization algorithm (BFOA) [11], differential evolution [12], central force opti-
mization [13, 14], artificial bee colony optimization [15], glowworm swarm optimi-
zation [16], and particle swarm optimization [17]. The abovementioned methods
have the advantage of being able to successfully address a variety of standard or
application-based problems without any prior knowledge of the problem space.
Furthermore, these algorithms are more capable of finding a problem’s global
optima. The scope of this chapter is limited to particle swarm optimization (PSO),
which is considered an efficient, simple, and popular nature-inspired optimization
approach. PSO is a swarm intelligence method, which is inspired by the behavior of
fish schools and bird flocks for solving global optimization problems. The next
section will present a detailed description of the simulation and parameters of PSO.

2 Particle Swarm Optimization

Particle swarm optimization (PSO) belongs to the category of swarm intelligence
techniques, inspired from the well-informed social behavior of organisms. The
foraging process of swarm analogies, such as bird flocks and fish schools, is
simulated by PSO. This concept was firstly proposed as an efficient heuristic
technique by Kennedy and Eberhart in 1995 [17]. The benefits of using PSO include

2 Particle Swarm Optimization and Its Applications in the Manufacturing Industry 23

Deterministic Methods

State Space
Search

Monte Carlo Algorithms

Soft Computing

Evolutionary
Computation(EC)

Evolutionary
Algorithms(EA)

Genetic
Algorithms(GA)

Evolutionary
Programming(EP)

Evolutionary
Strategies(ES)

Genetic
Programming(GP)

Differential
Evolution(DE)

Glow Swarm
Optimization

Particle Swarm
Optimization(PSO)

Artificial Bee
Colony

Optimization(ABC)

Ant Colony
Optimization

(ACO)

Swarm
Intelligence(SI)

Harmonic
Search(HS)

Memetic
Algorithms

Computational
Intelligence(CI)

Artificial Intelligence
(AI)

Learning Classifier
System(LCS)

(Stochastic)
Hill climbing

Random
optimization

Simulated
Annealing

Tabu Search
(TS)

Parallel
Tempering

Stochastic
Tunneling

Direct Monte Carlo
Sampling

Algebraic
Geomerty

Branch and
Bound

Probabilistic Methods

Global Search Methods

Fig. 2.4 Taxonomy of global optimization methods

fast convergence to the global optimum, a simple to implement code, as well as a
complex computation-free environment. The searching process in PSO has better
global searching capability at the start of the run and good local searching capability
near the end. PSO is an efficient global optimizer that has gained great attention from
academics since its inception. Because it is an efficient global optimizer, it may be
viewed as an alternative to genetic algorithms (GA) and other evolutionary algo-
rithms (EAs). PSO is an excellent option for dealing with a wide range of problems
appearing in biology, economics, engineering, industry, and other real-world
domains due to its simple and effective searching technique.

�

24 P. Chauhan and S. Barak

How PSO Works

For a D-dimensional search space, the ith particle of the swarm at time step t is
represented by a D-dimensional vector, xti = xti1, x

t
i2, . . . , x

t
iD

� �T
. The velocity

of this particle at time step t is represented by another D-dimensional vector,
vti = vti1, v

t
i2, . . . , v

t
iD

� �T
. The previously best visited position of the ith particle at

time step t is denoted as pti = pti1, p
t
i2, . . . , p

t
iD

� �T
. This is also called the personal

best position or pbest.
The velocity of the ith particle is updated using the velocity update equation,

given by

vtþ1
id =w�vtid þ c1r1 ptid - xtid

� �þ c2r2 ptgd - xtid

� �
ð2:2Þ

Here “g” is the index of the best particle in the swarm, and Pgd represents the best
particle, i.e., the particle having the best fitness value. This is also called gbest, i.e.,
the global best.

The position updating rule is given below

xtþ1
id = xtid þ vtþ1

id ð2:3Þ

where d = 1, 2. . .,D represents the dimension and i = 1, 2,. . .,S represents the
particle index. S is the size of the swarm, and c1 and c2 are called cognitive and
social acceleration constants, respectively, and constitute the parameters that have to
be fine-tuned for the PSO to achieve convergence. r1 and r2 are uniform random
numbers in the range [0, 1] and used to randomize the acceleration constants. Due to
the stochastic effect introduced by these numbers, PSO trajectories should be
considered stochastic processes. Equations (2.2) and (2.3) define the classical ver-
sion of PSO algorithm with inertia weight (w).

In the velocity update Eq. (2.2), the new velocity vtþ1
id can be seen as the sum of

three terms:

(i) Momentum: The first term w�vtid is momentum, which functions as memoriza-
tion of the particle’s prior flight direction. This concept restricts the particle
from altering its path abruptly.

(ii) Cognitive Component: The second term c1r1 ptid - xtid
� �

, related to local search,

is proportional to the vector ptid - xtid
� �

and leads back particle to its own best
position. This factor, also known as the cognitive component of the velocity
update equation, controls the step size in the direction of the particle’s personal
best position.

(iii) Social Component: The third term c2r2 ptgd - xtid

� �
is called social component,

which is linked to the global search. This term is proportional to ptgd - xtid

�

2 Particle Swarm Optimization and Its Applications in the Manufacturing Industry 25

x2

Pgd(t)

Vid(t)

W*Vid(t)

Xid(t)

Xid(t-1)

Pid(t)

c2r2(Pgd(t)-Xid(t))

c1r1(Pid(t)-Xid(t))

Xid(t+1)

Fig. 2.5 Geometrical visualization of particle’s movement in two-dimensional space

and points to the best position in the neighborhood. This term regulates
maximum step size in the direction of global best particle.

In order to improve the resolution of the search, a constant, Vmax, is introduced
in Eberhart et al. [18] to clamp the velocities of the particles in the range [-Vmax,
Vmax]. The maximum velocity, Vmax, acts as a parameter to restrict the global
exploration ability of a particle. The movement of a particle in two-dimensional
space can be visualized geometrically in Fig. 2.5.

The PSO paradigm follows the five basic principles of swarm intelligence
[17, 19].

• Proximity principle: The proximity principle states that the population should be
able to do simple spatial and time-related calculations.

• Quality principle: The population should be able to adapt to environmental
quality variables.

• Principle of diverse response: The population should not commit its activities
along excessively narrow channels.

• Stability principle: The population’s behavior should not alter in response to
changes in the environment.

• Principle of adaptability: The population must be able to adjust its behavior mode
in response to the computational price.

The PSO’s searching process is elaborated by the algorithm given below:

26 P. Chauhan and S. Barak

Algorithm: Basic PSO
Create and Initialize a D-dimensional swarm, S

For t= 1 to the maximum bound on the number of iterations,
For i=1 to S,

For d=1 to D,
Apply the velocity update equation (2)
Update Position using equation (3)

End- for-d;
Compute fitness of updated position;
If needed, update historical information for Pi and Pg;
End-for-i;

Terminate if Pg meets problem requirements;
End-for-t;

Understanding PSO Parameters

The basic PSO has a number of parameters that should be fine-tuned to regulate the
performance of the algorithm in a desired way. These parameters are briefly defined
as follows [18, 20].

(i) Swarm Size: It refers to the number of random solutions generated initially to
start the searching process. A good and diversified initial swarm leads the
search in a better way, which may affect the performance of PSO significantly.
The swarm size is problem dependent.

(ii) Acceleration Coefficients. These parameters are designated by c1 and c2, and
they measure the stochastic impact of a particle’s personal and social experi-
ences on total velocity per iteration. With particle speed growing without
control, the influence of these settings can make the PSO more or less “respon-
sive” and possibly even unstable. Usually, c1 and c2 are taken as the following:
c1 = c2 = 2.0; c1 = 1.3, c2 = 2.8 and c1 = 2.8, c2 = 1.3.

(iii) Velocity Clamping (Vmax). The concept of velocity clamping was introduced to
limit velocities to the range [-Vmax, +Vmax] for each component of vid. The
value of parameter Vmax is carefully chosen, because it has a significant impact
on the exploration-exploitation trade-off. Vmax’s ideal value is problem-
specific, and there is no fair rule of thumb.

(iv) Inertia Weight (w): Shi and Eberhart [21] introduced it as an explicit parameter
to alter the momentum of a particle to a certain extent. The inertia weight
governs the contribution of the previous velocity so that particles do not change
their directions drastically and head toward good regions. When w>1.0, the
particle will accelerate to its maximum velocity Vmax (or -Vmax) and then
jump off the feasible space, while a value w<1.0 will force the particles to slow
down until its velocity drops to zero, resulting in localized stagnation. There-
fore, the value of w in the range [0.4, 1.0] is preferred more often.

2 Particle Swarm Optimization and Its Applications in the Manufacturing Industry 27

(a) Star Topology (b) Wheel Topology

(c) Ring Topology (d) Van-Neumann Topology

Fig. 2.6 Social networks for particle-to-particle interaction

(v) Particle’s Social Interaction: The interaction methods show how the particles
are interconnected with each other for information exchange. Some common
structures are given below and are illustrated in Fig. 2.6.

• Star Topology: The star social structure is shown in Fig. 2.6, in which all particles
are linked to each other and hence the communication occurs within the entire
swarm. In this situation, every particle is drawn to the optimal solution traced by
the entire swarm. As a result, each particle mimics the overall ideal solution. The
“gbest PSO” is the initial version of the PSO, which utilized a star network
structure. It has been observed that the gbest PSO converges more quickly than
other communication networks but is more prone to becoming stuck in local
minima. The “gbest PSO” shows better performance for problems having single
optima.

28 P. Chauhan and S. Barak

• Ring or Circle Topology: The ring social structure is shown in Fig. 2.6c. The
communication between each particle and its closest neighbors occurs within the
ring social structure. By advancing toward the neighborhood’s best solution, each
particle makes an effort to emulate its best neighbor. Due to the link between
limited number of particles, the convergence occurs more slowly as compared to
star structure, but a bigger portion of the search space is covered in this structure.
The above quality of ring social structure recommends it for multimodal prob-
lems. The first implementation of PSO using ring structure was named “lbest
PSO.”

• Wheel Topology: The wheel social structure isolates individuals living in a
neighborhood from one another. As shown in Fig. 2.6b, one particle serves as
the focal point, via which all information is transmitted. The focus particle
evaluates all of the neighbors’ performances and shifts its position toward the
best neighbor. If the focal particle’s changed position leads to improved perfor-
mance, then the entire neighborhood is informed about the improvement.

• Von Neumann or Square Topology: The von Neumann social structure, as shown
in Fig. 2.6d, has particles connected in a grid pattern.

There is no single structure that works best for all problems. It has been observed
[20] that ring topology performs better for unimodal problems and star topology
provides better results for multimodal problems. Particle indices are commonly used
to define neighborhood size.

Binary Particle Swarm Optimization

PSO was originally developed for continuous optimization problems, but it has now
been expanded to discrete and binary-valued problem spaces. Kennedy and Eberhart
[22] created the first discrete version of PSO for binary issues as a result of their
initiative. The core particle searching mechanism is the same in binary PSO as in the
continuous version, with the exception of a change in the position update equation,
which in the case of binary PSO becomes a binary number generator. To determine
whether xid, the d

th component of xi, should be evaluated as “0” or “1,” the velocity
is employed as a probability threshold. A mapping rule, from vid to a probability in
the range [0, 1] must be defined for each vid 2ℜ. This is accomplished by squashing
velocities into a range of [0, 1] using a function called “sigmoid function.” The
sigmoid function is defined by the following mathematical equation:

sigm vidð Þ= 1
1þ exp - vidð Þ ð2:4Þ

The shape of the sigmoid function resembles the shape of the letter “S” as shown
below in Fig. 2.7. The sigmoid function trajectory serves the purpose of a probability
generating function for deciding a bit (from 0 to 1 and vice versa).

2 Particle Swarm Optimization and Its Applications in the Manufacturing Industry 29

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

vid

v(
mgis

id
)

Fig. 2.7 Visualization of sigmoid function

In BPSO, the particle velocities (vid) are fed as input to the sigmoid function,
which normalizes them to be produced in the range [0, 1]. The generated values are
further employed as the probability threshold for selecting bits 0 or 1. The binary
PSO (BPSO) position update equation is now a probabilistic update equation:

xtþ1
id =

1 if U 0, 1ð Þ< sigm vtid
� �

0 otherwise

�
ð2:5Þ

where is a quasi-random number generated from a uniform distribution with values
between 0 and 1. If sigm (vid) = 0, xid will remain 0 as shown in Eq. (2.5) (for
convenience, the time scripts are dropped). This occurs when either vid <-10 or vid
> 10 [23]. To overcome this situation, it has been advised to set vid in the range
[-4, 4] and to use velocity clamping with Vmax = 4. set vid and employ velocity
clamping with Vmax = 4.

Research Developments in PSO

PSO, like several other population-based methods, faces problems while dealing
with a certain class of problems, e.g., multimodal and complex real-world problems
having a large number of decision variables. Two common drawbacks/shortcomings
detected are as follows: premature convergence, when the algorithm converges to a
solution which is not optimum; stagnation, when the algorithm shows no

30 P. Chauhan and S. Barak

improvement in the fitness value although new particles are generated. These issues
arise when the swarm enters a suboptimal state in which the algorithm is no longer
capable of producing solutions that improve to the desired accuracy. The main
reason behind the occurrence of these problems is the loss of diversity which in
turn arises due to an imbalance between exploration (exploring different parts of the
search space in order to find a good optimum) and exploitation (ability to narrow
down a search to a feasible region in order to fine-tune a potential solution). The
focus of this thesis is to develop improved PSO variants so that they can be applied
to different problems arising in process industries.

According to the literature, the modification strategies for developing improved
PSO variants may be broadly classified as:

(i) Hybridizing PSO with ideas borrowed from other heuristics or traditional
methods

(ii) Disturbing the searching process of PSO by introducing some dynamics, e.g.,
chaotic maps

(iii) Proposing new strategies for parameter selection in PSO

A brief introduction on the developments of PSO using different strategies is
presented below:

Mutation Embedded PSO Variants The idea of mutation was originally
suggested for genetic algorithms to create perturbation in the population. The
work of a mutation operator is to perturb the individuals so as to increase the
diversity of the population and to pull out the particles, which are probably stuck
in some local optimizer. Many mutation operators have been implemented in PSO so
far, including Gaussian, Cauchy, Uniform, Levy, Power, and others [24, 25], to
improve its performance and the notion reportedly provided satisfactory results.

Inertia Weight-Based PSO Variants In order to improve PSO’s performance, Shi
and Eberhart [26] added a new parameter called “inertia weight” to the original PSO,
which was designed to manage the swarm’s exploration and exploitation abilities by
weighting particle motion. In addition, Shi and Eberhart [26] empirically analyzed
the effects of inertial weight and maximum velocity on PSO performance, taking
into account various parameter settings. Early studies suggested a constant inertial
weight throughout the search, whereas later research focused on dynamic changes in
inertial weight that dynamically regulated search capabilities. The various inertial
weight approaches can be categorized as follows:

Linear Strategy: During a run, an inertia weight that decreases linearly from a
reasonably large value to a small value has more global searching capacity at
the start and more local searching ability near the finish. Several investigations
[27–29] have documented the linear method to choose inertia weight, which
depends on time.

Nonlinear Strategy: A nonlinear strategy that changes dynamically over time or
iterations, based on the performance of a swarm or particle, was tested in several

o

2 Particle Swarm Optimization and Its Applications in the Manufacturing Industry 31

experiments and shown to be superior to the linear strategy. This approach gave
better results with fewer iterations [30, 31].

Exponential Strategy: Exponential functions, which are faster and decreasing than
linear and nonlinear functions, have attracted a lot of attention as a possible
alternative for a lowering inertia weight strategy [32, 33]. The findings of the
experiments reveal that exponential techniques converged faster than linear
strategies early in the search process and produced better solutions.

Adaptive or Self-Adaptive Strategies: Choosing an inertia weight that adjusts to the
needs of the particle is seen to be a preferable alternative, and researchers have
presented a number of adaptive and self-adaptive ways for choosing an inertia
weight that considerably improves PSO performance [32, 34, 35].

Fuzzy Rules-Based Strategy: A fuzzy system-based technique for dynamically
adjusting inertia weight as developed by [36]. The input variables are the current
best performance evaluation and the current inertia weight, whereas the output
variable is the change in inertia weight. [37] developed another fuzzy-based
technique in which the inertia weight is dynamically changed using fuzzy sets
and rules.

Distribution-Based Random Adjustments: Some implementations used tactics based
on probability distribution functions, which were found to be beneficial on a
number of levels. Pant et al. [38] proposed a new Gaussian-based inertia weight
based on the absolute value of half of the Gaussian random number, as well as
discussing the likelihood of utilizing Gaussian and exponential distributions for
producing the initial swarm. When the algorithm is likely to be stuck in local
optima, Zhu et al. [39] developed a random adjustment for determining inertia
weight with an adaptive initialization technique. The modified version was then
used to solve the path planning problem for UAVs (unmanned aerial vehicles)
and produced effective results.

Chaotic Inertia Weight Strategies: Some methods [40, 41] took advantage of
dynamic systems to determine an adaptive inertia weight that would improve
swarm diversity and convergence speed of method. The strategies incorporated
chaotic terms as an additional parameter to increase randomness and, as a result,
population diversity.

Some review reports have also been published by researchers [32, 42, 43] t
analyze various existing inertia weight strategies and their performances. These
review studies are always been very helpful to researchers, when selecting an
existing strategy or proposing a new one.

Chaotic PSO Variants Chaos is a bounded unstable dynamic phenomenon in
nonlinear systems that is sensitive to initial conditions and comprises infinite
unstable periodic motions. It occurs in a deterministic nonlinear system under
deterministic conditions, despite the fact that it appears to be stochastic. Chaos
was introduced by many researchers as a disturbance term to enhance the capability
of PSO for finding global optima. Chaos was added for handling premature conver-
gence [44, 45], parameter adaptation [46], enhancing exploitation, maintaining
population diversity [47], and preventing stagnation phenomena [48]. Many

32 P. Chauhan and S. Barak

researchers [49–51] have also developed application-based variants of PSO by
adding chaos at suitable points.

Binary PSO Variants Binary PSO was introduced by Kennedy and Eberhart [22]
for handling binary and mixed integer problems. Binary PSO has the same searching
process as its continuous version, therefore, having issues of premature convergence,
and stagnation as well. To overcome the above shortcomings in binary PSO,
researchers had come up with new modifications intending to improve the perfor-
mance of binary PSO. Basic binary PSO uses sigmoid function for generating binary
numbers. Some researchers have employed other functions as linear probability
function [52], Boolean function [53], and bit change mutation [54, 55]. The sigmoid
function is substituted by the Gompertz function in the study by [56], which has
characteristics of both sigmoid and linear functions. The computational results
shows that the novel approach is efficient over binary PSO and turns out as an
efficient and handy algorithm for solving binary-valued problems.

Binary PSO has been extended in a number of studies [57–59] to solve integer or
combinatorial optimization problems that arise in a variety of sectors, including
science, engineering, and industry.

3 Application of PSO Manufacturing Industry

Large-scale, high-dimensional, nonlinear, and extremely unpredictable nature are all
characteristics of industrial problems. Complex optimization problems are fre-
quently solved using traditional methods such as “trial and error.” Due to intrinsic
limitations in describing and exploiting the available problem information, these
methods frequently produce suboptimal results. In addition, the exploration of
design space is restricted. Nature-inspired optimization approaches are gaining
popularity for tackling real-world issues due to its stochastic features and wider
applicability to a variety of functions (without any condition of continuity or
differentiability). These methods are capable of delivering high-quality solutions
and resolving some of the more complicated issues that arise in real-world problems.
Some examples where PSO and other have been applied to different problems
occurring in industries are given in a tabular form in Table 2.1.

4 Conclusion

The basic need in different spheres of life is seeking a better solution if possible.
Therefore, finding a global optimal solution for real-life problems is required for
exploiting available resources to its best without wasting available human resources,
money, natural resources, etc. Since most of the problems arising in various indus-
tries can be modeled as optimization problems, therefore efficient techniques are

2 Particle Swarm Optimization and Its Applications in the Manufacturing Industry 33

Table 2.1 Application of PSO in manufacturing industry

Application of PSO in product processing using machining
Production
process

Objective References and methods

Hard turning Finding optimal value of cutting speed and
feed rate, depth of

] (NSGA-II and PSO- NN);
[cut in hard turning
[60
61] (PSO); [62] PSO)

Milling Finding the optimal value of ro

49

tation
speed, feed rate, and depth of cutting

[63] (ABC, PSO, SA); [64, 65]
(PSO)

Multi-pass turn-
ing, facing, and
drilling

Finding the optimal value of cutting speed,
feed rate, and depth of cut

[66] (EC); [] (PSO)

Grinding Finding the optimal value of wheel speed,
work speed, traverse speed, in feed, dress
depth, and dressing lead

[67] (PSO, GSA, SCA); [68]
(PSO)

High-speed
machining

Finding the optimal value of bonding
wear, feed per tooth, and axial depth of cut

[69] (PSO), [70] (PSO-BP neu-
ral network), [71] (PSO)

Drilling Finding optimal value of Cutting speed,
feed rate, and cutting environment

[72] (PSO); [73] (PSO)

Multi-pass
turning

Finding the optimal value of cutting speed,
feed rate, and depth of cut

[74] (PSO); [75] (PSO); [49]
(Chaotic PSO)

Application of PSO in the paper industry
Problem Objective References and methods
Paper making
process

Minimizing energy cost and production
rate with constrained environment. Opti-
mizing paper making process

[76] (Advanced GA) [77]
(Advanced GA); [78]
(Advanced GA)

Paper making
process

Minimizing trim loss and production cost [79] (2007) (SA-PSO), [34, 80]
(PSO)

Application of PSO in the production industry
Problem Objective References and methods
Scheduling Optimal scheduling of polymer batch

plants; scheduling of complex products
with multiple resource constraints and
deep product structure; optimal power
generation to short-term hydrothermal
scheduling; multi-objective job-shop
scheduling; trust worthy workflow sched-
uling in a large-scale grid with rich service
resources; optimal generation schedule of
the real operated cascaded hydroelectric
system

[81] (PSO); [82] (PSO); [83]
(Fuzzy PSO); [84] (Rotary
PSO); [85] (PSO)

Production
planning

Optimal production planning to meet time-
varying stochastic demand; optimizing the
cost of the filter, filters loss, the total
demand distortion of harmonic currents,
and total harmonic distortion of voltages at
each bus simultaneously; assembly
sequence planning of complex products;
production and distribution planning of a
multi-echelon unbalanced supply chain

[86] (SQP-PSO); [87] (CPSO);
[88] (PSO)

34 P. Chauhan and S. Barak

needed to deal with these problems irrespective of their mathematical nature. The
present study starts with a general introduction of optimization and then leads to the
introduction of PSO along with its parameters, some developments, and applications
in the manufacturing industry. The manufacturing industry focuses on optimizing
the production processes which further benefits it in different aspects, such as
increasing profits and minimizing costs/waste material. As the field is very wide,
the present study covers a brief review of optimization problems arising in various
industries with the aim of paving a path for implementing PSO and other nature-
inspired techniques in the concerned field.

The current study is making an effort of offering research direction in the process
industry using nature-inspired algorithms. The review highlights processes, objec-
tives, process parameters, and implemented algorithms. The objectives of this
chapter in brief are:

(i) To discuss the scope of particle swarm optimization algorithms for obtaining
the global optimal solution of continuous as well as binary optimization
problems

(ii) Developments in PSO over the decades
(iii) To provide information on various industrial processes along with objectives

and parameters

References

1. Rao, S.S.: Engineering Optimization Theory and Practice, 4th edn. Wiley, Hoboken (2009)
2. Taha, H.A.: Operations Research: An Introduction, 10th ed. University of Arkansas, Fayette-

ville. Global Edition published by Pearson Education, England (2017)
3. Mohan, C., Deep, K.: Optimization Techniques. New Age (2009)
4. Ravindran, A., Phillips, D.T., Solberg, J.J.: Operations Research: Principles and Practice, 2nd

edn. Wiley, Hoboken (2009)
5. Deb, K.: Optimization for Engineering Design: Algorithms and Examples, 2nd edn. Prentice-

Hall of India Private Limited, New Delhi (1995)
6. Himmelblau, D.M.: Applied Nonlinear Programming. McGraw-Hill, New York (1972)
7. Holland, J.H.: Adaptation in Natural and Artificial System. The University of Michigan Press,

Ann Arbor (1975)
8. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: Pro-

ceedings of European Conference on Artificial Life (ECAL-91). Elsevier Publishing, Amster-
dam (1991)

9. Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: An Autocatalytic Optimizing Process,
Technical Report TR91-016, Politecnico di Milano (1991)

10. Glover, F., Kochenberger, G.A.: Critical event tabu search for multidimensional knapsack
problem. In: Osman, I.H., Kelly, J.P. (eds.) Meta-Heuristics: Theory and Applications,
pp. 407–427. Kluwer Academic Publishers, New York (1996)

11. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE
Control. Syst. Mag. 52–67 (2002)

12. Storn, R., Price, K.: Differential Evolution – A Simple and Efficient Adaptive Scheme for
Global Optimization over Continuous Spaces, Technical Report TR-95-012, Berkeley (1995)

13. Formato, R.: Central force optimization: a new nature inspired computational framework for
multidimensional search and optimization. In: Nature Inspired Cooperative Strategies for

2 Particle Swarm Optimization and Its Applications in the Manufacturing Industry 35

Optimization (NICSO-2007), Italy, Series: Studies in Computational Intelligence, Springer, vol.
129, pp. 221–238 (2008)

14. Formato, R.: Central force optimization: a new deterministic gradient-like optimization
metaheuristic. OPSEARCH. 46(1), 25–51 (2009)

15. Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical
Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department
(2005)

16. Krishnanand, K.N., Ghose, D.: Glowworm swarm based optimization algorithm for multimodal
functions with collective robotics applications. Multiagent Grid Syst. 2(3), 209–222 (2006)

17. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International
Conference Neural Networks, vol. 4, pp. 1942–1948 (1995)

18. Eberhart, R.C., Simpson, P.K., Dobbins, R.W.: Computational Intelligence PC Tools, 1st edn.
Academic Press Professional, Boston (1996)

19. Clerc, M.: Think Locally, Act Locally: The Way of Life of Cheap-PSO, An Adaptive PSO,
Technical Report (2001)

20. Engelbrecht, A.P.: Computational intelligence: An introduction. John Wiley and Sons, Ltd
(2007)

21. Shi., Y., Eberhart, R. C.: Parameter selection in particle swarm optimization. In: Proceedings of
the Seventh Annual Conference on Evolutionary Programming, New York, pp. 591–600 (1998)

22. Kennedy, J.,Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: IEEE
International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and
Simulation, vol. 5, pp. 4104–4108 (1997)

23. Bergh, F., Engelbrecht, A.: A study of particle swarm optimization particle trajectories. Inform.
Sci. 176, 937–971 (2006). https://doi.org/10.1016/j.ins.2005.02.003

24. Pant, M., Thangaraj, R., Abraham, A.: Particle swarm optimization using adaptive mutation. In:
Proceedings of 19th International Workshop on Database and Expert Systems Application
(DEXA-2008), pp. 519–523 (2008)

25. Pant, M., Thangraj, R., Singh, V.P., Abraham, A.: Particle swarm optimization using sobol
mutation. In: Proceedings of International Conference on Emerging Trends in Engineering and
Technology, India, pp. 367–372 (2008)

26. Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Proceedings of the
Congress on Evolutionary Computation (CEC-1999), vol. 3, pp. 1945–1950 (1999)

27. Ratnaweera, A., Halgamuge, S., Watson, H.: Particle swarm optimization with self-adaptive
acceleration coefficients. In: Proceedings of the First International Conference on Fuzzy
Systems and Knowledge Discovery, pp. 264–268 (2003)

28. Suganthan, P.N.: Particle swarm optimiser with neighbourhood operator. In: Proceedings of the
IEEE Congress on Evolutionary Computation, pp. 1958–1962 (1999)

29. Yoshida, H., Fukuyama, Y., Takayama, S., Nakanishi, Y.: A particle swarm optimization for
reactive power and voltage control in electric power systems considering voltage security
assessment. In: Proceedings of IEEE International Conference on Systems, Man, and Cyber-
netics, vol. 6, pp. 497–502 (1999)

30. Peram, T., Veeramachaneni, K., Mohan, C.K.: Fitness-distance-ratio based particle swarm
optimization. In: Proceedings of IEEE Swarm Intelligence Symposium, pp. 174–181 (2003)

31. Venter, G., Sobieszczanski-Sobieski, J.: Multidisciplinary optimization of a transport aircraft
wing using particle swarm optimization. Struct. Multidiscip. Optim. 26(1–2), 121–131 (2003)

32. Chauhan, P., Deep, K., Pant, M.: Novel inertia weight strategies for particle swarm optimiza-
tion. Memetic Comput. 5, 229–251 (2013)

33. Chen, G., Huang, X., Jia, J., Min, Z.: Natural exponential Inertia weight strategy in particle
Swarm Optimization. In: Proceedings of 6th World Congress on Intelligent Control,
pp. 3672–3675 (2006)

34. Deep, K., Chauhan, P., Pant, M.: New hybrid discrete PSO for solving non convex trim loss
problem. Int. J. Appl. Evol. Comput. (IJAEC). 3(2), 19–41 (2012)

https://doi.org/10.1016/j.ins.2005.02.003

36 P. Chauhan and S. Barak

35. Deep, K., Arya, M., Bansal, J.C.: A non-deterministic adaptive inertia weight in PSO. In:
Proceedings of 13th Annual Conference on Genetic and Evolutionary Computation (GECCO-
2011), ACM, New York, pp. 1155–1162 (2011)

36. Shi, Y. Eberhart, R.C., Fuzzy adaptive particle swarm optimization. In: Proceedings of IEEE
Congress on Evolutionary Computation, vol. 1, pp. 101–106 (2001)

37. Liu, C., Ouyang, C., Zhu, P., Tang, W.: An adaptive fuzzy weight PSO algorithm. In: Pro-
ceedings of Fourth International conference on Genetic and Evolutionary Computing, pp. 8–10
(2010)

38. Pant, M., Thangraj, R., Singh, V.P., Particle swarm optimization using Gaussian inertia
weight. In: Proceedings of International Conference on Computational Intelligence and Multi-
media Applications, vol. 1, pp. 97–102 (2007)

39. Zhu, H., Zheng, C., Hu, X., Li, X.: Adaptive PSO using random inertia weight and its
application in UAV path planning. In: Proceedings of Seventh International Symposium on
Instrumentation and Control Technology: Measurement Theory and Systems and Aeronautical
Equipment (SPIE), 7128, pp. 1–5 (2008)

40. Chen, J.Y., Shen, J.J.: Structure learning of Bayesian network using a chaos-based PSO. Adv.
Mater. Res. 2292–2295 (2012)

41. Feng, Y., Yao, Y.M., Wang, A.: Comparing with chaotic inertia weights in particle swarm
optimization. In: Proceedings of International Conference on Machine Learning and Cybernet-
ics, pp. 329–333 (2007)

42. Bansal, J.C., Singh, P.K., Saraswat, M., Verma, A., Jadon, S.S., Abraham, A.: Inertia weight
strategies in particle swarm optimization. In: Proceedings of Third World Congress on Nature
and Biologically Inspired Computing (NaBIC-2011), pp. 633–640 (2011)

43. Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: A novel particle swarm optimization algo-
rithm with adaptive inertia weight. Appl. Soft Comput. 11(4), 3658–3670 (2011)

44. Deep, K., Chauhan, P., Pant, M.: Totally disturbed chaotic Particle Swarm Optimization. In:
2012 IEEE Congress on Evolutionary Computation, pp. 1–8 (2012)

45. Xie, X., Zhang, W., Yang, Z.: A dissipative particle swarm optimization. In: Proceedings of
IEEE Congress on Evolutionary Computation (CEC-2002), pp. 1456–1461 (2002)

46. Alatas, B., Akin, E., Ozer, A.B.: Chaos embedded particle swarm optimization algorithms.
Chaos, Solitons Fractals. 40(4), 1715–1734 (2009)

47. Liu, B., Wang, L., Jin, Y.H., Tang, F., Huang, D.X.: Improved particle swarm optimization
combined with chaos. Chaos, Solitons Fractals. 25(5), 1261–1271 (2005)

48. He, Q., Han, C.: An improved particle swarm optimization algorithm with disturbance term.
ICIC. 3, 100–108 (2006)

49. Chauhan, P., Pant, M., Deep, K.: Parameter optimization of multi-pass turning using chaotic
PSO. Int. J. Mach. Learn. Cybern. 6, 319–337 (2015)

50. Li, C., Zhou, J., Kou, P., Xiao, J.: A novel chaotic particle swarm optimization based fuzzy
clustering algorithm. Neurocomputing 83, 98–109 (2012)

51. Mukhopadhyay, S., Banerjee, S.: Global optimization of an optical chaotic system by chaotic
multi swarm particle swarm optimization. Expert Syst. Appl. 39(1), 917–924 (2012)

52. Deep, K., Bansal, J.C.: A modified binary particle swarm optimization for knapsack problems.
Appl. Math. Comput. 218(22), 11042–11061 (2012)

53. Marandi, A., Afshinmanesh, F., Shahabadi, M., Bahrami, F.: Boolean particle swarm optimi-
zation and its application to the design of a dual-band dual-polarized planar antenna. In:
Proceedings of IEEE Congress on Evolutionary Computation (CEC-2006), pp. 3212–3218
(2006)

54. Singh, Y., Chauhan, P.: New mutation embedded generalized binary PSO. In: Sathiyamoorthy,
S., Caroline, B., Jayanthi, J. (eds.) Emerging Trends in Science, 2012, Engineering and
Technology Lecture Notes in Mechanical Engineering, pp. 705–715. Springer, New Delhi
(2012)

2 Particle Swarm Optimization and Its Applications in the Manufacturing Industry 37

55. Lee, S., Park, H., Jeon, M.: Binary Particle swarm optimization with bit change mutation. In:
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,
E90-A:10, pp. 2253–2256 (2007)

56. Chauhan, P., Pant, M., Deep, K.: Novel binary PSO for continuous global optimization
problems. In: Proceedings of the International Conference on Soft Computing for Problem
Solving (SocProS 2011) December 20–22, p. 130 (2011)

57. Deep, K., Chauhan, P., Pant, M.: Multi task selection including part mix, tool allocation and
process plans in CNC machining centers using new binary PSO. In: 2012 IEEE Congress on
Evolutionary Computation, pp. 1–8 (2012)

58. Chauhan, P., Pant, M., Deep, K.: Gompertz PSO variants for Knapsack and Multi-Knapsack
problems. Appl. Math. J. Chin. Univ. 36, 611–630 (2021)

59. Unler, A., Murat, A.: A discrete particle swarm optimization method for feature selection in
binary classification problems’. Eur. J. Oper. Res. 206(3), 528–539 (2010)

60. Bouacha, K., Terrab, A.: Hard turning behavior improvement using NSGA-II and PSO-NN
hybrid model. Int. J. Adv. Manuf. Technol. 86, 3527–3546 (2016)

61. Omkar, M., Chinchanikar, S., Gadge, M.: Multi-performance optimization in hard turning of
AISI 4340 steel using particle swarm optimization technique. Mater. Today Proc. 5(11 Part 3),
24652–24663 (2018)

62. Mishra, R.R., Kumar, R., Panda, A., Pandey, A., Sahoo, A.K.: Particle swarm optimization of
multi-responses in hard turning of D2 steel. In: Das, H., Pattnaik, P., Rautaray, S., Li,
K.C. (eds.) Progress in Computing, Analytics and Networking. Advances in Intelligent Systems
and Computing, vol. 1119. Springer, Singapore (2020)

63. Rao, R.V., Pawar, P.J.: Parameter optimization of a multi-pass milling process using
non-traditional optimization algorithms’. Appl. Soft Comput. 10(2), 445–456 (2010)

64. Bahirje, S., Potdar, V.: Review paper on implementation of particle swarm optimization for
multi-pass milling operation. Int. J. Eng. Res. Technol. (IJERT). 9(9), 237–239 (2020)

65. Farahnakian, M., Razfar, M.R., Moghri, M., Asadnia, M.: The selection of milling parameters
by the PSO-based neural network modeling method. Int. J. Adv. Manuf. Technol. 1–12 (2011)

66. Sankar, R.S., Asokan, P., Saravanan, R., Kumanan, S., Prabhaharan, G.: Selection of machining
parameters for constrained machining problem using evolutionary computation. Int. J. Adv.
Manuf. Technol. 32(9–10), 892–901 (2007)

67. Shin, T., Adam, A., Abidin, A.: A comparative study of PSO, GSA and SCA in parameters
optimization of surface grinding process. Bull. Electr. Eng. Inf. 8(3), 1117–1127 (2019)

68. Pawar, P.J., Rao, R.V., Davim, J.P.: Multiobjective optimization of grinding process parameters
using particle swarm optimization algorithm. Mater. Manuf. Process. 25(6), 424–431 (2010)

69. Abbas, A.T., Sharma, N., Anwar, S., Hashmi, F.H., Jamil, M., Hegab, H.: Towards optimization
of surface roughness and productivity aspects during high-speed machining of Ti–6Al–4V.
Materials. 12(22), 3749 (2019)

70. Zheng, J.X., Zhang, M.J., Meng, Q.X.: Tool cutting force modeling in high speed milling using
PSO-BP neural network. In: Key Engineering Materials, vol. 375, pp. 515–519. Trans Tech
Publications, Ltd. (2008)

71. Cus, F., Zuperl, U., Gecevska, V.: High speed end-milling optimisation using Particle Swarm
Intelligence. J. Achieve. Mater. Manuf. Eng. 22(2), 75–78 (2007)

72. Kumar, S.M.G., Jayaraj, D., Kishan, A.R.: PSO based tuning of a PID controller for a high
performance drilling machine. Int. J. Comput. Appl. 1(19), 12–18 (2010)

73. Gaitonde, V.N., Karnik, S.R.: Minimizing burr size in drilling using artificial neural network
(ANN)-particle swarm optimization (PSO) approach. J. Intell. Manuf. 23, 1783–1793 (2012)

74. Bharathi, R.S., Baskar, N.: Particle swarm optimization technique for determining optimal
machining parameters of different work piece materials in turning operation. Int. J. Adv.
Manuf. Technol. 54(5–8), 445–463 (2011)

75. Yusup, N., Zain, A.M., Hashim, S.Z.M.: Overview of PSO for optimizing process parameters of
machining. Proc. Eng. 29, 914–923 (2012)

38 P. Chauhan and S. Barak

76. Santos, A., Dourado, A.: Global optimization of energy and production in process industries: a
genetic algorithm application. Control. Eng. Pract. 7, 549–554 (1999)

77. Wang, H., Borairi, M., Roberts, J.C., Xiao, H.: Modelling of a paper making process via genetic
neural networks and first principle approaches. In: Proceedings of the IEEE International
Conference on Intelligent Processing Systems, ICIPS, Beijing, pp. 584–588 (1997)

78. Borairi, M., Wang, H., Roberts, J.C.: Dynamic modelling of a paper making process based on
bilinear system modelling and genetic neural networks. In: Proceedings of UKACC Interna-
tional Conference on Control, pp. 1277–1282 (1998)

79. Xianjun, S., Li, Y., Zheng, B., Dai, Z.: General particle swarm optimization based on simulated
annealing for multi-specification one-dimensional cutting stock problem. In: Computational
Intelligence and Security. Springer-Verlag Berlin, Heidelberg, LNAI, pp. 67–76 (2007)

80. Deep, K., Chauhan, P., Bansal, J.C.: Solving nonconvex trim loss problem using an efficient
hybrid Particle Swarm Optimization. In: World Congress on Nature & Biologically Inspired
Computing (NaBIC), pp. 1608–1611 (2009)

81. Hota, P.K., Barisal, A.K., Chakrabarti, R.: An improved PSO technique for short-term optimal
hydrothermal scheduling. Electr. Power Syst. Res. 79(7), 1047–1053 (2009)

82. Sha, D.Y., Lin, H.-H.: A multi-objective PSO for job-shop scheduling problems. Expert Syst.
Appl. 37(2), 1065–1070 (2010)

83. Liu, H., Abraham, A., Hassanien, A.E.: Scheduling jobs on computational grids using fuzzy
particle swarm algorithm. Futur. Gener. Comput. Syst. 26, 1336–1343 (2010)

84. Tao, Q., Chang, H., Yi, Y., Gu, C., Li, W.: A rotary chaotic PSO algorithm for trustworthy
scheduling of a grid workflow. Comput. Oper. Res. 38(5), 824–836 (2008)

85. Mahor, A., Rangnekar, S.: Short term generation scheduling of cascaded hydro electric system
using novel self adaptive inertia weight PSO. Int. J. Electr. Power Energy Syst. 34(1), 1–9
(2012)

86. Chang, Y.P.: Integration of SQP and PSO for optimal planning of harmonic filters. Expert Syst.
Appl. 37(3), 2522–2530 (2010)

87. Wang, Y., Liu, J.H.: Chaotic particle swarm optimization for assembly sequence planning.
Robot. Comput. Integr. Manuf. 26(2), 212–222 (2010)

88. Che, Z.H.: A particle swarm optimization algorithm for solving unbalanced supply chain
planning problems. Appl. Soft Comput. 12(4), 1279–1287 (2012)

Chapter 3
Role of Machine Learning in Bioprocess
Engineering: Current Perspectives
and Future Directions

Ashutosh Singh and Barkha Singhal

Abbreviations

AAD Absolute average deviation
ANN Artificial neural network
CNN Convolutional neural networks
CT Classification tress
DLAB Deep learning for antibodies
GBSA Generalized Born surface area
HER2 Human epidermal growth factor receptor 2
Kcat Catalytic turnover number
Mabs Monoclonal antibodies
ML Machine learning
MM Molecular mechanic
NIR Near-infrared spectroscopy
RF Random forest
RMSE Root mean squared error
SAX Symbolic aggregate approximation
SCM Set covering machine
SG Spatial graph
SSF Simultaneous saccharification and fermentation
SVM Support vector machine

A. Singh · B. Singhal (✉)
School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
e-mail: barkha@gbu.ac.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Singh et al. (eds.), Design and Applications of Nature Inspired Optimization,
Women in Engineering and Science, https://doi.org/10.1007/978-3-031-17929-7_3

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17929-7_3&domain=pdf
https://orcid.org/0000-0003-0538-662X
mailto:barkha@gbu.ac.in
https://doi.org/10.1007/978-3-031-17929-7_3#DOI

40 A. Singh and B. Singhal

1 Introduction

The stupendous stride to achieve economic and environmental sustainability accel-
erates the rising demand for bioproducts [1]. The harnessing of bioproducts requires
the understanding of holistic development of biological processes from raw mate-
rials to synthesis and purification of bioproducts and valorization of biowaste to
make value-added products at an industrial scale [2, 3]. Therefore, for accomplishing
at such height process, engineering principles integrating with natural sciences, such
as physics, chemistry, biology with chemical, and system engineering, are playing a
pivotal role in translating biological knowledge into making products of commercial
importance. Bioprocess engineering is the thrust area that needs to be updated with
technological innovations, though the past decade has envisaged significant devel-
opments in formulating extensive mechanistic and physiochemical empirical models
for simulating the growth pattern of microbial biomass and product formation,
calculating the fermented broth rheological parameters and dynamics for bioreactor
scale-up, optimization of bioseparation unit designs, synthesis of new enzymes
proteins, and analysis of metabolic flux ([4, 5]. However, the complexity of the
biological system still posits certain inherent challenges that need to be addressed for
industrial purposes [6].

As the fourth industrial revolution industry 4.0 has already gained momentum,
there is a dire need for digitalization and inculcation of advanced process analytics
and computational biology tools for accelerating the arena of bioprocess engineer-
ing. Currently, the paradigmatic shift from physical modeling to data-driven model-
ing using machine learning approaches contributed to the voluminous data
generation in the bioindustry arena [7]. The elucidation of complex biological
relationships in data form demonstrated great potential for the bioprocess research
community and engineers to “scale up” as well as “scale down” the bioprocess for
explicit commercial use. The arena of bioprocess engineering is quite vast consti-
tuting various branches from research and development to biomanufacturing
consisting of metabolic engineering, bioreaction engineering, protein engineering,
synthetic biology, biomaterials, and biocatalysis. The applications of ML are
represented in Fig. 3.1. Currently, various ML algorithms have been utilized to
circumvent the biological complexities during bioprocess optimization; thus, the
accelerating pace of machine learning is invoking a renaissance in this area
[8]. Therefore, the present chapter advocates various embodiments of machine
learning applications in the bioprocess engineering sector and also predicate current
challenges and future prospects. The technology is still evolving; therefore, this
chapter doesn’t cover the comprehensive aspects, but various dimensions of ML
approaches has been described through various case studies of bioprocess
engineering.

3 Role of Machine Learning in Bioprocess Engineering: Current. . . 41

Fig. 3.1 Applications of machine learning is the arena of bioprocess engineering

2 Approaches of Machine Learning in Bioprocess
Engineering

Bioprocess engineering is the application of interdisciplinary field to commercialize
the bioproduct from lab to industry. The process seems to be quite heterogenous due
to the complex requirement of living cells and their prevailed diversity. The com-
mercialization of product various process parameters ingredients and their compo-
sition as well as interactions plays pivotal role. There are numerous challenges
associated with mathematical modeling and simulations due to multi-parametric
nature of biological data. Therefore, applications of ML methods have shown
promising potential in tackling complex problems of bio-production at large scale.
ML algorithms are categorized into four different learning categories, namely,
supervised learning, unsupervised learning, semi-supervised learning, and reinforce-
ment learning. This classification is based on configuration of various data set based
on different problems on which ML algorithm will develop mathematical correlation
to build a model followed by the solution of the defined problem. With rising
technological advancements computational tools generate voluminous data of bio-
logical origin therefore past decade has seen massive growth of various algorithms of
ML in the arena of development and manufacturing of bioproducts. The contribution
of various ML algorithms in the arena of bioproduct development has been summa-
rized in Fig. 3.2.

42 A. Singh and B. Singhal

Supervised learning Unsupervised learning Hybrid approach

ANN
1.50% 1.50%

2.50%
7.50%

43.50%

3% 2%
5%

6.20%

4%

2.70%

7.70%

11%

19%

35%

5.50%

6.50%

6.90%

8.60%

36%

12%

SVM/SVR

RF

GP

kNN

MR

PLS

PCR

PCA

GMM
k-means
clustering
Support vector
data descript ion
Hierarchical
clustering
Fuzzy logic

Fig. 3.2 Statistical coverage of various machine learning algorithms in bioprocess engineering

3 Why Machine Learning Strategies Are Needed
in Bioprocess Engineering

The essence of bioprocess engineering is the scale-up of cellular factories for the
overproduction of commercial metabolites. The scale-up is a multistep method
commencing the fermentation and optimization of cells from bench scale
(~250 mL–5 L) to pilot scale (~20–200 L) to industrial-scale processes
(>1000 L). The fermentation of cells at a larger scale is considered to be a complex
and multi-parametric process, in which different process variables, such as pH,
temperature, aeration rate, media composition, mixing regime, fermentation time,
and feed rate, is affecting the cell growth, product formation, and host cell physiol-
ogy. Therefore, at industrial scale, the fermentation process is unpredictable; there-
fore, the central task of scale-up is to fine-tune all these process variables to perform
the stable and robust production of desired bioproducts, because the slight change in
any process variables confers significant impact on the overall productivity of cells
[9, 10]. Thus, scale-up is a time-consuming and costly process; therefore, the
industry needs advanced computational scientific methods for accelerating the
fermentation process in bioreactors beyond the classical methods. The advent of
automation, sensors for controlling, and monitoring the process parameters, com-
prehensive data collection, and archiving revolutionize the modern fermentation
process [11]. Therefore, these huge data can be leveraged for various machine
learning algorithms for better prediction, finding the bioprocess failure points, and
improving the process outcomes in lieu of better product yield. However, the main
bottlenecks of bioprocess data constituting heterogeneity in terms of collection of
both online pH, oxygen uptake rate, dissolved oxygen, optical (cell) density, flow
rate, off-gas production, etc.) and offline data (various metabolite concentrations,
substrate consumption rates). Apart from that, certain data are binary or categorical

3 Role of Machine Learning in Bioprocess Engineering: Current. . . 43

(ON/OFF nutrient feed setting), and some data such as the concentration of product
has been collected at the final time point. The high variability in data sets with
respect to fermentation time and fermentation runs necessitates the preprocessing of
data for extracting temporal trends for training into machine learning premises
[12, 13].

