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Preface

The increasing complexity and availability of neuroimaging data, computational
resources, and algorithms have the potential to exponentially accelerate discoveries in
the field of clinical neuroscience. However, while computational methods have become
increasingly complex, the size and diversity of typical evaluation data sets has not
increased at the same rate. As a result, findings may not generalize to the general popula-
tion or be biased towards majorities. In our view, integrating knowledge across domains
is an effective and responsible way to reduce the translational gap between method-
ological innovations, clinical research, and, eventually, clinical application. With this
workshop, we established a platform for the exchange of ideas between engineers and
clinicians in neuroimaging.

The 5th International Workshop on Machine Learning in Clinical Neuroimaging
(MLCN 2022) was held on September 18, 2022, as a satellite event of the 25th Interna-
tional Conference on Medical Imaging Computing and Computer Assisted Intervention
(MICCAI 2022) in Singapore, to continue the yearly recurring dialogue between experts
in machine learning and clinical neuroimaging. The call for papers was made on May
2, 2022, and the submission period closed on July 8, 2022. Each submitted manuscript
was reviewed by three or more Program Committee members in a double-blind review
process.

The accepted papers were methodologically sound, thematically fitting, and con-
tained novel contributions to the field of clinical neuroimaging; these were presented
and discussed at the hybrid MLCN 2022 workshop by one of the authors. The contri-
butions covered a wide range of in vivo image analysis for clinical neuroscience and
were classified according to their focus as either Morphometry or Diagnostics, Aging,
and Neurodegeneration. Morphometry of anatomical regions of interest or pathologi-
cal tissue was investigated from multiple angles. Among those papers concerned with
Morphometry, some methods for improving the segmentation accuracy or volumetry
were proposed. Others investigated cross-modality consistency of volumetry or potential
lower accuracy of segmentation in minority populations caused by imbalanced training
data. The papers concerned with Diagnostics, Aging, and Neurodegeneration presented
predictive machine learning models, statistical group comparisons, or modeling of tra-
jectories. The applications included age prediction, dementia, atrophy, autism spectrum
disorder, and traumatic brain injury.
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Joint Reconstruction and Parcellation
of Cortical Surfaces

Anne-Marie Rickmann1,2(B), Fabian Bongratz2, Sebastian Pölsterl1,
Ignacio Sarasua1,2, and Christian Wachinger1,2

1 Ludwig-Maximilians-University, Munich, Germany
2 Lab for Artificial Intelligence in Medical Imaging,Technical University of Munich,

Munich, Germany

arickman@med.lmu.de

Abstract. The reconstruction of cerebral cortex surfaces from brain MRI
scans is instrumental for the analysis of brain morphology and the detec-
tion of cortical thinning in neurodegenerative diseases like Alzheimer’s
disease (AD). Moreover, for a fine-grained analysis of atrophy patterns,
the parcellation of the cortical surfaces into individual brain regions is
required. For the former task, powerful deep learning approaches, which
provide highly accurate brain surfaces of tissue boundaries from input MRI
scans in seconds, have recently been proposed. However, these methods do
not come with the ability to provide a parcellation of the reconstructed sur-
faces. Instead, separate brain-parcellation methods have been developed,
which typically consider the cortical surfaces as given, often computed
beforehand with FreeSurfer. In this work, we propose two options, one
based on a graph classification branch and another based on a novel generic
3D reconstruction loss, to augment template-deformation algorithms such
that the surface meshes directly come with an atlas-based brain parcel-
lation. By combining both options with two of the latest cortical surface
reconstruction algorithms, we attain highly accurate parcellations with a
Dice score of 90.2 (graph classification branch) and 90.4 (novel reconstruc-
tion loss) together with state-of-the-art surfaces.

1 Introduction

The reconstruction of cerebral cortex surfaces from brain MRI scans remains an
important task for the analysis of brain morphology and the detection of cor-
tical thinning in neurodegenerative diseases like Alzheimer’s disease (AD) [28].
Moreover, an accurate parcellation of the cortex into distinct regions is essen-
tial to understand its inner working principles as it facilitates the location and
the comparison of measurements [9,13]. While voxel-based segmentations are
useful for volumetric measurements of subcortical structures, they are merely
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4 A.-M. Rickmann et al.

suited to represent the tightly folded and thin (thickness in the range of few
millimeters [24]) geometry of the cerebral cortex.

The traditional software pipeline FreeSurfer [10], which is commonly used
in brain research, addresses this issue by offering a surface-based analysis in
addition to the voxel-based image processing stream. More precisely, the voxel
stream provides a voxel-based segmentation of the cortex and subcortical struc-
tures, whereas the surface-based stream creates cortical surfaces and a cortex
parcellation on the vertex level. To this end, FreeSurfer registers the surfaces to
a spherical atlas. Cortical thickness can be computed from these surfaces with
sub-millimeter accuracy and different regions of the brain can easily be analyzed
given the cortex parcellation. Yet, the applicability of FreeSurfer is limited by
its lengthy runtime (multiple hours per brain scan).

Recently, significantly faster deep learning-based approaches for cortical sur-
face reconstruction have been proposed [1,4,20,23]; they reconstruct cortical
surfaces from an MRI scan within seconds. To date, however, these methods
do not come with the ability to provide a parcellation of the surfaces. At the
same time, recent parcellation methods [5,14] usually rely on FreeSurfer for the
extraction of the surface meshes. A notable exception is [15], which, however, is
not competitive in terms of surface accuracy.

In this work, we close this gap by augmenting two state-of-the-art corti-
cal surface reconstruction (CSR) methods [1,20] with two different parcellation
approaches in an end-to-end trainable manner. Namely, we extend the CSR net-
works with a graph classification network and, as an alternative, we propagate
template parcellation labels through the CSR network via a novel class-based
reconstruction loss. Both approaches are illustrated in Fig. 1. We demonstrate
that both approaches yield highly accurate cortex parcellations on top of state-
of-the-art boundary surfaces.

2 Related Work

In the following, we will briefly review previous work related to corical surface
reconstruction and cortex parcellation. While we focus on joint reconstruction
and parcellation, the majority of existing methods solves only one of these two
tasks at a time, i.e., cortex parcellation or cortical surface reconstruction.

Convolutional neural networks (CNNs) remain a popular choice for med-
ical image segmentation and they have been applied successfully to the task
of cortex parcellation. For example, FastSurfer [16] replaces FreeSurfer’s voxel-
based stream by a multi-view 2D CNN. Similar approaches [3,17] have been pro-
posed based on 3D patch-based networks. However, the computation of cortical
biomarkers based on fully-convolutional segmentations is ultimately restricted
by the image resolution of the input MRI scans and the combination with the
FreeSurfer surface stream is not efficient in terms of inference time.

Deep learning-based parcellation methods operating on given surface meshes
(typically pre-computed with FreeSurfer) have also been presented in the past.
For example, the authors of [5] investigate different network architectures for
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Fig. 1. Overview of surface reconstruction networks with our extensions for learning
cortex parcellation. Bottom left: A classification network is added after the deformation
network and trained with a classification loss on the vertex-wise class predictions.
Right: The deformation network takes surface templates with parcellation labels (from
a population atlas) as input and the reconstruction loss is computed separately for
each class.

the segmentation of two brain areas. They found that graph convolution-based
approaches are more suited compared to multi-layer perceptrons (MLPs). Sim-
ilarly, the method presented in [8] parcellates the whole cortex using graph
attention networks. In contrast, the authors of [14] utilize spherical graph con-
volutions, which they find to be more effective than graph convolutions in the
Euclidean domain. All of these vertex classifiers consider the surface mesh as
given.

To avoid the lengthy runtime of FreeSurfer for surface generation, deep
learning-based surface reconstruction approaches focus on the fast and accurate
generation of cortical surfaces from MRI. These approaches can be grouped into
implicit methods [4], which learn signed distance functions (SDFs) to the white-
to-gray-matter and gray-matter-to-pial interfaces, and explicit methods [1,20],
which directly predict a mesh representation of the surfaces. The disadvan-
tage of implicit surface representations is the need for intricate mesh extrac-
tion, e.g., with marching cubes [21], and topology correction. This kind of post-
processing is time-consuming and can introduce anatomical errors [10]. In con-
trast, Vox2Cortex [1] and CorticalFlow [20] deform a template mesh based on



6 A.-M. Rickmann et al.

geometric deep learning. More precisely, Vox2Cortex implements a combina-
tion of convolutional and graph-convolutional neural networks for the template
deformation, whereas CorticalFlow relies on the numerical integration of a defor-
mation field predicted in the image domain. Both of these approaches provide
highly accurate cortical surfaces without the need for post-processing.

To the best of our knowledge, SegRecon [15] is the only approach that simul-
taneously learns to generate cortical surfaces and a dedicated parcellation. The
authors trained a 3D U-Net to learn a voxel-based SDF of the white-to-gray-
matter interface and spherical coordinates in an atlas space. After mesh extrac-
tion and time-intense topology correction, the atlas parcellation can be mapped
to the surfaces. Although this method can extract a white matter surface from
an MRI (reported Hausdorff distance 1.3 mm), the focus of SegRecon lies on the
parcellation and the respective surface reconstructions are not competitive with
recent algorithms specifically designed for this purpose. In contrast to SegRe-
con, we leverage explicit cortex reconstruction methods since they have shown
to yield more accurate surfaces compared to their implicit counterparts [1,20].

3 Method

We build upon very recent work in the field of cortical surface reconstruction
and propose to extend the respective methods to endow the reconstructed sur-
faces with a jointly learned parcellation. In particular, we base our work on
Vox2Cortex [1] and CorticalFlow [20], two mesh-deformation methods that have
shown state-of-the-art results for the extraction of cortical surfaces. Both of these
methods take a 3D MRI scan and a mesh template as input and compute four
cortical surfaces simultaneously, the white-matter and the pial surfaces of each
hemisphere.

3.1 Surface Reconstruction Methods

Vox2Cortex: Inspired by previous related methods [19,30,31], Vox2Cortex
(V2C) [1] consists of two neural sub-networks, a CNN that operates on voxels
and a GNN responsible for mesh deformation. Both sub-networks are connected
via feature-sampling modules that map features extracted by the CNN to vertex
locations of the meshes. To avoid self-intersections in the final meshes, which
is a common problem in explicit surface reconstruction methods, Vox2Cortex
relies on multiple regularization terms in the loss function. The deformation
of the template mesh is done in a sequential manner, i.e., multiple subsequent
deformation steps that build upon each other lead to the final mesh prediction.

CorticalFlow: In contrast to Vox2Cortex, which predicts the mesh-deformation
field on a per-vertex basis, CorticalFlow (CF) [20] relies on a deformation field
in image space. To map it onto the mesh vertices, CorticalFlow interpolates
the deformation field at the respective locations. Similarly to Vox2Cortex, the
deformation is done step-by-step and each sub-deformation is predicted by a
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3D UNet. To avoid self-intersections, the authors propose an Euler integration
scheme of the flow fields. The intuition behind using a numerical integration is
that by choosing a sufficiently small step size h, the mesh deformation is guar-
anteed to be diffeomorphic and, thus, intersection-free. However, this guarantee
does not hold in practice due to the discretization of the surfaces [20]. In our
experiments, we apply only a single integration step to reduce training time and
memory consumption (also at training time).

3.2 Surface Parcellation

For the parcellation of the human cortex, there exist multiple atlases based on,
e.g., structural or functional properties according to which different brain regions
can be distinguished. Commonly used atlases are the Desikan-Killiany-Tourville
(DKT) [6,18] or Destrieux [7] atlas, which are both available in FreeSurfer. We
use FreeSurfer surfaces as pseudo-ground-truth meshes with parcellation labels
from the DKT atlas and smoothed versions of the FreeSurfer fsaverage template
as mesh input.

Classification Network: Previous work [5,8] has shown that GNN-based
classification networks can provide accurate cortex parcellations. Therefore, we
extend the CSR networks with a classification branch consisting of three resid-
ual GNN blocks, each with three GNN layers. We hand the predicted mesh with
vertex features (extracted by the Vox2Cortex GNN) or just vertex coordinates
(from CorticalFlow) as input to the GNN classifier. As output, we obtain a vec-
tor of class probabilities for each vertex. After a softmax layer, we compute a
cross-entropy loss between the predicted classes and ground-truth classes of the
closest points in the target mesh. In combination with Vox2Cortex, we integrate
the classification network after the last mesh-deformation step and train the
CSR and classification networks end-to-end. In combination with CorticalFlow,
we also add the classification layer after the last deformation and freeze the
parameters of the U-Nets of the previous steps. In our experiments, we found
that adding the classification network in each of the iterative optimization steps
leads to training instability, hence we only add it in the last iteration.

Class-Based Reconstruction: As both Vox2Cortex and CorticalFlow are
template-deformation approaches, we propose to propagate the atlas labels of
the DKT atlas through the deformation process. More precisely, we enforce the
respective regions from the template to fit the labeled regions of the FreeSurfer
meshes by using a modified class-based reconstruction loss. This loss function is
agnostic to the concrete implementation of the reconstruction loss, e.g., it can
be given by a Chamfer distance as in CorticalFlow or a combination of point-
weighted Chamfer and normal distance as in Vox2Cortex. Let Pp and > P be
predicted and ground-truth point sets sampled from the meshes Mp and > M,
potentially associated with normals. Further, let Lrec(Pp

c , > Pc) be any recon-
struction loss between the point clouds of a certain parcellation class c ∈ C.
Then, we compute the class-based reconstruction loss as
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Lrec,class(Pp, > P) = 1
|C|

∑
c∈C Lrec(Pp

c , > Pc). (1)

Intuitively, the predicted points of a certain atlas class “see” only the ground-
truth points of the same class. We depict this intuition also in Fig. 1B. By
construction of this loss, the parcellation of the deformed template and the
ground-truth parcellation are aligned. Compared to the classification network,
this approach has the advantage that “islands”, i.e., small wrongly classified
regions, cannot occur on smooth reconstructed meshes.

3.3 Experimental Setup

Data: We train our models on 292 subjects of the publicly available OASIS-1
dataset [25] and use 44 and 80 subjects for validation and testing, respectively.
Overall, 100 subjects in OASIS-1 have been diagnosed with very mild to moder-
ate Alzheimer’s disease. We based our splits on diagnosis, age, and sex in order
to avoid training bias against any of these groups.
Pre-processing: We use the FreeSurfer software pipeline, version v7.21, as sil-
ver standard for training and evaluation of our models. More precisely, we follow
the setup in [1,20] and use the orig.mgz files and white and pial surfaces gener-
ated by FreeSurfer and register the MRI scans to the MNI152 space (rigid and
subsequent affine registration). Further, we subsampled the surface meshes to
about 40,000 vertices per surface using quadric edge collapse decimation [11].
Images are padded to have shape 192×208×192. For Vox2Cortex experiments,
we resize the images after padding to 128×144×128 voxels as done in the original
paper [1]. We use min-max-normalization of intensity values to scale to [0, 1].
Training: For the computation of the reconstruction losses, we sample 50,000
points from the predicted and ground-truth meshes in a differentiable man-
ner [12]. We interpolate curvature information of a sampled point using the
barycentric weights from the respective triangle vertices and assign the point
class of the closest vertex to a sampled point. For training CorticalFlow, we use
an iterative procedure as described by [20], i.e., freezing the UNet(s) of steps 1
to i − 1 when training UNet i. We further use the AdamW optimizer [22] with
weight decay 1e−4 and a cyclic learning rate schedule [29] for the optimization
of the networks. As input to the deformation networks, we leverage the fsaverage
templates in FreeSurfer and smooth them extensively using the HC Laplacian
smoothing operator implemented in MeshLab [2]. We provide a list of all model
parameters, which we adopt from the Vox2Cortex and CorticalFlow papers, in
the supplemental material. Our implementation is based on PyTorch [26] and
PyTorch3d [27] and we trained on an Nvidia Titan RTX GPU.

4 Results

In the following, we show results for both of the proposed parcellation
approaches, i.e., the classification network and the class-based reconstruction.
1 Available at https://surfer.nmr.mgh.harvard.edu/.

https://surfer.nmr.mgh.harvard.edu/
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Fig. 2. Visualization of parcellation and reconstruction accuracy for our four methods,
averaged over the predicted left white surfaces of the OASIS test set. Top row: parcel-
lation error, blue (0.0) = vertex classified correctly for all subjects, red (1.0) = vertex
classified incorrectly for all subjects. Errors are mostly present in parcel boundaries.
Bottom row: average distance from predicted surface to ground-truth surface, in mm.
(Color figure online)

To this end, we combine the proposed methods with Vox2Cortex (V2C) and
CorticalFlow (CF) as described in Sect. 3. This leads to a total of four meth-
ods, which we denote as V2CC , CFC (classification network) and V2CT , CFT

(class-based reconstruction via template). We compare our approaches to Fast-
Surfer [16] and two additional baselines per reconstruction method. The latter
are obtained by (1) training “vanilla” CF and V2C and mapping the atlas labels
simply to the predicted surfaces (denoted as CF + atlas and V2C + atlas) and
(2) using FreeSurfer’s spherical atlas registration as an ad-hoc parcellation of
given surfaces in a post-processing fashion (denoted as CF + FS and V2C +
FS). The runtime for FastSurfer is about one hour, for the FS parcellation of
CF and V2C meshes several hours, and for the proposed methods in the range
of seconds. Table 1 presents the parcellation accuracy in terms of average Dice
coefficient over all parcellation classes (computed on the surfaces). In addition,
we compare the surface reconstruction accuracy in terms of average symmetric
surface distance (AD) and 90th percentile Hausdorff distance (HD) in mm.

We observe that FastSurfer leads to highly accurate surfaces compared to
the FreeSurfer silver standard, which is expected as FastSurfer makes use of
the FreeSurfer surface stream to generate surfaces. The baseline CF and V2C
models also provide very accurate predictions in terms of surface accuracy with
a slight advantage on the side of CF (probably due to the higher image and
mesh resolution at training time). However, as expected, CF and V2C do not
yield an accurate surface parcellation if a population atlas is used as their input.
Generating the DKT parcellation with FreeSurfer’s atlas registration yields a
higher Dice score than FastSurfer, which we attribute to the superiority of the
mesh-based parcellation compared to a voxel-based approach. Note that the
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Table 1. Comparison of surface and parcellation quality of our extended Vox2Cortex
(V2C) and CorticalFlow (CF) methods on the OASIS test set. Surface reconstruc-
tion metrics AD and HD are in mm. All metrics are averaged between left and right
hemispheres and standard deviations are shown.

FreeSurfer spherical registration only works on white matter surfaces and, thus,
is not applicable for the parcellation of pial surfaces.

Regarding the surface quality, we observe that solving the additional task of
cortex parcellation causes a slight loss of surface accuracy in all models. This
effect is most severe in the CFC and V2CT models. As the mesh-deformation
network in V2C already requires several regularization losses, we suspect that
the restrictive class-based reconstruction loss might interfere with the regular-
izers. In terms of parcellation accuracy, we observe best results for CFT and
V2CC models with an average Dice score greater than 0.9 for white surfaces and
0.87 for pial surfaces over all parcels. The classification GNN in V2CC takes the
vertex features of the previous GNNs as input. Consequently, it can make use of
vertex-wise information, which is not available in CFC (in this case, the classifi-
cation network only gets vertex locations as input). As expected, CFC yields a
lower parcellation accuracy compared to V2CC . Therefore, we conclude that a
combination of CF with a GNN classification network is not an optimal choice.

We visualize the parcellation and surface reconstruction accuracy of the left
white surfaces in Fig. 2 and observe that, averaged over the test set, classifi-
cation errors occur almost exclusively at parcel boundaries. Visualizations of
pial surfaces are shown in the supplement. Overall, we conclude that the GNN
classifier is better suited for V2C than for CF, as the previous graph convolu-
tions provide more meaningful vertex input features. In contrast, the class-based
reconstruction loss leads to better results in CF.
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5 Conclusion

In this work, we introduced two effective extensions to brain reconstruction net-
works for joint cortex parcellation: one based on a graph classifier and one based
on a novel and generic region-based reconstruction loss. Both methods are par-
ticularly suited to augment mesh-deformation networks, which provide highly
accurate surface meshes, with the ability to parcellate the surfaces into associ-
ated regions. The extremely short runtime of the presented algorithms, which
lies in the range of seconds at inference time, together with the high parcella-
tion accuracy paves the way for a more fine-grained analysis of brain diseases in
large-cohort studies and the integration in clinical practice.
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Abstract. Convolutional neural networks (CNNs) are increasingly
being used to automate the segmentation of brain structures in mag-
netic resonance (MR) images for research studies. In other applications,
CNN models have been shown to exhibit bias against certain demo-
graphic groups when they are under-represented in the training sets. In
this work, we investigate whether CNN models for brain MR segmen-
tation have the potential to contain sex or race bias when trained with
imbalanced training sets. We train multiple instances of the FastSurfer-
CNN model using different levels of sex imbalance in white subjects. We
evaluate the performance of these models separately for white male and
white female test sets to assess sex bias, and furthermore evaluate them
on black male and black female test sets to assess potential racial bias.
We find significant sex and race bias effects in segmentation model per-
formance. The biases have a strong spatial component, with some brain
regions exhibiting much stronger bias than others. Overall, our results
suggest that race bias is more significant than sex bias. Our study demon-
strates the importance of considering race and sex balance when forming
training sets for CNN-based brain MR segmentation, to avoid main-
taining or even exacerbating existing health inequalities through biased
research study findings.
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1 Introduction

The study of bias and fairness in artificial intelligence (AI) has already attracted
significant interest in the research community, with the majority of studies con-
sidering fairness in classification tasks in computer vision [14]. There are many
causes of bias in AI, but one of the most common is the combination of imbal-
ance and distributional shifts in the training data between protected groups1.
For example, [3] found bias in commercial gender classification models caused
by under-representation of darker-skinned people in the training set. Recently, a
small number of studies have investigated bias in AI models for medical imaging
applications. For example, [2,11] found significant under-performance on chest
X-ray diagnostic models when evaluated on protected groups such as women
that were under-represented in the training data. [11] concluded that training
set diversity and gender balance is essential for minimising bias in AI-based
diagnostic decisions. Similarly, [1] found bias in AI models for skin lesion clas-
sification and proposed a debiasing technique based on an adversarial training
method.

Whilst in computer vision classification tasks are commonplace, in medicine
image segmentation plays a crucial role in many clinical workflows and research
studies. For example, segmentation can be used to quantify cardiac function [18]
or to understand brain anatomy and development [6]. AI techniques are increas-
ingly being used to automate the process of medical image segmentation [8].
For example, in the brain techniques based upon convolutional neural networks
(CNNs) have been proposed for automatically segmenting magnetic resonance
(MR) images [5,6], outperforming the previous state of the art. However, the
only study to date to have investigated bias in segmentation tasks has been
[15,16], which found significant racial bias in the performance of a CNN model
for cardiac MR segmentation, caused by racial imbalance in the training data.

The structural anatomy of the brain is known to vary between different demo-
graphic groups, such as sex [4] and race [7]. Given that a known cause of bias
in AI is the presence of such distributional shifts, and the increasing use of AI-
based segmentation tools in brain imaging, it is perhaps surprising that no study
to date has investigated the potential for bias in AI-based segmentation of the
brain. In this paper we perform such a study. We first systematically vary levels
of sex imbalance in a training set of white subjects to train multiple instances
of the FastSurferCNN AI segmentation model [6]. We evaluate the performance
of these models separately using test sets comprised of white male and white
female subjects to assess potential sex bias. Subsequently, we assess potential
race bias by evaluating the performance of the same models on black male and
black female subjects.

1 A protected group is a set of samples which all share the same value of the protected
attribute. A protected attribute is one where fairness needs to be guaranteed, e.g.
race and sex.
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2 Materials and Methods

2.1 Data

To evaluate potential sex and race bias, we used MR images from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI)2 database. We used a total of 715 sub-
jects consisting of males and females of white or black race (according to the sex
and race information stored in the ADNI database).

We used ground truth segmentations produced by the Multi-Atlas Label
Propagation with Expectation-Maximisation based refinement (MALPEM) algo-
rithm3 [12,13]. We chose MALPEM ground truth segmentations due to the lack
of manual ground truths with sufficient race/sex representation for our exper-
iments, and the fact that MALPEM performed accurately and reliably in an
extensive comparison on clinical data [9]. MALPEM segments the brain into 138
anatomical regions. See Table S2 in the Supplementary Materials for a descrip-
tion of the MALPEM regions.

2.2 Model and Training

For our experiments, we used the FastSurferCNN model, which is part of the
FastSurfer pipeline introduced in [6]. The authors of the model used training data
that labelled the brain following the Desikan-Killiany-Tourville (DKT) atlas, and
reduced the number of anatomical regions to 78, by lateralising or combining
cortical regions that are in contact with each other across hemispheres. We follow
a similar approach, by lateralising, removing or combining cortical regions in the
MALPEM segmentations to retain the same number of anatomical structures
(i.e. 78), thus enabling us to use the FastSurferCNN model without modifying
its architecture. See Table S2 in the Supplementary Materials for details of how
we reduced the number of anatomical regions in the MALPEM segmentations
to be consistent with those expected by the FastSurferCNN model.

Models were trained using the coronal slices of the 3D MR data. The training
procedure followed was identical to that of [6]. All models were trained for 30
epochs, with a learning rate of 0.01 decreased by a factor of 0.3 every 5 epochs,
a batch size of 16 and using the Adam optimiser [10]. Random translation was
used to augment the training set as in [6]. The loss function combines logistic
loss and Dice Loss [17]. A validation set of 10–20 subjects was used to monitor
the training procedure. For each comparison we repeated the training twice, and
report the average performance over the two runs.

The training procedure resulted in average Dice Similarity Coefficients (AVG
DSC) similar to that of [6], therefore we assume models were trained to their
full capacity.

2 www.adni-info.org.
3 We used the segmentations available at https://doi.gin.g-node.org/10.12751/g-node.

aa605a/.

www.adni-info.org
https://doi.gin.g-node.org/10.12751/g-node.aa605a/
https://doi.gin.g-node.org/10.12751/g-node.aa605a/
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3 Experiments

We now describe the experiments that we performed to investigate possible sex
and race bias in the use of the FasterSurferCNN model for brain MR segmenta-
tion. We describe experiments to assess sex and race bias separately below.

3.1 Sex Bias

When analysing sex bias, to remove the potential confounding factor of race we
used only white subjects since they had the largest number of subjects in the
ADNI database.

Table 1 lists the datasets used for training/evaluation to investigate sex bias.
Models were trained using training sets with different proportions of white male
and white female subjects. All of the models were evaluated on the same 185
white male and 185 white female subjects. For all datasets the scanner manu-
facturer (Siemens, GE Medical Systems, and Philips), subject age, field strength
(3.0T and 1.5T), and diagnosis (Dementia, Mild Cognitive Impairment, and
Cognitively Normal) were controlled for. All images were acquired using the
MP-RAGE sequence, which showed the highest performance in [6].

Table 1. Training and test sets used to assess sex bias. The number (and proportion)
of white female and white male subjects and the mean and standard deviations (SD)
of the subjects’ ages in each dataset.

