
Chapter 9
Bayesian Learning

Bayesian learning [Tipping, 2004, Barber, 2012] is the name commonly used to
identify a set of computational methods for supervised learning based on Bayes’
Theorem. Broadly speaking, Bayes’ Theorem deals with the modification of our
perception of the probability of an event, as a consequence of the occurrence of one
or more facts. For instance, what probability are you assigning to the event “some-
body stole my car” at the moment? Of course, this can depend on many different
factors, but on a normal day, one may argue that that probability is generally rather
low. Now, imagine that you go looking for your car, and the car is not in the place
where you remember that you parked it. What is now the probability of the event
“somebody stole my car”? The fact that the car is not where it was parked clearly
changes the probability that it was stolen. This property is general: the realization
of some events can modify the probability of others. This property can be exploited
to tackle Machine Learning tasks, for instance classification: data, interpreted as
events, can be used to change the probability that a given observation belongs to
a given class. Before studying this mechanism in detail, let us first present Bayes’
Theorem and its most immediate use in Machine Learning.

9.1 Bayes’ Theorem and Machine Learning

Let A and B be two events, and P(A) and P(B) their respective probabilities (some-
times called marginal probabilities). Also, let P(A|B) be the conditional probability
of event A, or likelihood of event A, knowing that B is true. Analogously, let P(B|A)
be the probability of event B being true given that event A is true. Bayes’ Theorem
can be enunciated as follows.

Theorem 9.1. (Bayes’ Theorem)

P(A|B) = P(B|A) P(A)
P(B)

259© Springer Nature Switzerland AG 2023
L. Vanneschi and S. Silva, Lectures on Intelligent Systems, Natural Computing Series,
https://doi.org/10.1007/978-3-031-17922-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17922-8_9&domain=pdf

260 9 Bayesian Learning

Proof. Directly from the definition of conditional probability, we have:

P(A|B) = P(A,B)
P(B)

where P(A,B) is the probability of both events A and B happening (in other refer-
ences sometimes denoted by P(A∩B)). From the previous equation, we can write:

P(A,B) = P(A|B) P(B)

However, given that P(A,B) = P(B,A), we have:

P(A|B) P(B) = P(B|A) P(A)

From which follows the thesis immediately.
⊓⊔

The formula might look complicated, but it is actually quite user friendly: all we
need to do is plug three ingredients into the formula, and this allows us to have an
updated probability, based on new information. P(A|B) is often called the posterior
probability, in the sense that it quantifies the “new” probability of A, after we have
received the information that B has happened.

As puzzling as it may seem at first sight, this simple theorem of probability calcu-
lus can be very important for Machine Learning. In fact, let us assume, for instance,
that we want to tackle a classification task. In other terms, we have a dataset D,
and we receive a new (unseen) observation, on which we need to predict the class
label. Let us assume, for simplicity, that the task is binary classification, i.e., clas-
sification into two possible classes C1 and C2. Then, we have two different possible
hypotheses:

• The new observation belongs to class C1 (let us call this hypothesis h1);
• The new observation belongs to class C2 (let us call this hypothesis h2).

We can use Bayes’ Theorem to make this classification. Remember that we have
some facts that we can observe, and it is based on those facts that we do the classi-
fication. Now, let us ask to ourselves, what is the information (i.e., the facts!) that
we normally use to generate a classifier? The answer is straightforward: the data!
All the information we need is in D, which we consider the training set. So, all we
have to do is to calculate the probability that h1 is true after having observed D, and
the probability that h2 is true after having observed D. If the former is larger than
the latter, then the new observation will be categorized into class C1, otherwise into
class C2. Applying Bayes’ Theorem directly, we have:

P(h1|D) =
P(D|h1) ·P(h1)

P(D)
, P(h2|D) =

P(D|h2) ·P(h2)

P(D)

Remark that we just have to compare P(h1|D) to P(h2|D). In order to understand
which one of the two is larger, we do not have to calculate them exactly. To make

9.1 Bayes’ Theorem and Machine Learning 261

this comparison, we can observe that the quantity at the denominator, i.e., P(D), is
the same in both formulas, and thus it does not have any influence on the compar-
ison. So, we can simply “ignore it”. So, in practice, what we have to do is just to
calculate P(D|h1) ·P(h1) and P(D|h2) ·P(h2). If the former is larger than the latter,
then the new observation will be categorized into class C1, otherwise into class C2.

