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Abstract. Data-driven disease progression models of Alzheimer’s dis-
ease are important for clinical prediction model development, disease
mechanism understanding and clinical trial design. Among them, dynam-
ical models are particularly appealing because they are intrinsically inter-
pretable. Most dynamical models proposed so far are consistent with a
linear chain of events, inspired by the amyloid cascade hypothesis. How-
ever, it is now widely acknowledged that disease progression is not fully
compatible with this conceptual model, at least in sporadic Alzheimer’s
disease, and more flexibility is needed to model the full spectrum of
the disease. We propose a Bayesian model of the joint evolution of
brain image-derived biomarkers based on explicitly modelling biomark-
ers’ velocities as a function of their current value and other subject char-
acteristics. The model includes a system of ordinary differential equations
to describe the biomarkers’ dynamics and sets a Gaussian process prior
to the velocity field. We illustrate the model on amyloid PET SUVR and
MRI-derived volumetric features from the ADNI study.

Keywords: Disease progression model · Alzheimer’s disease (AD) ·
Magnetic resonance imaging (MRI) · Amyloid PET · Ordinary
differential equations (ODE) · Gaussian process (GP)

1 Introduction

Alzheimer’s disease (AD) is a growing health-economic worldwide issue, account-
ing for most cases of dementia [13]. Despite the great amount of effort devoted
to AD prevention and drug development during the last three decades, the few
pharmacological treatments available show a modest benefit. The study of the
AD process is further hindered by the fact that dementia can be caused by mul-
tiple pathologies, and that AD often co-occurs with them [11], being age and
genetic variations the main risk factors [10].

For more than two decades, the most widely accepted model of the patho-
physiological process underlying AD was the so-called amyloid cascade hypoth-
esis. This hypothesis states that the process starts with an abnormal accumu-
lation of the β-amyloid (Aβ) peptide, triggering a chain of pathological events
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in a predictable way. The corresponding model of biomarker dynamics states
that the main AD biomarkers become abnormal in a temporally ordered man-
ner [6,7]. However, large cohort studies showed that all possible combinations of
biomarker abnormalities are frequently present in the cognitively normal popula-
tion [8], evidencing that the amyloid cascade hypothesis is insufficient to explain
the observed heterogeneity in sporadic AD [4,5].

A new conceptual model of AD was recently proposed [4], which posited
a non-deterministic disease path. According to this model, Aβ and tau levels
interact between them and with genetic and environmental factors to increase or
reduce the risk of disease progression. These interactions would be responsible for
the huge heterogeneity observed in biomarker trajectories and the discrepancies
between observation and the amyloid cascade hypotheses.

Quantitative tools that estimate the biomarker dynamics are needed to shed
light on the AD process and to build better clinical tools for diagnosis, prognosis
and therapy efficacy assessment.

1.1 Disease Progression Models of Alzheimer’s Disease

The first AD progression models describing long-term trajectories from short-
term biomarker observations were based on Jack’s model [7], i.e., they assumed
that all subjects follow the same disease progression pattern but with different
onset times and at different speeds. Jedynak defined a disease progression score
aimed at quantifying disease progression [9]. Subjects were temporally ordered
according to this score and a parametric sigmoid-shaped curve was used to fit
the progression of biomarkers. In [3] the authors proposed a semi-parametric
model to determine the population mean of biomarker trajectories and the tem-
poral order of subjects. A similar but more flexible model used Gaussian Process
(GP) to model also the individual departures from the mean [12]. In general, all
these models may suffer from identifiability issues when trained with short-term
observations, because of the need to simultaneously estimate the disease onset
times and the biomarker trajectories. Sometimes identifiability issues were mit-
igated using mixed-effect modelling to restrict the variance of the subject-level
parameters.

The first dynamical model that relaxes the unique trajectory condition, allow-
ing an arbitrary combination of variables as initial conditions, used a Riemannian
framework to transport the mean trajectory to fit the subject’s observations [16].
Contrary to the previous works, it is the initial value of the variables, and not
the onset time, which was modelled as a random effect.