Usage Female, n (%) Male, n (%) Age ± SD Description

Training 140 (100) 0 (0) 74.29 ± 5.52 100% female

35 (25) 105 (75) 75.6 ± 4.82 75% male, 25% female

70 (50) 70 (50) 75.13 ± 5.34 50% male, 50% female

105 (75) 35 (25) 74.64 ± 5.64 25% male, 75% female

0 (0) 140 (100) 75.68 ± 4.84 100% male

Testing 185 (100) 0 (0) 74.44 ± 5.16 Female test set

0 185 (100) 75.55 ± 5.55 Male test set

3.2 Racial Bias

To investigate racial bias, the same models trained with white subjects in the sex
bias experiment (see Table 1) were evaluated on test sets broken down by both
sex and race, utilising an extra set of male/female black race subjects. We used
four test sets in total in this experiment: white female, white male, black female
and black male. All test sets consisted of 36 subjects each and were controlled
for age, scanner manufacturer, field strength and diagnosis as in the sex bias
experiment.
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3.3 Evaluation and Statistical Analysis

To evaluate the performance of the models, we computed the DSC on a per-
region basis as well as the generalised DSC (GDSC) [19] (excluding the back-
ground class) to quantify overall performance. All metrics were computed for
each test set individually as detailed in Sects. 3.1 and 3.2. Statistical tests were
performed using Wilcoxon signed rank tests (for paired comparisons) and Mann-
Whitney U tests (for unpaired comparisons), both using (p ≤ 0.01) significance
between DSC values for different models.4

4 Results

4.1 Sex Bias

The AVG GDSC results (see Fig. S1 in the Supplementary Materials) showed
that the models exhibit some signs of potential bias for both white males and
white females. However, most of the comparisons showed no statistical signifi-
cance when considering the GDSC overall. Therefore, we more closely analysed
individual brain regions that did show statistically significant differences in per-
formance in terms of per-region AVG DSC.

Figure 1 shows the performance of the models for selected regions exhibit-
ing the highest bias when evaluated on white female subjects. As can be seen,
AVG DSC for these regions decreases as the proportion of female subjects in the
training set decreases. Over all regions, when evaluating on white females the
model trained using 100% male subjects had significantly lower AVG DSC com-
pared to the model trained with 100% females in 53 of the 78 regions (p ≤ 0.01).
The Both-PCgG-posterior-cingulate-gyrus region exhibits the highest decrease
in AVG-DSC of 0.0395. Similarly, when evaluating on white males (Fig. 2), the
AVG DSC for regions showing the highest bias decreases with the proportion
of males in the training set. This time, 36 of the 78 regions had significantly
worse performance for the 100% female trained model compared to the 100%
male trained model (p ≤ 0.01). The Both-OCP-occipital-pole region exhibits
the highest decrease in AVG-DSC of 0.0406. For both the white male and white
female test sets, no region showed statistical significance in the opposite direc-
tion. Interestingly, we note that for the majority of regions, all models perform
better on males than on females, even when the model is trained only on female
subjects. For instance, the model trained with a sex-balanced dataset shows a
significant decrease (p ≤ 0.01 using the Mann-Whitney U test) in 3 regions
when evaluated on white female subjects compared to white male subjects, with
no significant difference in the opposite direction. The Both-Inf-Lat-Vent region
shows the highest decrease in AVG-DSC of 0.0475.

4 When assessing differences for multiple regions we did not apply correction for mul-
tiple tests because our aim was to be sensitive to possible bias rather than minimise
Type I errors.
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4.2 Racial Bias

For assessing racial bias, the AVG GDSC results (see Fig. S2 in the Supplemen-
tary Materials) show that the models again exhibit some signs of bias but most

Fig. 1. Regions showing the highest bias according to models’ DSC performance on
white females. Significance using Wilcoxon signed ranked test is denoted by **** (P
≤ 1.00e−04), *** (1.00e−04 < P ≤ 1.00e−03), ** (1.00e−03 < P ≤ 1.00e−02), and *
(1.00e−02 < P ≤ 5.00e−02).

Fig. 2. Regions showing the highest bias according to models’ DSC performance on
white males. Significance using Wilcoxon signed ranked test is denoted by **** (P ≤
1.00e−04), *** (1.00e−04 < P ≤ 1.00e−03), ** (1.00e−03 < P ≤ 1.00e−02), and *
(1.00e−02 < P ≤ 5.00e−02).
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comparisons are not statistically significant. However, it can be observed that
statistically significant differences are found when using a black female test set.

As in the sex bias experiments, we more closely analysed individual regions
that showed the highest bias in AVG DSC. Figure 3 summarises these results
for white and black female test sets. We can see a significant drop in perfor-
mance when the (white-trained) models are evaluated on black female subjects.
This difference in performance becomes more pronounced as the proportion of
female subjects decreases, indicating a possible interaction between sex and race
bias. When comparing test performance on black female subjects compared to
white female subjects, the model trained only on (white) female subjects exhibits
the highest decrease in AVG-DSC of 0.0779 in the Both-PoG-postcentral-gyrus
region. The model trained only on (white) males shows the highest decrease
in AVG-DSC of 0.0868 in the Both-SMC-supplementary-motor-cortex region.
No region showed statistically significantly higher AVG DSC in black subjects
compared to white, for either sex.

We also performed a comparison (see Fig. 4) between the effects of sex and
race bias and found that the race bias effect was more significant than the sex
bias effect.

Fig. 3. Comparing AVG DSC performance of models trained with white subjects,
evaluated on white and black female subjects. Mann-Whitney U test is denoted by
**** (P ≤ 1.00e−04), *** (1.00e−04 < P ≤ 1.00e−03), ** (1.00e−03 < P ≤ 1.00e−02),
* (1.00e−02 < P ≤ 5.00e−02), and not significant (ns) (P > 5.00e−02).
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Fig. 4. Comparison of gender and race bias. The plots include all labels with a statisti-
cally significant change in performance by sex or race, of models trained on white males
(left) and white females (right). Significance using Mann-Whitney U test is denoted
by ** (1.00e−03 < P ≤ 1.00e−02), * (1.00e−02 < P ≤ 5.00e−02), and not significant
(ns) (P > 5.00e−02).

5 Discussion

To the best of our knowledge, this paper has presented the first study of demo-
graphic bias in CNN-based brain MR segmentation. The study is timely because
CNN models are increasingly being used to derive biomarkers of brain anatomy
for clinical research studies. If certain demographic groups suffer worse perfor-
mance in such models this will lead to bias in the findings of the research studies,
leading to the maintaining or even exacerbation of existing health inequalities.

Our study found that CNNs for brain MR segmentation can exhibit signifi-
cant sex and race bias when trained with imbalanced training sets. This is likely
due to the algorithm introducing bias and/or the well-known effect of represen-
tation bias [14], in which distributional shifts combined with data imbalance lead
to biased model performance. Interestingly, the biases we found have a strong
spatial component, with certain brain regions exhibiting a very pronounced bias
effect (in both sex and race), whilst others show little or no difference. This is
likely caused by a similar spatial component in the distributional shift, i.e. dif-
ferences in brain anatomy between sexes and races are likely to be localised to
certain regions. We found that sex bias in performance still exists even when the
model’s training set is sex balanced. This is likely due to algorithmic rather than
representation bias. Overall, we found that the effect of race bias was stronger
than that of sex bias. Furthermore, the bias effect was much more pronounced
in black females than black males.

We also observed that there was not always a monotonically increasing/
decreasing trend in the performance of the models as we changed the level of
imbalance. In particular, it was often the case that models trained with a (small)
proportion of a different protected group improved performance for the majority
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group. We speculate that including data from a different protected group(s) can
increase diversity in the training set, hence improving the generalisation ability
of the model and leading to better performance for all protected groups.

We believe that our findings are important for the future use of CNNs in
clinical research based on neuroimaging. However, we acknowledge a number
of limitations. First, the number of subjects we could employ in the study was
necessarily limited. The majority of subjects in the ADNI database with avail-
able MALPEM ground truth segmentations are Caucasian (i.e. white) and so
we were limited in the numbers of non-white subjects we could make use of.
This prevented us from performing a systematic study of the impact of race
imbalance, similar to the way in which we trained multiple models with varying
sex imbalance in the sex bias experiment. Another limitation is that we could
not employ manual ground truth segmentations in our study. Again, this was
because of the lack of large numbers of manual ground truth segmentations that
are publicly available, particularly for non-white races. Although the MALPEM
segmentations used in this study have been quality-inspected, we cannot assume
that they are unbiased according to race and sex, or free of other systematic and
random errors. Even so, we believe that the disparities in performance observed
in our study can be regarded as model-induced bias, perhaps in addition to that
which might be present in the ground-truth segmentations.

Another limitation is that, in this work, we only used the coronal orientation
of the 3-D MR images for training and evaluation of the models. Training a
model using all orientations will be the subject of future work. Future work will
also focus on more extensive and detailed studies of demographic bias in brain
MR segmentation, as well as investigation of techniques for bias mitigation [14].
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Abstract. White matter hyperintensities (WMHs) are lesions with
unusually high intensity detected in T2 fluid-attenuated inversion recov-
ery (T2-FLAIR) MRI images, commonly attributed to vascular dementia
(VaD) and chronic small vessel ischaemia. The Fazekas scale is a measure
of WMH severity, widely used in radiology research. Although stand-
alone WMH segmentation methods have been extensively investigated,
a model encapsulating both WMH segmentation and Fazekas scale pre-
diction has not. We propose a novel multi-task multiple instance learn-
ing (MTMIL) model for simultaneous WMH lesions segmentation and
Fazekas scale estimation. The model is initially trained only for the seg-
mentation task to overcome the difficulty of the manual annotation pro-
cess. Afterwards, volume-guided attention (VGA) obtained directly from
instance-level segmentation results figure out key instances for the clas-
sification task. We trained the model with 558 in-house brain MRI data,
where only 58 of them have WMH annotations. Our MTMIL method
reinforced by segmentation results outperforms other multiple instance
learning methods.

Keywords: Multi-task multiple instance learning · Volume guided
attention · WMH segmentation · Fazekas scale prediction

1 Introduction

White matter hyperintensity (WMH) lesions manifest increased brightness pat-
terns in T2 fluid-attenuated inversion recovery (T2-FLAIR) imaging. These
stimuli are usually associated with chronic small vessel ischaemia or myelin
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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loss, which might lead to disorders including cognitive impairment and vascu-
lar dementia [4,15]. Despite its clinical importance, annotating WMH is time-
consuming and can be done only by practiced raters. The Fazekas scale shown in
Fig. 1(a) quantifies the amount of WMH as the size of lesions and their conjunc-
tions [3], but manually scoring WMH may not reflect WMH burdens precisely
and lead to high inter-observer variability. In response, segmentation algorithms
based on deep-learning have been recently developed, including those submitted
to the 2017 MICCAI WMH segmentation challenge [10]. Lead algorithms in the
challenge were based on the 2D U-Net [17] architecture differing in loss functions
[14] used for training or post-processing methods [11].

Multi-task learning algorithms can segment regions of interest while diag-
nosing or classifying an input image [1,5,19,21]. Many of them handling MRI
exploit 3D encoding backbone; however, they are computationally demand-
ing and known to under-perform efficient 2D models on WMH segmentation
[10,11,14]. This work, therefore, concerns WMH segmentation and Fazekas scale
classification using 2D axial images.

However, Fazekas scales are deduced from all lesions in the 3D T2-FLAIR
image, and therefore we bring multiple instance learning (MIL) into our task.
MIL is a weakly-supervised method where a label corresponding to a group of
instances instead of each individual is available [2]. A full 3D MRI image is
interpreted as a group of 2D axial slices and assigned a ”bag” Fazekas scale
label accordingly. Regarding the strong correlation between the Fazekas scale
and WMH segmentation result (Fig. 1(b)), we propose a refinement to attention-
based MIL [6], where the slice-wise attention vector is inherited from segmented
WMH volume of each slice instead of learning the vector. To further overcome
the shortage of labelled data, we initially pre-train the model with segmentation
data, followed by adding the classification task.

This work establishes a multi-task multiple instance learning (MTMIL) for
segmentation of WMH lesions and classification of Fazekas scales working with
a small number of segmentation annotations. The main challenge in classifying
Fazekas scales from a 2D model is that the Fazekas scale is a global assessment
of all lesions that is not accessible to a 2D classification model. We propose a
MIMTIL with volume-guided attention (VGA) algorithm that overcomes the
aforementioned challenges. Each component of our method shows enhanced per-
formance while retaining a low computational footprint with slice-level classifiers.

2 Materials and Methods

In this section, we first introduce a semi-supervised multi-task model to handle
limited labelled data. Then, we describe multiple instance learning for prediction,
which exploits segmentation outputs directly. An overall scheme of our proposed
method is presented in Fig. 2.
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Fig. 1. (a) T2-FLAIR axial slices and corresponding Fazekas scales. (b) Boxplot illus-
trates the relationship between slice-wise WMH volume and Fazekas scale. (c) The
multi-task problem considered in this work.

2.1 Dataset Description and Preprocessing

An in-house dataset containing axial T2-FLAIR and T1 MRI images from
800 consecutive patients who visited a tertiary hospital memory clinic due to
cognitive impairment was used for this work with Institutional Review Board
approvals. Three hundred FLAIR images were reviewed by two experienced
neuro-radiologists, and the final WMH segmentation labels were produced with
their consensus. All FLAIR images were then categorized into clinically normal,
mild, moderate, or severe according to the Fazekas scale [3]. The first two groups
were combined into a single class because their distinction is not clinically signif-
icant (i.e., (normal, mild, moderate, severe) = (0,0,1,2)) [8,13]. Originally, WMH
is divided into two subtypes—deep and periventricular—so as their correspond-
ing Fazekas scale. However, we consider a maximum of two scales per image for
simplicity (Table 1).

Table 1. Demographic statistics and number of images labeled, unlabeled, and corre-
sponding to each Fazekas scale.

Category Train Validation Test Total

# Labeled/unlabeled images 58/500 64/0 178/0 300/500

Age 69.3 ± 10.2 70.3 ± 10.3 68.2 ± 10.8 69.1 ± 10.4

Sex F/M 337/221 40/24 116/62 493/307

# Fazekas scales (0/1/2) 372/128/58 43/12/9 125/36/17 540/176/84
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Input FLAIR and T1 images were skull-stripped by an intracranial vol-
ume segmentation model using the triplanar ensemble architecture [18]. FLAIR
images were resized to (256, 256, 35), and T1 images were then registered to
the corresponding T2-FLAIR space. Matching T1 and T2-FLAIR images were
stacked into single 2-channel input images. Train, validation, and test splits were
determined by stratified sampling.

2.2 Multi-task Model Architecture

As the dataset contains a small number of WMH-labelled images, we initially
pre-train the 2D UNet model [17] to make it learn the segmentation task and
stabilize segmentation performance [20]. Following the typical image segmenta-
tion setting, we disregard the bags in this first step. All the predicted outputs of
WMH-unlabelled images are saved and used for pseudo-labels of those images
during the next step.

During the second step, a classification thread is concatenated at the end
of the UNet encoder to achieve a multi-task scheme [1,5,19,21], but the model
differs in how it uses 2D images instead of 3D inputs. The classification thread
takes a high-level feature vector as its input (Fig. 2). Global average pooling
(GAP) is first applied to reduce the spatial dimension of the input, followed
by a multilayer perceptron (MLP), consisting of fully-connected layers, ReLU
activation, and dropout layers. Meanwhile, the segmentation thread computes
the soft dice loss [7] (Lseg in Fig. 2) between outputs Ŷmask and pseudo-labels or
ground truths Ymask. Finally, mean squared error (MSE) loss Lclf is computed
between the output Ŷbag of the final classification layer and the corresponding
true bag label Ybag. Hence, the total loss function Ltotal becomes

Ltotal = Lclf + Lseg. (1)

Fig. 2. An overview of the proposed segmentation-guided multi-task multiple instance
learning model. If applicable, volume-guided attention reaches out from the segmenta-
tion output in detached mode.
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2.3 Segmentation-Guided Multiple Instance Learning

Fazekas scale quantification is generally derived from a global assessment of 3D
images, but radiologists determine the scale from slices with large WMH. This
motivates multiple instance learning, which admits labelled bags of instances
whose individual labels are missing. Given a bag X = (x1, . . . , xN ) of size N ,
containing the 2-channel input MRI images derived from a single subject, the
multi-task model returns a segmentation mask Ŷmask = (ŷmask

1 , . . . , ŷmask
N ) and

an instance-level feature vector F = (x̂1, . . . , x̂N ) for classification. However, each
batch has a single bag label not as many as its size. A basic MTMIL model can
average the instance predictions to make a bag prediction Ŷbag. Alternatively,
one can apply self-attention algorithm and take dot product of the attention
vector and the features [6].

Our objective is to enhance MIL performance and complement its uniform
attribution to slice-level predictions; the latter is critical when slides do not
contain any region of interest. Slice-wise WMH volume is closely related to the
severity to which it belongs. If a bag contains slices with large or small volumes,
only the larger slice becomes a key instance in bag prediction. However, if all
instances have small WMH volumes, they equally contribute to estimating the
severity. This motivates us to explore the necessity of instance-wise attention
derived from segmentation results.

Volume-Guided Attention (VGA). Attention-based MIL models are typi-
cally fortified by additional attention blocks [6,16]. Instead, we obtain a volume-
guided attention (VGA) vector a = (a1, . . . , aN ), adjusted from the self-attention
algorithm in MIL, which is directly determined from outputs of the segmentation
thread. We evaluate WMH volumes v = (v1, . . . , vN ) from Ŷmask, obtained by
counting the number of nonzero pixels in ŷmask

i of each instance xi, to estimate
the attention vector a. Therefore a can be computed as follows:

a = softmax(
v
τ

), (2)

where τ refers to temperature. Small τ attenuates features from slices where
WMH are segmented less, whereas large τ balances effects from the all slices in
a bag. Let the instance-level feature vector be F. As a has shape 1 × N , the
resulting feature vector F′ := aF can be treated with batch size equals to 1.

Furthermore, we divided the types of VGA by which stage the attention
vector is applied. If VGA precedes the MLP block (VGA1), aggregated features
are forwarded into the classification thread. On the other hand, if the attention
is applied at the end of the MLP block (VGA2), the block will regard instances
independently, and only the final classification layer takes the aggregated feature
into account. Finally, the attention can be applied after the classification layer
(VGA3).
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3 Experiments

3.1 Implementation Details

For online preprocessing, we first normalized each channel of all images with
mean = 0.456 and std = 0.224 to conform intensity distribution among the
data. Flipping horizontal or vertical direction, affine transforms together with
translation ratio range = (±0.1), rotation range = (±15◦), scaling ratio range =
(1± 0.1), and Gaussian blur were applied with probability 0.5. Finally, all input
images during training are cropped to the size of (2, 200, 200) [14]. We applied
the same augmentation module at the multi-task stage, where instances in the
same bag can be augmented differently.

We selected a batch size of 16 for the pre-training, and batches were loaded
across patients. We fixed the bag size to 16 at the multi-task step but changed
the batch size to 1, producing a bag containing instances sampled from axial
index 14 to 30, where WMH usually appears.

We used Pytorch 1.7.1 for the implementation of the proposed method. All
experiments were tested on two GeForce GTX 1080 Ti and two GeForce GTX
TITAN X GPUs with CUDA version 11.2. The learning rate is set to 0.001 ini-
tially, but cosine annealing scheduler [12] with minimal learning rate = 1e-6 grad-
ually reduces the learning rate while training. We used ADAM optimizer [9] with
(β1 = 0.9, β2 = 0.999). We trained models with maximum epochs of 200. Early
stopping regularization monitoring validation loss was applied to prevent overfit-
ting.

3.2 Results

Table 2. Segmentation and prediction performances of the WMH segmentation and
severity estimation task. Dice score and average volume difference metrics were used to
evaluate segmentation. Classification performance was evaluated by accuracy, AUROC,
precision, and recall, which were macro-averaged except the accuracy. 0.5 cut-off were
applied during the bag prediction. τ is fixed to 0.75 within the VGA family.

Model Dice score AVD (ml) Accuracy AUROC Precision Recall

Segmentation only 0.877 0.313 N/A N/A N/A N/A

MIL N/A N/A 0.635 0.758 0.659 0.588

MIL + SA N/A N/A 0.697 0.423 0.234 0.331

MTMIL 0.855 0.410 0.702 0.127 0.234 0.333

MTMIL + SA 0.866 0.505 0.702 0.164 0.234 0.333

MTMIL + VGA1 0.862 0.447 0.787 0.921 0.453 0.505

MTMIL + VGA2 0.855 0.753 0.831 0.931 0.779 0.723

MTMIL + VGA3 0.860 0.524 0.820 0.925 0.716 0.675

Before evaluating the proposed model, we examined the performances of
several baseline methods without an attention algorithm or with self-attention
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[6]. Also, the segmentation performance of the pre-trained model (Segmentation
only) is measured to be compared with other multi-task methods. Table 2 shows
that pre-training improves classification accuracy for both MIL and MTMIL
methods. However, the pre-trained model outperforms the other baselines in
segmentation.

We further examined the effects of three types of volume-guided attention
mixed with MTMIL. MTMIL models showed superior classification performance
than the baseline models if merged with any type of volume-guided attention.
Among them, multiplying the attention vector to the MLP block output (VGA2)
showed the highest in all classification metrics. We assert that VGA1 might
compress excessively at the beginning of classification. VGA3 performs better
than VGA1, but passing unweighted features until the end might compromise
the final classification layer. Despite the promising classification performance of
MTMIL with VGA, segmentation performance is inferior to the classification.

Table 3. Ablation study of VGA subtypes and the temperature τ .

VGA1 VGA1 VGA1 VGA1 VGA2 VGA2

0.25 0.5 0.75 1.0 0.25 0.5

Accuracy 0.787 0.607 0.787 0.831 0.798 0.798

AUROC 0.920 0.820 0.921 0.927 0.921 0.898

Precision 0.687 0.529 0.453 0.735 0.705 0.714

Recall 0.551 0.620 0.505 0.751 0.579 0.654

VGA2 VGA2 VGA3 VGA3 VGA3 VGA3

0.75 1.0 0.25 0.5 0.75 1.0

Accuracy 0.831 0.775 0.803 0.820 0.820 0.770

AUROC 0.931 0.885 0.920 0.926 0.925 0.891

Precision 0.779 0.661 0.685 0.754 0.716 0.679

Recall 0.723 0.734 0.728 0.738 0.675 0.703

Ablation study in Table 3 shows that small temperature in VGA function is
not preferable. High classification performance is achieved when the temperature
is 1 or 0.75. This result implies that giving overwhelming weight to images with
large WMH can overlook the other slices. Interestingly, this effect is reduced in
VGA3. Unlike VGA1 or VGA2, the attention vector is multiplied at the end of
the neural network. It makes slices with large WMH more likely to contribute
to the final prediction.

Figure 3 illustrates how the severity prediction is manifested in the proposed
framework. Instances with large WMH volumes gain more attention at the clas-
sification stage. Greater the attention value, more contribution of corresponding
features to the prediction result. If global severity is low, the WMH volumes
will be equally small, and slices will have even attention. On the other hand, if
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Fig. 3. WMH Segmentation maps of samples with different severity estimate from
the model trained with the VGA. Value above each slice denotes the attention value
contributed from the slice.

global severity is high, only the slices with a large WMH volume mainly con-
tribute to determine the severity. In this case, the model will like to only take the
features of those slices into account for the prediction. The volume-guided atten-
tion abates unnecessary features and accentuates features more closely related
to its prediction.

4 Conclusion

In this work, we propose a novel multi-task multiple instance learning method.
The model fetches parameter-free volume-guided attention to find key instances.
Experimental results show that the proposed method outperforms an existing
3D multi-task method in WMH segmentation with similar Fazekas scale pre-
diction performance. The competency of our proposed method comes from its
versatility. VGA can be used for various multi-task learning problems in medical
image analysis if segmentation and classification results are highly correlated.
In future research, we will develop a MIMTL model that differentiates deep and
periventricular WMHs.
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Abstract. The performance of convolutional neural networks (CNNs)
often drop when they encounter a domain shift. Recently, unsupervised
domain adaptation (UDA) and domain generalization (DG) techniques
have been proposed to solve this problem. However, access to source
domain data is required for UDA and DG approaches, which may not
always be available in practice due to data privacy. In this paper, we
propose a novel test-time adaptation framework for volumetric medi-
cal image segmentation without any source domain data for adaptation
and target domain data for offline training. Specifically, our proposed
framework only needs pre-trained CNNs in the source domain, and the
target image itself. Our method aligns the target image on both image
and latent feature levels to source domain during the test-time. There
are three parts in our proposed framework: (1) multi-task segmentation
network (Seg), (2) autoencorders (AEs) and (3) translation network (T).
Seg and AEs are pre-trained with source domain data. At test-time, the
weights of these pre-trained CNNs (decoders of Seg and AEs) are fixed,
and T is trained to align the target image to source domain at image-
level by the autoencoders which optimize the similarity between input
and reconstructed output. The encoder of Seg is also updated to increase
the domain generalizability of the model towards the source domain at
the feature level with self-supervised tasks. We evaluate our method on
healthy controls, adult Huntington’s disease (HD) patients and pediatric
Aicardi Goutières Syndrome (AGS) patients, with different scanners and
MRI protocols. The results indicate that our proposed method improves
the performance of CNNs in the presence of domain shift at test-time.
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1 Introduction

Convolutional neural networks (CNNs) show excellent performance in supervised
medical image segmentation tasks if the distribution of the training set (source
domain) is tightly matched to the test set (target domain). However, for multi-
site studies, domain shift is often present among different imaging sites due to
different scanners and MRI protocols. In such scenarios, data from the target
domain can be considered as out-of-distribution for the source domain, and the
CNN performance can significantly drop during testing due to this domain shift.

Unsupervised domain adaptation (UDA) is a solution to minimize the gap
between source and target domains. [2,5,8,13]. However, the UDA normally
requires data from both source and target domains to train. Moreover, for
multiple target domains, UDA needs to train a separate model for each tar-
get domain, which is time-consuming. Another solution is domain generalization
(DG), which tries to increase the model generalizability to unseen target domain
data [1,4,19]. DG might need large amounts of source domain data or augmented
data for training, and it may not adequately represent the data in the unseen
target domains to produce robust segmentations. Furthermore, source domain
data could be unavailable to researchers/clinicians between sites due to privacy
issues. In contrast, a pre-trained model from the source domain is often easier
to obtain, but domain shifts could lead to unreliable segmentations when such
pre-trained models are directly applied on unseen target domain data.

To produce robust results with access to only the pre-trained models from the
source domain and unseen test data, test-time adaptation (TTA) could reduce
the effects of domain shift by adapting the target data to source data at either
the image level or the latent feature level. Wang et al. [18] proposed an image-
specific fine tuning pipeline in the testing phase for interactive segmentation by
adapting the pre-trained CNN to the unseen target data, and the priors on the
predicted segmentations were used for adaptation. Sun et al. proposed a test-
time training approach for improving the model performance when domain shift
is present between training and test data [15]. They adapt part of the model
using a self-supervised rotation task on target data. Furthermore, Wang et al.
proposed test-time entropy minimization for adaptation [17]. He et al. proposed
a TTA network which is based on autoencoders trained on source domain [7].
During inference, the adaptation is applied on each target data by minimizing
the reconstruction loss of autoencoders with fixed weights. Similarly, Karani et
al. proposed an adaptable network for TTA [9]. In their work, the weights of the
pre-trained segmentation network and the denoising autoencoder are fixed while
updating the parameters of the normalized network to achieve adaptation during
test-time. However, most TTA methods adapt target data either in image-space
or fully/partially in feature-space, and may not have the ability to deal with
images with bigger domain shifts, such as anatomical content shifts in addition
to image intensity or contrast shifts. In addition, user interaction is needed in
[18], which is problematic for large studies. Only feature-level adaptation [15,17]
may fail on some cases without image-level adaptation. Finally, a good alignment
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Fig. 1. Proposed test-time adaptation framework. During offline training (top), the
multi-task segmentation network (green) is supervised by segmentation and recon-
struction losses, and autoencoders (orange) are trained for measuring the similarities.
During test-time (bottom), the target image first goes through the translation net-
work (brown), then fed to the pre-trained segmentation network. Only the translation
network and the encoder of segmentation network (painted) are updating parameters
during testing. Lseg and Lrec denote the Dice loss and MSE loss, respectively. (Color
figure online)

between target and source domains may not be possible when only partially
features are adapted during test-time [7] or without feature-level adaptation [9].

