
Chapter 2
Optimization Problems and Local Search

This chapter introduces optimization problems, one of the largest classes of com-
plex tasks where intelligent systems have become a reality in the last few years.
Then, this chapter tackles the first type of algorithms that can be used to approach
optimization problems: local search algorithms. Generally speaking, local search al-
gorithms function by “moving” from solution to solution in the space of candidate
solutions, by applying local changes, until a satisfactory solution is found or a time
bound elapses.

2.1 Introduction to Optimization

Optimization [Antoniou and Lu, 2007, Kochenderfer and Wheeler, 2019] is a field
of study aimed at developing methods, strategies and algorithms for solving com-
plex optimization problems. In its most general sense, the objective of an optimiza-
tion problem is to find the best solution(s) to a problem in a (huge) set of possible al-
ternative solutions. Generally speaking, an optimization problem can be approached
if we are in possession of at least two pieces of information: we need to know all
the possible solutions, or at least to recognize whether an object is a possible solu-
tion or not, and we need to know, or at least to be able to measure, the quality of
each one of the solutions, in such a way that each one of them can be compared to
the others. Furthermore, a general hypothesis of optimization is that the set of all
possible solutions is so large that it is impossible to enumerate all of them, looking
for the best one(s). And this is why “intelligent” algorithms are generally in demand
for solving optimization problems. Just to settle on some ideas, let us consider the
following examples of optimization problems:

• Example 1: given a three-dimensional space characterized by a set of paths where
a robot can move, find the path that allows the robot to minimize the number of
collisions with obstacles during its motion;

13© Springer Nature Switzerland AG 2023
L. Vanneschi and S. Silva, Lectures on Intelligent Systems, Natural Computing Series,
https://doi.org/10.1007/978-3-031-17922-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17922-8_2&domain=pdf

14 2 Optimization Problems and Local Search

• Example 2: given a set of photographs of human faces, find the one that most
“resembles” a given target face.

Both these examples can be considered optimization problems, because for both of
them we know the solutions, or at least we are able to recognize them, and we are
able to assess the quality of all the solutions. For instance: in Example 1, solutions
are all the possible paths contained in the three-dimensional space at hand, and in
order to assess the quality of each one of them, all we have to do is to allow the
robot to move along the path, and count the number of obstacles that are hit: the
lower this number, the better the quality. Concerning Example 2, the solutions are
pictures of human faces and in order to quantify their quality, all we have to do is to
define a measure of similarity between pictures: the greater the similarity with the
target face, the better the quality.

Several optimization problems are NP-complete [Garey and Johnson, 1990].
This means that optimal solutions cannot be obtained in a “reasonable” amount
of time by means of classical, deterministic algorithms (and generally, the time re-
quired to solve this type of problem is exponential in the size of the data). This
is the main motivation for using Computational Intelligence methods to solve this
kind of problem. Optimization problems can usually be specified by means of a set
of instances of the problem.

Definition 2.1. An instance of an optimization problem is a pair:

(S, f)

where:

• S is the set of all possible solutions, also called the solution space, or search
space;

• f is a function, defined on all elements of S, that associates a real number to each
one of them:

f : S → IR

f quantifies the quality of the solutions in S and is called the cost function, or
fitness function.

Before continuing, it is important to understand the difference between an opti-
mization problem and an instance of an optimization problem. An instance of an
optimization problem is a specification of the problem itself, given by the formal
definition of S and f . Defining a particular instance for a given problem is usually a
process that forces us to make choices and also to give an interpretation of the prob-
lem (an instance of an optimization problem, in fact, cannot be ambiguous). Let us
consider again the optimization problem of Example 2, consisting in finding, in a
given set of photographs of human faces, the one that most “resembles” a given tar-
get face. Let us assume also that the target face is represented in a picture, and let t
be that picture. Let {φ1,φ2, ...,φn} be the set of photographs of human faces, among
which we have to chose the most similar to t. For that problem, we can imagine, at
least, the existence of the following instances:

2.1 Introduction to Optimization 15

• Instance 1:

– S = {Pi, i = 1,2, ...,n | Pi is the matrix of pixels composing picture φi};
– ∀i = 1,2, ...,n : f (Pi) = pixel-to-pixel distance between Pi and the target im-

age t.

• Instance 2: let us assume the existence of an algorithm A that, given a photo-
graph φ representing a face, returns a set of features of φ ; just to fix ideas, one
could for instance imagine somatic features, like for instance the position of the
nose, of the eyes and of the mouth, the color of the eyes, the hair color, etc.

– S = {A (φi), i = 1,2, ...,n};
– ∀i = 1,2, ...,n : f (Pi) = feature-based distance between A (φi) and A (t).

Several things can be observed from the previous examples: first of all, several in-
stances can be defined for the same problem; second, the possible instances can
even be extremely different from each other, both in terms of the representation of
the solutions in S and in terms of the fitness function f ; third, while an optimization
problem can be defined in a rather generic way (for instance, if the set of pictures
is small enough, it is even possible to solve the problem manually, using a concept
of “similarity” between faces that is subjective, and not measurable), an instance of
an optimization problem has to be defined formally, and this is a necessary step so
that it can be solved using a computer; fourth, to define an instance, we have to in-
terpret and formalize the problem, and this usually implies a set of choices; last but
not least, as we will see in the continuation of the book, the algorithms that we will
study may have very different performance on different instances of the same prob-
lem. So, the choices that we make when we define an instance of an optimization
problem are very important, because they may have a direct impact on the func-
tioning of the algorithm. For instance, considering the previous example, it is well
known that the distance between image features is more likely to correspond to our
idea of “similarity” between the pictures than the pixel-to-pixel distance. For this
reason, an algorithm solving Instance 2 will probably return better results than an
algorithm solving Instance 1.

An instance of an optimization problem can identify a maximization or a mini-
mization problem.

Definition 2.2. A minimization problem consists in finding a solution o ∈ S such
that:

f (o)≤ f (i), ∀i ∈ S

while a maximization problem consists in finding a solution o ∈ S such that:

f (o)≥ f (i), ∀i ∈ S

In both cases, the sought for solution o is called a global optimum or globally op-
timal solution, f (o) or fo is called the optimal fitness and the notation So is used
to indicate the set of the global optima contained in S (remark that, given that in

16 2 Optimization Problems and Local Search

general many solutions can have the same fitness value, global optima are generally
not unique).

In the area of optimization, it is typical to talk about several types of problems.
In particular, it is frequent to talk about combinatorial optimization problems. With
this terminology, it is customary to identify a subset of optimization problems where
the search space S, although typically huge, is finite. It is not infrequent to also find
in the literature the term combinatorial optimization problems associated with opti-
mization problems in which the feasible solutions can be expressed using concepts
from combinatorics (such as sets, subsets, combinations or permutations) and/or
graph theory (such as vertices, edges, cliques, paths, cycles or cuts). The term “com-
binatorial” can be understood as a combination of steps chosen from a series/set of
possible steps, which will allow us to arrive at the optimum result. Other typical
cases of optimization problems are discrete and continuous optimization problems.
These terms are used, once again, to identify the search space S, distinguishing the
case in which it is a discrete, or a continuous set, respectively. The definition of
optimization problem given so far is general enough to include all these variants.

2.2 Examples of Optimization Problems

Before deepening the study of optimization problems with an important theoretical
result and several algorithms to solve them, we present some examples of optimiza-
tion problems, along with instance definitions.

Example 2.1. (Knapsack Problem). Given a set of n objects, each one with a known
weight and value, and a knapsack with a predefined maximum capacity k, the ob-
jective of this optimization problem is to fill the knapsack with objects with the
largest possible total value, such that the total weight of these objects does not sur-
pass the knapsack’s capacity. A possible instance for this problem could be defined
as follows; let {1,2, ...,n} be the available objects and, for each i = 1,2, ...,n, let
weight(i) be the weight of object i and value(i) be its value. Assuming that, for
each i = 1,2, ...,n, value(i) and weight(i) are positive numbers:

• The search space S can be defined as the set of all possible strings of bits of
length equal to n (i.e., the number of available objects);

• Given a solution z = {z1,z2, ...,zn}, where for each i = 1,2, ...,n,zi ∈ {0,1}, the
fitness of z can be defined as:

f (z) =

∑
zi=1

value(i) if ∑
zi=1

weight(i)≤ k

−1 otherwise
(2.1)

With this fitness function, the problem is a maximization one: the higher the
fitness, the better the solution.