Let us give the name maximum a posteriori hypothesis hMAP to the hypothe-
sis that has the maximum probability, among h1 and h2, after having observed our
data D (i.e., “a posteriori”), and let H be the space of all possible hypotheses (in our
case: H = {h1,h2}). We have:

hMAP = argmax
h∈H

P(D|h) ·P(h)

Let us see how this result can be calculated in practice, using a simple example.

Example 9.1. Let us consider a medical diagnosis problem, in which there are only
two alternative hypotheses; given a particular patient and a particular disease:

• the patient has the disease;
• the patient does not have the disease.

The available data is from a particular laboratory test, with two possible outcomes:
positive or negative. We have prior knowledge that, over the entire population of
people, only 0.8% have this disease. Furthermore, we know that the lab test is an
imperfect indicator of the disease: the test returns a correct positive result in 98%
of the cases in which the disease is actually present, and a correct negative result
in 97% of the cases in which the disease is actually not present. We can summarize
the situation like this:

P(disease) = 0.008 P(not disease) = 0.992
P(positive test | disease) = 0.98 P(negative test | disease) = 0.02
P(positive test | not disease) = 0.03 P(negative test | not disease) = 0.97

Suppose we now observe a new patient, for whom the lab test returns a positive
result. Should we diagnose the patient as having the disease?

According to the previous discussion, we have to understand whether
P(disease | positive test) is larger than P(not disease | positive test) or the
other way around. Applying Bayes’ Theorem, we have to respectively cal-
culate P(positive test | disease) · P(disease) and P(positive test | not disease) ·
P(not disease) and see which one of the two is the largest. We have all the quan-
tities we need, so we can do it:

P(disease | positive test) = P(positive test | disease) ·P(disease)
= 0.98 ·0.008 = 0.0078

P(not disease | positive test) = P(positive test | not disease) ·P(not disease)
= 0.03 ·0.992 = 0.0298

262 9 Bayesian Learning

So, the maximum a posteriori hypothesis hMAP is:

hMAP = not disease

A bit surprisingly, we must conclude that, even though the lab test was positive,
the most probable hypothesis is still that the patient does not have the disease. It is
important to remark that in Bayesian inference, the hypotheses are not completely
accepted or rejected, but rather become more or less probable as more data is ob-
served.

9.2 Naı̈ve Bayes

Naı̈ve Bayes is the simplest classifier based on Bayesian inference. It uses a very
restrictive (and often false!) hypothesis: that all the variables in the dataset are
independent of each other. Despite its simplicity and this restrictive hypothesis,
Naı̈ve Bayes has been shown to often have a very good classification performance;
in some domains, even comparable with or better than that of Artificial Neural Net-
works (discussed in Chapter 7) and Decision Trees (discussed in Chapter 6).

Let us assume that we have a classification dataset with n variables (features),
and let us assume that we receive a new observation, which we want to classify. Of
course, the observation will have the form:

a1, a2, ..., an

i.e., n values, one for each variable. The space of our hypotheses H is now charac-
terized by k hypotheses, where k is the number of classes in our dataset/problem:

• the new observation belongs to class C1;
• the new observation belongs to class C2;
• ...
• the new observation belongs to class Ck;

Analogously to the previous example, of all the hypotheses in the space H, we have
to find the most probable, the maximum a posteriori hypothesis hMAP. In other
words, we want to find:

hMAP = argmax
h∈H

P(h|a1,a2, ...,an)

Applying Bayes’ Theorem:

P(h|a1,a2, ...,an) =
P(a1,a2, ...,an|h) ·P(h)