In this work, inspired by previous works [7,15], we propose a test-time adap-
tation framework for volumetric medical image segmentation, by adapting the
target image at both image and feature levels. Our network has three com-
ponents: (1) a multi-task segmentation network (Seg) with segmentation and
reconstruction tasks, (2) autoencoders (AEs) optimizing the similarity between
their input and output, and (3) an image translation network (T) to translate the
image from target domain to source domain. The Seg and AEs are trained offline
on labeled source data. At test-time, these pre-trained CNNs are fixed, and only
the T and the encoder of Seg update weights with target data to achieve test-
time adaptation by minimizing the reconstruction losses from self-supervised
tasks. We evaluate our method with healthy adults, adult Huntington’s disease
patients [11] and pediatric Aicardi Goutières Syndrome (AGS) patients [16] for
the brain extraction task. The data thus includes different brain sizes, shapes
and tissue contrast, and ranges from healthy to severely atrophied anatomy.

2 Materials and Methods

Figure 1 shows our proposed test-time adaptation framework, which consists of
three parts: a multi-task segmentation network (Seg), autoencoders (AEs) and a
translation network (T). In the offline training phase (top row of Fig. 1), the Seg
(green) is trained in a supervised manner with a dataset from source domain
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Fig. 2. Network architecture of segmentation network (Seg), Autoencoder (AE) and
translation network (T). The S-head and R-head of Seg are for segmentation and
reconstruction task, respectively.

Ds = {xs, ls}Ns=1 consisting of input MRIs xs and corresponding labels ls. In
addition, similar to [7], two AEs (orange) are trained after fixing the weights of
Seg to measure the similarities between inputs and reconstructed outputs. At
test-time (bottom row), the weights of the AEs and the Seg decoder are fixed.
For a given image xt from target domain, the T (brown) is trained to translate
xt to source domain as image xt T . Then the translated image xt T is fed to
Seg to obtain the segmentation mask yt and the reconstructed image xrec

t T . The
T and the encoder of Seg are optimized with self-supervised learning, which is
the key step in our proposed TTA framework during inference; this is achieved
via self-supervised tasks for the reconstruction path of Seg and the AEs. For
image-level alignment, the pre-trained AEs control the quality of the translated
image xt T . In other words, the AE loss (LAE) indicates the gap between xt T

and source domain data. Specifically, smaller loss represents the target image
xt has been well translated into source domain. On the other hand, using the
fixed decoders, the Seg aims to align the features in feature space, especially
for the latent code, to source domain by updating the encoder weights that are
self-supervised by the reconstruction path. Thus, the proposed method aligns
the target image to source domain on both image and feature levels by updating
the weights of T and the encoder of Seg, respectively.

2.1 Networks

Segmentation Network. The segmentation network Seg (Fig. 2) is a multi-
task network with segmentation and reconstruction tasks, which is adopted from
the 3D U-Net [3] with residual blocks [6]. There are 64 feature maps at each
level, except the input and output channel. The whole network takes 3D MRIs
as input and outputs the 3D segmentation mask and the reconstructed image.
In the offline training phase on Ds = {xs, ls}Ns=1, the network is supervised by
a segmentation loss and a reconstruction loss: LS = Lseg + λLrec. During test-
time, the decoder weights are fixed, and only the encoder weights are updated
with self-supervised tasks for adapting the target images at the feature level.



36 H. Li et al.

Autoencoders. The AE architecture (Fig. 2) is a U-Net without skip connec-
tions. The AEs are trained offline and designed for optimizing the similarities,
and they can be used during test-time to self-supervise the adaptation. There
are 32, 16, and 8 feature maps at the three levels. We design two AEs to recon-
struct xs and ys at image-level; these are trained by Lrec(xs, x

′
s) and Lrec(ys, y′

s),
respectively, where ys is the output logits of pre-trained Seg on input image xs.

Translation Network. The translation network T is used to translate a given
test image from target domain to source domain, and its architecture can be
viewed in Fig. 2. However, we found that a complicated translation network
would lead to blurry images and geometry shifts, as also discussed by [7,9]. We
found that convolution with kernel size 3 also caused similar problems in our
experiments. Thus, to preserve the image quality and information, we build T
as a shallow network, which consists of three conv-norm-act layers with 1×1×1
convolution, IN and LeakyReLU activation function for each layer. The channel
numbers are 64, 64, and 1, respectively. In this design, the translation network
is able to mimic the intensity and contrast for different scanners or imaging
protocols without any major changes of geometry. The T takes images from
target domain as inputs and produces translated images which are closer to
the source domain. During testing, the translation network is optimized by self-
supervised tasks for each target image.

2.2 Test-Time Optimization

At test-time, two components have updated weights in our framework: the
encoder of Seg and T. To increase the generalizability of Seg to target images in
feature space, at test-time, the encoder is initialized with the pre-trained weights
and updated for all test images instead of reinitialization after each subject. This
allows the encoder of Seg to take advantage of the distributional information of
the target dataset. For T, the weights are initialized and updated for adapting
each target image. In addition, the translation is self-supervised by AEs during
test-time. In this way, the target image is aligned to source domain at the image
level. For our experiments, we used a single optimizer to update the weights of
encoder of Seg and T rather than updating them separately.

2.3 Datasets and Implementation Details

We evaluate our proposed method on the scenario of moderate domain shift
(inside same multi-site dataset) and big domain shift (across two different multi-
site datasets of different age groups and diseases) using T1-w MRIs for segment-
ing whole brain masks (i.e., skullstripping).

Adult Dataset. We use a subset of the multi-site PREDICT-HD database [11],
with 3D T1-w 3T MRIs of 16 healthy control subjects (multiple visits per sub-
ject, total of 26 MRIs) and 10 Huntington’s disease (HD) patients (19 MRIs). The
training/validation sets consist of 14/2 healthy control subjects with 22/4 MRIs
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Table 1. Quantitative results for HD and AGS datasets. Bold numbers indicate best
performance. Significant improvements between the proposed method and all compared
methods (2-tailed paired t-test, p < 0.005) are denoted via ∗.

HD dataset AGS dataset

Method Dice ASD HD95 Dice ASD HD95

NA 96.67(.010) .442(.385) 1.93(2.25) 90.12(.057) 2.600(1.675) 9.82(4.72)

HM 96.77(.008) .434(.246) 1.63(1.35) 90.54(.055) 2.222(1.595) 8.08(4.74)

CycleGAN 96.52(.012) .504(.500) 2.12(2.60) 85.16(.056) 3.630(1.715) 11.4(4.34)

m-NA 96.68(.011) .509(.451) 2.02(2.53) 90.21(.050) 1.916(1.304) 6.67(3.84)

m-adp 96.13(.012) .690(.523) 3.82(4.08) 90.63(.048) 1.840(1.245) 6.58(3.85)

SDA-Net [7] 96.55(.009) .419(.212) 1.54(0.48) 90.69(.046) 1.950(1.356) 6.92(4.76)

DAE [9] 96.54(.011) .462(.372) 1.89(1.99) 90.85(.045) 2.225(1.489) 8.28(5.10)

Proposed 96.78(.008) .363(.168) 1.56(0.40) 92.07(.039)∗ 1.154(0.890)∗ 4.35(3.06)∗

respectively, and all HD subjects are used for testing. The training and validation
MRIs are from a single type of scanner, and the testing set are from several other
scanners.

Pediatric AGS Dataset. We use a multi-site dataset of 3D T1-w MRIs (1.5T
and 3T) from 58 Aicardi Goutières Syndrome (AGS) subjects [16]. These patients
range from infants to teenagers. We again use 16/2 MRIs from adult healthy
controls (first dataset) for training/validation, and all AGS subjects are used
during testing. The preprocessing steps can be found in [10]. Additionally, images
were resampled to 96 × 96 × 96.

Implementation Details. The Dice loss [12] is used for segmentation (Lseg)
during training. In addition, MSE loss was used for every Lrec in both training
and inference (test-time). The Adam optimizer with L2 penalty 0.00001, β1 =
0.9, β2 = 0.999 was used for both training and testing. For offline training,
a constant learning rate of 0.0001 was used for the segmentation network and
autoencoders, and the learning rate was set to 0.00001 in test-time for updating
the weights of T and the encoder of Seg. We validated the performance every
epoch during offline training, and we used early stopping if the average validation
result did not increase for 20 epochs. Additionally, for each target image, the
test-time training was stopped if the loss was greater than the previous iteration.
The total epochs were set to 200/10 for training and testing. The training/testing
batch size was 1. We implemented the models using an NVIDIA TITAN RTX
and PyTorch. Our code is publicly available at https://github.com/HaoLi12345/
TTA.

3 Results

We compared the proposed method to the following methods: (1) no adapta-
tion (NA), i.e., directly apply the pre-trained model on test set, (2) histogram

https://github.com/HaoLi12345/TTA
https://github.com/HaoLi12345/TTA
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Fig. 3. Adult HD results. 1st/3rd rows show the images/adapted images, and 2nd/4th

rows show segmentation results. Local segmentation defects are highlighted by arrows.

matching (HM) between train and test set [14], (3) a typical UDA method that
employs CycleGAN [20] to translate the test image to source domain, (4) a
multi-task network only, without adaptation (m-NA), (5) a segmentation net-
work only with adaptation of encoder (m-adp), (6) TTA with autoencoders
(SDA-Net) [7], and (7) TTA with denoised autoencoder (DAE) [9]. For a fair
comparison, we use the same network architectures (except the reconstruction
path of Seg) and apply identical data augmentations for all methods, except for
CycleGAN. Additionally, we modified the SDA-Net to 3D version based on the
authors’ source code. We use the Dice score, average surface distance (ASD) and
95-percent Hausdorff distance (HD95) for evaluation.

Adult HD Dataset. The quantitative results of the adult HD dataset are
shown in the left panel of Table 1. While it uses different scanners than the
healthy adult source domain, this dataset has only a moderate domain shift, and
may be treated as a supervised segmentation task (NA) in practice. Thus, all
methods work relatively well even without adaptation. Nevertheless, our method
has the best performance in all metrics except the HD95.

The qualitative results are shown in Fig. 3, where we again observe that all
compared methods are able to produce reliable segmentations. However, local
defects are present in the baseline methods, as highlighted by orange arrows.
Although HM and CycleGAN have better visual quality of adapted image, we
note that these methods require access to the source domain data. Among the
TTA methods, the proposed method has the best segmentation performance
with good quality adapted image.
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Fig. 4. Pediatric AGS results. Local segmentation defects are highlighted by arrows.

Pediatric AGS Dataset. The quantitative results are shown in the right panel
of Table 1. This dataset has more pronounced domain shift from source domain,
and our proposed method has the highest Dice score. In addition, while Dice score
is not sensitive to local errors, the ASD and HD95 distance metrics demonstrate
that our method produces superior segmentations with fewer local defects. 2-
tailed paired t-tests show that the proposed method has significantly better
(p < 0.005) performance for all metrics and compared to each baseline.

Figure 4 shows the qualitative results of adapted images and segmentations.
We observe that each baseline method presents either over-segmented or under-
segmented regions due to intensity and shape shifts between source and target
domains. Specifically, NA and HM under-segment the brain stem area. Cycle-
GAN produces an over-segmented result. For the methods based on multi-task
segmentation network, both under-segmented and over-segmented areas appear.
Although the SDA-Net produces a plausible segmentation with only small errors
in the neck area, it nevertheless achieves worse quantitative results than our pro-
posed method. DAE has good average Dice but poor qualitative results locally
(as also evidenced by high ASD and HD95 scores). In contrast, our proposed
method produces superior segmentation and is visually closest to the ground
truth. We also present the adapted images for each method with image-level
adaptation. Even though HM and CycleGAN require training data for image
translation, HM changes the contrast in the wrong direction and geometry shifts
appear in the CycleGAN since the brain sizes are different between the domains.
All TTA methods translate the target image without any major changes and
preserve the details of the target image. However, the adapted images from
SDA-NET and DAE have visible biases compared to the training image. Our
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proposed method produces not only a superior segmentation, but also adapted
images visually similar to the training data. In addition, compared to the origi-
nal image, the contrast between cerebrospinal fluid and other tissues is softened
in the proposed adapted image, similar to the adult subjects.

4 Conclusion

In this paper, we propose a novel test-time adaptation framework for medical
image segmentation in the presence of domain shift. Our proposed framework
aligns the target data to source domain at both image and feature levels. We
evaluated our method on two datasets with moderate and severe domain shifts.
Specifically, intensity and geometry shifts appear between source and target
domains for the pediatric AGS dataset. Compared to the baseline methods, our
proposed method produced the best segmentations. Quantitative evaluation of
the adapted images remains as future work. In future work, we will also apply
our method to more datasets with different structures of interest as well as a
wider range of image modalities.
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Abstract. Brain MRI-based hippocampus segmentation is considered
as an important biomedical method for prevention, early detection, and
accurate diagnosis of neurodegenerative disorders like Alzheimer’s dis-
ease. The recent need for developing accurate as well as robust systems
has led to breakthroughs making advantage of deep learning, but requir-
ing significant amounts of labeled data, which, in turn, is costly and
hardly obtainable. In this work, we try to address this issue by introducing
self-supervised learning for hippocampus segmentation. We devise a new
framework, based on the widely known method of Jigsaw puzzle reassem-
bly, in which we first pre-train using one of the unlabeled MRI datasets,
and then perform a downstream segmentation training with other labeled
datasets. As a result, we found our method to capture local-level features
for better learning of anatomical information pertaining to brain MRI
images. Experiments with downstream segmentation training show con-
siderable performance gains with self-supervised pre-training over super-
vised training when compared over multiple label fractions.

Keywords: Hippocampus · Segmentation · Self-supervised learning ·
Jigsaw puzzle reassembly

1 Introduction

There have been numerous studies linking the occurrence of Alzheimer’s dis-
ease (AD) and the hippocampal part of the brain [14,21]. More specifically, the
changes in the volume and structure of the hippocampus are associated with
the level of the progression of AD [9,14]. In this regard, clinical analysis and
timely diagnosis of the hippocampus are crucial for prevention and treatment.
One of the most widely applied methods is hippocampus segmentation of brain
magnetic resonance imaging (MRI), which can yield the necessary analytical
information regarding the size and morphology of the hippocampal part of the
brain. However, given its small size as well as the uniformity of MRI images,
along with the importance of precise segmentation, the job of hippocampus seg-
mentation turns out to be costly, time-consuming and requires highly qualified
expertise to perform the task.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Abdulkadir et al. (Eds.): MLCN 2022, LNCS 13596, pp. 42–51, 2022.
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In this regard, the research community focused on devising more sophisti-
cated strategies that could introduce methods with higher accuracy and robust-
ness. To this end, machine and deep learning-based techniques have recently
succeeded in automating and improving the task of hippocampus segmentation
[2,6,16,20]. However, despite the success of these methods in automating and
speeding up the task, achieved frameworks remain to require large amounts of
MRI images with corresponding label masks, which are expensive and laborious
to collect.

To address this issue, in computer vision, self-supervised learning methods
have been introduced that avoid large amounts of labeled data by learning rep-
resentations from unlabeled data via pretext task strategies [5,8]. In the med-
ical image domain as well, there have been various works incorporating self-
supervised learning [7,15]. Perhaps, one of the notable self-supervised learning
methods is the widely known Jigsaw puzzle reassembly, proposed by [17], in
which a network takes tiles of an image one at a time as input and solves
the puzzle by predicting a correct spatial arrangement, thus learning the fea-
ture mapping of object parts. Experiments suggested that pre-training and then
transferring weights for retraining on a downstream task outperforms supervised
learning [17]. Taleb et al. [24] introduced solving multimodal Jigsaw puzzle for
medical imaging by incorporating the Sinkhorn operator and exploiting synthetic
images during pre-training. Navarro et al. [15] analyzed the self-supervised learn-
ing for robustness and generalizability in medical imaging. Although these meth-
ods utilize a Jigsaw puzzle, there are no specific previous works on hippocampus
segmentation. Moreover, previous works usually tend to use the same datasets
both for pre-training and downstream training, while in real-world scenarios the
target dataset may not be large enough for pre-training.

In this regard, we further devise a new self-supervised framework for the
task of hippocampus segmentation by adopting the Jigsaw puzzle reassembly
problem. We selected this method because it explicitly limits the context of the
network processing as it takes one tile at a time, hence, this arrangement should
be useful to learn the anatomical parts of the brain and especially the features
related to the hippocampal part, given its relatively small size in the brain.
We first pre-train the model on one of the unlabeled brain MRI datasets and
then re-train on a downstream segmentation task with other labeled datasets,
by experimenting over various labeled data fractions (from 100% to 10%). Both
quantitative and qualitative results show that pre-trained initialization leads to
considerable performance gains in hippocampus segmentation.

2 Method

2.1 How Jigsaw Puzzle is Solved

The original implementation of Jigsaw Puzzle reassembly [17] used the context-
free architecture, by building a siamese-ennead convolutional network with
shared weights based on AlexNet [13]. The image tiles are first randomly per-
muted so that image patches are reordered, and fed to the network one at a
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Fig. 1. Self-supervised learning-based (a) pre-training and (b) downstream training
framework for hippocampus segmentation.

time. This architecture computes features for each tile separately and then con-
catenates them to feed as an input to the final fully connected layer (see Fig. 1).
Afterwards, the network needs to predict the index of the permutation. The out-
put of the network can be regarded in terms of conditional probability density
as follows:

p(S|I1, I2, ..., I9) = p(S|F1, F2, ..., F9)
9∏

i=1

p(Fi|Ii), (1)

where S is a permutation configuration, Ii is the i-th image tile, while Fi is the
i-th corresponding feature representation after the final fully connected layer. If
S is written as a list of positions S = (L1, .., L9), then conditional probability
distribution would be decomposed into independent terms:

p(L1, L2, ..., L9|F1, F2, ..., F9) =
9∏

i=1

p(Li|Fi), (2)

which implies that each tile position Li is defined by corresponding Fi [17].
Moreover, one important contribution of Jigsaw puzzle reassembly is how

it ensures learning correct representations that will be useful in leveraging the
performance during the target downstream training, not just in solving the pre-
text Jigsaw puzzle task. This is because the network may be prone to learning
the latter by following simpler solutions, called shortcuts [17]. In the following
subsection, we discuss our framework for hippocampus segmentation and how
we incorporated the idea of preventing shortcuts during pre-training.

2.2 Framework for Hippocampus Segmentation

Our training framework generally follows the original Jigsaw implementation
[17], but with certain adjustments for medical imaging. For example, instead
of the AlexNet network, we use the UNet encoder-decoder network [19] for its
popularity and remarkable performance in medical imaging, as well as the conve-
nient design. Instead of training the entire network for Jigsaw puzzle reassembly,
which could be both time-consuming and computationally expensive, we pre-
train only the encoder part and use its weights as initialization for downstream
segmentation training. The framework flow is visualized in Fig. 1b.
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As for Jigsaw puzzle reassembly, we divide the MRI image into a 3 × 3 grid
to obtain 9 tiles. To further avoid shortcuts, the tiles are randomly cropped to
a smaller size so that the model avoids solving the problem by learning edge-
related features instead of object positions, so cropping will ensure random shifts
in edges [17].

The UNet encoder network followed by fully connected linear layers needs
to predict the permutation index. Note that for 9 tiles, there are 9! = 362880
permutations possible. However, as in [17], to ensure that tiles are shuffled well
enough, we selected 1000 permutations based on the Hamming distance. In this
way, the network will predict one of the indexes from these 1000 permutations.

Downstream segmentation training is performed by initializing the encoder
with pre-trained weights and randomly initializing the decoder. By pre-training
only the encoder we ensure that the encoder learns global anatomical features
needed to localize the hippocampus, while the decoder will be trained along
with encoder weights for accurate hippocampus segmentation. Additionally, 1×1
convolutional layer is added as the last layer to facilitate the segmentation. More
details can be seen in Fig. 1.

2.3 Datasets

IXI Dataset. For pre-training, we obtained T1-weighted images of a widely
known IXI dataset (https://brain-development.org/ixi-dataset/) which was col-
lected from three different hospitals: Hammersmith (Philips 3T scanner), Guy’s
(Philips 1.5T scanner), and Institute of Psychiatry (GE 1.5T scanner). There
are a total of 579 MRI images, each having 150 slices sized 250×250. To improve
the training outcome, the brain MRI volumes were preprocessed in the follow-
ing order: (i) brain extraction was applied using the Brain Extraction Tool [23]
(available as a part of the FMRIB Software Library) in order to remove non-
brain areas that could affect the following pre-processing steps; (ii) the intensity
inhomogeneity was applied using the N3 package of the MINC toolkit [22]; (iii)
min-max normalization was performed volume-wise to normalize the values.

EADC-ADNI HarP Dataset. For downstream training experiments, we uti-
lized publicly available hippocampus segmentation HarP dataset that was col-
lected as a part of the EADC-ADNI Harmonized Protocol project [1,3,10,12,18]
from the Alzheimer’s disease Neuroimaging Initiative (ADNI) database (https://
adni.loni.usc.edu). The dataset contains 135 T1-weighted MRI volumes [18], con-
sisting of 197 slices, each with a size of 189×233, and their released segmentation
masks [4]. The same pre-processing steps as in the IXI dataset were applied to
this dataset.

Decathlon Dataset. Additionally, we used a hippocampus segmentation
dataset from the Medical Segmentation Decathlon challenge [11]. The dataset
includes 265 training and 130 test volumes, but we only utilized the training set
due to the unavailability of label masks for the test set. The volumes contain

https://brain-development.org/ixi-dataset/
https://adni.loni.usc.edu
https://adni.loni.usc.edu
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cropped parts of the hippocampal area each with various sizes, hence we only
selected images with a size of 32 × 32. No pre-processing was applied.

2.4 Experimental Setup

Pre-training. The pre-training phase was performed using the IXI dataset.
To learn the relevant feature representations from the images that include the
hippocampus, we discard the MRI images (slices) that do not contain substantial
and meaningful brain information and utilize only images that vividly contain
the brain anatomical parts. We centrally crop a 225 × 225 pixel image from the
given MRI image and divide it into 9 tiles, each with a size of 75×75. We further
crop it to a size of 64× 64 to prevent shortcuts and resize the cropped tiles back
to 75 × 75. The training was performed for 70 epochs with a batch size of 64.
The stochastic gradient descent optimizer was used as in [17] but with an initial
learning rate of 0.001 and a decay rate of 0.1 every 30 epochs.

Downstream Segmentation Training. The dataset split was done subject-
wise, so the segmentation training was performed on 90% of volumes of each
labeled dataset, while the remaining 10% is set out as a test set for final testing.
In order to perform in-depth analysis of the experiments, we conduct compar-
isons among three training settings: finetuning, linear, and random initial-
ization (baseline). The finetuning implies using pre-trained weights of the
encoder and training it along with the decoder, while linear indicates freezing
of the pre-trained weights of the encoder and training only the decoder, and
finally, random initialization indicates randomly initializing both the encoder
and decoder. In addition, to evaluate the performance of the method on both
large and small-sized datasets, we performed experiments on 10%, 20%, 50%,
and 100% label fractions of the data and reported the results. The segmentation
task training was performed for 70 epochs and was repeated 3 times to report the
average. The batch size was also selected 64. The quantitative results were eval-
uated using the Dice coefficient. The Adam optimizer was used with an initial
learning rate of 0.001 and a decay rate of 0.1 every 30 epochs.

Network Details. The UNet implementation that we used follows the structure
of the original implementation [19], so its encoder part contains five double
convolutional layers with 3 × 3 kernels, as well as a batch normalization and a
ReLU activation after each convolutional layer. The max pooling operator with
a stride of 2 is used between the double convolutional layers. Thus, the total
number of trainable parameters in the UNet encoder is ∼ 9.4 million. During the
pretraining, there are two fully connected layers following the UNet encoder with
output sizes of 1024 and 4096, each of which is followed with a ReLU activation
and a dropout layer with a rate of 0.5. There is also the final classification layer
with an output of 1000. After the pre-training, these layers are discarded, and
only the weights of the encoder are transferred for further re-training. In the
decoder part, there are four double convolutional layers but with in-between
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Table 1. Hippocampus segmentation results (Dice coefficient, %) on the HarP test
set. The downstream segmentation training was conducted with different label fractions
of the training data set. The bold numbers indicate the best results.

Label fractions
100% 50% 20% 10%

Linear (decoder training, ours) 99.94 99.68 88.50 89.32
Fine-tuning (ours) 99.93 86.00 97.44 93.11
Random initialization 94.45 94.09 97.22 91.60

Table 2. Hippocampus segmentation results (Dice coefficient, %) on the Decathlon
test set. The downstream segmentation training was conducted with different label
fractions of the training data set. The bold numbers indicate the best results.

Label fractions
100% 50% 20% 10%

Linear (decoder training, ours) 92.37 90.90 81.84 63.33
Fine-tuning (ours) 87.18 92.16 91.97 88.55
Random initialization 76.60 88.89 64.47 68.50

upsampling operators with a scale factor of 2 and a bilinear transformation
algorithm. After the last double convolutional layer of the decoder, to facilitate
the segmentation, there is a final 1×1 convolutional layer with an output sigmoid
activation.

The training of the framework was conducted on GPU servers with NVIDIA
Titan RTX (24GB) and NVIDIA RTX A6000 (48GB). Python-based PyTorch
deep learning framework was used for implementation. The implementation code
is available at the following link: https://github.com/qasymjomart/ssl_jigsaw_
hipposeg.

3 Results

3.1 Quantitative Results

Tables 1 and 2 illustrate the quantitative results comparing the fine-tuning
and linear settings with the random initialization on the HarP and Decathlon
datasets, respectively. The test results suggest the superior performance of mod-
els pre-trained via the proposed method over all label fractions. On the HarP
dataset, the linear setting consistently resulted in the highest segmentation accu-
racy in high label fractions, while the fine-tuning setting demonstrated a higher
performance in the case of lower label fractions. These observations explain how
pre-trained weights contribute to the overall performance over various amounts

https://github.com/qasymjomart/ssl_jigsaw_hipposeg
https://github.com/qasymjomart/ssl_jigsaw_hipposeg
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Fig. 2. Randomly selected qualitative results on the HarP test set. The results are
from the downstream segmentation training with a label fraction of 10%.

of labeled data. Retraining using the pre-trained weights through the fine-tuning
setting with fewer labeled data led to better alignment of the encoder and
decoder weights in learning segmentation.

Similarly, the experiments on the Decathlon dataset yielded superior perfor-
mance, where the fine-tuning allowed to achieve considerable performance gains
as fewer data is utilized in downstream training. Large differences in accuracy of
the 20% and 10% label fractions demonstrate that the fine-tuning setting turned
out to be effective in leveraging the segmentation performance.