2.2 Examples of Optimization Problems 17

Using this representation, the solutions represent the possible selections of the n
available objects. In fact, when a bit zi is equal to 1, this can be interpreted as the
object i being carried inside the knapsack. Analogously, if a bit zi is equal to 0, then
the corresponding object i is not carried inside the knapsack. In other words, with
this representation, we are creating two groups, or clusters of objects: the ones that
are carried inside the knapsack, corresponding to a bit equal to 1, and the ones that
are not carried, corresponding to a bit equal to 0. The fitness function distinguishes
between admissible solutions, i.e., solutions for which the total weight of the car-
ried objects is not larger than the knapsack’s capacity, and nonadmissible ones. For
the admissible solutions, the fitness is equal to the sum of the values of the objects
carried in the knapsack, while for the nonadmissible solutions it is equal to a nega-
tive constant (for instance −1, as in the example). In this way, knowing that all the
values are positive, each admissible solution will have a better fitness than any non-
admissible solution. The fact that all nonadmissible solutions have the same fitness
may be a problem, particularly when these solutions are numerous. For this reason,
an improved version of Equation (2.1) may be:

f (z) =

∑

zi=1
value(i) if ∑

zi=1
weight(i)≤ k

− ∑
zi=1

weight(i) otherwise
(2.2)

In this way, we identify a gradient also in the area of the nonadmissible solutions,
which can be useful in some cases for the algorithms that will be studied in the
continuation of this book. With the fitness defined in Equation (2.2), the fitness of
nonadmissible solutions becomes better and better as the total weight of the carried
objects gets closer to the threshold.

Let us now consider a numeric case, characterized by the following data:

• let the number of available objects be n = 10;
• let the knapsack’s capacity be k = 165;
• let the weights of the objects be: 23, 31, 29, 44, 53, 38, 63, 85, 89, 82;
• let the values of the objects be: 92, 57, 49, 68, 60, 43, 67, 84, 87, 72.

Let us now consider solution:

z = 1111010000

This object represents the case in which the 1st, 2nd, 3rd, 4th and 6th objects are
carried in the knapsack, while the others are not. The total weight of the carried
objects is:

∑
zi=1

weight(i) = 23+31+29+44+38 = 165

Given that the total weight of the carried objects is identical to the knapsack’s ca-
pacity, the solution z is admissible, so its fitness is:

f (z) = ∑
zi=1

value(i) = 92+57+49+68+43 = 309

18 2 Optimization Problems and Local Search

An exhaustive analysis of the search space was done for this particular numeric case,
and it showed that this solution represents a global optimum, in other words it is not
possible to find another combination of 10 bits corresponding to a better selection
of the objects than this one.

The Knapsack Problem has a large number of real-life applications. Just as an
example, one may consider the case of a set of investments that can be made on
the stock market, for each of which we know the cost and the expected profit. The
objective, in that case, would be to select the subsets of investments that allow us to
maximize the expected profit, with a total cost that is not larger than our predefined
budget.

The Knapsack Problem is a well-known and widely studied optimization prob-
lem. The interested reader is referred, for instance, to [Martello and Toth, 1990].

Example 2.2. (Traveling Salesperson Problem). Given a set of cities and distances
between each pair of cities, the objective of the Traveling Salesperson Prob-
lem (TSP) is to find the shortest possible route that visits each city, returning to
the origin city. More specifically, n cities are given and the pairwise distances of all
the cities are known. For instance, they can be given in an n×n matrix D, where the
element of indexes p and q (Dp,q) denotes the distance between the pth and the qth
cities. The matrix is, of course, symmetric; in other words Dp,q = Dq,p for any pair
of cities p and q. A cycle is a closed walk that visits each city exactly once. The
problem consists in finding a cycle of minimal length. A permutation of the n cities
could be indicated as:

π = {k,π(k),π2(k), ...,πn−1(k)}

where k = 1,2, ...,n denotes a city. For each k, π(k) denotes the successor of city k,
i.e., the city that is visited right after k, and, by definition:

π
t(k) = π(π...(π(k)))︸ ︷︷ ︸

t times

in other words π t(k) denotes the city that is visited t steps after k was visited. A cycle
is a permutation π such that the following properties are respected:

• πℓ(k) ̸= k, if ℓ= 1,2, ...,n−2;
• πn−1(k) = k

Given this formalization, an instance of the TSP can be defined as:

• S = {π | π is a cycle on the n given cities}
• Given any solution π ∈ S, the fitness of π can be defined as:

f (π) =
n

∑
i=1

Di,π(i)

f (π) returns the total length of cycle π .

2.3 No Free Lunch Theorem 19

Let us now apply these concepts to a numeric case. For simplicity, let the number of
cities be n = 4, and let the matrix of the pairwise distances be:

D =

× 7 2 3
× × 4 1
× × × 8
× × × ×

This matrix represents the graph shown in Figure 2.1.

Fig. 2.1 Graph representation of the instance of the TSP discussed in Example 2.2

Let us now consider solution π1 = {1,2,3,4,1} and let us calculate its fitness. We
have:

f (π1) = D1,2 +D2,3 +D3,4 +D4,1 = 7+4+8+3 = 22

Let us now consider solution π2 = {1,4,2,3,1} and let us calculate its fitness. We
have:

f (π2) = D1,4 +D4,2 +D2,3 +D3,1 = 3+1+4+2 = 10

The TSP has many possible real-life applications, particularly in the field of logistics
and transportation. One may think, for instance, of optimizing the itinerary of a
person delivering pizza to a set of houses, starting from, and returning to, the same
location, which may be the pizzeria. At the same time, it is not difficult to imagine
how many concepts of the TSP can be applied to the optimization of a bus itinerary
or even to air traffic optimization.

The TSP is a well-known and widely studied optimization problem. The inter-
ested reader is referred, for instance, to [Applegate et al., 2007].

2.3 No Free Lunch Theorem

In the continuation of this book, we will study several algorithms to solve optimiza-
tion problems. These algorithms will generally be called optimization algorithms or,

20 2 Optimization Problems and Local Search

more particularly, computational intelligence optimization algorithms, with the ob-
jective of distinguishing them from classical, deterministic optimization algorithms.
Although very different from each other, these algorithms all share a common struc-
ture: they are all iterative algorithms that, at each iteration, return a solution to the
problem. In other words, given an instance of an optimization problem (S, f), an
execution of an optimization algorithm can be identified by a sequence, or vector, of
solutions, each one being returned at the termination of an iteration. Let this vector
be b = {s1,s2, ...,sm}, where, for all i = 1,2, ...,m, si ∈ S. Given that, by definition,
the fitness function f must be defined on all the elements of S, for each solution si
in b, its fitness value fi = f (si) can be calculated. So, instead of using b, one may
identify an execution of an optimization algorithm by means of the vector:

c = { f1, f2, ..., fm}

c is the vector of the fitness values of the solutions returned at each generation by
an optimization algorithm. Let A be an optimization algorithm, and let us now
consider the following conditional probability:

P(c | f ,m,A)

This is the conditional probability that algorithm A , using f as a fitness function,
yields exactly vector c as the sequence of the fitness values of the solutions returned
in the first m iterations of its execution. If we think carefully, this conditional prob-
ability can be imagined as a generalization of the concept of performance of an
algorithm. A particular case, in fact, is if for any i = 1,2, ...,m, fi = fo, in other
words if the sequence of solutions returned by A in its first m iterations contains a
globally optimal solution. In that case, this conditional probability can be interpreted
as the probability of algorithm A finding a global optimum in its first m executions,
using f as a fitness function. Given that the objective of an optimization problem
is to find a globally optimal solution, we can say that, in this particular case, this
conditional probability corresponds to our interpretation of the performance of an
algorithm, intended as its ability to find a global optimum. In simple terms, we could
informally say: the higher the probability of finding a global optimum, the better the
performance of the algorithm.

Using this notion, we are now ready to enunciate one of the most general and
fundamental results in the field of optimization.

Theorem 2.1. (No Free Lunch Theorem) [Wolpert and Macready, 1997].
Given any sequence of fitness values c = { f1, f2, ..., fm} and any pair of optimiza-

tion algorithms A1 and A2, we have:

∑
f

P(c | f ,m,A1) = ∑
f

P(c | f ,m,A2) (2.3)

A formal proof of the No Free Lunch Theorem is beyond the scope of this book; the
interested reader is referred to [Wolpert and Macready, 1997] for a proof and a wide
discussion of this very important result. Here, we are more interested in discussing

2.3 No Free Lunch Theorem 21

the intuitive meaning, and the important consequences, of the No Free Lunch The-
orem. In order to understand what this theorem is telling us, we first need to have
an intuition of the meaning of summing up P(c | f ,m,A) over all possible fitness
values f (remark that this is what is happening on both sides of Equation (2.3): the
summations run over all possible fitness functions). Informally, we can interpret it
as the sum of the performance of an algorithm over all existing optimization prob-
lems. To convince one self about it, consider a countable1 space of solutions S. In
this situation, for each possible optimization problem, we could rename the existing
feasible solutions into solution1, solution2, solution3,... In this way, we could imag-
ine that all optimization problems have the same set of solutions. Given that, as we
will understand when we study some optimization algorithms, the fitness function is
useful only to compare solutions with each other (so that the best one can be iden-
tified), we can also imagine that, once solutions have been sorted from the worst
to the best, the fitness values are modified into 1,2,3, ... (the case of solutions with
identical fitness values is also taken into account in [Wolpert and Macready, 1997]).
In this way, what makes the difference between one problem and another is the as-
signment of the fitness values to the solutions, or, if we imagine solutions to always
keep the same order, the sorting of the possible fitness values. In this interpretation,
a fitness function identifies a possible sorting of fitness values, and all possible ways
of sorting the fitness values identify all the possible problems. Under this perspec-
tive, a new, and more informal formulation of the No Free Lunch Theorem could be
given as follows.