The research studies reported various preprocessing methods, such as wavelet
decomposition methods [14], mean envelope filter methods, vector casting method
[15], and Fourier transform and symbolic aggregate approximation (SAX) method,
that represents temporal data profile as representative segments for the analysis
through machine learning approaches [16]. Initially, decision trees, ANN, and
genetic algorithm-based ML were applied for fermentative modeling and identifica-
tion of optimum input variables by analyzing the data of 69 fed-batch fermentation
for predicting the process output, including product concentration, biomass density,
and volumetric productivity [17]. Similarly, ANN-based modeling followed by
optimization through a genetic algorithm was reported for the production of xylitol.
The predictive models for xylose consumption, biomass concentration, and xylitol
production were based on analyzing the data of 27 fermentation batches with
multiple inputs, and the product titer was enhanced from 59.4 to 65.7 g/L
[18]. More recently, the advancement in bioreactor designing enables the generation
of continuous online data that is being used for the optimum control and optimiza-
tion of bioprocess by reinforcement learning. However, this method suffered the
limitation of being built on fixed models while requiring continuous updates and
improvement with respect to surplus data generation in automated fermentation
systems [19]. Therefore, to improvise model-free reinforcement, learning methods
have been developed and successfully applied for controlling final ethanol titers
during yeast fermentations. Moreover, these methods have been instrumental in
controlling coculture species biomass abundances, controlling reactor temperatures
[20], optimizing product yields [21], and optimizing a downstream product separa-
tion unit [22]. However, the requirement of a large amount of data limits its wider
utilization, but there is still a scope of improvement by seeing the marvelous
credentials of ML approaches [23]. Thus, despite current challenges, the data of
various fermentation systems gives an appealing opportunity to develop various ML
algorithms for finding the most appropriate process conditions.

4 Applications of Machine Learning in Bioprocess
Engineering (Case Studies)

Approaches of Machine Learning in Biorefinery: A Case Study

The rising demand of environmental pollution, reduction in fossil fuels, and increas-
ing ecosystem resilience paved the way for finding various avenues for renewable
energy sources. Among various sources, lignocellulosic biomass is offering the most

44 A. Singh and B. Singhal

promising feedstock for the development of the bioenergy paradigm. Though
bioethanol and biodiesel are the most preferentially utilized product from the
lignocellulosic biomass, the compositional variability among various biomass
sources offers a diverse array of products that leads to the conception of multiproduct
biorefinery [24]. The major operational bottleneck of the biorefinery is the natural
heterogeneity and spatial variability of biomass. Recently, machine learning and data
analytics has been envisaged as a prospective tool for predicting this biomass
variability and easing the way of standardization of biomass properties that leads
to the consistency in the biorefining process. Though advanced sophisticated ana-
lytical techniques, such as rapid near-infrared (NIR) spectroscopy and hyperspectral
imaging, have been used for predicting the chemical composition of the biomass and
its conversion performances, these techniques are unable to correlate a large amount
of data and higher complexity of biomass [25]. Thus, a machine learning framework
based on an ANN has been recently implied for correlating biomass chemical
composition and their conversion performances and finding a correlation of physical
properties of tissue powders along with handling and grinding performances [26]. It
is envisioned that the predictive models will be used to produce conversion ready
and highly flowable feedstock and provide decision centric view to researchers and
multiple stakeholders. More recently, machine learning approaches, such as random
forest, artificial neural networks (ANNs), and classification trees (CTs), have been
used for alleviating one of the critical bottlenecks for bioethanol production that is
enzymatic hydrolysis. The simultaneous saccharification and fermentation (SSF)
process posit a prominent and feasible strategy for reducing the capital cost for the
production of bioethanol from lignocellulosic biomass [29].

Thus, ML approaches have been used for visualizing the effects of time, temper-
ature, inoculum size, and biomass on bioethanol fermentation in SSF.

ANN Based Model
An ANN-based model is used for predicting the yield of bioethanol by implementing
three layers of data sets and finding optimum conditions using R software and
AMORE library (http://cran.r-project.org/web/packages/AMORE/). The coefficient
of determination (R) [2], reduction of root mean squared error (RMSE), and absolute
average deviation (AAD) have been calculated by Eqs. (3.1), (3.2), and (3.3),
respectively.

R2 = 1-

Pn
i= 1 Ycalc

i - Y exp
i

� �2

Pn

i= 1
Ycalc
i - Ym

� �2
, ð3:1Þ

RMSE=
1
n

Xn

i= 1

Ycalc
i - Y exp

i

� �2
" #1

2

=
ffiffiffiffiffiffiffiffiffiffi
MSE

p
, ð3:2Þ

http://cran.r-project.org/web/packages/AMORE/

3 Role of Machine Learning in Bioprocess Engineering: Current. . . 45

AAD=
1
n

X
jY

calc
i - Ycalc

i

Ycalc
i

j, ð3:3Þ

where n= number of points, Yi
calc= predicted value, Yi

exp= experimental value, Ym
= average value of all experimental data, and MSE = mean square error.

Based on these equations, the optimal ethanol concentration and the optimal
ethanol conversion value were found that lead to the determination of optimal
volumetric productivity of ethanol by Eq. (3.4) [27],

Ij =

P jWih
jmjP
jWih

kmj
:jWhO

mnj
PP jWih

kmjP
jWih

kmj
:jWhO

mnj
, ð3:4Þ

where Ij= relative importance of jth input variable on the ethanol conc.; Ni and Nh=
number of input and hidden neurons, respectively; Ws = connection weights; sub-
scripts i, h, and O refer to input, hidden, and output layers, respectively; and
subscripts k, m, and n represent input, hidden, and output neurons, respectively.

Random Forest Model
This model has been used for predicting the effects of variables in SSF using the
library of R language [28]. A total of 1000 RFs comprising different numbers of trees
and variables in each of the branches has been assessed. The assessment of the
optimal RF model was performed using two rando data sets having 2/3 for training
and 1/3 for test, and the values of R[2], RMSE, and AAD have been calculated [29].

Classification Tress-Based Model
This model has been used for making decisions based on the entropy of the process.
The current study includes the C5.0 script that has been used by utilizing the default
library of R (http://cran.r-project.org/web/packages/C50/) for predicting the concen-
tration of ethanol [29].

Thus, by the above discussion, it has been clearly seen that ML methodologies
have tremendous potential to evaluate the various process parameters for bioethanol
production without prior knowledge of kinetics and inhibition process. An overview
of applications of ML approaches in biorefinery sector has been represented in
Fig. 3.3. Thus, in the futuristic scenario, more comprehensive studies have been
warranted for overcoming the various technical gaps for the commercialization of
biorefineries.

http://cran.r-project.org/web/packages/C50/

46 A. Singh and B. Singhal

Fig. 3.3 An overview of applications of machine learning approaches in biorefinery

Approaches of Machine Learning in Monoclonal Antibody
Production: A Case Study

The past decade has seen a stupendous ride in the production of biotherapeutics,
more preferably monoclonal antibodies, for the treatment of a variety of chronic
disorders like cancers and autoimmune and inflammatory diseases [30]. This con-
tinuous surge has been attributed to higher efficacy, specificity, reduced toxicity, and
less side effects conferred by monoclonal antibodies. Apart from that, the production
of monoclonal antibodies is considered to be a costly, time-consuming, and fastid-
ious endeavor due to the requirement of the high standards and stability during
production, storage, and transportation [31–34]. Due to the proteinaceous nature,
these antibodies always remain susceptible to various physical and chemical degra-
dation pathways with varied conditions encountered during the whole life cycle
[35, 36]. Thus, there is a pressing need to overcome these challenges for the
sustainable production of this important class of biotherapeutics. There are various
avenues from the design and prediction of antigen specificity of monoclonal anti-
bodies to the prediction of various liquid formulations for effective delivery of these
compounds inside the body in which various domains of machine learning have been
used. Recently, the structure-based deep learning for antibodies (DLAB) database
has been developed for virtual screening and prediction of putative binding of
antibodies against antigen as a target [37]. Based on this database, Reddy et al.
reported the prediction of antigen specificity of therapeutic antibody trastuzumab
against human epidermal growth factor receptor 2 (HER2) as an antigen. The studies
involved the screening of thousands of lead molecules by analyzing 1 × 108

3 Role of Machine Learning in Bioprocess Engineering: Current. . . 47

Fig. 3.4 Use of machine learning methods in commercial production of monoclonal antibodies

trastuzumab variants against 1 × 106 variants of HER2 based on viscosity, solubility,
clearance, and immunogenicity [38]. Similarly, more comprehensive studies related
to the determination of molecular descriptors affecting the viscosity of monoclonal
antibodies have been reported by Trout et al. A decision tree-based machine learning
framework has been used for predicting the net charge and high viscosity index of
monoclonal antibodies [39].

That studies significantly contribute for the assessment of rheological behavior
that affects the delivery of these therapeutic molecules. More recently, a Bayesian
optimization algorithm has been developed for the screening of formulations of
mAbs. The formulation comprises various excipients such as thermal stabilizers,
amino acids buffering agents, surfactants and tonicity modifiers that imparts a
significant effect on the stability of proteins and their storage [40]. Thus, this
approach of ML leads to the acceleration in the design of formulations with optimum
excipients and parallelization of operations in mAbs development. Figure 3.4 is
representing the applications of ML algorithms in monoclonal antibody
manufacturing.

Thus, based on the above discussion, it is conceivable to comprehend that ML
approaches provide a novel, innovative, and accelerated platform for the discovery,
development, and manufacturing of monoclonal antibodies and can be used for other
biotherapeutics.

48 A. Singh and B. Singhal

Approaches of Machine Learning for Antibiotic Production:
A Case Study

The serendipitous discovery of penicillin as a life-saving drug during world war has
been proved to be a cornerstone discovery in modern medicine. Then, the golden era
of antibiotics has been visualized, but their overwhelming use leads to a deadly
menace of antibiotic resistance, and it is estimated that by 2050, 10 million death per
year will occur due to drug resistance diseases [41]. The discovery of novel
antibiotics is from a natural source, which is plagued by dereplication problems
[42]. Thus, the approaches of machine learning are proving to be eye-opening
methods that have the capacity to search large amounts of data with accelerating
speed. Recently, genotype-based machine learning models, such as support vector
machine (SVM) and set covering machine (SCM), have been used as a promising
diagnostic tool to predict the resistance of commonly used antibiotics, including
tetracycline, ampicillin, sulfisoxazole, trimethoprim, and enrofloxacin, against the
whole genome of 96 isolates of Actinobacillus pleuropneumoniae [43]. Moreover,
halicin molecule was identified through the screening of 6000 chemical compounds
that not only have the potency to treat diabetes but also found to exhibit strong
activity against Mycobacterium tuberculosis and other hard-to-treat microbes
[44]. ML is not only to accelerate the discovery of novel antibiotics, but different
algorithms can be helpful for predicting the susceptibility towards antibiotics.
Figure 3.5 represents the role of ML in antibiotic discovery for finding novel
antimicrobials. Recently, the single centric study was performed to assess the eight
algorithms of ML for predicting the resistance toward antimicrobials by taking

Fig. 3.5 Applications of machine learning methods in antibiotic production

3 Role of Machine Learning in Bioprocess Engineering: Current. . . 49

demographic data from patients, gram staining, and site of infection [45]. These
studies will be helpful for clinicians in the selection of appropriate antibiotic therapy.
Thus, in the future ML holds tremendous potential to alleviate the global threat of
antibiotic resistance and is helpful in maintaining the stewardship of antibiotics.

Machine Learning in Protein Engineering: A Case Study

The continuous surge in the production of bioproducts needs sustainable
bioprocessing portfolios. The development of industrial strains requires a thorough
understanding of genome organization, cellular metabolism, and enzymes. The
overproduction of various products requires engineering of their biosynthetic path-
way and enzymes that are still unknown to the scientific community. Thus, the
development of novel biosynthetic pathways and the engineering of enzymes can
spur the overproduction of industrially important metabolites. Recently, catalytic
turnover (Kcat) of enzymes has been evaluated in E. coli through machine learning
approaches. The diverse properties of enzymes, such as structural properties, net-
work properties, assay conditions, and biochemical mechanism information, have
been considered for generating ML models. This in vivo and in vitro prediction of
Kcat will be helpful for implementing the information of genome-scale metabolic
models for correlating the expression of the proteome in E. coli. [46] Furthermore,
the scope of substrate specificity of enzymes has also been predicted with ML
models. Four machine learning models, along with molecular modeling and docking
tools, namely, support vector machines, random forest, logistic regression, and
gradient-boosted decision trees, have been developed for evaluating the substrate
specificity of bacterial nitrilases that hydrolyzed the nitrile compounds to the
corresponding carboxylic acids and ammonia. The accuracy of substrate prediction
leads to a better catalytic activity of enzymes that facilitates the overproduction of
metabolites [47]. Recently, the affinities of protein-ligand binding have been
performed with deep learning ML models, including three-dimensional (3D)-
convolutional neural networks (3D-CNNs), spatial graph neural networks
(SG-CNNs), and their fusion models. These models predicted the binding free
energies based on docking pose coordinates, docking scores, and molecular
mechanic/generalized Born surface area (MM/GBSA) calculations. [48]. An over-
view of the utilization of ML methods in the realm of protein engineering has been
summarized in Fig. 3.6. These studies will be playing a pivotal role in the drug
discovery paradigm. Thus, based on the above discussion, enzyme engineering is the
backbone in improving the bioprocess design and development and fosters the path
for sustainable biomanufacturing.

50 A. Singh and B. Singhal

Fig. 3.6 An overview of applications of machine learning methods in protein engineering

5 Current Challenges and Future Prospects

The world is moving toward digitalization and bioproduct development, and
manufacturing is no longer the exception for adoption of advanced technologies.
Though machine learning methodologies have proven their mettle in other sectors in
an efficient manner, biomanufacturing sector is still reluctant to adopt ML as the
standardized tool for the development of bioprocess. The skepticism related to
catastrophic consequences of defective products inhibited their wider adoption.
There are technological challenges such as lack of representative datasets for
development, eating, and validation of model limits their operability at commercial
scale. The uncertainty of prediction due to the multi-parametric nature of biological
data confers additional roadblock for the acceptance. The complexity of models
further limits their correlation analysis with biological process. Inspite of these
challenges, rising technological innovations in ML and computing will definitely
overcome these challenges, and it is clearly envisioned that the ML approaches hold
a bright future in upscaling the development of bioproducts through process engi-
neering approaches.

6 Conclusion

Machine learning not only transformed the scientific paradigm but also leads to a
gigantic leap in the productivity of industrial manufacturing. The digitalization
accompanied with machine learning approaches creates novel history in the

this work.

3 Role of Machine Learning in Bioprocess Engineering: Current. . . 51

biomanufacturing too. The various approaches such as unsupervised and supervised
models both are quite useful in various facets from process development to purifi-
cation of bioproducts from living cells. The present chapter entails the current
application of ML in various bioproducts and their commercial manufacturing
through process engineering principles. The chapter represents various case studies
of diversified bioproducts portfolios from high value to low value. The immersive
applications of ML proved its utility in reducing the cost and time of industry that is
considered to be a major economic consideration. The road of utilizing ML is not
smooth currently, but in future, the vision of using these concepts for bringing the
transformations in bioprocess engineering sector is certainly on horizon.

Acknowledgment The authors greatly endorsed the support of Gautam Buddha University for
writing this chapter.

Conflicts of Interest/Competing Interests Authors declare that there is no conflict of interest in

Glossary

Antibiotics It is a class of antimicrobial substances that are
used to kill infectious bacteria.

Antibiotic resistance It is the type of resistance that is developed by
microorganism against the effect of an
antibiotic.

Biomanufacturing It is a type of industrial production that utilizes
biological systems to create commercially-
important bioproducts.

Bioprocess engineering A bioprocess is any method that uses living
cells or their elements (e.g., enzymes, chloro-
plasts) to produce a product, whereas engineer-
ing is the science of coming up with complex
machines or processes.

Bioreactor It is an apparatus used to grow microorganisms
in a controlled environment.

Docking It is a tool for predicting the interaction, confor-
mation, and orientation of a ligand in binding
site of protein.

Entropy It is a measurable property that is associated
with the degree of randomness of a system.

Fermentation Fermentation is the process by which molecules
such as glucose are broken down into a simpler
substance.

Hyperspectral imaging It is a spectroscopic technique that captures and
processes an image at very large number of
wavelengths.

Monoclonal antibodies These are laboratory-made proteins that can be
used as substitutes for antibodies to enhance or
modify the immune system.

52 A. Singh and B. Singhal

Near-infrared spectroscopy It is a spectroscopic technique that deals with
the electromagnetic spectrum within the near-
infrared area (780–2500 nm).

Protein engineering It is the method of developing novel proteins
with desired properties.

Scale-up It is the process of increasing the scale of
fermentation.

Scale-down It is the process of decreasing the scale of
fermentation.

Simultaneous saccharification and fermentation It is a procedure that mixes enzymatic hydroly-
sis with fermentation to gain value-added prod-
ucts in an individual step.

Surfactants These are the chemical compounds that are used
to lower down the surface tension between two
phases.

Synthetic biology It is a multidisciplinary research area that
involves engineering of organisms for produc-
ing novel useful substances.

Tonicity It is the potential of a solution to change the
water content surrounding the cell.

Viscosity It is a measure of resistance of a fluid toward
deformation by shear stress.

References

1. Gao, S., Song, W., Guo, M.: The integral role of bioproducts in the growing bioeconomy. Ind.
Biotechnol. 16(1), 13–25 (2020)

2. Petrides, D.: Bioprocess design and economics. Bioseparat. Sci. Eng., 1–83 (2000)
3. Chavan, S., Yadav, B., Atmakuri, A., Tyagi, R.D., Wong, J.W., Drogui, P.: Bioconversion of

organic wastes into value-added products: a review. Bioresour. Technol. 344, 126398 (2022)
4. Mears, L., Stocks, S.M., Albaek, M.O., Sin, G., Gernaey, K.V.: Mechanistic fermentation

models for process design, monitoring, and control. Trends Biotechnol. 35(10), 914–924 (2017)
5. Sakthiselvan, P., Meenambiga, S.S., Madhumathi, R.: Kinetic studies on cell growth. Cell

Growth. 13 (2019)
6. Brooks, S.M., Alper, H.S.: Applications, challenges, and needs for employing synthetic biology

beyond the lab. Nat. Commun. 12(1), 1–16 (2021)
7. Montáns, F.J., Chinesta, F., Gómez-Bombarelli, R., Kutz, J.N.: Data-driven modeling and

learning in science and engineering. Comptes Rendus Mécanique. 347(11), 845–855 (2019)
8. Mowbray, M., Savage, T., Wu, C., Song, Z., Cho, B.A., Del Rio-Chanona, E.A., Zhang, D.:

Machine learning for biochemical engineering: a review. Biochem. Eng. J. 172, 108054 (2021)
9. Crater, J.S., Lievense, J.C.: Scale-up of industrial microbial processes. FEMS Microbiol. Lett.

365(13), fny138 (2018)
10. Humphrey, A.: Shake flask to fermentor: what have we learned? Biotechnol. Prog. 14(1), 3–7

(1998)
11. Carbonell, P., Radivojevic, T., Garcia Martin, H.: Opportunities at the intersection of synthetic

biology, machine learning, and automation. ACS Synth. Biol. 8(7), 1474–1477 (2019)
12. Cheung, J.Y., Stephanopoulos, G.: Representation of process trends—Part I. A formal repre-

sentation framework. Comput. Chem. Eng. 14(4–5, 495), –510 (1990a)
13. Cheung, J.Y., Stephanopoulos, G.: Representation of process trends—Part II. The problem of

scale and qualitative scaling. Comput. Chem. Eng. 14(4–5), 511–539 (1990b)

3 Role of Machine Learning in Bioprocess Engineering: Current. . . 53

14. Bakshi, B.R., Stephanopoulos, G.: Representation of process trends—III. Multiscale extraction
of trends from process data. Comput. Chem. Eng. 18(4), 267–302 (1994)

15. Gebrekidan, M.T., Knipfer, C., Braeuer, A.S.: Vector casting for noise reduction. J. Raman
Spectrosc. 51(4), 731–743 (2020)

16. Charaniya, S., Hu, W.S., Karypis, G.: Mining bioprocess data: opportunities and challenges.
Trends Biotechnol. 26(12), 690–699 (2008)

17. Coleman, M.C., Buck, K.K., Block, D.E.: An integrated approach to optimization of
Escherichia coli fermentations using historical data. Biotechnol. Bioeng. 84(3), 274–285 (2003)

18. Pappu, S.M.J., Gummadi, S.N.: Artificial neural network and regression coupled genetic
algorithm to optimize parameters for enhanced xylitol production by Debaryomyces nepalensis
in bioreactor. Biochem. Eng. J. 120, 136–145 (2017)

19. Qin, S.J., Badgwell, T.A.: MPC. 4th generation. MPC. Fig. 1 Approximate genealogy of linear
MPC algorithms. Control. Eng. Pract. 11, 733–764 (2003)

20. Xie, H., Xu, X., Li, Y., Hong, W., Shi, J.: Model predictive control guided reinforcement
learning control scheme. In: 2020 International Joint Conference on Neural Networks (IJCNN),
pp. 1–8. IEEE (2020)

21. Treloar, N.J., Fedorec, A.J., Ingalls, B., Barnes, C.P.: Deep reinforcement learning for the
control of microbial co-cultures in bioreactors. PLoS Comput. Biol. 16(4), e1007783 (2020)

22. Hwangbo, S., Sin, G.: Design of control framework based on deep reinforcement learning and
monte-carlo sampling in downstream separation. Comput. Chem. Eng. 140, 106910 (2020)

23. Shin, J., Badgwell, T.A., Liu, K.H., Lee, J.H.: Reinforcement learning–overview of recent
progress and implications for process control. Comput. Chem. Eng. 127, 282–294 (2019)

24. Ulonska, K., König, A., Klatt, M., Mitsos, A., Viell, J.: Optimization of multiproduct
biorefinery processes under consideration of biomass supply chain management and market
developments. Ind. Eng. Chem. Res. 57(20), 6980–6991 (2018)

25. Schimleck, L., Dahlen, J., Yoon, S.C., Lawrence, K.C., Jones, P.D.: Prediction of Douglas-fir
lumber properties: Comparison between a benchtop near-infrared spectrometer and
hyperspectral imaging system. Appl. Sci. 8(12), 2602 (2018)

26. Ighalo, J.O., Adeniyi, A.G., Marques, G.: Application of artificial neural networks in predicting
biomass higher heating value: an early appraisal. Energy Sources. 10(5), 933–944 (2020)

27. Garson, D.G.: Interpreting neural network connection weights. AI Expert. 6(4), 46–51 (1991)
28. Breiman, L.: Random forests. Machine learning. J. Biomed. Sci. Eng. 45(1), 5–32 (2001)
29. Fischer, J., Lopes, V.S., Cardoso, S.L., Coutinho, U., Cardoso, V.L.: Machine learning tech-

niques applied to lignocellulosic ethanol in simultaneous hydrolysis and fermentation.
Braz. J. Chem. Eng. 34, 53–63 (2017)

30. Walsh, G.: Biopharmaceutical benchmarks 2018. Nat. Biotechnol. 36(12), 1136–1145 (2018)
31. Elgundi, Z., Reslan, M., Cruz, E., Sifniotis, V., Kayser, V.: The state-of-play and future of

antibody therapeutics. Adv. Drug Deliv. Rev. 122, 2–19 (2017)
32. Chi, E.Y., Krishnan, S., Randolph, T.W., Carpenter, J.F.: Physical stability of proteins in

aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm.
Res. 20(9), 1325–1336 (2003)

33. Randolph, T.W., Carpenter, J.F.: Engineering challenges of protein formulations. AICHE
J. 53(8), 1902–1907 (2007)

34. Gentiluomo, L., Svilenov, H.L., Augustijn, D., El Bialy, I., Greco, M.L., Kulakova, A.,
Indrakumar, S., Mahapatra, S., Morales, M.M., Pohl, C., Roche, A.: Advancing therapeutic
protein discovery and development through comprehensive computational and biophysical
characterization. Mol. Pharm. 17(2), 426–440 (2019)

35. Krause, M.E., Sahin, E.: Chemical and physical instabilities in manufacturing and storage of
therapeutic proteins. Curr. Opin. Biotechnol. 60, 159–167 (2019)

36. Jiskoot, W., Randolph, T.W., Volkin, D.B., Middaugh, C.R., Schöneich, C., Winter, G., Friess,
W., Crommelin, D.J., Carpenter, J.F.: Protein instability and immunogenicity: roadblocks to
clinical application of injectable protein delivery systems for sustained release. J. Pharm. Sci.
101(3), 946–954 (2012)

54 A. Singh and B. Singhal

37. Schneider, C., Buchanan, A., Taddese, B., Deane, C.M.: DLAB: deep learning methods for
structure-based virtual screening of antibodies. Bioinformatics. 38(2), 377–383 (2022)

38. Mason, D.M., Friedensohn, S., Weber, C.R., Jordi, C., Wagner, B., Meng, S.M., Ehling, R.A.,
Bonati, L., Dahinden, J., Gainza, P., Correia, B.E.: Optimization of therapeutic antibodies by
predicting antigen specificity from antibody sequence via deep learning. Nature Biomed. Eng.
5(6), 600–612 (2021)

39. Lai, P.K., Fernando, A., Cloutier, T.K., Gokarn, Y., Zhang, J., Schwenger, W., Chari, R.,
Calero-Rubio, C., Trout, B.L.: Machine learning applied to determine the molecular descriptors
responsible for the viscosity behavior of concentrated therapeutic antibodies. Mol. Pharm.
18(3), 1167–1175 (2021)

40. Narayanan, H., Dingfelder, F., Condado Morales, I., Patel, B., Heding, K.E., Bjelke, J.R.,
Egebjerg, T., Butté, A., Sokolov, M., Lorenzen, N., Arosio, P.: Design of biopharmaceutical
formulations accelerated by machine learning. Mol. Pharm. 18(10), 3843–3853 (2021)

41. O’Neill, J.: Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Rev.
Antimicrob. Resist. 2014(4), 1–20 (2014)

42. Cox, G., Sieron, A., King, A.M., De Pascale, G., Pawlowski, A.C., Koteva, K., Wright, G.D.: A
common platform for antibiotic dereplication and adjuvant discovery. Cell Chem. Biol. 24(1),
98–109 (2017)

43. Liu, Z., Deng, D., Lu, H., Sun, J., Lv, L., Li, S., Peng, G., Ma, X., Li, J., Li, Z., Rong, T.:
Evaluation of machine learning models for predicting antimicrobial resistance of Actinobacillus
pleuropneumoniae from whole genome sequences. Front. Microbiol. 11, 48 (2020)

44. Stokes, J.M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N.M., MacNair, C.
R., French, S., Carfrae, L.A., Bloom-Ackermann, Z., Tran, V.M.: A deep learning approach to
antibiotic discovery. Cell. 180(4), 688–702 (2020)

45. Feretzakis, G., Loupelis, E., Sakagianni, A., Kalles, D., Martsoukou, M., Lada, M.,
Skarmoutsou, N., Christopoulos, C., Valakis, K., Velentza, A., Petropoulou, S.: Using machine
learning techniques to aid empirical antibiotic therapy decisions in the intensive care unit of a
general hospital in Greece. Antibiotics. 9(2), 50 (2020)

46. Heckmann, D., Lloyd, C.J., Mih, N., Ha, Y., Zielinski, D.C., Haiman, Z.B., Desouki, A.A.,
Lercher, M.J., Palsson, B.O.: Machine learning applied to enzyme turnover numbers reveals
protein structural correlates and improves metabolic models. Nat. Commun. 9(1), 1–10 (2018)

47. Mou, Z., Eakes, J., Cooper, C.J., Foster, C.M., Standaert, R.F., Podar, M., Doktycz, M.J., Parks,
J.M.: Machine learning-based prediction of enzyme substrate scope: application to bacterial
nitrilases. Proteins Struct. Funct. Bioinf. 89(3), 336–347 (2021)

48. Jones, D., Kim, H., Zhang, X., Zemla, A., Stevenson, G., Bennett, W.D., Kirshner, D., Wong, S.
E., Lightstone, F.C., Allen, J.E.: Improved protein–ligand binding affinity prediction with
structure-based deep fusion inference. J. Chem. Inf. Model. 61(4), 1583–1592 (2021)

Chapter 4
Advanced Selection Operation
for Differential Evolution Algorithm

Pravesh Kumar and Vanita Garg

1 Introduction

The term optimization refers to the process of identifying the most viable solution
and thereby reaching the extreme point of the objective functions. The goal of
identifying these optimal solutions is typically to design a problem to minimize
total cost or to maximize probable reliability, among other things. Because of the
high quality of optimal solutions, we place a high value on optimization approaches
in scientific, engineering, and business decision-making situations. We can divide
optimization approaches into two categories: classic and nontraditional methods.

Traditional methods may not be able to solve such issues due to the presence of
nonlinearity, non-continuity, non-differentiability, and many local/global optimums.

Recently, many nature-inspired and evolutionary algorithms have been created to
handle optimization challenges.

Genetic algorithms, ant colonies, particle swarm optimization, differential evolu-
tion algorithm, artificial bee colony, teaching learning-based algorithm, Jaya algo-
rithms, and firefly algorithms are some of the most common algorithms in use today.

Biogeography-based optimization algorithm also comes in the category of nature-
inspired algorithms. Garg and Deep have proposed LX-BBO in [47]. LX-BBO is
extended for solving constrained optimization problems in [49]. The same algorithm
is proposed after applying mutation strategies in [48].

Differential evolution (DE) algorithm was introduced by Storn and Price in 1997
[1]. It is a prominent, stochastic, and population-based optimization algorithm,
where the population consists of many individuals, each of which represents a
potential solution to the optimization problem. DE produces offspring solution by

P. Kumar
Rajkiya Engineering College Bijnor (AKTU Lucknow), Lucknow, Uttar Pradesh, India

V. Garg (✉)
Galgotias University, Greater Noida, Uttar Pradesh, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Singh et al. (eds.), Design and Applications of Nature Inspired Optimization,
Women in Engineering and Science, https://doi.org/10.1007/978-3-031-17929-7_4

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17929-7_4&domain=pdf
https://doi.org/10.1007/978-3-031-17929-7_4#DOI

56 P. Kumar and V. Garg

mutation, crossover, and selection operation, which are likely to be nearer to the
optimal result.

A few of the advantages that DE has over other nature-inspired algorithms are
that it is compact, has a small number of control parameters, and is easy to
implement without requiring any special knowledge. Some of its more advanced
capabilities include the capacity to handle nonlinear, discontinuous,
non-differentiable, and multi-objective functions, among other aspects. Engineers
and scientists have successfully used DE to solve a wide range of real-world
problems in the engineering and science fields. Examples include the following:
engineering design difficulties, pattern identification, power engineering, image
processing, and noise detection.

Premature convergence or evolution stagnation, which is fatal to an algorithm that
relies on population difference, is inevitable as the number of generations increases
in a population. Control settings affect DE’s performance as well [2]. In order to find
the optimal value for these control parameters for various optimization problems,
several trials must be performed.

A few of the modified variants of DE during recent years are as follows:
trigonometric mutation-based DE (TDE) [3], fuzzy adaptive DE (FADE) [4], mod-
ified differential evolution (MDE) [5], DE with random localization (DERL) [6],
self-adapting control parameter-based DE (jDE) [7], opposition-based DE (ODE)
[8], accelerating differential evolution [9], mixed mutation strategy embedded DE
[10], self-adaptive DE (SADE) [11], adaptive DE with optional external archive
(JADE) [12], DE with neighborhood mutation [13], DE with Cauchy mutation
(CDE) [14], clustering-based DE (CDE-Cai) [15], learning enhanced DE (LeDE)
[16], DE with proximity-based mutation [17], enhanced mutation strategy (MRLDE)
[18], DE with adaptive population tuning scheme [19], DE with dynamic parameters
selection [20], control parameter and mutation-based DE (CDE) [21], multiple
mutation strategies-based DE [22], multi-population-based DE [23], collective
information-based DE [24], adaptive learning mechanism-based DE [25], novel
DE for constrained [26], parameter adaptation schemes for DE (PaDE) [27], random
perturbation modified DE [28], DE with dual preferred learning mutation [29], DE
with neighborhood-based adaptive evolution mechanism [30], self-adaptive muta-
tion DE with PSO [31], parameter adaptive-based DE [32], DE with adaptive multi-
population inflationary [33], and dual-strategy-based DE (IDE) [34].

A well-prepared literature review of enhancement and applications of differential
evolution algorithm can also be found in [35–38, 46].

In this chapter, a novel modification in selection operation for DE named “DE
with advanced selection operator (DEaS)” is proposed. DEaS works in two ways:
first, it reuses the rejected trial vectors by their superiority, and second, it operates
selection operation in a single array strategy proposed by Babu and Angira in
MDE [5].

Furthermore, this newly proposed selection operation is integrated with two other
DE-enhanced variants such as DERL [6] and MRLDE [18] and named it DERLaS
and MRLDEaS, respectively. The evaluation of proposed modifications has exe-
cuted on benchmark problems as well as real-life applications. The numerical and

ð

4 Advanced Selection Operation for Differential Evolution Algorithm 57

statistical significance of proposed variants is discussed later in the chapter. Here, we
would also like to mention that this work is an extended version of our previous
studies carried out in [39, 40].

Organization of the chapter is as follows: The introduction of basic DE algorithm
is given in Sect. 2. The proposed advanced selection operation and functioning of
DERLaS and MRLDEaS are explained in Sect. 3. In Sect. 4, benchmark functions,
real-life applications, and experimental settings are given.

The results and comparison of the algorithms is given in detail in Sect. 5, and the
chapter is finally concluded in Sect. 6 with its future scope.

2 Basic Differential Evolution (DE)

In this section, the basic concept and working of differential evolution algorithm
(DE/rand/1/bin) is illustrated. DE works in four steps, such as initialization, muta-
tion, crossover, and selection operation, for which the details are presented as below:

(i) Initialization Phase: The first phase of DE algorithm is to initialize a uniform
random set of solutions called population. Here, each solution is a d-dimensional
vector also called an individual. Equation 4.1 generate the initial population
Pop= { Pi

(gen), i=1,2,...N} of d-dimensional N vectors.

P 0ð Þ
i =PLB þ rand 0, 1ð Þ× PUB -PLB½ � 4:1Þ

Here:

• rand (0, 1) is the uniform random number between 0 and 1
• PUB and PLB are the upper and lower bound, respectively, of search space.

(ii) Mutation Phase: To perform the mutation operation, three mutually separate
vectors, say Pa

(gen), Pb
(gen), and Pc

(gen,, are selected at random from Pop=
{Pi

(gen), i=1,2,...N} corresponding to a target vector Pi
gen, such that a ≠ b ≠ c

≠ i, and then a new vector Mi
gen =(m1,i, m2,i. . ., md,i), also called mutant or

perturbed vector, is generated by Eq. 4.2:

M genð Þ
i =P genð Þ

a þ SF × P genð Þ
b -P genð Þ

c

h i
ð4:2Þ

Here:

• SF is the scaling factor and use to controls the amplification of the difference
[Pb

(gen) – Pa
(gen)].

• It may have a value between [0 and 2] to as per suggested by Storn and Price.

:

:

58 P. Kumar and V. Garg

(iii) (gen)Crossover Phase: In crossover operation, a trial vector Ti =(t1,I, t2,i. . ., td,i)
is generated corresponding to the target and mutant vector. It is defined in
Eq. 4.2:

t genð Þ
j,i =

m genð Þ
j,i , if CR< randj8j= = Ij

p genð Þ
j,i otherwise

8<
ð4:3Þ

Here,

• CR is the crossover constant having value between 0 and 1.
• randj [0, 1] is the uniform random number between 0 and 1.
• Ij : randomly chosen index from 1, 2, . . .d. to make sure that at least one

component of trial vector will pick from mutant vector.

(iv) Selection Phase: Selection operation is performed at the end of any generation
of DE and ensures that fitter vector has chosen for next generation between trial
vector and target vector. Equation 4.4 describes the selection operation between
trail and target vector.

P genþ1ð Þ
i =

T genð Þ
i , if fun T genð Þ

i

� �
< fun P genð Þ

i

� �

P genð Þ
i otherwise

8<
ð4:4Þ

3 Proposed Modification

Advance Selection Strategy

The basic selection technique of DE is based on a tournament selection between trail
and target vector. The vector with the lowest fitness value is considered as a winner
and goes to next-generation population. Here, it can be noticed that during this type
of one-on-one competition, a rejected trial vector may have better fitness value than
some other target vectors in the population, but there is no additional feature for such
rejected trail vectors to prove their efficiency in the space. Also, every time-rejected
trial vector takes up extra space in computer memory and may lead to low computer
processor speed. Therefore, some additional inspection measures should be done so
that more of these fitted trial vectors can be selected and also reduce extra space in
memory. Our proposed advance selection approach offers such additional charac-
teristic to the old selection operation of DE.

In advance selection operation, first we perform the old selection operation by
comparing trail and target vector and chose the fittest vector for the next generation.

4 Advanced Selection Operation for Differential Evolution Algorithm 59

Fig. 4.1 Working design of advance selection operation

In case of rejection of trail vector, it further compares with the worst vector (having
highest fitness value) of the population and swap on that place, if it has a lower
fitness value than the worst vector. After updating the worst vector, this process will
continue for the next trail vector.

Furthermore, a single array strategy proposed by Babu and Angira [5] also has
employed with our modified selection technique. The single array strategy helps to
reduce the memory space. Consequently, the proposed selection operation com-
presses the searching region in every generation, and hence it boosts up in the
convergence speed to achieve the desire result.

The advance selection operation is demonstrated graphically in Fig. 4.1.

Pseudo Code of DEaS Algorithm
BEGIN

Generate uniformly distributed random population Pop= {Pi
(gen), i=1,2,...

N}.
FOR i=1:N

{
Pi

(0) = PLB + rand(0,1)*(PUB –PLB)
}/*END FOR */

Evaluate fun{Pi
(gen)}

WHILE (Termination criteria is met)

(continued)

60 P. Kumar and V. Garg

{
FOR i=1:N

{
Execute mutation operation by Eq-2
Execute crossover operation and generate trial vector Ti

(gen)

Evaluate fun(Ti
(gen))

//** Advance Selection Operation with Single Array strategy***////
IF (fun(Ti

(gen))< fun(Pi
(gen)))

{
Pi

(gen+1)= Ti
(gen)

}
ELSE

{
IF (fun(Ti

(gen))< fun(Pmax
(gen)))

{
Pmax

(gen)= Ti
(g)

}
Update Pmax

(gen)

}
}/* END FOR loop*/

} /* END WHILE loop*/
END

Proposed DERLaS and MRLDEaS

In order to verify the effect of proposed advance selection operation on other
variants, it has embedded with DERL and MRLDE. A short description of DERL
and MRLDE is given as below:

DERL [6]: It is a mutation-based enhanced variants of DE. Here, first three mutually
separate vectors are select randomly from the population and then chose the best
fitted vector among these three has used as a base vector in the mutation
operation. A detail description and its effectiveness of can be read in its original
paper [6].

MRLDE [18]: It is our previously proposed DE variant, which is also a mutation-
based enhanced variant of DE. In MRLDE, the whole population is divided into
three regions, and then the base vector is selected randomly from the region of the
best individuals. A details explanation and effectiveness of MRLDE in solving
various real-life optimization problems can be study in the literature [41–45].

The pseudo code of proposed DERLas and MRLDEaS is given below:

4 Advanced Selection Operation for Differential Evolution Algorithm 61

Pseudo Code of DERLaS and MRLDEaS Algorithm
BEGIN

Generate uniformly distributed random population Pop= {Pi
(g), i=1,2,...

N}.
WHILE (Termination criteria is met)
{
FOR i=1:N

{
/*Working of DERLaS*/

Select three random vectors Pa
(gen), Pb

(gen) and Pc
(gen)

Select best of Pa
(gen), Pb

(gen) and Pc
(gen) and use as base vector in

mutation
operation.

/*Working of MRLDEaS*/
Divide Population in three sub-regions of N1,N2 and N3 size of best,

medium
and worst sub-region respectively according fitness.
Select Pa

(gen), Pb
(gen) and Pc

(gen) from best, medium and worst
sub-region

respectively.
Execute Mutation Operation
Execute crossover operation
Execute Advance selection operation

}/* END FOR loop*/
} /* END WHILE loop*/

END

4 Experimental Settings

In this section, selected benchmark problems, real-life applications, performance
criteria, and parameter settings for the evaluation of proposed variants are given.

Test Functions

Fifteen traditional benchmark problems and three real-life applications are selected
from the literature to test the effect of the proposed advance selection on DE, DERL,
and MRLDE and also the comparison with the other enhanced DE variants. The
mathematical models and properties of these are given in Appendix.

s

Convergence graphs: The convergence graphs demonstrate the performance graph-

62 P. Kumar and V. Garg

Performance Criteria

The following evaluation criterias are taken from various literatures [12, 16, 18], and
to evaluate the performance and comparisons of our proposed algorithms

Number of function evaluation (NFE): The NFEs are obtained when a fixed
accuracy (VTR) is attained before reaching the maximum NFE. That is, we set
the termination criteria as jFopt - Fglobqal j ≤ VTR and record the average NFE of
successful run over 50 runs.

Error: The average and standard deviation of the minimum error f(P)-f(P*) i
observed after fixed maximum NFEs are attained of 50 runs.

Acceleration rate (AR): It is used to compare the convergence speeds of two
algorithms. For two algorithms A and B, AR is defined as follows:

AR= 1-
NFEB

NFEA

� �
%

ically in terms of fitness value with respect to iteration in any run.

Parameter Setting

In the study, similar parameter settings as per Table 4.1 have been taken for each
algorithm for a fair evaluation and comparison.

All experiments are carried out on a computer with 2.66 GHz 10th Gen Intel®

Core™ i3, 4GB of RAM, and software Dev-C++ was used to implement the
programming.

Table 4.1 Parameter setting [12, 16, 18]

Size of population (N) 100

Dimension (d) for benchmark functions 30

Scale factor (SF) and 0.5

Crossover rate (CR) 0.9

Max NFE 500,000

Size of N1, N2, and N3 for MRLDE and MRLDEaS 20%, 40%, and 40%, respectively

Total run 50

4 Advanced Selection Operation for Differential Evolution Algorithm 63

5 Result and Discussion

Result on Benchmark Problems

(a) Effect of Advance Selection on DE, DERL, and MRLDE

In this section, an analysis of the effect of proposed selection operation on DE,
DERL, and MRLDE algorithm has been carried out. The results are given in
numerical and statistical significance terms. The numerical results are given in
terms of the average NFE and average error with a standard deviation of 50 runs
in Tables 4.2 and 4.3, respectively, while the results for acceleration rate (AR) and
statistical significance are given in Table 4.4.

From Table 4.2, it is clear that the algorithm with advance selection, i.e., DEaS,
DERLaS, and MRLDEas, takes less NFEs compared to their original variants,
respectively, for all function, except function F8 and F9. None of the algorithm has
obtained the desired accuracy for function F8 and F9. The total NFEs obtained by
DE, DERL, and MRLDE are 2142410, 1233200, and 768000, respectively, while
the total NFEs obtained by DEaS, DERLaS, and MRLDEaS are 1886900, 985900,
and 670000, respectively, for all function, except function F8 and F9.

Now from Table 4.3, it can be easily observed that results are more accurate
obtained by algorithms with advance selection operation in terms of average error
also. Here, we can obtain the results for function F8 and F9, also for which Deas and
DERLaS give better results; however, MRLDE gives a minimum error than
MRLDEas for function F9. For function F6, all algorithms perform the same.

In Table 4.4, results are given in terms of AR for NFEs given in Table 4.2 and
statistical significance on average error and standard deviation obtained in Table 4.3.

Table 4.2 Numerical results in terms of the average NFEs of 50 runs

Fun VTR DE DEaS DERL DERLaS MRLDE MRLDEaS

F1 10-09 105600 94100 54800 46600 40400 33400
F2 10-09 175400 158800 91900 77600 66900 57800
F3 10-09 404200 389500 215900 188900 156800 136600
F4 10-03 137900 116600 147200 110500 65200 62500
F5 10-09 440400 376800 271900 184400 138500 122900
F6 10-09 32680 29500 19000 14500 12900 10400
F7 10-02 200390 146600 92500 77900 38600 33600
F8 10-03 NA NA NA NA NA NA

F9 10-03 NA NA NA NA NA NA

F10 10-09 164600 146400 86200 72400 62600 53900
F11 10-09 108500 95600 58100 48300 40400 35900
F12 10-09 95600 83400 49400 41600 37100 31900
F13 10-09 102200 93400 55600 47400 39900 33500
F14 10-09 68400 62300 35600 28600 27900 22700
F15 10-09 106600 93900 55100 47200 40800 34900

Fun DE DEaS DERL DERLaS MRLDE MRLDEaS

64 P. Kumar and V. Garg

Table 4.3 Numerical results in terms of the average error and standard deviation of 50 runs

Max
NFE

F1 150K 5.80E-13
(2.62E-14)

5.80E-16
(2.62E-16)

2.43E-29
(2.82E-29)

5.80E-36
(2.62E-36)

8.35E-43
(8.61E-43)

1.67E-50
(2.31E-50)

F2 200K 3.06E-10
(6.70E-10)

1.12E-11
(5.34E-12)

1.15E-20
(4.08E-20)

9.11E-25
(7.44E-25)

5.15E-29
(6.61E-29)

3.37E-34
(4.19E-34)

F3 500K 2.79E-11
(4.21E-11)

3.56E-12
(3.12E-13)

5.22E-25
(3.32E-25)

2.88E-28
(5.43E-28)

1.12E-37
(5.04E-38)

4.25E-40
(3.13E-40)

F4 500K 2.41E-01
(9.45E-02)

3.50E-03
(1.11E-03)

4.83E-07
(2.64E-07)

2.88E-10
(5.43E-10)

2.56E-28
(2.23E-28)

3.76E-31
(4.33E-31)

F5 200K 1.17E+01
(7.41E-01)

5.75E+00
(2.13E-01)

1.01E-03
(2.75E-03)

6.22E-11
(4.45E-11)

2.16E-19
(2.43E-19)

3.12E-24
(1.43E-24)

F6 50K (0.0E+00)
(0.0E+00)

(0.0E+00)
(0.0E+00)

(0.0E+00)
(0.0E+00)

(0.0E+00)
(0.0E+00)

(0.0E+00)
(0.0E+00))

(0.0E+00)
(0.0E+00)

F7 300K 2.81E-02
(5.61E-03)

4.91E-03
(4.88E-04)

2.41E-03
(4.81E-04)

2.64E-03
(6.33E-04)

2.09E-03
(9.65E-04)

2.01E-03
(5.47E-04)

F8 500K 6.96E+03
(1.18E
+03)

4.73E+03
(8.51E
+02)

1.11E+03
(6.20E
+02)

3.55E+02
(3.25E
+02)

6.95E+02
(8.21E
+02)

1.18E+02
(1.31E
+02)

F9 500K 7.97E+01
(1.83E
+01)

6.09E+01
(2.23E
+01)

1.52E+01
(4.61E-01)

1.06E+01
(3.66E
+00)

9.01E+00
(4.16E
+00)

1.62E+01
(9.38E-01

F10 50K 6.41E-02
(3.43E-03)

2.25E-02
(2.61E-03)

1.18E-04
(5.36E-06)

1.23E-05
(3.36E-06)

9.18E-06
(4.28E-07)

9.96E-08
(2.45E-08)

F11 50K 2.11E-01
(1.40E-02)

1.18E-02
(3.09E-03)

2.88E-06
(3.21E-06)

1.23E-09
(3.36E-09)

1.60E-10
(2.08E-10)

1.17E-14
(5.35E-14)

F12 50K 3.34E-03
(2.15E-03)

1.12E-03
(1.05E-03)

8.37E-08
(4.45E-08)

3.42E-11
(4.56E-12)

4.86E-13
(2.88E-13)

1.59E-15
(3.46E-15)

F13 50K 2.45E-02
(1.25E-02)

8.23E-03
(5.41E-03)

9.19E-08
(3.53E-10)

6.91E-10
(4.33E-10)

1.11E-11
(2.05E-11)

3.21E-14
(1.79E-14)

F14 50K 1.56E-06
(6.73E-06)

3.81E-07
(4.53E-07)

1.01E-11
(8.31E-12)

8.83E-14
(1.25E-14)

4.79E-16
(3.94E-16)

2.20E-18
(1.52E-18)

F15 50K 3.18E-02
(7.91E-03)

6.62E-03
(1.17E-03)

2.79E-07
(1.07E-07)

5.83E-10
(3.42E-10)

1.07E-11
(6.5E-12)

4.47E-14
(4.24E-14)

From the table, we can see a fast convergent speed in terms of AR for each function
by each algorithm with advance selection operation. The average AR of DEaS with
respect to DE is 11.93%, AR of DERL with respect to DERLaS is 20.05%, and AR
of MRLDEaS with respect to MRLDE is 12.76%. Here, AR of MRLDEas is also
obtained with respect to DERLaS and DEaS, which are 64.49% and 32.04%,
respectively.