Finally, differential equation models parameterize biomarker velocities
instead of biomarker trajectories and are therefore implicit models. Two
works [2,15] tackle the problem of how to estimate long-term biomarker tra-
jectories from short-term observations of a single biomarker. A recent work used
a system of ordinary differential equations (ODEs) to simulate the effect of amy-
loid treatments on the disease course [1], being the first multivariate ODE-based
AD progression model.
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In this work, we propose a probabilistic AD progression model that uses a
system of ODEs to describe biomarker dynamics. In our formulation, and similar
to [16] and [1], all combinations of trajectory starting values are allowed. Another
important common feature is that onset times are not model parameters, reduc-
ing the risk of non-identifiability. But contrary to all ODE-based approaches,
we model the biomarker velocities non-parametrically, using GPs, which adds
flexibility and imposes less inductive bias.

2 Methods

2.1 Definitions and Model Overview

We propose a Bayesian generative model to describe the trajectories of brain
biomarkers throughout AD. Let xs(t) = [x1,s(t), x2,s(t), · · · , xL,s(t)] be a set of
L brain features and ys(t) = [y1,s(t), y2,s(t), · · · , yQ,s(t)] a set of Q covariates
for subject s at time t. The features xl,s(t) represent magnitudes associated with
the disease status that evolve as the disease progress. For example, they could
be brain atrophy, amyloid plaques or neurofibrillary tangles.In general, we can
distinguish the aforementioned brain features, associated to the disease process,
from the brain biomarkers extracted from MRI or PET images. However, we will
consider one observable x̂l per feature xl and will refer to features and biomark-
ers interchangeably. The covariates yq,s(t) are assumed to have no observation
error. They could be fixed over time (e.g. genetics), change in time according
to a predefined or known pattern (e.g. age), or be controlled externally (e.g.
treatments).

The link between a set of observed biomarkers x̂ and the feature vector x
is specified by a likelihood function L(x̂|x,Θ), where Θ are model parameters.
In our case, the likelihood functions will be independent Gaussian distributions.
Let x̂l,s;i ∼ N (

xl,s(tl,s;i), σ2
l

)
be the ith observation of biomarker l for subject

s at observation time tl,s;i. Note that the number observations and observation
times may be different for each subject and each biomarker.

The main hypothesis in this work is that the state of features and covariates at
a given time determines unequivocally the rate of progression,i.e. the expected
rate of change of all the brain features. Specifically, trajectories should be a
solution of the of the initial value problem defined by the system of ODEs

dxs(t)
dt

= v(zs(t)), (1)

where zs(t) = [xs(t),ys(t)], with initial condition

zs(0) = [x0,s,ys(0)]. (2)

We propose to model each component l of the velocity field v(·) using a GP
prior

vl ∼ GP(0, kl(·, ·)), (3)
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with the exponential kernel, kl(zm, zn) = kαl,ρl
(zm, zn) = α2

l exp(− (zm−zn)
2

2ρ2
l

).
The problem is completely specified once we define priors for the model

hyperparameters, i.e., the observation variance σ2
l , the kernel parameters αl

and ρl, and the subject-level parameters x0,s.
However, the velocity field v(·) is a function-valued parameter which could

be difficult to estimate and very hard or impossible to marginalize out given that
it is involved in the ODE system (1).We propose the following approximation
to transform Eq. (3) into a likelihood function and to model v(·) implicitly, as
it is usual in GP regression. Let x̂l,s;i and x̂l,s;i+1 be two observations of the
same biomarker l at two consecutive time points, tl,s;i and tl,s;i+1, respectively.
Assuming that the time difference Δtl,s;i = tl,s;i+1 − tl,s;i is small with respect
to the biomarker dynamics, we can approximate the velocity field using the
observation differences.Dropping the indexes s and l for clarity, we have

x(ti+1) � x(ti) + v(z(ti))Δti

x̂i+1 − εi+1 � x̂i − εi + v(z(ti))Δti

v̂i =
x̂i+1 − x̂i

Δti
� v(z(ti)) +

εi+1 − εi

Δti
, (4)

where εi ∼ N (0, σ2) is the observation error. Then v̂i ∼ N (v(z(ti)), 2σ2/Δt2i )
and we can replace Eq. (3) with

v̂ ∼ GP(0, k̂(·, ·)), (5)

where the new kernel k̂(·, ·) is the same as k(·, ·) plus a noise term, and Eq. (5)
represents a likelihood function because its l.h.s. is an observation. Note that the
Gaussianity and independence of biomarker observations was critical to define
the approximate velocities in Eq. (4).