Theorem 2.2. (No Free Lunch Theorem, informal statement). Given any pair of op-
timization algorithms A1 and A2, A1 and A2 have identical average performance,
calculated on all existing optimization problems.

In other words, there cannot exist an algorithm (which we could call a “super” algo-
rithm) that performs better than all the others on all possible existing optimization
problems, and if a set of problems exists on which an algorithm A1 outperforms an
algorithm A2, another set of problems exists on which A2 outperforms A1.

This fact has an interesting consequence: every time that we are faced with a
particular optimization problem, we have no formal/automatic method to decide
what is the best algorithm to solve it. Indeed, if such a method existed, it would
be the super algorithm that would contradict the No Free Lunch Theorem. In other
words, the choice of an appropriate algorithm to solve a particular problem can
only be a heuristic and informal process, typically based on our experience as prob-
lem solvers, on our knowledge of the dynamics of the different algorithms, and/or
on a set of experiments, aimed at comparing different algorithms. Under this per-
spective, the No Free Lunch Theorem encourages the study of many different al-
gorithms. As we will study in Chapter 5, the No Free Lunch Theorem can also be
extended to Machine Learning [Wolpert, 1996]. So, all these considerations can be
extended also to the field of Machine Learning. In conclusion, the No Free Lunch

1 The validity of the No Free Lunch Theorem for continuous optimization, i.e., when S is infinite
and not numerable, was questioned in [Auger and Teytaud, 2010], and so that case will not be
discussed in this section.

22 2 Optimization Problems and Local Search

Theorem motivates and paves the way for the existence of several software environ-
ments, in which several different Computational Intelligence and Machine Learn-
ing techniques are implemented, and a comparison between them is made partic-
ularly easy and automatic. Two of the numerous existing software environments
with these characteristics are: Weka [Hall et al., 2009] (implemented in Java) and
Scikit-learn [Pedregosa et al., 2011] (implemented in Python).

We conclude this section by drawing the attention of the reader to a singular,
and possibly counterintuitive, fact. At the beginning of this section, we defined the
concept of heuristic optimization algorithm as an iterative algorithm, able to return
a solution at the end of each iteration. This definition is general, and it applies re-
gardless of the principle that is used to generate the next solution, which is what
distinguishes the different algorithms from each other. The definition is so general
that even random search, i.e., a rather “naive” algorithm that returns a random so-
lution at each iteration, respects it. Thus, also random search can be considered an
optimization algorithm, and so the No Free Lunch Theorem applies also to it. In
other words, if averaged on all existing problems, random search performs exactly
as well as all the other heuristic optimization algorithms, including the ones that
are considered more sophisticated or “intelligent”, and, given any such algorithm, a
set of problems exists on which random search outperforms it. Although surprising,
this fact is true, and in the continuation of this chapter, problems on which ran-
dom search outperforms all the other algorithms will be studied. Of course, those
problems have particular characteristics that make them rather different from real-
life applications, where, instead, more sophisticated or “intelligent” methods than
random search are often the most appropriate choice.

2.4 Hill Climbing

As studied in the previous section, one of the consequences of the No Free Lunch
Theorem is that the choice of an appropriate algorithm to solve a problem can only
be a heuristic process, in which our knowledge of the functioning and dynamics of
many different algorithms may play a crucial role. Thus, it makes sense to study sev-
eral optimization algorithms of different natures. This study begins in this section,
in which one of the simplest and most naive Computational Intelligence algorithms
is presented: Hill Climbing [Aarts and Korst, 1989, Russell and Norvig, 2009].

Hill Climbing is possibly the most natural and immediate technique to try to
solve an optimization problem, and it consists in an attempt to improve fitness in
a stepwise refinement way, by means of the concept of neighborhood. The process
is so simple that it can be informally described in a few words: let us assume that
we are able, for each solution i belonging to the space of solutions S, to generate a
subset N(i) of S, where N(i) can be interpreted as the set of “neighbor” solutions of i
(N(i) is also called the neighborhood of i). Hill Climbing starts with an initial (typi-
cally random) solution i, which is made the current solution, and tries to improve it.
In particular, it chooses one solution j from N(i) (for instance, it can be the solution

2.4 Hill Climbing 23

with the best fitness in N(i)), and, if the fitness of j is better than the fitness of i,
makes j the new current solution i. The process is iterated until the neighborhood of
the current solution i does not contain any better solution than i. At that point, the
algorithm terminates, returning i as the final result.

This process depends on the fundamental concept of neighborhood structure N,
which is discussed here, before the functioning of Hill Climbing is presented with
more rigor and details.

Definition 2.3. (Neighborhood Structure) Let (S, f) be an instance of an optimiza-
tion problem. A neighborhood structure is a mapping:

N : S → 2S

that associates to each solution i ∈ S a subset of S, which we denote by N(i), and
that we call the neighborhood of i.

Each solution j ∈N(i) is called a neighbor of i and in general we assume that, for any
pair of solutions i, j ∈ S, j ∈ N(i) if and only if i ∈ N(j). Furthermore, we assume
the existence of a precise algorithm A that allows us, given a solution i, to generate
its neighborhood N(i), and we assume that, for each solution i ∈ S, A applied to i
terminates and returns a set containing at least one admissible solution j ∈ S.

In general, there are neither restrictions nor rules for defining a neighborhood
structure, and any mapping respecting the above properties is, in general, acceptable.
However, it is customary to associate the definition of a neighborhood structure
either to an operator that transforms solutions, or to a measure of distance between
solutions. So, given a solution i ∈ S, we define the neighborhood of i in one of the
following ways:

• N(i) = { j ∈ S | j = op(i)}, for a given operator op.
• N(i) = { j ∈ S | d(i, j)≤ k}, for a given distance metric d and prefixed constant k.

According to the first definition, the neighborhood of a solution i is the set of solu-
tions that can be obtained by applying an operator op to i. According to the second
one, once a distance metric has been chosen, the neighborhood of a solution i is the
set of solutions that have a distance to i smaller than or equal to a given prefixed
constant k. As we will see in the next examples, these two definitions often coin-
cide, as it is generally possible to define a distance corresponding to an operator,
and vice versa. In practice, if we apply one of these two definitions, the neighbors
of a solution i often end up being solutions that are structurally rather similar to i.

Example 2.3. Let us assume that the feasible solutions are strings of bits of a pre-
fixed length, like in the knapsack problem that we have studied in Example 2.1. For
instance, one possible neighborhood could be defined in such a way that two solu-
tions are neighbors if and only if they differ by one bit in a corresponding position.
For instance, given a solution:

i = 1011011

the solution:

24 2 Optimization Problems and Local Search

j = 1011001

is a neighbor of i, because all the bits of j are, position by position, identical to the
corresponding bits of i, except for the bit in the 6th position of the string, which is
different. On the other hand, the solution:

h = 1000101

is not a neighbor of i, in fact the bits in the 3rd, 4th, 5th and 6th position of h are
different from the corresponding bits of i, and so the number of different bits in
corresponding positions is larger than one.

Let us now see how it is possible to define such a neighborhood by means of
an operator and by means of a distance. The operator can simply work as follows:
choose a position in the string and flip the bit contained in that position, leaving the
other bits unchanged. The distance is the Hamming distance [Norouzi et al., 2012]
(defined as the number of different bits in corresponding positions), and k = 1.

Example 2.4. Let us now assume that feasible solutions are all the permutations of
integer numbers in a given range, and let us assume that, as in the TSP studied in
Example 2.2, the first and last values in the string are fixed and unchangeable. A
possible neighborhood could be obtained by exchanging two values in a solution.
For instance, given solution:

i = 1234567891

a possible neighbor of i could be:

j = 1237564891

because all the characters in j are identical to the corresponding characters in i,
except for 4 and 7, which have been exchanged. The reader is invited to notice that,
in order to define this neighborhood, it was natural to use the concept of operator:
the operator that swaps two characters, at any pair of positions.

Given an instance of an optimization problem, neighborhoods are generally not
unique. On the contrary, a vast number of possible neighborhoods could be chosen.
Just as an example, for the problem studied in this example, another possible neigh-
borhood could be obtained using an operator that selects two characters at any pair
of positions and exchanges the order of all the characters in between. Using this new
definition of neighborhood, a neighbor of individual i could be:

h = 1265437891

since all characters in h are like the corresponding ones in i except for the characters
that appear from the 3rd to the 6th positions, which appear in the opposite order.