The statistical significance of results is also presented in Table 4.4. DEaS
performs statistical better than DE for all function, except F6 and F14 for which
there is no significance difference between the performances.

Similarly, DERLaS gives an equal performance for function F6 and is signifi-
cantly better for other functions compared with DERL.

Fun

DEaS/DE

4 Advanced Selection Operation for Differential Evolution Algorithm 65

Table 4.4 Numerical results in terms of acceleration rate (AR) and statistically significance

DERLaS/
DERL

MRLDEaS/
MRLDE

MRLDEaS/
DEaS

MRLDEaS/
DERLaS

AR Sig. AR Sig AR Sig AR Sig. AR Sig

F1 10.89 + 14.96 + 17.33 + 64.51 + 28.33 +

F2 9.46 + 15.56 + 13.60 + 63.60 + 25.52 +

F3 3.64 + 12.51 + 12.88 + 64.93 + 27.69 +

F4 15.45 + 24.93 + 4.14 + 46.40 + 43.44 +

F5 14.44 + 32.18 + 11.26 + 67.38 + 33.35 +

F6 9.73 = 23.68 = 19.38 = 64.75 = 28.28 =
F7 26.84 + 15.78 + 12.95 = 77.08 + 56.87 =
F8 NA + NA + NA + NA + NA +

F9 NA + NA + NA - NA + NA -
F10 11.06 + 16.01 + 13.90 + 63.18 + 25.55 +

F11 11.89 + 16.87 + 11.14 + 62.45 + 25.67 +

F12 12.76 + 15.79 + 14.02 + 61.75 + 23.32 +

F13 8.61 + 14.75 + 16.04 + 64.13 + 29.32 +

F14 8.92 = 19.66 + 18.64 + 63.56 + 20.63 +

F15 11.91 + 14.34 + 14.46 + 62.83 + 26.06 +

Avg
w/l/t

11.93 13/0/2 20.05 14/0/1 12.76 12/1/2 64.49 14/0/1 32.04 12/1/2

“+”, “-”, and “=” mean significantly better, lower, and equal, respectively

MRLDEaS performs significantly better than MRLDE for all functions, except
F6, F7, and F9. In the case of F6 and F7, there is no significant difference between the
performances of both, while MRLDE is significantly better than MRLDEaS in the
case of function F9.

The last row of Table 4.4 shows the total number of win/loss/tie performance of
algorithms on all functions. The w/l/t performance of DEaS vs DE is 13/0/2,
DERLaS vs DERL is 14/0/1, MRLDEaS vs MRLDE is 12/1/2, MRLDEaS vs
DEaS is 14/0/1, and MRLDEaS vs DERLas is 12/1/2.

(b) Comparison of MRLDEaS with Other Enhanced DE Variants

In this section, comparison of MRLDEas is discussed with some other well-
known enhanced DE variants, such as jDE [7], ODE [8], CDE-Cai [15], and LEDE
[16]. The comparison is given in Table 4.5 in terms of NFE. The results for ODE,
jDE, CDE-Cai, and LeDE are taken from [16]. All parameter settings have also taken
similar from [16] for fair comparison.

From the table, we can see that our proposed MRLDEaS takes less NFE for all
benchmark function, except F7, F8, and F9 for which CDE-Cai and JDE perform best
from others. The corresponding rank is also given for each function in the table. The
average rank of ODE, jDE, CDE-Cai, and LEDE is 4.54, 3.62, 2.92, and 2.15,
respectively, while the rank of MRLDEaS is 1.77, which proved the effectiveness of
it compared to all others.

5
4

3
2

5
3

4
2

5
4

3
2

2
5

4
3

5
4

3
2 2

3

3
2

5

2
3

5

5
4

3
2

5
4

3
2

5
4

3
2

5
4

3
2

66 P. Kumar and V. Garg

T
ab

le
4.
5

C
om

pa
ri
so
n
of

M
R
L
D
E
aS

w
ith

O
D
E
,j
D
E
,C

D
E
,a
nd

L
E
D
E

F
un

N
F
E

F
un

ct
io
n-
w
is
e
ra
nk

s

O
D
E

jD
E

C
D
E
-C
ai

L
eD

E
M
R
L
D
E
aS

O
D
E

jD
E

C
D
E
-C
ai

L
eD

E
M
R
L
D
E
aS

F
1

67
52

4
60

00
0

54
12

1
49

49
4

33
40

0
1

F
2

14
01

70
83

00
0

84
29

5
77

46
4

57
80

0
1

F
3

48
92

10
34

00
00

16
65

45
14

01
76

13
66

00
1

F
4

14
58

80
30

00
00

17
72

68
15

74
99

14
14

00
1

F
5

N
A

N
A

31
52

82
28

29
72

12
29

00
4.
5

4.
5

3
2

1
F
6

25
00

8
23

00
0

17
86

9
17

12
3

10
40

0
1

F
7

60
23

0
10

00
00

33
27

5
33

30
2

33
60

0
4

5
1

F
8

14
74

72
89

00
0

11
51

63
11

10
13

N
A

4
1

F
9

19
06

04
12

00
00

18
43

71
18

78
13

N
A

4
1

F
1
0

10
66

94
91

00
0

84
92

0
76

11
1

53
90

0
1

F
1
1

79
88

8
63

00
0

56
86

8
50

57
9

35
90

0
1

F
1
2

63
71

0
55

00
0

45
80

3
41

38
4

31
90

0
1

F
1
3

63
20

2
60

00
0

50
72

0
46

52
9

33
50

0
1

A
ve
ra
ge

ra
nk

4.
54

3.
62

2.
92

2.
15

1.
77

4 Advanced Selection Operation for Differential Evolution Algorithm 67

Table 4.6 Wilcoxon sign rank test for MRLDEaS vs ODE, jDE, CDE, and LEDE

Algorithms ∑R+ ∑R- W value Critical value at 5% level Significance

MRLDEaS vs ODE 70 21 21 21 +

jDE 66 25 25 17 +

CDE-
Cai

65 26 26 21 +

LeDE 65 26 26 21 +

In Table 4.6, a nonparametric Wilcoxon sign rank test is also performed to check
the pair-wise comparison of MRLDEas with another algorithm. From the table, we
can see that our proposed MRLDEaS provides an overall significance superior
performance than ODE, jDE, CDE-Cai, and LeDE.

Result on Real-Life Application

In this section, the evaluation of the proposed variants on real-life applications is
discussed. In Table 4.7, the results are obtained in terms of worst, best, mean, and
standard deviation of fitness value in 50 runs. The best results obtained by algorithms
are given in bold cases. We can see that the proposed variants with advance selection
operation perform better than their original variants in all terms. The statistical test
value is also given in the table, which also proved the significance of proposed
variants over the original variants, respectively.

Convergence Graphs

In this section, the convergence speed of algorithms is represented graphically by the
convergence graphs in Fig. 4.2. Here, convergence graphs are given for function F1,
F2, F5, F10, F11, and F14. RF1 and RF2. From Fig. 4.2, we can easily observe that DE,
DERL, and MRLDE obtain a fast convergence speed when applying proposed
advance selection operation with these algorithms. We can also see that MRLDEaS
provides a faster convergence speed compared to all other variants.

6 Conclusions

In the present chapter, an advance selection strategy for DE algorithm named DEaS
is proposed. This advance selection operation gives an additional opportunity to the
rejected trail vectors to prove their efficiency over other target vectors. This approach

+
+

+

+
+

+

68 P. Kumar and V. Garg

T
ab

le
4.
7

N
um

er
ic
al
an
d
st
at
is
tic
al
re
su
lts

fo
r
re
al
-l
if
e
ap
pl
ic
at
io
ns

F
un

M
ax

N
F
E

F
itn

es
s

D
E

D
E
aS

D
E
R
L

D
E
R
L
aS

M
R
L
D
E

M
R
L
D
E
aS

R
F
1

30
00

0
W
or
st

1.
2E

+
01

1.
0E

+0
1

8.
7E

-1
0

6.
3E

-1
4

3.
2E

-1
0

3.
6E

-1
7

B
es
t

8.
1E

+
00

5.
1E

-0
3

3.
7E

-1
4

9.
1E

-1
8

7.
2E

-2
2

0.
0E

+
00

M
ea
n

1.
0E

+
01

3.
9E

+0
0

3.
1E

-1
0

1.
2E

-1
4

8.
1E

-1
1

7.
3E

-1
8

S
D

8.
3E

+
00

1.
2E

+0
0

4.
2E

-1
0

2.
5E

-1
4

1.
6E

-1
0

1.
4E

-1
7

z-
va
lu
e

z
=

5.
14

z
=

5.
22

z
=

3.
58

S
ig
ni
fi
ca
nc
e
at
5%

le
ve
l

R
F
2

10
00

W
or
st

4.
19

09
2

4.
20

31
8

4.
20

75
7

4.
20

97
7

4.
20

87
7

4.
20

98
9

B
es
t

4.
20

48
9

4.
21

19
8

4.
21

27
9

4.
21

28
2

4.
21

23
1

4.
21

34
6

M
ea
n

4.
19

94
2

4.
20

85
2

4.
21

13
9

4.
21

18
6

4.
21

07
6

4.
21

23
8

S
D

6.
1E

-0
3

2.
9E

-0
3

1.
9E

-0
3

1.
2E

-0
3

1.
4E

-0
3

1.
3E

-0
3

z-
va
lu
e

z
=

9.
53

z
=

1.
48

z
=

6.
0

S
ig
ni
fi
ca
nc
e
at
5%

le
ve
l

+
=

+
R
F
3

d
=

20
M
ax
N
F
E
=

10
0K

W
or
st

3.
75

23
2.
12

74
1.
76

03
0.
90

10
0.
85

51
0.
80

14
B
es
t

2.
30

12
2.
01

38
1.
58

16
0.
66

52
0.
66

25
0.
66

71
M
ea
n

3.
13

28
2.
48

20
1.
63

21
0.
78

77
0.
75

23
0.
54

23
S
D

2.
04

35
1.
00

1
1.
40

99
0.
06

72
0.
04

66
0.
00

11
z-
va
lu
e

z
=

2.
02

z
=

4.
23

z
=

3.
19

S
ig
ni
fi
ca
nc
e
at
5%

le
ve
l

4 Advanced Selection Operation for Differential Evolution Algorithm 69

NFE

0.0 2.0e+4 4.0e+4 6.0e+4 8.0e+4 1.0e+5 1.2e+5

Er
ro

r

1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5
a

b

DE
DEaS
DERL
DERLaS
MRLDE
MRLDEaS

NFE

0.0 2.0e+4 4.0e+4 6.0e+4 8.0e+4 1.0e+5 1.2e+5 1.4e+5 1.6e+5 1.8e+5

Er
ro

r

1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

DE
DEaS
DERL
DERLaS
MRLDE
MRLDEaS

Function F2

Function F1

Fig. 4.2 Convergence graphs in terms of error and NFEs

condenses the searching space in every generation and helps to obtain better
convergence speed as well as diminishes the redundant memory space.

Next, the proposed selection operation is embedded with other enhanced variants,
named DERLaS and MRLDEaS.

The performances of proposed variants are evaluated on 15 traditional benchmark
problems and 3 real-life applications. The numerical results for DEaS, DERLaS, and

70 P. Kumar and V. Garg

NFE

5e+4 1e+5 2e+5 2e+5

Er
ro

r

1e-9
1e-8
1e-7
1e-6
1e-5
1e-4
1e-3
1e-2
1e-1
1e+0
1e+1
1e+2
1e+3
1e+4
1e+5
1e+6

DE
DEaS
DERL
DERLaS
MRLDE
MRLDEaS

NFE

0.0 2.0e+4 4.0e+4 6.0e+4 8.0e+4 1.0e+5 1.2e+5 1.4e+5 1.6e+5 1.8e+5

Er
ro

r

1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

DE
DEaS
DERL
DERLaS
MRLDE
MRLDEaS

c

d

Function F5

Function F10

Fig. 4.2 (continued)

MRLDEaS are compared with the original variant DE, DERL, and MRLDE,
respectively. Furthermore, the performance of MRLDEaS is also compared with
other enhanced DE variants, such as ODE, jDE, CDE-Cai, and LeDE.

4 Advanced Selection Operation for Differential Evolution Algorithm 71

NFE

0.0 2.0e+4 4.0e+4 6.0e+4 8.0e+4 1.0e+5 1.2e+5

Er
ro

r

1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

DE
DEaS
DERL
DERLaS
MRLDE
MRLDEaS

NFE

0 20000 40000 60000 80000

Er
ro

r

1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

DE
DEaS
DERL
DERLaS
MRLDE
MRLDEaS

e

f

Function F11

Function F14

Fig. 4.2 (continued)

The numerical, statistical, and graphical results have proved the effectiveness and
robustness of the proposed advance selection operation with DE and other variants
DERL and MRLDE.

In future, the effect of this advance selection operation can be verified on other
evolutionary algorithms for solving real-life optimization problems.

72 P. Kumar and V. Garg

NFE

5000 10000 15000 20000 25000 30000
1e-18
1e-17
1e-16
1e-15
1e-14
1e-13
1e-12
1e-11
1e-10
1e-9
1e-8
1e-7
1e-6
1e-5
1e-4
1e-3
1e-2
1e-1
1e+0
1e+1
1e+2
1e+3

DE
DEaS
DERL
DERLaS
MRLDE
MRLDEaS

200 400 600 800 1000

Fi
tn

es
s

4.06

4.08

4.10

4.12

4.14

4.16

4.18

4.20

4.22

4.24

DE
DEaS
DERL
DERLaS
MRLDE
MRLDEaS

Real Life Application RF1

NFE

Real Life Application RF2

g

h

Fi
tn

es
s

(L
og

)

Fig. 4.2 (continued)

References

1. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimi-
zation over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

2. Karafotias, G., Hoogendoorn, M., Eiben, A.E.: Parameter control in evolutionary algorithms:
trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2015)

3. Fan, H., Lampinen, J.: A trigonometric mutation operation to differentia evolution. J. Glob.
Optim. 27, 105–129 (2003)

4 Advanced Selection Operation for Differential Evolution Algorithm 73

4. Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Comput. Fusion
Found Meth. Appl. 9(6), 448–462 (2005)

5. Babu, B.V., Angira, R.: Modified differential evolution (MDE) for optimization of non-linear
chemical processes. Comput. Chem. Eng. 30, 989–1002 (2006)

6. Kaelo, P., Ali, M.M.: A numerical study of some modified differential evolution algorithms.
Eur. J. Oper. Res. 169, 1176–1184 (2006)

7. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self adapting control parameters in
differential evolution: a comparative study on numerical benchmark problems. IEEE Trans.
Evol. Comput. 10(6), 646–657 (2006)

8. Rahnamayan, S., Tizhoosh, H., Salama, M.: Opposition based differential evolution. IEEE
Trans. Evol. Comput. 12(1), 64–79 (2008)

9. Noman, N., Iba, H.: Accelerating differential evolution using an adaptive local Search. IEEE
Trans. Evol. Comput. 12(1), 107–125 (2008)

10. Pant, M., Ali, M., Abraham, A.: Mixed mutation strategy embedded differential evolution. In:
IEEE Congress on Evolutionary Computation, pp. 1240–1246 (2009)

11. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy
adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417
(2009)

12. Zhang, J., Sanderson, A.: JADE: adaptive differential evolution with optional external archive.
IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

13. Das, S., Abraham, A., Chakraborty, U., Konar, A.: Differential evolution using a neighborhood
based mutation operator. IEEE Trans. Evol. Comput. 13(3), 526–553 (2009)

14. Ali, M., Pant, M.: Improving the performance of differential evolution algorithm using cauchy
mutation. Soft. Comput. (2010). https://doi.org/10.1007/s00500-010-0655-2

15. Cai, Z., Gong, W., Ling, C., Zhang, H.: A clustering-based differential evolution for global
optimization. Appl. Soft Comput. 11(1), 1363–1379 (2011)

16. Cai, Y., Wang, J., Yin, J.: Learning enhanced differential evolution for numerical optimization.
Soft Comput. (2011). https://doi.org/10.1007/s00500-011-0744-x

17. Epitropakis, M.G., Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Enhanc-
ing Differential Evolution Utilizing Proximity-Based Mutation Operators. IEEE Trans. Evol.
Comput. 15(1), 99–11 (2011)

18. Kumar, P., Pant, P.: Enhanced mutation strategy for differential evolution. In: Proceeding of
IEEE Congress on Evolutionary Computation (CEC-12), pp. 1–6 (2012)

19. Zhu, W., Tang, Y., Fang, J.-A., Zhang, W.: Adaptive population tuning scheme for differential
evolution. Inf. Sci. 223, 164–191 (2013)

20. Sarker, R.A., Elsayed, S.M., Ray, T.: Differential evolution with dynamic parameters selection
for optimization problems. IEEE Trans. Evol. Comput. 18(5), 689–707 (2014)

21. Singh, P., Chaturvedi, P., Kumar, P.: Control parameters and mutation based variants of
differential evolution algorithm. J. Comput. Method Sci. Eng. 15(4), 783–800 (2015)

22. Xiang, W.L., Meng, X.L., An, M.Q., Li, Y.Z., Gao, M.X.: An enhanced differential evolution
algorithm based on multiple mutation strategies. Comput. Intell. Neurosci. 2015, Article ID
285730, 15 pages (2015)

23. Wu, G., Mallipeddi, R., Suganthan, P.N., Wang, R., Chen, H.: Differential evolution with multi-
population based ensemble of mutation strategies. Inf. Sci. 329, 329–345 (2016)

24. Zheng, L.M., Zhang, S.X., Tang, K.S., Zheng, S.Y.: Differential evolution powered by collec-
tive information. Inf. Sci. 399, 13–29 (2017)

25. Meng, Z., Pan, J.-S., Kong, L.: Parameters with adaptive learning mechanism (palm) for the
enhancement of differential evolution. Knowl.-Based Syst. 141, 92–112 (2018)

26. Singh, P., Chaturvedi, P., Kumar, P.: A novel differential evolution approach for constraint
optimization. Int. J. Bio-Insp. Comput. 12(4), 254–265 (2018)

27. Meng, Z., Pan, J.-S., Tseng, K.K.: PaDE: an enhanced differential evolution algorithm with
novel control parameter adaptation schemes for numerical optimization. Knowl.-Based Syst.
168, 80–99 (2019)

https://doi.org/10.1007/s00500-010-0655-2
https://doi.org/10.1007/s00500-011-0744-x

74 P. Kumar and V. Garg

28. Wei, Z., Xie, X., Bao, T., Yu, Y.: A random perturbation modified differential evolution
algorithm for unconstrained optimization problems. Soft. Comput. 23(15), 6307–6321 (2019)

29. Duan, M., Yang, H., Liu, H., Chen, J.: A differential evolution algorithm with dual preferred
learning mutation. Appl. Intell. 49(2), 605–627 (2019)

30. Tian, M., Gao, X.: Differential evolution with neighborhood-based adaptive evolution mecha-
nism for numerical optimization. Inf. Sci. 478, 422–448 (2019)

31. Wang, S.H., Li, Y.Z., Yang, H.Y.: Self-adaptive mutation differential evolution algorithm
based on particle swarm optimization. Appl. Soft Comput. 81 (2019)

32. Pan, J.S., Yang, C., Meng, F.J., Chen, Y.X., Meng, Z.Y.: A parameter adaptive DE algorithm
on real-parameter optimization. J. Intell. Fuzzy Syst. 38(1), 1–12 (2020)

33. Di Carlo, M., Vasile, M., Minisci, E.: Adaptive multipopulation inflationary differential evolu-
tion. Soft. Comput. 24(5), 3861–3891 (2020)

34. Zhong, X., Cheng, P.: An improved differential evolution algorithm based on dual-strategy.
Hindawi Math. Prob. Eng. (2020). https://doi.org/10.1155/2020/9767282

35. Plagianakos, V., Tasoulis, D., Vrahatis, M.: A review of major application areas of differential
evolution. In: Advances in Differential Evolution, vol. 143, pp. 197–238. Springer, Berlin
(2008)

36. Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental
analysis. Artif. Intell. Rev. 33(1–2), 61–106 (2010)

37. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans.
Evol. Comput. 15(1), 4–13 (2011)

38. Bilal, P.M., Pant, M., Zaheer, H., Garcia-Hernandez, L., Abraham, A.: Differential evolution: a
review of more than two decades of research. Eng. Appl. Artif. Intell. 90, Article 103479 (2020)

39. Kumar, P., Pant, M.: Modified single array selection operation for DE algorithm. In: Pro-
ceedings of Fifth International Conference on Soft Computing for Problem Solving, AISC, vol.
437, pp. 795–803 (2016)

40. Kumar, P., Pant, M., Astya, R., Ali, M.: Real life optimization problems solving by IUDE. In:
International Conference on Computing, Communication and Automation (ICCCA),
pp. 368–372 (2016)

41. Kumar, S., Kumar, P., Sharma, T.K., Pant, M.: Bi-level thresholding using PSO, Artificial Bee
Colony and MRLDE embedded with Otsu method. Memetic Comput. 5(4), 323–334 (2013)

42. Kumar, P., Pant, M., Singh, V.P.: Modified random localization based de for static economic
power dispatch with generator constraints. Int. J. Bio-Insp. Comput. 6(4), 250–261 (2014)

43. Kumar, P., Singh, D., Kumar, S.: MRLDE for solving engineering optimization problems. In:
International Conference on Computing, Communication & Automation, pp. 760–764. https://
doi.org/10.1109/CCAA.2015.7148512 (2015)

44. Kumar, P., Pant, M.: Recognition of noise source in multi sounds field by modified random
localized based DE algorithm. Int. J. Syst. Assur. Eng. Manag. 9(1), 245–261 (2016). https://
doi.org/10.1007/s13198-016-0544-x

45. Kumar, P., Sharma, A.: MRL-Jaya: a fusion of MRLDE and Jaya Algorithm. Palestine J. Math.
11, 65–74 (2022)

46. Dor, A.E., Clerc, M., Siarry, P.: Hybridization of differential evolution and particle swarm
optimization in a new algorithm: DEPSO-2S. In: Proceeding of SIDE 2012 and EC 2012, LNCS
7269, , pp. 57–65. Springer, Berlin/Heidelberg (2012)

47. Garg, V., Deep, K.: Performance of Laplacian Biogeography-Based Optimization Algorithm on
CEC 2014 continuous optimization benchmarks and camera calibration problem. Swarm Evol.
Comput. 27, 132–144 (2016)

48. Garg, V., Deep, K.: Constrained Laplacian biogeography-based optimization algorithm.
Int. J. Syst. Assur. Eng. Manag. 8(2), 867–885 (2017)

49. Garg, V., Deep, K.: Efficient mutation strategies embedded in Laplacian-biogeography-based
optimization algorithm for unconstrained function minimization. Int. J. Appl. Evol. Comput.
(IJAEC). 7(2), 12–44 (2016)

https://doi.org/10.1155/2020/9767282
https://doi.org/10.1109/CCAA.2015.7148512
https://doi.org/10.1109/CCAA.2015.7148512
https://doi.org/10.1007/s13198-016-0544-x
https://doi.org/10.1007/s13198-016-0544-x

Chapter 5
Profit Optimization of Two-Unit
Briquetting System Using Grey Wolf
Optimization Algorithm

Divesh Garg and Reena Garg

1 Introduction

Crop leftovers, timber, and its wastage, and animal wastes are all key sources of
biofuels in underdeveloped nations. Biomass can be used to generate heat, electric-
ity, and a variety of other forms of energy, which is a readily available natural
resource. Because of its low levels of greenhouse and acidic gas emissions, biomass
has emerged as a viable alternative to other forms of renewable energy. As
nonrenewable resources are depleted and the impact of greenhouse gases continues
to rise, scientists have taken a strong interest in bioenergy.

When tiny, loose particles are compressed into a hard monolith; the process is
called briquette. Rural and semi-urban regions rely heavily on it since it’s both cost-
effective and environmentally benign. Due to densification, briquetting is more
feasible and helpful as it results in a higher biomass density. To make low-cost
briquette machines, a number of approaches have been put out in the literature
[2]. Densification of various agricultural waste, such as sawdust, rice straw, palm
oil mill, sugar cane leaves, rice husk, and rice bran, can be accomplished using
electric or manual methods.

Analysis of the briquettes’ calorific value, porosity, XRD, and final analysis was
conducted by Raju et al. [1]. In addition, they found that almond leaf briquettes were
the best of the three options. Shukla and Vyas [3] addressed bioenergy producing
systems and also outlined the aspects that impact the overall performance of biomass
waste. Tannery solid wastes, such as buffing dust, chrome shavings, and hairs, were
studied by Onukak et al. [4] for the characterization and manufacturing of biomass
briquettes. A new screw press briquetting machine was proposed by Sanap et al. [5]
after a thorough investigation. A 65% reduction in production costs and a 30%

D. Garg (✉) · R. Garg
J.C. Bose University of Science and Technology, YMCA, Faridabad, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Singh et al. (eds.), Design and Applications of Nature Inspired Optimization,
Women in Engineering and Science, https://doi.org/10.1007/978-3-031-17929-7_5

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17929-7_5&domain=pdf
https://orcid.org/0000-0002-6638-0777
https://orcid.org/0000-0003-2501-3142
https://doi.org/10.1007/978-3-031-17929-7_5#DOI

76 D. Garg and R. Garg

reduction in the initial moisture content were found. Higher-grade novel briquettes
with decreased smoke production have been discovered. The viability of briquette
manufacture in Iloilo City, Philippines, with the participation of the informal sector
has been examined by Ramallosa and Kraft [6]. For on-site fuel generation, they
decided to make biomass briquettes from municipal garbage. Charcoal briquettes
manufactured from Madan wood and coconut shell were examined by Kongprasert
et al. [10]. Results showed that the maximum calorific value was found in charcoal
briquettes produced entirely of Madan wood, with 6622 cal/g.

For corn cob briquettes, Orisaleye et al. [15] looked at the density as a function of
temperature, particle size, and pressure. They discovered that increasing these vari-
ables improved the briquettes’ density. Using the response surface approach, Raudah
and Zulkifli [16] improved the quality of coffee husk material for making briquettes.
A pilot-scale briquetting and torrefaction facility was demonstrated by Severy et al.
[17] to identify the optimal conditions for producing bioenergy from forest trash.
Arevalo et al. [18] developed a sustainable energy strategy for the manufacturing of
briquettes from agricultural waste in low-income communities. Using eucalyptus
and Pinus caribaeawood sawdust, Ijah et al. [19] calculated the calorific value of the
briquettes. They also came to the conclusion that adding starch to sawdust briquettes
enhances their calorific value. An investigation into the combustion and physical
qualities of biomass briquettes was conducted by Aliye et al. [22]. Kumar et al. [23]
constructed and tested a low-pressure multi-briquette screw press machine. Despite
the challenges of making and using briquettes, Shekhar [26] stated that there is a
huge untapped market for this fuel source. Researchers found that agricultural
biomass leaching significantly improved its fuel properties by reducing gaseous
emissions and total suspended particles [27]. Using proportional groundnut shells
and coffee and rice husks, Lubwama et al. [28] created and investigated a
bio-composite briquette with various unique properties. This briquette outperforms
other single-component briquettes in terms of performance. To compare the cost of
producing heat using wood briquettes to alternative biomass and fossil fuels,
Stolarski et al. [29] conducted research on the amount of energy needed to heat a
detached dwelling. There is a significant need for alternative energy sources, and
researchers are focusing on developing novel biomass briquettes from biomass
wastes to meet that demand [21]. An alternative energy source, the briquetting
process, might be an affordable choice for many homes instead of utilizing forest
wood directly for fuel, as Ullah et al. [14] stated. The biomass briquette life cycle
assessment model established by Muazu et al. [11] was used to examine the
environmental implications of briquetting different biomass feeds using various
technical alternatives.

Prior to pressing, feeding and holding pressure were altered to improve the
briquette machine’s design [20]. Models developed by Orisaleye and Ojolo [24]
were used to investigate how pressure was distributed along with the die. Biomass
briquette production systems with varying demands have been studied by Garg and
Garg [25]. Singh and Jaiswal [9] built a mathematical model and examined depend-
ability metrics for power production systems using the Boolean function approach,

5 Profit Optimization of Two-Unit Briquetting System Using Grey. . . 77

which required extensive computations. A number of system metrics, such as the
busiest period, availability, MTSF, estimated number of repairmen visits, and profit,
may be simply calculated using RPGT [12]. Garg et al. [30] optimized real-life
problems by using a recently developed nature-inspired optimization algorithm.

Some of the recent works include analysis of system parameters of one-unit
briquette machine under different major and minor faults [13]. Also, Briquette
machine efficiency was studied by Garg and Garg [8] by looking at the performance
of the machine with and without preventive maintenance, but the study of system
profit and other parameters of two-unit briquette machines under major and minor
faults are not discussed yet. To fill this gap, we are considering two units of briquette
machines in which one unit will be working and one in standby mode. In case of
minor or major faults, the other unit starts to work while the defected unit goes under
maintenance. So, it is more effective than the one-unit briquette machine, where the
urgent requirement of a repairman is necessary for the continuous functioning of
the unit.

Structure of the current paper: Section 2 makes a point of outlining every one of
the notes. Section 3 shows the unit’s flow diagram. Section 4 calculates the average
sojourn period and all possible transition probabilities for each state. Section 5 gives
the numerical value of performance. measures Section 6 provides an overview of
GWO. Section 7 summarizes the findings in tables and graphs. Section 8 concluded
our work.

2 Introduction

O/OCS Unit operative/cold standby.

λ1/λ2 Machine minor/major fault rate.

α1/ α2/ α3 Repair rate of ordinary/expert repairmen.

η Inspection rate.

Fmin/ Fmaj The failed unit is under minor/major repair.

FO/FE/ FW The failed unit is under ordinary repairmen/expert repairmen/waiting.

pi, j p.d.f from regenerative state i to j.

qi, j Probability of transitioning from a regenerative state i to j.

i(t)/I(t) Fault inspection time p.d.f/c.d.f.

h(t)/H(t) p.d.f/c.d.f of time to inspecting major fault.

g1(t)/G1(t) p.d.f/c.d.f of time to repair the unit under minor problems by ordinary repairmen.

g2(t)/G2(t) p.d.f/c.d.f of time to repair the unit under minor problems by ordinary repairmen.

g3(t)/G3(t) p.d.f/c.d.f of time to repair the unit under major problems by expert repairmen.

78 D. Garg and R. Garg

Fig. 5.1 State transition diagram

3 State Transition Diagram

As indicated in Fig. 5.1, S0 is the only fully operative state, and S1, S2, S3, and S4 are
the partially failed state. Whereas S5, S6, S7, and S8 are the failed states. S0 is assumed
to be the base state.

4 Transition Probabilities and Mean Sojourn Periods

Tables 5.1 and 5.2 indicate the probabilities of all transitions and the mean sojourn
periods for each state transition.

pi,j tð Þ= qi,j
� 0ð Þ

The Laplace transformation is denoted by the symbol “*”.
It is simple to verify that p0, 1+ p0, 2= 1, p2, 3+ p2, 4= 1, p3, 0+ p3, 5+ p3, 7= 1,

and p4, 0 + p4, 6 + p4, 8 = 1.
For determining the mean sojourn periods, the following formula was utilized:

Þg
Þg

Þg
Þg

Þ
Þ

Þ
Þ

5 Profit Optimization of Two-Unit Briquetting System Using Grey. . . 79

Table 5.1 Transition
probabilities

qi, j(t) pi, j = qi, j
�(0)

q0,1 = λ1e- λ1þλ2ð Þt

q0,2 = λ2e- λ1þλ2ð Þt
p0,1 =

λ1
λ1þλ2ð Þ

p0,1 =
λ1

λ1þλ2ð Þ
q1, 0 = g1(t) p1, 0 = g1

�(0)
q2, 3 = ph(t)
q2, 4 = qh(t)

p2, 3 = p h�(0)
p2, 4 = qh�(0)

q3,0 = g2 tð Þe- λ1þλ2ð Þt

q3,5 = λ1e- λ1þλ2ð ÞtG2 tð Þ
q3,7 = λ2e- λ1þλ2ð ÞtG2 tð Þ

p3, 0 = g2
�(λ1 + λ2)

p3,5 =
λ1

λ1þλ2ð Þ 1- g2
� λ1 þ λ2ðf

p3,7 =
λ2

λ1þλ2ð Þ 1- g2
� λ1 þ λ2ðf

q4,0 = g3 tð Þe- λ1þλ2ð Þt

q4,6 = λ1e- λ1þλ2ð ÞtG3 tð Þ
q4,8 = λ2e- λ1þλ2ð ÞtG3 tð Þ

p4, 0 = g3
�(λ1 + λ2)

p4,6 =
λ1

λ1þλ2ð Þ 1- g3
� λ1 þ λ2ðf

p4,8 =
λ2

λ1þλ2ð Þ 1- g3
� λ1 þ λ2ðf

q5, 1 = g2(t) p5, 1 = g2
�(0)

q6, 1 = g3(t) p6, 1 = g3
�(0)

q7, 2 = g2(t) p7, 2 = g2
�(0)

q8, 2 = g3(t) p8, 2 = g3
�(0)

Table 5.2 Mean sojourn
periods

Ri(t) μi = Ri � (0)

R0 = e- λ1þλ2ð Þt μ0 =
1

λ1þλ2ð Þ
R1 = e- α1ð Þt μ1 =

1
α1

R2 = e-(η)t μ2 =
1
η

R3 = e- α2þλ1þλ2ð t μ3 =
1

α2þλ1þλ2ð
R4 = e- α3þλ1þλ2ð t μ4 =

1
α3þλ1þλ2ð

R5 = e- α2ð Þt μ5 =
1
α2

R6 = e- α3ð Þt μ6 =
1
α3

R7 = e- α2ð Þt μ7 =
1
α2

R8 = e- α3ð Þt μ8 =
1
α3

μi =
Z1

0

Ri tð Þdt=R�
i 0ð Þ

where Ri(t) indicates the system’s reliability at the given time t.
The following are the factors that affect the probability of a transition:

S0,0 = 1 Verifiedð Þ

S0,1 = p0,1 =
λ1

λ1 þ λ2ð Þ

��

80 D. Garg and R. Garg

S0,2 = p0,2 =
λ2

λ1 þ λ2ð Þ

S0,3 = p0,2p2,3 = p
λ2

λ1 þ λ2

� �

S0,4 = p0,2p2,3 = q
λ2

λ1 þ λ2

� �

S0,5 = p0,2p2,3p3,5 = p
λ2

λ1 þ λ2

� �
λ1

α2 þ λ1 þ λ2

� �

S0,6 = p0,2p2,4p4,6 = q
λ2

λ1 þ λ2

� �
λ1

α3 þ λ1 þ λ2

� �

S0,7 = p0,2p2,3p3,7 = p
λ2

λ1 þ λ2

� �
λ2

α2 þ λ1 þ λ2

� �

S0,8 = p0,2p2,4p3,8 = p
λ2

λ1 þ λ2

� �
λ2

α3 þ λ1 þ λ2

� �

5 System Effectiveness Measures

For the base state “S0,” the analysis of two-unit briquetting system parameters is as
follows:

Mean Time to System Failure

As shown in the state transition diagram, S0, S1, S2, and S3 are the only operative
states that can be passed through before arriving at the failed state. The MTSF per
unit of time is shown in Table 5.3.

MTSF=
1

λ1 þ λ2

� �
1þ λ1

α1
þ λ2

1
η
þ p
α2 þ λ1 þ λ2

þ q
α3 þ λ1 þ λ2

��

��

D=
P
i= 0

S0,iμi

λ1þλ2

� �
α1 η α2þλ1þλ2 α2 α2

� �
α3þλ1þλ2 α3 α3

� �n oh i

λ1

λ2

5 Profit Optimization of Two-Unit Briquetting System Using Grey. . . 81

Table 5.3 MTSF

α1 = 0.75, α2 = 0.7,
α3 = 0.8

α1= 0.95, α2= 0.7,
α3 = 0.8

α1 = 0.75, α2 = 0.8,
α3 = 0.8

α1= 0.95, α2= 0.8,
α3 = 0.9

0.002 11.42149 11.39597 11.34749 11.2824

0.004 8.549903 8.532359 8.481771 8.427376

0.006 7.020997 7.00763 6.958824 6.911477

0.008 6.063165 6.052369 6.006471 5.964395

0.01 5.402127 5.393072 5.350334 5.312458

0.012 4.915656 4.907859 4.868215 4.833811

0.014 4.540929 4.534083 4.497346 4.46588

0.016 4.242281 4.236178 4.202122 4.173185

0.018 3.99792 3.992416 3.960809 3.934074

0.02 3.793755 3.788742 3.759366 3.734568

Table 5.4 System availability

α1 = 0.75, α2 = 0.7,
α3 = 0.8

α1 = 0.95, α2 = 0.7,
α3 = 0.8

α1 = 0.75, α2 = 0.8,
α3 = 0.8

α1 = 0.95, α2 = 0.8,
α3 = 0.9

0.1 0.98612 0.986089 0.98804 0.9889189

0.15 0.974067 0.974015 0.977491 0.9790785

0.2 0.960676 0.960604 0.965652 0.9679842

0.25 0.946733 0.946643 0.953214 0.956282

0.3 0.93271 0.932605 0.940607 0.9443776

0.35 0.918894 0.918775 0.928098 0.9325271

0.4 0.905452 0.905322 0.91585 0.9208907

0.45 0.89248 0.892341 0.903964 0.9095669

0.5 0.880027 0.879882 0.892495 0.8986135

0.55 0.868114 0.867963 0.88147 0.8880613

System Availability

A represents the likelihood that the system will be operating at time “t,” which may
be defined as the rate. According to the state transition diagram, only states S0, S1, S2,
S3, and S4 are operative, whereas all states are regenerative. System availability for
different repair rate is shown in Table 5.4.

A=N=D

N=
1

λ1 þ λ2

� �
1þ λ1

α1
þ λ2

1
η
þ p
α2 þ λ1 þ λ2

þ q
α3 þ λ1 þ λ2

��

8

= 1 1þ λ1 þ λ2 1 þ p 1þ λ1 þ λ2 þ q 1þ λ1 þ λ2

�	�

λ2

82 D. Garg and R. Garg

Table 5.5 Busy period

α1 = 0.75, α2 = 0.7,
α3 = 0.8

α1 = 0.95, α2 = 0.7,
α3 = 0.8

α1 = 0.75, α2 = 0.8,
α3 = 0.8

α1 = 0.95, α2 = 0.8,
α3 = 0.9

0.01 0.2151 0.213367 0.208443 0.203169

0.02 0.287955 0.286529 0.279712 0.273885

0.03 0.348433 0.347239 0.339207 0.333073

0.04 0.399442 0.398428 0.389624 0.383339

0.05 0.443045 0.442173 0.432892 0.426559

0.06 0.480744 0.479986 0.470432 0.464118

0.07 0.513664 0.512999 0.503311 0.497059

0.08 0.542658 0.54207 0.532346 0.526185

0.09 0.56839 0.567866 0.558174 0.552122

0.1 0.59138 0.590911 0.581298 0.575366

Busy Period

The repairmen are working in states j = 1 to 8 according to the state transition
diagram. As seen in Table 5.5, the base state “0” has a very busy period:

B=
N1

D

N1 =
1

λ1 þ λ2

� �

� λ1
α1

þ λ2
1
η
þ p
α2 þ λ1 þ λ2

1þ λ1
α2

þ λ2
α2

� �
þ q
α3 þ λ1 þ λ2

1þ λ1
α3

þ λ2
α3

���

D= already discussed

Expected Visits by Repairmen

Let “V” be the number of repairman visits that are scheduled to take place. A fresh
round of repairs begins at j = 1 to 2, as indicated by the state transition diagram
(Table 5.6).

V =
S0,1 þ S0,2

D
=

1
D

λ2

λ1

5 Profit Optimization of Two-Unit Briquetting System Using Grey. . . 83

Table 5.6 Visits

α1 = 0.75, α2 = 0.7,
α3 = 0.8

α1 = 0.95, α2 = 0.7,
α3 = 0.8

α1 = 0.75, α2 = 0.8,
α3 = 0.8

α1 = 0.95, α2 = 0.8,
α3 = 0.9

0.01 0.086339 0.08653 0.087071 0.087651

0.02 0.113927 0.114155 0.115246 0.116178

0.03 0.136829 0.13708 0.138767 0.140055

0.04 0.156145 0.156409 0.158698 0.160332

0.05 0.172656 0.172926 0.175803 0.177767

0.06 0.186932 0.187205 0.190644 0.192918

0.07 0.199398 0.19967 0.203642 0.206206

0.08 0.210377 0.210648 0.215121 0.217955

0.09 0.220121 0.220388 0.225331 0.228418

0.1 0.228827 0.22909 0.234473 0.237795

Table 5.7 Profit

α1 = 0.75, α2 = 0.7,
α3 = 0.8

α1 = 0.95, α2 = 0.7,
α3 = 0.8

α1 = 0.95, α2 = 0.9,
α3 = 0.8

α1 = 0.95,
α2 = 0.9, α3 = 1

0.01 386889.9 386866.5 388633.9 389437.8

0.02 375834.9 375791.5 378935.8 380378.3

0.03 363610.7 363548.6 368110 370223.3

0.04 350916.2 350837.6 356771.5 359546.8

0.05 338171.6 338078.7 345301 348708.6

0.06 325629.2 325524.3 333934.9 337935.2

0.07 313437.4 313322.5 322818.1 327367.8

0.08 301679.9 301556.7 312037.2 317092.7

0.09 290399.3 290269.4 301640.8 307160

0.1 279612.2 279476.8 291652.7 297596.2

Profit

We will consider a particular function with the aim of analyzing the system profit
(Table 5.7).

P=P1 A- pP2 V - qP3 V -P4 B0 -P5,h tð Þ= ηeηt,g1 tð Þ= α1e
- α

1
t,g2 tð Þ

= α2e
- α

2
t,and g3 tð Þ= α3e

- α
3
t:

where
P1 = when the system is operating at full capacity, revenue is generated per

unit time.
P2 = the cost of repairs performed by an ordinary repairman.
P3 = the cost of repairs performed by an expert repairman.

P = the amount of money you lose as a result of the repair taking longer than

84 D. Garg and R. Garg

4

expected.
P5 = setup and related costs.

6 Grey Wolf Optimizer

Grey wolf optimizer is a stochastic nature-inspired optimization algorithm that is
based on the food collection of grey wolves. Grey wolf optimizer when compared
with an optimization algorithm, alpha, beta, and delta of grey wolf optimizer are the
first three best solutions in the algorithm. Omega is those grey wolves who do not
directly participate in the hunting process but help improve the solution or attach to
the prey. Three steps in this algorithm are finding the prey, encircling the prey, and
attacking the prey. This simulation is formulated in mathematical operators and
termed a grey wolf optimizer [7] (Fig. 5.2 and Table 5.8).

For the different values of repair and failure rates, Table 5.9 shows the optimal
values of the profit function.

Fig. 5.2 Pseudo code of the
GWO algorithm

Table 5.8 Failure, inspec-
tion, and repair rate parame-
ters are subject to restrictions

Parameters Min Max

λ1 0.001 0.1

λ2 0.002 0.05

η 0 0.9

α1 0.4 0.9

α2 0.5 0.9

α3 0.5 1

5 Profit Optimization of Two-Unit Briquetting System Using Grey. . . 85

Table 5.9 Minimum, maxi-
mum, standard deviation,
mean, and median of profit
function by GWO

Minimum 398196.67

Maximum 398779.01

Mean 398586.20

Median 398655.72

Standard deviation 179.0002

Fig. 5.3 MTSF vs failure rate

7 Graphical Results and Discussion

Figure 5.3 shows the impact of MTSF on the failure rate. It’s easy to see that when
the failure rate climbs, so does the availability and vice versa. Profit and failure rates
are shown graphically in Figs. 5.4 and 5.5. As the failure rate grows, profit declines,
but the overall picture remains the same. The increase in the failure rate (λ2) from
0.02 to 0.04 results in a reduction of 25.14% in system failures in the interim
(MTSF). When the failure rate (λ2) increases from 0.1 to 0.55, the availability of
the system decreases by 11.8%. As indicated in Table 6.4, an additional benefit
of increasing repair rates (α2) and (α3) is that system availability is increased by
0.192% and 0.05189%, respectively, above baseline. In accordance with Table 5.5,
the repairman’s busy period increases by 33.7% when the failure rate is increased
from 0.1% to 0.15% (approx.). According to Table 5.6, when the failure rate (λ2) is
increased from 0.01 to 0.1, the expected number of repairers increases by a factor of
8.55, which is a factor of 2.65. Another advantage of maintaining a consistent failure
rate despite fluctuations in the repair rate is the reduction in the meantime to system
failure.

To better illustrate each of these points, we’ve included graphs for profit, avail-
ability, and MTSF.

86 D. Garg and R. Garg

Fig. 5.4 Availability vs failure rate

Fig. 5.5 Profit vs Failure rate

8 Conclusions

To learn more about how the two-unit biomass briquetting system works, a number
of factors were taken into consideration. An increase in failure rates has a negative
effect on availability, MTSF, and profit but has a positive effect on all three, as
inspection rates grow. To maximize system profitability, the grey wolf optimization

5 Profit Optimization of Two-Unit Briquetting System Using Grey. . . 87

technique is utilized to simultaneously control failure, inspection, and repair rate
parameters. There’s the best value of 398779.01 for profit by GWO algorithm for
repair and failure rate parameters (λ1, λ2, α1, α2, α3, η). As a result, the briquetting
machine is a very successful business venture. To put it another way, biomass
briquettes play a significant role in any coal or wood-burning appliance. The
operational parameter needs to be adjusted in order to get the best results.

This manuscript failed to address the issues of ignored faults and periodic
preventative maintenance. Preventive maintenance will be an important part of our
future efforts to improve the profitability of our two-unit briquetting system.