P(a1,a2, ...,an)

9.2 Naı̈ve Bayes 263

As previously remarked, for all hypotheses h ∈ H the denominator P(a1,a2, ...,an)
is the same. So, this denominator is irrelevant for deciding what is the maximum
a posteriori hypothesis, and it can be removed. So, we can conclude that:

hMAP = argmax
h∈H

P(a1,a2, ...,an|h) ·P(h)

where:

• P(h) is easy to estimate for the various h ∈ H. We simply have to count the fre-
quency with which the target value h occurs in the training data. In other words,
for each class, we have to count the number of observations labeled with that
class and divide it by the total number of observations.

• P(a1,a2, ...,an|h) is instead very hard to estimate for the different h ∈ H (even its
intuitive meaning is arguably very hard to understand). But we can easily trans-
form it into something that is very easy to calculate, making the very restrictive
assumption, typical of the Naı̈ve Bayes method, that the attribute values are con-
ditionally independent, given the target value.

So, now our objective is to transform the term P(a1,a2, ...,an|h) into an expression
that is easy to calculate using the dataset. If we make the previously mentioned
assumption of independence of the attribute values, we can write:

P(a1,a2, ...,an|h) = P(a1|h) ·P(a2|h) · ... ·P(an|h) =
n

∏
i=1

P(ai|h)

For each i = 1,2, ...,n and for each h ∈ H, P(ai|h) can be easily calculated. Simply,
for each class, we have to count the proportion of observations labeled with that
class in which the ith attribute has exactly the value ai. The next example should
clarify.

Example 9.2. Let us recall the dataset reported in Table 6.1, on page 149, whose
objective was to categorize days into two classes, to predict whether a given person
would play tennis or not. The dataset is repeated here for the sake of convenience:

264 9 Bayesian Learning

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Let us now assume that we want to classify the following new (unseen) observation:

α = < Outlook = sunny, Temperature = cool, Humidity = high, Wind = strong >

Of course, the space of hypotheses H is:

• h1: observation α belongs to class “Yes”;
• h2: observation α belongs to class “No”;

Following the previous reasoning, in order to find the maximum a posteriori hy-
pothesis hMAP, we have to understand which one of the following two quantities is
the bigger one:

• P(Outlook = sunny, Temperature = cool, Humidity = high, Wind = strong | class = Yes) ·P(class = Yes)
• P(Outlook = sunny, Temperature = cool, Humidity = high, Wind = strong | class = No) ·P(class = No)

If we accept the hypothesis of independence of the single variables (which is clearly
not true in this example), this is equivalent to understanding which one of the fol-
lowing quantities is the bigger:

• h1 → P(Outlook = sunny | class = Yes) ·P(Temperature = cool | class = Yes) ·
P(Humidity = high | class = Yes) · P(Wind = strong | class = Yes) ·
P(class = Yes)

• h2 → P(Outlook = sunny | class = No) ·P(Temperature = cool | class = No) ·
P(Humidity = high | class = No) ·P(Wind = strong | class = No) ·P(class = No)

The good news is that all the quantities above can be calculated using only the
training set. Starting by saying that, in general, a computer will be able to calculate
all these quantities incomparably faster than we can do it manually, let us make
the effort of calculating all these quantities manually in this example, so that it

9.3 Beyond Naı̈ve Bayes: Hints on Bayesian Networks 265

can be completely clear what each one of these quantities exactly represents. In
the following pointed list, for each one of the quantities, we describe how we can
calculate it using the training set, and then we give the result.