3.2 Qualitative Results

Qualitative results in Figs. 2 and 3 depict some of the randomly selected MRI
brain images with corresponding ground truth and predicted masks. The masks
predicted by our method on the HarP dataset exhibited significant similarity
with the ground truth. In the first and third rows, the randomly initialized model
overpredicted, while in the second row, it underpredicted the hippocampus area.

Similarly, Fig. 3 illustrates clear comparisons in the case of the Decathlon
dataset. In all rows, the linear and random initialization demonstrated different
predicted shapes and areas, meanwhile, the fine-tuning resulted in more resem-
bling shapes and areas. These qualitative results agree with the quantitative
results and suggest that the pre-training via the proposed method provides bet-
ter capability in predicting the shape and edges of the hippocampus.
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Fig. 3. Randomly selected qualitative results on the Decathlon test set. The results
are from the downstream segmentation training with a label fraction of 10%.

4 Discussion and Conclusion

In general, results from both datasets indicate that the fine-tuning setting results
in better segmentation performance, especially when fewer labeled data is uti-
lized. This is particularly notable when only 10% of data is used for downstream
training (see Tables 1 and 2). It is also important to note that for downstream
training, we made use of all MRI slices, including those without clear brain
anatomical features or even hippocampus, implying empty masks. This imbal-
ance in data may lead to a failure in capturing brain-related features during
downstream training. Hence, we conjecture that the effect of pre-trained weights
may be better preserved in lower label fractions since they tend to have shorter
training. Additionally, the linear settings showed that the pre-trained represen-
tations are useful in segmentation. More analysis, including cross-validation, is
needed to further address this issue.

Developing accurate as well as robust systems for hippocampus segmentation
is a prominent issue for early diagnosis and treatment of AD. In this work, a
novel framework that may enhance the overall performance of such systems with
fewer amounts of labeled data has been devised. The future research will focus
on more in-depth analysis and further development of the framework using other
state-of-the-art self-supervised learning methods, and comparing it with other
hippocampus segmentation baselines.
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Abstract. The cornerstone of stroke care is expedient management that
varies depending on the time since stroke onset. Consequently, clinical
decision making is centered on accurate knowledge of timing and often
requires a radiologist to interpret Computed Tomography (CT) of the
brain to confirm the occurrence and age of an event. These tasks are par-
ticularly challenging due to the subtle expression of acute ischemic lesions
and their dynamic nature. Automation efforts have not yet applied deep
learning to estimate lesion age and treated these two tasks independently,
so, have overlooked their inherent complementary relationship. To lever-
age this, we propose a novel end-to-end multi-task transformer-based
network optimized for concurrent segmentation and age estimation of
cerebral ischemic lesions. By utilizing gated positional self-attention and
CT-specific data augmentation, our method can capture long-range spa-
tial dependencies while maintaining its ability to be trained from scratch
under low-data regimes commonly found in medical imaging. Further, to
better combine multiple predictions, we incorporate uncertainty by uti-
lizing quantile loss to facilitate estimating a probability density function
of lesion age. The effectiveness of our model is then extensively evalu-
ated on a clinical dataset consisting of 776 CT images from two medi-
cal centers. Experimental results demonstrate that our method obtains
promising performance, with an area under the curve (AUC) of 0.933
for classifying lesion ages ≤4.5 h compared to 0.858 using a conventional
approach, and outperforms task-specific state-of-the-art algorithms.

Keywords: Stroke · Computed Tomography · Lesion age estimation ·
Transformer network · Image segmentation

1 Introduction

Stroke is the most frequent cause of adult disability and the second commonest
cause of death worldwide [20]. The vast majority of strokes are ischemic and
result from the blockage of blood flow in a brain artery, often by a blood clot.
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Consequently, treatment is focused on rapidly restoring blood flow before irre-
vocable cell death [24]. The two main approaches are: intravenous thrombolysis,
chemically dissolving the blood clot; and endovascular thrombectomy, physically
removing the blood clot. Notably, the efficacy of both these treatments decreases
over time until their benefit is outweighed by the risk of complications. It is for
this reason that current guidelines limit when specific treatments can be given.
In the case of thrombolysis, to within 4.5 h of onset [7]. Therefore, accurate
knowledge of timing is central to the management of stroke. However, a sig-
nificant number of strokes are unwitnessed, with approximately 25% occurring
during sleep. In these cases, neuroimaging can help, with previous studies show-
ing promising results using modalities not routinely available to patients, such as
magnetic resonance imaging (MRI) and perfusion computed tomography (CT)
[16,26]. Ideally, the widely-available non-contrast CT (NCCT) would be used,
but this task is challenging even for detection alone, as early ischemic changes
are often not visible to the naked eye.

1.1 Related Work

Several studies have attempted to delineate early ischemic changes on NCCT.
The majority have used image processing techniques or machine learning meth-
ods based on hand-engineered features but more recent efforts have used deep
learning [6]. Qui et al. [21] proposed a random forest voxel-wise classifier using
features derived from a pre-trained U-Net and achieved a Dice Similarity Coeffi-
cient (DSC) of 34.7% [11]. Barros et al. [1] used a convolutional neural network
(CNN) and attained a DSC of 37%. El-Hariri et al. [6] implemented a modified
nnU-Net and reported DSCs of 37.7% and 34.6% compared to two experts. To
the best of the authors’ knowledge, the current state-of-the-art for this task is
EIS-Net [11], a 3D triplet CNN that achieved a DSC of 44.8%.

In contrast, few studies have explored using NCCT to estimate the lesion
age. Broocks et al. [2] used quantitative net water uptake, originally introduced
by Minnerup et al. [19], to identify patients within the 4.5 h thrombolysis time
window and attained an area under the receiver operator characteristic curve
(AUC) of 0.91. Mair et al. [17] introduced the CT-Clock Tool, a linear model
using the attenuation ratio between ischemic and normal brain, and achieved
an AUC of classifying scans ≤4.5 h of 0.955 with median absolute errors of 0.4,
1.8, 17.2 and 32.2 h for scans acquired ≤3, 3–9, 9–30 and >30 h from stroke
onset. These studies all currently require manual selection of the relevant brain
regions, and as of yet, have not utilized deep-learning methods that may allow
for improved performance.

Deep learning methods have shown great potential across many domains,
with convolutional architectures proving highly successful in medical imaging.
Here the inductive biases of CNNs, known to increase sample efficiency [5], are
particularly useful due to the scarcity of medical data. However, this may be at
the expense of performance, as Transformers [27] have surpassed CNNs across
many computer vision tasks. By relying on flexible self-attention mechanisms,
Transformer-based models can learn global semantic information beneficial to
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dense prediction tasks like segmentation but typically require vast amounts of
training data to do so. Recently, d’Ascoli et al. [5] have attempted to address this
by introducing gated positional self-attention (GPSA), a type of self-attention
with a learnable gating parameter that controls the attention paid to position
versus content and can combine the benefits of both architectures.

1.2 Contributions

In this work, we propose a multi-task network to simultaneously perform the
segmentation of ischemic lesions and estimate their age in CT brain imaging.
The main contributions are: (1) We introduce a novel end-to-end transformer-
based network to solve both lesion age estimation and segmentation. To our
knowledge, this is the first time a deep learning-based method has been applied
to solve the challenging task of estimating lesion age. (2) We enhance the data
efficiency of our approach by integrating GPSA modules into the model and
using a CT-specific data augmentation strategy. (3) To further improve the per-
formance of our model at estimating lesion age, we suggest a new method to
better combine multiple predictions by incorporating uncertainty through the
estimation of probability density functions. The effectiveness of the proposed
method is then demonstrated by extensive experiments.

2 Method

2.1 Network

An overview of the proposed model is presented in Fig. 1. The proposed model is
based on the DETR panoptic segmentation architecture [3] with modifications to
improve sample efficiency, performance, and facilitate lesion age estimation. All
activation functions were changed to the Gaussian error linear unit [9] (GELU)
and batch normalization was replaced with group normalization [28] to accom-
modate smaller batch sizes. The main components of the proposed model are: 1)
a CNN backbone; 2) a transformer encoder-decoder; 3) lesion, age estimation,
and bounding box prediction heads; and 4) a segmentation head.

The CNN backbone encoder extracts image features of a 2D CT slice input
image. It is comprised of four ResNeXt [29] blocks and produces an activation
map. This activation map is then projected to a feature patch embedding and
concatenated with fixed positional encodings [4]. Rather than use a 1×1 convo-
lution as in the original DETR architecture, we use a pyramid pooling module
[30] (PPM) that has empirically been shown to increase the effective receptive
field by incorporating features extracted at multiple scales.

The transformer encoder-decoder learns the attention between image features
and predicts output embeddings for each of the N = 10 object queries. Where N
was determined by the maximum number of lesions visible in a given slice. We use
three transformer encoder blocks and one transformer decoder block following
the standard architecture [27] with a couple of exceptions. First, rather than
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Fig. 1. Overview of the proposed model architecture.

using an auto-regressive model we decode the N objects in parallel. Second, to
improve the data efficiency of the model we replace the multi-head attention
layers in the encoder with GPSA layers.

The lesion, age estimation, and bounding box prediction heads are each multi-
layer perceptions (MLP) and map the output embeddings of the transformer
encoder-decoder to lesion, lesion age, and bounding box predictions. These heads
process the queries in parallel and share parameters over all queries.

The segmentation head generates binary masks for each object instance based
on attention. A two-dimensional multi-head attention layer produces attention
heatmaps from the attention between the outputs of the transformer encoder and
decoder. These heatmaps are then upscaled by a U-Net [23] type architecture
with long skip connections between the CNN encoder and decoder blocks.

2.2 Data Augmentation

To improve the generalizability of our model and prevent overfitting due to
limited training data, we adopted a CT-specific augmentation strategy with
geometric and appearance transforms. Geometric transforms included: random
axial plane flips; ±5% isotropic scaling; ±20 mm translation; and ±0.5rad axial
otherwise ±0.1rad plane rotation. Appearance transforms included an intensity
transform introduced by Zhou et al. [31] and a transform we propose to account
for the slice thickness variation often present in CT datasets. Regions of the
brain are area interpolated to a random slice thickness, ranging from 1–3 mm to
match the sizes in our dataset, then upscaled back to their original shape.

2.3 Loss Function

We use a combined loss function to enable direct set prediction. The set pre-
diction ŷ = {ŷi = {p̂i, b̂i, ŝi, âi}}N

i=1 consists of the lesion probability p̂i ∈ R
2

(lesion or no lesion), bounding box b̂i ∈ R
4, segmentation mask ŝi ∈ R

512× 512,
and lesion age quantiles âi ∈ R

3 for each of the N object queries. To ensure the
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loss function is invariant to permutation of the predictions, the Hungarian algo-
rithm [12] was used to assign each instance set label yσ(i) to the corresponding
query set prediction ŷi where σi represents the best matching order of labels.
The combined loss L is normalized by the number of lesions in a batch and com-
prises of a lesion loss Lp, bounding box losses Lb and Lg, segmentation losses
Lf and Ld, and a lesion age loss La.

L =
N∑

i=1

(λpLp + 1{pi �=∅}(λbLb + λgLg + λaLa + λfLf + λdLd)) (1)

We used cross-entropy for the lesion loss Lp. For the bounding box losses,
L1 loss Lb and the generalized intersection over union [22] Lg were used. The
segmentation losses comprised of Focal loss Lf with α = 0.25 and γ = 2 as
recommended by Lin et al. [14], and Dice loss [18] Ld. To enable the uncertainty
of lesion age estimates to be quantized, we used quantile loss for the lesion age
loss La. We predict three quantiles, assuming that estimates for lesion age are
normally distributed, that would correspond to minus one standard deviation
from the mean, the mean, and plus one standard deviation from the mean. These
can be calculated using φ, the cumulative distribution function (CDF) of the
standard normal distribution: τ1 = φ(−1) ≈ 0.159; τ2 = 0.5; τ3 = φ(1) ≈ 0.841.

La(aσ(i), âi) =
3∑

j=1

max((1 − τj)||aσ(i) − ˆai,j ||1, τj ||aσ(i) − ˆai,j ||1) (2)

In order to account for the varying difficulties of each task common to multi-task
learning procedures, we employ a random-weighted loss function where weights
are drawn from the Dirichlet distribution [13].

λp, λb, λg, λa, λf , λd
i.i.d.∼ Dir(1, 1, 1, 1, 1, 1) (3)

2.4 Inference

At inference time, we combine lesion age estimates if their associated predicted
segmentation masks are connected in 3D. Given a set of K lesion age quantile
predictions â = {âk}K

k=1, âk ∈ R
3, we estimate probability density functions

(PDF) based on the split normal distribution PDF (Eq. 4) where μk = ˆak,2,
σk,1 = ˆak,2 − ˆak,1, and σk,2 = ˆak,3 − ˆak,2 for each instance. The maximum
argument of the sum of these probability density functions is then the combined
lesion age estimate, âμ. In the rare instances where a set of predictions produces
a negative σk,1 or σk,2, we resort to the mean lesion age estimate, μ̄k.

f(x;μ, σ1, σ2) =

⎧
⎨

⎩
A exp

(
− (x−μ)2

2σ2
1

)
x < μ

A exp
(
− (x−μ)2

2σ2
2

)
x ≥ μ

, where A =
√

2/π(σ1+σ2)−1 (4)
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âμ = argmax
x

K∑

k=1

f(x;μk;σk,1;σk,2) (5)

3 Experiments

3.1 Materials

Experiments were conducted on a dataset of 776 acute stroke patients with a
known time of onset collected across two clinical sites from 2013 to 2019. Ground
truth segmentation masks of 79,959 slices were produced by single manual anno-
tation from several experts. Lesion ages measured in minutes were calculated
using the time from symptom onset to imaging and log-transformed to account
for skewed distribution. Patients were randomly divided such that 20% were
used for testing and the remainder for training and validation. Table 1 lists the
characteristics of these groups. When optimizing hyperparameters, 20% of the
total dataset was used for validation. Full ethical approval was granted by Wales
REC 3 reference number 16/WA/0361.

Table 1. Population characteristics of the clinical dataset.

Characteristic Train and validation set
(n = 627)

Test set (n = 149)

Age (years), median (IQR) 74.9 (63.9–82.8) 74.7 (63.1–83.0)

Male sex, n (%) 317 (50.6%) 71 (47.7%)

ASPECTS, median (IQR) 9 (8–10) 9 (8–10)

NIHSS on admission, median
(IQR)

13 (7–20) 13 (7–19)

Time from symptom onset to CT
(minutes), median (IQR)

232 (109–1212) 253 (110–1325)

IQR = Interquartile range; ASPECTS = Alberta stroke programme early CT score;
NIHSS = National Institutes of Health Stroke Scale

To evaluate lesion segmentation, we compared mean DSC and intersection
over union (IOU) between model predictions and expert segmentation’s on a per-
subject level. The Mann-Whitney U test was used to determine significance. For
lesion age, we excluded subjects with lesions of different ages and calculated the
coefficient of determination (R2), mean absolute error (MAE), and root mean
squared error (RMSE). We also evaluated the classification of lesion age within
4.5 h of onset using accuracy (ACC) and AUC.

All models were implemented using PyTorch version 1.10 and trained from
scratch for 100 epochs on a computer with 3.80GHz Intel R© CoreTM i7-10700K
CPU and an NVIDIA GeForce RTX 3080 10GB GPU. The AdamW [15] opti-
mizer was used with a weight decay of 10−4. Learning rate was adjusted from
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10−6 to 10−2 per-epoch using a cyclical schedule [25] and exponentially decayed
per-cycle with γ = 0.92. Gradient clipping was applied to ensure a maximal
gradient norm of 0.1. We also employed the stochastic weight averaging [10]
for the last 5 cycles. During training, lesion containing regions were linearly
sampled from the original volumes to a uniform size, 512× 512× 1 for 2D and
128× 128× 48 for 3D models, with a spatial resolution of 0.45× 0.45×0.8 mm3.
Pixel intensities were clipped based on the 0.5 and 99.5th percentile then nor-
malized using Z-score. Inference of the models required about 14 s per subject.

3.2 Results

Comparison with Baseline. We first compare our proposed model to task-
specific deep-learning algorithms due to the absence of established methods to
jointly perform segmentation and regression. The quantitative results are shown
in Table 2. For segmentation, we compare against 2D and 3D U-Net [23] using
the same Focal and Dice loss function. In this task, our proposed model performs
slightly better, with significant (p value ≤0.05) increases in DSC and IOU at the
expense of greater computational demands. Notably, despite the proposed model
being 2D in nature, it performed competitively against 3D U-Net, suggesting that
for lesion segmentation the ability to capture global semantic information may
outweigh the benefits of learning volumetric relations. These findings are also
supported by qualitative evaluation as seen in Fig. 2. For lesion age estimation,
we first trained a linear model based on intensity using a similar methodology
to Mair et al. [17]. We also trained ResNet-50 [8] and ResNeXt-50-32 × 4d [29]
models using the same quantile loss function. Compared against these models,
our proposed method outperforms them by large margins for all metrics tested. It
seems, therefore, that explicit supervised learning of both tasks may be mutually
beneficial and is particularly useful in estimating lesion age.

Fig. 2. Example lesion segmentations of our method compared to the baseline models.
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Table 2. Lesion age estimation and segmentation (mean ± standard deviation) results
obtained by our method and ablation variants compared to the baseline models.

Regression Classification Segmentation

Model Size R2 MAE RMSE AUC ACC DSC IOU

Intensity GLM 2 0.365 0.816 1.021 0.858 79.5 — —

ResNet-50 24M 0.308 0.862 1.115 0.906 83.1 — —

ResNeXt-50 23M 0.402 0.800 1.037 0.908 86.5 — —

Ours 40M 0.513 0.680 0.935 0.933 88.5 38.2 ± 24.2 26.6 ± 21.0

2D U-Net 8M — — — — — 35.3 ± 30.0 26.2 ± 26.2

3D U-Net 39M — — — — — 36.7 ± 28.2 26.4 ± 26.4

ResNet-50 (L1) 24M 0.297 0.866 1.124 0.904 81.7 — —

ResNeXt-50 (L1) 23M 0.396 0.809 1.112 0.907 84.5 — —

Ours (L1) 40M 0.503 0.636 0.944 0.912 86.5 38.2 ± 24.1 26.3 ± 21.1

Ours (no PPM) 30M 0.330 0.733 1.097 0.874 79.7 36.0 ± 24.0 24.9 ± 20.8

Ours (no GPSA) 40M 0.449 0.664 0.995 0.913 83.8 35.4 ± 24.6 24.9 ± 20.7

Ours (no RLW) 40M 0.402 0.675 1.036 0.904 83.4 35.0 ± 25.0 24.5 ± 21.5

Ours (no DA) 40M 0.025 0.945 1.357 0.756 71.6 31.6 ± 24.6 21.7 ± 20.6

MAE = Mean absolute error; AUC = Area under the receiver operator characteristic
curve; ACC = Accuracy; GLM = Generalized linear model; L1 = L1 loss; PPM =
Pyramid pooling module; GPSA = Gated positional self-attention; RLW = Random
loss weighting; DA = Data augmentation

Comparison with the State-of-the-Art. There are few works that we can
compare our results. For segmentation, we are aware of only two studies [1,6]
that used ground truth NCCT annotations. As argued by El-Hariri et al. [6],
direct comparison with studies using annotations from other modalities such as
MRI is hindered by the different underlying physiological processes which lead
to visible changes. Compared with these studies, the proposed model performs
slightly better on this challenging task with a DSC of 38.2% compared to 37%
by Barros et al. [1] and 37.7% by El-Hairi et al. [6]. For lesion age estimation,
the proposed model achieved an AUC of 0.933 for classifying whether a stroke
event is within 4.5 h of onset. Similar to the predominately manual methods by
Broocks et al. [2] and Mair et al. [17] with reported AUC of 0.91 and 0.955,
respectively. However, we note that due to the dynamic nature of ischemia, the
classification of older lesions is considerably easier. Therefore, the difficulty of
this task is highly dependent on the distribution of lesion ages in the dataset,
and without an open benchmark, objective assessment against other methods is
limited. This is further supported by our intensity model achieving an AUC of
only 0.858 using a similar methodology to these studies.

Ablation Study. We conducted a series of experiments, shown in Table 2, to
verify the effectiveness of our method and justify its design decisions. First, we
observe that our data augmentation strategy appears to have the largest impact
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on lesion age estimation and segmentation performance. Second, using GPSA,
PPM, and RLW rather than equally weighted losses provide benefits primarily
to age estimation with comparatively little effect on segmentation. Finally, we
note a consistent increase in lesion age estimation performance gained by using
our proposed quantile loss based method across all tested models.

4 Conclusion

In this paper, we proposed a novel transformer-based network for concurrent
ischemic lesion segmentation and age estimation of CT brain. By incorporat-
ing GPSA layers and using a modality-specific data augmentation strategy, we
enhanced the data efficiency of our method. Furthermore, we improved lesion
age estimation performance by better combining multiple predictions through
the incorporation of uncertainty. Extensive experiments on a clinical dataset
demonstrated the effectiveness of our method compared to conventional and
task-specific algorithms. Future work includes further prospective clinical vali-
dation and exploring the extension of the model to 3D.

Acknowledgements. Adam Marcus is supported by the UKRI CDT in Artificial
Intelligence for Healthcare http://ai4health.io (Grant No. P/S023283/1).
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Abstract. Intracranial hemorrhage (ICH) is a potentially life-
threatening emergency due to various causes. Rapid and accurate diag-
nosis of ICH is critical to deliver timely treatments and improve patients’
survival rates. Although deep learning techniques have become the
state-of-the-art in medical image processing and analysis, large training
datasets with high-quality annotations that are expensive to acquire are
often necessary for supervised learning. This is especially true for image
segmentation tasks. To facilitate ICH treatment decisions and tackle this
issue, we proposed a novel weakly supervised ICH segmentation method
utilizing a hierarchical combination of self-attention maps obtained from
a Swin transformer, which is trained through an ICH classification task
with categorical labels. We developed and validated the proposed tech-
nique using two public clinical CT datasets (RSNA 2019 Brain CT hem-
orrhage & PhysioNet). As an exploratory study, we compared two dif-
ferent learning strategies (binary classification vs. full ICH subtyping)
to investigate their impacts on self-attention and our weakly-supervised
ICH segmentation method. As the first to perform ICH detection and
weakly supervised segmentation with a Swin transformer, our algorithm
achieved a Dice score of 0.407± 0.225 for ICH segmentation while deliv-
ering high accuracy in ICH detection (AUC = 0.974).

Keywords: Weak supervision · Swin transformer · Attention ·
Intracranial hemorrhage · Segmentation · Computerized tomography

1 Introduction

Intracranial Hemorrhage (ICH) is the most deadly type of cerebrovascular dis-
ease, accounting for 10–15% of all stroke cases [1,14]. The outcome is highly
correlated with the hemorrhage volume, which is susceptible to enlarge in the
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first three hours [13]. Thus, there is a high risk for ICH to turn into a sec-
ondary brain injury or even death if it is not treated in time. Depending on
the location of hemorrhage in the brain, ICH can be divided into five subtypes:
Intraventricular (IVH), Intraparenchymal (IPH), Subarachnoid (SAH), Epidu-
ral (EDH), and Subdural (SDH). Treatment methods must be tailored towards
specific ICH subtypes, and a surgery is done only if the location of hemorrhage
is favorable. Rapid and accurate detection and quantification of ICH is therefore
crucial in choosing correct treatments and thus reduction of patient mortality.
With quick imaging time and good accessibility, computerized tomography (CT)
is commonly used in the clinic to assess ICH.

Previous developments in convolutional neural networks (CNNs) have
resulted in a great number of fast and accurate solutions in computer-assisted
diagnosis and treatment decisions, in the forms of image classification and/or seg-
mentation, including those for the care of ICH [9]. One issue with the CNNs is
their limited capacity to encode long-range spatial information, but it may affect
ICH detection/subtyping accuracy as the location of hemorrhage is directly rele-
vant to the diagnosis. Recently, Dosovitskiy et al. [6] introduced the Vision Trans-
former (ViT), which has attracted significant interests for vision tasks, espe-
cially in the context of medical imaging [4,5], where multi-head attention mech-
anisms are used to encode the contextual relationship between image patches
(as tokens). However, compared with CNNs, the ViT has low locality inductive
biases (e.g., translational invariant features). As a recent variant to mitigate the
drawback of the ViT, the Swin transformer [11] is an efficient hierarchical trans-
former that gradually reduces the number of tokens by merging image patches
and computing attentions in non-overlapping local windows. To the best of our
knowledge, the Swin transformer has not been used for ICH detection or seg-
mentation. For CNNs and especially transformer-based models, a large amount
of training data is necessary. However, annotating medical images is laborious
and time-consuming, especially for segmentation tasks. One way to mitigate this
problem is through weak supervision [22], where more accessible or coarse anno-
tations (e.g., categorical labels or bounding boxes) are used to generate more
refined ones, such as segmentation masks.

In this work, we built a novel weakly supervised framework for ICH segmen-
tation leveraging the attention maps generated from a Swin transformer, which is
trained using categorical labels for ICH detection based on public databases. As
an exploratory investigation, our study has three major contributions. First, the
Swin transformer is used for ICH detection for the first time. Second, we pro-
posed a new method to obtain ICH segmentation by leveraging the hierarchical
combination of self-attention maps from the trained ICH detection transformer,
and demonstrated its feasibility and performance. Lastly, to examine the impact
of learning tasks on self-attention maps and weakly supervised segmentation, we
compared the segmentation performance for two Swin transformers based on (1)
binary classification (presence of hemorrhage or not) and (2) multi-label classi-
fication (detailed ICH subtypes and with/without ICH).
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2 Related Works

Several techniques have been proposed for the detection and segmentation of
ICH. An excellent recent review is provided by Hssayeni et al. [9], with almost
all using supervised learning strategies in semi-automatic and automatic man-
ners, achieving the area-under-the-curve (AUC) of 0.846∼0.975 for binary clas-
sification (ICH vs. without ICH) and 0.93∼0.96 for ICH subtyping. For deep
learning-based approaches, fully convolutional networks (FCNs) [3] and recur-
rent neural networks (RNNs) [21] models were often used, and the accuracy in
ICH vs. without ICH classification was shown to be higher than ICH sub-typing
in general [9]. With interests in explainable CNNs, attention mechanisms have
been deployed to enhance detection accuracy and visualize the region of inter-
est for the classification results [15]. The latter also inspired their application
for weakly supervised brain lesion/hemorrhage segmentation, which has been
attempted by only a few [12,19]. Earlier, Wu et al. [19] employed refined 3D
Class-Activation Maps (CAMs) to learn a representation model for brain lesion
segmentation and achieved a 0.3827 mean Dice score on the Ischemic Stroke
Lesion Segmentation (ISLES) dataset (multi-spectral MRI). Similarly, Nemcek
et al. [12] detected the location of ICH as bounding boxes in axial brain CT slices
using the local extrema of attention maps obtained from a ResNet-like binary
classification CNN, and they achieved a mean Dice of 0.58 for the lesion bound-
ing boxes. So far, self-attention has not been experimented for weakly supervised
ICH segmentation, thus motivating us to explore it in this study.