References

1. Raju, C.A., Jyothi, K.R., Satya, M., Praveena, U.: Studies on development of fuel briquettes for
household and industrial purpose. Int. J. Res. Eng. Technol. 3(2), 54–63 (2014)

2. Sharma, M.K., Priyank, G., Sharma, N.: Biomass briquette production: a propagation of
non-convention technology and future of pollution free thermal energy sources. Am. J. Eng.
Res. (AJER). 4(02), 44–50 (2015)

3. Shukla, S., Vyas, S.: Study of biomass briquettes, factors affecting its performance and
technologies based on briquettes. J. Environ. Sci. Toxicol. Food Technol. 9(11), 37–44 (2015)

4. Onukak, I.E., Mohammed-Dabo, I.A., Ameh, A.O., Okoduwa, S.I., Fasanya, O.O.: Production
and characterization of biomass briquettes from tannery solid waste. Recycling. 2(4), 17 (2017)

5. Sanap, R., Nalawade, M., Shende, J., Patil, P.: Automatic screw press briquette making
machine. Int. J. Novel Res. Electr. Mech. Eng. 3(1), 19–23 (2016)

6. Romallosa, A.R.D., Kraft, E.: Feasibility of biomass briquette production from municipal waste
streams by integrating the informal sector in the Philippines. Resources. 6(1), 12 (2017)

7. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61
(2014)

8. Garg, D., Garg, R.: Performance analysis of the briquette machine considering aneglected faults
with preventive maintenance. Int. J. Syst. Assur. Eng. Manag., 1–9 (2022)

9. Singh, J., Jaswal, R.A.: Evaluation of reliability parameter of thermal power plant by BFT.
Int. J. Adv. Eng. Technol. 4(3), 79–81 (2013)

10. Kongprasert, N., Wangphanich, P., Jutilarptavorn, A.: Charcoal briquettes from Madan wood
waste as an alternative energy in Thailand. Proc. Manuf. 30, 128–135 (2019)

11. Muazu, R.I., Borrion, A.L., Stegemann, J.A.: Life cycle assessment model for biomass fuel
briquetting. Waste Biomass Valoriz. 13(4), 2461–2476 (2022)

12. Kumar, A., Garg, D., Goel, P.: Mathematical modeling and behavioral analysis of a washing
unit in paper mill. Int. J. Syst. Assur. Eng. Manag. 10(6), 1639–1645 (2019)

13. Garg, D., Garg, R., Garg, V.: Inspecting briquette machine with different faults. Recent Adv.
Comput. Sci. Commun. (Formerly: Recent Patents on Computer Science) 15(4), 481–486
(2022)

14. Ullah, S., Noor, R.S., Gang, T.: Analysis of biofuel (briquette) production from forest biomass:
a socioeconomic incentive towards deforestation. Biomass Convers. Biorefinery, 1–15 (2021)

15. Orisaleye, J.I., Jekayinfa, S.O., Adebayo, A.O., Ahmed, N.A., Pecenka, R.: Effect of densifi-
cation variables on density of corn cob briquettes produced using a uniaxial compaction
biomass briquetting press. Energy Sourcest A. Recov. Util. Environ. Effects. 40(24),
3019–3028 (2018)

16. Raudah, Zulkifli: Optimization of binder addition and particle size for densification of coffee
husks briquettes using response surface methodology. IOP Conf. Ser.: Mater. Sci. Eng. 334,
012007 (2018)

88 D. Garg and R. Garg

17. Severy, M.A., Chamberlin, C.E., Eggink, A.J., Jacobson, A.E.: Demonstration of a pilot-scale
plant for biomass torrefaction and briquetting. Appl. Eng. Agric. 34(1), 85–98 (2018)

18. Arévalo, J., Quispe, G., Raymundo, C.: Sustainable Energy Model for the production of
biomass briquettes based on rice husk in low-income agricultural areas in Peru. Energy
Procedia. 141, 138–145 (2017)

19. Ijah, A.A., Bubakar, S.A., Folabi, A.O., Yodele, J.T., Kanni-john, R., Lagunju, O.E., et al.:
Determination of the calorific value of briquettes made from pinus caribaea and eucalyptus
citirodora sawdust. J. Mater. Sci. Res. Rev. 6(3), 46–50 (2020)

20. Yang, J., Wang, J., Li, J., Shi, L., Dai, X.: Optimum design of multidischarge outlet biomass
briquetting machine. Complexity. (2020)

21. Wasfy, K.I., Awny, A.: Production of high-quality charcoal briquettes from recycled biomass
residues. J. Soil Sci. Agric. Eng. 11(12), 779–785 (2020)

22. Aliyu, M., Mohammed, I.S., Lawal, H.A., Dauda, S.M., Balami, A.A., Usman, M., et al.: Effect
of compaction pressure and biomass type (rice husk and sawdust) on some physical and
combustion properties of briquettes. Arid Zone J. Eng. Technol. Environ. 17(1), 61–70 (2021)

23. Kumar, A.A., Jhansi, R., Vardhan, U.H., Gousia, S.M., Kumar, A.K.: Development and
evaluation of low pressure multi briquetting machine. AMA Agric. Mech. Asia Africa Latin
America. 50(1), 48–56 (2019)

24. Orisaleye, J.I., Ojolo, S.J.: Mathematical modelling of pressure distribution along the die of a
biomass briquetting machine. Int. J. Design Eng. 9(1), 36–50 (2019)

25. Garg, D., Garg, R.: Reliability modelling and performance analysis of bio-coal manufacturing
system with deviation in demand. Life Cycle Reliability Saf. Eng. 10(4), 403–409 (2021)

26. Shekhar, N.: Popularization of biomass briquettes: a means for sustainable rural development.
Asian J. Manage. Res. 2(1), 457–473 (2011)

27. Ravichandran, P., Corscadden, K.: Comparison of gaseous and particle emissions produced
from leached and un-leached agricultural biomass briquettes. Fuel Process. Technol. 128,
359–366 (2014)

28. Lubwama, M., Yiga, V.A., Muhairwe, F., Kihedu, J.: Physical and combustion properties of
agricultural residue bio-char bio-composite briquettes as sustainable domestic energy sources.
Renew. Energy. 148, 1002–1016 (2020)

29. Stolarski, M.J., Krzyżaniak, M., Warmiński, K., Niksa, D.: Energy consumption and costs of
heating a detached house with wood briquettes in comparison to other fuels. Energy Convers.
Manag. 121, 71–83 (2016)

30. Garg, V., Singh, A., Garg, D.: Biogeography-based optimization algorithm for solving emer-
gency vehicle routing problem in sudden disaster. In: Proceedings of International Conference
on Scientific and Natural Computing, pp. 101–110. Springer, Singapore (2021)

Chapter 6
Solving Portfolio Optimization Using
Sine-Cosine Algorithm EmbeddedMutation
Operations

Mousumi Banerjee, Vanita Garg, and Kusum Deep

1 Introduction

Portfolio optimization is the process in which investors receives appropriate guid-
ance regarding the selection of assets from a variety of other option. The traditional
asset location problem is that of an investor who wants to invest money in the stock
market in such a way that individual can get a reasonable rate of return while
minimizing risk. It is based on modern portfolio theory. MPT, first introduced by
Markowitz in 1950, is also known as mean-variance analysis method, and this is a
mathematical process which allows the investors to maximize returns for a given risk
level. In a study by Zhai et al. [39], hybrid uncertainty, which mixes random returns
and uncertain returns, is analysed using the chance theory. We explore the problem
of optimizing a portfolio with an unknown random variable, which is the total return.

A new mean risk modal based on this criterion to optimization is proposed by
Mehralizade et al. [28], along with a new risk criterion for uncertain random
portfolio selection. To solve the portfolio selection problem with uncertain random
returns, Ahmadzade et al. [2] used the idea of partial divergence metrics. Mehlawat
et al. [27] study uses higher moments to investigate a multi-objective portfolio
optimization issue in a chaotic, uncertain setting. We investigate a case with an
asset universe, in which some assets have recently been listed assets that lack
historical data while others have assets that have historical return data that is
sufficient for modelling as random variables. We incorporate skewness (i.e. the
third moment) in the portfolio optimization model and use mean absolute semi-
deviation as a risk indicator. Ahmadzade and Gao [1] established a mean-variance-
entropy model for uncertain random returns using the idea of covariance of uncertain
random variables. Huang et al.’s [18] study offers the deterministic equivalents of a

M. Banerjee · V. Garg (✉) · K. Deep
Division of Mathematics, SBAS, School of Basic & Applied Sciences, Galgotias University,
Greater Noida, Uttar Pradesh, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Singh et al. (eds.), Design and Applications of Nature Inspired Optimization,
Women in Engineering and Science, https://doi.org/10.1007/978-3-031-17929-7_6

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17929-7_6&domain=pdf
https://doi.org/10.1007/978-3-031-17929-7_6#DOI

1

90 M. Banerjee et al.

novel uncertain risk index model with background risk. Experts evaluate the security
returns and backdrop asset returns with the assumption that they are uncertain
variables. The portfolio problem between a risk-free and a risky asset in the presence
of background risk was addressed by Brandtner et al. [6], using the convex shortfall
risk measure.

Arhana and Iba [3] proposed a GA-based portfolio optimization method to
generate an investment portfolio. Markowitz has used the mean-variance model
and correlation variation model to present the expected return and risk of portfolio.
This method calculated portfolio value when transaction cost is involved. Bonami
and Lejeune [5] proposed portfolio optimization with PSO and solved the two types
of risky portfolio, unrestricted and restricted. Ma et al. [24] solved the portfolio
optimization problem with cardinally constraint method. Konno and Yamazaki [21]
proposed a portfolio optimization model for huge-scale optimization problem on
real-time basis. Solved the problem on a linear program as opposed to quadratic
programme.

Shiang-Tai-Liu [34] proposed a method to solve the portfolio optimization
problem with returns, a mean-absolute deviation risk function, and Zadeen’s exten-
sion principles are used. Gupta et al. [17] presented the three stages of multiple
decision-making portfolio in this study for financial and ethical criteria. GA
presented an excellent meta-heuristic approach to solve this portfolio optimization
problem [32] invented a interactive genetic algorithm (iGA) has been used to
analyzed the nonlinear problem gives better result than GA. Zhang and Liu [37]
endorse a hybrid version of fuzzy and genetic algorithm solving the fuzzy problems.
It is feasible to solve multigoal issues by remodelling to a single goal. Zhang and Liu
[31, 37] proposed a credibility multi-objective mean-semi entropy model with
background risk for multi-period portfolio selection.

The importance of hybridization is to unite the benefits and to construct a
strong model. Mansini et al. [25] proposed a solution to select a portfolio with
fixed transaction cost and mixed integer linear programming model that used semi-
deviation model to calculate the risk. Konno and Suzuki [22] proposed a mean-
variance-skewness (MVS) portfolio optimization model; in this model, any decreas-
ing utility function allows to maximize the third order approximation of the expected
utility. Singh and Dharmendra [35] presented a credit risk optimization model using
the l norm risk measure that is proposed for a portfolio of credit risky bonds.

Because the proposed model is written as a linear programming problem, it is
computationally efficient for large portfolios. ZhongFeng [38] proposed a hybrid
portfolio optimization and converted it to convex quadratic programming. Ertenlice
and Kalayci [10] conducted swarm intelligence research for portfolio optimization,
discussing algorithms and applications.

Hu et al. [19] studied the usage of evolutionary computation in the discovery of
buying and selling policies in the set of rules of stock buying and selling. They pro-
posed a hybrid technique that mixes the two styles of evaluation demonstrating via
simulations that inventory optimization the use of economic indices (derived from
essential evaluation) may be used to pick shares the pleasant organizations in phrases
of operations with return. De Mighel et.al. [8] provided a general framework for

6 Solving Portfolio Optimization Using Sine-Cosine Algorithm. . . 91

identifying portfolios that perform well out of sample even in the presence of
estimated error. This approach uses the sample covariance matrix to solve the
standard minimum variance problem. Califore [7] proposed an opportunity to
selection trees or pattern paths for multilevel portfolio allocation that results in
specific convex confined quadratic programming fashions that may be solved
globally and efficiently. The authors expand the multi-duration mean-variance
version to cope with competing uncertainty eventualities and advocate a worst-
case choice method that mixes a min-max approach with a stochastic optimization
set of rules primarily based totally on situation trees. Pinar [30] and Takriti and
Ahmed [36] proposed robust optimization in the context of two-stage planning
system. An efficient variant of the L-shaped decomposition approach for classical
stochastic linear programming can be used to solve a robust optimization model.

Advances in interior-point methods for some classes of nonlinear convex opti-
mization have made heuristics based on repeated solution of a convex optimization
problem possible. While these methods date back to the late 1960s (see, e.g. Fiacco
and McCormick [11]), Karmarkar’s interior-point method for linear programming
[20], which was shown to be more efficient than the simplex method in terms of
worst-case complexity analysis and in practice, ushered in the modern era.

Sharpe [33] proposed a linear goal programming model for open-end mutual
fund portfolios selection. Orito et al. [29] proposed a new technique to initialize the
population size using bordered Hessian that solved the problem with GA. Daun
[9] proposed the traditional single-goal approach, including the suggest variance
method, which solves the trouble by inclusive of one of the optimization
goals withinside the goal characteristic and stifling the other. When an investor
can promote securities quick in addition to purchase long and while an
element and scenario model of covariance is assumed, the study by Levy and
Markowitz [23] provides speedy algorithms for calculating mean-variance efficient
frontiers.

In this study, an attempt is made to solve the Markowitz’s classical mean-variance
model using a recently introduced algorithm SCA and five versions of SCA. The
result comapred with Laplacian BBO (LX-BBO). A brief literature study on BBO is
done by Garg and Deep [15]. An improved variant of BBO called Laplacian BBO
(LX-BBO) is developed for solving unconstrained optimization problems and is
compared to the unconstrained version of blended BBO [13, 14, 16]. Laplacian BBO
has proved its superiority over blended BBO for unconstrained optimization prob-
lems. Garg and Deep [12] solved the portfolio optimization problem using the
Laplacian biogeography and variant blended biogeography method.

The rest of the paper is organized as follows: Sect. 2 describes the Markowitz
model. The test problems, parameter settings, experimental results, and discussions
are presented in Sect. 3. Section 4 presents briefly about the standard SCA and
proposed approach of SCA. Analysis of result and comparison is presented in Sect.
6. Section 7 gives the conclusion of the present study.

" #

92 M. Banerjee et al.

2 Markowitz Model Based on Historical Stock Price Data

Markowitz Mean-Variance Model

Mean-Vriance Analysis technique to that investors choose which financial instru-
ments to invest is based on the level of risk they are willing to take (Risk tolerance).
Ideally, investors count on better returns after they spend money on riskier assets.
When measuring peril, buyers shouldn’t forget the ability deviation (i.e. the volatility
of the yield generated through an asset) from that asset’s anticipated yield. The
evaluation of suggest variance basically checks the suggest variance of the antici-
pated return on an investment. The mean-variance model embraced with three main
elements:

Rate of Return

Capital return is defined as the rate of return over a time interval or given period of
time. The following equation is used to calculate capital return mathematically:

ri,t =
pi,t - pi,t- 1 þ di,t

pi,t- 1
ð6:1Þ

where i = 1, 2, 3 - - -variety of capitals,

ri, t: returns on the capital over time t
pi, t: during the time period t closing price ith captial
di, t: during the time period t dividend price ith captial

Expected Return

The second factor of mean-variance evaluation is anticipated return. This is the
envisioned return that a protection is anticipated to produce, since it’s a primarily
based totally on historical data. The anticipated of return is not always 100%
guaranteed. Mathematically expected return is stated as:

r x1, x2, x3, - - - , xnð Þ=E
Xn
i= 1

Ri½ xi�=
Xn
i= 1

E Ri½ �xi =
Xn
i= 1

rixi ð6:2Þ

where [Ri] is the expectancy cost of random variable. Past data is used to calculate
the value of Ri.

6 Solving Portfolio Optimization Using Sine-Cosine Algorithm. . . 93

ri =E Ri½ �= 1
T

XT
t= 1

ri,t ð6:3Þ

Variance

Variance measures how remote or unfold the numbers in a statistics set are from the
mean, or average. A massive variance shows that the numbers are in addition unfold
out. A small variance shows a small unfold of numbers from the mean. The variance
can also be zero, which shows no deviation from the mean. When studying a funding
portfolio, variance can display how the returns of a safety are unfold out for the
duration of a given period. Mathematically, the variance of the ith assets is stated as
follows:

σ2i = δ Rið Þ=E Ri -E Ri½ �Þ2� �
=E Ri - riÞ2

� ��� ð6:4Þ

The covariance σij between asset return Ri and Rj is given as follows:

σij =E Ri -E Ri½ �ð Þ Rj -E Rj

� �� �� � ð6:5Þ

Using the archivable data, covariance σij is calculated as follows:

σij =
1
T

XT
i= 1

ri,t - rið Þ ri,j - rj
� � ð6:6Þ

σij can also be expressed in terms of correlation coefficient (ρij) as follows:

σij = ρijσiσj ð6:7Þ

As a result, the portfolio equation is defined by the equation:

δ x1, x2, - - - - - , xnð Þ=
Xn
i= 1

Xn
j= 1

xixjσij ð6:8Þ

=
i= 1

xipi:

P(

94 M. Banerjee et al.

Portfolio Formulation

Markovitz [26] developed the modern portfolio theory as a financial framework via
the trader’s attempt to take minimum risks and attain most return to a given funding
portfolio. The theory emphasizes that a higher return comes with a higher risk and
that looking at the expected risk and return of a single asset is insufficient. An
individual asset has a higher risk than an asset in a combined portfolio, as long as the
risks of the various assets are not directly related.

The modern portfolio theory assumes that a rational investor wants the maximum
return for a given level of risk and the least risk for a given level of expected return.
As a result, the asset weight vector is the state variable in the asset allocation optimal
solution, showing investors how much to invest in each asset in a given portfolio.
Weight vector x = [x1, x2, x3 - - - - xn] with xi as the weight of asset i is the
portfolio. The expected return for each asset in the portfolio is expressed in the
vector form r = [r1r2, - - -rn] with ri as the mean return of assets i . The portfolio
expected return is calculated using the weighted average of individual asset returnsPn

Statement of the Problem

The formulation of mean-variance method can be defined as:
Minimizing

Xn
i= 1

Xn
j= 1

xixjσij ð6:9Þ

Subject to

n

i= 1
ri = r0Pn

i= 1

xi = 1, xi ≥ 0 i= 1, 2......10 ð6:10Þ

3 Problem Description

The model is implemented using the stock market data obtained from the Indian
National Stock Exchange, Mumbai, by selecting ten companies at random. The data
is taken from the [12] paper proposed to solve the problem using the LX-BBO and
blended BBOmethod and another variant blended biogeography method. The mean-

ð Þ

6 Solving Portfolio Optimization Using Sine-Cosine Algorithm. . . 95

variance model is shown in Table 6.9. The formulation of the ten-variable
constrained optimization problem is as follows:

Problem 1

Minimize z= 0:00338x21 þ 0:4225x22 þ 0:00615x23 þ 0:00429x24

þ 0:00686x25 þ 0:00260x26 þ 0:00275x27 þ 0:00224x28 þ 0:01036x29

þ 0:00178x210 - 0:01584x1x2 þ 0:00712x1x3 þ 0:00404x1x4
þ 0:00374x1x5 þ 0:00294x1x6 þ 0:00610x1x7 þ 0:00170x1x8
þ 0:00384x1x9 þ 0:00192x1x10 - 0:01350x2x3 - 0:00236x2x4
þ 0:00614x2x5 þ 0:00298x2x6 þ 0:00236x2x7 þ 0:00622x2x8
þ 0:00384x2x9 þ 0:00192x2x10 þ 0:00586x3x4 þ 0:00456x3x5
þ 0:00472x3x6 þ 0:00182x3x7 þ 0:00396x3x8 þ 0:00648x3x9
þ 0:00178x3x10 þ 0:00884x4x5 þ 0:00516x4x6 þ 0:00190x4x7
þ 0:00464x4x8 þ 0:01158x4x9 þ 0:00288x4x10 þ 0:00696x5x6
þ 0:00362x5x7 þ 0:00530x5x8 þ 0:0124x5x9 þ 0:00384x5x10
þ 0:0017x6x7 þ 0:0040x6x8 þ 0:00766x6x9 þ 0:00284x6x10
þ 0:00190x7x8 þ 0:00324x7x9 - 0:00082x7x10 þ 0:00694x8x9
þ 0:00180x8x10 þ 0:0054x9 ð6:11Þ

Subject to r0 = 0:00728x1 - 0:03613x2 - 0:02414x3 þ 0:00706x4
- 0:00458x5 þ 0:00372x6 - 0:00461x7 þ 0:00413x8 - 0:0248x9
þ 0:00562x10 ð6:12Þ

x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 þ x8 þ x9 þ x10 = 1 ð6:13Þ
xi ≥ 0,i= 1,2,- - - - - - - - - ,10: 6:14

The above optimization approach is solved using sine-cosine algorithm-based
optimization.

Problem 2

The model is implemented using the stock market data (1 April 2020 to 31 March
2021) obtained from the Indian National Stock Exchange, Mumbai, by selecting ten
companies at random. Table 6.18 shows the monthly asset return. According to the
mean-variance model provided, Table 6.19 shows the expected returns calculated by

ð Þ

96 M. Banerjee et al.

Eq. 6.3. Equation 6.4 is used to calculate the variance, and Eq. 6.5 is used to calculate
the covariance.

Minimize z= 0:087175x21 þ 0:03x22 þ 0:0061x23 þ 0:001x24 þ 0:0056x25

þ 0:0056x26 þ 0:003841x27 þ 0:010814x28 þ 0:0169x29 þ 0:005133x210
- 0:0038x1x2 þ 0:0013x1x3 þ 0:005x1x4 þ 0:00238x1x5 þ 0:0022x1x6
þ 0:0023x1x7 þ 0:0041x1x8 þ 0:00509x1x9 - 0:00259x1x10
þ 0:00398 x2x3 - 0:0000000236x2x4 - 0:00250x2x5 - 0:000601x2x6
- 0:00088x2x7 þ 0:00142x2x8 þ 0:000841x2x9 þ 0:000375x2x10
- 0:00145x3x4 - 0:001x3x5 þ 0:00114x3x6 þ 0:00000332x3x7
þ 0:00000361x3x8 - 0:0017x3x9 þ 0:00026x3x10 þ 0:000202x4x5
þ 0:000676x4x6 þ 0:000706x4x7 þ 0:002142x4x8 þ 0:002336x4x9
þ 0:00257x4x10 - 0:00022x5x6 þ 0:000192x5x7 þ 0:000464x5x8
- 0:00336x5x9 - 0:00078x5x10 þ 0:000464x6x7 þ 0:002499x6x8
þ 0:007323x6x9 - 0:00336x6x10 þ 0:008177x7x8 þ 0:005679x7x9
- 0:00593x7x10 - 0:00418x8x9 - 0:00358x8x10 - 0:00418x9x10 ð6:15Þ

Subject to r0 = 0:13036x1 - 0:0265x2 - 0:1065x3 - 0:01833x4
- 0:0200x50:0252x6 - 0:00038x7 - 0:0153x8 - 0:0412x9 - 0:07308x10 ð6:16Þ

x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 þ x8 þ x9 þ x10 = 1 ð6:17Þ
xi ≥ 0,i= 1,2,- - - - - - - - - ,10 6:18

The above optimization problem is solved using sine-cosine algorithm-based
optimization.

4 Sine-Cosine Algorithm

Sine-cosine is constructed on mathematical capabilities of sine-cosine function and
discovering new feasible space using the two terms explore and exploit of search
space. The SCA method is not usually tormented by the importance and nonlinear
nature of the problem and even in other global strategies displays early convergence;
the SCA reveals the best solution with more efficaciousness with a quicker conver-
gence rate. The stability among the exploration and exploitation is the gain of this
optimization technique. For this purpose, SCA makes use of trigonometric sine and
cosine functions. At every step of the calculation, it updates the answers in line with
the subsequent equations: The equation are as follows:

�
6 Solving Portfolio Optimization Using Sine-Cosine Algorithm. . . 97

X tþ1ð Þ
ij = X tð Þ

ij þr1 cos r2ð Þjr3P tð Þ
ij -X tð Þ

ij j, r4 ≥ 0:5
X tð Þ
ij þr1 sin r2ð Þjr3P tð Þ

ij -X tð Þ
ij j, r4 ≤ 0:5

ð6:19Þ

where X tð Þ
ij represents the current individual I at iteration t. P tð Þ

ij shows the best
individual position at iteration t, and r1, r2, r3, and r4 are random parameters.

r1 = a-
ta

T max
ð6:20Þ

where t denotes the iteration and r1 is the main parameter that balances the explo-
ration and exploitation phase, decreasing linearly from a constant value a to 0 by
each iteration by Eq. 6.10, and r2 and r3 are random numbers.

The competency of SCA is different from other metaheuristic technique:

1. SCA works with a group of solution that benefit from the phenomenon of parallel
exploration.

2. It simultaneously investigates several regions of solution space for sine and
cosine function values outside the range [-1,1].

3. SCA investigates several promising solutions simultaneously during the explor-
atory process with sine-cosine value in the range [-1,1].

4. The best solution at a given point in the calculations is saved in a variable and
becomes the problem’s target ensuring that it never gets lost during the optimi-
zation phase.

5. The optimization process is convergent in nature (Table 6.1).

Table 6.1 Pseudo code of sine-cosine algorithm

Initiate {Evaluate the position Xi(i = 1, 2,- - - - n) and asses the objective function
Set the current best position Pt

i
Set Tmax to the maximum number of iterations.
While T< Tmax
for i = 1 : n
Update the parameter r1, r2,r3 and r4
Update Xi using equation (8)
if f Xtþ1

i

� �
< f Xt

i

��
))

refresh the current best position Pt
i

end if
end for
t = t + 1
end while
Return
the best solution Pi

n

98 M. Banerjee et al.

Mutation

Mutation is a vital operator in genetic algorithms (GAs), because it ensures renova-
tion of diversity in the evolving populations of GAs. It performs a crucial position in
making the general search efficient. GAs are both simple and powerful in terms of
computation, because they make no assumption about the solution space; genetic
algorithm is an excellent tool for solving optimization problem.

The affinity of GAs is one of their advantages. GA uses a population of individual
to search a solution space, making it less likely for them to become stuck in the local
optimum. This comes at a price, which is the computational time. The longer runtime
of Gas, on the other hand, can be reduced by terminating the evaluation earlier in
order to obtain a satisfactory solution. Banerjee and Garg [4], incorporated five
mutation operators power mutation, Polynomial mutation, Random mutation,
Cauchy mutation & Gaussian mutation in SCA and presented a new version of
SCA where cauchy & Random mutation performed better with constraint and
unconstrained problems.

Power Mutation

Power mutation is a new form of SCA that incorporates the power mutation reported
in (Banerjee and Garg). The power mutation p is set for 0.25 and p = 0.50. The
mutation’s strength is determined by the mutation’s index (p). The smaller value of p
should result in less fluctuation in the solution, while the larger value of p should
result in more diversity. The mutation operator that has been proposed is based on
power distribution. It’s known as power mutation. Its distribution function is defined
as follows:

f xð Þ= pxp- 1,0≤ x≤ 1 ð6:21Þ

And the density function is presented by:

F xð Þ= xp,0≤ x≤ 1 ð6:22Þ

The index of the distribution is denoted by p. The PM is used to generate a
solution y near a parent solution z that follows the previously mentioned distribution.
The mutated solution is then created using this formula below.

y= x- z x- xlð Þ if r< t
x- z xu - xð Þ if r≥ t

ð6:23Þ

n

2

2

6 Solving Portfolio Optimization Using Sine-Cosine Algorithm. . . 99

Polynomial Mutation

Polynomial muatation (Banerjee & Garg 2022) presented incorporated in SCA. A
new version of SCA in called Poly-SCA. To confound a solution in the
neighbourhood of a parent, a polynomial probability distribution is used; the muta-
tion operator adjusted the probability distribution to the left and right of a variable
value so that no value outside the specific range [a, b] is created. For a given parent
solution xE[xl, xu], mutated solution x’ is constructed.

x0 = xþδi x- xlð Þ if u≤ 0:5
xþδi xu - xð Þ if u> 0:5

, ð6:24Þ

Where uE[0, 1] is a random number. The values δl and δr are computed as given by
the formula.

δl = 2uð Þ 1
1þρ - 1 u≤ 0:5

δr = 1- 2 1- uðð ÞÞ 1
1þρ u> 0:5

where ρm [20, 100] is the user-defined parameter.

Random Mutation

Random mutation is incorporated in SCA.A new version of SCA is called
Rand-SCA. Suppose x is any given solution, then a rand mutation operator is used
as x 2 [xl,xu], and a random solution h is created using a neighbourhood of the
replaced solution.

h= xl þ xu - xlð Þ � rand ð6:25Þ

where rand [0, 1] represents a uniform distribution.

Gaussian Mutation

Gaussian mutation causes a small random change in the population. A random
number from Gaussian distribution N (0,1) with parameter 0 as a mean and 1 as
std. dev. is generated. X(i, j) is chosen; then, find a new generated position.

z=X i, jð Þ þ Ni 0, 1ð Þ ð6:26Þ

100 M. Banerjee et al.

Cauchy Mutation

Cauchy mutation is defined in SCA as the same way as G-SCA. Suppose a random
number is generated from the Cauchy distribution and defined by δi(t). The scale
parameter is represented by t, where t > 0. Consider the value t = 1 as used in
SCA-Cauchy. X(i, j) is chosen; then, find a new generated position

z=X i, jð Þ þ δi 1ð Þ ð6:27Þ

5 Numerical Analysis of Results Obtained by the Proposed
Version of SCA

Problem 1

The optimization problem described below is solved in two stages. The goal of the
first stage is to figure out what the value of an unknown r0 is in the restriction, given
in Eq. 6.16. r0 values are calculated for the upper and lower bounds, and this r0 range
is used in stage 2. The goal of stage 2 is to find the most cost-effective solution to the
optimization problem. Different portfolios are created by considering various ro
values. These portfolios are then used to find the most cost-effective solution to
the portfolio optimization problem.

Using SCA and variant of SCA, the value of undetermined r0 is calculated in
segment 1. The optimization problem is solved by removing the equality constraint
in Eq. 6.17. r0 min calculates the minimum value. The upper bound of r0, denoted by
rmax, is calculated by investing all of one’s money in the highest-returning asset. The
r0 values obtained are shown in Tables 6.2, 6.3, 6.4, 6.5, 6.6, and 6.7 for five the
versions of SCA (Table 6.8).

In segment 2, five distinct portfolios are considered, namely, Portfolio 1, Portfolio
2, Portfolio 3, Portfolio 4, and Portfolio 5, in the same way that five different values
r0 are considered. These values of r0 have to lie withinside the range (rmin,rmax)
acquired in segment 1. The solution of those optimization problem using SCA and
the variant of SCA is acquired with populace size 30, 50, and 100. Result obtained
by the algorithms are tabulated in Tables 6.9, 6.10, 6.11, 6.12, 6.13, 6.14, 6.15, 6.16,
and 6.17.

Table 6.8 depicts the expected rate of return is calculated over a specified range
for different population sizes 30, 50, and100 and applied five versions of sine-cosine
algorithm, compared the values with LX-BBO.

Result analysis for population size 30:
Figure 6.1 shows the Gaussian version of SCA gives an optimal portfolio with

min risk 0.0012 for population size 30. The graph depicts that risk increases as return
also increases while the difference between the maximum and minimum average

6 Solving Portfolio Optimization Using Sine-Cosine Algorithm. . . 101

Table 6.2 For various population sizes, the range of r0

The size of the population for SCA riskmin rmin rmax

30 0.001428 0.000213 0.00612

50 0.0008 0.000312 0.00612

100 0.00033 0.00000003 0.0878

Table 6.3 For various population sizes, the range of r0

The size of the population for PMSCA riskmin rmin rmax

30 0.0012 0.0000000567 0.909

50 0.0006 0.00000343 0.00989

100 0.00055 0.001528 0.909

Table 6.4 For various population sizes, the range of r0

The size of the population for Cauchy SCA riskmin rmin rmax

30 0.0001256 0.00009 0.909

50 0.00065 0.000676 0.8889

100 0.00076 0.00009 0.89876

Table 6.5 For various population sizes, the range of r0

The size of the population for Poly SCA riskmin rmin rmax

30 0.001278 0.00009 0.909

50 0.00057 0.000676 0.8889

100 0.00039 0.00009 0.89876

Table 6.6 For various population sizes, the range of r0

The size of the population for Gaussian SCA riskmin rmin rmax

30 0.0012 0.0000765 0.9998

50 0.00055 0.000098 0.565

100 0.00058 0.000089 0.8988

Table 6.7 For various population sizes, the range of r0

The size of the population for RM SCA riskmin rmin rmax

30 0.0015 0.0000011 0.007

50 0.00082 0.000121 0.6789

100 0.0004 0.0000343 0.00564

102 M. Banerjee et al.

Table 6.8 Comparison with
other NIA

Algorithm Population size rmin rmax

LX-BBO 30 0.000221 0.00728

50 0.00518 0.00728

100 -9E-06 0.0072

SCA 30 0.00213 0.00612

50 0.000312 0.00612

100 0.0000003 0.0878

PM-SCA 30 0.00000567 0.909

50 0.00000343 0.00989

100 0.001528 0.909

R-SCA 30 0.0000011 0.007

50 0.000121 0.6789

100 0.0000343 0.00564

C-SCA 30 0.0009 0.909

50 0.00676 0.8809

100 0.00009 0.89876

G-SCA 30 0.000765 0.9998

50 0.000098 0.565

100 0.000089 0.8988

Poly-SCA 30 0.00009 0.909

50 0.000676 0.8989

100 0.00009 0.89876

annual returns of the portfolio set decreases. The risk-reward trade-off is a trading
principle that connects the high risk and high return. The best risk-return trade-off is
determined by a number of factors, including the investor’s risk tolerance and the
ability to replace lost funds.

Result analysis for population size 50:
Figure 6.2 depicts SCA gives the best result with min risk 0.0005; it gives a set of

optimal portfolios to strike a balance between an investment’s expected return and its
defined level of risk.

Result analysis for population size 100:
Poly-SCA variant of SCA anticipated range of expected return of different

portfolio gives a good return with min risk 0.0013 for population size 100. Investing
your money across a range of asset classes and securities to lower the portfolio's
overall risk (Fig. 6.3 and Tables 6.18, 6.19, and 6.20).