• P(class = Yes) = #observations in which class is Yes
Total #observations = 9/14 ≈ 0.64

• P(class = No) = #observations in which class is No
Total #observations = 5/14 ≈ 0.36

• P(Outlook = sunny | class = Yes) = #observations where class is Yes and Outlook is sunny
Total #observations where class is Yes = 2/9 ≈ 0.22

• P(Temperature = cool | class = Yes) = #observations where class is Yes and Temperature is cool
Total #observations where class is Yes = 3/9 ≈ 0.33

• P(Humidity = high | class = Yes) = #observations where class is Yes and Humidity is high
Total #observations where class is Yes = 3/9 ≈ 0.33

• P(Wind = strong | class = Yes) = #observations where class is Yes and Wind is strong
Total #observations where class is Yes = 3/9 ≈ 0.33

• P(Outlook = sunny | class = No) = #observations where class is No and Outlook is sunny
Total #observations where class is No = 3/5 = 0.6

• P(Temperature = cool | class = No) = #observations where class is No and Temperature is cool
Total #observations where class is No = 1/5 = 0.2

• P(Humidity = high | class = No) = #observations where class is No and Humidity is high
Total #observations where class is No = 4/5 ≈ 0.8

• P(Wind = strong | class = No) = #observations where class is No and Wind is strong
Total #observations where class is No = 3/5 ≈ 0.6

We are now able to calculate the a posteriori probability of the two hypotheses:

• h1 → P(class = Yes | Outlook = sunny, Temperature = cool, Humidity = high,
Wind = strong) = 0.64 ·0.22 ·0.33 ·0.33 ·0.33 ≈ 0.005

• h2 → P(class = No | Outlook = sunny, Temperature = cool, Humidity = high,
Wind = strong) = 0.36 ·0.6 ·0.2 ·0.8 ·0.6 ≈ 0.02

The a posteriori probability of event h2 is larger than that of event h1. The con-
clusion is that we classify (unseen) instance α into class “No”, meaning that our
prediction is that the person will not play tennis on that day.

In [Domingos and Pazzani, 1996], Domingos and Pazzani show that the predic-
tion made by Naı̈ve Bayes can be optimal even if the attributes are not indepen-
dent of each other, thus highlighting the excellent performance often obtained by
Naı̈ve Bayes, despite its simplicity.

9.3 Beyond Naı̈ve Bayes: Hints on Bayesian Networks

Despite the excellent performance reported in the literature for many real-life appli-
cations, and despite the findings in [Domingos and Pazzani, 1996], which mitigate
the negative effects of the hypothesis of independence of the variables, it is unde-
niable that this hypothesis can represent a limitation for Naı̈ve Bayes in some sce-
narios, particularly when complex relationships of interdependency between vari-
ables are a fact. In those situations, more sophisticated paradigms, able to capture

266 9 Bayesian Learning

variable interdependencies, may be needed. One of these formalisms is Bayesian
Networks (BNs). A BN is a graph that allows us to represent and reason about an
uncertain domain. The vertices (nodes) in BNs represent a set of random variables,
X = X1, ...,Xi, ...,Xn, from the domain, for instance the variables in a dataset. The
edges (links) connecting pairs of nodes, Xi → X j, represent the direct dependencies
between variables. The only constraint on the structure allowed for a BN is that there
must not be any directed cycles: you cannot return to a node simply by following
directed edges. So, BNs are directed acyclic graphs.

One first observation that could be made is that Naı̈ve Bayes is also a (particular)
BN. The characteristic of a graph representing Naı̈ve Bayes is that it only has one
edge for each input variable, joining the variable itself to the target variable. For
instance, a BN modeling a problem like the one discussed in Example 9.2 could be
represented as in Figure 9.1. The interpretation is that, in the model used for the

Fig. 9.1 The structure of the “naı̈ve” Bayesian network of Example 9.2

problem of Example 9.2, the target variable PlayTennis is (of course) dependent on
all the input variables1 and there is no interdependence between any of the other
variables. So, BNs are a formalism that also includes Naı̈ve Bayes as a particular(ly
simple) case.

Let us now consider a problem that can be modeled with a BN of a different
shape compared to the one shown in Figure 9.1. This problem will be characterized
by known variable interdependencies, and thus it will not be appropriate to model it
using Naı̈ve Bayes. A deliberately simple example is discussed.