Given an instance of an optimization problem (S, f), and a neighborhood struc-
ture N, the pseudocode of Hill Climbing is reported in Algorithm 1. In that algo-
rithm, i represents the variable storing the current solution at each step. The different
steps of the algorithm can be explained as follows:

2.4 Hill Climbing 25

Algorithm 1: Pseudocode of Hill Climbing for an instance of an optimiza-
tion problem (S, f) and a neighborhood structure N.

1. Initialize a feasible solution istart from the search space S (typically at random);

2. i := istart ; // Let the current solution i be equal to istart

3. repeat

3.1. Generate a solution j from N(i);

3.2. if (f (j) is better than or equal to f (i)) then

i := j; // Let j become the new current solution i

end

until ∀ j ∈ N(i) : f (j) is worse than f (i);

4. return i

• In Step 1, an initial solution istart is generated to allow the process to begin. If we
have some information about the problem, like for instance that solutions with
good fitness should have certain characteristics, that information may be used in
this step. But the typical situation is that we do not have this type of information.
So, in general, the initial solution is randomly generated2;

• In Step 2, the variable i, used to store the current solution at each step of the
algorithm, is initialized by assigning istart to it;

• Step 3 contains the main cycle of the algorithm, in which we try to improve the
fitness of the current solution in a stepwise manner:

– Step 3.1 consists in the generation of a neighbor j of the current solution i.
This can be obtained using the transformation operator that defines the neigh-
borhood structure N. Several different variants of Hill Climbing can exist,
corresponding to different possible choices, but the most frequent choice is
that j is the best neighbor (in terms of fitness) of i;

– Step 3.2 consists in a comparison of the fitness of j with the fitness of i.
In case the fitness of j is better than or equal to that of i, j becomes the new
current solution. In minimization problems, f (j) is better than or equal to f (i)
if f (j)≤ f (i), while in maximization problems f (j) is better than or equal to

2 One important point to understand is that, in general, given that we know how the space of
solutions S is defined, we are also able to generate a random solution. For instance, consider the
case of Example 2.3, where S is the set of all possible strings of bits of a given fixed length n.
Generating a random solution, in that case, can be simply done by flipping a coin n times, inserting
a 0 in case of a tail and a 1 in case of a head, or vice versa.

26 2 Optimization Problems and Local Search

f (i) if f (j)≥ f (i). Remark that a variant of the Hill Climbing algorithm also
exists in which the current solution is not replaced if the generated neighbor
has identical fitness to the current solution. In that case, which we call strict
Hill Climbing, the term “better or equal” in the pseudocode should be replaced
with “better”.

The cycle terminates when all neighbors of the current solution i are worse in
fitness than i. In the case of strict Hill Climbing, the cycle terminates also if the
best neighbor of i has a fitness that is identical to that of i.

• Step 4 is executed when the main cycle of the algorithm has terminated, and it
consists in returning the current solution i as the final result.

Before we present an example that should clarify the functioning of Hill Climbing,
it is important to study the following definition.

Definition 2.4. (Local Optimum). Let (S, f) be an instance of an optimization prob-
lem, and let N be a neighborhood structure. A solution i∈ S is called a local optimum
with respect to N if i has a fitness that is better than or equal to all the other solutions
in its neighborhood. In other words, in minimization problems, i is a local optimum
with respect to N if:

f (i)≤ f (j),∀ j ∈ N(i)

and in maximization problems, i is a local optimum with respect to N if:

f (i)≥ f (j),∀ j ∈ N(i)

The reader is invited to notice that, by its very definition, the solution returned by
Hill Climbing is always a local optimum. In fact, the termination condition of the
algorithm exactly corresponds to the definition of local optimum. Furthermore, it
should be noticed that a global optimum is also a local optimum. In fact, because a
global optimum is the best solution among all the feasible ones, it is also the best
of its neighborhood. We conclude that Hill Climbing may return a global optimum,
however we have no guarantee that this will happen. For a given optimization prob-
lem instance, the quality of the solution returned by Hill Climbing mainly depends
on the initial solution istart , which is typically generated at random, and on the par-
ticular neighborhood structure employed, which is a choice we must make when
solving the problem.

Example 2.5. (Execution of Hill Climbing on a Numeric Case). Let (S, f) be an
instance of an optimization problem, where:

• S = {i | i ∈ IN & 0 ≤ i ≤ 15};
• ∀i ∈ S : f (i) = number of bits equal to 1 in the binary code of i (maximization).

Furthermore, consider the following neighborhood structure:

∀i, j ∈ S : j ∈ N(i) ⇐⇒ | j− i|= 1

2.4 Hill Climbing 27

In this “toy” case study, the search space comprises only 16 feasible solutions: the
natural numbers between 0 and 15 inclusive. As a fitness function, we use the num-
ber of 1s in the binary code. Give that the problem was defined as a maximization
one, it is straightforward to understand that the global optimum for this problem is
represented by solution 15, given that it is the only natural number between 0 and 15
inclusive that contains four bits equal to 1 (the binary code of 15 is, in fact, 1111).
Finally, the neighborhood structure represents, so to say, the “intuitive” neighbor-
hood of natural numbers: for instance, 4 is a neighbor of 3 and 5, 9 is a neighbor
of 8 and 10, and so on and so forth.

Let us, now, simulate the execution of Hill Climbing on this problem. The first
step consists in the random generation of an initial solution. Let us assume that our
random number generator allowed us to obtain 5 as the initial solution. So, i = 5 is
the first current solution. Given that the binary code of 5 is 101, the fitness of this
solution is 2 (two bits are equal to 1 in the binary code). At this point, Hill Climbing
is supposed to generate a solution from the neighborhood of 5. Let us assume that,
as it is usual, the solution chosen by Hill Climbing is the best in the neighborhood.
So, the neighborhood of the current solution is:

N(5) = {4,6}

Given that the fitness of 4 is 1 and the fitness of 6 is 2, the generated neighbor of 5
is j = 6. The fitness of j is now compared to the fitness of i and, consistently with
the pseudocode of Algorithm 1, given that the two fitness values are identical, the
current solution is updated. The new current solution is: i = 6. The algorithm now
iterates the process by analyzing the neighborhood of 6:

N(6) = {5,7}

Given that the fitness of 5 is 2 and the fitness of 7 is 3, the best neighbor is j = 7.
Since the fitness of j is better than the fitness of i, the current solution is updated
again. The new current solution is i = 7. The algorithm iterates again, analyzing
now the neighborhood of 7:

N(7) = {6,8}

Given that the fitness of 6 is 2 and the fitness of 8 is 1, the best neighbor is j = 6. But
since the fitness of the best neighbor j is worse than the fitness of i, it is straight-
forward to infer that all the solutions in the neighborhood of 7 are worse than 7.
Consequently, the algorithm terminates, and 7 is returned as the final solution. It is
worth pointing out that 7 is a local optimum, but it is not the global optimum for
this problem, since the global optimum, as previously mentioned, is 15.

Before terminating this section, it is worth discussing the pros and cons of Hill
Climbing: advantages of Hill Climbing are that it is very simple, and easy to specify,
implement and use. A further advantage of this algorithm consists in its flexibility:
in fact, it is rather simple to change the configuration of the problem, the neigh-
borhood structure, or even only the initial solution, and run the algorithm again,

28 2 Optimization Problems and Local Search

obtaining a different result. The main disadvantage of Hill Climbing is, of course,
that it returns a local optimum, with no guarantee that it corresponds to a global op-
timum. This is a very important flaw, since a local optimum can even be a very poor
solution. So, methods to overcome this disadvantage deserve to be studied. In order
to increase the probability of Hill Climbing returning solutions of better quality, one
may imagine the following approaches:

• run Hill Climbing multiple times, each time using a different initial solution
(possibly all these independent executions can be run in parallel, to save com-
putational time);

• use a more complex neighborhood structure, so that we are able to explore a
larger portion of the search space at each iteration;

Unfortunately, both these strategies are, in general, destined to fail. Concerning the
first idea, in fact, in real problems the number of local optima can be so high that
each agent of parallel Hill Climbing may end up trapped in a different local op-
timum. On the other hand, although extending the neighborhood may effectively
improve exploration ability, in general, in order to significantly increase our confi-
dence that the algorithm returns a global optimum, the neighborhood should become
so large as to become unmanageable. Indeed, one of the most widely accepted ap-
proaches for improving Hill Climbing consists in accepting, with a given limited
probability, a worsening in the fitness of the current solution. This is the idea that is
at the basis of Simulated Annealing, which will be studied in Section 2.6. But before
we study the Simulated Annealing, the concept of Fitness Landscape is presented in
Section 2.5.