6 Solving Portfolio Optimization Using Sine-Cosine Algorithm. . . 103

T
ab

le
6.
9

E
ffi
ci
en
t
so
lu
tio

n
of

po
rt
fo
lio

op
tim

iz
at
io
n
w
ith

po
pu

la
tio

n
si
ze

30
&

50
by

S
C
A

r 0
R
is
k

x 1
x 2

x 3
x 4

x 5
x 6

x 7
x 8

x 9
x 1

0

P
or
tf
ol
io

1
0.
00

02
3

0.
00

14
28

0
0

0.
30

2
0.
02

56
0.
25

0
0.
00

2
0.
10

2
0.
00

3
0.
21

0
0.
10

0

P
or
tf
ol
io

2
0.
00

24
4

0.
00

17
0.
05

0.
01

2
0

0
0.
23

5
0.
00

45
0.
12

0
0.
23

0
0.
14

0
0.
12

0

P
or
tf
ol
io

3
0.
00

44
9

0.
00

18
5

0.
00

3
0.
21

0
0.
12

0
0.
21

5
0.
14

5
0

0
0.
10

2
0.
11

0
0.
00

5

P
or
tf
ol
io

4
0.
00

55
1

0.
00

19
8

0
0.
05

43
0.
42

46
0.
24

05
0

0
0.
07

10
0

0.
12

30
0

P
or
tf
ol
io

5
0.
00

61
2

0.
00

62
0

0.
00

52
0

0.
00

20
0.
00

1
0.
10

2
0.
20

3
0.
40

3
0

0.
00

6
0

0

P
or
tf
ol
io

1
0.
00

02
3

0.
00

08
0.
00

5
0

0
0.
20

8
0.
31

0
0.
00

8
0

0.
02

5
0.
30

0

P
or
tf
ol
io

2
0.
00

24
4

0.
00

12
0.
00

12
0.
11

4
0.
03

0
0.
00

5
0.
50

2
0

0
0.
02

0
0.
20

0

P
or
tf
ol
io

3
0.
00

44
9

0.
00

18
0.
50

2
0.
00

2
0

0.
06

2
0.
20

6
0.
00

3
0.
00

1
0.
10

2
0

0.
10

0

P
or
tf
ol
io

4
0.
00

55
1

0.
00

2
0.
30

2
0.
13

3
0.
12

3
0.
00

7
0.
15

9
0

0
0.
16

2
0.
00

60
0

P
or
tf
ol
io

5
0.
00

62
0

0.
00

52
0

0.
00

20
0.
00

1
0.
10

2
0.
20

3
0.
40

3
0

0.
00

01
0.
03

0.
00

4
0

0
0

0
0

0
0

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

104 M. Banerjee et al.

T
ab

le
6.
10

E
ffi
ci
en
t
so
lu
tio

n
of

po
rt
fo
lio

op
tim

iz
at
io
n
w
ith

po
pu

la
tio

n
10

0
by

S
C
A
an
d
30

by
P
M
S
C
A

r 0
R
is
k

x 1
x 2

x 3
x 4

x 5
x 6

x 7
x 8

x 9
x 1

0

P
or
tf
ol
io

1
0.
00

07
48

0.
00

45
0.
00

1
0.
20

3
0.
50

2
0.
00

02
0.
31

0
0

0
0.
02

0
0.
30

0.
00

3

P
or
tf
ol
io

2
0.
00

48
2

0.
00

55
0.
40

2
0.
00

4
0.
00

20
0.
00

5
0

0
0.
00

23
0.
01

0
0.
20

0
0.
00

4

P
or
tf
ol
io

3
0.
00

6
0.
06

12
1

0
0.
00

6
0.
00

4
0.
06

2
0.
01

0
0.
07

0.
00

3
0

0.
05

0
0.
00

20

P
or
tf
ol
io

4
0.
00

67
0.
09

12
1

0
0

0.
00

7

P
or
tf
ol
io

5
0.
88

78
0.
88

78
0.
09

0.
01

0.
50

2
0.
20

3
0.
00

1
0

0.
05

0.
00

2
0.
01

0.
00

4

P
or
tf
ol
io

1
0.
00

00
34

3
0.
00

47
0.
00

52
8

0.
00

3
0.
50

2
0.
00

7
0.
00

8
0.
00

9
0.
00

1
0.
00

2
0.
05

5
0.
10

1

P
or
tf
ol
io

2
0.
00

26
8

0.
00

52
0.
00

70
2

0.
00

04
0.
00

30
2

0.
00

70
2

0.
01

02
0.
00

9
0.
10

1
0.
00

2
0.
00

4
0.
04

04

P
or
tf
ol
io

3
0.
01

25
0.
00

56
0.
00

65
0.
00

54
0.
00

12
3

0.
03

4
0.
00

45
0.
06

54
0.
00

06
0.
00

54
0.
03

4
0.
00

54

P
or
tf
ol
io

4
0.
10

0
0.
00

67
N
A
N

P
or
tf
ol
io

5
0.
92

98
0.
92

98
N
A
N

0
0

0
0

0
0

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

6 Solving Portfolio Optimization Using Sine-Cosine Algorithm. . . 105

T
ab

le
6.
11

E
ffi
ci
en
t
so
lu
tio

n
of

po
rt
fo
lio

op
tim

iz
at
io
n
w
ith

po
pu

la
tio

n
si
ze

50
an
d
10

0
by

P
M
S
C
A

r 0
R
is
k

x 1
x 2

x 3
x 4

x 5
x 6

x 7
x 8

x 9
x 1

0

P
or
tf
ol
io

1
0.
00

02
3

0.
00

06
0.
00

1
0.
20

3
0.
50

2
0.
00

02
0.
31

0
0

0
0.
02

0
0.
30

0.
00

3

P
or
tf
ol
io

2
0.
00

24
4

0.
00

12
12

0.
40

2
0.
00

4
0.
00

20
0.
00

5
0

0
0.
00

23
0.
01

0
0.
20

0
0.
00

4

P
or
tf
ol
io

3
0.
00

44
9

0.
00

13
15

0
0.
00

6
0.
00

4
0.
06

2
0.
01

0
0.
07

0.
00

3
0

0.
05

0
0.
00

20

P
or
tf
ol
io

4
0.
00

55
1

0.
00

15
17

1
0

0
0.
00

7

P
or
tf
ol
io

5
0.
00

62
0

0.
00

52
0.
09

0.
01

0.
50

2
0.
20

3
0.
00

1
0

0.
05

0.
00

2
0.
01

0.
00

4

P
or
tf
ol
io

1
0.
00

14
28

0.
00

05
5

0.
00

52
8

0.
00

3
0.
50

2
0.
00

7
0.
00

8
0.
00

9
0.
00

1
0.
00

2
0.
05

5
0.
10

1

P
or
tf
ol
io

2
0.
00

12
02

0.
00

09
5

0.
00

70
2

0.
00

04
0.
00

30
2

0.
00

70
2

0.
01

02
0.
00

9
0.
10

1
0.
00

2
0.
00

4
0.
04

04

P
or
tf
ol
io

3
0.
00

11
09

0.
00

11
0.
00

65
0.
00

54
0.
00

12
3

0.
03

4
0.
00

45
0.
06

54
0.
00

06
0.
00

54
0.
03

4
0.
00

54

P
or
tf
ol
io

4
0.
00

10
25

0.
00

19
3

N
A
N

P
or
tf
ol
io

5
0.
90

9
0.
00

15
N
A
N

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

106 M. Banerjee et al.

T
ab

le
6.
12

E
ffi
ci
en
t
so
lu
tio

n
of

po
rt
fo
lio

op
tim

iz
at
io
n
w
ith

po
pu

la
tio

n
si
ze

30
&

50
by

R
M
-
S
C
A

r 0
R
is
k

x 1
x 2

x 3
x 4

x 5
x 6

x 7
x 8

x 9
x 1

0

P
or
tf
ol
io

1
0.
00

00
00

11
0.
00

15
0.
00

5
0.
03

0.
00

4
0.
01

0.
60

1
0.
00

2
0.
10

1
0.
00

2
0.
00

1
0.
1

P
or
tf
ol
io

2
0.
00

23
0

0.
00

19
0.
00

3
0.
02

0.
20

2
0.
50

1
0.
00

2
0.
10

5
0

0.
10

2
0

0

P
or
tf
ol
io

3
0.
02

50
0.
00

21
0.
00

2
0.
03

0.
04

0.
00

2
0.
20

1
0.
00

6
0.
70

0
0

0.
10

1

P
or
tf
ol
io

4
0.
35

0
0.
00

22
N
A
N

P
or
tf
ol
io

5
0.
70

0.
00

4
N
A
N

P
or
tf
ol
io

1
0.
00

01
21

0.
00

08
2

0.
00

3
0.
04

0.
05

0.
05

0.
00

1
0.
04

5
0.
50

1
0.
00

1
0.
30

0.
00

1

P
or
tf
ol
io

2
0.
00

23
0

0.
00

15
0.
04

0.
00

5
0.
06

0.
06

0.
01

0.
05

0.
00

1
0.
02

0.
04

0.
5

P
or
tf
ol
io

3
0.
00

45
0

0.
00

15
67

0.
00

3
0.
05

0.
7

0.
7

0.
00

1
0.
05

0.
00

1
0.
20

0.
02

0.
00

1

P
or
tf
ol
io

4
0.
00

50
1

0.
00

16
0.
04

0.
05

0.
07

0.
7

0.
00

1
0.
1

0.
00

2
0.
20

0.
40

0.
00

1

P
or
tf
ol
io

5
0.
67

89
0.
09

8
N
A
N

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

6 Solving Portfolio Optimization Using Sine-Cosine Algorithm. . . 107

T
ab

le
6.
13

E
ffi
ci
en
t
so
lu
tio

n
of

po
rt
fo
lio

op
tim

iz
at
io
n
w
ith

po
pu

la
tio

n
si
ze

10
0
by

R
M
-S
C
A

&
30

by
P
ol
y-

S
C
A

r 0
R
is
k

x 1
x 2

x 3
x 4

x 5
x 6

x 7
x 8

x 9
x 1

0

P
or
tf
ol
io

1
0.
00

00
34

3
0.
00

04
0.
00

5
0.
03

0.
00

4
0.
01

0.
60

1
0.
00

2
0.
10

1
0.
00

2
0.
00

1
0.
1

P
or
tf
ol
io

2
0.
00

02
50

0.
00

08
5

0.
00

3
0.
02

0.
20

2
0.
50

1
0.
00

2
0.
10

5
0

0.
10

2
0

0

P
or
tf
ol
io

3
0.
00

16
0

0.
00

11
67

0.
00

2
0.
03

0.
04

0.
00

2
0.
20

1
0.
00

6
0.
70

0
0

0.
10

1

P
or
tf
ol
io

4
0.
00

35
0

0.
00

15
N
A
N

P
or
tf
ol
io

5
0.
00

56
4

0.
00

20
N
A
N

P
or
tf
ol
io

1
0.
00

00
9

0.
00

12
78

0.
00

3
0.
00

12
78

0.
05

0.
05

0.
00

1
0.
04

5
0.
1

0.
00

2
0.
00

4
0

P
or
tf
ol
io

2
0.
00

08
90

0.
00

14
56

0.
04

0.
00

14
56

0.
06

0.
06

0.
01

0.
00

5
0

0
0.
06

5
0.
04

3

P
or
tf
ol
io

3
0.
00

07
50

0.
00

16
28

0.
00

3
0.
00

16
28

0.
7

0.
7

0.
00

1
0

0.
76

7
0.
04

3
0

0

P
or
tf
ol
io

4
0.
00

50
1

0.
00

19
78

0.
04

0.
00

19
78

0.
07

0.
7

0.
00

1
0.
00

4
0.
00

12
0.
00

23
0.
00

45
0

P
or
tf
ol
io

5
0.
90

9
0.
05

6
N
A
N

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

108 M. Banerjee et al.

T
ab

le
6.
14

E
ffi
ci
en
t
so
lu
tio

n
of

po
rt
fo
lio

op
tim

iz
at
io
n
w
ith

po
pu

la
tio

n
si
ze

50
,1

00
by

P
ol
y-
S
C
A

r 0
R
is
k

x 1
x 2

x 3
x 4

x 5
x 6

x 7
x 8

x 9
x 1

0

P
or
tf
ol
io

1
0.
00

06
76

0.
00

05
7

0.
00

7
0.
00

3
0.
00

3
0.
43

0.
03

0.
00

4
0.
00

5
0.
06

5
0.
78

0

P
or
tf
ol
io

2
0.
00

03
50

0.
00

07
8

0.
04

0.
04

3
0

0.
00

32
0.
00

5
0.
00

2
0.
87

0.
00

6
0

0

P
or
tf
ol
io

3
0.
00

55
0

0.
00

09
8

N
A
N

P
or
tf
ol
io

4
0.
02

50
0.
00

15
N
A
N

P
or
tf
ol
io

5
0.
88

89
0.
00

22
N
A
N

P
or
tf
ol
io

1
0.
00

00
9

0.
00

03
9

0.
00

1
0.
00

06
0.
00

54
0.
00

76
0.
00

43
0.
03

0.
43

0.
34

0
0

P
or
tf
ol
io

2
0.
00

75
0

0.
00

07
8

0.
43

0.
00

43
0.
00

5
0.
00

54
0.
00

04
3

0.
54

0.
12

0
0.
44

0

P
or
tf
ol
io

3
0.
00

55
0

0.
00

14
56

N
A
N

P
or
tf
ol
io

4
0.
07

5
0.
00

18
N
A
N

P
or
tf
ol
io

5
0.
89

87
6

0.
00

16
5

N
A
N

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

6 Solving Portfolio Optimization Using Sine-Cosine Algorithm. . . 109

T
ab

le
6.
15

E
ffi
ci
en
t
so
lu
tio

n
of

po
rt
fo
lio

op
tim

iz
at
io
n
w
ith

po
pu

la
tio

n
si
ze

30
&

50
by

C
au
ch
y-

S
C
A

r 0
R
is
k

x 1
x 2

x 3
x 4

x 5
x 6

x 7
x 8

x 9
x 1

0

P
or
tf
ol
io

1
0.
00

00
9

0.
00

12
56

0.
02

0.
03

0.
04

0
0.
50

0.
00

1
0.
02

0
0.
01

0
0.
00

1
0.
02

0
0

P
or
tf
ol
io

2
0.
00

15
0

0.
00

16
28

0.
05

0.
02

0
0

0.
30

0.
20

0.
00

1
0.
07

0
0.
08

P
or
tf
ol
io

3
0.
00

80
0.
00

18
34

0.
06

0.
03

0.
70

0.
1

0.
20

0.
40

0.
00

5
0

0.
00

1
0.
07

0

P
or
tf
ol
io

4
0.
07

0
0.
00

19
28

0.
1

0.
01

0.
10

0.
02

0.
20

0.
05

0
0.
07

0
0.
05

0
0.
02

1
0.
10

P
or
tf
ol
io

5
0.
90

9
0.
00

20
N
A
N

P
or
tf
ol
io

1
0.
00

06
76

0.
00

06
5

0.
00

3
0.
50

0.
00

1
0.
30

0.
20

0.
60

0.
00

1
0.
20

0.
10

0.
00

1

P
or
tf
ol
io

2
0.
00

24
9

0.
00

09
5

0.
02

0.
30

0.
01

0.
50

0.
30

0.
00

1
0.
01

0.
20

0.
00

1
0.
03

P
or
tf
ol
io

3
0.
00

60
0.
00

11
25

N
A
N

P
or
tf
ol
io

4
0.
05

0
0.
00

13
56

N
A
N

P
or
tf
ol
io

5
0.
88

9
0.
07

00
N
A
N

–
–

–
–

–
–

–
–

110 M. Banerjee et al.

T
ab

le
6.
16

E
ffi
ci
en
t
so
lu
tio

n
of

po
rt
fo
lio

op
tim

iz
at
io
n
w
ith

po
pu

la
tio

n
si
ze

10
0
by

C
au
ch
y-
S
C
A
&

30
by

G
A
-
S
C
A

r 0
R
is
k

x 1
x 2

x 3
x 4

x 5
x 6

x 7
x 8

x 9
x 1

0

P
or
tf
ol
io

1
0.
00

00
9

0.
00

07
6

0.
00

5
0.
00

4
0.
00

05
6

0.
00

4
0.
00

5
0.
06

5
0.
07

6
0.
00

34
0.
00

8
0.
00

34

P
or
tf
ol
io

2
0.
00

17
5

0.
00

12
67

0.
03

0.
5

0.
00

6
0.
00

87
0.
00

65
4

0.
05

0.
00

5
0.
00

6
0.
03

0.
03

P
or
tf
ol
io

3
0.
00

20
0.
00

18
34

0.
05

02
3

0.
00

8
0.
65

0.
9

0.
08

7
0.
65

0.
56

0.
00

4
0.
04

P
or
tf
ol
io

4
0.
04

0
0.
00

19
28

0.
06

7
0.
06

0.
00

4
0.
00

8
0.
00

3
0.
06

5
0.
00

3
0.
00

7
0.
03

5
0.
00

3

P
or
tf
ol
io

5
0.
89

87
6

0.
06

98
0.
00

2
0.
09

0.
00

87
0.
05

0.
8

0.
00

4
0.
00

4
0.
00

34
0.
04

5
0.
00

5

P
or
tf
ol
io

1
0.
00

00
76

5
0.
00

12
0.
00

12
0.
00

4
0.
45

0.
00

43
0.
00

04
0.
00

65
0.
87

0.
00

02
0.
00

67
0.
00

56

P
or
tf
ol
io

2
0.
00

05
60

0.
00

17
0.
00

17
0.
00

65
0.
3

0.
00

56
0.
00

65
0.
09

0.
00

54
0.
34

0.
23

0.
07

P
or
tf
ol
io

3
0.
00

35
0

0.
00

21
23

0.
00

21
23

0.
00

05
4

0.
1

0.
00

76
0.
00

6
0.
2

0.
00

4
0.
56

0.
34

0.
00

6

P
or
tf
ol
io

4
0.
07

5
0.
00

22
0.
00

22
0.
00

06
0.
07

6
0.
87

0.
11

2
0.
45

0.
54

0
0.
00

2
0.
00

1

P
or
tf
ol
io

5
0.
99

98
0.
00

76
0.
87

8
N
A
N

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

6 Solving Portfolio Optimization Using Sine-Cosine Algorithm. . . 111

T
ab

le
6.
17

E
ffi
ci
en
t
so
lu
tio

n
of

po
rt
fo
lio

op
tim

iz
at
io
n
w
ith

po
pu

la
tio

n
50

&
10

0
by

G
au
ss
ia
n-

S
C
A

r 0
R
is
k

x 1
x 2

x 3
x 4

x 5
x 6

x 7
x 8

x 9
x 1

0

P
or
tf
ol
io

1
0.
00

00
98

0.
00

05
5

0.
00

3
0

0.
00

4
0.
00

7
0.
00

65
0.
54

0.
06

4
0.
06

0
0

P
or
tf
ol
io

2
0.
00

08
78

0.
00

08
5

0.
00

8
0

0.
10

0.
03

0.
00

8
0.
5

0.
05

0
0

0

P
or
tf
ol
io

3
0.
00

78
0

0.
00

11
0.
02

0.
00

6
0.
00

2
0.
03

0.
00

7
0

0.
00

45
0

0.
00

7
0.
00

76

P
or
tf
ol
io

4
0.
08

50
0.
00

13
0.
02

0.
05

0.
00

3
0.
00

2
0.
00

6
0.
00

4
0

0
0.
03

4
0.
00

54

P
or
tf
ol
io

5
0.
56

5
0.
00

98
0.
00

3
0.
00

6
0.
02

0.
00

3
0.
00

5
0

0
0

0.
00

56

P
or
tf
ol
io

1
0.
00

00
89

0.
00

05
8

0.
00

7
0.
05

0
0

0.
10

0.
03

0.
00

8
0.
5

0.
05

0

P
or
tf
ol
io

2
0.
00

07
7

0.
00

11
76

0.
00

65
0.
00

45
0

0.
00

6
0.
00

2
0.
03

0.
00

7
0

0.
00

45
0

P
or
tf
ol
io

3
0.
00

61
7

0.
00

13
45

0.
56

0
0

0.
05

0.
00

3
0.
00

2
0.
00

6
0.
00

4
0

0

P
or
tf
ol
io

4
0.
03

5
0.
00

16
N
A
N

P
or
tf
ol
io

5
0.
89

88
0.
00

20
N
A
N

4

112 M. Banerjee et al.

0.0012

0.0014

0.0016

0.0018

0.002

0.0022

1 2 3

RI
SK

RETURN
SCA PM-SCA R-SCA G-SCA C-SCA POLY-SCA

Fig. 6.1 Optimal portfolio for population size 30

0.0005

0.0007

0.0009

0.0011

0.0013

0.0015

0.0017

0.0019

0.0021

RI
SK

RETURN

SCA PM-SCA R-SCA G-SCA C-SCA Poly-SCA

Fig. 6.2 Optimal portfolio for population size 50

6 Solving Portfolio Optimization Using Sine-Cosine Algorithm. . . 113

0.0003

0.0005

0.0007

0.0009

0.0011

0.0013

0.0015

0.0017

0.0019

0.0021
RI
SK

RETURN
SCA PM-SCA R-SCA G-SCA C-SCA POLY-SCA

Fig. 6.3 Optimal portfolio for population size 100

Problem 2

The numerical analysis of the result is described similarly as in Sect. 5. Using SCA
and the variant of SCA, the value of undetermined r0 is calculated in segment 1. The
optimization problem is solved by removing the equality constraint in Eq. 6.16.
r0 min calculates the minimum value. The upper bound of r0, denoted by rmax, is
calculated by investing all of one’s money in the highest-returning asset. The
r0 values obtained are shown in Tables 6.21, 6.22, 6.23, 6.24, 6.25, and 6.26 for
the five versions of SCA.

In segment 2, five distinct portfolios are considered, namely, Portfolio 1, Portfolio
2, Portfolio 3, Portfolio 4, and Portfolio 5, in the same way that five different values
r0 are considered. These values of r0 have to lie withinside the range (rmin,rmax)
acquired in segment I. The solution of those optimization problem using SCA and
the variant of SCA is acquired with populace size 30, 50, and 100. The results
obtained by the algorithms are tabulated in Tables 6.27, 6.28, 6.29, 6.30, 6.31, 6.32,
6.33, 6.34, 6.35, and 6.36.

Table 6.37 depicts the expected rate of return that is calculated over a specified
range for different population sizes 30, 50, and100 and applied five versions of sine-
cosine algorithm, which compared the values with LX-BBO.

Result analysis for population size 30:
PM-SCA and poly-SCA give the best convergence graph with min risk 0.0013

and 0.0022 for population size 30, which is shown in Fig. 6.4.
Result analysis for population size 50:

114 M. Banerjee et al.

T
ab

le
6.
18

M
on

th
ly

as
se
ts
re
tu
rn

da
ta
fr
om

1s
t
A
pr
il
20

20
to

31
st
m
ar
ch

20
21

of
10

co
m
pa
ni
es

S
ec
ur
ity

na
m
e

A
pr
_2

0
M
ay
_2

0
Ju
ne
_2

0
Ju
ly
_2

0
A
ug

_2
0

S
ep
_2

0
O
ct
_2

0
N
ov

_2
0

D
ec
_2

0
Ja
n_

21
F
eb
_2

1
M
ar
_2

1

A
si
an

P
ai
nt
s
L
td

1.
05

53
26

0.
04

29
9

0.
00

25
85

0.
01

66
23

0.
10

70
24

0.
04

59
69

0.
11

33
21

0.
00

17
18

0.
24

79
12

- 0.
12

91
9

- 0.
05

40
6

0.
11

42
6

B
aj
aj
A
ut
o

L
td

–0
.0
32

17
0.
03

32
41

- 0.
03

21
7

- 0.
08

64
5

0.
02

98
15

- 0.
00

20
1

- 0.
09

03
2

- 0.
07

85
4

- 0.
14

02
3

0.
05

45
15

0.
03

48
99

- 0.
04

25
6

C
ip
la
L
td

-
0.
90

33
0.
01

23
39

- 0.
11

09
5

0.
00

92
5

- 0.
07

89
3

0.
02

67
73

0.
01

19
37

- 0.
09

06
8

-
0.
00

72
0.
04

93
- 0.
03

44
1

- 0.
04

63

G
ra
si
m

In
du

st
ri
es

L
td

0.
03

0.
03

-
0.
02

-
0.
06

-
0.
09

-
0.
04

-
0.
01

1
-
0.
06

-
0.
01

2
-
0.
01

2
-
0.
01

7
0.
03

A
m
bu

ja
C
em

en
t

L
td

- 0.
10

38
9

0.
01

05
9

-
0.
12

04
0.
04

53
7

0.
02

97
2

- 0.
16

44
2

- 0.
00

51
7

0.
04

90
27

0.
02

26
01

0.
11

02
4

- 0.
11

44
6

- 0.
00

06
5

H
D
F
C

B
an
k
L
td

0.
05

26
98

- 0.
10

71
4

0.
03

2
- 0.
07

44
3

0.
03

45
36

- 0.
08

86
7

- 0.
17

85
8

0.
00

31
68

0.
03

29
38

- 0.
09

37
8

0.
02

72
82

0.
05

76
0

H
in
du

st
n

U
ni
le
ve
r

L
td

0.
06

69
06

- 0.
05

62
6

- 0.
01

35
3

0.
04

37
1

0.
02

37
4

- 0.
00

14
7

- 0.
03

12
9

- 0.
10

73
7

0.
05

80
86

0.
06

18
42

- 0.
12

31
5

0.
03

30
3

K
ot
ak

M
ah
in
dr
a

B
an
k
L
td

0.
10

88
24

-
0.
10

03
- 0.
00

38
8

-
0.
02

54
0.
10

49
91

- 0.
18

04
3

- 0.
18

86
1

- 0.
04

43
5

0.
16

50
08

- 0.
03

78
6

0.
01

56
02

0.
00

24
0

S
ta
te
B
an
k

L
td

0.
18

10
29

- 0.
09

61
1

-
0.
06

79
-
0.
09

69
0.
14

34
- 0.
02

03
4

- 0.
22

51
8

- 0.
11

16
6

- 0.
02

53
5

-
0.
27

69
0.
07

09
5

0.
03

05
5

W
ip
ro

L
td

- 0.
10

26
8

- 0.
03

11
9

- 0.
21

81
9

0.
03

55
69

-
0.
13

4
- 0.
07

98
9

- 0.
02

79
6

- 0.
09

25
6

- 0.
07

57
4

0.
01

85
-
0.
00

93
- 0.
15

95
1

6 Solving Portfolio Optimization Using Sine-Cosine Algorithm. . . 115

Table 6.19 Expected return
of individual stocks

Security name Expected return

BAL 0.13036

CL -0.0265

APL -0.1065

GIL -0.01833

ACL -0.0200

HDFC 0.0252

HUL -0.003811

KMBL -0.01533

SBI -0.0412

WL -0.07308

Figure 6.5 depicts Cauchy-SCA gives the best result for population size 50.
Result analysis for population size 100:
This poly-SCA gives the best result with 100 population size in the year

2015–2016 and 2020–2021. As a result, portfolio optimization performed effec-
tively with 100 population size (Fig. 6.6).

6 Result Analysis

A sensitivity analysis, performed with population size 30, 50, 100 and an algorithm,
is applied in five different versions of SCA. Five different portfolios are presumed in
the numerical problem for two data set year 2015–2016 and year 2020–2021. The
convergence graphs for all of the cases derived with different population sizes. It is
seen that portfolio theory attitude depends entirely on the size of the population.
Because when the size of the population achieves 30, the risk goes up at the very
same speed as the rates of return. Whenever the population size is placed to 50, the
risk increases as the rates of return rise, but at a varying rates. When the size of the
population reaches 100, the risk would be almost consistent as the rates of return
enhance.

7 Conclusion

In this paper, we presented a novel attempt to solve the model of portfolio optimi-
zation for five variants of SCA. Portfolio diversification is one of the most important
tenets of investing and is essential for risk management. Diversification has numer-
ous advantages. It must, however, be done with caution. Modern investors do not
concentrate their wealth in a single security or a single type of security; instead, they

116 M. Banerjee et al.

T
ab

le
6.
20

C
ov

ar
ia
nc
e
an
d
va
ri
an
ce

fo
r
th
e
m
on

th
-t
o-
m
on

th
as
se
t
re
tu
rn
s

S
ec
ur
ity

na
m
e

A
P
L

B
A
L

C
L

G
IL

A
C
L

H
D
F
C

H
U
L

K
M
B
L

S
B
I

W
L

A
P
L

0.
08

71
75

0.
00

03
43

5
-
0.
07

0.
00

4
-
0.
00

04
0.
00

06
0.
00

99
11

0.
00

99
11

0.
01

82
84

-
0.
00

26
9

B
A
L

0.
00

03
43

5
0.
00

3
-
0.
03

0.
00

3
0.
00

10
0.
00

01
-
0.
00

02
2

-
0.
00

02
2

0.
00

20
33

0.
00

02
2

C
L

-
0.
07

-
0.
00

3
0.
00

61
-
0.
00

3
0.
00

60
-
0.
08

-
0.
00

44
2

-
0.
00

44
2

-
0.
01

93
2

0.
00

52
23

G
IL

0.
00

4
0.
00

3
-
0.
00

3
0.
00

1
-
0.
00

05
0.
00

00
04

6
0.
00

02
86

0.
00

02
86

4.
8E

-0
5

-
0.
00

01
3

A
C
L

-
0.
00

04
0.
00

10
0.
00

6
-
0.
00

05
0.
00

56
0.
00

13
0.
00

11
0.
00

11
-
0.
00

51
6

0.
00

22
36

H
D
F
C

0.
00

06
0.
00

01
-
0.
00

8
0.
00

00
04

6
0.
00

13
0.
00

56
0.
00

04
64

0.
00

04
64

0.
00

73
22

-
0.
00

33
6

H
U
L

0.
00

99
11

-
0.
00

02
2

-
0.
00

44
2

0.
00

02
86

0.
00

11
0.
00

04
64

0.
00

38
41

0.
00

23
4

0.
00

07
05

0.
00

03

K
M
B
L

0.
01

03
9

-
0.
00

02
2

-
0.
01

11
-
7.
6E

-0
5

0.
00

10
5

0.
00

63
61

0.
00

24
99

0.
01

08
14

0.
00

81
76

-
0.
00

21
3

S
B
I

0.
01

82
84

0.
00

20
33

-
0.
01

93
2

4.
8E

-0
5

-
0.
00

51
6

0.
00

73
22

0.
00

07
05

0.
00

81
76

0.
01

69
23

-
0.
00

41
7

W
L

-
0.
00

26
9

0.
00

02
2

0.
00

52
23

-
0.
00

01
3

0.
00

22
36

-
0.
00

33
6

-
0.
00

03
-
0.
00

21
3

-
0.
00

41
7

0.
00

51
33

6 Solving Portfolio Optimization Using Sine-Cosine Algorithm. . . 117

Table 6.21 For various population sizes, the range of r0

The size of the population for SCA riskmin rmin rmax

30 0.0005 0.000323 0.323

50 0.0017 0.0000545 0.8878

100 0.0112 0.0000897 0.8878

Table 6.22 For various population sizes, the range of r0

The size of the population for PMSCA riskmin rmin rmax

30 0.0013 0.0000343 0.9298

50 0.0013 0.000032 0.333

100 0.0025 0.0000434 0.5656

Table 6.23 For various population sizes, the range of r0

The size of the population Cauchy SCA riskmin rmin rmax

30 0.0022 0.00011 0.7773

50 0.00085 0.0000343 0.323

100 0.0013 0.000088 0.7766

Table 6.24 For various population sizes, the range of r0

The size of the population for Poly SCA riskmin rmin rmax

30 0.0022 0.000211 0.676

50 0.0011 0.00232 0.576

100 0.0013 0.0000656 0.576

Table 6.25 For various population sizes, the range of r0

The size of the population for Gaussian SCA riskmin rmin rmax

30 0.0056 0.0000332 0.9998

50 0.0012 0.0011 0.4434

100 0.0012 0.00011 0.8988

Table 6.26 For various population sizes, the range of r0

The size of the population for RM SCA riskmin rmin rmax

30 0.0037 0.000111 0.777

50 0.0056 0.000343 0.323

100 0.0012 0.00011 0.7766

118 M. Banerjee et al.

T
ab

le
6.
27

E
ffi
ci
en
t
so
lu
tio

n
of

po
rt
fo
lio

op
tim

iz
at
io
n
w
ith

po
pu

la
tio

n
30

&
50

by
S
C
A

r 0
R
is
k

x 1
x 2

x 3
x 4

x 5
x 6

x 7
x 8

x 9
x 1

0

P
or
tf
ol
io

1
0.
00

32
3

0.
00

26
0

0
0.
30

2
0.
01

34
0.
25

0
0.
00

1
0.
10

2
0.
00

4
0.
21

0
0.
10

0

P
or
tf
ol
io

2
0.
00

50
0.
00

31
0.
05

0.
01

2
0

0
0.
23

5
0.
00

45
0.
12

0
0.
23

0
0.
14

0
0.
12

0

P
or
tf
ol
io

3
0.
00

30
0.
00

33
2

0.
00

3
0.
21

0
0.
12

0
0.
21

5
0.
14

5
0

0
0.
10

2
0.
11

0
0.
00

5

P
or
tf
ol
io

4
0.
02

11
0.
00

41
0

0.
05

43
0.
42

46
0.
24

05
0

0
0.
07

10
0

0.
12

30
0

P
or
tf
ol
io

5
0.
32

3
0.
32

3
0.
00

70
0.
21

2
0.
00

53
0.
02

13
0.
42

3
0

0
0.
00

6
0

0

P
or
tf
ol
io

1
0.
00

06
41

0.
00

49
0.
00

5
0

0
0.
20

8
0.
31

0
0.
00

8
0

0.
02

5
0.
30

0

P
or
tf
ol
io

2
0.
00

32
4

0.
00

55
0.
00

12
0.
11

4
0.
03

0
0.
00

5
0.
50

2
0

0
0.
02

0
0.
20

0

P
or
tf
ol
io

3
0.
01

25
0.
00

58
0.
50

2
0.
00

2
0

0.
06

2
0.
20

6
0.
00

3
0.
00

1
0.
10

2
0

0.
10

0

P
or
tf
ol
io

4
0.
01

00
0.
00

66
0.
30

2
0.
13

3
0.
12

3
0.
00

7
0.
15

9
0

0
0.
16

2
0.
00

60
0

P
or
tf
ol
io

5
0.
88

78
0.
88

78
0.
00

20
0.
00

1
0.
10

2
0.
20

3
0.
40

3
0

0.
00

01
0.
03

0.
00

4
0

0
0

0
0

0
0

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

6 Solving Portfolio Optimization Using Sine-Cosine Algorithm. . . 119

T
ab

le
6.
28

E
ffi
ci
en
t
so
lu
tio

n
of

po
rt
fo
lio

op
tim

iz
at
io
n
w
ith

po
pu

la
tio

n
10

0
by

S
C
A
an
d
30

by
P
M
S
C
A

r 0
R
is
k

x 1
x 2

x 3
x 4

x 5
x 6

x 7
x 8

x 9
x 1

0

P
or
tf
ol
io

1
0.
00

07
48

0.
00

45
0.
00

1
0.
20

3
0.
50

2
0.
00

02
0.
31

0
0

0
0.
02

0
0.
30

0.
00

3

P
or
tf
ol
io

2
0.
00

48
2

0.
00

55
0.
40

2
0.
00

4
0.
00

20
0.
00

5
0

0
0.
00

23
0.
01

0
0.
20

0
0.
00

4

P
or
tf
ol
io

3
0.
00

6
0.
06

12
1

0
0.
00

6
0.
00

4
0.
06

2
0.
01

0
0.
07

0.
00

3
0

0.
05

0
0.
00

20

P
or
tf
ol
io

4
0.
00

67
0.
09

12
1

0
0

0.
00

7

P
or
tf
ol
io

5
0.
88

78
0.
88

78
0.
09

0.
01

0.
50

2
0.
20

3
0.
00

1
0

0.
05

0.
00

2
0.
01

0.
00

4

P
or
tf
ol
io

1
0.
00

00
34

3
0.
00

47
0.
00

52
8

0.
00

3
0.
50

2
0.
00

7
0.
00

8
0.
00

9
0.
00

1
0.
00

2
0.
05

5
0.
10

1

P
or
tf
ol
io

2
0.
00

26
8

0.
00

52
0.
00

70
2

0.
00

04
0.
00

30
2

0.
00

70
2

0.
01

02
0.
00

9
0.
10

1
0.
00

2
0.
00

4
0.
04

04

P
or
tf
ol
io

3
0.
01

25
0.
00

56
0.
00

65
0.
00

54
0.
00

12
3

0.
03

4
0.
00

45
0.
06

54
0.
00

06
0.
00

54
0.
03

4
0.
00

54

P
or
tf
ol
io

4
0.
10

0
0.
00

67
N
A
N

P
or
tf
ol
io

5
0.
92

98
0.
92

98
N
A
N

0
0

0
0

0
0

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

120 M. Banerjee et al.

T
ab

le
6.
29

E
ffi
ci
en
t
so
lu
tio

n
of

po
rt
fo
lio

op
tim

iz
at
io
n
w
ith

po
pu

la
tio

n
si
ze

50
&

10
0
by

P
M
S
C
A

r 0
R
is
k

x 1
x 2

x 3
x 4

x 5
x 6

x 7
x 8

x 9
x 1

0

P
or
tf
ol
io

1
0.
00

00
32

0.
00

01
3

0.
00

1
0.
20

3
0.
50

2
0.
00

02
0.
31

0
0

0
0.
02

0
0.
30

0.
00

3

P
or
tf
ol
io

2
0.
00

01
72

0.
00

15
0.
40

2
0.
00

4
0.
00

20
0.
00

5
0

0
0.
00

23
0.
01

0
0.
20

0
0.
00

4

P
or
tf
ol
io

3
0.
00

11
5

0.
00

19
0

0.
00

6
0.
00

4
0.
06

2
0.
01

0
0.
07

0.
00

3
0

0.
05

0
0.
00

20

P
or
tf
ol
io

4
0.
01

05
0.
00

2
1

0
0

0.
00

7

P
or
tf
ol
io

5
0.
33

2
0.
33

2
0.
09

0.
01

0.
50

2
0.
20

3
0.
00

1
0

0.
05

0.
00

2
0.
01

0.
00

4

P
or
tf
ol
io

1
0.
00

00
43

4
0.
00

43
0.
00

52
8

0.
00

3
0.
50

2
0.
00

7
0.
00

8
0.
00

9
0.
00

1
0.
00

2
0.
05

5
0.
10

1

P
or
tf
ol
io

2
0.
00

02
65

0.
00

56
0.
00

70
2

0.
00

04
0.
00

30
2

0.
00

70
2

0.
01

02
0.
00

9
0.
10

1
0.
00

2
0.
00

4
0.
04

04

P
or
tf
ol
io

3
0.
00

15
4

0.
00

59
0.
00

65
0.
00

54
0.
00

12
3

0.
03

4
0.
00

45
0.
06

54
0.
00

06
0.
00

54
0.
03

4
0.
00

54

P
or
tf
ol
io

4
0.
06

5
0.
00

64
N
A
N

P
or
tf
ol
io

5
0.
56

56
0.
56

56
N
A
N

0
0

0
0

0
0

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

6 Solving Portfolio Optimization Using Sine-Cosine Algorithm. . . 121

T
ab

le
6.
30

E
ffi
ci
en
t
so
lu
tio

n
of

po
rt
fo
lio

op
tim

iz
at
io
n
w
ith

po
pu

la
tio

n
50

&
10

0
by

P
M
S
C
A

r 0
R
is
k

x 1
x 2

x 3
x 4

x 5
x 6

x 7
x 8

x 9
x 1

0

P
or
tf
ol
io

1
0.
00

00
32

0.
00

01
3

0.
00

1
0.
20

3
0.
50

2
0.
00

02
0.
31

0
0

0
0.
02

0
0.
30

0.
00

3

P
or
tf
ol
io

2
0.
00

01
72

0.
00

15
0.
40

2
0.
00

4
0.
00

20
0.
00

5
0

0
0.
00

23
0.
01

0
0.
20

0
0.
00

4

P
or
tf
ol
io

3
0.
00

11
5

0.
00

19
0

0.
00

6
0.
00

4
0.
06

2
0.
01

0
0.
07

0.
00

3
0

0.
05

0
0.
00

20

P
or
tf
ol
io

4
0.
01

05
0.
00

2
1

0
0

0.
00

7

P
or
tf
ol
io

5
0.
33

2
0.
33

2
0.
09

0.
01

0.
50

2
0.
20

3
0.
00

1
0

0.
05

0.
00

2
0.
01

0.
00

4

P
or
tf
ol
io

1
0.
00

00
43

4
0.
00

43
0.
00

52
8

0.
00

3
0.
50

2
0.
00

7
0.
00

8
0.
00

9
0.
00

1
0.
00

2
0.
05

5
0.
10

1

P
or
tf
ol
io

2
0.
00

02
65

0.
00

56
0.
00

70
2

0.
00

04
0.
00

30
2

0.
00

70
2

0.
01

02
0.
00

9
0.
10

1
0.
00

2
0.
00

4
0.
04

04

P
or
tf
ol
io

3
0.
00

15
4

0.
00

59
0.
00

65
0.
00

54
0.
00

12
3

0.
03

4
0.
00

45
0.
06

54
0.
00

06
0.
00

54
0.
03

4
0.
00

54

P
or
tf
ol
io

4
0.
06

5
0.
00

64
N
A
N

P
or
tf
ol
io

5
0.
56

56
0.
56

56
N
A
N

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

122 M. Banerjee et al.

T
ab

le
6.
31

E
ffi
ci
en
t
so
lu
tio

n
of

po
rt
fo
lio

op
tim

iz
at
io
n
w
ith

po
pu

la
tio

n
si
ze

30
&

50
by

R
M
-
S
C
A

r 0
R
is
k

x 1
x 2

x 3
x 4

x 5
x 6

x 7
x 8

x 9
x 1

0

P
or
tf
ol
io

1
0.
00

01
1

0.
00

28
0.
00

5
0.
03

0.
00

4
0.
01

0.
60

1
0.
00

2
0.
10

1
0.
00

2
0.
00

1
0.
1

P
or
tf
ol
io

2
0.
00

56
2

0.
00

33
8

0.
00

3
0.
02

0.
20

2
0.
50

1
0.
00

2
0.
10

5
0

0.
10

2
0

0

P
or
tf
ol
io

3
0.
00

26
8

0.
00

39
0.
00

2
0.
03

0.
04

0.
00

2
0.
20

1
0.
00

6
0.
70

0
0

0.
10

1

P
or
tf
ol
io

4
0.
01

42
0.
00

44
N
A
N

P
or
tf
ol
io

5
0.
77

0.
77

N
A
N

P
or
tf
ol
io

1
0.
00

03
43

0.
00

5
0.
00

3
0.
04

0.
05

0.
05

0.
00

1
0.
04

5
0.
50

1
0.
00

1
0.
30

0.
00

1

P
or
tf
ol
io

2
0.
00

47
8

0.
00

53
0.
04

0.
00

5
0.
06

0.
06

0.
01

0.
05

0.
00

1
0.
02

0.
04

0.
5

P
or
tf
ol
io

3
0.
00

26
1

0.
00

58
0.
00

3
0.
05

0.
7

0.
7

0.
00

1
0.
05

0.
00

1
0.
20

0.
02

0.
00

1

P
or
tf
ol
io

4
0.
01

28
0.
00

66
0.
04

0.
05

0.
07

0.
7

0.
00

1
0.
1

0.
00

2
0.
20

0.
40

0.
00

1

P
or
tf
ol
io

5
0.
32

3
0.
32

3
N
A
N

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

6 Solving Portfolio Optimization Using Sine-Cosine Algorithm. . . 123

T
ab

le
6.
32

E
ffi
ci
en
t
so
lu
tio

n
of

po
rt
fo
lio

op
tim

iz
at
io
n
w
ith

po
pu

la
tio

n
si
ze

10
0
by

R
M
-S
C
A

&
30

by
P
ol
y-

S
C
A

r 0
R
is
k

x 1
x 2

x 3
x 4

x 5
x 6

x 7
x 8

x 9
x 1

0

P
or
tf
ol
io

1
0.
00

01
1

0.
00

44
0.
00

5
0.
03

0.
00

4
0.
01

0.
60

1
0.
00

2
0.
10

1
0.
00

2
0.
00

1
0.
1

P
or
tf
ol
io

2
0.
00

56
2

0.
00

48
0.
00

3
0.
02

0.
20

2
0.
50

1
0.
00

2
0.
10

5
0

0.
10

2
0

0

P
or
tf
ol
io

3
0.
00

36
2

0.
00

53
0.
00

2
0.
03

0.
04

0.
00

2
0.
20

1
0.
00

6
0.
70

0
0

0.
10

1

P
or
tf
ol
io

4
0.
01

35
0.
00

58
N
A
N

P
or
tf
ol
io

5
0.
77

66
0.
77

66
N
A
N

P
or
tf
ol
io

1
0.
00

02
11

0.
00

33
0.
00

3
0.
04

0.
05

0.
05

0.
00

1
0.
04

5
0.
1

0.
00

2
0.
00

4
0

P
or
tf
ol
io

2
0.
00

56
5

0.
00

37
0.
04

0.
00

5
0.
06

0.
06

0.
01

0.
00

5
0

0
0.
06

5
0.
04

3

P
or
tf
ol
io

3
0.
02

68
0.
00

44
0.
00

3
0.
05

0.
7

0.
7

0.
00

1
0

0.
76

7
0.
04

3
0

0

P
or
tf
ol
io

4
0.
01

28
0.
00

48
0.
04

0.
05

0.
07

0.
7

0.
00

1
0.
00

4
0.
00

12
0.
00

23
0.
00

45
0

P
or
tf
ol
io

5
0.
67

6
0.
67

6
N
A
N

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

124 M. Banerjee et al.

T
ab

le
6.
33

E
ffi
ci
en
t
so
lu
tio

n
of

po
rt
fo
lio

op
tim

iz
at
io
n
w
ith

po
pu

la
tio

n
si
ze

50
an
d
10

0
by

P
ol
y-
S
C
A

r 0
R
is
k

x 1
x 2

x 3
x 4

x 5
x 6

x 7
x 8

x 9
x 1

0

P
or
tf
ol
io

1
0.
00

23
2

0.
00

49
0.
00

7
0.
00

3
0.
00

3
0.
43

0.
03

0.
00

4
0.
00

5
0.
06

5
0.
78

0

P
or
tf
ol
io

2
0.
04

68
0.
00

57
0.
04

0.
04

3
0

0.
00

32
0.
00

5
0.
00

2
0.
87

0.
00

6
0

0

P
or
tf
ol
io

3
0.
02

67
0.
00

68
N
A
N

P
or
tf
ol
io

4
0.
01

20
0.
00

71
N
A
N

P
or
tf
ol
io

5
0.
57

6
0.
57

6
N
A
N

P
or
tf
ol
io

1
0.
00

00
65

6
0.
00

45
0.
00

1
0.
00

06
0.
00

54
0.
00

76
0.
00

43
0.
03

0.
43

0.
34

0
0

P
or
tf
ol
io

2
0.
00

05
68

0.
00

57
0.
43

0.
00

43
0.
00

5
0.
00

54
0.
00

04
3

0.
54

0.
12

0
0.
44

0

P
or
tf
ol
io

3
0.
00

27
8

0.
00

71
N
A
N

P
or
tf
ol
io

4
0.
01

78
0.
00

78
N
A
N

P
or
tf
ol
io

5
0.
57

6
0.
57

6
N
A
N

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–

6 Solving Portfolio Optimization Using Sine-Cosine Algorithm. . . 125

T
ab

le
6.
34

E
ffi
ci
en
t
so
lu
tio

n
of

po
rt
fo
lio

op
tim

iz
at
io
n
w
ith

po
pu

la
tio

n
si
ze

30
&

50
by

C
au
ch
y-

S
C
A

r 0
R
is
k

x 1
x 2

x 3
x 4

x 5
x 6

x 7
x 8

x 9
x 1

0

P
or
tf
ol
io

1
0.
00

01
1

0.
00

32
0.
02

0.
03

0.
04

0
0.
50

0.
00

1
0.
02

0
0.
01

0
0.
00

1
0.
02

0
0

P
or
tf
ol
io

2
0.
00

78
2

0.
00

37
0.
05

0.
02

0
0

0.
30

0.
20

0.
00

1
0.
07

0
0.
08

P
or
tf
ol
io

3
0.
00

68
4

0.
00

42
0.
06

0.
03

0.
70

0.
1

0.
20

0.
40

0.
00

5
0

0.
00

1
0.
07

0

P
or
tf
ol
io

4
0.
07

7
0.
00

46
0.
1

0.
01

0.
10

0.
02

0.
20

0.
05

0
0.
07

0
0.
05

0
0.
02

1
0.
10

P
or
tf
ol
io

5
0.
77

73
0.
77

73
N
A
N

P
or
tf
ol
io

1
0.
00

00
34

3
0.
00

55
0.
00

3
0.
50

0.
00

1
0.
30

0.
20

0.
60

0.
00

1
0.
20

0.
10

0.
00

1

P
or
tf
ol
io

2
0.
00

04
36

0.
00

67
0.
02

0.
30

0.
01

0.
50

0.
30

0.
00

1
0.
01

0.
20

0.
00

1
0.
03

P
or
tf
ol
io

3
0.
00

32
0

0.
00

68
N
A
N

P
or
tf
ol
io

4
0.
01

05
0.
00

76
N
A
N

P
or
tf
ol
io

5
0.
32

3
0.
32

3
N
A
N

–
–

–
–

–
–

–
–

126 M. Banerjee et al.

T
ab

le
6.
35

E
ffi
ci
en
t
so
lu
tio

n
of

po
rt
fo
lio

op
tim

iz
at
io
n
w
ith

po
pu

la
tio

n
si
ze

10
0
by

C
au
ch
y-
S
C
A
&

30
by

G
A
-
S
C
A

r 0
R
is
k

x 1
x 2

x 3
x 4

x 5
x 6

x 7
x 8

x 9
x 1

0

P
or
tf
ol
io

1
0.
00

00
08

8
0.
00

44
0.
00

5
0.
00

4
0.
00

05
6

0.
00

4
0.
00

5
0.
06

5
0.
07

6
0.
00

34
0.
00

8
0.
00

34

P
or
tf
ol
io

2
0.
00

07
28

0.
00

05
0.
03

0.
5

0.
00

6
0.
00

87
0.
00

65
4

0.
05

0.
00

5
0.
00

6
0.
03

0.
03

P
or
tf
ol
io

3
0.
00

62
0

0.
00

56
0.
05

02
3

0.
00

8
0.
65

0.
9

0.
08

7
0.
65

0.
56

0.
00

4
0.
04

P
or
tf
ol
io

4
0.
01

58
0.
00

68
0.
06

7
0.
06

0.
00

4
0.
00

8
0.
00

3
0.
06

5
0.
00

3
0.
00

7
0.
03

5
0.
00

3

P
or
tf
ol
io

5
0.
77

66
0.
77

66
0.
00

2
0.
09

0.
00

87
0.
05

0.
8

0.
00

4
0.
00

4
0.
00

34
0.
04

5
0.
00

5

P
or
tf
ol
io

1
0.
00

00
76

5
0.
00

27
0.
00

7
0.
00

4
0.
45

0.
00

43
0.
00

04
0.
00

65
0.
87

0.
00

02
0.
00

67
0.
00

56

P
or
tf
ol
io

2
0.
00

06
50

0.
00

32
0.
07

0.
00

65
0.
3

0.
00

56
0.
00

65
0.
09

0.
00

54
0.
34

0.
23

0.
07

P
or
tf
ol
io

3
0.
00

56
0

0.
00

37
0.
45

0.
00

05
4

0.
1

0.
00

76
0.
00

6
0.
2

0.
00

4
0.
56

0.
34

0.
00

6

P
or
tf
ol
io

4
0.
03

40
0.
00

46
0.
00

6
0.
00

06
0.
07

6
0.
87

0.
11

2
0.
45

0.
54

0
0.
00

2
0.
00

1

P
or
tf
ol
io

5
0.
99

8
0.
99

8
0.
87

8
N
A
N

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

6 Solving Portfolio Optimization Using Sine-Cosine Algorithm. . . 127

T
ab

le
6.
36

E
ffi
ci
en
t
so
lu
tio

n
of

po
rt
fo
lio

op
tim

iz
at
io
n
w
ith

po
pu

la
tio

n
si
ze

50
&

10
0
by

G
au
ss
ia
n-

S
C
A

r 0
R
is
k

x 1
x 2

x 3
x 4

x 5
x 6

x 7
x 8

x 9
x 1

0

P
or
tf
ol
io

1
0.
00

00
98

0.
00

48
0.
00

3
0

0.
00

4
0.
00

7
0.
00

65
0.
54

0.
06

4
0.
06

0
0

P
or
tf
ol
io

2
0.
00

06
8

0.
00

58
0.
00

8
0

0.
10

0.
03

0.
00

8
0.
5

0.
05

0
0

0

P
or
tf
ol
io

3
0.
00

52
0.
00

66
0.
02

0.
00

6
0.
00

2
0.
03

0.
00

7
0

0.
00

45
0

0.
00

7
0.
00

76

P
or
tf
ol
io

4
0.
02

8
0.
00

71
0.
02

0.
05

0.
00

3
0.
00

2
0.
00

6
0.
00

4
0

0
0.
03

4
0.
00

54

P
or
tf
ol
io

5
0.
56

5
0.
56

5
0.
00

3
0.
00

6
0.
02

0.
00

3
0.
00

5
0

0
0

0.
00

56

P
or
tf
ol
io

1
0.
00

00
89

0.
00

47
0.
00

7
0.
05

0
0

0.
10

0.
03

0.
00

8
0.
5

0.
05

0

P
or
tf
ol
io

2
0.
00

07
80

0.
00

05
0.
00

65
0.
00

45
0

0.
00

6
0.
00

2
0.
03

0.
00

7
0

0.
00

45
0

P
or
tf
ol
io

3
0.
00

64
0

0.
00

62
0.
56

0
0

0.
05

0.
00

3
0.
00

2
0.
00

6
0.
00

4
0

0

P
or
tf
ol
io

4
0.
05

20
0.
00

07
N
A
N

P
or
tf
ol
io

5
0.
89

88
0.
89

98
N
A
N

4

128 M. Banerjee et al.

Table 6.37 Comparison with
other NIA – 2020–21

Algorithm Population size rmin rmax

LX-BBO 30 0.000221 0.00728

50 0.00518 0.00728

100 -9E-06 0.0072

SCA 30 0.000343 0.9298

50 0.00032 0.333

100 0.0000434 0.5656

PM-SCA 30 0.0000343 0.9298

50 0.000032 0.333

100 0.0000434 0.5656

R-SCA 30 0.00011 0.7777

50 0.000343 0.323

100 0.00011 0.7766

C-SCA 30 0.00011 0.7773

50 0.00000343 0.323

100 0.000088 0.7766

G-SCA 30 0.0000332 0.9998

50 0.0011 0.4434

100 0.00011 0.8988

Poly-SCA 30 0.000211 0.676

50 0.00232 0.576

100 0.0000656 0.576

0.0026

0.0031

0.0036

0.0041

0.0046

0.0051

0.0056

1 2 3

RI
SK

RETURN
SCA PM-SCA R-SCA G-SCA C-SCA POLY-SCA

Fig. 6.4 Optimal portfolio for population size 30

4

4

6 Solving Portfolio Optimization Using Sine-Cosine Algorithm. . . 129

0.0046

0.0051

0.0056

0.0061

0.0066

0.0071

0.0076

1 2 3

RI
SK

RETURN
SCA PM-SCA R-SCA G-SCA C-SCA POLY-SCA

Fig. 6.5 Optimal portfolio for population size 50

0.004

0.0045

0.005

0.0055

0.006

0.0065

0.007

0.0075

1 2 3

RI
SK

RETURN
SCA PM-SCA R-SCA G-SCA C-SCA POLY-SCA

Fig. 6.6 Optimal portfolio for population size 100

diversify their portfolio by investing in a variety of securities. Portfolio’s variance
can be reduced by proper diversification for a given level of return. Diversification’s
benefits in terms of maintaining a portfolio’s expected return (while reducing
portfolio risk at the same time) can be seen when assets with low or even negative
correlation are combined. The sensitivity analysis on five algorithms for different
population sizes concludes that poly-SCA performed better than another variant of
SCA for portfolio-based optimization.

130 M. Banerjee et al.

References

1. Ahmadzade, H., Gao, R.: Covariance of uncertain random variables and its application to
portfolio optimization. J. Ambient. Intell. Humaniz. Comput. 11(4) (2019). https://doi.org/10.
1007/s12652-019-01323-0

2. Ahmadzade, H., Gao, R., Dehghan, M.H., Ahmadi, R.: Partial triangular entropy of uncertain
random variables and its application. J. Ambient. Intell. Humaniz. Comput. 9, 1455–1464
(2018)

3. Aranha, C., Iba, H.: Modelling cost into a genetic algorithm-based portfolio optimization
system by seeding and objective sharing. In: Proceedings of IEEE Congress on Evolutionary
Computation, Singapore, pp. 196–203 (2007)

4. Banerjee, M., Garg, V. (communicated): Solving structural and reliability optimization prob-
lems by investing efficient mutation strategies embedded in Sine-Cosine Algorithm. Int. J. Syst.
Assur. Eng. Manag. (2022)

5. Bonami, P., Lejeune, M.A.: An exact solution approach for portfolio optimization problems
under stochastic and integer constraints. Oper. Res. 57, 650–670 (2009)

6. Brandtner, M., Wolfgang, K., Rischau, R.: Entropic risk measures and their comparative statics
in portfolio selection: coherence vs convexity. Eur. J. Oper. Res. 264, 707–716 (2018)

7. Califore, G.C.: Multi-period portfolio optimization with linear control policies. Automatica.
44(10), 2463–2473 (2008)

8. Daun,Y.C.,: A Multi-objective Approach to portfolio optimization. 8, 1–12 (2007)
9. DeMiguel, V., Garlappi, L., Nogales, F.J., Uppal, R.: A generalized approach to portfolio

optimization: improving performance by constraining portfolio norms. Manag. Sci. 55,
798–812 (2009)

10. Ertenlice, O., Kalayci, C.B.: A survey of swarm intelligence for portfolio optimization: algo-
rithms and applications. Swarm Evol. Comput. 39, 36–52 (2018)

11. Fiacco, A., Cormick, M.C.G.: Nonlinear programming: sequential unconstrained minimization
techniques. Comput. J. 12, 207 (1968)

12. Garg, V., Deep, K.: Portfolio optimization using Laplacian biogeography-based optimization.
Springer. 56, 1117–1141 (2019)

13. Garg, V., Deep, K.: Efficient mutation strategies embedded in Laplacian-biogeography-based
optimization algorithm for unconstrained function minimization. Int. J. Appl. Swarm Intell. 7,
12–44 (2016a)

14. Garg, V., Deep, K.: Performance of Laplacian biogeography-based optimization algorithm on
CEC 2014 continuous optimization benchmarks and camera calibration problem. Swarm Evol.
Comput. 27, 132–144 (2016b)

15. Garg, V., Deep, K.: A state-of-the-art review of biogeography-based optimization. Adv. Intell.
Syst. Comput. 336, 533–549 (2015)

16. Garg, V., Deep, K.: Constrained Laplacian biogeography-based optimization. Int. J. Syst.
Assur. Eng. Manag. 8, 867–885 (2016)

17. Gupta, P., Mehlawat, M.K., Inuiguchi, M., Chandra, S.: Fuzzy portfolio optimization. In:
Studies in Fuzzy Items & Soft Computings, vol. 316. Springer, Berlin/Heidelberg (2014)

18. Huang, X., Jiang, G., Gupta, P., Mehlawat, M.K.: A risk index model for uncertain portfolio
selection with background risk. Comput. Oper. Res. 132, 1–15 (2021)

19. Hu, Y., Liu, K., Zhang, X., Su, L., Ngai, E.W.T., Liu, M.: Application of evolutionary
computation for rule discovery in stock algorithmic trading: a literature review. Appl. Soft
Comput. 36, 534–551 (2015)

20. Karmarkar, N.A.: New polynomial-time algorithm for linear programming. Combinatorica. 4,
373–395 (1984)

21. Konno, H., Yamazaki, H.: Mean-absolute deviation portfolio optimization model and its
application to Tokyo stock market. Manag. Sci. 37, 519–531 (1991)

22. Konno, H., Suzuki, K.: A mean-variance-skewness portfolio optimization model. J. Oper. Res.
Soc. Jpn. 38, 173–187 (1995)

https://doi.org/10.1007/s12652-019-01323-0
https://doi.org/10.1007/s12652-019-01323-0

6 Solving Portfolio Optimization Using Sine-Cosine Algorithm. . . 131

23. Levy, N.K., Markowitz, M.H.: Portfolio optimization with factors, scenarios, and realistic short
positions. Oper. Res. 53, 586–559 (2005)

24. Ma, X., Gao, Y., Wang, B.: Portfolio optimization with cardinality constraints band on hybrid
differential evolution. Comput. Intell. Bioinfo. (2012)

25. Markowitz, H.: Portfolio selection. J. Financ. 7, 77–91 (1952)
26. Mansini, R., Seperanza, M.: Heuristic algorithm for the portfolio selection problem with

minimum transaction lots. Eur. J. Oper. Res. 114, 219–233 (2003)
27. Mahawat, M.K., Gupta, P., Khan, A.Z.: Portfolio optimization using higher moments in an

uncertain random environment. Inf. Sci. 567, 348–374 (2021)
28. Mehralizade, R., Mohammad, A., Gildeh, B.S., Ahmadzade, H.: Uncertain random portfolio

selection based on risk curve. Soft. Comput. 25, 9789–9810 (2020)
29. Orito, Y., Hanada, Y., Shibata, S., Yamamoto, H.: A new population initialization approach

based on bordered hessian for portfolio optimization problems. In: Proceedings of IEEE
International Conference on Systems, Man, and Cybernetics (SMC), Manchester, England,
pp. 1341–1346 (2013)

30. Pinar, M.: Robust scenario optimization based on downside-risk measure for multi-period
portfolio selection. OR Spectr. 29, 295–309 (2007)

31. Rubio, A., Bermúdez, J.D., Vercher, E.: Forecasting portfolio returns using weighted fuzzy time
series methods. Int. J. Approx. Reason. 75, 1–12 (2016)

32. Sasaki, M., Laamrani, A., Yamashiro, M., Aiehegn, C.: Portfolio optimization by fuzzy
interactive genetic algorithm journal of advanced. Manag. Sci. 6, 125–131 (2018)

33. Sharpe, W.F.: A linear programming algorithm for mutual funds portfolio selection. Manag.
Sci. 13, 499–510 (1967)

34. Shiang-Tai-Liu: Solving portfolio optimization problem based on extension principle. In:
Conference on Industrial Engineering and Other Application of Applied Intelligent System,
pp. 164–174 (2010)

35. Singh, A., Dharmaraja, S.: A portfolio optimisation model for credit risky bonds with Markov
model credit rating dynamics. Int. J. Financial Mark. Deriv. 6, 102–119 (2017)

36. Takriti, S., Ahmed, S.: On robust optimization of two-stage systems. Math. Program. Ser. 99,
109–126 (2004)

37. Zhang, W.G., Liu, Y.J.: Credibility mean-variance model for multi-period portfolio selection
problem with risk control. OR Spectr. 36, 113–132 (2015)

38. Zhongfeng, Q.: Mean-variance model for portfolio optimization problem in the simultaneous
presence of random and uncertain return. Eur. J. Oper. Res. 245, 480–488 (2015)

39. Zhai, J., Bai, M., Hao, J.: Uncertain random mean–variance–skewness models for the portfolio
optimization problem. J. Math. Program. Oper. Res., 2–24 (2021)

Chapter 7
Detecting Group Shilling Profiles
in Recommender Systems: A Hybrid
Clustering and Grey Wolf Optimizer
Technique

Saumya Bansal and Niyati Baliyan

1 Introduction

With the expansion and deluge of information available over the Web, it becomes
tedious for users to process and make a sensible decision based on it. For instance, on
a Friday night, to watch a movie on Netflix, users may have to watch trailers of a
large number of movies before reaching a final decision, which takes a lot of time
and energy, and they may still not end up with the right choice. Information overload
is when a huge volume of information is available than can be processed by the user
[23]. Collaborative filtering (CF) is one such recommendation technique that can
solve the information overload problem by filtering out the information and provid-
ing recommendations, satisfying the user’s interest based on his/her history [3, 7,
49]. Forty percent of apps installed from the Play Store and 60% of videos watched
on YouTube are results of recommendations. Further, CF may display items that
users might not have thought of searching.