Example 9.3. Let us study two events that can cause grass to be wet: the fact that a
sprinkler is active and the fact that it is raining. Both these effects can cause grass
to be wet, but still they are not mutually independent: in fact, one may reasonably
imagine that when it rains, the sprinkler is not active. So, the fact of a sprinkler
being active or not depends on whether it is raining or not. This situation can be
modeled with the Bayesian network shown in Figure 9.2. Three Boolean variables
are present in this BN: Wet Grass, Sprinkler and Rain. Variable Sprinker is depen-
dent on variable Rain, while variable Wet Grass is dependent on both Sprinkler and
Rain. A graph like the one in Figure 9.2 represents only a part of the definition of
a BN, that is its topology (i.e., the way its vertices are connected by edges). For

1 An effective feature selection algorithm should, in fact, remove possible variables on which the
target does not depend, in the preprocessing phase.

9.3 Beyond Naı̈ve Bayes: Hints on Bayesian Networks 267

Fig. 9.2 The topology of the Bayesian network used in Example 9.3

the definition to be complete, the relationships between connected nodes have to be
quantified. This is done by specifying a conditional probability distribution for each
node, and, for the case of discrete variables as in this example, this can be done by
means of conditional probability tables (CPTs). For instance, let us assume that the
vertex representing variable Sprinkler is associated with the following CPT:

Rain True False
False 0.4 0.6
True 0.01 0.99

This table expresses the probability of variable Sprinkler being true or false, de-
pending on the possible values of the variable Rain, on which it depends. The inter-
pretation of this CPT is:

• If it is not raining (Rain = False), then the probability of the sprinkler being active
(Sprinkler = True) is 0.4 and inactive (Sprinkler=False) is 0.6;

• If it is raining (Rain = True), then the probability of the sprinkler being active
(Sprinkler = True) is 0.01 and inactive (Sprinkler=False) is 0.99.

Notice that, in general, a CPT is associated to each variable in the system, even if
the variable does not depend on any other. In that case, the CPT simply contains the
a priori probabilities for that variable. This is the case, in this example, for variable
Rain. Its CPT is supposed to contain the probability of raining or not raining for an
average day. So, the CPT of variable Rain may look like the following table:

True False
0.2 0.8

Last but not least, the CPT of variable Wet Grass contains an entry for each possible
combination of the variables it depends on. Let us assume that the CPT of variable
Wet Grass, in our case, is:

268 9 Bayesian Learning

Sprinkler Rain True False
False False 0.0 1.0
False True 0.8 0.2
True False 0.9 0.1
True True 0.99 0.01

As it is easy to understand, for each variable, the larger the number of variables it
depends on, the bigger the CPT. The BN can now be completely defined, as in Fig-
ure 9.3. Figure 9.3 is identical to Figure 9.2, except that in Figure 9.3 the vertices

Fig. 9.3 The complete definition of the Bayesian network used in Example 9.3

have been annotated with the CPT of the corresponding variable. It should not be
difficult to convince oneself that, usually, the CPTs are part of (or can be extracted
from) the definition of the problem. For instance, if we have a supervised dataset,
once the topology of the network has been defined (and this can be done manu-
ally, or by means of specific algorithms, as we will discuss in the continuation),
the CPTs can usually be calculated directly from the dataset with simple counting
operations, similar, for instance, to the ones that have allowed us to calculate prob-
abilities P(Outlook = sunny | class = Yes) or P(Outlook = sunny | class = No) in
Example 9.2.

Looking at the definition of a BN like the one in Figure 9.3, it is also not difficult
to understand that BNs are a construct that allows for more general computations
than the “simple” prediction of a class label for a given target variable. More specif-
ically, using BNs it is possible to estimate the probability of any variable having any
of its possible values, given actual values of any of the others.