3 Proposed Methods

An overview of the proposed weakly supervised segmentation technique is
depicted in Fig. 1, where it is divided into three components. First, we train
a deep learning (DL) model with a Swin transformer as the backbone for cat-
egorical classification of ICH. Then, during test time, we obtain hierarchical
layer-wise attention maps for the input image from the trained model. Finally,
segmentation is achieved by binarizing the hemorrhage localization map made by
combining the window attention maps and soft tissue intensity information. Note
that one patient may have multiple ICH subtypes. Since the CT data were from
several clinical centers with different slice thicknesses, we decided to implement
our algorithm for 2D axial CT slices.

ICH Classification: For the proposed technique, we used the Swin-B trans-
former pretrained and finetuned on ImageNet1K and ImageNet21K datasets
[18]. Each two successive Swin transformer blocks have window multi-head self-
attention (W-MSA) and shifted window multi-head self-attention (SW-MSA)
units for computing attention weights (see Fig. 2a) [11]. Here, the shifted win-
dowing scheme helps establish connections between windows, in comparison to
the ViT. To investigate the impact of different arrangments of categorical learn-
ing on the self-attention maps and thus the proposed weakly supervised seg-
mentation, we trained two versions of the Swin transformer model for 1) binary
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Fig. 1. An overview of the proposed weakly supervised ICH segmentation algorithm

classification (ICH vs. without ICH) and 2) multi-label classification (recognizing
5 ICH subtypes and with/without ICH). To address the issue of the imbalanced
dataset, we use the focal binary cross-entropy [10] loss function to train our
model:

loss =
1
N

N∑

k=1

Yk · (1 − yk)γ · log(yk) + (1 − Yk) · yγ
k · log(1 − yk) (1)

Here N, Y, y, and γ are batch size, ground-truth label, sigmoid of predicted
output, and the focal loss focusing parameter, respectively. As Lin et al. [10]
suggested, we set the value of γ = 2. For multi-label classification, the overall
loss is the weighted average of subtypes’ losses computed above, where each of
five subtypes’ weight is 1, and ICH vs. without ICH weight is 2.

Attention Map Generation: For our technique, we decided to employ the raw
attention weights of all layers to obtain the relevant attention maps for weakly
supervised segmentation, instead of the more commonly used visualization of
class activation mapping (CAM). This is due to two reasons. First, we would
like to fully leverage the relevant information from earlier layers considering
the Swin transformer architecture. Second, without gradient computation, the
processing can be more efficient.

In previous attempts to visualize attention weights with the ViT, an addi-
tional classification token was added to the image patches, and after multiplying
the attention weights of all layers, only this token’s weight was retrieved as
the attention map [2,6]. However, as the Swin transformer uses a windowing
method, adding another token corrupts the window division. Besides, attention
weights at every two successive MSA units correspond to regular and shifted
image patches, and multiplying them is meaningless. Hence, instead of multiply-
ing weights, we compute the attention map at each unit, and then we multiply
their respective maps. Here, Fig. 2 shows the steps of producing the layer-wise
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Fig. 2. Generation of layer-wise attention maps from the Swin transformer

attention map from two successive Swin transformer blocks. First, we perform
Global Average Pooling (GAP) on all tokens’ attention weights; Then, a full-
image map is reproduced by concatenating window-wise maps. Note that an
additional step of reverse shifting is needed for SW-MSA units, and the results
from W-MSA and SW-MSA are multiplied to produce the layer attention map.
Inspired by [8,17,20], we finally combine different layers’ attention maps at the
resolution of the input image, and bilinear interpolation is used when matching
the resolutions across the maps at different layers/hierarchies. This technique
helps produce more precise attention visualization for segmentation purposes.
Lastly, the hemorrhage localization map (see Fig. 3) is produced by multiplying
the resulting self-attention map with the “brain-tissue window” channel from
the CT slice to enhance the discriminative power for ICH identification.

Discrete Segmentation: The final discrete ICH segmentation is obtained by
binarizing the hemorrhage localization map (see Fig. 3). We experimented with
three binarization techniques, including simple thresholding, Otsu’s method, and
k-means, and selected simple thresholding as the optimal choice due to its perfor-
mance. For simple thresholding, the threshold value is computed as t = S×Mmax

where Mmax is the maximum intensity in the hemorrhage localization map, and
S is a scalar. We used 10-fold cross-validation on the test data to find an appro-
priate value for S between 0 to 1 with a step size of 0.01.

To compare with the proposed technique, we also implemented a similar
weakly supervised ICH segmentation method based on binary ICH classification
with the Swin transformer and GradCAM [16], which was implemented in two
verions: one only on the last layer and the other with a similar hierarchical
approach to obtain the attention maps.
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Fig. 3. Procedure for generating ICH segmentation based on the combination of hier-
archical attention maps from the ICH detection transformer

4 Experiments and Results

4.1 Dataset

To implement and validate our proposed algorithm, we employed the public
RSNA 2019 ICH [7] and PhysioNet [9] CT datasets. The RNSA dataset con-
tains 752,803 CT slices, with each slice annotated with ICH subtypes. On the
other hand, the PhysioNet dataset has 2,814 CT slices, and ICH was manually
segmented while ICH subtypes are also provided. Only the RSNA dataset was
used for training, and we used the PhysioNet dataset as a separate testing set to
examine the performance of our model. For each CT slice, brain, subdural and
bone windows created using the suggested parameters provided in the relevant
data publications [7,9] were stacked to create a three-channel image and are
downsampled to 384× 384 pixels.

4.2 Imlpementation and Evaluation

The training dataset (RSNA2019 ICH) was randomly split into 90% and 10%
for the training and validation sets. We employed the AdamW optimizer with
an initial learning rate of 1e-5 for model training. In addition, an early stopping
with patience = 3 was used to stop training if the validation loss did not decrease
for three consecutive epochs. To improve the robustness of our model, data aug-
mentation techniques including random left-right flipping, image rotation, and
Gaussian noise addition were also used. The focal binary cross-entropy was used
as the loss function to tackle the imbalanced data in the training dataset, where
much more CT slices without ICH exist. The network was trained on a desktop
computer with an Intel Core i9 CPU and a NVIDIA GeForce RTX 3090 GPU
with 24 GB memory. To test the performance of the ICH detection accuracy and
the performance of hemorrhage segmentation, the PhysioNet-ICH data was used.
The accuracy, AUC, specificity, and F1-score were evaluated for the classification
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Table 1. ICH detection and weakly supervised segmentation results for binary and
multi-label ICH classification models (reported values for Dice are mean±std)

ICH detection ICH segmentation - Dice

Accuracy AUC Specificity F1-score Simple

thresholding

Otsu’s

method

k-means

Binary 0.953 0.974 0.973 0.791 0.407± 0.225 0.383± 0.228 0.326± 0.228

Multi-label 0.952 0.975 0.979 0.776 0.324± 0.237 0.316± 0.246 0.268± 0.229

tasks, and for segmentation, the Dice coefficient is reported. When assessing the
multi-label classification model against the binary classification one, an image
is categorized as ICH if any subtypes are detected. Thus, the differences in ICH
detection between the two DL models were confirmed using a chi-square test,
and the Dice coefficients for segmentation performance between the two models
were compared using a two-sided paired-sample t-test.

4.3 Results

The results of our experiments are listed in Table 1 for the automatic detec-
tion and weakly supervised segmentation of ICH when employing binary and
multi-label classification tasks. In terms of the quality of ICH detection, there
is no significant difference between the two proposed DL models for ICH vs.
without ICH classification (p > 0.05), while the binary classification achieves an
AUC of 0.974. Regarding ICH subtyping, we have achieved the AUCs of 0.941,
0.976, 0.996, 0.965, and 0.984 for EDH, IPH, IVH, SAH, and SDH, respec-
tively. For hemorrhage segmentation, the binary classification model yielded a
mean Dice of 0.407 (with simple thresholding), which is significantly higher than
the multi-label counterpart (p< 0.05). The same trend holds for the other two
image binarization methods (p< 0.05). When comparing different binarization
methods, simple thresholding offers the best results, potentially due to the high
imbalance between ICH and non-ICH pixels. Furthermore, as an ablation study,
the GradCAM-based methods, when applied to the final layer and with a simi-
lar hierarchical approach, could achieve 0.187 and 0.100 mean Dice scores (also
using the simple thresholding method), respectively, which are far worse than
our proposed method. Finally, a qualitative demonstration of the segmentation
results is shown in Fig. 4 for five different cases (each case per column) between
the proposed method and the GradCAM approach. With the visual demonstra-
tions, we can see that the final segmentation with the proposed method produces
better results than the GradCAM approach, which provides good coverage for
the hemorrhage regions, but often over-estimates the extent.

5 Discussion

As the first attempt to use the Swin transformer for ICH detection, we obtained
an accuracy of AUC = 0.974. For both cases of binary and multi-label classifica-
tions, these results are in line with or better than previous reports [9]. Since there
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Fig. 4. Demonstration of weakly supervised ICH segmentation with five cases with
close-up views. Green = True Positive, Blue = False Negative, Red = False Positive.
(Color figure online)

were very few studies on weakly-supervised pixel/voxel-wise ICH segmentation,
it is difficult to assess our method against the state-of-the-art. The closest prior
work is the technique by [19], which was employed to segment stroke lesions from
multi-spectral MRI with a Dice score of 0.3827. For ICH segmentation, a similar
but potentially more challenging task due to the small size, irregular shape, and
subtle contrast of the target in CT, our technique has achieved a higher Dice
score (0.407). As an additional reference, in the original data paper of PhysioNet
[9], a supervised U-Net achieved a Dice of 0.315 for ICH segmentation. Although
the overall performance of weakly supervised brain lesion/hemorrhage segmen-
tation is still inferior to the supervised counterparts, the relevant explorations,
like the presented study are valuable in mitigating the heavy reliance on detailed
image annotations.

The attention mechanism has been popular to improve the transparency of
deep learning algorithms and has been the focus of many weakly supervised
segmentation algorithms [12,19]. Nevertheless, the impact of different learning
strategies on attention maps was rarely investigated. In this exploratory study,
we examined such an impact through the example of ICH detection by com-
paring binary and multi-label classifications. As our weakly-supervised ICH seg-
mentation heavily relies on the resulting self-attention maps, the segmentation
accuracy also reflects how well the network focuses on the relevant regions for
the designated diagnostic task. Based on our observations using the Swin trans-
former, binary classification offers better overlap between the network’s attention
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and the relevant pathological region, while both strategies offer similar perfor-
mance for ICH detection (grouping all subtypes as ICH). Future exploration is
still needed to better understand the observed trend.

Several aspects can still be explored to further improve our segmentation
performance in the future. First, instead of 2D slice processing, inter-slice or
3D spatial information may be incorporated to enhance the performance of ICH
detection and segmentation. Second, more efficient and elaborate learning-based
methods can be devised to further refine the initial segmentation obtained with
self-attention maps to allow better segmentation accuracy.

6 Conclusion

In conclusion, leveraging the Swin transformer and public datasets, we have
developed a framework for weakly supervised segmentation of ICH based on
categorical labels. To tackle the issue of limited and expensive training data for
ICH segmentation, we have showcased the feasibility of this approach and further
demonstrated the benefit of binary classification over multi-label classification
in weakly supervised segmentation. With these insights, future studies could
further improve the proposed technique’s accuracy and robustness.
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Abstract. Vestibular Schwannoma (VS) typically grows from the inner
ear to the brain. It can be separated into two regions, intrameatal and
extrameatal respectively corresponding to being inside or outside the
inner ear canal. The growth of the extrameatal regions is a key fac-
tor that determines the disease management followed by the clinicians.
In this work, a VS segmentation approach with subdivision into intra-
/extra-meatal parts is presented. We annotated a dataset consisting of
227 T2 MRI instances, acquired longitudinally on 137 patients, exclud-
ing post-operative instances. We propose a staged approach, with the
first stage performing the whole tumour segmentation and the second
stage performing the intra-/extra-meatal segmentation using the T2 MRI
along with the mask obtained from the first stage. To improve on the
accuracy of the predicted meatal boundary, we introduce a task-specific
loss which we call Boundary Distance Loss. The performance is eval-
uated in contrast to the direct intrameatal extrameatal segmentation
task performance, i.e. the Baseline. Our proposed method, with the two-
stage approach and the Boundary Distance Loss, achieved a Dice score
of 0.8279 ± 0.2050 and 0.7744 ± 0.1352 for extrameatal and intrameatal
regions respectively, significantly improving over the Baseline, which gave
Dice score of 0.7939 ± 0.2325 and 0.7475 ± 0.1346 for the extrameatal
and intrameatal regions respectively.

1 Introduction

Vestibular schwannomas (VS) are benign intracranial tumours that arise from
the insulating Schwann cells of the vestibulocochlear nerve. Typically they begin
to grow within the internal auditory canal, often expanding the internal auditory
meatus (IAM) and extending medially towards the brainstem, causing symptoms
ranging from headache, hearing loss and dizziness to speech and swallowing dif-
ficulties as well as facial weakness. VS accounts for 8% of intra-cranial tumours,
and is considered the most common nerve sheath tumour in adults [11].
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The decisions of tumour management, which can be either active treatment
procedures (surgery or radiotherapy) or wait-and-scan strategy, are taken based
on the growth patterns of the tumour [12]. Irrespective of the timing or type
of treatment, surveillance of the tumour following treatment is required, where
consistent and reliable measurements of the tumour are necessary to estimate
tumour size and behaviour [2]. According to the guidelines for reporting results
in Acoustic Neuroma, the intrameatal and extrameatal portions of the tumour
are required to be distinguished clearly and the largest extrameatal diameter
should be used to report the size of the tumour [6]. Therefore, this specific
segmentation of intrameatal and extrameatal regions is an important task in
providing a reliable routine for reporting and analysing the growth of VS.

Routinely, the extraction of largest extrameatal dimension on the axial plane
is performed manually by clinicians as there is no automated framework available
in current clinical settings. Thus, the measurements extracted, are prone to sub-
jective variability and also, it is a tedious, labour intensive task [13]. Therefore,
it is essential to develop an AI framework for intra-/extra-meatal segmentation
which we can later integrate into clinical settings along with automated size
measurement extraction. With this the reproducibility and repeatability can be
ensured. Nonetheless, according to previous studies, the volumetric measures
are more repeatable than linear measurements extracted from small VS [8,15].
These volumetric measurements can be reliably extracted using the 3D tumour
segmentations.

Related Work. Contrast-enhanced T1 weighted MRI (ceT1) and T2 weighted
MRI are frequently utilized for VS management. Several AI approaches have
been proposed for VS whole tumour segmentation within the past few years.
Shapey et al. [14] have achieved a Dice score of 0.9343 and 0.8825 with ceT1 and
T2 modalities respectively, using a 2.5D convolutional neural network (CNN).
Dorent et al. [3] proposed the CrossMoDA computational challenge for VS and
cochlea segmentation using T2 MRI with domain adaptation. In CrossMoDA
the best performing method reached a Dice score of 0.8840 for the VS structure.

Using this approach, the authors emphasise how T2 weighted imaging may be
routinely utilised for surveillance imaging, increasing patient safety by reducing
the need to use gadolinium contrast agents. T2 weighted MRIs are also identified
as 10 times more cost-effective than ceT1 imaging [1,2]. In a recent study, Neve
et al. [10] have reported a Dice score of 0.8700 using T2 weighted MRI on an
independent test set, where they have also used the whole tumour segmentation
to distinguish the intrameatal and extrameatal regions of VS.

Multi-stage approaches have been proposed to hierarchically segment sub-
structures of brain gliomas [16]. The authors claim that cascades can reduce
overfitting by focusing on specific regions at each stage while reducing false pos-
itives. However, such approaches have not been used for VS-related tasks.

Boundary-based segmentation losses have been developed to address the
issues associated with the overlap-based losses in highly unbalanced segmen-
tation problems [7]. Hatamizadeh et al. [4] have proposed a deep learning
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Fig. 1. The outline of the segmentation task. A shows an axial slice of the T2 MRI
volume. B shows the output of stage 1, i.e. the whole tumour segmentation. C shows
the output of stage 2, the split segmentation (red label: extrameatal region & green
label: intrameatal region. The two-stage approach is shown within the dotted box and
the baseline approach is highlighted in blue above the dotted box. The proposed loss
function is used in stage 2. (Color figure online)

architecture, that consists of a separate module that learns the boundary infor-
mation which aggregates an the edge aware loss, to the semantic loss. In [17], the
Boundary Weighted Segmentation Loss (BWSL) combines distance map of the
ground truth with the predicted probability map in order to make the network
more sensitive to the boundary regions. Overall, existing literature on bound-
ary losses seems focused on closed contours and a solution dedicated to specific
boundary sections has not yet been adopted.

Contributions. In this work, we propose a two-stage approach, as illustrated in
Fig. 1. The first stage performs the whole tumour segmentation and the second
stage performs the intra-/extra-meatal segmentation using T2 weighted MRI
along with the whole tumour mask obtained from stage 1. To the best of our
knowledge, our study is the first to propose a fully automated learning based app-
roach for intra-/extra-meatal segmentation of VS. We propose a new Boundary
Distance Loss and demonstrate its advantage for learning the boundary between
the intra-/extra-meatal regions accurately. We compare the performance of our
staged approach and the novel loss function with a baseline, where the split
segmentation is performed directly with the T2 weighted MRI volume without
the staged approach. Additionally, we also compare the results of stage 2 of the
two-stage approach with and without the proposed loss.

2 Methods

Dataset. The original dataset consists of MRI scans collected from 165 patients,
whose initial MRI scanning was performed during the period February 2006 to
January 2017. Further, the follow-up MRI scans were performed until September
2019. The patient cohort was older than 18 years and diagnosed with a single
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unilateral VS. The whole tumour annotation was performed as an iterative anno-
tation procedure by a specialist MRI-labelling company (Neuromorphometrics,
Somerville, Massachusetts, USA), reviewed and validated by a panel of clini-
cal experts that includes a consultant neuroradiologist and a consultant neu-
rosurgeon. Subsequently, the intra-/extra-meatal segmentation (split segmenta-
tion) was performed for the cases which consisted of segmentations of either
contrast-enhanced T1 (ceT1) or T2 weighted MRI modality, by an expert neu-
rosurgeon. Patients who had previously undergone operative surgical treatments
were excluded at this stage. For this work, we included only the timepoints with
whole tumour and split segmentations on T2 MRI. Thus, our cohort used in this
study consists of 227 MRI instances (timepoints) across 137 patients with T2
MRI. The dataset is split into training, validation and testing sets, each with
195, 32 and 56 instances, respectively. We ensure that all timepoints belonging
to a single patient are assigned to the same set, i.e. training or validation or
testing set.

This study was approved by the NHS Health Research Authority and
Research Ethics Committee (18/LO/0532). Because patients were selected ret-
rospectively and the MR images were completely anonymised before analysis,
no informed consent was required for the study.

Training: Baseline Approach. For our baseline, we make use of the default
3D full resolution UNet of the nnU-Net framework (3D nnU-Net) [5] to obtain
the intra-/extra-meatal segmentation with the T2 MRI modality as the input
for the network. A weighted cross entropy and Dice score losses are used for
training.

Training: Two-Stage NnU-Net Approach. Similarly, we have used the 3D
nnU-Net in two-stages sequentially in order to optimize the split segmentation
task. All the training was performed on the NVIDIA Tesla V100 GPUs. Each
model was trained for 1000 epochs, and the best performing model during vali-
dation was used to obtain the inference results.

Stage 1: Whole tumour segmentation. In stage 1, the 3D nnU-Net is used to
segment the whole tumour region of VS with the T2 MRI as input. The combined
loss of Cross Entropy and Dice score is used in this stage.

Stage 2: Intra-/Extra-Meatal Segmentation. In stage 2, the whole tumour mask,
in addition to the T2 MRI, is given to the 3D nnU-Net to segment the tumour
into intrameatal and extrameatal regions. For training, the manually annotated
masks have been used but during inference, the predicted masks from stage 1
have been used for evaluation. We use a combination of cross entropy, Dice loss
and our proposed Boundary Distance Loss detailed below.
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Boundary Distance Loss Function. We define I ∈ R
H×W×D as the T2 MRI

volumes with height, width, depth of H, W , D. Any corresponding (probabilistic)
binary label map is denoted by Llabel ∈ R

H×W×D. The goal of this proposed
loss function is to learn the deviation in the prediction from the actual boundary
of intrameatal and extrameatal tumour regions.

Let’s assume that for the three classes (background, intrameatal region and
extrameatal region) the prediction map, i.e. the softmax probability maps of
the neural network, is denoted by P = [P0, P1, P2]. The spatial gradients ∇xPi,
∇yPi, ∇zPi in the x, y, and z directions provide spatial gradient magnitudes:

|∇Pi|=
√

∇xP 2
i + ∇yP 2

i + ∇zP 2
i , i ∈ {0, 1, 2} (1)

The boundary between the intra-/extra-meatal regions should feature as
edges in both corresponding label probability maps. As such, we multiply the
magnitudes of the spatial gradients from the corresponding probability maps to
achieve an intra-/extra-meatal boundary detector B1,2

P from our network predic-
tions:

B1,2
P = |∇P1|·|∇P2| (2)

Let LB ∈ R
H×W×D denote the ground-truth one-hot encoded binary bound-

ary map between the intra- and extra-meatal tumour regions. The Euclidean
distance map φB from this ground-truth boundary is defined as,

φB(u) =

{
0, LB(u) = 1

inf
v|LB(v)=1

‖u − v‖2, LB(u) = 0 (3)

The PyTorch implementation of the Euclidean distance map is retrieved from
the FastGeodis package1. To promote boundary detections that are close to the
true boundary while being robust to changes far away from the true boundary,
we compute the average DφB

negative scaled exponential distance between the
detected boundary points and the ground truth:

DφB
=

∑
u B1,2

P (u) exp (−φB(u)/τ)∑
u B1,2

P (u)
(4)

where τ is a hyperparameter acting as a temperature term. We finally compute
our Boundary Distance Loss LB by taking the negative logarithm of DφB

LB = − log (DφB
) (5)

To define our complete loss L for training, we combine LB with the cross-
entropy (LCE) and the Dice loss (LDC) weighted by a factor γ:

L = LCE +LDC +γ LB (6)

1 https://github.com/masadcv/FastGeodis.

https://github.com/masadcv/FastGeodis
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Evaluation. Following the recent consensus recommendations on the selection
of metrics for biomedical image analysis tasks [9], we evaluate our results using
the Dice score as the primary overlap-based segmentation metric. Also follow-
ing [9], the average symmetric surface distance (ASSD) metric is used to mea-
sure the deviation in the prediction, from the actual boundary of intrameatal
and extrameatal tumour regions.

Table 1. Inference: Comparison of Dice score. BG: Background, EM: ExtraMeatal,
IM: IntraMeatal, WT: Whole tumour, SD: Standard Deviation.

Method γ BG EM IM WT

nnU-Net (Baseline) – Mean 0.9998 0.7939 0.7475 0.8813

– SD 0.0002 0.2325 0.1346 0.0888

Two-stage nnU-Net Approach

Stage 1: WT Segmentation – Mean 0.9998 – – 0.9039

– SD 0.0002 – – 0.0470

Stage 2: Split Segmentation 0 Mean 0.9996 0.8068 0.7357 0.9026

SD 0.0004 0.2231 0.1522 0.0478

0.01 Mean 0.9995 0.8072 0.7368 0.9026

SD 0.0004 0.2213 0.1524 0.0651

0.05 Mean 0.9995 0.8087 0.7469 0.9027

SD 0.0004 0.2243 0.1431 0.0651

0.1 Mean 0.9996 0.8155 0.7655 0.9027

SD 0.0004 0.2176 0.1329 0.0476

0.5 Mean 0.9995 0.8279 0.7744 0.9025

SD 0.0004 0.2050 0.1352 0.0478

Table 2. Inference: Comparison of ASSD metric; pX : Xth percentile of the ASSD
metric distribution in percentage.

Method γ Median p75 p25

nnU-Net (Baseline) – 0.8384 1.1241 0.4326

Two-stage nnU-Net Approach

Stage 1: Whole tumour Segmentation – – –

Stage 2: Split Segmentation 0 0.8064 1.3529 0.5690

0.01 0.8020 1.2303 0.5351

0.05 0.7024 1.1350 0.4830

0.1 0.7602 0.9597 0.4546

0.5 0.5417 0.9586 0.4181
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3 Results

The quantitative comparison of the Dice score from the inference phase is given
in Table 1. The Baseline approach gave a Dice score of 0.7939 ± 0.2325 and
0.7475 ± 0.1346 for extrameatal and intrameatal regions. This was improved
significantly (p < 0.01) to 0.8068 ± 0.2231 and 0.7357 ± 0.1522 respectively for
extrameatal and intrameatal regions, with the two-stage approach with combined
loss of Cross Entropy and Dice Lose. This performance was further enhanced
significantly (p < 0.0001) with the proposed Boundary Distance Loss (LB),
which gave a dice score of 0.8279 ± 0.2050 and 0.7744 ± 0.1352 respectively for
extrameatal and intrameatal regions with γ = 0.5.

Fig. 2. A shows the Dice score distribution for the Background (BG), Extrameatal
(EM) and Intrameatal (IM) for Baseline method, two-stage approach with γ = 0,
γ = 0.01, γ = 0.05 and γ = 0.5 respectively. B illustrates the ditribution of the ASSD
metric for the Baseline method, two-stage approach with γ = 0, γ = 0.01, γ = 0.05
and γ = 0.5 respectively.

Figure 2 shows the distribution of Dice score and the ASSD metric for the
Baseline method and two-stage approach for γ = 0, γ = 0.01, γ = 0.05 and
γ = 0.5 respectively. We further performed a two-sided Wilcoxon matched pairs
signed-rank test, in which each distribution is considered significantly different
from the other distribution when p < 0.05.

In Fig. 3, we illustrate qualitative results, i.e. two instances from the testing
cohort. The instance (1) gave a high ASSD with baseline and with γ = 0 for the
two-stage approach, compared to the other results obtained with the proposed
Boundary Distance Loss. The instance (2) had given a high ASSD metric with
the baseline and two-stage approach with the γ = 0 had given the ASSD value of
inf, as it had not distinguished the extrameatal region. The split segmentation
obtained with the proposed loss had given comparatively lower ASSD values
with γ = 0.01 and γ = 0.5 for this instance.
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Fig. 3. (1) & (2) shows two instances from the testing cohort. The yellow dotted
region on (1)A, after segmentation from baseline (direct segmentation) is shown in
B. Segmentation output from staged approach with γ = 0, γ = 0.01, γ = 0.05 &
γ = 0.5 are shown in C, D, E, F respectively. The ground truth is shown in G.
Similarly, the yellow dotted region on (2)H, after segmentation from baseline is shown
in I. Segmentation output from staged approach with γ = 0, γ = 0.01, γ = 0.05 &
γ = 0.5 are shown in J, K, L, M respectively. The ground truth is shown in N. The
corresponding ASSD metric is shown on each sub figure.

4 Discussion and Conclusion

In this work, we use a two-stage approach with a novel Boundary Distance Loss
for intrameatal and extrameatal segmentation of VS. The two-stage approach
with boundary loss shows a promising improvement over the baseline approach of
direct intrameatal and extrameatal segmentation. The two-stage approach helps
the model to focus on whole tumour segmentation at the first stage and then,
with the mask from stage 1, model can learn the intrameatal and extrameatal
separation boundary rigorously during the stage 2. Furthermore, the proposed
loss function enhance the split boundary identification by learning the distance
between the predicted and the target boundary.