However, CF is vulnerable to shilling attacks due to its open nature [24, 48] and
reliance on user profiles to generate recommendations [4, 5, 50]. In these attacks, a
large number of attack profiles, also known as shillers, are inserted into the dataset to
introduce bias in recommendations [4, 5]. Depending upon the purpose of an attack,
i.e., promotion or demotion of an item, the attack can be classified as a push or nuke
attack, respectively. Different attack models [40] are used to generate shillers, which
look identical to genuine user profiles, making it difficult to distinguish between the

S. Bansal (✉) · N. Baliyan
Department of Information Technology, Indira Gandhi Delhi Technical University for Women,
Delhi, India
e-mail: saumya004phd18@igdtuw.ac.in; niyatibaliyan@igdtuw.ac.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Singh et al. (eds.), Design and Applications of Nature Inspired Optimization,
Women in Engineering and Science, https://doi.org/10.1007/978-3-031-17929-7_7

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17929-7_7&domain=pdf
mailto:saumya004phd18@igdtuw.ac.in
mailto:niyatibaliyan@igdtuw.ac.in
https://doi.org/10.1007/978-3-031-17929-7_7#DOI

134 S. Bansal and N. Baliyan

two and thus are considered in a similar neighborhood set of target user while
generating recommendations.

Several detection methods have been proposed in the past to filter attack profiles
from the dataset. Some unsupervised machine learning techniques use traditional
methods such as clustering; however, they require prior knowledge of the total
number of attack profiles [30]. On the contrary, supervised techniques for shilling
attack detection are mostly built on hand-designed features that are difficult to
extract [33]. To the best of our knowledge, the fusion of k-means and swarm
intelligence (SI) technique has not been explored by the researchers to detect fake
profiles mounted in the dataset. Further, the proposed fusion method does not
neglect group behavior that exists in shilling profiles nor require prerequisites such
as hand-designed features or prior knowledge of attack profiles. Due to the ease of
use and excellent results shown by the bioinspired SI technique, grey wolf optimizer
(GWO), on various problems including parameter tuning, economy dispatch, clas-
sification, clustering, power engineering, to name a few [15, 20, 21, 37], we explored
it from the perspective of detecting attack profiles mounted in the dataset.

In this chapter, we proposed a fusion method based on k-means clustering and
GWO for the detection of shilling attacks, namely, Grey Wolf Optimization Tech-
nique for Detecting Shilling Profiles (GWODS) that works directly on the rating
matrix and shows significant results when tested on datasets of different sizes.
Firstly, k-means is used to find the suspicious cluster of users exploiting the collusive
behavior of attack profiles. Then, GWO takes the suspicious cluster and finds attack
profiles, taking inspiration from the social hierarchy and hunting behavior of grey
wolves, i.e., to encircle the prey before attacking it. The involvement of minimal
parameters, ease of implementation, derivation-free nature, use of fewer operators as
opposed to the evolutionary algorithm (crossover, mutation), and excellent results
make it more noticeable to be explored in the future by researchers.

The rest of the chapter is organized as follows: Related work and motivation is
discussed in Sect. 2. Section 3 gives a brief overview of shilling attacks. The basic
approach of GWO is discussed in Sect. 4. The proposed approach, GWODS, is
detailed in Sect. 5. Section 6 throws light on experiments and results. Section 7
concludes the work and discusses future scope.

2 Related Work and Motivation

Attacking a system is a two-player (attacker and defender) game, with each player’s
motive being “to win.” The attacker’s win is in successfully exploiting the vulner-
ability of the system and manipulating the system’s functionality. The designer’s
win is in reducing the system’s vulnerability, making the attack expensive, curtailing
the attacker’s possibility of a return, and creating a robust system. From the
perspective of shilling attacks, detection methods can be classified as supervised or
unsupervised.

7 Detecting Group Shilling Profiles in Recommender Systems: A. . . 135

Supervised detection requires building a model based on selected attributes of
attack profiles and labeling the training data. Mobasher et al. [33] introduced two
attributes, namely, filler mean target difference and weighted degree agreement
successful for detection of segment attack. C4.5, which is used to generate a decision
tree, was used to build a binary profile classifier. However, it requires hand-designed
features as a prerequisite, which are difficult to get. Authors in [45] extracted features
from user profiles based on the statistical properties of attack models and then used a
variant of boosting algorithm, i.e., rescale AdaBoost (RAdaBoost), as a classifier. A
collaborative shilling detection model that decomposes user-item matrix and user-
user co-occurrence matrix into latent factors is proposed [12]. These latent factors
are then used to detect shillers using decision tree as a classifier. However, Yang
et al. [45] and Dou et al. [12] show low detection rates for small filler and attack
sizes. Supervised detection techniques having base in deep learning are presented in
Zhou et al. [51] and Tong et al. [42]. The proposed algorithm learns about profiles
directly from the user-item rating matrix instead of hand-designed features. Tong
et al. [42] considered one convolution and pooling layer each, while two convolution
and pooling layers each are considered in Zhou et al. [51]. The algorithms effectively
detect fake profiles but are highly dependent on training samples, which incurs huge
cost, especially for the training of large datasets. Hao et al. [18, 19] proposed
detection methods based on multiple views, namely, ratings, item popularity, and
user graph, using 17 artificial features and stacked denoising autoencoders (SDAe),
followed by principal component analysis (PCA), respectively, for feature extrac-
tion. The detection efficiency of both approaches can further be improved. A
detection method using four model-specific and six generic attributes using k-NN
and support vector machine (SVM) as a classification approach is proposed in
Batmez et al. [6]. An outlier degree detection algorithm based on feature selection
and entropy to select metrics and calculate the user’s outlier degree, dynamically, is
proposed in Cao et al. [9]. Zhou et al. [50] proposed a two-phase SVM-TIA detection
method using the borderline-SMOTE method to balance the number of attack pro-
files in the training set to get rough detection results in phase 1. The target items are
analyzed from attack profiles in phase 2. This approach has shown reasonable
detection results in the case of average attack but shows poor detection precision
in other attacks.

Unsupervised methods do not require labeled data [8]. However, a few works
discussed in the literature require certain prior knowledge about attack profiles,
which is difficult to get in the real world. The basis of many unsupervised detection
methods is clustering with the purpose to detect a group of attack profiles instead of a
single attack profile, thereby distinguishing shillers from genuine users [28–
30]. Chirita et al. [10] introduced the rating deviation from mean agreement
(RDMA), considering rating deviations between profiles. Another method proposed
by Zhang et al. [46] combines PCA with data complexity overcoming PCA’s
drawback of knowing the number of shillers in advance, which is unreal to have.
However, it requires cutoff k to be close to the attack size to achieve significant
results. Another method on the same lines that combines PCA with perturbation is
proposed in Deng et al. [11]. The purpose of adding perturbation is to protect profiles

136 S. Bansal and N. Baliyan

on the boundary from misclassification in contrast to the previous method. The
authors [28–30] proposed an approach that also exploits the similarity structure that
exists in shilling profiles to filter out a group of profiles using PCA and probabilistic
latent semantic analysis (PLSA). Although it requires no training data which saves
computation time, preliminary knowledge of fake profiles is a prerequisite and does
not guarantee effective detection of low-quality shilling attacks. Liu et al. [25] came
up with another unsupervised method exploiting time-based Kalman filter, while
Zhang et al. [47] take into consideration user’s suspicious degree based on past
behavior using hidden Markov model and hierarchical clustering. However, the
latter algorithm fails when the test set consists of purely genuine or fake profiles.

Shilling attack detection is a binary classification problem dividing user profiles
into two categories: genuine or fake [43]. GWO is a SI technique that can be
modified to be applied as a binary classification technique. Manikandan [27] pro-
posed a diabetes prediction model to predict the disease at an early stage using GWO
with fuzzy sets to prevent harmful effects that can occur at a later stage. It
outperformed ant colony optimization with fuzzy sets. Elhariri et al. [13] used
GWO for finding out the optimal feature set for the diagnosis of Parkinson’s disease.
A SVM-based technique using GWO for dimensionality reduction keeping accuracy
high and outperforming SVM for dimensionality reduction is proposed in Elhariri
et al. [13], taking benefits of multi-objective characteristics of GWO [14]. Different
works have been carried out using GWO for feature reduction including – combining
rough sets with GWO [44], hybridizing GWO with particle swarm optimization
(PSO) [1], and optimal feature selection which outperformed GA and PSO
[15]. Another area where GWO shows high accuracy, marking its success, is training
multilayer perceptron [31].

The literature review highlighted several limitations of current work, such as
preliminary knowledge of attack profiles, hand-designed features, and training cost
involved in the case of labeled data. Further, GWO shows multi-objective charac-
teristics on a binary classification problem by reducing dimensionality and maxi-
mizing classification accuracy at the same time. Detecting shilling attacks, being a
binary classification problem, inspired us to develop a mathematical model based on
the social and hunting behavior of wolves to find shilling profiles inserted in the
dataset that manipulate the behavior of the recommender system (RS).

The following are the major contributions of the work:

• A novel approach, namely, GWODS, for the detection of shilling profiles is
proposed.

• It does not require prior knowledge of attack profiles and works directly on the
rating matrix.

• GWODS is simple, is easy to implement, uses fewer operators, and provides
excellent results.

• An average precision of 99% is achieved using GWODS.

7 Detecting Group Shilling Profiles in Recommender Systems: A. . . 137

3 Shilling Attacks

The recommendations created by CF vary according to user profiles added. Thus,
adding fake profiles can highly manipulate items being recommended to the user
[17]. The goal of such attacks, known as “shilling attacks” or “profile injection
attacks,” is to push or nuke an item. The general form of the attack model [3] that is
used to create attack profiles is shown in Fig. 7.1. However, depending on the attack
type, the attack model differs slightly.

The symbols along with their description are provided in Table 7.1.
From the attacker’s perspective, the best attack is one that requires a minimum

amount of information about the dataset, demands minimum efforts, and maximizes
the similarity between shilling and genuine profiles. The number of attack profiles
inserted is another factor that affects the strength of a successful attack [8]. Different
attack models are discussed below:

(i) Average Attack

The average attack is a powerful attack that proves to be successful even with a
smaller filler size and can be used as a push or nuke attack [8, 34]. The average rating
of each item is required by the attacker to mount such an attack. The attack model is
shown in Fig. 7.2.

Where each rating assigned to IF is the mean rating of that item across users.

(ii) Average Over Popular Items Attack (AoP Attack)

The AoP attack resembles the average attack model shown in Fig. 7.2 with an
only change in the selection of filler items. In AoP attack, IF are chosen from top x%
of most popular items, where x is selected to ensure non-detection [40], while in the
average attack, IF are chosen randomly from the entire item set.

Fig. 7.1 Attack model
Ф

Table 7.1 Symbols with their description

Symbol Description

IS Selected items playing major role in minimizing distinction among genuine and shilling
profiles

IF Randomly chosen filler items to complete the attack profile

IФ Items with no ratings

IT Target item

Ф

Fig. 7.2 Average attack model

138 S. Bansal and N. Baliyan

(iii) Bandwagon Attack

It is almost as successful as an average attack but does not need information about
the mean of each item and thus is more practical to mount. It is based on highly
visible items or items that a significant number of users have rated. These items are
termed as selected items (IS) and are assigned maximum rating along with the target
item. IF are assigned ratings around the overall the l mean of rating matrix [8, 34,
40]. It follows the attack model as shown in Fig. 7.1.

(iv) Segment Attack

It is another low-knowledge attack that mounts the attack profiles by targeting a
set of users that may be interested in the target item instead of the entire user’s set,
therefore, making it resource-saving and meaningful [8, 33]. The segment attack is
similar to the bandwagon attack. IS are given the maximum ratings, while IF are the
minimum ratings. Further, it can be used to push or nuke the target item.

(v) Power Item Attack (PIA)

In PIA, items with a high number of user ratings are the popular items [40]. These
items make the set of selected items (IS) and are given ratings around the item mean.
IF are set to null and IT are given maximum/minimum rating, depending upon the
type of attack. It follows the attack model shown in Fig. 7.1 to create attack profiles.

4 Grey Wolf Optimizer (GWO)

Motivation

GWO is a SI technique that is a class of meta-heuristic techniques. SI algorithms are
designed on lines of social and hunting behavior of natural colonies, namely,
swarms, herds, and flocks. GWO proposed by Mirjalili in the year 2014 [32] mimics
the social and hunting behavior of grey wolves to catch prey with the motive to find
more optimized solutions to existing problems. Some of the applications of GWO
[2, 14, 21, 22, 32, 36, 41] are as follows: ease to operate, high convergence rate, and
few operators unlike Genetic Algorithm (mutation, crossover, and so on). It saves
information about all search states unlike other classes of the meta-heuristic algo-
rithm such as an evolutionary algorithm. GWO maintains high classification accu-
racy while solving dimensionality reduction problem and thus taking benefits of its
multi-objective characteristics. To avail the abovementioned advantages of GWO, a
significant amount of efforts have been utilized on applying GWO to challenges in a
variety of disciplines.

þð Þ ð Þ ð Þ

ð Þ

7 Detecting Group Shilling Profiles in Recommender Systems: A. . . 139

Description and Algorithm

Grey wolves are social animals who live in a pack with a clear hierarchy of power.
The average group size is 5–12 wolves. Alpha is the head of a group that directs all
other wolves for hunting, sleeping, and other activities. Beta and delta assist alpha in
decision-making and other group activities. Omega wolves are at the bottom of the
hierarchy and follow the orders of dominant ones. The fittest solution in the GWO
mathematical model is alpha, followed by beta, and so on, as shown in Fig. 7.3.

The process of predation is mainly divided into three steps:

A. Encircling

Grey wolves are capable of recognizing the location of prey (may not be optimal)
and encircling it. Equations (7.1) and (7.2) describe the mathematical equations used
for encircling.

D
→
= j C→ :X

→
p tð Þ- X

→
tð Þ j ð7:1Þ

X
→

t 1 = X
→

p t - A
→
:D
→

7:2

where t is the current iteration, X
→

p is the position vector of prey, and X
→
indicates the

position of the grey wolf. Vectors A
→
and C

→
are calculated using Eqs. (7.3) and (7.4).

A
!

= 2 a→ :r1
!- a

→ ð7:3Þ

C
→
= 2: r

→
2 7:4

where r1
! and r

→
2 are random vectors in the range [0,1]. a

→ is linearly decreasing
value from 2 to 0 guaranteeing exploration. Encircling is shown in Fig. 7.4.

B. Hunting

After encircling, alpha, beta, and delta take note of the three best solutions and
oblige other wolves to update their positions [26]. The following equations are
proposed for the same.

Fig. 7.3 Grey wolf
hierarchy α

β

δ

ω

� � � � � � �� �

� �
� � �

þð Þ

140 S. Bansal and N. Baliyan

Fig. 7.4 Position of grey wolf around the prey Xp. Grey wolf can update position around the prey
using Eqs. (7.1) and (7.2)

D/
!

= j C1
!

:X/
!

- X
→ j, X1

!
= X/

!
- A1

!
: D/

! ð7:5Þ
� �

Dβ
�!

= j C2
�!

: Xβ
�!

- X
→ j, X2

�!
= Xβ
�!

- A2
�!

: Dβ
�! ð7:6Þ

Dδ
�!

= j C3
�!

: Xδ
�!

- X
→ j, X3

�!
= Xδ
�!

- A3
�!

: Dδ
�! ð7:7Þ

X
→

t þ 1ð Þ= X1
!þ X2

!þ X3
!

3
ð7:8Þ

where X
→

t 1 is the position of the grey wolf after updation at iteration (t + 1).

C. Attacking

The hunt is finished by attacking the prey. This is achieved by a decrease in the
value of a

→ . When jA j < 1, grey wolves pack is attracted/converges to prey and
finishes the process.

To sum up, GWO starts with a population of wolves (search agents) with random
positions. The fitness values of search agents are computed using the fitness func-
tion. With iterations, alpha, beta, and delta are assigned the best positions, and the
positions of other search agents are changed accordingly. The parameter a

→
plays a

vital role in the entire process. The GWO marks the end of the hunt with the
satisfaction of the termination condition. The algorithm is described below:

/

/

/

7 Detecting Group Shilling Profiles in Recommender Systems: A. . . 141

Algorithm 1: GWO
Input: Problem-dependent dataset

Initialize positions of search agents and a
→

Calculate fitness of each search agent

X
�!

, Xβ
�!

, Xδ
�!

= 0

Assign best, second best, and third best solution to X/
�!

, Xβ
�!

, Xδ
�!

,
respectively,

while! max_iter

Update position of all search agents using equation (5) – equation (8)

Update a
→

Calculate fitness of all search agents

Update X
�!

, Xβ
�!

, Xδ
�!

return X
�!

5 GWODS

Motivation

The importance of RS for continuity cannot be overstated. Malicious users may
jeopardize the predictions by mounting shilling profiles in the dataset. Our goal is to
eliminate or reduce the impact of such profiles on recommendations that are gener-
ated. Due to the same underlying methodology used to generate shillers, there exists
a significant correlation among them [29]. As a result, detecting shillers can be
viewed as a dimensionality reduction problem, i.e., lowering strongly correlated
characteristics and thereby lowering dataset redundancy. K-means, which is an
efficient clustering algorithm, is used to partition suspicious users into a cluster.
Then, GWO classifies suspicious users into genuine and shilling profiles using the
social and hunting behavior of grey wolves. GWO is the recent SI technique and has
shown remarkable results in feature reduction in various domains of machine
learning [13]. Furthermore, shilling profile identification is a binary classification
problem, with 1 indicating a real profile and 0 indicating a false profile. In light of
this, binary functions were used in the proposed method.

Proposed Approach

We have proposed an algorithm GWODS for detecting fake profiles mounted in the
dataset following different attack models. Instead of single profile detection,

142 S. Bansal and N. Baliyan

Fig. 7.5 Ratings given by users to items on the scale of 1–5

GWODS works on collusive behavior that exists in shilling profiles. The algorithm
is presented stepwise below:

(i) Preprocessing Phase

The data is synthesized into a matrix of user-item rating matrix. The matrix of the
first ten users and items is shown as a heat map in Fig. 7.5.

(ii) Clustering of Users

The idea behind this phase is to group suspicious people into a cluster, based on
the assumption that shillers have a higher connection among them than authentic
ones. Therefore, this step would return the cluster containing the most suspicious
users. To find such a cluster, the Pearson correlation coefficient is computed among
users, followed by clustering using K-means. The top-N strongly connected users are
then found, followed by a cluster number including most of the top-N users. Finally,
the cluster number is returned, which will be used in the later step.

(iii) Transpose of Matrix

In this step, we store the rating matrix as its transpose considering users as
features.

(iv) Initialization Step

We initialize different variables and vectors in this step.

� �

0 1 0 1 1

1 1 1 0 0

0 0 1 0 0

0 1 0 1 1

7 Detecting Group Shilling Profiles in Recommender Systems: A. . . 143

Table 7.2 Randomly initial-
ized population of wolves
consisting of four search
agents and five users

Search agent User1 User2 User3 User4 User5

1

2

3

4

(a) αpos, βpos,and δpos are one-dimensional binary vectors of size (1× n _ users)
initialized as zero vectors.

where αpos, βpos,and δpos are the position vector of α, β, and δ, respectively, defining
each user as fake or genuine. One (1) represents a genuine profile and 0 represents a
fake profile.

(b) αscore, βscore, and δscore are the fitness score of α, β, and δ, respectively, which are
initialized to 0.

(c) Randomly initialize the population of wolves of size (search _ agents × n _ users)
with value 1 or 0 as shown in Table 7.2. Here, 1 denotes the genuine profile,
whereas 0 denotes a fake profile.

(v) Computation of the Feature’s Importance

Features very similar to each other do not contribute much to the functionality of
any system and are thus considered redundant. To know the importance of each
feature and find redundancy in the dataset, we compute the importance of each
feature using the feature_importance attribute of random forest regressor imported
from sklearn.ensemble. A random forest is an ensemble technique that has proved to
be effective in finding the importance of features [35], by combining the results of
multiple decision trees instead of one, and thus overcomes the drawback of sensi-
tivity to training data that exists in the decision tree. feature_importance returns the
importance of each feature in determining the splits. The value of feature importance
is between 0 and 1. The aggregation of the importance of all features is 1. Here, users
are considered as features.

(vi)

(a)

Mathematical Computation on Lines of GWO

First, compute the fitness of each search agent using Eq. (7.9) and step v.

fit ið Þ= α × agg imp feature i½ �ð Þ þ β ×
selected features i½ �

total features
ð7:9Þ

where

α, β = 0.5 to mark the balance between two
iE search _ agents

selected _ features[i] = number of 1’s in the search agent’s vector

� � ð

� � � �

� � ð

144 S. Bansal and N. Baliyan

agg _ imp _ feature[i] = sum of feature’s importance computed in step v.

Here, the importance of all features activated (i.e., 1) in the search agent, and not
belonging to the selected cluster, is added, as well as the importance of all features
deactivated (i.e., 0) in the search agent and belonging to the selected cluster, from
step ii.

(b) Assign the position vector and score of the fittest (best) search agent to α, second
fittest search agent to β, and third fittest search agent to δ.

(c) Update a [39]

a= 2- l×
2

max iter
ð7:10Þ

where l E max _ iter

(d) Update the positions of each search agent using Eqs. (7.11), (7.12) and (7.13),
drawing inspiration from the original procedure of GWO’s encircling.

Dα = j C1× αpos j½ � - position i½ � j½ �j;X1= αpos j½ �- A1×Dαð Þ 7:11Þ

Dβ = j C2× βpos j½ � - position i½ � j½ �j;X2= βpos j½ �- A2×Dβ ð7:12Þ

Dδ = j C3 × δpos j½ � - position i½ � j½ �;X3= δpos j½ �- A3×Dδð Þ 7:13Þ

X=
X1þ X2þ X3

3
ð7:14Þ

where A1, A2, and A3 are calculated using Eq. (7.3); C1, C2, and C3 are calculated
using Eq. (7.4); and position[i][j] represents the positional value of search agent ‘i’

for feature ‘j’.
Using the hunting step Eq. (7.8) as inspiration, find the sigmoid of X and update

the position vector of a search agent.

(e) Repeat step vi until max _ iter is achieved or the method converges, i.e., no
improvement over the previous two iterations.

(vii) Use αpos for detecting shilling profiles in the dataset.

max iter

� �

7 Detecting Group Shilling Profiles in Recommender Systems: A. . . 145

Algorithm 2: GWODS
Input: MovieLens Dataset

Transform input into a matrix (R) of user-item ratings.
Cluster users using k-means based on correlation among them.
Find cluster number consisting of top- N highly correlated users.
R = RT

Initialize αpos, βpos and δpos; αscore, βscore and δscore
Randomly initialize population of grey wolf in position array
Compute importance of each feature using feature _ importance
Compute fitness of each search agent using equation (9)
for l in range(max _ iter):

fit1 = fitness of all search agents
for i in range(search_agents):

fitness = fit1[i]
if fitness > αscore:

α_score = fitness
α_pos = position[i]

if fitness < αscore and fitness > βscore:
β_score = fitness
β_pos = position[i]

if fitness < αscore and fitness < βscore and fitness > δscore:
δ_score = fitness
δ_pos = position[i]

endfor

a= 2- l× 2

rand = random. random()
for i in range (search _ agents):

for j in range (total _ features):
Compute X using equation (11) – equation (14)
if sigmoid(X) < rand

position[i][j] = 0
else:

position[i][j] = 1
endfor

endfor
endfor
return αpos

146 S. Bansal and N. Baliyan

6 Experiments and Results

In this section, dataset and experimental setup are discussed. Further, parameters
used in GWODS and evaluation metrics are described. It is further extended by
comparing the proposed approach on two binary functions, followed by convergence
rate analysis, then followed by detailed analysis on the superior operator, and finally
concluding by a comparative analysis of GWODS with all six state-of-the-art
approaches.

Dataset and Experimental Setup

The three publicly available MovieLens (ML) datasets by the GroupLens [16] have
been used for experimentation purposes as described in Table 7.3. Each user rates at
least 20 items on a scale of 1–5, where 5 signifies the highest rating. These datasets
are preprocessed to form the user-item rating matrix. All users corresponding to
datasets are considered genuine profiles. The fake profiles/shillers are inserted into
the datasets using different attack models.

The configuration of the system used for experimentation is as follows: Intel®

Core™ i7 CPU@2.60GHz, 8GB RAM, Windows10, 64bit OS, Python 3.6. The
libraries of python used for implementation are NumPy, Pandas, Sklearn, Random,
Math, Time, Matplotlib, Seaborn, and Xlrd.

Parameter Setting

There are a few parameters that need to be initialized to implement GWO as shown
in Table 7.4. Furthermore, just two hyperparameters (a and C) that aid the learning
process must be adjusted to reap the benefits of GWO.

Table 7.3 Description of datasets

Dataset Users Items Ratings Sparsity (%)

ML 100K 1000 1700 100,000 93.7

ML 1M 6000 4000 1,000,000 95.8

ML 100K (latest) 600 9000 100,000 98.1

Table 7.4 Parameters and
their values

Parameter Value

Search agents 12

Max_iter 100

No of clusters 10

Alpha 0.5

7 Detecting Group Shilling Profiles in Recommender Systems: A. . . 147

Evaluation Metrics

Several common measures were utilized to assess the performance of the suggested
strategy [1, 39, 50]. The average of M runs is computed for each evaluation metric,
with M set to 10.

(a) Average Accuracy

It indicates the reliability of GWODS in classifying genuine and fake profiles.

AvgAcc=
1
M

XM

i= 1

Xi

total features
× 100 ð7:15Þ

where Xi indicates correctly identified labels at ith iteration.

(b) Average Detection Rate

It defines the percentage of correctly identified fake profiles.

AvgDet=
1
M

XM

i= 1

Yi

total fake profiles
× 100 ð7:16Þ

where Yi indicates correctly classified fake profiles at ith iteration.

(c) Average False Alarm Rate

It identifies the percentage of genuine profiles classified as fake over M runs.

AvgFAR=
1
M

XM

i= 1

FPi

genuine profiles
× 100 ð7:17Þ

where FPi represents genuine profiles misclassified as fake at ith iteration.

(d) Average F-Measure

It is the harmonic mean of precision and recall. The number of accurately
classified fake profiles divided by the number of classified fake profiles is known
as precision (P). The number of fake profiles accurately identified, divided by the
total number of fake profiles, is known as recall (R).

AvgFMeasure=
1
M

XM

i= 1

2 ×P ×Rð Þ
Pþ Rð Þ ð7:18Þ

It gives equal weightage to P and R, and thus the goal is to maximize it.

148 S. Bansal and N. Baliyan

Experiments and Results

This section summarizes and discusses the findings of different experiments
conducted from various perspectives.

Comparison of Binary Operators

Shilling profile detection is a binary classification problem as depicted in Fig. 7.6.
Therefore, a function to convert GWO into a binary version should exist. The two
binary functions that have been mentioned in the literature are sigmoid [1] and
tanh [38].

To find a binary function that suits best for the proposed approach, we have
computed and compared the average results of 10 runs on both functions. First, the
convergence rate of GWODS is one criterion that needs to be analyzed. Experiments
have been conducted on all three datasets. However, a convergence graph for only
100K has been shown, owing to the same underlying graphs on all three datasets.
From Fig. 7.7, it can be noted that GWODS shows similar convergence behavior on
both functions and converges at the 6–7th iteration.

Fig. 7.6 Representation of solution in feature selection

Fig. 7.7 Convergence graph

b

d

7 Detecting Group Shilling Profiles in Recommender Systems: A. . . 149

Average_Attack_sigmoid Bandwagon_Attack_sigmoid
Average_Attack_Tanh

100
a

c

95

85

75Ac
cu

ra
cy

(%
)

65

90

80

70

60
1 2 5

Attack Size(%)
10 20 1 2 5

Attack Size(%)
10 20

100

95

85

75

D
et

ec
tio

n
R

at
e(

%
)

Fa
ls

e
Al

ar
m

 R
at

e(
%

)

90

80

70

1 2 5
Attack Size(%)

10 20 1 2 5
Attack Size(%)

10 20
0

5

10

15

20

25

30

35

F-
m

ea
su

re

0.0

0.2

0.4

0.6

0.8

1.0

Bandwagon_Attack_Tanh
Segment_Attack_sigmoid
Segment_Attack_Tanh

Fig. 7.8 Comparative results of GWODS on binary functions using ML 100K on filler size 3%

Further, sigmoid and tanh functions are compared on different metrics, namely,
accuracy, detection rate, F-measure, and FAR on different attack models and attack
sizes ranging from 1% to 20%. From Figs. 7.8, 7.9, and 7.10, it can be observed that
sigmoid has outperformed tanh on all the three datasets considered. The accuracy,
detection rate, and F-measure of GWODS using tanh are less in comparison to the
sigmoid operator on all three attacks, namely, average, bandwagon, and sigmoid.
The FAR of GWODS using sigmoid is approximate to 0, whereas using tanh
operator, a high value has been observed, signifying misclassification of genuine
profiles as shillers. The same pattern has been observed on all three datasets
irrespective of the attack model considered. Seeking the excellent performance of
sigmoid operator in detecting fake profiles, all further experiments and analysis are
done using sigmoid.

150 S. Bansal and N. Baliyan

Fig. 7.9 Comparative results of GWODS on binary functions using ML 1M on filler size 3%

Result Analysis

The performance of GWODS has been analyzed by conducting experiments from
various perspectives. The results have been shown in Tables 7.5, 7.6, 7.7, 7.8, 7.9,
7.10, 7.11, 7.12, 7.13, 7.14, 7.15, and 7.16. Filler size is kept small as higher the filler
size, more information is required by an attacker to mount attack, which is difficult to
get. Moreover, as most entries in a user’s profile are null, filler size is kept low, i.e.,
1%, 3%, and 5%, to resemble the genuine profiles. Keeping the filler size low
increases the chances of winning from the attacker’s viewpoint.

Different attacks are mounted considering different attack sizes. However,
GWODS has shown a high detection rate in all cases considered. It is further
important to note that the accuracy of GWODS on all three datasets considered is
above 99% in almost all cases, depicting high accuracy on all three of the datasets
considered. The detection rate is also above 95% in all cases considered of ML 100K
and ML 1M, except at attack size 1% and filler size 3% for ML 100K.However, in
such a case, 92.5% detection rate indicates that 9 out of 10 fake profiles are correctly
classified. In the case of ML 100K (latest), 87.5% detection rate on an average in
case of 1% attack size signifies the misclassification of 1 out of 6 attack profiles
considered, number of fake users being 6. It is further worth noting that not more
than 1 fake profile has been misclassified considering all cases.

Filler size 1 2 5 10 15 20 30

7 Detecting Group Shilling Profiles in Recommender Systems: A. . . 151

Fig. 7.10 Comparative results of GWODS on binary functions using ML 100K (latest) on filler
size 3%

Table 7.5 Accuracy of shillers mounted utilizing various attack models on ML 100K

Attack size (%)

Average attack 1% 99.97 100 100 99.86 99.93 99.99 98.94

3% 99.94 100 100 99.98 99.95 100 99.71

5% 99.71 100 100 99.97 100 99.97 99.77

Bandwagon attack 1% 99.86 100 100 99.95 99.78 99.97 99.73

3% 99.89 100 100 99.97 99.95 99.98 99.56

5% 99.94 100 100 100 100 99.91 99.74

Segment attack 1% 99.92 99.98 100 100 99.8 99.78 99.75

3% 99.92 100 100 99.98 100 99.92 99.57

5% 99.92 100 99.92 99.93 99.94 99.93 99.47

AOP attack 1% 99.94 99.92 99.82 99.90 99.95 99.91 99.83

3% 99.89 99.94 100 99.95 99.90 99.95 99.91

5% 99.89 99.76 99.87 99.90 99.88 99.93 99.67

Power item attack 1% 99.84 99.92 99.94 99.80 99.95 99.88 99.87

3% 99.92 100 99.87 99.80 99.97 99.93 99.56

5% 99.89 99.92 99.89 99.92 99.90 99.80 99.89

Filler size 1 2 5 10 15 20 30

Filler size 1 2 5 10 15 20 30

152 S. Bansal and N. Baliyan

Table 7.6 Detection rate of shillers mounted utilizing various attack models on ML 100K

Attack size (%)

Average attack 1% 97.50 97.50 98.93 98.27 99.55 99.53 97.60

3% 97.75 98.12 99.20 99.33 98.93 99.80 99.02

5% 97.75 97.50 99.46 99.33 99.73 99.40 99.02

Bandwagon attack 1% 97.50 96.87 98.67 99.20 98.75 99.53 98.93

3% 92.50 98.75 98.67 99.20 99.20 99.53 98.62

5% 95.00 96.25 98.40 99.33 99.64 99.13 98.89

Segment attack 1% 97.50 96.25 99.46 99.20 98.58 98.80 98.93

3% 97.50 96.87 99.20 99.06 99.55 99.46 98.98

5% 97.50 96.25 98.13 99.06 99.64 99.46 98.13

AoP attack 1% 95.00 97.36 96.80 9893 99.64 99.60 99.91

3% 100 97.36 100 99.46 99.64 99.73 99.23

5% 100 97.36 98.40 98.93 99.64 99.60 98.93

Power item attack 1% 95.00 97.36 98.93 98.93 99.64 99.47 99.45

3% 92.50 100 98.93 98.40 99.82 99.73 98.82

5% 97.50 96.05 98.40 99.20 99.46 99.20 99.20

Table 7.7 F-measure of shillers mounted utilizing various attack models on ML 100K

Attack size (%)

Average attack 1% 0.98 0.99 0.99 0.99 0.99 0.99 0.97

3% 0.97 0.99 0.99 0.99 0.99 0.99 0.99

5% 0.95 0.99 0.99 0.99 1 0.99 0.99

Bandwagon attack 1% 0.98 1 0.99 0.99 0.98 0.99 0.99

3% 0.94 0.99 0.99 0.99 0.99 0.99 0.98

5% 0.97 0.99 0.99 0.99 0.99 0.99 0.99

Segment attack 1% 0.96 0.99 0.99 0.99 0.99 0.99 0.99

3% 0.96 1 1 0.99 0.99 0.99 0.98

5% 0.96 0.99 0.98 0.99 0.99 0.99 0.98

AoP attack 1% 0.97 0.98 0.98 0.99 0.99 0.99 0.99

3% 0.95 0.98 1 0.99 0.99 0.99 0.99

5% 0.95 0.94 0.98 0.99 0.99 0.99 0.99

Power item attack 1% 0.93 0.98 0.99 0.98 0.99 0.99 0.99

3% 0.96 1 0.98 0.98 0.99 0.99 0.98

5% 0.95 0.97 0.98 0.99 0.99 0.99 0.97

The high F-measure, i.e., above 0.9%, and low FAR, i.e., below 0.1, in most of
the cases have been noted on all three datasets. However, in the case of attack size
30%, FAR as high as 0.35 has been observed on ML 100K and as high as 0.13on the
ML 1M dataset, denoting misclassification of one genuine profile approximately.
The F-measure has also seen a drop in attack size 1%, where both ML 100K and ML

Filler size 1 2 5 10 15 20 30

Filler size 1 2 5 10 15 20 30

7 Detecting Group Shilling Profiles in Recommender Systems: A. . . 153

Table 7.8 FAR of shillers mounted utilizing various attack models on ML 100K

Attack size (%)

Average attack 1% 0 0.03 0.01 0.07 0.11 0.01 0.25

3% 0.02 0.01 0 0.05 0 0.03 0.18

5% 0.21 0 0.02 0.06 0 0.01 0.1

Bandwagon attack 1% 0 0 0.03 0.07 0.17 0.03 0.13

3% 0.02 0.01 0.03 0.05 0.03 0.02 0.26

5% 0 0.01 0.01 0.02 0.03 0.03 0.10

Segment attack 1% 0 0.03 0.06 0.02 0.11 0.11 0.1

3% 0.05 0 0 0.02 0.02 0.09 0.35

5% 0.05 0.01 0.09 0.07 0.11 0.07 0.22

AoP attack 1% 0 0.02 0.02 0 0 0.02 0.02

3% 0.10 0 0 0 0.05 0 0

5% 0.10 0.18 0.05 0 0.07 0 0.10

Power item attack 1% 0.10 0.02 0 0.10 0 0.02 0.02

3% 0 0 0.07 0.05 0 0.02 0.02

5% 0.07 0 0.02 0 0.02 0.07 0.02

Table 7.9 Accuracy of shillers mounted utilizing various attack models on ML 1M

Attack size (%)

Average attack 1% 99.96 99.96 100 100 99.97 99.98 99.78

3% 99.80 100 99.95 100 100 99.62 99.96

5% 99.76 100 100 100 99.99 100 99.99

Bandwagon attack 1% 99.90 99.73 100 100 100 100 99.97

3% 99.96 99.96 100 100 99.94 100 99.99

5% 99.95 99.96 100 100 100 99.98 99.87

Segment attack 1% 99.95 100 100 100 100 99.98 100

3% 99.97 100 100 100 100 99.78 100

5% 99.97 100 99.95 100 99.96 100 100

AoP attack 1% 99.79 99.96 99.95 99.96 100 99.98 100

3% 99.93 99.97 99.93 100 99.82 99.64 99.62

5% 99.91 99.96 99.91 99.85 99.67 99.76 99.49

Power item attack 1% 99.78 99.71 99.96 99.96 100 99.89 99.90

3% 99.78 99.95 99.98 99.23 99.92 99.65 99.68

5% 99.81 99.97 99.91 99.92 99.75 99.93 99.81

1M have seen a drop as low as 0.94. Finally, only one user profile has been
misidentified, demonstrating the great effectiveness of GWODS in detecting fake
profiles created through shilling attacks.

GWODS shows outstanding detection results in the case of strong attacks, such as
average, bandwagon, and segment attacks. However, on weak attack, such as

Filler size 1 2 5 10 15 20 30

Filler size 1 2 5 10 15 20 30

1 1 1 1

154 S. Bansal and N. Baliyan

Table 7.10 Detection rate of shillers mounted utilizing various attack models on ML 1M

Attack size (%)

Average attack 1% 96.87 97.50 98.93 99.73 99.11 99.33 98.31

3% 97.91 98.75 97.34 99.46 99.64 94.81 99.55

5% 95.83 97.50 98.93 99.46 99.29 99.60 99.73

Bandwagon attack 1% 100 98.43 98.4 99.46 100 99.86 99.73

3% 98.95 96.25 98.93 99.46 98.58 99.46 99.55

5% 97.91 96.25 98.40 99.20 99.29 99.60 99.64

Segment attack 1% 95.83 97.50 98.93 98.93 99.64 99.20 99.82

3% 97.91 97.50 98.93 99.46 99.64 98.13 100

5% 97.91 97.50 96.80 100 99.64 99.73 99.64

AoP attack 1% 98.34 98.43 99.15 99.57 100 99.20 99.82

3% 97.91 98.95 99.15 100 98.64 98.33 98.92

5% 96.87 98.95 98.31 98.36 91.66 99.97 98.08

Power item attack 1% 96.87 98.95 99.78 99.57 100 99.59 99.59

3% 95.83 97.91 99.78 100 99.43 98.36 98.92

5% 97.91 99.47 99.15 99.15 98.64 99.59 99.31

Table 7.11 F-measure of shillers mounted utilizing various attack models on ML 1M

Attack size (%)

Average attack 1% 0.98 0.97 0.99 0.99 0.99 0.99 0.98

3% 0.96 1 0.98 0.99 0.99 0.97 0.99

5% 0.94 0.98 0.99 0.99 0.99 0.99 0.99

Bandwagon attack 1% 0.95 0.94 0.99 1 1 0.99 0.99

3% 0.98 0.96 1 0.99 0.99 0.99 0.99

5% 0.97 0.97 0.99 0.99 0.99 0.99 0.99

Segment attack 1% 0.97 0.99 0.99

3% 0.98 0.98 1 1 1 0.98 1

5% 0.98 0.98 0.98 0.99 0.99 1 0.99

AoP attack 1% 0.94 0.99 0.99 0.99 1 0.99 0.99

3% 0.97 0.99 0.99 1 0.99 0.98 0.99

5% 0.95 0.99 0.99 0.99 0.91 0.99 0.98

Power item attack 1% 0.89 0.94 0.99 0.99 1 0.99 0.99

3% 0.97 0.98 0.99 0.99 0.99 0.98 0.99

5% 0.91 0.99 0.99 0.99 0.99 0.99 0.99

random attacks, shillers tend to be scattered over multiple clusters, making it difficult
for GWODS to identify them. However, these attacks are weak and do not have
much impact on the recommendations generated.

Filler size 1 2 5 10 15 20 30

0 0 0 0 0

0 0 0 0 0

Filler size 1 2 5 10 15 20 30

7 Detecting Group Shilling Profiles in Recommender Systems: A. . . 155

Table 7.12 FAR of shillers mounted utilizing various attack models on ML 1M

Attack size (%)

Average attack 1% 0 0.05 0.02 0.01 0.02 0.01 0.08

3% 0.01 0 0.03 0.02 0.01 0.03 0.03

5% 0.09 0.02 0.02 0 0.01 0 0.02

Bandwagon attack 1% 0.09 0.24 0.01 0 0 0 0.04

3% 0.02 0.04 0 0.02 0.02 0 0

5% 0.02 0.04 0 0.01 0 0.03 0.13

Segment attack 1% 0 0.02

3% 0 0.02 0 0 0 0.12 0

5% 0 0.02 0.02 0.04 0.06 0 0

AOP attack 1% 0.06 0.02

3% 0.05 0.01 0 0 0.06 0.08 0.08

5% 0.04 0 0.02 0 0 0.08 0.08

Power attack 1% 0.18 0.17 0.02 0 0 0.04 0

3% 0.17 0 0 0.08 0 0.08 0.08

5% 0.16 0.01 0.04 0 0.08 0 0.04

Table 7.13 Accuracy of shillers mounted utilizing various attack models on ML 100K (latest)

Attack size (%)

Average attack 1% 99.87 99.79 99.72 99.92 99.85 99.89 99.90

3% 99.87 99.79 99.64 99.96 99.82 99.65 99.68

5% 99.83 99.71 99.84 99.73 99.75 99.93 99.81

Bandwagon attack 1% 99.95 99.87 99.92 99.85 99.78 99.76 99.65

3% 99.91 99.87 99.92 99.85 99.85 99.89 99.74

5% 99.91 99.87 99.8 99.85 99.92 99.76 99.49

Segment attack 1% 100 100 99.53 100 99.57 99.86 98.88

3% 99.83 99.83 100 100 99.85 99.72 99.49

5% 100 100 99.84 99.85 100 99.86 95.34

AoP attack 1% 99.91 99.95 99.88 99.96 99.92 99.91 99.83

3% 99.83 99.95 99.88 99.14 99.92 99.94 99.91

5% 99.91 99.91 99.80 99.85 99.88 99.93 99.67

Power item attack 1% 99.95 99.79 99.88 99.85 99.93 99.86 99.84

3% 99.91 99.87 99.96 99.40 99.84 99.96 99.94

5% 99.91 99.95 99.87 99.95 99.92 99.82 99.88

Comparison of GWODS with State-of-the-Art Approaches

In this subsection, a comparison of GWODS with the following state-of-the-art
approaches is illustrated. Table 7.17 describes various baseline methods considered
for comparison.

Filler size 1 2 5 10 15 20 30

Filler size 1 2 5 10 15 20 30

156 S. Bansal and N. Baliyan

Table 7.14 Detection rate of shillers mounted utilizing various attack models on ML 100K (latest)

Attack size (%)

Average attack 1% 87.50 95.83 96.77 99.18 99.18 99.59 99.59

3% 87.50 93.75 95.96 99.59 98.64 98.36 98.90

5% 87.50 91.66 98.38 98.77 98.64 99.59 99.31

Bandwagon attack 1% 100 95.83 99.19 98.77 98.64 98.77 98.77

3% 91.66 95.83 99.19 99.18 98.91 99.38 99.04

5% 91.66 95.83 95.96 98.77 99.45 99.97 98.08

Segment attack 1% 100 100 96.77 100 97.82 100 95.62

3% 83.33 91.66 100 100 98.91 100 98.36

5% 100 100 96.77 98.36 100 99.18 91.80

AoP attack 1% 91.66 97.91 97.58 99.59 99.45 99.62 99.91

3% 92.50 97.91 97.58 95.90 99.65 99.76 99.26

5% 95.00 95.83 98.38 98.36 99.65 99.63 98.93

Power item attack 1% 100 95.83 97.58 98.36 99.63 99.47 99.45

3% 95.00 95.83 99.19 96.72 96.77 99.82 99.73

5% 95.00 97.50 92.50 97.50 99.44 99.22 99.26

Table 7.15 F-measure of shillers mounted utilizing various attack models on ML 100K (latest)

Attack size (%)

Average attack 1% 0.93 0.94 0.97 0.99 0.99 0.99 0.99

3% 0.93 0.94 0.96 0.99 0.99 0.98 0.99

5% 0.91 0.92 0.98 0.98 0.99 0.99 0.99

Bandwagon attack 1% 0.98 0.96 0.99 0.99 0.99 0.99 0.99

3% 0.95 0.96 0.99 0.99 0.99 0.99 0.99

5% 0.95 0.96 0.97 0.99 0.99 0.99 0.98

Segment attack 1% 1 1 0.95 1 0.98 0.99 0.97

3% 0.90 0.95 1 1 0.99 0.99 0.98

5% 1 1 0.98 0.99 1 0.99 0.90

AoP attack 1% 0.95 0.98 0.98 0.99 0.99 0.99 0.99

3% 0.94 0.98 0.98 0.95 0.99 0.99 0.99

5% 0.97 0.97 0.98 0.99 0.99 0.99 0.99

Power item attack 1% 0.98 0.95 0.98 0.99 0.99 0.99 0.99

3% 0.97 0.96 0.99 0.96 0.98 0.99 0.99

5% 0.97 0.98 0.96 0.98 0.99 0.99 0.97

Table 7.18 shows the comparative analysis of six baseline approaches with
GWODS in terms of precision under different filler and attack sizes on the ML
dataset of size 100K.