2.2 Proposed Model

The complete set of parameter priors is given by

σl ∼ N+(0, τσ,l)
αl ∼ N+(0, τα,l)
ρl ∼ Γ (5, 5)

[x0,s]l ∼ U(0, 1),

where N+(·, ·) is the half-Gaussian distribution and Γ (5, 5) is used as a weakly
informative prior that penalizes extremely large and extremely small values of the
length scale parameter ρ. Weakly informative priors for σl and αl are determined
by setting τσ,l and τα,l equal to the mean subject-level standard deviation of
observations and the variance of the estimated velocities v̂l,s;i, respectively.
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For simplicity, each component of the subject-level parameters x0,s is
restricted to be in the unit segment after normalizing the biomarker values to
fit in the unit hypercube. Note that they can be modelled as random effects
if desired, which would provide better estimations in case that a biomarker is
completely missing for a given subject.

The likelihood functions are

x̂l,s;i ∼ N (
[xs(tl,s;i)]l, σ2

l

)
(6)

v̂l ∼ N
(
0,Kαl,ρl

(Ẑl, Ẑl) + diag
(
s2σl

))
,

where v̂l includes all consecutive observation differences from all subjects, i.e.,

v̂l =
[
x̂l,1;2 − x̂l,1;1

Δtl,1;1
,
x̂l,1;4 − x̂l,1;3

Δtl,1;3
, . . . ,

x̂l,2;2 − x̂l,2;1

Δtl,2;1
, . . .

]T

, (7)

Ẑl is a matrix with the corresponding features and covariates,

Ẑl =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x̂1,1;1 x̂2,1;1 · · · y1,1;1 y2,1;1 · · ·
x̂1,1;3 x̂2,1;3 · · · y1,1;3 y2,1;3 · · ·

...
...

...
...

x̂1,2;1 x̂2,2;1 · · · y1,2;1 y2,2;1 · · ·
...

...
...

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(ẑ1,1)
T

(ẑ1,3)
T

...
(ẑ2,1)

T

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

the noise term is given by sσl
=

√
2σl[Δt−1

l,1;1,Δt−1
l,1;3, . . . ,Δt−1

l,2;1, . . . ], and the
matrix Kαl,ρl

(Ẑl, Ẑl) is obtained by applying the kernel to all combinations of
rows in Ẑl.

To compute xs(tl,s;i) in the likelihood term (Eq. (6)) we used forward Euler
integration

xs(tl,s;i+1) = xs(tl,s;i) + v(zs(tl,s;i))Δtl,s;i

with initial condition given by Eq. (2), where

[v(z)]l = kαl,ρl
(z, Ẑl)T

(
Kαl,ρl

(Ẑl, Ẑl) + diag(s2σl
))

)−1

v̂l

Note that the trajectory of all biomarkers should be computed simultaneously,
even when only a single component l is needed in Eq. (6). This doesn’t represent
any problem as far as the covariates ys(tl,s;i) are available at all time points
because the observations x̂l′,s;i are not used in this computations for l′ �= l. This
implies that the biomarkers don’t need to be acquired at the same time points.
This is an important consideration for long longitudinal studies, such as ADNI,
for which each imaging modality is scheduled at a different rate and the time
gap between the first acquisition of two modalities differ between subjects.

However, the matrix Ẑl should be complete for each component l. This implies
that, at least at the first of the two time points used to compute the differences
in Eq. (4), the complete set of observations is needed, and that the vectors v̂l in
Eq. (7) may have different lengths for each biomarker l.
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3 Experiments

3.1 Data

The model was fitted to the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database1. All subjects from the ADNI dataset having at least 4 valid AV45
(Florbetapir) PET scans and 4 MRI T1 scans were used to fit the model, resulting
in a total of 198 participants (88 Cognitively Normal and 110 with Mild Cognitive
Impairment), and 874 PET and 1225 MRI measurements.