The results indicate that a low γ weight, such as 0.01 or 0.05, on the Bound-
ary Distance Loss does not significantly improve the performance over the zero
weight on the proposed loss. However, a significant improvement could be seen
with higher γ values such as 0.1 or 0.5. In the future, we will fine-tune the γ
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hyper parameter more precisely to assign the most appropriate weight on the
proposed Boundary Distance Loss.

For the training, with the proposed loss the training time for a single epoch
increases approximately by two times. In addition, we observed that during
inference, if we use the manually annotated mask instead of the mask obtained
from the stage 1, the split segmentation improves further. Thus, we can assume
if the stage 1 performance can be improved, the stage 2 performance can be
enhanced. Another appropriate approach would be training the stage 2 with the
predicted masks from the stage 1.

In conclusion, our method reveals the importance of learning the distance to
the boundary in tasks that require distinguishing the boundary precisely. This
improvement over the boundary is quite crucial, as it enhances the extraction of
features, such as the largest extrameatal diameter from the extrameatal region.
Our proposed loss can be used in similar applications that also require a bound-
ary determination from a whole region segmentation.
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Abstract. Computer-aided clinical decision support tools for radiology often suf-
fer from poor generalizability in multi-centric frameworks due to data hetero-
geneity. In particular, magnetic resonance images depend on a large number of
acquisition protocol parameters as well as hardware and software characteristics
that might differ between or even within institutions. In this work, we use a super-
vised image-to-image harmonization framework based on a conditional generative
adversarial network to reduce inter-site differences in T1-weighted images using
different dementia protocols. We investigate the use of different hybrid losses
including standard voxel-wise distances and a more recent perceptual similarity
metric, and how they relate to image similarity metrics and volumetric consis-
tency in brain segmentation. In a test cohort of 30 multiprotocol patients affected
by dementia, we show that despite improvements in terms of image similarity,
the synthetic images generated do not necessarily result in reduced inter-site vol-
umetric differences, therefore highlighting the mismatch between harmonization
performance and the impact on the robustness of post-processing applications.
Hence, our results suggest that traditional image similarity metrics such as PSNR
or SSIMmay poorly reflect the performance of different harmonization techniques
in terms of improving cross-domain consistency.

Keywords: Domain adaptation · MRI · Harmonization

1 Introduction

In neurological applications, computer-aided clinical decision support tools typically
provide a volumetric estimation of anatomical brain regions (e.g., thalamus, hippocam-
pus [1]) or detect focal abnormalities (e.g., white matter lesion [2], metastases [3]), often
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based on Magnetic Resonance Imaging (MRI). However, the scalability of such algo-
rithms has been hindered so far by the heterogeneity that characterizes MRI data. In fact,
when considering a given modality (e.g., T1-weighted, T2-weighted), the contrast, reso-
lution and signal-to-noise ratio of an MR image typically depend on several acquisition
parameters as well as software and hardware characteristics that can vary considerably
between or even within institutions. Therefore, clinical decision support tools often fail
to generalize properly to MRI data acquired in new “unseen” settings [4, 5].

To overcome this issue, domain adaptation techniques can be used to harmonize MR
images fromdifferent sites, protocols and/or acquisition hardware to a common reference
domain [6–9]. Supervised image-to-image translation techniques enable transformation
of MRI scans from a source domain to anatomically equivalent images mimicking the
acquisition in a reference domain by leveraging ground truth target images provided by
paired acquisitions of the same subject. In this context, conditional Generative Adver-
sarial Networks (cGANs) [9] have been widely used for cross-contrast [11, 12] (e.g.,
T1-weighted to T2-weighted) and cross-imaging modality translations [13–15] (e.g.,
MR to CT). Other common approaches for image-to-image translation include nonlin-
ear regression models [16] that learn the intensity distribution of a target image, and
the use of autoencoders, where a model is trained to disentangle the anatomical con-
tent of the image and its site-dependent style component [7, 17]. Compared to other
harmonization techniques, supervised image-to-image models such as cGANs have the
advantage of being insensitive to domain-specific biases that might occur in unpaired
training datasets (e.g., systematic demographical differences between the two domains)
and preserve anatomical consistency in the synthetic images by means of a voxel-wise
reconstruction loss.

Most literature evaluates harmonization results using voxel-wise error metrics such
as mean square error (MSE) and mean average error (MAE) [6, 15] or more high-level
metrics including structural similarity metric (SSIM) and peak signal to noise ratio
(PSNR) [6, 7, 12, 15, 16]. However, the relationship between these image similarity
metrics and the ultimate cross-protocol consistency of volumetric estimates using a
segmentation algorithm remains unclear, as does the impact of specific loss functions
on specific post-processing applications.

In this work, we implement image-to-image translation of T1-weighted MRI scans
using an adapted version of the pix2pix cGAN [10]. We investigate the use of both
standard voxel-wise L1 and L2 distances, as well as a more recent perceptual similarity
loss (LPIPS) [18]. We also evaluate histogram matching to the reference domain. We
estimate the harmonization performance in terms of several image similarity metrics
and consistency of volumetric estimates of brain regions in thirty patients affected with
dementia, which were acquired with two different protocols. Brain volumes were esti-
mated using MorphoBox [1], a brain segmentation algorithm prototype optimized for
T1-weighted images acquired with ADNI-compatible [19] protocols.
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2 Methods

2.1 Dataset

Seventy-four patients (70.2 ± 11.8 years old, 36 females) scanned for workup of cogni-
tive declinewere recruited in a study approved by the local ethics committee and provided
written consent to participate in the study. T1-weighted magnetization-prepared rapid
gradient echo (MPRAGE) images were acquired with two distinct parameter sets during
the same sessionwithout patient repositioning. The acquisition protocol parameters used
are presented in Table 1.

Table 1. Acquisition protocols used to acquire 3D MPRAGE images

Protocol 1 Protocol 2

Scanner MAGNETOM Prisma 3T (Siemens Healthcare,
Erlangen, Germany)

TR/TE/TI [ms] 2300/2.98/900 1930/2.36/972

Resolution [mm3] 1 × 1 × 1.1 0.87 × 0.87 × 0.9

Flip Angle [°] 9 8

Pixel readout bandwidth [Hz/ms] 240 200

MR images were corrected for intensity non-uniformities using the N4 algorithm
[20]. Subsequently, the images from Protocol 2 were spatially registered to the equiv-
alent image acquired with Protocol 1 for each patient using Elastix [21] with an affine
transformation followed by linear interpolation.

Protocol 1 corresponds to the ADNI standard [19], which is the recommended acqui-
sition protocol for the MorphoBox segmentation algorithm; it was therefore defined to
be the reference domain for our image-to-image translation, and brain segmentations
derived from Protocol 1 were defined as ground truth.

2.2 Harmonization Framework

We based our cGAN implementation on the pix2pix model proposed in [10], but using a
customResNet generator where transpose convolution was replaced with an upsampling
operation followed by a convolution to reduce checkerboard artefacts (code available
here: https://gitlab.com/acit-lausanne/harmonization_cgan.git). For each MRI volume
used for training, 60 central slices were extracted in each orientation (axial, coronal
and sagittal) and stacks of three consecutive slices were fed to the network as separate
channels. For testing, synthetic images were first generated for each orientation, and the
voxel-wise average across orientations was then computed.

https://gitlab.com/acit-lausanne/harmonization_cgan.git
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To investigate the impact of hybrid losses on the accuracy of a harmonization cGAN
model, we compared three distinct models with different loss components. We inves-
tigated the standard L1 norm capturing voxel-wise differences, the L2 norm for its
increasing sensitivity to larger errors and the LPIPS similarity for its ability to capture
more global perceptual similarity. Previous work showed the advantages of combining
error measures together into a hybrid loss [22, 23]. Each loss component was weighted
by a factor λ that was determined experimentally by considering the amplitude of each
loss component during training. The resulting hybrid loss LG can be formulated as fol-
lows, with ŷ = f (y,w) being the synthetic image resulting from the network f given its
weights w, n being the number of voxels in the image and Ladv the adversarial loss.

LG = λL1
∑n

i

∣∣yi
∧ − yi

∣∣
n

+ λL2
∑n

i

(
yi
∧ − yi

)2

n
+ λLPIPSLPIPS

(
ŷ, y

) + Ladv (1)

where λL1 = 1000, λL2 = 10000 and λLPIPS = 500.
Three folds were defined, each of which included 64 training patients and ten test

patients. Bayesian hyperparameter optimizationwas performed in each foldwithOptuna
[24], using 60 patients for training and four for validation. The network defined by the
best hyperparameter set was selected in each fold, retrained on 64 training patients and its
accuracy estimated on the testing patients. The network had 57.2M trainable parameters
and was trained on a NVIDIA Tesla V100 32 GB GPU (hyperparameters provided in
Supplementary Table 1).

MorphoBox tissue classification algorithm requires accurate guesses of the cere-
brospinal fluid (CSF), gray and white matter tissue mean intensities. The latter are
assessed effectively by detecting the three zero-crossings of the smoothed histogram first
derivative of the skull-stripped T1-weighted image. Therefore, systematic site-related
differences in the intensity histograms are likely to introduce a bias in brain segmenta-
tion. Thus, we also tested histogrammatching (ITK [25] implementation, with excluding
background voxels, 100 histogram levels and 15 matching quantile values) to a refer-
ence ADNI image, selected from the ADNI standardized analysis set described in [19]
(female aged 71 years old, cognitive normal), as an alternative to the cGAN.

2.3 Statistical Analysis

The accuracy of the harmonized images was evaluated in terms of similarity compared to
the reference Protocol 1 images and in terms of the cross-protocol volumetric estimation
consistency using MorphoBox.

To this end, MAE and MSE errors alongside more global image similarity metrics
SSIM [26] and PSNR were computed between the harmonized image and the respective
reference. Further, we compared the intensity histograms and evaluated their proximity
by computing the Wasserstein distance (WD) [27]. A brain mask was used to consider
only the voxels in the brain.
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The post-harmonization similarity metrics were compared to the original metrics
with a paired one-sided Wilcoxon test (hypothesizing harmonization will increase simi-
larity), corrected for multiple comparisons (Benjamini-Hochberg False Discovery Rate,
nominal significance level 0.05).

Bland-Altman analyses using relative differences were performed to compare the
agreement between the different harmonization techniques and the baseline in terms of
brain volume estimations using MorphoBox. For each brain region and each method,
we evaluated the range of agreement and the absolute bias.

3 Results

3.1 Image Similarity

When computed on the original images, the L1 and L2 losses were highly correlated
(Spearman ρ = 98.8%), suggesting that the combination of the two would not improve
the harmonization accuracy. In contrast to this, LPIPS was only weakly correlated with
the voxel-wise L1 distance (ρ = 22.0%), suggesting that complementary information
could possibly be brought by such a perceptual metric.

Table 2. Similarity and error measures computed between the reference Protocol 1 image and the
original or harmonized Protocol 2 equivalent scan for each testing patient, presented as mean ±
standard deviation over the 30 test patients. Arrows indicate the desired trend for higher similarity
(↓: lower value for higher similarity, ↑: higher value for higher similarity). MAE: mean average
error, MSE: mean squared error, SSIM: structural similarity metric, PSNR: peak signal to noise
ratio, WD: Wasserstein distance. Best values are highlighted in bold.

Model MAE ↓ MSE ↓ WD ↓ SSIM ↑ PSNR ↑
baseline 128 ± 18.0 18.56 ± 4.80x103 127 ± 18.1 0.75 ± 0.04 14.5 ± 1.5

hist. Matching
[25]

52.9 ± 29.4 4.46 ± 4.48x103 51.8 ± 30.5 0.97 ± 0.02 24.9 ± 4.9

cGAN (L1) 55.8 ± 10.3 4.19 ± 1.37x103 53.1 ± 11.9 0.84 ± 0.03 21.0 ± 2.3

cGAN (L1 +
L2)

53.4 ± 12.4 4.00 ± 1.63x103 49.6 ± 14.7 0.84 ± 0.04 21.3 ± 2.7

cGAN (L1 +
LPIPS)

52.4 ± 13.0 3.84 ± 1.70x103 49.1 ± 14.9 0.85 ± 0.04 21.6 ± 2.7

The accuracy of our harmonization models was first evaluated in terms of image
similarity. The similarity measures computed between the harmonized images and the
reference are reported in Table 2. Overall, harmonized images showed significantly
higher image similarity compared to original protocols in all cases (pFDR < 0.05). The
lowest voxel-wise errors (MAEandMSE) andWDwereobserved for harmonized images
with the cGAN trained with a combination of L1 and LPIPS loss, whilst the highest
SSIM and PSNR were achieved for histogram matching. No significant improvement
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was observed for cGAN models compared to histogram matching. Globally, cGAN
harmonization decreased the standard deviation of the similarity measures compared
to baseline and histogram matching, therefore reflecting an improved stability across
testing patients.

Fig. 1. Intensity histograms of original Protocol 1 and Protocol 2 images (in blue and orange,
respectively), histogram matched images (in red) and harmonized images using a cGAN with
L1 and LPIPS loss (grey), for one example patient. The Wasserstein distance (WD) between the
reference Protocol 1 image and each other scan is reported and color-coded accordingly. The
resulting contrasts are also shown below for the same patient (Color figure online).

Intensity histograms for one example patient are shown in Fig. 1 alongside the
original and harmonized contrasts, where each main brain structure (cerebrospinal fluid,
gray matter and white matter tissue) forms an intensity peak. Whilst three peaks could
easily be observed in the image acquired with Protocol 1, the lower contrast between
white and gray matter is reflected by a flatter histogram in the higher intensity ranges
for Protocol 2.

After harmonization, the third intensity peak is recovered, thereby revealing an
improved contrast, that can also be appreciated in the subcortical structures of the
obtained MR images shown in Fig. 2. Images harmonized with the cGAN result in more
homogeneous intensities within the same brain tissue compared to histogram matching,
assumingly helping the segmentation algorithm.

3.2 Volumetric Consistency

The performance of the harmonization was also evaluated in terms of MorphoBox vol-
umetry consistency before and after protocol harmonization. As brain tissue classifi-
cation initialization approach is known to be sensitive to the modes of the intensity
histogram of an image, we expected the images with lower WD to be associated with a
more reliable volumetry estimation.
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Fig. 2. ResultingMPRAGE contrasts andMorphoBox segmentation for an example patient, both
prior and after harmonization using histogrammatching and a deep learning cGANmodel employ-
ing a combined L1 and LPIPS loss. The red arrows point at differences in the segmentation of the
frontal and parietal lobe, whereas the yellow arrows highlight the segmentation of the gray matter
and CSF in a particular gyrus (Color figure online).

Figure 2 shows the original and harmonized contrasts for an example patient, together
with representative slices showing the resulting MorphoBox segmentations. The red
arrows highlight differences in the boundaries between the frontal and parietal lobes,
whereas the yellow arrows show differences in the gray matter segmentation in a par-
ticular gyrus. Overall, the segmentation results obtained from harmonized images were
closer to the reference, particularly for the deep learning model. Notably, the image vol-
umes resulting from histogram matching showed inhomogeneous intensities, especially
in the white matter. In contrast, the synthetic images obtained with the deep learning
harmonizationmodel had an increasedwhite/graymatter contrast but weremore blurred.

Figure 3 reports the limits of agreement (left) computed fromBland-Altman analysis,
the extend of the range of agreement (top right) and the absolute bias (bottom right) for
eachbrain regionusing eachharmonization technique compared to theProtocol 1 images.
Overall, brain volumes estimated from harmonized images using L1 and LPIPS loss (in
green) were in stronger agreement with original volumes compared to the baseline (in
red). Despite a limited effect size, the range of agreement was lower for most of the
regions, whereas no substantial difference could be observed in the bias. The other
harmonization models (in grey) resulted in comparable agreement with the baseline.
Despite being associated with the highest SSIM and PSNR values, histogram matching
did not allow to substantially improve the robustness of volumetric estimates.
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Fig. 3. Summary of Bland-Atlman analysis for brain volume estimates using MorphoBox from
different harmonized images compared to Protocol 1. (Left) Limits of agreement computed for
each brain region with a 95% confidence interval. (Top Right) Range of agreement for each brain
region. (Bottom Right) Absolute bias for each brain region (Color figure online).

4 Discussion

We investigated the use of different tailored losses for a deep learning harmonization
model based on a cGAN. We observed that the addition of a L2 component to a stan-
dard L1 loss used in the original pix2pix implementation did not improve the accuracy
of the harmonization. The high correlation that was observed between the two mea-
sures might explain this observation. In contrast to that, the use of a perceptual metric,
LPIPS, improved the harmonization results compared to standard L1 loss in terms of
morphometry. Importantly, compared to matching intensity histograms to a reference
ADNI subject, the cGAN is robust to differences in brain volumes and head size.

Overall, deep learning harmonization models showed slightly improved voxel-wise
similarity metrics and WD between intensity histograms compared to histogram match-
ing. In contrast, histogram-matched images resulted in higher similarity in terms of
SSIM and PSNR. However, the differences were not statistically significant.

Our findings suggest that voxel-wise data consistency losses typically used in image-
to-image translation models should be complemented with other metrics that better
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capture more global perceived similarity in MR images, such as LPIPS to improve the
accuracy of the synthetically generated data.

Our findings also highlight a mismatch between image similarity metrics and vol-
umetric consistency, suggesting that judging harmonization impact on the consistency
of a given application (here, volumetry) based on image similarity bears risks: several
image similarity metrics may favor a harmonization method that ultimately results in
lower downstream performance, or indeed no difference in performance. As a conse-
quence, one should consider that studies evaluating the performance of harmonization
techniques solely based on image similarity metrics [15, 16] do not necessarily reflect
an improvement in consistency of downstream post-processing analyses. Further, the
design of the optimal reconstruction loss for harmonization purposes should take into
consideration the intended clinical application and its sensitivity to different similarity
measures, therefore challenging the concept of one harmonization fitting all applications.
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Abstract. Data-driven disease progression models of Alzheimer’s dis-
ease are important for clinical prediction model development, disease
mechanism understanding and clinical trial design. Among them, dynam-
ical models are particularly appealing because they are intrinsically inter-
pretable. Most dynamical models proposed so far are consistent with a
linear chain of events, inspired by the amyloid cascade hypothesis. How-
ever, it is now widely acknowledged that disease progression is not fully
compatible with this conceptual model, at least in sporadic Alzheimer’s
disease, and more flexibility is needed to model the full spectrum of
the disease. We propose a Bayesian model of the joint evolution of
brain image-derived biomarkers based on explicitly modelling biomark-
ers’ velocities as a function of their current value and other subject char-
acteristics. The model includes a system of ordinary differential equations
to describe the biomarkers’ dynamics and sets a Gaussian process prior
to the velocity field. We illustrate the model on amyloid PET SUVR and
MRI-derived volumetric features from the ADNI study.

Keywords: Disease progression model · Alzheimer’s disease (AD) ·
Magnetic resonance imaging (MRI) · Amyloid PET · Ordinary
differential equations (ODE) · Gaussian process (GP)

1 Introduction

Alzheimer’s disease (AD) is a growing health-economic worldwide issue, account-
ing for most cases of dementia [13]. Despite the great amount of effort devoted
to AD prevention and drug development during the last three decades, the few
pharmacological treatments available show a modest benefit. The study of the
AD process is further hindered by the fact that dementia can be caused by mul-
tiple pathologies, and that AD often co-occurs with them [11], being age and
genetic variations the main risk factors [10].

For more than two decades, the most widely accepted model of the patho-
physiological process underlying AD was the so-called amyloid cascade hypoth-
esis. This hypothesis states that the process starts with an abnormal accumu-
lation of the β-amyloid (Aβ) peptide, triggering a chain of pathological events
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in a predictable way. The corresponding model of biomarker dynamics states
that the main AD biomarkers become abnormal in a temporally ordered man-
ner [6,7]. However, large cohort studies showed that all possible combinations of
biomarker abnormalities are frequently present in the cognitively normal popula-
tion [8], evidencing that the amyloid cascade hypothesis is insufficient to explain
the observed heterogeneity in sporadic AD [4,5].

A new conceptual model of AD was recently proposed [4], which posited
a non-deterministic disease path. According to this model, Aβ and tau levels
interact between them and with genetic and environmental factors to increase or
reduce the risk of disease progression. These interactions would be responsible for
the huge heterogeneity observed in biomarker trajectories and the discrepancies
between observation and the amyloid cascade hypotheses.

Quantitative tools that estimate the biomarker dynamics are needed to shed
light on the AD process and to build better clinical tools for diagnosis, prognosis
and therapy efficacy assessment.

1.1 Disease Progression Models of Alzheimer’s Disease

The first AD progression models describing long-term trajectories from short-
term biomarker observations were based on Jack’s model [7], i.e., they assumed
that all subjects follow the same disease progression pattern but with different
onset times and at different speeds. Jedynak defined a disease progression score
aimed at quantifying disease progression [9]. Subjects were temporally ordered
according to this score and a parametric sigmoid-shaped curve was used to fit
the progression of biomarkers. In [3] the authors proposed a semi-parametric
model to determine the population mean of biomarker trajectories and the tem-
poral order of subjects. A similar but more flexible model used Gaussian Process
(GP) to model also the individual departures from the mean [12]. In general, all
these models may suffer from identifiability issues when trained with short-term
observations, because of the need to simultaneously estimate the disease onset
times and the biomarker trajectories. Sometimes identifiability issues were mit-
igated using mixed-effect modelling to restrict the variance of the subject-level
parameters.

The first dynamical model that relaxes the unique trajectory condition, allow-
ing an arbitrary combination of variables as initial conditions, used a Riemannian
framework to transport the mean trajectory to fit the subject’s observations [16].
Contrary to the previous works, it is the initial value of the variables, and not
the onset time, which was modelled as a random effect.

Finally, differential equation models parameterize biomarker velocities
instead of biomarker trajectories and are therefore implicit models. Two
works [2,15] tackle the problem of how to estimate long-term biomarker tra-
jectories from short-term observations of a single biomarker. A recent work used
a system of ordinary differential equations (ODEs) to simulate the effect of amy-
loid treatments on the disease course [1], being the first multivariate ODE-based
AD progression model.
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In this work, we propose a probabilistic AD progression model that uses a
system of ODEs to describe biomarker dynamics. In our formulation, and similar
to [16] and [1], all combinations of trajectory starting values are allowed. Another
important common feature is that onset times are not model parameters, reduc-
ing the risk of non-identifiability. But contrary to all ODE-based approaches,
we model the biomarker velocities non-parametrically, using GPs, which adds
flexibility and imposes less inductive bias.

2 Methods

2.1 Definitions and Model Overview

We propose a Bayesian generative model to describe the trajectories of brain
biomarkers throughout AD. Let xs(t) = [x1,s(t), x2,s(t), · · · , xL,s(t)] be a set of
L brain features and ys(t) = [y1,s(t), y2,s(t), · · · , yQ,s(t)] a set of Q covariates
for subject s at time t. The features xl,s(t) represent magnitudes associated with
the disease status that evolve as the disease progress. For example, they could
be brain atrophy, amyloid plaques or neurofibrillary tangles.In general, we can
distinguish the aforementioned brain features, associated to the disease process,
from the brain biomarkers extracted from MRI or PET images. However, we will
consider one observable x̂l per feature xl and will refer to features and biomark-
ers interchangeably. The covariates yq,s(t) are assumed to have no observation
error. They could be fixed over time (e.g. genetics), change in time according
to a predefined or known pattern (e.g. age), or be controlled externally (e.g.
treatments).

The link between a set of observed biomarkers x̂ and the feature vector x
is specified by a likelihood function L(x̂|x,Θ), where Θ are model parameters.
In our case, the likelihood functions will be independent Gaussian distributions.
Let x̂l,s;i ∼ N (

xl,s(tl,s;i), σ2
l

)
be the ith observation of biomarker l for subject

s at observation time tl,s;i. Note that the number observations and observation
times may be different for each subject and each biomarker.

The main hypothesis in this work is that the state of features and covariates at
a given time determines unequivocally the rate of progression,i.e. the expected
rate of change of all the brain features. Specifically, trajectories should be a
solution of the of the initial value problem defined by the system of ODEs

dxs(t)
dt

= v(zs(t)), (1)

where zs(t) = [xs(t),ys(t)], with initial condition

zs(0) = [x0,s,ys(0)]. (2)

We propose to model each component l of the velocity field v(·) using a GP
prior

vl ∼ GP(0, kl(·, ·)), (3)
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with the exponential kernel, kl(zm, zn) = kαl,ρl
(zm, zn) = α2

l exp(− (zm−zn)
2

2ρ2
l

).
The problem is completely specified once we define priors for the model

hyperparameters, i.e., the observation variance σ2
l , the kernel parameters αl

and ρl, and the subject-level parameters x0,s.
However, the velocity field v(·) is a function-valued parameter which could

be difficult to estimate and very hard or impossible to marginalize out given that
it is involved in the ODE system (1).We propose the following approximation
to transform Eq. (3) into a likelihood function and to model v(·) implicitly, as
it is usual in GP regression. Let x̂l,s;i and x̂l,s;i+1 be two observations of the
same biomarker l at two consecutive time points, tl,s;i and tl,s;i+1, respectively.
Assuming that the time difference Δtl,s;i = tl,s;i+1 − tl,s;i is small with respect
to the biomarker dynamics, we can approximate the velocity field using the
observation differences.Dropping the indexes s and l for clarity, we have

x(ti+1) � x(ti) + v(z(ti))Δti

x̂i+1 − εi+1 � x̂i − εi + v(z(ti))Δti

v̂i =
x̂i+1 − x̂i

Δti
� v(z(ti)) +

εi+1 − εi

Δti
, (4)

where εi ∼ N (0, σ2) is the observation error. Then v̂i ∼ N (v(z(ti)), 2σ2/Δt2i )
and we can replace Eq. (3) with

v̂ ∼ GP(0, k̂(·, ·)), (5)

where the new kernel k̂(·, ·) is the same as k(·, ·) plus a noise term, and Eq. (5)
represents a likelihood function because its l.h.s. is an observation. Note that the
Gaussianity and independence of biomarker observations was critical to define
the approximate velocities in Eq. (4).

2.2 Proposed Model

The complete set of parameter priors is given by

σl ∼ N+(0, τσ,l)
αl ∼ N+(0, τα,l)
ρl ∼ Γ (5, 5)

[x0,s]l ∼ U(0, 1),

where N+(·, ·) is the half-Gaussian distribution and Γ (5, 5) is used as a weakly
informative prior that penalizes extremely large and extremely small values of the
length scale parameter ρ. Weakly informative priors for σl and αl are determined
by setting τσ,l and τα,l equal to the mean subject-level standard deviation of
observations and the variance of the estimated velocities v̂l,s;i, respectively.
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For simplicity, each component of the subject-level parameters x0,s is
restricted to be in the unit segment after normalizing the biomarker values to
fit in the unit hypercube. Note that they can be modelled as random effects
if desired, which would provide better estimations in case that a biomarker is
completely missing for a given subject.

The likelihood functions are

x̂l,s;i ∼ N (
[xs(tl,s;i)]l, σ2

l

)
(6)

v̂l ∼ N
(
0,Kαl,ρl

(Ẑl, Ẑl) + diag
(
s2σl

))
,

where v̂l includes all consecutive observation differences from all subjects, i.e.,

v̂l =
[
x̂l,1;2 − x̂l,1;1

Δtl,1;1
,
x̂l,1;4 − x̂l,1;3

Δtl,1;3
, . . . ,

x̂l,2;2 − x̂l,2;1

Δtl,2;1
, . . .