Just as an example, let us now calculate the probability that it is raining
(Rain=True), knowing that the grass is wet (Wet Grass = True). From now on, for
simplicity, variable Wet Grass will be abbreviated as G, Rain as R, Sprinkler as S.
Furthermore, for any variable β , β = True will be abbreviated by simply writing β ,

9.3 Beyond Naı̈ve Bayes: Hints on Bayesian Networks 269

while β = False will be represented using the notation ¬β . So, the probability we
want to estimate is: P(R|G). Directly from the definition of conditional probability,
we have:

P(R|G) =
P(G,R)
P(G)

(9.1)

The right part of Equation (9.1) can be transformed, obtaining:

P(R|G) =
P(G,S,R)+P(G,¬S,R)

P(G,S,R)+P(G,S,¬R)+P(G,¬S,R)+P(G,¬S,¬R)
(9.2)

Now, remembering that, for the definition of joint probability, for each triple of
events A, B and C we have:

P(A,B,C) = P(A|B,C) P(B|C) P(C) (9.3)

we can transform each term of Equation (9.2) into a form that is similar to Equa-
tion (9.3), and then calculate its value using the values in the CPTs.

Let us begin with term P(G,S,R). From Equation (9.3), we have:

P(G,S,R) = P(G|S,R) P(S|R) P(R) (9.4)

But each term on the left-hand side of Equation (9.4) can be extracted directly from
the CPTs. So, Equation (9.4) becomes:

P(G,S,R) = P(G|S,R) P(S|R) P(R) = 0.99 ·0.01 ·0.2 = 0.00198 (9.5)

Analogously, for the other terms in Equation (9.2), we have:

P(G,¬S,R) = P(G|¬S,R) P(¬S|R) P(R) = 0.8 ·0.99 ·0.2 = 0.1584 (9.6)

P(G,S,¬R) = P(G|S,¬R) P(S|¬R) P(¬R) = 0.9 ·0.4 ·0.8 = 0.288 (9.7)

P(G,¬S,¬R) = P(G|¬S,¬R) P(¬S|¬R) P(¬R) = 0.0 ·0.6 ·0.8 = 0.0 (9.8)

Finally, substituting Equations (9.5), (9.6), (9.7) and (9.8) into Equation (9.2), we
obtain:

P(R|G) =
0.00198+0.1584

0.00198+0.288+0.1584+0.0
≈ 0.3577 (9.9)

So, we can conclude that, if the grass is wet, the a posteriori probability that it is
raining is approximately equal to 35%.

Fixing some values of some variables and, with that information, calculating the
probability that another variable has some value is a task that is left as an exercise.
For instance, analogously to what happens for Naı̈ve Bayes, to predict a class label
in a binary classification task, one may calculate the probability of a variable hav-
ing a value and the probability of the same variable having the other possible value
in the same conditions. The higher of these two probabilities is finally the one that

270 9 Bayesian Learning

directs our decision on the predicted class label. Interestingly, as we have seen in
this example, when we use BNs, we do not need an unseen observation to be “com-
plete” (i.e., all the variables to have a value) to calculate the probability of a possible
prediction outcome. For instance, here we have calculated the probability that it is
raining, knowing that the grass is wet, without having any information on whether
the sprinkler is active or not.

In the process discussed in the above example, all the steps were formal, except for
one, which still appears to be quite heuristic: the determination of the BN topology.
There are basically two ways of building the topology of a BN: a manual construc-
tion or an automatic design (so called “topology learning”).

Manual construction of a Bayesian network assumes prior expert knowledge
of the underlying domain. In particular, the variable interdependencies must be
known. However, in some cases, the task of manually defining the topology of
the network is too complex for humans. In those cases, one may try to employ
algorithms that have the objective of inferring the topology directly from the data.
The interested reader is referred to [Singh and Valtorta, 1995, Chen, 2016] for sur-
veys and discussions on existing algorithms. Even though research on this sub-
ject is still ongoing, interesting results have been recently obtained, among others,
in [Wu et al., 2001, Beretta et al., 2018].

	Chapter 9 Bayesian Learning
	9.1 Bayes’ Theorem and Machine Learning
	9.2 Naïve Bayes
	9.3 Beyond Naïve Bayes: Hints on Bayesian Networks