2.5 Fitness Landscapes

Let us revisit the optimization problem instance studied in Example 2.5, with the
neighborhood considered in the example, and let us now perform the following ex-
ercise: let us draw a plot in which in the horizontal direction we arrange all the
solutions in the search space, sorted consistently with the used neighborhood struc-
ture, and on the vertical axis we put fitness. In the particular case of Example 2.5,
sorting the solutions consistently with the neighborhood structure is straightforward:
we just need to arrange them using the habitual ordering of natural numbers. The
obtained graphic is shown in Figure 2.2. Such a plot is called a fitness landscape,
given that it visually resembles a landscape, with peaks, valleys, plateaux, etc. The
behavior of Hill Climbing can be imagined as a “walk” on this landscape, where
each single movement is represented by the passage from one current solution to
the next. Given that, at every step of the algorithm, the current solution can only be
a neighbor of the previous current solution, and given that, in the fitness landscape,
neighbor solutions are actually physically “neighbors” in the horizontal direction, so
“jumps” are allowed in the landscape. For instance, in the case of Example 2.5, Hill
Climbing started its “motion” at abscissa 5 (the randomly generated initial solution

2.5 Fitness Landscapes 29

Fig. 2.2 Fitness landscape for the optimization problem instance and neighborhood studied in
Example 2.5

was 5), then “moved” to 6, and finally moved to 7, and then stopped, returning 7 as
a final solution.

As we can see from this simple example, the behavior of Hill Climbing can be
imagined as that of a “mountaineer”, devoted to “climbing” the fitness landscape,
and that stops every time it reaches a top (peak), whether or not it is the highest one
in the landscape. A Fitness Landscape [Stadler, 2002, Pitzer and Affenzeller, 2012]
is a classical way of visualizing the relationship between the syntactic structures of
the solutions and their fitness. The concept is inherited from Biology, and it can be
defined as follows.

Definition 2.5. (Fitness Landscape). Given an instance of an optimization prob-
lem (S, f) and a neighborhood structure N, a Fitness Landscape (FL) is a plot in
which all the solutions in S are represented on the horizontal direction, sorted con-
sistently with N, and, for each solution i ∈ S, the fitness value f (i) is reported on the
vertical direction. An FL is completely identified by the triple:

(S, f ,N)

An FL gives visual intuition on the difficulty, or a simplicity, with which a prob-
lem instance can be solved using a configuration of an optimization algorithm. In
particular, we can imagine the existence of at least the following cases:

• a “smooth” landscape, with one, or very few, peaks;
• a “rugged” landscape, with several different steep peaks.

The former scenario typically corresponds to an easy problem that can often be
solved by many algorithms, including Hill Climbing. The latter case generally cor-
responds to a hard problem that is difficult to solve not only by Hill Climbing, but
also by any of the other existing algorithms, which often get stuck in one of the
numerous local optima. Besides these two cases, one could also mention neutral
landscapes, i.e., FLs in which a large number of neighbors have the same, or ap-
proximately the same, fitness values. This scenario corresponds to the presence of
plateaux on the landscape. Although no gradient can be identified in flat portions of

30 2 Optimization Problems and Local Search

the landscape, the usefulness of the presence of neutrality in FLs is still controver-
sial. Smooth, rugged and neutral FLs and their implications for the performance of
optimization algorithms are discussed in [Vassilev et al., 2003].

Although the concept of FL is in general very useful for understanding the diffi-
culty of a problem, it is generally impossible to draw an FL (even though significant
steps forward are proposed in [McCandlish, 2011]), at least for the following rea-
sons:

• the vast magnitude of the search space;
• the large dimensionality of the neighborhood.

The former point makes it generally impossible to arrange all the feasible solutions
on the horizontal direction of a plot. The latter one turns the plot into a multidi-
mensional one, which makes it hard to draw it. The difficulty represented by the
latter point can be mitigated by representing the FL in the following way: let d be
the distance that is associated with the used neighborhood structure (see the second
definition of neighborhood on page 23); an FL can be represented using a graph,
where each vertex represents a solution, and it is labelled with the fitness of the
solution it represents, and each edge joining a solution i1 to a solution i2 is labeled
with the value of the distance d(i1, i2). An execution of Hill Climbing defines a walk
on this graph. To make the representation more “visual”, one may imagine “lean-
ing” the graph on a horizontal plane, arranging the solutions in such a way that the
distance between each pair of solutions i1 and i2 on the plane is directly propor-
tional to d(i1, i2), and fitness could be given by a projection of each vertex in the
third dimension. This three-dimensional plot can give a visual idea of the rugged-
ness of a landscape even in the presence of high-dimensional neighborhoods, but
still it cannot be drawn in general, due to the vast magnitude of the search space.
Nevertheless, in many real cases, it is possible to imagine the shape of the FL, for
instance starting from some points of known fitness, and this can be useful to ob-
tain information about the ability of an algorithm to find a global optimum. Let us
now consider some examples of fitness landscapes, drawing their shape whenever
possible, and trying to imagine it otherwise.

Example 2.6. Let us recall Example 2.5, and let us extend the number of solutions
in the search space, by increasing the upper bound of the natural numbers to 1023
in the definition of S. In other words, we have the following optimization problem
instance:

• S = {i | i ∈ IN & 0 ≤ i ≤ 1023};
• ∀i ∈ S : f (i) = number of bits equal to 1 in the binary code of i (maximization).

And the following neighborhood structure:

∀i, j ∈ S : j ∈ N(i) ⇐⇒ | j− i|= 1

Analogously to the case of Example 2.5, it is easy to see that the global optimum is
represented by solution 1023, which can be represented by a chain of 10 bits, each

2.5 Fitness Landscapes 31

of which equals 1, while all other numbers between 0 and 1022 can be represented
using 10 bits, but all of them contain at least one bit equal to 0. Given that the
neighborhood is two-dimensional, we can still draw the FL using a two-dimensional
plot as in Figure 2.3. As we can see, this landscape is very rugged. The reader is

Fig. 2.3 Fitness landscape for the optimization problem instance and neighborhood studied in
Example 2.6

invited to implement Hill Climbing and try to use it to solve this problem. It will
quickly be observed that very often Hill Climbing will not be able to return the
global optimum.

Example 2.7. Let us now consider the following optimization problem instance:

• S = {i | i ∈ IN & 0 ≤ i ≤ 1023};
• ∀i ∈ S : f (i) = i2 (maximization).

And the following neighborhood structure:

∀i, j ∈ S : j ∈ N(i) ⇐⇒ | j− i|= 1

As we can see, the only difference between this case and the one studied in Exam-
ple 2.6 consists in a different fitness function. The FL, in this case, is represented in
Figure 2.4. The landscape is clearly smooth, with no local optimum, except for the
unique global optimum, represented, again, by solution 1023. This corresponds to
the typical configuration of a problem that is easy to solve. The interested reader is
invited, once again, to implement this simple problem and try to solve it with Hill
Climbing. It will immediately be observed that Hill Climbing will always be able to
return the global optimum.

Example 2.8. Let us now consider the following optimization problem instance:

• S = {i | i ∈ IN & 0 ≤ i ≤ 1023};

32 2 Optimization Problems and Local Search

Fig. 2.4 Fitness landscape for the optimization problem instance and neighborhood studied in
Example 2.7

• ∀i ∈ S : f (i) = number of bits equal to 1 in the binary code of i (maximization).

And the following neighborhood structure:

∀i, j ∈ S : j ∈ N(i) ⇐⇒ the Hamming distance between i and j is equal to 1.

As we can see, the only difference between this case and the one studied in Ex-
ample 2.6 consists in a different neighborhood structure. This time, two solutions
are neighbors if they differ by just one bit. As an attentive reader will agree, given
that all solutions in S can be represented by strings of 10 bits, each solution now
has 10 neighbors. In other words, the neighborhood, in this case, is 10-dimensional.
This makes it very hard to draw the fitness landscape. Nevertheless, it should not
be too hard to imagine what its shape should be: if a solution is not the global
optimum (which, once again, is represented by solution 1023, whose binary code
is 1111111111), it will have at least one bit equal to 0 in its binary code. And thus,
changing that 0 into a 1, we will be able to obtain a better neighbor. Consequently,
all the solutions in S, except for the global optimum, have at least one neighbor that
is better than them. We conclude that, in this case, the FL is smooth, with no local
optima, except for the unique global optimum. Once again, this can be easily con-
firmed in practice, by implementing Hill Climbing to solve this problem. The reader
will observe that, in a worst case of 10 steps, Hill Climbing will always be able to
return the global optimum.

From Examples 2.6, 2.7 and 2.8, it is possible to understand that a variation of any
of the three elements defining an FL, i.e., S, f and N, may completely change the
shape of the FL, and thus the ability of an algorithm to find the global optimum.

We conclude this section with a last example that should represent cause for
reflection about the No Free Lunch Theorem (Theorem 2.1).