As shown in Table 7.18, the precision of GWODS is higher than that of the
baseline approaches under all three types of attacks considered. SVM-TIA and
RAdaBoost show high precision in average attack; however, low precision is

Filler size 1 2 5 10 15 20 30

% 0 0 0 0 0

% 0 0 0 0 0 0

0 0 0 0

7 Detecting Group Shilling Profiles in Recommender Systems: A. . . 157

Table 7.16 FAR of shillers mounted utilizing various attack models on ML 100K (latest)

Attack size (%)

Average attack 1% 0 0.12 0.12 0 0.04 0.04 0

3% 0 0.08 0.16 0 0 0.08 0.08

5% 0.04 0.12 0.08 0.16 0.08 0 0.04

Bandwagon attack 1% 0.04 0.04 0.04 0.04 0.04 0.04 0.08

3% 0 0.04 0.04 0.08 0 0 0.04

5% 0 0.04 0 0.04 0 0.08 0.08

Segment attack 1% 0 0 0.49 0 0.16 0.16 0.16

3 0.32 0.16

5 0.36

AoP attack 1% 0 0.02 0.02

3% 0 0 0 0.05 0.05 0 0

5% 0 0 0.12 0 0.07 0 0.10

Power item attack 1% 0.04 0.12 0 0 0 0.02 0.02

3% 0 0.04 0 0.26 0 0 0.02

5% 0 0 0 0 0.02 0.07 0.02

Table 7.17 Baseline approaches

Approach Methodology Limitation

RAdaBoost
[45]

Extracted features from user profiles and used
rescale AdaBoost as classifier

Efficiency needs to be
improved

SVM-TIA
[50]

Detection of attack profiles and target items are
done in phase 1 and phase 2, respectively, along
with borderline-SMOTE

Low detection precision
except in average attack

CoDetector
[12]

Proposed collaborative shilling detection using
decision tree as classifier

Low detection accuracy in
case of low filler and attack
size

CNN-SAD
[42]

1 convolution and 1 pooling layer is used for
classification of profiles

Incurs huge cost for the
training of large datasets

MV-EDM
[18]

Proposed multiview ensemble method based on
17 artificial detection features

Based on human engineering
features

SDAe-PCA
[19]

Based on multiple views to get insight of user
behavior.
SDAe and PCA for feature extraction

Efficiency needs to be
improved

observed in the case of PIA and AoP attack. These results depict poor adaptability of
SVM-TIA and RAdaBoost under various attacks. CoDetector suffers from poor
precision when attack and filler size is low. Compared with baseline approaches,
GWODS works directly on the matrix of user-item ratings, does not need training
time and preliminary knowledge of shillers, and is easy to implement and detect
group profiles. Further, it outperforms other approaches in terms of precision values
under different attack models with different filler and attack sizes.

158 S. Bansal and N. Baliyan

Table 7.18 Detection precision of different algorithms with filler size 3%

Attack size Technique 3% 5% 10% 12%

Average attack RAdaBoost 0.651 0.732 0.799 0.823

SVM-TIA 0.942 0.986 0.992 0.920

CoDetector 0.396 0.623 0.836 0.910

CNN-SAD 0.821 0.810 0.864 0.896

MV-EDM 0.826 0.836 0.887 0.904

SDAe-PCA 0.834 0.884 0.901 0.912

GWODS 0.991 1.000 0.994 0.962
AoP attack RAdaBoost 0.398 0.423 0.620 0.698

SVM-TIA 0.676 0.694 0.760 0.733

CoDetector 0.354 0.698 0.796 0.876

CNN-SAD 0.740 0.736 0.746 0.894

MV-EDM 0.794 0.808 0.856 0.902

SDAe-PCA 0.801 0.823 0.886 0.903

GWODS 0.973 1.000 1.000 0.997
Power item attack RAdaBoost 0.278 0.298 0.402 0.424

SVM-TIA 0.684 0.644 0.674 0.526

CoDetector 0.358 0.514 0.696 0.698

CNN-SAD 0.601 0.654 0.688 0.696

MV-EDM 0.824 0.812 0.865 0.883

SDAe-PCA 0.824 0.844 0.864 0.901

GWODS 0.991 0.984 0.994 0.995

To summarize, GWODS is an unsupervised methodology that adapts a recently
developed SI methodology called GWO. It is simple to set up and use, has a small
number of parameters, and produces excellent results. This is another reason for a
large volume of great works in a short time.

7 Conclusion and Future Work

Shilling attacks have the power of manipulating recommendations and thus are very
harmful to the CF system. To minimize/nullify effects of shilling attacks on CF, we
proposed a novel fusion method, namely, GWODS based on k-means algorithm and
GWO for detection of shilling profiles mounted by attackers in the dataset. K-means
clustering algorithm is used to get the most suspicious cluster, which is then worked
upon by GWO using the introduced fitness function and mimicking hunting behav-
ior of wolves to differentiate between fake and genuine profiles. Further, the
proposed method works directly on the user-item rating matrix exploiting the
collusive behavior that exists among shillers and does not require prerequisites,
such as preliminary knowledge of shillers or hand-designed features.

7 Detecting Group Shilling Profiles in Recommender Systems: A. . . 159

Experiments on MovieLens datasets of varying sizes and sparsity demonstrate
effective results in terms of detection rate, accuracy, false alarm rate, precision,
recall, and F-measure. Further, it outperformed six state-of-the-art approaches con-
sidered, overcoming their drawbacks. Finally, GWODS prevents the generation of
bias recommendations and thus can be employed as a preprocessing phase of any
RS.

In the future, we will try to explore the viability of attacks, where shilling profiles
have the same rating pattern as genuine profiles. The proposed method might fail in
correctly classifying profiles in such a scenario. In this chapter, our focus is on push
attack; however, a nuke attack can also be worked upon by minimum changes in the
attack model.

Data Availability Statement The datasets generated during and/or analyzed during the current
study are available in the GroupLens repository, https://grouplens.org/datasets/movielens

References

1. Al-Tashi, Q., Kadir, S.J.A., Rais, H.M., Mirjalili, S., Alhussian, H.: Binary optimization using
hybrid grey wolf optimization for feature selection. IEEE Access. 7, 39496–39508 (2019)

2. Al-Tashi, Q., Rais, H.M., Abdulkadir, S.J., Mirjalili, S., Alhussian, H.: A review of grey wolf
optimizer-based feature selection methods for classification. In: Evolutionary Machine Learn-
ing Techniques, pp. 273–286. Springer, Singapore (2020)

3. Bansal, S., Baliyan, N.: A study of recent recommender system techniques. Int. J. Knowl. Syst.
Sci. (IJKSS). 10(2), 13–41 (2019)

4. Bansal, S., Baliyan, N.: Bi-MARS: a Bi-clustering based memetic algorithm for recommender
systems. Appl. Soft Comput. 97, 106785 (2020a)

5. Bansal, S., Baliyan, N.: A multi-criteria evaluation of evolutionary algorithms against segment
based shilling attacks. In: 10th International Conference Soft Computing for Problem Solving
(SocProS). IIT Indore – accepted (2020b)

6. Batmaz, Z., Yilmazel, B., Kaleli, C.: Shilling attack detection in binary data: a classification
approach. J. Ambient. Intell. Humaniz. Comput. 11(6), 2601–2611 (2020)

7. Bedi, P., Gautam, A., Bansal, S., Bhatia, D.: Weighted bipartite graph model for recommender
system using entropy based similarity measure. In: The International Symposium on Intelligent
Systems Technologies and Applications, pp. 163–173. Springer, Cham (2017)

8. Burke, R., O’Mahony, M.P., Hurley, N.J.: Robust collaborative recommendation. In: Recom-
mender Systems Handbook, pp. 961–995. Springer, Boston (2015)

9. Cao, G., Zhang, H., Fan, Y., Kuang, L.: Finding shilling attack in recommender system based
on dynamic feature selection. In: SEKE, pp. 50–55 (2018)

10. Chirita, P.A., Nejdl, W., Zamfir, C.: Preventing shilling attacks in online recommender
systems. In: Proceedings of the 7th Annual ACM International Workshop on Web Information
and Data Management, pp. 67–74 (2005)

11. Deng, Z.J., Zhang, F., Wang, S.P.: Shilling attack detection in collaborative filtering recom-
mender system by PCA detection and perturbation. In: 2016 International Conference on
Wavelet Analysis and Pattern Recognition (ICWAPR), pp. 213–218. IEEE (2016)

12. Dou, T., Yu, J., Xiong, Q., Gao, M., Song, Y., Fang, Q.: Collaborative shilling detection
bridging factorization and user embedding. In: International Conference on Collaborative
Computing: Networking, Applications and Worksharing, pp. 459–469. Springer, Cham (2017)

https://grouplens.org/datasets/movielens

160 S. Bansal and N. Baliyan

13. Elhariri, E., El-Bendary, N., Hassanien, A.E.: Bio-inspired optimization for feature set dimen-
sionality reduction. In: 2016 3rd International Conference on Advances in Computational Tools
for Engineering Applications (ACTEA), pp. 184–189. IEEE (2016)

14. Emary, E., Yamany, W., Hassanien, A.E., Snasel, V.: Multi-objective gray-wolf optimization
for attribute reduction. Procedia Comput. Sci. 65, 623–632 (2015)

15. Emary, E., Zawbaa, H.M., Hassanien, A.E.: Binary grey wolf optimization approaches for
feature selection. Neurocomputing. 172, 371–381 (2016)

16. Grouplens (2003). Movielens. Available: https://grouplens.org/datasets/movielens/
17. Gunes, I., Kaleli, C., Bilge, A., Polat, H.: Shilling attacks against recommender systems: a

comprehensive survey. Artif. Intell. Rev. 42(4), 767–799 (2014)
18. Hao, Y., Zhang, P., Zhang, F.: Multiview Ensemble Method for Detecting Shilling Attacks in

Collaborative Recommender Systems. Security and Communication Networks (2018)
19. Hao, Y., Zhang, F., Wang, J., Zhao, Q., Cao, J.: Detecting Shilling Attacks with Automatic

Features from Multiple Views. Security and Communication Networks (2019)
20. Hassan, H.A., Zellagui, M.: Application of grey wolf optimizer algorithm for optimal power

flow of two-terminal HVDC transmission system. Adv. Electr. Electron. Eng. 15(5), 701–712
(2018)

21. Hatta, N.M., Zain, A.M., Sallehuddin, R., Shayfull, Z., Yusoff, Y.: Recent studies on optimi-
sation method of Grey Wolf Optimiser (GWO): a review (2014–2017). Artif. Intell. Rev. 52(4),
2651–2683 (2019)

22. Faris, H., Aljarah, I., Al-Betar, M.A., Mirjalili, S.: Grey wolf optimizer: a review of recent
variants and applications. Neural Comput. & Applic. 30(2), 413–435 (2018)

23. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction.
Cambridge University Press (2010)

24. Lam, S.K., Riedl, J.: Shilling recommender systems for fun and profit. In: Proceedings of the
13th International Conference on World Wide Web, pp. 393–402 (2004)

25. Liu, X., Xiao, Y., Jiao, X., Zheng, W., Ling, Z.: A novel Kalman Filter based shilling attack
detection algorithm. arXiv preprint arXiv:1908.06968. (2019)

26. Lu, C., Gao, L., Li, X., Hu, C., Yan, X., Gong, W.: Chaotic-based grey wolf optimizer for
numerical and engineering optimization problems. Memet. Comput. 12(4), 371–398 (2020)

27. Manikandan, K.: Diagnosis of diabetes diseases using optimized fuzzy rule set by grey wolf
optimization. Pattern Recogn. Lett. 125, 432–438 (2019)

28. Mehta, B.: Unsupervised shilling detection for collaborative filtering. In: AAAI, pp. 1402–1407
(2007)

29. Mehta, B., Hofmann, T., Fankhauser, P.: Lies and propaganda: detecting spam users in
collaborative filtering. In: Proceedings of the 12th International Conference on Intelligent
User Interfaces, pp. 14–21 (2007)

30. Mehta, B., Nejdl, W.: Unsupervised strategies for shilling detection and robust collaborative
filtering. User Model. User-Adap. Inter. 19(1–2), 65–97 (2009)

31. Mirjalili, S.: How effective is the GreyWolf optimizer in training multi-layer perceptrons. Appl.
Intell. 43(1), 150–161 (2015)

32. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61
(2014)

33. Mobasher, B., Burke, R., Williams, C., Bhaumik, R.: Analysis and detection of segment-
focused attacks against collaborative recommendation. In: International Workshop on Knowl-
edge Discovery on the Web, pp. 96–118. Springer, Berlin/Heidelberg (2005)

34. Mobasher, B., Burke, R., Bhaumik, R., Williams, C.: Toward trustworthy recommender
systems: an analysis of attack models and algorithm robustness. ACM Trans. Internet Technol.
(TOIT). 7(4), 23-es (2007)

35. Rosaria Silipo, M. W.: (2019). Available at https://thenewstack.io/3-new-techniques-for-data-
dimensionality-reduction-in-machine-learning/

36. Niu, P., Niu, S., Chang, L.: The defect of the Grey Wolf optimization algorithm and its
verification method. Knowl.-Based Syst. 171, 37–43 (2019)

https://grouplens.org/datasets/movielens/
https://thenewstack.io/3-new-techniques-for-data-dimensionality-reduction-in-machine-learning/
https://thenewstack.io/3-new-techniques-for-data-dimensionality-reduction-in-machine-learning/

7 Detecting Group Shilling Profiles in Recommender Systems: A. . . 161

37. Pradhan, M., Roy, P.K., Pal, T.: Oppositional based grey wolf optimization algorithm for
economic dispatch problem of power system. Ain Shams Eng. J. 9(4), 2015–2025 (2018)

38. Sahoo, A., Chandra, S.: Multi-objective grey wolf optimizer for improved cervix lesion
classification. Appl. Soft Comput. 52, 64–80 (2017)

39. Sharma, P., Sundaram, S., Sharma, M., Sharma, A., Gupta, D.: Diagnosis of Parkinson’s disease
using modified grey wolf optimization. Cogn. Syst. Res. 54, 100–115 (2019)

40. Si, M., Li, Q.: Shilling attacks against collaborative recommender systems: a review. Artif.
Intell. Rev. 53(1), 291–319 (2020)

41. Tawhid, M.A., Ali, A.F.: A hybrid grey wolf optimizer and genetic algorithm for minimizing
potential energy function. Memet. Comput. 9(4), 347–359 (2017)

42. Tong, C., Yin, X., Li, J., Zhu, T., Lv, R., Sun, L., Rodrigues, J.J.: A shilling attack detector
based on convolutional neural network for collaborative recommender system in social aware
network. Comput. J. 61(7), 949–958 (2018)

43. Wang, Y., Zhang, L., Tao, H., Wu, Z., Cao, J.: A comparative study of shilling attack detectors
for recommender systems. In: 2015 12th International Conference on Service Systems and
Service Management (ICSSSM), pp. 1–6. IEEE (2015)

44. Yamany, W., Emary, E., Hassanien, A.E.: New rough set attribute reduction algorithm based on
grey wolf optimization. In: The 1st International Conference on Advanced Intelligent System
and Informatics (AISI2015), November 28–30, 2015, Beni Suef, Egypt, pp. 241–251. Springer,
Cham (2016)

45. Yang, Z., Xu, L., Cai, Z., Xu, Z.: Re-scale AdaBoost for attack detection in collaborative
filtering recommender systems. Knowl.-Based Syst. 100, 74–88 (2016)

46. Zhang, F., Deng, Z.J., He, Z.M., Lin, X.C., Sun, L.L.: Detection of shilling attack in collabo-
rative filtering recommender system by pca and data complexity. In: 2018 International
Conference on Machine Learning and Cybernetics (ICMLC), vol. 2, pp. 673–678. IEEE
(2018a)

47. Zhang, F., Zhang, Z., Zhang, P., Wang, S.: UD-HMM: an unsupervised method for shilling
attack detection based on hidden Markov model and hierarchical clustering. Knowl.-Based
Syst. 148, 146–166 (2018b)

48. Zhang, S., Ouyang, Y., Ford, J., Makedon, F.: Analysis of a low-dimensional linear model
under recommendation attacks. In: Proceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 517–524 (2006)

49. Zhao, X., Ma, Z., Zhang, Z.: A novel recommendation system in location-based social networks
using distributed ELM. Memet. Comput. 10(3), 321–331 (2018)

50. Zhou, W., Wen, J., Xiong, Q., Gao, M., Zeng, J.: SVM-TIA a shilling attack detection method
based on SVM and target item analysis in recommender systems. Neurocomputing. 210,
197–205 (2016)

51. Zhou, Q., Wu, J., Duan, L.: Recommendation attack detection based on deep learning. J. Inf.
Secur. Appl. 52, 102493 (2020)

Chapter 8
Single Image Reflection Removal Using
Deep Learning

Sushil Kumar, Peeyush Joshi, Vanita Garg, and Hira Zaheer

1 Introduction

It is often the case that the subject that we are trying to photograph is on the other
side of the glass and we end up taking a photograph through a glass, as the glass in
between is simply unavoidable or the hassle is not worth the efforts. Photographs,
thus, taken contain undesirable reflections and degrade the visibility of the scene by
blurring, obstructing or deforming the background scene and may result in failure or
degradation of processing and analysing capabilities of computer-vision algorithms,
such as object detection, event detection, object recognition, image segmentation,
video tracking, etc. The problem of getting reflection-free images taken through
glass is of great interest in the image processing and computer vision community and
has practical demands.

I=Rþ B ð8:1Þ

where
I: n × m × 3 matrix which represents the reflection-contaminated image
R: n × m × 3 matrix which represents the reflection layer
B: n × m × 3 matrix which represents the background layer

S. Kumar (✉) · P. Joshi
Department of Computer Science & Engineering, National Institute of Technology Warangal,
Hanamkonda, Telangana, India
e-mail: kumar.sushil@nitw.ac.in; pjoshi@student.nitw.ac.in

V. Garg · H. Zaheer
School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh,
India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Singh et al. (eds.), Design and Applications of Nature Inspired Optimization,
Women in Engineering and Science, https://doi.org/10.1007/978-3-031-17929-7_8

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17929-7_8&domain=pdf
mailto:kumar.sushil@nitw.ac.in
mailto:pjoshi@student.nitw.ac.in
https://doi.org/10.1007/978-3-031-17929-7_8#DOI

164 S. Kumar et al.

Fig. 8.1 Reflection-contaminated image “I”, background layer “B” and reflection layer “R”

The goal of the work is to approximate the background layer B from the acquired
image I. Figure 8.1 illustrates the reflection-contaminated image as well as the
ground truth for the background and the reflection layers.

The problem of removing reflection from a single image is ill-posed as, for a
given reflection-contaminated image, there could be infinite possible decomposi-
tions into the background layer and the reflection layer; the same is illustrated with
the help of an example image in Fig. 8.2. Also, lack of sufficient labelled data for
training and reflection and background layers containing data from natural scenes
adds to the ill-posedness of the problem.

Most of the existing methods to remove reflection use specialized hardware or
multiple images to make the problem less ill-posed and produce. Recently, some
research works used deep learning methods, which outperform the existing methods,
but, still, they use very complex architectures and blur out or degrade the quality of
the images and fail in cases when the background and the reflection layers are very
similar in terms of brightness and structural appearance.

Our contributions to address the above-mentioned issues are as follows:

• We have trained a relatively simpler architecture end-to-end neural network to
estimate the background layer.

• We have created a loss function based on SSIM score, which is better suited when
comparing the similarities between images.

• We have created a larger labelled training dataset using data from multiple
sources.

8 Single Image Reflection Removal Using Deep Learning 165

Fig. 8.2 Three possible separations of a reflection-contaminated image into the background and the
reflection layers

2 Literature Survey

The problem of how to remove reflection artefacts from an image has been widely
researched in the image processing and computer vision community. Existing work
can be classified into two categories based on the number of inputs required to
produce a single reflection-free image. The first category includes methods requiring
multiple inputs (such as multiple images or the use of specialized hardware to
capture the image), and the second category includes methods requiring single
image as the input. Single image methods can be further classified based on the
approach they use to solve the problem, conventional mathematical approaches or
learning-based approaches.

Multi-image Methods

Multiple related images can be used to make the problem of reflection removal less
ill-posed and easier to solve but make the process of capturing images difficult. Guo
et al. [1] and Y. Li and M. S. Brown [2] use images taken from slightly different
angles or video sequence. Agrawal et al. [3] use image pairs taken with and without

166 S. Kumar et al.

firing flash. Schechner et al. [4] use polarizer to obtain multiple polarized images.
Kong et al. [5] use image pairs with the subject in and out of focus. These methods
produce state-of-the-art results but are highly limited in practicability due to the
complex process of capturing the images.

Single Input Methods

When compared with multi-image approaches, trying to suppress or remove reflec-
tion artefacts from a single image is difficult because of the constrained data.

Traditional Approaches

The following approaches use conventional mathematical approaches to remove the
reflection.

Levin et al. [6] proposed an oversimplified approach based on local features of
corners and edges considering gradient sparsity prior. Authors proposed a method
that decomposes the reflection-contaminated image into two images such that the
total number of corners and edges is minimized. However, this method performs
poorly as the complexity in the images texture rises. Levin et al. [7] rely on user
assistance to simplify the problem. Although this method successfully manages to
separate the reflections from a single image to a certain degree, manually marking
the image for the presence of reflection is difficult and is only practical for a small
number of images. Shih et al. [8] reduce the ill-posedness by the use of ghosting cues
and exploit the Gaussian mixture model (GMM) to learn image priors. Ghosting
cues are the double reflections shifted by some distance, arising due to light being
reflected at both the surfaces of a glass pane. Ghosting cues arise mostly in case of
double pane glass or if the glass is quite thick, so this method works only on a small
subset of images containing reflection. Wan et al. [9] assume prior that the back-
ground layer contains sharp and well-defined edges and the reflection layer is
relatively smoother and use this relative difference in the smoothness as a cue to
create a depth of field (DoF) confidence map, which then is used to classify edges as
part of either the background layer or the reflection layer. This method cannot
remove reflection from images with tiny textures or small reflection artefacts.

Learning-Based Approaches

Recent works have leveraged deep learning capabilities to solve the reflection
removal problem.

8 Single Image Reflection Removal Using Deep Learning 167

Fan et al. [10] follow the same prior assumption as [9], i.e. reflection layer is
off-focus and blurry. They created a synthetic dataset that mimics the assumed prior
and proposed a two-stage cascaded network. The first stage predicts the edges of the
background layer, and the predicted edges are used by the second layer to guide the
background layer recovery. Wan et al. [11] improved [10] two stages into a single
end-to-end concurrent network to predict the edges and separate the layers. Zhang
et al. [12] combined three losses (feature loss, adversarial loss and exclusion loss) to
train the proposed end-to-end network. The network and the losses are tuned to
exploit both low-level and high-level information; still, this method performs poorly
on images with high exposure. Recently GAN (Generative Adversarial Networks)-
based methods [13, 14] have yielded good results, but still have issues handling
images with extreme exposures, and [13] produces fails to produce images with
natural colours as the colour tone is altered when the parts of reflection appear in the
background. Also, the problem inherent with GANs is their complexity, both in
terms of network architecture and the time and parameter tuning required to train the
network. Some other related articles [15–20], and proposed deep learning-based IoT
methods to solve different problems.

3 Proposed Method

Training Dataset

All the existing learning-based single image reflection removal methods fail to fully
take advantage of their respective proposed models due to the lack of labelled
training data. Lack of labelled training data is a common problem in computer
vision community and though there are some workarounds even they are limited
in cases in which they can be applied. The most common workaround is creating a
synthetic dataset. The problem with creating a synthetic dataset is that they usually
fail to truly mimic the wide range and variety of classes present in natural datasets,
which in turn limits the capabilities of the method to deal with naturally occurring
images. Another workaround is assuming priors and proposing a method consider-
ing the priors. Priors usually restrict the scope of the approach by setting some
bounds on the input and thereby making the approach more tailored towards dealing
with inputs from the smaller range. Such methods may or may not perform equiv-
alently for inputs outside this range.

We have followed the first approach, i.e. to expand the dataset using synthetic
images. We have used data from multiple sources to accomplish this and merged it
with images from already available datasets to train a reflection removal model.

PASCAL Visual Object Classes (VOC) dataset [15] is used to create synthetic
images with reflection artefacts. To synthesize one image, two images are selected
from the dataset and cropped into 256 × 256-sized patches. Then, one patch is
selected as the background, and the other one as the reflection. Both the images are
merged using the following equation:

ð

168 S. Kumar et al.

Fig. 8.3 Image triplet (B, R, I) from the training dataset

I=α � Bþ β � G� Rð Þ 8:2Þ

where
I, B and R are n × m × 3 matrices representing the resulting synthetic image, the

background patch, and the reflection patch, respectively
α: blending weight for the background patch
β: blending weight for the reflection patch and β = (1 – α)
G: represents the Gaussian blur operation applied on reflection patch

Reflection patch is blurred out using Gaussian blur, and then blending weight α 2
[0.6, 0.8] is used to combine both the images. The generated dataset contains 50,000
synthetic images. An image triplet (containing the background, the reflection and the
final blended result) from the training dataset can be seen in Fig. 8.3.

Model Description (Table 8.1)

Loss Function

Loss value is a measure of how off the predictions are from true values. Loss
function reflects the performance of the model and provides a quantitative measure
of accuracy. The loss function is a key aspect in determining how good a solution the
trained model is as the objective function being realized while in training phase is to
minimize the loss. Therefore, the loss function must be chosen in a way that
minimization of the loss value results in the model predicting value close to the
true values, and for this to happen the loss function must be tailored to the problem
being solved. As images are at the centre of reflection removal problem, we will first

Layer (type) Connected to Activation Output shape

– –

– –

– –

8 Single Image Reflection Removal Using Deep Learning 169

Table 8.1 Model architecture

#
Filters

Kernel
size

conv2d_1(Conv2D) conv2d[0][0] 64 9 × 9 ReLU 256 × 256 × 64

conv2d_2 (Conv2D) conv2d_1[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_3 (Conv2D) conv2d_2[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_4 (Conv2D) conv2d_3[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_5 (Conv2D) conv2d_4[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_6 (Conv2D) conv2d_5[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_7 (Conv2D) conv2d_6[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_8 (Conv2D) conv2d_7[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_9 (Conv2D) conv2d_8[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_10 (Conv2D) conv2d_9[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_11 (Conv2D) conv2d_10[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_12 (Conv2D) conv2d_11[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_13 (Conv2D) conv2d_12[0][0] 64 5 × 5 ReLU 256 × 256 × 64

tf_op_layer_add
(TensorFlowOpLayer)

conv2d_9[0][0],
conv2d_13[0][0]

ReLU 256 × 256 × 64

conv2d_14 (Conv2D) tf_op_layer_add
[0][0]

64 5 × 5 ReLU 256 × 256 × 64

conv2d_15 (Conv2D) conv2d_14[0][0] 64 5 × 5 ReLU 256 × 256 × 64

tf_op_layer_add_1
(TensorFlowOpLayer)

conv2d_7[0][0],
conv2d_15[0][0]

ReLU 256 × 256 × 64

conv2d_16 (Conv2D) tf_op_layer_add_1
[0][0]

64 5 × 5 ReLU 256 × 256 × 64

conv2d_17 (Conv2D) conv2d_16[0][0] 64 5 × 5 ReLU 256 × 256 × 64

tf_op_layer_sub
(TensorFlowOpLayer)

conv2d_5[0][0],
conv2d_17[0][0]

ReLU 256 × 256 × 64

conv2d_18 (Conv2D) tf_op_layer_sub[0]
[0]

64 5 × 5 ReLU 256 × 256 × 64

conv2d_19 (Conv2D) conv2d_18[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_20 (Conv2D) conv2d_19[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_21 (Conv2D) conv2d_20[0][0] 64 5 × 5 ReLU 256 × 256 × 64

conv2d_22 (Conv2D) conv2d_21[0][0] 64 9 × 9 ReLU 256 × 256 × 64

conv2d_23 (Conv2D) conv2d_22[0][0] 3 9 × 9 ReLU 256 × 256 × 3

Padding = “same”
Strides = (1,1)
Total params: 2,744,131
Trainable params: 2,744,131
Non-trainable params: 0

take a metric that can precisely measure the similarities between two images and use
it inside the loss function to calculate the loss value.

Structural similarity (SSIM) index provides the quantitative measure of structural
similarity between images and is formulated on a similar basis using which the
human visual system assess the similarity between two scenes. Our visual system has

170 S. Kumar et al.

Fig. 8.4 Original image, increased contrast, blurred image

evolved to extract structural information from the scene; therefore, calculating the
structural resemblance between two images can provide a decent approximation of
actual similarity between them.

SSIM provides better similarity estimation than other measures for images as
every pixel is weighted equally in case of peak signal-to-noise ratio (PSNR) and
mean squared error (MSE), irrespective of the fact that any change in its value will be
noticeable to the human observer or not. This could lead high variations in MSE and
PSNR scores for the image pairs when the contrast or brightness changes in one of
the image, even though these modifications don’t have a significant effect on human
observer assessing image similarity as can be seen in Fig. 3.2. Therefore, structural
similarity index is more likely to find such image pairs more similar, as the structural
information in the image pair would resemble closely, as the SSIM index is
calculated on various windows of an image (Fig. 8.4).

SSIM index ranges from 0 to 1, 0 meaning that the images share no structural
similarity and 1 meaning perfect structural similarity between images, which is only
possible for identical images. Three components, namely, luminance, contrast and
structure, are used in the process of calculating SSIM index for two perfectly aligned
images of same size x and y.

Luminance comparison l(x, y) is given by:

l x, yð Þ= 2μxμy þ C1

μ2x þ μ2y þ C1
ð8:3Þ

Contrast comparison c(x, y) is given by:

c x, yð Þ= 2σxσy þ C2

σ2x þ σ2y þ C2
ð8:4Þ

Structure comparison s(x, y) is given by:

s x, yð Þ= σxy þ C3

σxσy þ C3
ð8:5Þ

where
μx is the average of intensities of x, μy is the average of intensities of y,

σ 2 is the variance of intensities of x, σ 2 is the variance of intensities of y,

8 Single Image Reflection Removal Using Deep Learning 171

x y

σxy is the covariance of intensities of x and y, and
C1, C2 and C3 are used to avoid instability when denominators are close to zero.
C1 = (K1 L)

2, C2 = (K2 L)
2, C3 = C2/2,

K1 << 1 and K2 << 1, and L is the dynamic range.

Using the above-mentioned three components, SSIM index is calculated as
follows:

SSIM x, yð Þ= l x, yð Þ ∙ c x, yð Þ ∙ s x, yð Þ ð8:6Þ

Substituting the values of l(x,y), c(x,y) and s(x,y) in the above equation, we get

SSIM x, yð Þ= 2μxμy þ C1
� �

2σxy þ C2
� �

μ2x þ μ2y þ C1

� �
σ2x þ σ2y þ C2

� � ð8:7Þ

This can be converted into loss function to calculate the loss between the
estimated background layer and the actual background layer as follows:

lossSSIM ytrue, ypred
� �

= 1- SSIM ytrue, ypred
� � ð8:8Þ

4 Experiment and Results

In this section, we present the details of the experiments performed and their
evaluation. Detailed discussion on the impact of various parameters of the proposed
approach on the overall performance is also included.

Training Details

Trained the network with the following parameters:

Number of epochs: 65
Batch size: 32
Validation split: 0.2
Shuffle: True
Optimizer: Adam (α = 0.0001, β1 = 0.9, β2 = 0.999)
Loss function: MSE, loss_SSIM

A combination of MSE and our custom loss function based on SSIM index has
been used during training. The process of training was carried out in two phases: in

14

172 S. Kumar et al.

0

500

600

700

800

900

1000

1100
lo

ss

5 10 15 20
epoch

train
val

25 30 35 40

Fig. 8.5 Training and validation loss vs epoch graph – Phase I

0

0.085
0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.090

0.095

0.100

0.105

0.110

0.115

2 4 6 8
epoch

0 2 4 6 8 10 12
epoch

model loss model loss

lo
ss

lo
ss

train
val

train
test

Fig. 8.6 Training and validation loss vs epoch graph – Phase II

the first phase, we have used the entire training dataset with MSE as the loss function
and trained the network for 40 epochs, and, in the second phase, the network was
trained for a total of 25 epochs on smaller subsets of the training dataset with SSIM-
based loss function (Figs. 8.5 and 8.6).

Experimental Set-Up

Experiments were carried out on the system with the following configurations:

CPU: Intel Xeon Silver 4114
Memory: 64 GB DDR4
GPU: NVIDIA Quadro P5000

GPU Memory: 16 GB GDDR5X

8 Single Image Reflection Removal Using Deep Learning 173

Storage: 4 TB
Operating system: Ubuntu 18.04.4 LTS (Bionic Beaver)

Deep learning libraries used: Keras with TensorFlow backend, TensorFlow 2.1.0,
CUDA 10.1, cuDNN 7.6.

Programming language and major libraries used: Python 3.6, NumPy, OpenCV,
Matplotlib.

Performance Evaluation Metrics

For performance evaluation, the most common metrics in comparing two images are
PSNR value and SSIM score (refer to Sect. 3.3 for a detailed description of SSIM
index). Peak signal-to-noise ratio (PSNR) is the ratio between a signal’s maximum
power and the power of corrupting noise that affects the quality of images and
videos. Generally, PSNR is conveyed on a logarithmic decibel scale. The formula for
PSNR between the original image and the noisy image is given in the following
equation:

PSNR= 20 � log 10
max fffiffiffiffiffiffiffiffiffiffi
MSE

p ð8:9Þ

where
maxf – maximum signal value present in the original image

Mean squared error (MSE) is

MSE=
1
mn

Xm- 1

0

Xn- 1

0

k f i, jð Þ- g i, jð Þk2 ð8:10Þ

where
f – original image in matrix form
g – predicted image in matrix form
m – number of rows in input images
n – number of columns in input images
i, j – co-ordinates of a current pixel location in input images

Testing Dataset

Benchmarking SIR2 dataset [16] with images containing real scenes is used to assess
the performance and capabilities of the trained network. SIR2 dataset is released by

174 S. Kumar et al.

Table 8.2 Comparison of
average SSIM scores for pro-
posed and competing methods

Method SSIM

LB14 [2] 0.793

AY07 [7] 0.834

SK15 [8] 0.785

WS16 [9] 0.862

FAN17 [10] 0.854

XR18 [12] 0.823

Proposed (after Phase I) 0.7855682

Proposed (after Phase II) 0.81121135

Table 8.3 Comparison of
average PSNR values for pro-
posed and competing methods

Method PSNR

LB14 [2] 21.735

AY07 [7] 21.436

XR18 [12] 20.28

Proposed (after Phase I) 15.966344

Proposed (after Phase II) 16.880268

Rapid-Rich Object Search (ROSE) Lab, NTU, Singapore. It has a large number of
diverse images containing a reflection, along with the corresponding ground truth of
their reflection and background layers. It contains both indoor (controlled) scenes
and outdoor (wild) scenes. Indoor scenes include postcards and solid objects used in
day-to-day life, such as fruits, toys, mugs, etc. Outdoor scenes contain real-world
entities, such as trees, gardens, cars, buildings, etc. with varying illuminations, scales
and distances. SIR2 dataset contains a total of 500 image triplets with 200 triplets
each for postcard dataset and solid object dataset and 100 triplets for wild scene
dataset (Table 8.2 and 8.3 and Fig. 8.7).

5 Conclusion and Future Work

In this dissertation, we have studied the single image reflection removal problem and
proposed a method to suppress the reflection and recover the background layer. Our
approach focuses mainly on using simple network architecture along with a loss
function tailored to the demands of the problem. To address the issue of lack of
labelled training data, we have created and used synthetic dataset for training our
network.

Experimental results validate the efficacy and efficiency of our approach. A
similar approach can be used in solving the problems, such as super resolution,
where the current approaches use complex network architectures, including
autoencoders and generative adversarial networks.

8 Single Image Reflection Removal Using Deep Learning 175

Fig. 8.7 Reflection removal results on test images by the proposed model

176 S. Kumar et al.

Fig. 8.7 (continued)

Our method has produced decent results but still fails to outperform the state-of-
the-art method. Future works can focus on using the ground truth of the reflection
layer in addition to the ground truth of the background layer to further improve the
effectiveness of the approach.

References

1. Wei, K., Yang, J., Fu, Y., Wipf, D., Huang, H.: Single image reflection removal exploiting
misaligned training data and network enhancements. In: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 8170–8179 (2019). https://doi.org/10.
1109/CVPR.2019.00837

2. Abiko, R., Ikehara, M.: Single image reflection removal based on gan with gradient constraint.
IEEE Access 7, 148790–148799 (2019). https://doi.org/10.1109/ACCESS.2019.2947266.
Author, F., Author, S.: Title of a proceedings paper. In: Editor, F., Editor, S. (eds.) CONFER-
ENCE 2016, LNCS, vol. 9999, pp. 1–13. Springer, Heidelberg (2016)

3. Veringham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual
object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

https://doi.org/10.1109/CVPR.2019.00837
https://doi.org/10.1109/CVPR.2019.00837
https://doi.org/10.1109/ACCESS.2019.2947266

8 Single Image Reflection Removal Using Deep Learning 177

4. Wan, R., Shi, B., Duan, L.-Y., Tan, A.-H., Kot, A.C.: Benchmarking single-image reflection
removal algorithms. In: 2017 IEEE International Conference on Computer Vision (ICCV),
pp. 3942–3950 (2017). https://doi.org/10.1109/ICCV.2017.423

5. Gopikrishnan, S., Priakanth, P., Srivastava, G.: DEDC: sustainable data communication for
cognitive radio sensors in the internet of things. Sustain. Comput. Inf. Syst. 29, 100471 (2021).
https://doi.org/10.1016/j.suscom.2020.100471

6. Vallathan, G., John, A., Thirumalai, C., Mohan, S., Srivastava, G., Lin, J.C.-W.: Suspicious
activity detection using deep learning in secure assisted living IoT
environments. J. Supercomput. 77(4), 3242–3260 (2021). https://doi.org/10.1007/s11227-
020-03387-8

7. Guo, T., Yu, K., Srivastava, G., Wei, W., Guo, L., Xiong, N.N.: Latent discriminative low-rank
projection for visual dimension reduction in green internet of things. IEEE Trans. Green
Commun. Netw. 5(2), 737–749 (2021). https://doi.org/10.1109/TGCN.2021.3062972

8. Zhu, D., Sun, Y., Du, H., Cao, N., Baker, T., Srivastava, G.: HUNA: a method of hierarchical
unsupervised network alignment for iot. IEEE Internet Things J. 8(5), 3201–3210 (2021).
https://doi.org/10.1109/JIOT.2020.3020951

9. Guo, X., Cao, X., Ma, Y.: Robust separation of reflection from multiple images. In: 2014 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2195–2202 (2014). https://doi.
org/10.1109/CVPR.2014.281

10. Li, Y., Brown, M.S.: Single image layer separation using relative smoothness. In: 2014 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2752–2759 (2014). https://doi.
org/10.1109/CVPR.2014.346

11. Agrawal, A., Raskar, R., Nayar, S., Li, Y.: Removing photography artifacts using gradient
projection and flash-exposure sampling. ACM Trans. Graph. 24, 828–835 (2005). https://doi.
org/10.1145/1186822.1073269

12. Schechner, Y.Y., Shamir, J., Kiryati, N.: Polarization and statistical analysis of scenes
containing a semireflector. J. Optic. Soc. Am. A. 17(2), 276–284 (2000). https://doi.org/10.
1364/JOSAA.17.000276

13. Kong, N., Tai, Y.-W., Shin, J.S.: A physically-based approach to reflection separation: from
physical modeling to constrained optimization. IEEE Trans. Pattern Anal. Mach. Intell. 36(2),
209–221 (2014). https://doi.org/10.1109/TPAMI.2013.45

14. Levin, A., Zomet, A., Weiss, Y.: Separating reflections from a single image using local
features. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2004. CVPR 2004, vol. 1 (2004). https://doi.org/10.1109/CVPR.
2004.1315047

15. Levin, A., Weiss, Y.: User assisted separation of reflections from a single image using a sparsity
prior. In: Pajdla, T., Matas, J. (eds.) Computer Vision – ECCV 2004, pp. 602–613. Springer,
Berlin/Heidelberg (2004)

16. Shih, Y., Krishnan, D., Durand, F., Freeman, W.T.: Reflection removal using ghosting cues. In:
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3193–3201
(2015). https://doi.org/10.1109/CVPR.2015.7298939

17. Wan, R., Shi, B., Hwee, T.A., Kot, A.C.: Depth of field guided reflection removal. In: 2016
IEEE International Conference on Image Processing (ICIP), pp. 21–25 (2016). https://doi.org/
10.1109/ICIP.2016.7532311

18. Fan, Q., Yang, J., Hua, G., Chen, B., Wipf, D.: A generic deep architecture for single image
reflection removal and image smoothing. In: 2017 IEEE International Conference on Computer
Vision (ICCV), pp. 3258–3267 (2017). https://doi.org/10.1109/ICCV.2017.351

19. Wan, R., Shi, B., Duan, L.-Y., Tan, A.-H., Kot, A.C.: CRRN: multi-scale guided concurrent
reflection removal network. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4777–4785 (2018). https://doi.org/10.1109/CVPR.2018.00502

20. Zhang, X., Ng, R., Chen, Q.: Single image reflection separation with perceptual losses. In: 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4786–4794 (2018).
https://doi.org/10.1109/CVPR.2018.00503

https://doi.org/10.1109/ICCV.2017.423
https://doi.org/10.1016/j.suscom.2020.100471
https://doi.org/10.1007/s11227-020-03387-8
https://doi.org/10.1007/s11227-020-03387-8
https://doi.org/10.1109/TGCN.2021.3062972
https://doi.org/10.1109/JIOT.2020.3020951
https://doi.org/10.1109/CVPR.2014.281
https://doi.org/10.1109/CVPR.2014.281
https://doi.org/10.1109/CVPR.2014.346
https://doi.org/10.1109/CVPR.2014.346
https://doi.org/10.1145/1186822.1073269
https://doi.org/10.1145/1186822.1073269
https://doi.org/10.1364/JOSAA.17.000276
https://doi.org/10.1364/JOSAA.17.000276
https://doi.org/10.1109/TPAMI.2013.45
https://doi.org/10.1109/CVPR.2004.1315047
https://doi.org/10.1109/CVPR.2004.1315047
https://doi.org/10.1109/CVPR.2015.7298939
https://doi.org/10.1109/ICIP.2016.7532311
https://doi.org/10.1109/ICIP.2016.7532311
https://doi.org/10.1109/ICCV.2017.351
https://doi.org/10.1109/CVPR.2018.00502
https://doi.org/10.1109/CVPR.2018.00503

Chapter 9
Social Media Analysis: A Tool
for Popularity Prediction Using Machine
Learning Classifiers

Sachin Goel, Monica, Harshita Khurana, and Parita Jain

1 Introduction

Our project targets at opinion mining for the popularity prediction using machine
learning classifiers. Natural language processing (NLP) is used for data analysis, i.e.,
to find the emotions and tone behind the text in the comment section. This is often a
way for an individual to categorize and determine the opinions about the famous
personalities. We have used the concepts of data processing, data mining, and
machine learning for mining the text for sentiment analysis and for further prediction
of popularity. Our project plays an important role both academically and econom-
ically as it helps in product reviewing, sarcasm identification, building management
systems, identifying the effectiveness of an educational institute by collecting
student’s inputs, etc. In this, we have also used Python libraries to filter out the
collected data from social media platforms, such as Twitter, and fetch out features
from it for analyses. Analysis is done using some concepts of machine learning for
predicting the amount of negative and positive comments. The project also focuses
on political opinion mining for the popularity prediction. The project can be made in
Python using pandas, NumPy, and NLTK library and concepts of machine learning.
In this we have provided the data, analyzed it, and predicted the popularity of a
person [1].

Considering a text about the opinions of the people, initially, we can count how
many people know about that person, what they’re talking about, and then we can

S. Goel (✉) · Monica
Department of IT, ABES Engineering College, Ghaziabad, India

H. Khurana
Department of CSE (Data Science), ABES Engineering College, Ghaziabad, India

P. Jain
Department of CSE, KIET Group of Institution, Ghaziabad, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Singh et al. (eds.), Design and Applications of Nature Inspired Optimization,
Women in Engineering and Science, https://doi.org/10.1007/978-3-031-17929-7_9

179

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17929-7_9&domain=pdf
https://doi.org/10.1007/978-3-031-17929-7_9#DOI

180 S. Goel et al.

classify that he/she is popular or not. This can be done using natural language
processing in machine learning. The opinion mining helps in extracting the polarity,
i.e., the amount of positive and negative words or sentences in the comments.
Further, we can use classifiers for predictions of popularity. Our agenda here is to
search for data and to retrieve it from social media platform, such as Twitter. In this
we will extract the information from the comment section of Twitter, which consists
of words, sentences, paragraphs, punctuations, conjunctions, and special characters.
Hence, unwanted data is removed. The NLP (natural language processing) and
NLTK toolkit in Python are employed here to analyze the large amount of natural
language data. Extracting features from filtered data with the assistance of Python
libraries, such as pandas and NumPy, it will create a dataset of fetched data and
features. Use of CountVectorizer is to have an idea of machine learning for creating
the vocabulary of the known words for features. We have fetched earlier using
Python libraries [2]. Using machine learning classifier, such as naive Bayes classi-
fier, for predicting the output. The filtered-out data will help us to predict the output
on the premise of negative and positive features of the words within the comments.
Testing the accuracy by taking the test on different personalities so matching actual
popularity with prediction get within the output [3].

2 Related Works

Neri [4] suggests that there is a huge virtual space called social media where the
people can express their opinion on everybody. They can give their reviews or
provide ratings to anything and anyone. According to them, first, we need to
consider and perform various analyses, such as syntactic, semantic, pragmatic, and
discourse integration, and then we need to start the actual execution part. In his
project he has performed unsupervised learning algorithm, i.e., clustering. The
conclusion provided by their study is they have used 1000 Facebook posts to
check on the sentiments of the people for various agencies, companies, etc. We
can use this study in our project for how to clean and use the huge amount of data.

Mathapati et al. [5] have said that opinions about the people on social media help
to take decisions. Every website is containing a large amount of text that are
opinionated. So, any prediction for example, popularity predictions, is a tedious
task because of the huge data. They say that this problem can be solved by sentiment
analysis. They have used various sentiment analysis classifiers, which include
reviews, summarizing reviews, etc. They have applied different types of filtering,
such as content-based filtering, policy-based personalization, and text representa-
tion. Various data expansion techniques are also discussed by the author. The main
aim of this project is to provide a friendly concept of information filtering, which
gives the user a choice.