Three features were selected: mean AV45-PET SURV (average PET sig-
nal in cortical grey matter normalized by whole cerebellum), and the ratios of
hippocampal and ventricular volume to intracranial volume (ICV)2. Covariates
included age and the presence of a copy of the E4 allele of the apolipoprotein-E
(APOE) gene. The covariate vector y had only 1 dimension (age) because veloc-
ities fields for APOE E4 carriers and non-carriers were kept apart and estimated
separately, sharing only the hyperparameters.

3.2 Results

The posterior distributions of the model parameters were obtained with Markov
chain Monte Carlo (MCMC) sampling using Stan software [17]. To explore the
model predictive performance we did a leave-one-site-out experiment consisting
in removing all subjects from a given hospital, except for a few observations used
for predicting the rest of the biomarker trajectory, but not for velocity estima-
tion.All the observations from left-out sites within a 5-year interval centred at
the PET-MRI time overlap were used to estimate the rest of the trajectory. This
interval was defined in order that all subjects to have at least one PET observa-
tion. As AV45 started to be acquired after MRI, there are few observations after
this period. Therefore, prediction time in the past is larger than in the future.

Figure 1 shows predicted trajectories along with observations for a subset
of subjects. Specifically, we selected the subject with most data not shown to
the model from each site. Then, the 8 subjects with the longest unobserved
trajectories from the APOE E4 non-carrier group were selected.

Apart from prediction, the model allows to test an endless amount of
hypotheses, such as the mean difference in a given biomarker rate of change
between two given sub-populations. For the sake of illustration, we have focused
on the hippocampal rate of change, shown in Fig. 2. The top row panels show a
representation of the velocity field in the MRI plane (hippocampal and ventricu-
lar volumes) and the bottom row panels show the rate of change of hippocampal
volume for different conditions. The most prominent pattern is that APOE E4
carriers present higher rates of hippocampal atrophy than E4 non-carriers. These
dynamics are only mildly modulated by brain amyloid levels, as can be observed
in the bottom row panels. The strong influence of genetic factors in AD dynam-
ics and the importance of considering their effect in AD progression modelling
was recently highlighted in [4].
1 adni.loni.usc.edu.
2 The MRI volumes were computed using FreeSurfer (5.1).
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Fig. 1. Normalized biomarker trajectories for selected individuals. Blue: AV45-PET
mean SUVR/3; Orange: Ventricular volume/ICV ×10; Green: Hippocampal (HPC)
volume/ICV ×100. Dots correspond to observations, black stars denote observations
used for prediction while the rest of the observations were hidden during the model
inference. Shaded areas represent the 90% highest density interval of the prediction
posterior probability. (Color figure online)

Fig. 2. Top: Representation of velocity fields. Dots correspond to the mean estimated
initial values and lines represent velocity (two years of evolution) and their uncertainty
(lines are drawn from the posterior distribution). Bottom: Hippocampal volume rate
of change among subjects with mild neurodegeneration for different conditions of age,
APOE and amyloid PET. Shaded areas represent 90% highest density interval of the
posterior probability.
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4 Discussion

We have presented a statistical model of brain-derived biomarker progression
that overcomes important limitations of previous progression models of AD [14].
Remarkably, the proposed model dispenses with the assumption of a common
disease trajectory. Biomarker independence is another limiting assumption fre-
quently made. Conversely, the relationship between one biomarker value and
another biomarker dynamics is at the core of the proposed model. Finally, this
work presents the first non-parametric ODE-based AD progression model.

We have illustrated the model on PET and MRI-derived biomarkers and
shown its potential as a tool for AD dynamics understanding and prediction.
We showed the feasibility of full Bayesian posterior inference using MCMC in a
moderate-sized dataset. The only multivariate ODE-based model of AD progres-
sion we are aware of used a variational approximation to estimate posteriors [1].

4.1 Limitations and Future Directions

A limitation of this work is the small number of selected biomarkers. We foresee
no mayor computational issues in adding a large number of biomarkers, because
GPs scale well with dimensionality. However, more experiments are required to
verify the stability of the estimates.

The proposed model can be easily extended with other relevant AD tests,
such as cognitive tests. Additionally, a cross-sectional clinical prediction model
whose input features are the biomarkers and covariates used in this work could be
added on top of the progression model. The progression and the diagnostic model
combine together to forecast diagnosis in the future, i.e., producing prognosis
predictions.
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