Example 2.9. Let us consider the two-dimensional FL shown in Figure 2.5, and let
the problem be a maximization one. Let us also assume that B ≪ D, or, in other

2.5 Fitness Landscapes 33

Fig. 2.5 Graphical representation of a deceptive fitness landscape

words, let us assume that the probability that a random number drawn with uniform
distribution in [0,D] is smaller than or equal to B is practically equal to zero. In such
a situation, it should not be difficult to convince oneself that Hill Climbing has a
very poor performance. In fact, with high probability the random initial solution will
correspond to an abscissa in (B,D], and given that the algorithm tends to improve
fitness at every step, the solution returned by Hill Climbing will often be the one
corresponding to abscissa D. This solution is a local optimum, with a fitness equal
to C, which is qualitatively much worse than the fitness A of the global optimum. But
the fact that a solution of poor quality is returned is only one of the flaws that Hill
Climbing has on this type of problem: if we consider the distance d that is associated
with the used neighborhood structure (see the second definition of neighborhood on
page 23), the returned solution is even the one that is furthest away from the global
optimum according to d. In simple terms, Hill Climbing is returning a solution of
poor quality that is also very different from the global optimum.

These types of problems are called deceptive problems, and they are character-
ized by the fact that, most of the time, a steady attempt to improve fitness leads the
algorithm towards local optima. In other words, the fitness function is misleading,
in the sense that it tends to conduct the search towards poor-quality solutions. Even
though problems that are deceptive in each part of the search space are hard to find,
it is not infrequent in real-life applications to have significant portions of the search
space that are deceptive. The existence of problems of this type pushes us to the
following reflections:

• On deceptive problems, Random Search (i.e., an optimization algorithm that re-
turns a random solution at each iteration) generally outperforms Hill Climbing.
This is a corroboration of the validity of the No Free Lunch Theorem (Theo-
rem 2.1), and of the fact that this theorem holds also for an apparently very naive
algorithm such as Random Search. Indeed, surprisingly as it may seem, in the
presence of deceptive or partially deceptive problems, Random Search can be a
reasonable strategy.

34 2 Optimization Problems and Local Search

• Always blindly following fitness, in the steady attempt to improve it, can be a
losing strategy for an optimization algorithm. This is what Hill Climbing does,
and this is one of the reasons why Hill Climbing is not one of the most effec-
tive optimization algorithms for real-life problems. Actually, as previously men-
tioned, one of the most useful strategies to improve Hill Climbing is to release
the algorithm from the idea of always improving fitness. In Simulated Annealing,
which is the algorithm we study in the next section, in some cases the fitness of
the current solution can worsen. This corresponds to the possibility of letting an
algorithm go downhill in an FL during its exploration.

Looking again at a case such as the one represented in Figure 2.2, it should not be
hard to convince oneself that, if the current solution is any of the solutions corre-
sponding to an abscissa smaller than 12, the only possibility that an agent has of
reaching the global optimum (abscissa 15) is accepting some downhill steps during
the exploration. Thus, the idea behind Simulated Annealing seems reasonable and
promising.

2.6 Simulated Annealing

Simulated Annealing [Kirkpatrick et al., 1983, Černý, 1985, Aarts and Korst, 1989]
extends Hill Climbing, taking inspiration from a metallurgy and materials science
heat treatment, called annealing [Vlack, 2008]. Annealing is a process that allows us
to obtain materials in a solid state, with the lowest possible level of energy. It alters
the physical and sometimes chemical properties of the material, and it is used to
increase its ductility and reduce its hardness, making it more workable. It involves
heating the material above its recrystallization temperature, maintaining a suitable
temperature for a suitable amount of time, and then allowing slow cooling.

In simple terms, the annealing process can be summarized as follows: it begins
with the material in a solid state i, with energy Ei. Then some chemical bonds are
modified, so as to obtain a new solid state j, with energy E j. At this point, the new
current state of the material is chosen, with some probability distribution, between i
and j, and the process is iterated until the material stabilizes in a given state. The
choice of accepting i or j as the new current state is based on the respective energy
values Ei and E j. In particular, the probability of accepting j is given by P(accept j),
defined in Equation (2.4), while the probability of maintaining i as the current state
is 1−P(accept j). P(accept j) is defined as:

P(accept j) =

1 if E j ≤ Ei

e
−|E j−Ei |

kB T otherwise
(2.4)

where T is the temperature and kB is the Boltzmann constant [Fischer, 2019].
The process described so far is a particular case of the Metropolis algo-

rithm [Chib and Greenberg, 1995] and it was shown to be effective in finding the

2.6 Simulated Annealing 35

solid state of a material with the lowest level of energy. Its similarities with Hill
Climbing are visible, in the sense that we talk of a current state, similarly to how in
Hill Climbing we talk of a current solution, and we try to update the current state
by applying some transformations that may loosely remind us of the application
of an operator to obtain a neighbor. Energy in annealing corresponds to fitness for
optimization algorithms, and it is supposed to be minimized. The macroscopic dif-
ference from the Hill Climbing is clearly that the energy of the current state can
increase with some probability. Simulated Annealing extends Hill Climbing to also
envisage the case of a temporary worsening in the fitness of the current solution.
This worsening will be accepted with a given probability that is inspired by Equa-
tion (2.4).

Given an instance of an optimization problem (S, f) and a current solution i ∈ S,
the probability of accepting a new solution j ∈ S as the new current solution is given
by:

P(accept j) =

{
1 if f (j) is better than or equal to f (i)

e
−| f (j)− f (i)|

c otherwise
(2.5)

where, as usual, in minimization problems f (j) is better than or equal to f (i)
if f (j)≤ f (i), while for maximization problems f (j) is better than or equal to f (i)
if f (j) ≥ f (i). Compared to Equation (2.4), in Equation (2.5) the concept of the
energy of a material was replaced by the fitness of a solution. Furthermore, the term
kB T was replaced by a positive number c that will be called the control parameter
of Simulated Annealing and which, as we will see, plays an important role in the
dynamics of the algorithm.

Once these similarities are established between Simulated Annealing and the
Metropolis algorithm used for annealing, Simulated Annealing can be seen as an
iteration of the Metropolis algorithm, using decreasing values of the control param-
eter c. The idea of beginning the execution with a high value of c and steadily de-
creasing c during the execution of the algorithm can be motivated if we observe Fig-
ure 2.6, reporting the graphical representation of the function φ(c) = e−

k
c , where k is

a positive constant (k = 2 was used in the figure). This plot can be used to study the
variation of the probability that Simulated Annealing accepts a worse solution than
the current one, as c is modified. As we can observe, if we use a “large” value of c in
the early phase of the execution of the algorithm, in this phase we will have a rather
“large” probability of accepting fitness deteriorations. Also, if we assume that c is
steadily decreased during the execution, we can clearly see that this is equivalent to
a steady decrease in the probability of accepting a worse solution than the current
one. Finally, if we assume that the algorithm works by decreasing c in such a way
that c tends towards zero, without ever arriving at zero3, it is easy to understand

3 If the value of c is equal to zero and j is a worse solution than i, then P(accept j) in Equation (2.5)
returns an error, due to a denominator equal to zero. This case is avoided by avoiding c ever
becoming equal to zero during the execution of Simulated Annealing.

36 2 Optimization Problems and Local Search

Fig. 2.6 Graphical representation of the function φ(c) = e−
2
c , used to understand the contribution

of the control parameter c to the probability of accepting a solution with worse fitness, compared
to the current one

that this corresponds to a probability of accepting a worsening in fitness that tends
towards zero.

From all this, we infer that beginning with a high value of c, and steadily de-
creasing it in such a way that c tends towards zero without ever reaching zero, is
equivalent to beginning the execution of the algorithm in a situation in which the
probability of worsening the fitness of the current solution is high, and then steadily
decreasing this probability, tending towards a situation that resembles Hill Climb-
ing, i.e., where the probability of accepting fitness deteriorations is very low. The
rationale behind this idea is, in simple terms, that at the beginning of its execu-
tion the algorithm may be in a difficult area of the search space, characterized by
the presence of several local optima. In such a situation, going downhill with rea-
sonably high probability can be useful to step over some hills. On the other hand, as
long as the execution proceeds, we are possibly approaching one of the highest hills,
and hopefully in the basin of attraction of a global optimum. In that case, we do not
have any interest in going downhill. On the other hand, in such a situation, the most
effective behavior is climbing up the hill as fast as possible, as Hill Climbing would
do.

The pseudocode of Simulated Annealing is reported in Algorithm 2. The algo-
rithm has the objective of navigating the search space by iteratively updating the
current solution i. This is done by executing several transitions, where a transition
of Simulated Annealing is, by definition, a sequence characterized by the genera-
tion of a neighbor j of the current solution i, followed by the decision whether or not
to accept j as the new current solution, a decision that may depend on the current
value of the control parameter c. The algorithm is characterized by two nested loops.
The idea of having two loops is that, for each value of the control parameter c, we
should give the algorithm a number L of “attempts” before c is modified. Several
considerations concerning Algorithm 2 are discussed in the next paragraphs.

2.6 Simulated Annealing 37

Algorithm 2: Pseudocode of Simulated Annealing for an instance of an
optimization problem (S, f) and a neighborhood structure N.