]T

, (7)

Ẑl is a matrix with the corresponding features and covariates,

Ẑl =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x̂1,1;1 x̂2,1;1 · · · y1,1;1 y2,1;1 · · ·
x̂1,1;3 x̂2,1;3 · · · y1,1;3 y2,1;3 · · ·

...
...

...
...

x̂1,2;1 x̂2,2;1 · · · y1,2;1 y2,2;1 · · ·
...

...
...

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(ẑ1,1)
T

(ẑ1,3)
T

...
(ẑ2,1)

T

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

the noise term is given by sσl
=

√
2σl[Δt−1

l,1;1,Δt−1
l,1;3, . . . ,Δt−1

l,2;1, . . . ], and the
matrix Kαl,ρl

(Ẑl, Ẑl) is obtained by applying the kernel to all combinations of
rows in Ẑl.

To compute xs(tl,s;i) in the likelihood term (Eq. (6)) we used forward Euler
integration

xs(tl,s;i+1) = xs(tl,s;i) + v(zs(tl,s;i))Δtl,s;i

with initial condition given by Eq. (2), where

[v(z)]l = kαl,ρl
(z, Ẑl)T

(
Kαl,ρl

(Ẑl, Ẑl) + diag(s2σl
))

)−1

v̂l

Note that the trajectory of all biomarkers should be computed simultaneously,
even when only a single component l is needed in Eq. (6). This doesn’t represent
any problem as far as the covariates ys(tl,s;i) are available at all time points
because the observations x̂l′,s;i are not used in this computations for l′ �= l. This
implies that the biomarkers don’t need to be acquired at the same time points.
This is an important consideration for long longitudinal studies, such as ADNI,
for which each imaging modality is scheduled at a different rate and the time
gap between the first acquisition of two modalities differ between subjects.

However, the matrix Ẑl should be complete for each component l. This implies
that, at least at the first of the two time points used to compute the differences
in Eq. (4), the complete set of observations is needed, and that the vectors v̂l in
Eq. (7) may have different lengths for each biomarker l.
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3 Experiments

3.1 Data

The model was fitted to the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database1. All subjects from the ADNI dataset having at least 4 valid AV45
(Florbetapir) PET scans and 4 MRI T1 scans were used to fit the model, resulting
in a total of 198 participants (88 Cognitively Normal and 110 with Mild Cognitive
Impairment), and 874 PET and 1225 MRI measurements.

Three features were selected: mean AV45-PET SURV (average PET sig-
nal in cortical grey matter normalized by whole cerebellum), and the ratios of
hippocampal and ventricular volume to intracranial volume (ICV)2. Covariates
included age and the presence of a copy of the E4 allele of the apolipoprotein-E
(APOE) gene. The covariate vector y had only 1 dimension (age) because veloc-
ities fields for APOE E4 carriers and non-carriers were kept apart and estimated
separately, sharing only the hyperparameters.

3.2 Results

The posterior distributions of the model parameters were obtained with Markov
chain Monte Carlo (MCMC) sampling using Stan software [17]. To explore the
model predictive performance we did a leave-one-site-out experiment consisting
in removing all subjects from a given hospital, except for a few observations used
for predicting the rest of the biomarker trajectory, but not for velocity estima-
tion.All the observations from left-out sites within a 5-year interval centred at
the PET-MRI time overlap were used to estimate the rest of the trajectory. This
interval was defined in order that all subjects to have at least one PET observa-
tion. As AV45 started to be acquired after MRI, there are few observations after
this period. Therefore, prediction time in the past is larger than in the future.

Figure 1 shows predicted trajectories along with observations for a subset
of subjects. Specifically, we selected the subject with most data not shown to
the model from each site. Then, the 8 subjects with the longest unobserved
trajectories from the APOE E4 non-carrier group were selected.

Apart from prediction, the model allows to test an endless amount of
hypotheses, such as the mean difference in a given biomarker rate of change
between two given sub-populations. For the sake of illustration, we have focused
on the hippocampal rate of change, shown in Fig. 2. The top row panels show a
representation of the velocity field in the MRI plane (hippocampal and ventricu-
lar volumes) and the bottom row panels show the rate of change of hippocampal
volume for different conditions. The most prominent pattern is that APOE E4
carriers present higher rates of hippocampal atrophy than E4 non-carriers. These
dynamics are only mildly modulated by brain amyloid levels, as can be observed
in the bottom row panels. The strong influence of genetic factors in AD dynam-
ics and the importance of considering their effect in AD progression modelling
was recently highlighted in [4].
1 adni.loni.usc.edu.
2 The MRI volumes were computed using FreeSurfer (5.1).
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Fig. 1. Normalized biomarker trajectories for selected individuals. Blue: AV45-PET
mean SUVR/3; Orange: Ventricular volume/ICV ×10; Green: Hippocampal (HPC)
volume/ICV ×100. Dots correspond to observations, black stars denote observations
used for prediction while the rest of the observations were hidden during the model
inference. Shaded areas represent the 90% highest density interval of the prediction
posterior probability. (Color figure online)

Fig. 2. Top: Representation of velocity fields. Dots correspond to the mean estimated
initial values and lines represent velocity (two years of evolution) and their uncertainty
(lines are drawn from the posterior distribution). Bottom: Hippocampal volume rate
of change among subjects with mild neurodegeneration for different conditions of age,
APOE and amyloid PET. Shaded areas represent 90% highest density interval of the
posterior probability.
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4 Discussion

We have presented a statistical model of brain-derived biomarker progression
that overcomes important limitations of previous progression models of AD [14].
Remarkably, the proposed model dispenses with the assumption of a common
disease trajectory. Biomarker independence is another limiting assumption fre-
quently made. Conversely, the relationship between one biomarker value and
another biomarker dynamics is at the core of the proposed model. Finally, this
work presents the first non-parametric ODE-based AD progression model.

We have illustrated the model on PET and MRI-derived biomarkers and
shown its potential as a tool for AD dynamics understanding and prediction.
We showed the feasibility of full Bayesian posterior inference using MCMC in a
moderate-sized dataset. The only multivariate ODE-based model of AD progres-
sion we are aware of used a variational approximation to estimate posteriors [1].

4.1 Limitations and Future Directions

A limitation of this work is the small number of selected biomarkers. We foresee
no mayor computational issues in adding a large number of biomarkers, because
GPs scale well with dimensionality. However, more experiments are required to
verify the stability of the estimates.

The proposed model can be easily extended with other relevant AD tests,
such as cognitive tests. Additionally, a cross-sectional clinical prediction model
whose input features are the biomarkers and covariates used in this work could be
added on top of the progression model. The progression and the diagnostic model
combine together to forecast diagnosis in the future, i.e., producing prognosis
predictions.
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Abstract. Structural brain changes are commonly detectable on MRI before the
progressive loss of cognitive function that occurs in individuals with Alzheimer’s
disease and related dementias (ADRD). Some proportion of ADRD risk may
be modifiable through lifestyle. Certain lifestyle factors may be associated with
slower brain atrophy rates, even for individuals at high genetic risk for dementia.
Here, we evaluated 44,100 T1-weighted brain MRIs and detailed lifestyle reports
fromUKBiobank participantswhohad one ormore genetic risk factors forADRD,
including family history of dementia, or one or two ApoE4 risk alleles. In this
cross-sectional dataset, we use a machine-learning based metric of age predicted
from cross-sectional brain MRIs - or ‘brain age’ - which when compared to the
participant’s chronological age, may be considered a proxy for abnormal brain
aging and degree of atrophy. We used a 3D convolutional neural network trained
on T1w brain MRIs to identify the subset of genetically high-risk individuals
with a substantially lower brain age than chronological age, which we interpret
as resilient to neurodegeneration. We used association rule learning to identify
sets of lifestyle factors that were frequently associated with brain-age resiliency.
Never or rarely adding salt to foodwas consistently associatedwith resiliency. Sex-
stratified analyses showed that anthropometry measures and alcohol consumption
contribute differently to male vs female resilience. These findings may shed light
on distinctive risk profile modifications that can be made to mitigate accelerated
aging and risk for ADRD.

Keywords: Alzheimer’s disease · Brain age · Lifestyle factors

1 Introduction

Late-onset Alzheimer’s disease (LOAD) and related dementias, which are considered
to be those that occur after the age of 65, are complex disorders, driven by a combi-
nation and wide range of genetic, environment, and gene-environment interactions [1].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Abdulkadir et al. (Eds.): MLCN 2022, LNCS 13596, pp. 104–114, 2022.
https://doi.org/10.1007/978-3-031-17899-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17899-3_11&domain=pdf
http://orcid.org/0000-0002-7622-9085
http://orcid.org/0000-0003-4401-8950
https://doi.org/10.1007/978-3-031-17899-3_11


Lifestyle Factors That Promote Brain Structural Resilience 105

Recently, publicly available big data initiatives and biobanks have taken a more holistic
approach and collect a wide range of data to help understand sources of risk factors
for diseases, including ADRDs. Machine learning techniques provide computationally
efficient and effective means of data reduction and analyses that can promote our under-
standing of neurodegenerative processes from the vast set of data features now available
to researchers; brain imaging and genetic data alone can contain trillions of univariate
combinations of tests [2]. Here, we usemachine learning approaches to discover lifestyle
factors that may contribute to brain resilience in individuals at heightened genetic risk
for ADRDs.

People with a family history of dementia have twice the risk of being affected them-
selves than individuals in the general population [3]. Apolipoprotein (ApoE) E4 (e4)
on chromosome 19 has consistently been shown to be the commonly-occurring genetic
factor most strongly associated with LOAD [4]: one copy of e4 poses an approximate
3–5-fold increase in lifetime risk, whereas two copies pose an 8–20-fold increase [3,
5], depending on a person’s ancestry. Modifiable risk factors also contribute to risk
for LOAD, and together are associated with approximately 40% of the population
attributable risk for dementia worldwide [6, 7]. These include less education, hearing
loss, traumatic brain injury, hypertension, excessive alcohol consumption, obesity, smok-
ing, depression, social isolation, physical activity, air pollution, and diabetes. Other fac-
tors that have been associated with Alzheimer’s pathology and cognitive decline include
poor sleep and dietary factors, respectively [6]. As LOAD is characterized by brain struc-
tural changes, such as cortical and hippocampal atrophy [8], studying the impact of mod-
ifiable factors on these changes may inform preventative, high yield recommendations
for those at risk.

Typically, longitudinal data is required to infer rates of brain structural changes
that occur as a result of age or disease. Over the last decade, a surrogate cross-sectional
marker formeasuring “accelerated” or “slowed” brain aging,more commonly referred to
as “brain age”, has been developed [9]. Although not without limitations [10], brain age
is derived frommachine learning models, which often rely on regression techniques that
model brain features as independent variables and chronological age as the dependent
variable in a neurologically healthy “training” set. These models are then applied to
an independent or “test” sample and the difference between an individual’s predicted
age and chronological age, known as the “brain age gap” or residual, is used as an
aging biomarker. Brain age has been used to study associations of risk factors with
accelerated aging, predict diagnostic outcomes, and examinedifferences between clinical
populations. Recently, with the use of deep learning techniques such as convolutional
neural networks (CNNs), researchers can now predict brain age with less overall error,
and more precise age estimates, directly from the full 3D MRI scan [11].

Most studies to date have used brain age in older adults to model accelerated aging,
but investigating associationswith “slowed” brain aging is also important to better under-
stand factors that can mitigate accelerated brain aging. Continuous measures of brain
age have shown protective associations with physical exercise, education, and combined
lifestyle scores [12–15] but no study to date has evaluatedwhich combination of these and
other modifiable factors most consistently promotes brain resilience. The UKBiobank is
a large, densely phenotyped epidemiological study that has collected health information
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from half a million UK participants, approximately 50,000with neuroimaging [16]. This
has allowed researchers to comprehensively examine how genetic, sociodemographic,
physical, and health outcomes may influence brain structure and function. In such high
dimensional datasets, data mining algorithms, including association rule learning (ARL)
can be used to discover associations between sets of features and a particular outcome
[17]. By combining ARL with measures of brain aging in deeply phenotyped datasets,
we can begin to make inferences that incorporate the multifactorial nature of complex
neurodegenerative processes and dementia risk.

Using data from the UK Biobank, we identified high LOAD risk individuals – who
are over age 65 and either ApoE4 carriers or have a family history of dementia – who are
resilient to brain aging, characterized by a brain age younger than their chronological age;
using ARL, we then examined which sets of lifestyle factors were most often associated
with this resiliency.

2 Methods

2.1 “Brain Age”

44,100 T1-weighted (T1w) brain MRI scans from the UK Biobank (UKB) [16] were
preprocessed using a sequence of standard neuroimaging processing steps including
N4 bias field correction for non-parametric intensity normalization, skull stripping, and
linear registration with 6 degrees of freedom to a template. The preprocessed T1w scans
from UKB were partitioned into non-overlapping training and test splits using a 5-fold
cross-validation approach. We used 20% of each training split as a validation set. Our
model architecture for brain age prediction is based on the 3D CNN originally proposed
by [18]. The model consists of a sequence of five convolutional blocks with a [Conv-
BatchNorm-Activation-MaxPooling] structure as the backbone, followed by two fully
connected layers. The architecture is relatively lightweight for a 3D-CNN, with around
two million parameters. We trained the CNN end-to-end for 30 epochs with a batch
size of 5 using the Adam optimizer [19] and learning rate of 0.00005. We extracted
the brain age measures for all 44,100 subjects with available T1w MRI at the time of
writing.We corrected for predicted age’s dependence on age to avoid artificially inflating
performance metrics [10]. In brief, this involves scaling the predicted age by the slope
and intercept from a regression of predicted age on chronological age [20, 21].

2.2 Subject Selection

UKB participants over age 65 with e3e4 or e4e4 genotype or a family history dementia
(maternal, paternal, or sibling) were included (4520M, 4493F). The mean absolute error
(MAE) of our bias-corrected brain age model was calculated and any subject having
a brain age lower than their true age by a value larger than the MAE was considered
resilient.
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2.3 Lifestyle Factors

Lifestyle factors were derived and binarized from lifestyle and environment, anthropom-
etry, and summary diagnostic categories measures, documented at the time of imaging.
Factors and their respective datafield IDs are provided in Table 1. Body mass index
classifications were categorized under CDC guidelines. Diet quality was modeled using
the same coding scheme as in [22] and [23]. Briefly, an overall diet quality score was
computed and binarized as adequate if the score was >50 out of a total of 100. Indi-
vidual diet components were also included and corresponded to adequate consumption
of fruits, vegetables, whole grains, fish, dairy, vegetable oil, refined grains, processed
meat, unprocessed meat, and sugary food/drink intake.

Table 1. Lifestyle factors and respective UK Biobank data field IDs. American Heart Associa-
tion (AHA) guidelines for weekly ideal (≥150 min/week moderate or ≥ 75 min/wk vigorous or
150 min/week mixed), intermediate (1–149 min/week moderate or 1–74 min/week vigorous or
1–149 min/week mixed), and poor (not performing any moderate or vigorous activity) physical
activity. Supplementation was categorized into any vitamins/minerals or fish oil intake. Salt added
to food and variation in diet included the response of “never or rarely”. Smoking status included
never having smoked, previously smoked, and currently smokes. Alcohol frequency was catego-
rized as infrequent (1–3 times a month, special occasions only, or never), occasional (1–2 a week
or 3–4 times a week), and frequent (self-report of daily/almost daily and ICD conditions F10,
G312, G621, I426, K292, K70, K860, T510). Social support/contact variables included attending
any type of leisure/social group events, having family/friend visits twice a week or more, and
being able to confide in someone almost daily.

Lifestyle factor Features (data field ID)

Physical activity/Body composition AHA Physical Activity (884, 904, 894, 914); Waist to
Hip Ratio (48, 49); Body Mass Index (BMI) (23104)

Sleep Sleep 7–9 h a Night (1160); Job Involves Night Shift
Work (3426); Daytime Dozing/Sleeping (1220)

Diet/Supplements Diet Quality Score and Components (based on Said et al.,
2018; Zuang et al., 2021) (1309, 1319, 1289, 1299, 1438,
1448, 1458, 1468, 1329, 1339, 1408, 1418, 1428, 2654,
1349, 3680, 1359, 1369, 1379, 1389, 3680, 6144); Fish
Oil Supplementation (20084); Vitamin/Mineral
Supplementation (20084); Salt Added to Food (1478);
Variation in Diet (1548)

Education College/University (6138)

Smoking Smoking Status (20116)

Alcohol Alcohol Intake Frequency (1558/ICD)

Social contact/Support Attending Leisure/Social Group Events (6160);
Frequency of Friends/Family Visits (1031); Able to
Confide in Someone (2110)
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2.4 Association Rule Learning

ARL using the mlxtend library in Python [24] was used to characterize sets of lifestyle
factors that co-occur with resilience across the older population, and after stratifying for
sex.

Problem Formulation. Let I = {ii, i2, ..., im} be a set of binary attributes (items),
here, being the resilience classification, and the set of binary lifestyle factors described
in Table 1. Let T = {t1, t2, ..., tN } be the set of subjects. Each subject is represented as
a binary vector where tj[ik ] = 1 if the subject j, tj, has that particular feature ik , and
tj[ik ] = 0 otherwise. An itemset, X, is defined by a collection of zero or more items. In
this context, an association rule is an implication of the form X ⇒ ik , where X is a set
of lifestyle factors in I and our consequent of interest, ik , is the item “resilience”, with
|X ∩ {ik}| = 0. ARL is decomposed into two subproblems:

1. Frequent itemset generation, where the objective is to find itemsets that are above
some minimum support and

2. Rule generation, where the objective is to generate rules with high lift values (defined
below) from the frequent itemsets generated in step 1.

Frequent Itemset Generation. For the first step of the association rule generation, the
Apriori principle states that, if an itemset is frequent then all of its subset itemsets are
also frequent [25]. The metric that can be used to generate frequent itemsets is support.
Support is defined as the fraction of subjects (i.e., transactions) in T that contain that
itemset. That is

support(Z) = σ(Z)

N
(1)

where Z is an itemset, N is the total number of subjects, and σ(Z) is the support count
of Z defined as

σ(Z) = |{ti|Z ⊆ ti, ti ∈ T }| (2)

where |·| represents the cardinality of the set. We generated all the frequent itemsets
with a minimum support threshold of 0.01. The minimum support threshold was chosen
based on the computational power and memory available to us, we have chosen a very
small value (1%) to incorporate as many itemsets as possible for our association rule
generation.

Rule Generation. For each frequent itemset fk generated, we would generate the asso-
ciation rules that have “resilient” as their consequent. To measure the strength of a rule
we used the lift value:

lift(X ⇒ ik) = support(X ∩ {ik})
support(X ) × support({ik}) (3)

A lift value greater than 1 implies that the degree of association between the
antecedent and consequent is higher than in a situation where the antecedent and conse-
quent are independent. We generated all the association rules with a minimum lift value
of 1.2.
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3 Results

3.1 Brain Age

The trained models were evaluated on the test set using the root mean squared error
(RMSE),mean absolute error (MAE), and Pearson’s r between the true age and predicted
brain age as seen in Table 2 below. The 3DCNN achieved an averageMAE of 2.91(0.05)
across the 5 splits. Following age bias correction, the MAE was 3.21.

Table 2. Summary of the test performance of the 3D CNN on UKB for brain age prediction in
the full sample of N = 44,100. RMSE: root mean squared error; MAE: mean absolute error.

Split 1 Split 2 Split 3 Split 4 Split 5

RMSE 3.747 3.676 3.712 3.604 3.584

MAE 2.972 2.905 2.958 2.864 2.84

Pearson’s r 0.883 0.878 0.888 0.885 0.887

3.2 Resiliency

1439/9013 (16%) of subjects over age 65 years with genetic risk factors for ADRDwere
considered to be resilient, that is, having a brain age value >3.21 years younger than
their chronological age. 760/4520 (17%) of females and 679/4493 (15%) of males were
resilient. Example subjects are featured in Fig. 1.

Fig. 1. A. Predicted (y-axis) age plotted against chronological (x-axis) age B. Brain structural
T1-weighted MRIs are shown for a resilient case (subject 1; actual age: 66; predicted age: 50) and
a non-resilient case (subject 2; actual age: 68; predicted age: 79). Note qualitative differences in
ventricular size are visible, even though subjects are close in chronological age.
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3.3 Association Rule Learning

A total of 7,076 sets with a minimum support of 0.01 and lift value of at least 1.2 co-
occurred with resiliency in the combined set, 34,106 for females, and 5,883 for males.
The top antecedent set for each model is shown in Table 3. Frequencies of factors are
visualized in Fig. 2A for all threemodels. Corresponding lift values are shown in Fig. 2B.

The most frequent factor that appeared in antecedent sets for combined (69.7%) and
female (61.6%), was “never or rarely adding salt to food”, but also occurred with high
frequency in males (49.5%). The most frequent factor in males was having an adequate

Fig. 2. A.Antecedent frequency across all three models: combined, females only, andmales only.
Left side of the heatmap shows the absolute frequency of factors permodel and the right side shows
a ratio of the absolute count over the total number of predictive sets. B. Corresponding lift values
and means (dotted line) for each respective model. Highest pair frequencies of lifestyle factors in
antecedent sets in the C. combined, D. female, and E. male models. Lower triangles are absolute
frequencies truncated at 3500 and upper triangles indicate ratio of absolute pair counts over the
total number of predictive sets truncated at 0.35.
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intake of whole grains (54.1%)which also occurredwith high frequency in the combined
set (48.3%) and in the female set (36.3%) although to a lesser extent. Having an adequate
diet quality score was in 39% of the combined sets, 45.4% of the female sets, and 28.4%
of the male sets. Sleeping on average 7–9 h per night was in 60.4% of the female, 57.4%
of the combined, and 31.4% of the male sets. Participating in leisure or social activities
appeared at a relatively similar rate among combined (35.4%), female (38.8%), andmale
(33.5%) models.

Factors that were in less than 1% of predictive sets in any of the combined, male
and female models included: obese or underweight BMI; frequent consumption of
alcohol; night shift work; current smoking status; having poor physical activity; and
supplementation of vitamins or fish oil.

Table 3. Top antecedent set with resiliency as a consequent based on lift from the combined (C),
female (F), and male (M) models.

Antecedents (A), resiliency as consequent (C) A support C support Support Lift

C infrequent alcohol, never/rarely varies diet,
adequate fruit, never smoked

0.043 0.160 0.010 1.46

F never/rarely daytime dozes, never/rarely varies diet,
adequate fish, adequate dairy, friend/family visits,
infrequent alcohol

0.035 0.168 0.010 1.72

M never/rarely varies diet, adequate dairy, college,
adequate processed meat, never smoke

0.042 0.151 0.010 1.59

4 Discussion

As the prevalence of ADRDs continues to rise, understanding which lifestyle modifica-
tions can mitigate brain aging risk is becoming increasingly important. Here, in those at
elevated risk, we identified subjects resilient to brain aging and examined the lifestyle
factors most associated with this resiliency. The self reporting of “never or rarely adding
salt to food” was frequently associated with resilience across all of our models tested.
Dietary salt is associated with hypertension, a known vascular risk factor for demen-
tia. However, irrespective of hypertension, independent associations between a high salt
diet and increased dementia risk have been shown [26–28]. We also found support for
other modifiable risk factors such as diet quality, social contact, the absence of smoking,
physical activity, and sleep duration, as we detected associations with these factors and
resilience.

As studies continue to show differential risk profiles across the sexes [7], we further
extend our work by building sex-specificmodels. Not only is the incidence of AD greater
in females, but carrying an e4 allele has a stronger effect in females compared to males
[29–31]. Although e4 status and sex are non-modifiable, it is important to investigate
how they differentially interact with factors that are modifiable [32]. Interestingly, we
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found nearly 5 times the number of predictive sets in females compared to the combined
model and the males only model.

Our results are largely based on self-reported data from predetermined question-
naires, which may be confounded by reporting and response biases. Moreover, ARL
requires binary variables which reduces the granularity of some of the features – a fac-
tor that may play an important role in predicting resiliency. We also note limitations
associated with the use of brain age gap, as a type of residual method, given the lack
of ground truth data needed to assess its validity [33]. Our brain age method also lacks
spatial information regarding anatomical changes that occur as a result of brain aging.
Future work will address these limitations by modeling specific brain features as out-
come variables in order to spatially map which features most consistently contribute to
brain aging resilience. Continuous lifestyle factors will be modeled as predictors using
methods that are robust to potential hidden confounders [34].

Nonetheless, with the ability tomap the discrepancies between chronological age and
what may be more functionally important – biological age – we can begin to understand
whichmodifiable factors aremore or less beneficial to brain health.More importantly, by
building stratified models, we can shed light on differential risk profiles that may inform
respective populations on the most effective actions to take to mitigate accelerated brain
aging and dementia risk. Future work will continue to tease apart potential differential
effects by separately modeling e4 carriage and familial history of dementia as they relate
to resilience, and modeling sex-specific brain age resilience.
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Hoehn-Yahr and cognitive impairment stages at competitive accuracy;
the models remain parsimonious and outperform one-against-all models
in terms of the Akaike and Bayesian information criteria.

Keywords: Ordinal regression · Imaging biomarker ·
Neurodegenerative Disease

1 Introduction

Imaging biomarkers of neurodegenerative disease (NDD) continue to generate
substantial interest in the clinical neurology community. MRI in particular is
useful for pre-symptomatic detection of characteristic atrophy patterns [22]. Gen-
erally, practitioners prefer quantitative markers that are accurate and neurosci-
entifically interpretable [10]. These two competing demands - especially the inter-
pretability requirement - have somewhat limited the clinical adoption of mod-
ern machine learning-based imaging markers, with substantial efforts in making
deep learning models of NDD interpretable [6,19]. Mesh-based data extracted
from MR imaging, including anatomical shape markers, have been shown to
be especially useful [22] - but interpreting e.g. deep convolutional networks of
mesh-based features is even more difficult. To ensure a balance between inter-
pretability and accuracy, substantial efforts have focused on regularized linear
models [3,7]. These can be extended to mesh-based data, e.g. when using sparse
spatially contiguous (TV-L1) priors in NDD classification [23].

Further, as NDDs are progressive diseases, clinicians expect markers to accu-
rately identify the stage of the disease, as exemplified by Braak staging [1] or
the Alzheimer’s Disease (AD) Amyloid Cascade Hypothesis [9]. Binary classifiers
cannot satisfy this need. In response, a family of generative time-dependent mod-
els - termed “Disease Progression Models” (DPM) - have been developed for use
with neuroimaging data [5,11,14,18]. In this typically unsupervised framework,
the time (or disease stage) variable is itself inferred by optimally “stitching”
together short-term individual measurements to reconstruct biomarker trajec-
tories. While DPMs offer a means to bring several modalities together into an
interpretable dynamic marker, they often require longitudinal data and may suf-
fer from stability issues. This makes DPMs useful in guiding our understanding
of disease dynamics, but limits their use in stage inference of individuals.