9 Social Media Analysis: A Tool for Popularity Prediction Using. . . 181

Sarlan and Basri [6] focus on the attention that is given to the social media. The
authors focused on computationally measuring the perception of the customer. They
use the people’s various emotions and opinions, disclose about their lives, and use
the dataset of various tweets at providing and taking out useful information. Results
classify tweets into positives and negatives. Using pie chart and HTML page, a web
application is developed. Django is used for makingWeb applications that is made to
run on Linux server. Prototyping used by the authors is in development.

Dharmarajan and Abirami [7] have used the social media platforms such as
Twitter, to investigate the content and the relations among the actors of the network.
They have used the tools, such as sentiment analysis. It can also be defined as the
branch of opinion mining. According to the authors, the major aim of opinion mining
is to listen and process the data that users post on social media. This paper describes
various results the authors have obtained from the social network and sentiment
analysis of the Twitter channel, related to a pop music event.

Huang et al. [8] stated that sentiment analysis and topic classification are fre-
quently used in customer care marketing. They have proposed a method to solve
these issues. They have used social media services for user-generated content, some
common subjects, and a topic classification method. Issues with the previous system
are: (1) conventional solutions and (2) each post to be assigned has only one
sentiment label. Addressing all the issues, they have used multitask multi-label
(MTML) system and have trained multiple models with multiple labels so that it
can be used to solve and address class ambiguity.

Dhiman and Kumar [40, 41] have majorly worked upon algorithms that are
bioinspired algorithms, such as spotted hyena optimizer and emperor penguin
optimizer, to solve real-life issues. The work finds its use in various engineering
applications.

Dhiman and Kaur [43] suggested an algorithm that is based on the migration and
attacking behaviors of seabird sooty terns in nature. These two steps are used to
exploit and explore the search space in each way. The analysis of the proposed
algorithm’s convergence behavior and its computational complexity have been
examined. The algorithm is good at competing against other optimization
algorithms.

Kaur et al. [42] worked on a metaheuristic optimization algorithm and further
implemented the work on six constrained and one unconstrained engineering design
problems to further verify its robustness. The proposed algorithm is very effective at
solving problems that are difficult to solve with traditional optimization techniques.

Chatterjee’s work [45] is more inclined toward artificial intelligence. The impor-
tance of patent grant nowadays and the consequences of its failure have also been
discussed. The misconception of protecting the computer programs and algorithms
through copyright is also clarified.

Vaishnav et al. [47] had performed the analysis of Covid-19 updates, such as the
total cases, recoveries, and deaths, using ML algorithms. The data has been collected
from various Indian states and WHO official platform. Random forest and decision
tree regression models are used to get the required results.

182 S. Goel et al.

3 Proposed Methodology

Problem Identification

Opinion mining analysis- From large and unstructured database volumes, we traced
public views and emotions for a particular thing and provided valuable insights.
Positive, negative and neutral sentiments are represented by three classes of polarity
i.e. positive, negative and zero respectively. Each comment is assigned a value
between 0 and 1. Value nearest to 1 represents a subjective value and an objective
value for counter value.

We have used the framework through which we have explained the head away
from collections, opinion mining for popularity prediction, and Twitter classifica-
tion. We have classified the opinions from various social media platforms where
users have expressed their opinions about politics and people related to it. We have
applied various ML classifiers to build our classification model. We have stored the
retrieved information in CSV files. And then we filtered the data out. The model was
tested and accuracy was found. We gather belief-supported collected hashtags
associated with views about famous personalities. Retrieved tweets are saved in
Excel sheets under subsequent fields. We have a huge amount of data in the database
with us. We need to take useful information out of it. This is the process of data
filtering. It is the process to purify our data so that we can get the useful part and
remove the redundant and unnecessary part. It is the first and most important step. If
it is not done correctly, our whole process may be a failure.

A good and accurate dataset will help in increasing the overall efficiency and
accuracy of the whole process. After we have filtered the data and taken out the
features, the next step is to create a dataset. A dataset is nothing but basically an n*m
matrix, where n is the total number of features and m is the total number of data
points. After the creation of the dataset, we use the various ML classifiers. These
classifiers are used to predict the outcomes or the target that we want to achieve
[9]. The methodology proposed by us is to initially clean the data, using data mining
approach, take out the useful information, and make the dataset ready. Then, after the
dataset prepared for the classifier will be fed into the classifier, we’ll fit the classifier
accordingly. Finally, we will be using the cleaned testing data to get the desired
outcome [10].

Data Gathering

We gather belief-supported collected hashtags associated with views about famous
personalities. Tweets that were being retrieved from social media platforms, such as
Twitter accounts, are saved in Excel sheets under subsequent fields. The tweets that
are being gathered is around 90,000–100,000 [11]. We select hashtags that are more
of being political nature and that of trending on Twitter that represent each view of
everyone.

9 Social Media Analysis: A Tool for Popularity Prediction Using. . . 183

Fig. 9.1 Proposed
methodology

Data Filtering

We have a huge amount of data in the database with us. We need to take useful
information out of it. This is the process of data filtering. It is the subset of the entire
data you have. In our case, we have a huge amount of data, names of the people who
are commenting, the stop words and punctuations in our data, etc (Fig. 9.1).

These things are not useful in predicting the popularity of a person. It is mere
sideline information that is available to us. Thus, we can leave behind these data and
choose more meaningful information, such as review of the person [12].

It is the process to purify our data so that we can get the useful part and remove
the redundant and unnecessary part. It is the first and most important step. If it is not
done correctly, our whole process may be a failure. A good and accurate dataset will
help in increasing the overall efficiency and accuracy of the whole process
[13]. Thus, we can conclude that data filtering is the most important step and should
be done in an effective manner.

Fetching Features

Vital step in fetching features is to determine essential data. Feature fetching is
basically to extract the most common and useful information to label them as
features so that the data can be trained on it. For example, in Twitter sentiment

184 S. Goel et al.

analysis, we have used the most common words occurring frequently to form
features. We use a CountVectorizer for the same. We can also plot graphs to
check the occurrence of the words that are occurring more frequently. Feature
fetching is an important step for dataset creation. And if the proper dataset is not
created, it can’t be fed up with the classifier for training [14, 15].

Classification Using ML Classifier

After we have filtered the data and taken out the features, the next step is to create a
dataset. A dataset is nothing but basically an n*m matrix, where n is the total number
of features and m is the total number of data points. After the creation of the dataset,
we use the various ML classifiers. These classifiers are used to predict the outcomes
or the target that we want to achieve. There are various machine learning classifiers,
such as SVM, naive Bayes, KNN, logistic regression, etc. Any of these classifiers
can be used based on what we want to predict. Or how is our dataset?

These classifiers are used to train our model algorithm for learning. They are
mathematical algorithms used to predict the outcomes. To make a model based on
popularity prediction, we will use the NLP model [16, 17]. In machine learning, an
algorithm is used for mapping the input set of data in the form of specific category of
classes. It is started by predicting the class of the given set of data, which we
retrieved from the social media platform (Fig. 9.2).

It helps in classifying the new data by checking in which category of class it falls.
It is a supervised learning concept, which helps in classifying the set of data. It works
based on the training data for defining the class category of the datasets [18]. The
types of classifiers in machine learning are the following:

• Naive Bayes
• Decision tree
• K-nearest neighbor (KNN)
• Logistic regression
• Support vector machine
• Random forest

(i) Naive Bayes

Naive Bayes is an algorithm used for classification of the input datasets. It is a
supervised learning algorithm and used the Bayes’ theorem for problems of classi-
fication. It is termed as naive as it assumes each feature to be independent of other
features whenever they occur, e.g., the different features of a car, such as shape,
color, and model, help to identify the car. Therefore, every feature contributes to
classify the class of the given data. It is termed as Bayes as it uses the Bayes’ theorem
principle. It predicts the probability of an object, which depends on the conditional
probability. Naive Bayes classifier works by first converting the given input set of
data, into tables of frequency. Then, it generates a table of likelihood from the

9 Social Media Analysis: A Tool for Popularity Prediction Using. . . 185

Fig. 9.2 Classification of
set of data by classifier [18]

probabilities that it found from the given features of the datasets. Lastly, it uses the
Bayes’ theorem for calculating the posterior probability [19, 20].

(ii) Decision Tree

Decision tree is also a supervised learning algorithm in machine learning. It is
used for classification problems as well as for regression problem. It uses the
representation of the tree for solving the classification problem. It uses the two
nodes: decision node and leaf node. The decision nodes have more than one
branches and used to give the decision. The leaf nodes do not have any branches
as they are the outputs of the decisions that are made by the decision nodes. It is also
a test that is done on the features of the sets of data given.

It gives the graphical solution for all possible solutions by making decision on the
condition given. It is like a tree as it starts from a root node and followed by the
branches and forms a structure of a tree. It uses a strategy of questioning and
answering, as it asks the questions first and, based on the answer, it expands its
branches [21, 22].

(iii) K-Nearest Neighbor

It is the simplest algorithm of classification based on supervised learning. It
compares the new set of data with the available data. If the new set of data matches
with the available data, then it classifies it into a particular category [46].

It is used for classification problems as well as for regression problem. But it is
used mostly for the problems of classification.

• It stores the data that is available to the KNN algorithm. Then, it classifies the
given new set of data by matching the similarities between them.

• It does not make predictions or assumptions on the data; that is why it is also
known as nonparametric algorithm.

186 S. Goel et al.

Fig. 9.3 Decision tree
diagram for classification
[23]

• It is termed as the lazy learning algorithm as it does not learn immediately from
the datasets of the training. It first stored the provided sets of data and do actions
on it during the time of classification. After getting the new sets of data, it
classifies it by checking the similarity with the stored data [23] (Fig. 9.3).

The KNN works through following steps:

• First, select the neighbor with the K number.
• Then, find the distance of the K number of neighbors by Euclidean method.
• Select the K-nearest neighbors, which are calculated by the Euclidean method to

calculate the distance.
• Now, count the data points from the K neighbor of every category.
• The maximum number of neighbors will be assigned the new points of data

[24, 25].

9 Social Media Analysis: A Tool for Popularity Prediction Using. . . 187

Fig. 9.4 Graph showing the SVM classification [27]

(iv) Support Vector Machine

It is an algorithm of classification based on supervised learning. It helps to find the
hyperplane, which classifies the data points. It gives the best boundary of decision,
hence, segregating it into classes of the n-dimensional space so that in the future the
new points of data can be categorized easily. It is used for classification problems as
well as for regression problem. But it is used mostly for the problems of classifica-
tion (Fig. 9.4).

SVM creates a hyperplane by selecting the extreme vector points, which are
known as support vectors. It is generally used for the purpose of classification of
images, face detection, categorization of texts, etc. [26] There are two types of
support vector machine:

Linear SVM – the datasets, when classified into two classes with the help of a single
straight line, are said to be linearly separable data for this linear SVM is used.
Linear SVM helps in finding the points that are closest to the lines from both
classes and known as support vectors. There is a hyperplane that is made from a
boundary. The distance between the support vector and hyperplane is termed as
margin. When the hyperplane has a maximum margin, it is termed as optimal
hyperplane.

Nonlinear SVM – if the data cannot be separable or classified with the help of a
straight line, it is said to be nonlinear data. Nonlinear SVM is used for this data.
SVM is very effective when there are cases of high dimensions. It uses the subsets
for decision functions from the training points, therefore very memory
efficient [27].

188 S. Goel et al.

(v) Random Forest

Random forest is also a supervised learning algorithm of machine learning. It is
used for classification problems as well as for regression problem. It uses the concept
of combining the multiple classifiers for solving the problem with complexities and
improves the model performance ensemble learning. This concept is termed as
ensemble learning.

It is a classifier that has numbers of decision trees, which take average of the
accuracy predicted on various sets of the given data. It does not rely on one single
decision tree. It takes the prediction from every tree. It gives the final output of
prediction from the prediction with major number of points. If there are a greater
number of decision trees in the forest, then the accuracy becomes higher and the
solution for the problem of overfitting prevented [28].

The working of the random forest has the following processes:

• First, select the K data points randomly from the training sets.
• Now, construct the decision trees with the help of selected points of subsets

of data.
• Select the N number for decision trees, which you want to construct.
• Now, repeat steps 1 and 2.
• Now, from every decision tree, find the prediction for new data points.

Then, assign the new data points to majority predictions [29].

(vi) Stochastic Gradient Descent

It is used for classification based on probability. It is linked with a random
probability. In this, randomly, we take few samples from datasets instead of the
whole. The batch of each dataset is iterated from the sample of the sets of data for
calculating the gradient. It is very helpful when there are big datasets. It uses one
sample at one iteration for easy calculation to find out the probability. The sample of
datasets first is shuffled randomly, and the iteration is performed on it. It gives an
optimizing solution in a very computational problem by providing faster
iterations [30].

Comparative Study of Different Models

1. Figure 9.5.

2. Figure 9.6.

Implementing Tools

To make a model based on popularity prediction, we will use the NLP model.

9 Social Media Analysis: A Tool for Popularity Prediction Using. . . 189

Fig. 9.5 Accuracy matrix
for different classifiers and
dataset

Classifica�on Recalls of KNN, Naive Bayes, and Decision Tree
1,2

1

0,8

0,6

0,4

0,2

0
1 2 3 4 5 6

Data

KNN Naive Bayes

Re
ca

ll

Decision Tree

7 8 9 10

Fig. 9.6 Comparative study graph

Various modules for language processing are:

NLTK library
BERT
ALBERT
XLNet
StructBert
T-5

We are going to use the NLTK library here for our popularity prediction.
Here, the work is divided into several parts:

• Clean_review () method – to clean the dataset
• Get_post_tag() method – to get the POS tag for cleaning the dataset
• Remove_stopwords() method – to remove stopwords
• Remove_punc () method – to remove punctuation
• Make_feature () method – using CountVectorizer to get the number of features

and prepare the dataset
• Train() method – a method that contains classifiers to train the model
• Predict() method – to predict the data

190 S. Goel et al.

We are trying to make a system that takes the details of a person and predicts her
popularity [31].

Python

Machine learning can be implemented using R and Python. For our work, we have
used Python. It can be defined as a branch of computer science in which we train
machines to learn by themselves without the need of explicit programming.

We will import inbuilt libraries from Python, such as NLTK and SKLearn, for the
use of ML classifiers.

Jupyter Notebook

It is an open-source application used for implementation of Python programs. It
provides a very clear scheme and helps in easy sharing, editing, and documentation
of the code.

Statistical NLP, Machine Learning, and Deep Learning

NLP applications are based on machine learning and deep learning concepts. The
endless data streaming, which also involves voice and text data elements, is classi-
fied and labeled statistically to infer them proper meanings [32].

Deep Learning Models are generally dependent on Convolution Neural Networks
(CNN) and Recurrent Neural Networks (RNN). NLP system learns regularly as it
works on huge, raw, unstructured and unlabeled dataset [33] (Fig. 9.7).

Application of NLP

Natural Language Processing precedes the machine intelligence in modern days.
Here are few examples:

Spam detection – today, NLP is used in spam detection technologies, which has
proved itself better in this time. Text classifications uses email scanning for
languages used in phishing or spams.

These indicators often use financial terms, bad grammar, and threatening languages.
Spam detection is also one of the most useful problems of NLP that is particularly
considered expert in solving [34].

9 Social Media Analysis: A Tool for Popularity Prediction Using. . . 191

Fig. 9.7 Relation among
NLP, Machine Learning and
Deep Learning

Machine translation – it is most widely used in NLP technology at work nowadays.
Google translate is also an example of these type translations. Effective trans-
lations are used to take the meaning and its language’s tone quality and translate
the language into similar meaning with the output language having meaningful
impact.

Tools of machine translation are creating a very huge progress in accuracy terms and
limit. The best method to test any of the machine tool is by translating the textual
form from one language to the original one again.

Virtual agents and chatbots, such as Siri by Apple and Alexa by Amazon, use speech
recognition, which is used for recognizing the patterns in the commands of the
voice, and here natural language is used to reply with the specific actions and the
useful additional comments. Chatbots are those types of machines that perform
the same magic that is used in typed text entries [35, 36].

Social media sentiment analysis – this has nowadays became an important business
tool for showing hidden data feed through channels of social media.

It can even analyze responses, posts, and social media reviews. It also extract
emotions from replies to the promotion products, and event organizing informa-
tions regarding to the companies [37, 38].

Text summarization – It uses NLP techniques to evaluate and absorb large dataset. It
then summarizes and adds synopsis to do indexing for the readers who cannot
read full text. The best way to summarize applications is through reasoning, often
used in semantic and NLG, to add meaningful texts. [39].

4 Result and Discussion

The result is displayed in the form of prediction output, i.e., confusion matrix and
classification report, which we get from the machine learning classifier. We have
used machine learning classifier, such as SVM classifier, for the predicted output,
and we get the output as shown in Fig. 9.8.

Here, based on support vector classifier prediction of the output, we get the
confusion matrix of 3 × 3 matrix, which consists of the negative, neutral, and
positive data performance of classification. It is labeled as true and predicted label.

192 S. Goel et al.

nega�ve

nega�ve

neutral

neutral
Predicted label

Tr
ue

 la
be

l

posi�ve

posi�ve

6000
6666 150 35

1825406 96

170175 1457

5000

4000

3000

2000

1000

Fig. 9.8 The output of confusion matrix of SVM classifier

Table 9.1 The output of the
classification report

Precision Recall F1-score

Negative 0.92 0.97 0.95

Neutral 0.85 0.78 0.82

Positive 0.92 0.81 0.86

Accuracy 0.91

This matrix has compared the actual target values with those predicted by the
machine learning model. In the confusion matrix also, we can see that negative is
predicted more rightly. Others are also predicted well by the classifier.

After the confusion matrix, we get the classification report. It consists of the
precision, recall, F1-score, and support column of negative, neutral, positive, and
accuracy, macro avg., and weighted avg., respectively. The classification report we
get is (Table 9.1):

The classification report elaborates on the precision, recall, F1-score, and support
of our classifier and how well it is trained. The following is the output of the
classification report:

Precision – It reveals the proportion of correctly predicted cases that actually
resulted in a favorable outcome.

Here, we can see it is 92%, 85%, and 92% for negative, neutral, and positive data,
respectively.

9 Social Media Analysis: A Tool for Popularity Prediction Using. . . 193

Recall – it shows the classifier ability to give the actual positive cases, which can
predict correctly with the classification model. Here, it is 97%, 78%, and 81% for
negative, neutral, and positive data, respectively.

F1-score – it is the harmonic mean of precision and recall. It gives the combination
of ideas about these two metrics. If the precision and recall is equal, then the
F1-score will be maximum. So, it is giving us the harmonic mean of both
precision and recall.

Support – it has provided here the number of actual occurrences of the class in the
specified dataset, which we have filtered out from the Twitter datasets of
comments.

According to the report, both precision and recall are approx. 0.9 or reaching to it and
our classifier has high accuracy. The negative values are predicted the best.

Therefore, performing more testing with the dataset will train the system, and we get
the confusion matrix and classification report with more accurate predicted value.

Real-Time Applications

The work finds its applications academically as well as economically. It helps in
reviewing products, sarcasm identification, building management systems, and
identifying the effectiveness of educational institutes by collecting students’ inputs.

Sentimental analysis and opinion mining help analysts and companies extricate
bits of knowledge from user-generated social media and Web content.

Experimental Validation and Accuracy

With the help of various computational methods and doing investigation, when one
comes up with a scientific binding that is not dependent much on computational
resources, it is called experimental validation.

194 S. Goel et al.

(a)

(b)

9 Social Media Analysis: A Tool for Popularity Prediction Using. . . 195

5 Conclusion and Future Scope

This paper allows us to predict the popularity of a person using various concepts of
machine learning. The people can check the popularity and opinions about any
personality from the popularity prediction. The paper is of great help for anyone to
check how popular he/she is on social media platform. Accuracy will become better
and better if we perform the predictions on more and more datasets.

6 Challenges and Limitations

There may be a faster and more efficient method available. The challenges faced
during the opinion mining typically come when training models are not well trained.
The comments or texts containing neutral sentiments, which do not have positive or
negative sentiments in it, tend to pose a problem to the system and do not perform the
task properly.

The challenge also comes when there are emojis, special characters, and irrele-
vant data in the text. So, in our project, we are not considering the emojis, but there
are special characters and unnecessary data in the text. Ironical and sarcastic
comments are not understood by the the system.

There are also positive and negative comments in the same sentence, which will
be considered as one sentence. Such contradictory comments are manageable
through opinion mining [44]. The system needs to train more and more as there
are so many chances when the same sentence consists of more than one negative and
positive comments.

References

1. Zhou, X., Etal.: Sentiment analysis on tweets for social events. In: Proceedings of the 2013
IEEE 17th International Conference on Computer Supported Cooperative Work in Design
(CSCWD). IEEE (2013)

2. Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis of twitter
data. In: Annual International Conferences. Columbia University, New York (2012)

3. Boyd, D.M., Ellison, N.B.: Social network sites: definition, history, and
scholarship. J. Comput.-Mediat. Commun. 13(1), 210–230 (2007)

4. Neri, F., Aliprandi, C., Capeci, F., Cuadros, M., Tomas: Sentiment analysis on social media. In:
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
(2012)

5. Mathapati, S., Manjula, S.H., Venugopal of University Visvesvaraya College of Engineering:
Sentiment analysis and opinion mining from social media: a review. K R Glob. J. Comput. Sci.
Technol.: C Softw. Data Eng. 16(5), Version 1.0 (2016)

196 S. Goel et al.

6. Sarlan, A., Nadam, C., Shuib Basri of Computer Information Science Universiti Teknologi
PETRONAS Perak, Malaysia: Twitter sentiment analysis. In: International Conference on
Information Technology and Multimedia (ICIMU), Putrajaya, Malaysia on November 18–20,
2014 (2014)

7. Dharmarajan, K., Abirami, K., Abuthaheer, F.: Sentiment analysis on social media.
JETIR1903I34 J. Emerg. Technol. Innov. Res. (JETIR). 6, 3 (2019) (ISSN-2349-5162)

8. Huang, S., Peng, W., Li, J., Lee, D.: Sentiment and topic analysis on social media: a multi-task
multi-label classification approach. In: WebSci’13, Paris, France on 1–5 May, 2013 (2013)

9. Medhat, W., Hassan, A., Korashy, H.: Sentiment analysis algorithms and applications: a survey.
Ain Shams Eng. J. 5, 1093–1113 (2014)

10. Wang, M., Shi, H.: Research on sentiment analysis technology and polarity computation of
sentiment words. In: Proceedings of the 2010 IEEE International Conference on Progress in
Informatics and Computing, Shanghai, China, 10–12 December 2010, pp. 331–334 (2010)

11. Prabowo, R., Thelwall, M.: Sentiment analysis: a combined approach. J. Informeter. 3, 143–157
(2009)

12. Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis twitter
data. In: Workshop on Languages in Social Media, pp. 30–38 (2011)

13. Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P.: Advances in neural information
processing systems. In: Mixed Membership Stochastic Blockmodels, pp. 33–40 (2009)

14. Alelyani, S., Liu, H., Wang, L.: The effect of the characteristics of the dataset on the selection
stability. In: Tools with Artificial Intelligence (ICTAI), 2011 23rd IEEE. International Confer-
ence on, pp. 970–977. IEEE (2011)

15. Nishida, K., Hoshide, T., Fujimura, K.: Improving tweet stream classification by detecting
changes in word probability. In: ACM SIGIR (2012)

16. Rao, V., Sachdev, J.: A machine learning approach to classify news articles based on
location. In: 2017 International Conference on Intelligent Sustainable Systems (ICISS),
pp. 863–867 (2017)

17. Kumar, V., Minz, S.: Poem classification using machine learning approach. In: Proceedings of
the Second International Conference on Soft Computing for Problem Solving (SocProS 2012),
December 28–30, 2012, pp. 675–682 (2012)

18. Khairnar, J., Kinikar, M.: Machine learning algorithm for opinion mining and sentiment
classification. Int. J. Sci. Res. Publ. 3(6) (2013)

19. Rish, I., Hellerstein, J., Jayram, T.: An Analysis of Data Characteristics That Affect Naive
Bayes Performance Technical Report RC21993. IBM T.J. Watson Research Center (2001)

20. Hellerstein, J., Thathachar, J., Rish, I.: Recognizing end-user transactions in the performance
management. In: Proceedings of AAAI-2000, pp. 596–602. Austin (2000)

21. Bhargava, N., Sharma, G., Bhargava, R., Mathuria, M.: Decision tree analysis on j48 algorithm
for data mining. Proc. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(6) (2013)

22. Beel, J., Langer, S., Genzmehr, M., Nürnberger, A.: Introducing Docear’s research paper
recommender system. In: Proceedings of the 13th ACM/IEEECS Joint Conference on Digital
Libraries, Jully 22, 2013, pp. 459–460 (2013)

23. Kubat, M., Voting Jr., M.: Nearest neighbour subclassifiers. In: The Proceedings of the 17th
International Conference on Machine Learning, ICML-2000, June 29–July 2, 2000,
pp. 503–510. Stanford (2000)

24. Alpaydin, E.: Voting over multiple condensed nearest neighbors. Artif. Intell. Rev. 11, 115–132
(1997) Kluwer Academic Publishers

25. Wilson, D.R., Martinez, T.R.: Reduction techniques for exemplar based learning algorithms.
Mach. Learn. 38(3), 257–286 (2000)

26. Zhang, Y., Zhu, Y., Lin, S., Liu, X.: Application of least squares support vector machine in fault
diagnosis. In: ICICA 2011, Part II. CCIS, vol. 244, pp. 192–200. Springer, Heidelberg (2011)

27. Hu, Y., Zhuang, S., Peng, X., Xie, J., Chen, Y.: Products serial numbers recognition based on
support vector machine. Mach. Elect. (2) (2012)

9 Social Media Analysis: A Tool for Popularity Prediction Using. . . 197

28. Ardekani, B.A., Bermudez, E., Mubeen, A.M., Bachman, A.H.: Alzheimer’s disease neuroim-
aging and prediction of incipient Alzheimer’s disease dementia in patients with mild cognitive
impairment. J. Alzheimers Dis. 55, 269–281. https://doi.org/10.3233/JAD160594

29. Borza, T., Engedal, K., Bergh, S., Benth, J., Selbaek, G.: The course of depression in late life as
measured by the montgomery and asberg depression rating scale in an observational study of
hospitalized patients. BMC Psychiatry. 15, 191. https://doi.org/10.1186/s12888-015-0577-8

30. Dean, J., Corrado, G.S., Monga, R., Chen, K., Devin, M., Le, Q.V., Mao, M.Z., Ranzato, M.A.,
Senior, A., Tucker, P., Yang, K., Ng, A.Y.: Large scale distributed deep networks. In: Neural
Information Processing Systems, pp. 1–11 (2012)

31. Pereira, F.C.N., Warren, D.H.D.: Definite clause grammars for language analysis – a survey of
the formalism and a comparison with augmented transition grammars. Artif. Intell. 13, 231–278

32. Loper, E., Bird, S.: NLTK: the natural language toolkit. In: Proceedings of the ACL Workshop
on Effective Tools and Methodologies for Teaching Natural Language Processing and Com-
putational Linguistics, pp. 62–69. Association for Computational Linguistics, Somerset. http://
arXiv.org/abs/cs/0205028

33. Rao, D., Ravichandran, D.: Semi supervised polarity lexicon induction. In: Proceedings of the
12th Conference of the European Chapter of the Association for Computational Linguistics,
pp. 675–682 (2009)

34. Mukherjee, A., Liu, B., Glance, N.: Spotting fake reviewer groups in consumer reviews. In:
Proceedings of the 21st International Conference on World Wide Web, pp. 191–200.
ACM, Lyon

35. Tripathi, S., Sarjgek, J.K.: Approaches to machine translation. Ann. Libr. Inf. Stud. 57,
388–393 (2010)

36. Prasad, T.V., Muthukumaran, G.M.: Telugu to English translation using direct machine trans-
lation approach. Int. J. Sci. Eng. Investig. 2(2), 25–35 (2013)

37. Tan, C., Lee, L., Tang, J., Jiang, L., Zhou, M., Li, P.: User-level sentiment analysis incorpo-
rating social networks. In: ACM KDD, pp. 1397–1405 (2011)

38. Jha, V., Savitha, R., Hebbar, S., Shenoy, P.D., Venugopal, K.R.: HMDSAD: Hindi multi-
domain sentiment aware dictionary. In: Proceedings of the International Conference on Com-
puting and Network Communications (CoCoNet), pp. 241–247. IEEE (2015)

39. Abbasighalehtaki, R., Khotanlou, H., Esmaeilpour, M.: Fuzzy evolutionary cellular learning
automata model for text summarization Swarm. Evol. Comput. 30, 1–16 (2016)

40. Dhiman, G., Kumar, V.: Spotted hyena optimizer: a novel bio-inspired based metaheuristic
technique for engineering applications. Adv. Eng. Softw. 114, 48–70 (2017)

41. Dhiman, G., Kumar, V.: Emperor penguin optimizer: a bio-inspired algorithm for engineering
problems. Knowl.-Based Syst. 159, 20–50 (2018)

42. Kaur, S., Awasthi, L.K., Sangal, A.L., Dhiman, G.: Tunicate Swarm Algorithm: a new
bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell.
90, 103541 (2020)

43. Dhiman, G., Kaur, A.: STOA: a bio-inspired based optimization algorithm for industrial
engineering problems. Eng. Appl. Artif. Intell. 82, 148–174 (2019)

44. Kumar, R., Dhiman, G.: A comparative study of fuzzy optimization through fuzzy number.
Int. J. Mod. Res. 1, 1–14 (2021)

45. Chatterjee, I.: Artificial intelligence and patentability: review and discussions. Int. J. Mod. Res.
1, 15–21 (2021)

46. Goel, S., Oberoi, S., Vats, A.: Construction cost estimator: an effective approach to estimate the
cost of construction in metropolitan areas. In: 2021 3rd International Conference on Advances
in Computing, Communication Control and Networking (ICAC3N), pp. 122–127 (2021).
https://doi.org/10.1109/ICAC3N53548.2021.9725740

47. Vaishnav, P.K., Sharma, S., Sharma, P.: Analytical review analysis for screening COVID-19.
Int. J. Mod. Res. 1, 22–29 (2021) Spotted hyena optimizer: a novel bio-inspired based
metaheuristic technique for engineering applications

https://doi.org/10.3233/JAD160594
https://doi.org/10.1186/s12888-015-0577-8
http://arxiv.org/abs/cs/0205028
http://arxiv.org/abs/cs/0205028
https://doi.org/10.1109/ICAC3N53548.2021.9725740

Fun Test function Properties Bound

P
i= 1

xi

P
i= 1

xij j þ Q
i= 1

xij j

P
i= 1

P
j= 1

xj

 !

P
i= 1

100 xiþ1 - xi
� � þ xi - 1ð Þ

h i

P
i= 1

xi þ 0:5b c

P
i= 1

ixi þ rand 0 1ð Þ

P
i= 1

- xi sin
ffiffiffiffiffiffi
xij jp þ 418:982887D

(continued)

199

Appendix

Benchmark Problems [1–4]

Global
value

F1
D

2
Unimodal, Sepa-
rable, Scalable

[–100,
100]D

0

F2 D D Unimodal, Sepa-
rable, Scalable

[–10,
10]D

0

F3 D i
2 Unimodal,

Non-seperable,
Scalable

[–100,
100]D

0

F4 maxi {|xi|} Unimodal,
Non-seperable,
Scalable

[–100,
100]D

0

F5 D- 1
2 2 2 Multimodal,

Non-seperable,
Scalable, narrow
velly from local to
global optimum

[–30,
30]D

0

F6 D
2 Unimodal,

Seperable,
Scalable

[–100,
100]D

0

F7
D

4 Unimodal,
Seperable,
Scalable

[–1.28,
1.28]D

0

F8
D Multimodal,

Seperable, Scal-
able, many local
minima

[–500,
500]D

0

der exclusive license© The Editor(s) (if applicable) and The Author(s), un to
Springer Nature Switzerland AG 2022
D. Singh et al. (eds.), Design and Applications of Nature Inspired Optimization,
Women in Engineering and Science, https://doi.org/10.1007/978-3-031-17929-7

https://doi.org/10.1007/978-3-031-17929-7#DOI

Fun Test function Properties Bound

10Dþ P
i= 1

xi - 10 cos 2πxið Þ� �

- 20 exp - 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=D

X
i= 0

x2i

vuut
0
@

1
A

- exp
ffiffiffiffiffiffi
1=D

p XD
i= 0

cos 2πxið Þ
 !

þ 20þ e

4000

P
i= 1

xi -
Q
i= 1

cos ffi
i

p
� �

þ 1

π
D

10 sin πy1ð Þ þ P
i= 1

yi - 1ð Þ

1þ 10 sin 2 πyiþ1

� �� �þ yD - 1ð Þ2

8>><
>>:

9>>=
>>;

þ
XD
i= 1

u xi, 10, 100, 4ð Þ

whereyi = 1þ 1
4

xi þ 1ð Þ and

u xi, a, k, mð Þ=
k xi - að Þm if xi > a

0 if - a≤ xi ≤ a

k - xi - að Þm if xi < - a

8>><
>>:

0:1

sin 2 3πx1ð Þ

þ
XD- 1

i= 1

xi - 1ð Þ2 1þ sin 2 3πxiþ1ð Þ� �

þ xD - 1ð Þ2 1þ sin 2 2πxDð Þ� �

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ
XD
i= 1

u xi, 5, 100, 4ð Þ

- exp - 0:5
P
i= 1

xi

	

þ 1

P
i= 1

xi þ
P
i= 1

0:5ixi

	

þ P

i= 1
0:5ixi

	

200 Appendix

(continued)

Global
value

F9
D

2
Multimodal,
Seperable, Scal-
able, many local
minima

[–5.12,
5.12]D

0

F10 D Multimodal,
Seperable, Scal-
able, many local
minima

[–32,
32]D

0

F11 1
D

2
D

xi
Multimodal,
Seperable, Scal-
able, many local
minima

[–600,
600]D

0

F12 2
D- 1

2 Multimodal,
Seperable, Scal-
able, many local
minima

[–50,
50]D

0

F13 Multimodal,
Seperable, Scal-
able, many local
minima

[–50,
50]D

0

F14 D
2

Convex,
Unimodal,
Seperable

[–1, 1]D 0

F15 D
2

D
2

2 D
2

4 Unimodal, Non
scalable, non
Separable

[–5, 10]D 0

ÞÞ
ÞÞ

�

Appendix 201

Real-Life Applications [5, 6]

The following three real-life applications have been taken from the various
literatures

RF1: Parameter Estimation for Frequency-Modulated
(FM) Sound Waves [3, 7]

Frequency-modulated (FM) sound wave fusion has a significant part in many
modern music systems. In this application, we have to obtain a six-dimensional
vector P = (α1,ω1, α2,ω2, α3,ω3) by minimizing the sum of squared error between
the estimated sound ρ(s) and target sound ρ0(s) as defined in Eq. 1.

Minimize F Pð Þ=
X100
s= 0

ρ sð Þ- ρ0 sð Þð Þ2 ð1Þ

where

ρ sð Þ= α1 sin ω1sϕþ α2 sin ω2sϕþ α3 sin ω3sϕð Þðð
ρ0 sð Þ= 1:0 sin 5:0sϕ- 1:5� sin 4:8sϕþ 2:0 sin 4:9sϕð Þðð ð2Þ

ϕ = 2π/100 such that all parameters are defined in the range [-6.4, 6.35].

RF2: Optimal Thermohydraulic Performance of an Artificially
Roughened Air Heater [7]

The mathematical formulation of this simple maximized problem is defined as
below:

Max F= 2:51�Ineþ þ 5:5- 0:1RM -GH

where RM = 0:95p0:532 ,GH = 4:5 eþð Þ0:28 0:7ð Þ0:57,
eþ = p1p3 f =2

� �1=2
,

f = f s þ f rð Þ=2,
f s = 0:079p- 0:25

3 & f r = 2 0:95p0:532 þ 2:51 � In 1=2p1ð Þ2 - 3:75
� - 2

Bounds are :

0:02≤ p1 ≤ 0:8, 10≤ p2 ≤ 40, 3000≤ p3 ≤ 20000

ð3Þ

g

202 Appendix

RF3: Spread-Spectrum Radar Polyphase Code Design [3, 7]

It is a well-known problem of optimal design in the field of spread-spectrum radar
polyphase codes. This is a min-max nonlinear, non-convex optimization problem of
continuous variable with multiple local optima and defined as below:

MinF Pð Þ=Max φ1 Pð Þ, φ2 Pð Þ, ⋯φ2m Pð Þf
P= p1, p2, ⋯pdð Þ 2 Rdj0≤ pj ≤ 2π,j= 1,⋯,d

ð4Þ

where m= 2d- 1, and

φ2i- 1 Pð Þ=
Xd
j= 1

cos
Xj

k= j2i- jjþ1

pk

2
4

3
5,i= 1,⋯,d

φ2i Pð Þ= 0:5þ
Xd
j= iþ1

cos
Xj

k= j2i- jjþ1

pk

2
4

3
5,i= 1,⋯,d- 1

φmþi Pð Þ= -φi Pð Þ,i= 1,⋯,m

References

1. Rahnamayan, S., Tizhoosh, H., Salama, M.: Opposition based differential evolution. IEEE Trans.
Evol. Comput. 12(1), 64–79 (2008)

2. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adap-
tation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)

3. Zhang, J., Sanderson, A.: JADE: adaptive differential evolution with optional external archive.
IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

4. Cai, Y., Wang, J., Yin, J.: Learning enhanced differential evolution for numerical optimization.
Soft Comput. (2011). https://doi.org/10.1007/s00500-011-0744-x

5. Kumar, S., Kumar, P., Sharma, T.K., Pant, M.: Bi-level thresholding using PSO, Artificial Bee
Colony and MRLDE embedded with Otsu method. Memetic Comput. 5(4), 323–334 (2013)

6. Dor, A.E., Clerc, M., Siarry, P.: Hybridization of differential evolution and particle swarm
optimization in a new algorithm: DEPSO-2S. In: Proceeding of SIDE 2012 and EC 2012,
LNCS 7269, pp. 57–65. Springer, Berlin/Heidelberg (2012)

7. Singh, P., Chaturvedi, P., Kumar, P.: Control parameters and mutation based variants of
differential evolution algorithm. J. Comput. Method Sci. Eng. 15(4), 783–800 (2015)

https://doi.org/10.1007/s00500-011-0744-x

203

Index

A
Antibiotic resistance, 48, 49, 51
Application of NLP, 190, 191
Artificial bee colony (ABC), 1, 2, 7–12, 14–16,

22, 33
Average attack, 135, 137, 138, 151–157
Average over popular attack, 137
Axis parallel hyper-ellipsoid function, 11, 13

B
Bandwagon attack, 138, 151–157
Bioenergy, 44, 75, 76
Biomanufacturing, 40, 49–51
Bioprocess engineering, v, 40–51
Briquetting system, 75–87

C
Cauchy mutation, 56, 98, 100
Clustering, 133–159, 180
Collaborative filtering (CF), 133, 137, 158
Correlation, 41, 44, 50, 90, 93, 129, 141,

142, 145

D
Data driven modelling, 40
Data filtering, 182, 183
Data gathering, 182
Data mining, 2, 16, 179, 182
Decision trees, 43, 49, 135, 143, 157, 181, 184,

185, 188

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2022
D. Singh et al. (eds.), Design and Applications of Nature Inspired Optimization,
Women in Engineering and Science, https://doi.org/10.1007/978-3-031-17929-7

Deep learning, 46, 49, 135,
163–176, 190

Differential evolution (DE) algorithm, 55

E
Economic sustainability, 40
Employed bees phase, 8

F
Fermentations, 42–44, 51, 52
Fixed iteration test, 2, 11

G
Gaussian mutation, 98, 99
Grey wolf optimizer (GWO), v, 1, 2, 77, 84, 85,

87, 134, 136, 138–141, 143, 144, 146,
148, 158

I
Image reflection, v, 163–176

K
K-nearest neighbor (KNN), 184–186

L
Logistic regression, 49, 184

https://doi.org/10.1007/978-3-031-17929-7#DOI

204 Index

M
Machine learning, v, 2, 3, 40–51, 134, 141,

179–195
Manufacturing Industry, v, 19–34
Mean, 6, 7, 11, 13–15, 43–45, 65, 67, 68,

78–80, 85, 89, 93, 94, 99, 135, 137, 138,
147, 170, 173, 182, 193

Mean-variance model, 90–92, 94, 95
Metaheuristic algorithms, 4, 181
Monoclonal antibodies, 46, 47, 51
MovieLens (ML), 40, 41, 43–45, 47–51,

145, 146, 150–157, 159, 181, 182,
184, 190

Mutation, 1, 30, 32, 55–57, 60, 61, 98, 99, 119,
134, 138

N
Naive Bayes classifier, 180, 184
Natural language processing (NLP), 179, 180,

184, 188, 190, 191
Nature inspired algorithm, v, 1, 22, 34, 55, 56

O
Onlooker bees phase, 9
Opinion mining analysis, 182
Optimizations, v, 1–4, 6, 7, 13, 14, 16, 19–34,

40, 42, 43, 47, 55, 56, 60, 71, 75–87,
89–129, 134, 136, 181, 202

P
Particle swarm optimization (PSO), 1, 2, 4–8,

11, 14–16, 22–34, 56, 90, 136
Power item attack (PIA), 138, 157
Process industries, 30, 34
Profile injection attacks, 137

Profits, v, 34, 77, 83–87
Protein engineering, 40, 49, 50, 52

R
Random forest, 44, 45, 49, 143, 181,

184, 188
Recommender system (RS), 136, 141, 159
Reflectional removal, v, 163–176
Regenerative point graphical technique

(RPGT), 77
Rosenbrock function, 2, 5, 6

S
Schwefel’s function, 2, 9, 10, 12
Scout bees phase, 9
Segment attacks, 135, 138, 151–157
Selection, 9, 16, 30, 49, 55–61, 63, 64, 67, 69,

71, 89–92, 135–137
Sentiment analysis, 179–181, 183, 191
Shilling attacks, 133, 134, 136, 137, 153, 158
Sine-cosine algorithm, v, 96, 97, 100,

113, 117
Standard deviation, 6, 7, 11, 13–15, 62–64,

67, 85
Stochastic gradient descent, 188–190
Supervised learning, 41, 184, 185, 187, 188
Support vector machine (SVM), 48, 135, 136,

184, 187, 191, 192
Swarm intelligence, 1, 2, 22, 25, 90, 134
Swarm intelligence based algorithm, v, 1–16

U
Unconstrained optimization, 91
Unsupervised learning, 41
Unsupervised learning algorithm, 180

	Preface
	Contents
	Contributors
	Chapter 1: An Overview of Swarm Intelligence-Based Algorithms
	1 Introduction
	2 Characteristics of SI-Based Algorithms
	3 Particle Swarm Optimization Algorithm
	Pseudocode of PSO
	Minimizing Rosenbrock Function Using PSO

	4 Artificial Bee Colony Algorithm
	Minimizing Schwefel´s Function Using Artificial Bee Colony Algorithm

	5 Comparative Analysis Using Fixed Iteration Test
	6 Conclusion
	References

	Chapter 2: Particle Swarm Optimization and Its Applications in the Manufacturing Industry
	1 Introduction to Optimization
	Local and Global Optimal Solution
	Nature-Inspired Algorithms

	2 Particle Swarm Optimization
	How PSO Works
	Understanding PSO Parameters
	Binary Particle Swarm Optimization
	Research Developments in PSO

	3 Application of PSO Manufacturing Industry
	4 Conclusion
	References

	Chapter 3: Role of Machine Learning in Bioprocess Engineering: Current Perspectives and Future Directions
	1 Introduction
	2 Approaches of Machine Learning in Bioprocess Engineering
	3 Why Machine Learning Strategies Are Needed in Bioprocess Engineering
	4 Applications of Machine Learning in Bioprocess Engineering (Case Studies)
	Approaches of Machine Learning in Biorefinery: A Case Study
	Approaches of Machine Learning in Monoclonal Antibody Production: A Case Study
	Approaches of Machine Learning for Antibiotic Production: A Case Study
	Machine Learning in Protein Engineering: A Case Study

	5 Current Challenges and Future Prospects
	6 Conclusion
	Glossary
	References

	Chapter 4: Advanced Selection Operation for Differential Evolution Algorithm
	1 Introduction
	2 Basic Differential Evolution (DE)
	3 Proposed Modification
	Advance Selection Strategy
	Proposed DERLaS and MRLDEaS

	4 Experimental Settings
	Test Functions
	Performance Criteria
	Parameter Setting

	5 Result and Discussion
	Result on Benchmark Problems
	Result on Real-Life Application
	Convergence Graphs

	6 Conclusions
	References

	Chapter 5: Profit Optimization of Two-Unit Briquetting System Using Grey Wolf Optimization Algorithm
	1 Introduction
	2 Introduction
	3 State Transition Diagram
	4 Transition Probabilities and Mean Sojourn Periods
	5 System Effectiveness Measures
	Mean Time to System Failure
	System Availability
	Busy Period
	Expected Visits by Repairmen
	Profit

	6 Grey Wolf Optimizer
	7 Graphical Results and Discussion
	8 Conclusions
	References

	Chapter 6: Solving Portfolio Optimization Using Sine-Cosine Algorithm Embedded Mutation Operations
	1 Introduction
	2 Markowitz Model Based on Historical Stock Price Data
	Markowitz Mean-Variance Model
	Rate of Return
	Expected Return
	Variance
	Portfolio Formulation
	Statement of the Problem

	3 Problem Description
	Problem 1
	Problem 2

	4 Sine-Cosine Algorithm
	Mutation
	Power Mutation
	Polynomial Mutation
	Random Mutation
	Gaussian Mutation
	Cauchy Mutation

	5 Numerical Analysis of Results Obtained by the Proposed Version of SCA
	Problem 1
	Problem 2

	6 Result Analysis
	7 Conclusion
	References

	Chapter 7: Detecting Group Shilling Profiles in Recommender Systems: A Hybrid Clustering and Grey Wolf Optimizer Technique
	1 Introduction
	2 Related Work and Motivation
	3 Shilling Attacks
	4 Grey Wolf Optimizer (GWO)
	Motivation
	Description and Algorithm

	5 GWODS
	Motivation
	Proposed Approach

	6 Experiments and Results
	Dataset and Experimental Setup
	Parameter Setting
	Evaluation Metrics
	Experiments and Results
	Comparison of Binary Operators
	Result Analysis
	Comparison of GWODS with State-of-the-Art Approaches

	7 Conclusion and Future Work
	References

	Chapter 8: Single Image Reflection Removal Using Deep Learning
	1 Introduction
	2 Literature Survey
	Multi-image Methods
	Single Input Methods
	Traditional Approaches
	Learning-Based Approaches

	3 Proposed Method
	Training Dataset
	Model Description (Table 8.1)
	Loss Function

	4 Experiment and Results
	Training Details
	Experimental Set-Up
	Performance Evaluation Metrics
	Testing Dataset

	5 Conclusion and Future Work
	References

	Chapter 9: Social Media Analysis: A Tool for Popularity Prediction Using Machine Learning Classifiers
	1 Introduction
	2 Related Works
	3 Proposed Methodology
	Problem Identification
	Data Gathering
	Data Filtering
	Fetching Features
	Classification Using ML Classifier
	Comparative Study of Different Models
	Implementing Tools
	Python
	Jupyter Notebook
	Statistical NLP, Machine Learning, and Deep Learning
	Application of NLP

	4 Result and Discussion
	Real-Time Applications
	Experimental Validation and Accuracy

	5 Conclusion and Future Scope
	6 Challenges and Limitations
	References

	Appendix
	Benchmark Problems
	Real-Life Applications
	RF1: Parameter Estimation for Frequency-Modulated (FM) Sound Waves
	RF2: Optimal Thermohydraulic Performance of an Artificially Roughened Air Heater
	RF3: Spread-Spectrum Radar Polyphase Code Design

	References

	Index