1. Initialize a feasible solution istart from the search space S (typically at random);

2. i := istart ; // Let the current solution i be equal to istart

3. Initialize L and c;
// L is the number of iterations of the internal loop, c is the control parameter

4. repeat until termination condition

4.1. repeat L times

4.1.1. Generate a solution j from N(i);

4.1.2. if (f (j) is better than or equal to f (i)) then

i := j; // Let j become the new current solution

else if (Rand[0,1)< e
−| f (j)− f (i)|

c) then

i := j; // Let j become the new current solution

end

4.2. Update c;

4.3. Update L;

end

5. return the solution with best fitness encountered so far;

1. External Loop and Termination Condition (point 4). The external loop has a ter-
mination condition, which actually corresponds to the stopping criterion of the
algorithm, that is usually satisfied when one of these two conditions is satisfied:

• a “satisfactory” solution has been found, or
• a previously fixed maximum number of iterations has been executed.

Concerning the first point: let us assume that the optimal fitness fo is known4.
In such a situation, we could define an admissible deviation ε f from that fit-
ness value. By “satisfactory” solution, here, we mean a solution x whose fitness
value fx is at a distance smaller than or equal to ε f from fo. Concerning the
second point: the previously chosen maximum number of iterations can be con-

4 The reader should observe that knowing the optimal fitness is rather usual in optimization prob-
lems, where the objective is finding a solution with such a fitness. To convince oneself about this,
one may consider Example 1 on page 13. In that case, the optimal fitness is equal to zero (no ob-
stacles hit by the robot). Finding a path that allows the robot to hit zero obstacles is the objective
of the problem.

38 2 Optimization Problems and Local Search

sidered a parameter of the algorithm, to be set before beginning the execution. In
case fo is not known, the second point remains the only termination condition.

2. Internal Loop (point 4.1). The internal loop of the algorithm is executed for L
iterations. The most general situation (the one reported in Algorithm 2), is that
the value of L is modified at each iteration of the external loop, but it can be kept
as a constant during the whole execution, eliminating point 4.3., and making L a
further parameter to be set beforehand.

3. Generation of the neighbor j (point 4.1.1). Although the algorithm is general,
and any strategy to choose the neighbor can be used, in the case of Simulated
Annealing it is customary to consider a random neighbor of the current solution.
In order to convince oneself about the appropriateness of this choice, the reader
is invited to have a look back at the fitness landscape represented in Figure 2.2.
Let us assume that the current solution is 7. This solution has two neighbors: 6
and 8. The fitness of 6 is equal to 2, while the fitness of 8 is equal to 1. So, if
our choice was to choose the best neighbor, as is customary for Hill Climbing, in
such a situation the generated neighbor would be 6. On the other hand, the reader
should recognize that, if the current solution is 7, the only hope that the algorithm
has to reach the global optimum (that is 15) is to accept 8 as the next solution.
Such a situation can be generalized, that is, in some situations, always choosing
the best neighbor of the current solution may jeopardize our chances of reaching
a global optimum. Besides this, it is also straightforward to understand that, par-
ticularly in the presence of large neighborhoods, generating a random neighbor
is much faster than finding the best neighbor, which implies an evaluation of all
the solutions in the neighborhood.

4. Probabilistic Acceptance of a Worse Solution (else branch of point 4.1.2). If the
chosen neighbor j has a worse fitness than the current solution i, the event of
accepting j as the new current solution is probabilistic. Its implementation in
Algorithm 2 uses the primitive Rand[0,1), which returns a random number be-
tween 0 and 1, drawn with uniform distribution5. The reader is invited to reflect
on the portion of pseudocode:

if (Rand[0,1)< e
−| f (j)− f (i)|

c) then
i := j

This can be interpreted as the implementation of the sentence:

j is accepted as the new current solution with a probability given by e
−| f (j)− f (i)|

c

5 Practically all existing programming languages have such a predefined primitive. For instance, in
Java, one may use the method random() of the class Math.

2.6 Simulated Annealing 39

5. Update of the Control Parameter c (point 4.2). As previously discussed, c should
be decremented at each iteration, in such a way that it steadily tends towards zero,
but without even being equal to zero. In this way, the algorithm should be able
to climb over several hills, basins of attraction of local optima, in the first phase
of the execution, while it should “resemble” Hill Climbing in the second phase,
when the basin of attraction of a global optimum has hopefully been reached.
Any way of updating c that respects these principles can generally be used. A
simple example is to divide the value of c by a constant that is larger than 1. As
we will understand later, it is generally a good idea to have a slow decrement
of the value of c. In order to obtain this, for instance, c could be divided by a
constant that is “slightly” larger than 1.

Let us now study the functioning of Simulated Annealing on a simple numeric ex-
ample.

Example 2.10. Let us recall the optimization problem instance (S, f) and neighbor-
hood structure N of Example 2.5, i.e.,

• S = {i | i ∈ IN & 0 ≤ i ≤ 15};
• ∀i ∈ S : f (i) = number of bits equal to 1 in the binary code of i (maximization);
• ∀i, j ∈ S : j ∈ N(i) ⇐⇒ | j− i|= 1.

As we did in Example 2.5, let us assume that the initial random solution is i = 5.
Given that the binary code of 5 is 101, the fitness of 5 is equal to 2 (since the binary
code has two bits equal to 1). Let us also assume that the generation of the neighbor j
is random and that j = 6. Given that the binary code of 6 is 110, also the fitness of 6
is equal to 2. Although a “strict” version of Simulated Annealing exists, the most
common version (and the one reported in Algorithm 2) envisages a replacement of
the current solution when the generated neighbor has a fitness that is identical to the
current solution. Thus, the new solution is now i = 6, and the algorithm is iterated.

Let us assume, now, that the random neighbor of 6 generated by the algorithm
is j = 7. Given that the binary code of 7 is 111, the fitness of j is equal to 3, i.e., bet-
ter than the fitness of i. In such a situation, without any further computation, j is
accepted as the new current solution. So, now the current solution is i = 7.

Let us assume that the generated neighbor of 7 is j = 8. The binary code of 8
is 1000, so the fitness of 8 is equal to 1. We are now in a situation in which the
generated neighbor has a worse fitness than the current solution. In such a situation,
we can accept or not j as the new current solution with a certain probability given
by:

P(accept 8) = e
−| f (8)− f (7)|

c

Let us assume, just for simplicity, that in this moment of the execution of the algo-
rithm the value of the control parameter c is equal to 1. We have:

P(accept 8) = e
−|1−3|

1 = e−2 ≈ 0.13

40 2 Optimization Problems and Local Search

In other words, we have a probability approximately equal to 13% of accepting 8
as the new current solution. Just to give the reader an informal understanding of the
usual dynamics of Simulated Annealing, it is worth pointing out that this must be
considered a significantly large probability of accepting the new solution. In fact,
over 10 independent attempts in the same situation, the solution should on average
be accepted at least once. Although it can be useful in some circumstances, accept-
ing a fitness worsening is generally a rather rare event. When Simulated Annealing
encounters a local optimum, it typically remains stuck on it for several iterations
before being able to climb over it and begin to explore new regions of the search
space.

Contrarily to Hill Climbing, Simulated Annealing has the ability to escape from
local optima, while still maintaining some positive characteristics of Hill Climbing,
such as simplicity and generality. The convergence speed of the algorithm depends
on several factors, including:

• the initial value of the control parameter c;
• the speed at which c is decreased;
• the number of iterations L in which the same value of c is maintained.

Setting these parameters in an appropriate way is generally a hard task, depending
on the characteristics and complexity of the problem. Nevertheless, some heuristics
can be given, after having studied some theoretical properties of the algorithm.

2.6.1 Theory of Simulated Annealing

The objective of this section is to study the asymptotic convergence behavior of
Simulated Annealing. The final result will be presented and commented on in Theo-
rem 2.3. But, as a stepping stone to that result, we first introduce Definition 2.6 and
Lemma 2.1.

Definition 2.6. Given an instance of an optimization problem (S, f) and a neighbor-
hood structure N, we say that N is a completely interconnected neighborhood if and
only if for each pair of solutions i, j ∈ S, a sequence ℓ0, ℓ1, ..., ℓp exists such that:

• ∀k = 0,1, ..., p : ℓk ∈ S;
• ∀k = 1,2, ..., p : ℓk ∈ N(ℓk−1);
• ℓ0 = i;
• ℓp = j.

In informal terms, a neighborhood structure is completely interconnected if given
any pair of solutions i and j it is always possible to obtain j starting from i by
means of a sequence of solutions that are pairwise neighbors. Use of a completely
interconnected neighborhood structure is a necessary condition for Lemma 2.1 and
Theorem 2.3 to hold.

2.6 Simulated Annealing 41

Lemma 2.1. Let (S, f) be an instance of a minimization problem on which Simu-
lated Annealing is executed using a completely interconnected neighborhood struc-
ture. After a “sufficiently large” number of transitions performed using constant c
as a control parameter, Simulated Annealing stabilizes on a solution i ∈ S with a
probability equal to:

P{X = i}= qi(c) =
1

N0(c)
e−

f (i)
c

where:

N0(c) = ∑
j∈S

e−
f (j)

c

P{X = i}= qi(c) is called the stationary probability, or equilibrium distribution, of
Simulated Annealing, for control parameter c. Lemma 2.1 is not proven in this book.
The reader interested in a proof of this Lemma, based on Markov Chains, is referred
to [Aarts and Korst, 1989]. Lemma 2.1 was enunciated for minimization problems;
an analogous result also holds for maximization problems, but will not be discussed
in this book. With Theorem 2.3, we are now interested in understanding on what
solution(s) Simulated Annealing will stabilize, after a large number of iterations,
when c is modified.

Theorem 2.3. (Theorem of Asymptotic Convergence of Simulated Annealing).
Let (S, f) be an instance of a minimization problem, on which Simulated Annealing
is executed using a completely interconnected neighborhood structure. Assuming
that Simulated Annealing is executed by steadily decreasing the value of the control
parameter c in such a way that c tends towards zero, without ever being equal to
zero, we have:

lim
c→0

qi(c) =
1

|Sopt |
χ(Sopt)(i)

where:

• Sopt is the set of all the globally optimal solutions in the search space6;
• χ(Sopt) : S →{0,1} is a function defined for all the solutions i in the search space,

such that:

χ(Sopt)(i) =

{
1 if i ∈ Sopt

0 otherwise
(2.6)

6 It is worth recalling that globally optimal solutions are not necessarily unique, in fact several
solutions can have the same fitness. So, all the solutions that have an optimal fitness are global
optima. For this reason, in general, we talk of a set of globally optimal solutions.

42 2 Optimization Problems and Local Search

Proof. For the sake of simplicity, in this proof we will use a different notation for the
exponential function: from now until the end of the proof, for each argument x, ex

will be represented using the notation exp(x). From Lemma 2.1, and applying the
limit for c tending towards infinity, we directly obtain:

lim
c→0

qi(c) = lim
c→0

exp(− f (i)
c

)

∑
j∈S

exp(− f (j)
c

)

(2.7)

Let fopt be the optimal (in this case, minimum) fitness value. Multiplying the nu-
merator and denominator of the right part of Equation (2.7) by exp(fopt

c), we obtain:

lim
c→0

qi(c) = lim
c→0

exp(
fopt

c
) · exp(− f (i)

c
)

exp(
fopt

c
) · ∑

j∈S
exp(− f (j)

c
)

from which it is possible to immediately derive:

lim
c→0

qi(c) = lim
c→0

exp(
fopt − f (i)

c
)

∑
j∈S

exp(
fopt − f (j)

c
)

(2.8)

Now, in order to complete the proof, we have to use a property according to which:

∀a ≤ 0 : lim
x→0

exp(
a
x
) =

{
1 if a = 0
0 otherwise

(2.9)

The interested reader is referred to [Rudin, 1986] for a proof and discussion of this
property.

Let us isolate the numerator in the right-hand side of Equation (2.8):

lim
c→0

exp(
fopt − f (i)

c
) (2.10)

As we can observe, Equation (2.10) is rather similar to Equation (2.9): both of them
express the limit of an exponential function, in both cases the argument of the ex-
ponential is a fraction, and in both cases the denominator of this fraction is the
quantity tending towards zero in the limit. Furthermore, given that we are consid-
ering a minimization problem, by definition of fopt we have: ∀i ∈ S : fopt ≤ f (i).
So, the numerator of the fraction, i.e., fopt − fi, is a quantity that is smaller than or
equal to zero. We conclude that Equation (2.9) can be used to obtain the result of
Equation (2.10): that result will be equal to 1 when fopt − fi is equal to zero, and
equal to zero otherwise. But if fopt − fi = 0, then f (i) = fopt , which means that i is

2.6 Simulated Annealing 43

a globally optimal solution. In other terms, Equation (2.10) is equal to 1 if i ∈ Sopt ,
and equal to zero otherwise. But this is exactly the definition of χ(Sopt)(i) given in
Equation (2.6). We conclude that:

lim
c→0

exp(
fopt − f (i)

c
) = χ(Sopt)(i) (2.11)

Let us now isolate the denominator in the right-hand side of Equation (2.8):

lim
c→0

∑
j∈S

exp(
fopt − f (j)

c
) (2.12)

Applying exactly the same reasoning used previously, we have that, for each j ∈ S,
limc→0 exp(fopt− f (j)

c) is equal to 1 if j ∈ Sopt and equal to zero otherwise. But given
that this quantity is summed up for each j ∈ S, the result of the summation is clearly
equal to the number of globally optimal solutions in S. In other terms:

lim
c→0

∑
j∈S

exp(
fopt − f (j)

c
) = |Sopt | (2.13)

Now, substituting Equation (2.11) and Equation (2.13) into Equation (2.8), we ob-
tain:

lim
c→0

qi(c) =
1

|Sopt |
χ(Sopt)(i) (2.14)

But Equation (2.14) is identical to the thesis of the theorem, which allows us to
terminate this proof.

⊓⊔

Theorem 2.3 was enunciated for minimization problems; an analogous result also
holds for maximization problems, but will not be studied in this book. In order to
understand the intuitive meaning of Theorem 2.3, first of all, we have to remark that,
given the functioning of Simulated Annealing (i.e., given the fact that c is steadily
decreased, in such a way that it tends towards zero), a limit for c tending towards
zero is equivalent to a limit for time tending to infinity. So, Theorem 2.3 gives us
information about the properties of Simulated Annealing as the running time tends
to infinity (asymptotic properties).

Let us now try to answer the following question: what does the theorem tell us if
the search space contains just one global optimum? The answer is straightforward: it
says that, as time tends to infinity, Simulated Annealing will tend to stabilize on that
global optimum with a probability equal to 1, and on any other solution different
from the global optimum with probability zero. Let us now try to understand what
the theorem tells us if the search space contains two global optima. Also in this
case, it is not difficult to convince oneself that as time tends to infinity, Simulated
Annealing will tend to stabilize on one of those global optima with a probability

44 2 Optimization Problems and Local Search

equal to 0.5, on the other global optimum with a probability equal to 0.5, and on
any solution that is not a global optimum with probability zero.

Generalizing the previous reasoning, we can conclude that the theorem tells us
that, as time tends to infinity, Simulated Annealing tends to stabilize on a global op-
timum, and the probability is uniformly distributed over all existing global optima.
Interestingly, this property holds independently of the problem at hand, and, as such,
from the shape of the fitness landscape.

Of course, this property does not tell us that Simulated Annealing will find a
global optimum in a humanly acceptable time. It actually tells us that it will hap-
pen, but it does not say anything about the convergence speed, and thus about the
time in which it will happen. As already mentioned above, the optimization speed of
the algorithm depends only on the parameter setting, which is a problem-dependent
task. In order to maximize our chances of finding a global optimum, all we can do
is execute a large number of transitions for each value of the control parameter, and
decrease the control parameter slowly, in such a way that the total number of itera-
tions performed is as large as possible. As is intuitively easy to see, this also slows
down the running time of the algorithm, and finding a good compromise between
efficiency and effectiveness can be a hard task when we decide the values of the
parameters.

Before concluding this section, it is worth discussing one point: using the
Law of Large Numbers [Keane, 1995], one can easily infer that, given a potentially
infinite amount of time, Random Search will find a global optimum for any problem.
From this consideration, one may start wondering whether there is really a differ-
ence in terms of effectiveness between Simulated Annealing7 and Random Search,
which may induce one to mistrust the real usefulness of Simulated Annealing. In-
deed, what Theorem 2.3 tells us is much more than the simple application of the Law
of Large Numbers for Random Search. Theorem 2.3 tells us that Simulated Anneal-
ing tends asymptotically towards a global optimum. From the intuitive meaning of
limit [Rudin, 1986], and in informal terms, we could say that this entails that, af-
ter a certain amount of computation, Simulated Annealing starts getting closer and
closer to a global optimum. So, Simulated Annealing is able to approximate a glob-
ally optimal solution, when it is not able to find it. In other words, we could say that
an amount of time t spent executing Simulated Annealing is “well spent”, because,
after this time, we have a significant probability of having found a solution that is
better than the initial one, and this probability is generally higher as t gets bigger.
On the other hand, nothing like this can be said for Random Search, for which the
probability of finding a good solution at any time t is identical to that at time zero.
These considerations allow us to conclude that asymptotic convergence towards a
global optimum is a very important property, and for an algorithm to be considered
“intelligent”, such a property should hold.

7 The reasoning proposed here holds also for any other algorithm for which it is possible to prove
asymptotic convergence to a globally optimal solution.

	Chapter 2 Optimization Problems and Local Search
	2.1 Introduction to Optimization
	2.2 Examples of Optimization Problems
	2.3 No Free Lunch Theorem
	2.4 Hill Climbing
	2.5 Fitness Landscapes
	2.6 Simulated Annealing
	2.6.1 Theory of Simulated Annealing