To address these challenges here, we return to the supervised discriminative
framework. We assume the existence of clinical symptom severity measures that
are related by some strictly increasing (or strictly decreasing) function to a quan-
titative imaging marker. In general, clinical staging cannot be expected to be
related by a constant linear rate to an imaging biomarker. This makes ordinal
regression ideally suited for developing a progressive discriminative biomarker,
as used in its näıve form for AD stage prediction [4]. Towards this, we extend the
TV-L1 regularization and optimization techniques used in [23] to ordinal logis-
tic regression (ordit) on mesh-based features. We apply the mesh-based TV-L1
ordit to a large multi-cohort study of Parkinson’s Disease (PD) study to predict
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Hoehn-Yahr stage using subcortical shape. We also apply the tool to AD stage
prediction in the ADNI dataset, using subcortical shape and cortical thickness.
Our results outperform one-against-all classification in terms of Bayesian and
Akaike information criteria, with competitive multi-class accuracy, while pro-
viding a readily interpretable model visualization.

2 Methods

2.1 Discrete Ordinal Labels in Neurodegenerative Disease

Discrete, ordered measures of clinical symptom severity are ubiquitous in NDD
[15]. For example, in the context of Alzheimer’s Disease, clinicians use the fol-
lowing labels to broadly group afflicted and at-risk patients: Alzheimer’s Disease
(AD), (early and late) Mild Cognitive Impairment (MCI), and normal/healthy
cognition (HC). Similarly the 5 Hoehn and Yahr (H-Y) stages in Parkinson Dis-
ease [8] are commonly used to assess the severity of a patient’s Parkinsonism.
Although these categories are ordered, their numerical value cannot be treated
as a continuous variable. An imaging biomarker will generally have a non-linear
monotonic relationship with ordinal severity measures.

2.2 Ordinal Logistic Regression

Unlike binary or one-vs-all multi-class models, an ordit model simultaneously
optimizes a single latent space embedding and monotonic between-class bound-
aries within this space to maximally separate classes with a known ordering.

Suppose label y can assume K distinct ordered values. Ordinal classification
modifies the binary case by introducing K − 1 boundaries θ1 < θ2 < θ3 < ... <
θK−1 to construct the following loss function [20]:

Losso(z; y) =
K−1∑

l=1

f(s(l; y)(θl − z)), s(l; y) =

{
−1 if l < y

+1 if l ≥ y
(1)

where z is the linear predictor z = β′x and f is the margin penalty function. In
the case of ordinal logistic regression, f is the logistic loss.

2.3 TV-L1 Regularized Regression

Predictive modeling with sparse Total Variation (TV-L1) regularization has been
widely used in functional and diffusion MR brain imaging [3,17], and more
recently for regression and spectral analysis of mesh-based data [2]. Here we
use TV-L1-regularized Ordinal Logistic Regression (Ordit-TVL1), whose loss is

Loss(β,D, ωL1, ωTV ) = Losso(β,D) + ωL1|β| + ωTV

∑

i

||∇βi|| (2)
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where Losso is the ordinal logistic loss, ωL1, ωTV are regularization weights, and
D = {xi, yi} are the data and class labels. xi here denotes a feature vector
including vertices from cortical or subcortical surface models. Finding the opti-
mal linear coefficients requires us to solve a non-smooth convex optimization
problem. Two of the most popular solvers are Alternating Direction Method
of Multipliers (ADMM) and methods based on proximal operators of the non-
smooth terms [3]. Here, we use an implementation based on Nesterov’s smooth-
ing. In this solver, the TV term, for which a closed-form proximal operator does
not exist, is approximated with a differentiable function, while allowing exact
optimization of the L1 term [2].

3 Experiments

3.1 Data

We used T1-weighted MR images from the ADNI (Alzheimer’s) and ENIGMA-
PD (Parkinson’s) datasets. ADNI: our cohort consisted of 195 AD, 398 MCI,
and 225 HC subjects. ENIGMA-PD: this is a collaborative Parkinson’s Disease
imaging consortium, comprised of over 20 cohorts. Figure 1 describes ENIGMA-
PD clinical and demographic characteristics. We treated H-Y stages 3, 4 and 5
as one stage due to the limited number of samples in the latest three stages.
This was also deemed neuroscientifically sensible, as the jump from stage 2 to 3
is considered to be most clinically significant. Our vertex-wise features consisted
of cortical thickness extracted with FreeSurfer in ADNI, and subcortical medial
shape thickness - used in both datasets - extracted from seven bilateral regions
with a previously described approach [21].

Fig. 1. ENIGMA-PD dataset clinical diagnosis. * - Some PD subjects did not have HY
stage information.

3.2 Experimental Pipeline

In all experiments, we used 4-fold nested cross-validation, with inner folds used
to optimize TV and L1 hyper-parameters (ωL1, ωTV ) for best balanced accu-
racy. Since ROC area-under-the-curve (AUC) is not appropriate for evaluating
multi-class models, we used balanced f1 scores and overall balanced accuracy.
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As a baseline reference, we trained relevant binary logit models with TV-L1 reg-
ularization (Logit-TVL1): AD vs. NC for the Alzheimer’s study and PD vs. NC
for the Parkinson’s study. As the primary reference model in subcortical experi-
ments, we also trained a conventional one-vs-all multi-class logit classifier, again
with TV-L1 terms (“One-vs-All-TVL1”). Beyond the measures above, we also
compared the multi-class models’ parsimony and intepretability more directly,
using Akaike and Bayesian information criterion (AIC, BIC). We note that for
biological reasons explained below, we excluded control subjects from multi-class
Parkinson’s experiments, while training additional relevant binary models.

4 Results

In ADNI subcortical experiments, Logit-TVL1 model achieved ROC-AUC score
of 0.91 for HC vs. AD. As expected (Fig. 2(A,B)), linear weights of the two binary
models and the ordinal model show broadly consistent patterns. However, the
ordinal model shows a noticeable deviation in the canonical progression pattern,
with more subtle patterns in the bilateral thalamus and hippocampus. Specifi-
cally, the ordit model focuses more on the mediodorsal and pulvinar nuclei. In
cortical thickness models (Fig. 3), the binary and ordinal maps also generally
resemble each other. However, the ordinal map shows that the classifier is more
focused on the medial temporal regions (esp. parahippocampal gyrus), and supe-
rior frontal areas, and less on lateral temporal regions. This is broadly consistent
with known atrophy and amyloid/tau accumulation patterns in early stages of
the disease [12], probably indicating that the model is most focused on the MCI
group. We note that positive (red) weights in a multivariate linear classifier map
do not necessarily imply disease-associated increase in gray matter. Just as likely,
warm colors represent regions where atrophy is correlated with but reduced com-
pared to the atrophy in the more severely affected regions (blue). As a sanity
check, we trained both cortical and subcortical ordinal models without regular-
ization. In both cases, the model simply failed to converge with below chance
classification accuracy at its last iteration.

The ADNI multi-task classification performance of One-vs-All-TVL1 and
Ordit-TVL1 models are displayed in Fig. 5. The Ordit-TVL1 model achieved
0.51 overall out-of-fold accuracy, compared with the One-vs-All-TVL1 accuracy
of 0.45. The ordinal model results in a more balanced confusion matrix (Fig. 4)
- given a chance accuracy of 0.33 - and balanced F1 scores across all diagnostic
categories (Fig. 5). It implies that the Ordit-TVL1 model is advantageous to deal
with unbalanced data in the multi-class setting. One the other hand, the One-
vs-All-TVL1 maps (Fig. 2(C)) do not lend themselves easily to interpretation, as
the set of binary problems does not necessarily reflect disease progression. This
is further reflected in AIC and BIC scores: The one-vs-all model achieved AIC of
43733 and BIC of 54666. For comparison, the ordit-TVL1 model achieved AIC
of 25294 and BIC of 37944 (lower A/BIC imply greater parsimony).

In ENIGMA-PD experiments, the baseline binary model achieved AUC of
0.65, with similar results for between stage binary classification (Fig. 6(B).
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Fig. 2. Weight maps of subcortical shape models of Alzheimer’s Disease. A.
Binary Logit-TVL1 model separating AD and HC subjects; B. Ordit-TVL1 model;
C. Components of the One-vs-All-TVL1 model. The colorbar range is defined by the
standard deviation of linear loadings over all vertices, σβ . Note the more focused degen-
erative pattern in the ordinal model’s thalamus and hippo maps in contrast to (A).
Compare the single progression map of (B) to the convoluted interpretation of (C).

Comparing the ordit model (Fig. 6(A) to the multi-class model, we again see
improved A/BIC scores: Ordit-TVL1’s 36552 (BIC), 24369 (AIC) versus One-
vs-All-TVL1’s 63681 (BIC), 42455 (AIC). The balanced f1 score and accuracy
were (f1 = 0.44, acc = 0.45) for Ordit-TVL1 and (f1 = 0.45, acc = 0.46) for
Logit-TVL1 (Fig.7). The linear models maps in Fig. 6 show patterns of gen-
eral thinning in the striatal and limbic areas, and a “flattening” of the caudate
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Fig. 3. Weight maps of cortical thickness models of Alzheimer’s Disease.
A. Logit-TVL1 model separating AD vs. HC; B. Ordit-TVL1 model. The grey patch
in the bottom row (medial view) corresponds to vertices with no GM values (corpus
callosum, ventricular boundaries, etc.).

Fig. 4. Alzheimer’s Multi-task classification confusion matrix. Left: Subcorti-
cal One-vs-All-TVL1 model; Middle: Subcortical Ordit-TVL1 model (middle); Right:
Cortical Ordit-TVL1 model.

Fig. 5. Alzheimer’s Multi-task classification performance. Right: Precision;
Middle: Recall; Left: F1 score. Colors: Subcortical One-vs-All TVL1(orange), Sub-
cortical Ordit-TVL1(blue), Cortical Ordit-TVL1 (red).

nucleus. This is consistent with previous studies of shape in PD pointing towards
subcortical degeneration in these regions [16]. The thalamus forms a notable
exception, being thicker in early-stage PD, while reverting to thinning in later
HY stages. This is in line with subcortical volume work by ENIGMA-PD [13],
and is the reason control subjects were excluded from multi-class PD models
here.
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Fig. 6. Weight maps of subcortical shape models of Parkinson’s Disease.
(A) Ordit-TVL1 model, (B) binary Logit-TVL1 models. The ”pancaking” effect of
the caudate in the ordinal model is also observed in the binary PD-HC map.

Fig. 7. Alzheimer’s Multi-task classification performance. Right: Precision;
Middle: Recall; Left: F1 score. Colors: Subcortical One-vs-All TVL1(orange), Sub-
cortical Ordit-TVL1(blue).

5 Conclusion

We have presented a TV-L1 regularized ordinal logistic biomarker to predict neu-
rodegenerative disease stage. The biomarker retains balanced accuracy compet-
itive with previously reported results in AD, while remaining sparse and neuro-
scientifically interpretable. The improved balance of parsimony and performance
is confirmed by a favorable information criteria comparison with standard one-
against-all approaches. Future extensions may include incorporating regularized
ordit models in multiple-task learning [23] and semi-supervised cross-disorder
stage identification [11].
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16. Nemmi, F., Sabatini, U., Rascol, O., Péran, P.: Parkinson’s disease and local atro-
phy in subcortical nuclei: insight from shape analysis. Neurobiol. Aging 36(1),
424–433 (2015)

https://doi.org/10.1007/978-3-030-20351-1_5
https://doi.org/10.1007/978-3-030-32391-2_11
https://doi.org/10.1007/978-3-030-32391-2_11


124 Y. Zhao etal.

17. Nir, T.M., et al.: Alzheimer’s disease classification with novel microstructural met-
rics from diffusion-weighted MRI. In: Fuster, A., Ghosh, A., Kaden, E., Rathi, Y.,
Reisert, M. (eds.) Computational Diffusion MRI. MV, pp. 41–54. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-28588-7 4

18. Oxtoby, N.P.: Data-driven sequence of changes to anatomical brain connectivity
in sporadic Alzheimer’s disease. Front. Neuro. 8, 580 (2017)

19. Shangran, Q., et al: Development and validation of an interpretable deep learning
framework for alzheimer’s disease classification. Brain 143(6), 1920–1933 (2020)

20. Rennie, J.D.M., Srebro, N.: Loss functions for preference levels: Regression with
discrete ordered labels. In: Proceedings of the IJCAI Multidisciplinary Workshop
on Advances in Preference Handling, vol. 1. Citeseer (2005)

21. Roshchupkin, G.V., Gutman, B.A., et al.: Heritability of the shape of subcortical
brain structures in the general population. Nat. Commun. 7, 13738 (2016)

22. Young, P.N.E., et al.: Imaging biomarkers in neurodegeneration: current and future
practices. Alzheimers Res. Ther. 12(1), 49 (2020)

23. Zhao, Y., Kurmukov, A., Gutman, B.A.: Spatially adaptive morphometric knowl-
edge transfer across neurodegenerative diseases. In: 2021 IEEE 18th International
Symposium on Biomedical Imaging (ISBI), pp. 845–849 (2021)

https://doi.org/10.1007/978-3-319-28588-7_4


Augmenting Magnetic Resonance
Imaging with Tabular Features

for Enhanced and Interpretable Medial
Temporal Lobe Atrophy Prediction

Dongsoo Lee1, Chong Hyun Suh2(B), Jinyoung Kim1, Wooseok Jung1,
Changhyun Park1, Kyu-Hwan Jung1, Seo Taek Kong1, Woo Hyun Shim2,

Hwon Heo3, and Sang Joon Kim2

1 VUNO Inc., Seoul, Republic of Korea
dslee@vuno.co

2 Department of Radiology and Research Institute of Radiology, Asan Medical
Center, University of Ulsan College of Medicine, Seoul, Republic of Korea

chonghyunsuh@amc.seoul.kr
3 Department of Convergence Medicine, Asan Medical Center, University of Ulsan

College of Medicine, Seoul, Republic of Korea

Abstract. Medial temporal lobe atrophy (MTA) score is a key feature
for Alzheimer’s disease (AD) diagnosis. Diagnosis of MTA from images
acquired using magnetic resonance imaging (MRI) technology suffers
from high inter- and intra-observer discrepancies. The recently-developed
Vision Transformer (ViT) can be trained on MRI images to classify MTA
scores, but is a “black-box” model whose internal working is unknown. Fur-
ther, a fully-trained classifier is also susceptible to inconsistent predictions
by nature of its labels used for training. Augmenting imaging data with
tabular features could potentially rectify this issue, but ViTs are designed
to process imaging data as its name suggests. This work aims to develop an
accurate and explainable MTA classifier. We introduce a multi-modality
training scheme to simultaneously handle tabular and image data. Our
proposed method processes multi-modality data consisting of T1-weighted
brain MRI and tabular data encompassing brain region volumes, cortical
thickness, and radiomics features. Our method outperforms various base-
lines considered, and its attention map on input images and feature impor-
tance scores on tabular data explains its reasoning.

Keywords: Vision transformer · Explainability · Multi-modality

1 Introduction

Medial temporal lobe atrophy (MTA) score is highly related to Alzheimer’s Dis-
ease (AD) [6,15]. Even expert raters often disagree and inter/intra observer vari-
ation is high when annotating MTA in magnetic resonance imaging (MRI) data
[19]. Therefore, deep learning models rating MTA score can assist human raters
to improve consistency if provided with accurate and explainable prediction.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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A combination of convolutional neural network (CNN) and recurrent neural
network (RNN) is applicable to MTA classification [11]. Moreover, their method
provides a explainable visualization map using SmoothGrad [21]. However, this
work has some limitations. Even though the MTA score is a discrete label, their
model was trained using a loss function that is used for continuous labels and
had insufficient classification performance. A promising extension is to augment
radiography with tabular features to train a CNN as in [18]. The joint use of
imaging and tabular data is sought in medical applications [17,22] because radio-
graphy may not contain enough information for diagnosis and such critical clini-
cal information is mostly provided in a tabular form. Moreover, MRI’s intensity
or texture is highly affected by vendors and imaging protocols. Such information
can be also represented in a tabular form and then properly considered during
training. However, joint use of imaging and tabular data has several challenges.
Dimension difference between imaging and tabular data makes it difficult to com-
bine them [9]. Fusing multiple data can also cause overfitting as a consequence
of redundant features [25].

Multi-modality data has been used to enhance CNNs in medical applica-
tions. The Alzheimer’s disease (AD) classification task uses combined MRI and
positron emission tomography (PET) data to improve the CNN-based model’s
prediction performance [4]. In cancer histology, survival CNN integrates histol-
ogy images and genomic biomarkers to predict time-to-event outcomes, and such
a model enhances prediction accuracy for the overall survival of patients [13].
With the recent development of Vision Transformer (ViT) [5] where long-term
dependencies can be learnt with less inductive bias [10,23], we seek to apply this
propitious architecture to MTA classification.

The focus of this work is in classifying MTA from both imaging and tabular
data and improving its explainability. To this end, we propose an explainable
multi-modality training scheme to learn feature representation from both image
and tabular data in an end-to-end fashion. A ViT model provides a relevance
map based on layer-wise relevance propagation (LRP) [3] and TabNet [1] can
effectively learn representations from extracted image features and tabular data.
Our proposed method outperforms existing methods and provides clear explain-
ability for both image and tabular data.

2 Methods

We present a novel framework to simultaneously learn feature representation
from image and tabular data. The proposed method does not only capture con-
textual information from the image but also effectively encodes auxiliary data in
a tabular form. Further, it improves model interpretability by highlighting rele-
vant regions and important tabular features in a predictive task. We employed
two independent transformer models: ViT and TabNet [1].

A vision transformer block consists of an embedding layer, transformer block,
and fully connected layer. Our transformer block consists of 4 transformer layers
that include the layer normalization, attention block, and multi-layer percep-
tron (MLP) block and the transformer block has 512 dimensions and 4 heads.
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Fig. 1. Overview of the proposed multi-modality training scheme. One ViT model
extracts image features from coronal T1 slices and image features are accumulated
until the end of the ViT’s one epoch training. Then, image features are merged with
pre-defined tabular data, and a TabNet classifier processes this merged data. Our ViT
model consists of a positional embedding layer, a transformer block that contains 4
transformer layers, and a final fully connected layer with 3 dimensions.

We use a 4-layer ViT which is shallow compared to its typical usage because the
dataset used in this work is smaller than standard public datasets used for natu-
ral imaging and such model can prevent overfitting. The ViT model can produce
a global visualization feature map for input MRI data. This visualization map [3]
is produced by integrating LRP-based relevance propagation that is calculated
by deep Taylor decomposition [14] and gradients information. This integrated
relevance map can be reached the input level and control non-linearity functions
that include skip-connection and self-attention layers.

A TabNet classifier is designed to handle tabular data. The TabNet encoder
is composed of a feature transformer, attentive transformer, and feature mask-
ing block that uses sparsemax function [12]. The transformer modules are the
main components in the TabNet. The feature masking block can provide local
interpretability which shows how the features are integrated and their influence,
and global interpretability that visualizes the importance of each feature to the
trained model from this sparsity. The TabNet handles raw tabular data without
any pre-processing steps. Our TabNet uses jointly extracted image features and
tabular data. This classifier quantifies the importance of each image or tabular
feature. Tabular data includes demographics, quantitative brain region volume,
cortical thickness, and radiomics information. Our proposed approach named a
multi-modality training scheme is shown in Fig. 1.
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Features are extracted from the ViT model trained on a cross entropy (CE)
loss. Accumulated image features and pre-defined tabular data are concatenated
after training the image ViT blocks. We apply a epoch-wise training scheme
by accumulating the image features extracted from each batch to train the
TabNet model. TabNet which has 128 embedding dimensions for each layer
is then trained to minimize the CE loss (L(ỹ, y)) on the combined data that
includes extracted image features and tabular data. To sum up, image features
are extracted with the ViT, and combined tabular features are handled by the
TabNet classifier.

3 Experiments

We validated our proposed approach using an in-house dataset collect from a
single tertiary hospital and approved by their institutional review board (IRB).
First, the proposed method is trained using 3-fold cross-validation and evaluated
on an independent test dataset. After finishing this process, we apply a transfer
learning method for the best performance model in the 3-fold cross-validation
to boost our model’s classification performance by using an independent second
training set. Six-hundred forty three subjects were used for the cross-validation.
One hundred and fifty subjects were considered for the test set. One thousand
and two-hundred subjects were utilized for the transfer learning. Subjects con-
secutively visited a tertiary hospital for cognitive impairment. Training and val-
idation sets in the cross-validation were matched with sex, age, and MTA scores
distribution using the propensity score matching (PSM) method [2]. The MTA
score was manually assessed by two experienced neuroradiologists. MTA scores
are typically classified into five levels between 0 and 4. We clustered the MTA
score into 3 groups (0,1) (2) (3,4) by clinically significance which reduces ambi-
guity arising from the subjective nature of MTA scores. Abnormal subjects are
classified as MTA ≥ 2 for subjects under 75 years of age and ≥ 3 for those above
[20]. Table 1 summarizes each dataset’s distributions.

Table 1. Dataset statistics for each data set.

Cross-validation Transfer Test

Number of Subjects 643 1200 150

Sex (male/female) 250/393 462/738 56/94

Age (Mean ± Std) 69.21± 10.21 72.34± 9.01 68.49± 10.99

MTA group (0/1/2) 211/152/280 295/449/456 50/50/50

3.1 Data Preprocessing

3D T1-weighted MRI scans were processed using Free Surfer [7]: scans were
resampled into 256× 256× 256 voxels with an spatial resolution of 1× 1× 1 mm
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and registered to a fixed MRI template using rigid transformation. Brain skulls
were then removed. Fifty coronal slices focusing on MTA regions were resized
in the dimension 224 × 224 and these were used as ViT inputs. The slices have
been commonly used as the region of interest (ROI) for MTA visual rating [20].

For tabular data, we conducted brain region segmentation using an in-house
deep learning-based segmentation model and extracted volume, cortical thick-
ness, and radiomics for each brain region using pyradiomics [24]. Extraction of
radiomics features requires both the image and corresponding mask of region of
interest. Our segmented maps are exploited to extract radiomics features and
we focus on the shape features that are independent from intensity values, thus,
these features can be extracted from raw image dataset. The shape feature can
additionally capture morphological information in the brain region. Dimension
of tabular features in each image was reduced, considering its significance based
on the chi-square test. We selected the 30 features that represent the signifi-
cant differences between the MTA groups. Then, we pre-trained these features
using the TabNet and chose final tabular features using the TabNet’s feature
importance. We left features that had non-zero importance and included sex,
age, slice index features. The slice index means the location of the MRI slice
in the coronal view. Interestingly, final tabular data (17 features) are closely
related with medial temporal lobe regions [16]: [Volume: inferior lateral ventri-
cle, hippocampus, X3rd ventricle, choroid plexus, lateral ventricle, cerebrospinal
fluid], [Cortical thickness: middle temporal, precuneus], [Radiomics: (Left
hippocampus - surface volume ratio, mesh volume, voxel volume) (Right hip-
pocampus - surface volume ratio, mesh volume), X3rd ventricle flatness], sex,
age, slice index.

3.2 Evaluation

For inference, we used the middle 30 slices out of 50 slices used per training sub-
ject and conducted hard-voting classification using each slice per subject. We
utilized the mode of the predicted results for each of the 30 slices to classify sub-
jects for hard-voting. We compared the proposed method with various models:
(i) ViT using only 3D T1-weighted MRI images; (ii) TabNet using only tabular
information; (iii) ViT with one fully-connected (FC) layer, where the extracted
latent features are concatenated with tabular data and processed through a FC
layer. (iv) ViT with TabNet but without accumulating extracted image features
(v) EfficientNetV2-small with TabNet.

We used the Adam and sharpness-aware minimization (SAM) optimizer [8] to
train the models. Our initial learning rate was 0.001 and SAM’s base optimizer was
stochastic gradient descent (SGD) with momentum of 0.9. We used cosine anneal-
ing warm restarts learning scheduler to adjust learning rate (T0 : 5, Tmult : 1, ηmin :
1e − 6) and trained for 35 epochs. We calculated the performance on the test set
using the best evaluation model on the validation set and ensembled the result
of each fold. We used precision, recall, and F1-score that were calculated by the
macro-average method because there was no class imbalance in our test set. All
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models and training schemes were implemented by PyTorch (version 1.7.1), and
experiments were conducted on the NVIDIA GeForce GTX 1080 Ti GPU.

3.3 Results

Table 2. Classification performance for the external test set. Only TabNet uses tabular
data alone, only ViT uses 3D T1-weighted MRI alone. ViT + 1FC, ViT + TabNet,
EfficientNetV2-small + TabNet, and ours exploit both tabular and MR image data.

Model Precision Recall F1-score

Only TabNet (SAM) - baseline 0.759 0.767 0.754

Only TabNet (Adam) - baseline 0.752 0.760 0.752

Only ViT (SAM) - baseline 0.757 0.760 0.755

Only ViT (Adam) - baseline 0.341 0.427 0.325

ViT + 1FC (SAM) 0.775 0.780 0.768

ViT + 1FC (Adam) 0.788 0.780 0.761

ViT + TabNet (SAM) 0.781 0.787 0.778

EfficientNetV2-small + TabNet (SAM) 0.768 0.773 0.769

Ours (SAM) 0.801 0.787 0.790

Ours (SAM) - Transfer learning 0.817 0.800 0.804

Table 2 summarizes the classification performance of various models and our
proposed model. Only TabNet and only ViT are uni-modality models. The for-
mer model used particularly tabular data and the latter model used image data
alone. We found that there was no significant difference in predictive perfor-
mance between only TabNet and only ViT. Also, TabNet’s performance was
unaffected by the choice of optimizer between SAM and Adam, but Adam failed
to successfully train the only ViT model. When extracted image features and
tabular features were combined, the predictive performance was improved by
approximately 0.02 in all metrics (see ViT + 1FC model, ViT + TabNet). This
result indicates that combining image and tabular features can boost classifica-
tion performance. Ours has superior performance than only TabNet (by 0.042
precision, 0.02 recall, and 0.036 F1-score) and only ViT (by 0.044 precision, 0.027
recall, and 0.035 F1-score). We also conducted a homogeneity test to compare
the classification performance between ours and unimodality baseline models.
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Ours performance was better than the baselines and the differences were sta-
tistically significant (p = 0.049 between ours and only ViT, p = 0.008 between
ours and only TabNet). This result proved that multi-modality could enhance
the model’s achievement. Moreover, our proposed method outperformed ViT +
1FC (by 0.026 precision, 0.007 recall, and 0.022 F1-score) and ViT + TabNet (by
0.020 precision and 0.012 F1-score). This result explains that the proposed multi-
modality cascaded training scheme was more effective than simply concatenating
image and tabular features with the FC layer or TabNet. Cross-validation results
for ours were 0.830 for precision, 0.821 for recall, and 0.825 for F1-score. As can
be seen in this case, the performance of ours was not highly deteriorated when
applied to the external test set. Similarly, EfficientNetV2-small, the CNN-based
state-of-the-art model failed to exceed the our proposed model’s performance.
Rather, CNN-based model yielded inferior performance than the ViT model.
Then, the transfer learning model outperformed ours (by 0.016 precision, 0.013
recall, 0.014 F1-score) and this demonstrates that adding training data through
transfer learning can further improve model’s performance. We also found that
our method better-classified cases with the MTA group of 1. Identifying MTA
group 1 is considered to be more challenging than classifying MTA groups 0 or
2 because group 1 has ambiguity due to their middle grade location.

Table 3. Top-5 feature importance for each fold when applied to test data set. Abbre-
viations: Volume (V), Radiomics (R), Inferior lateral (IL), Left hippocampus (LH),
Right hippocampus (RH), Surface volume ratio (SVR).

Feature importance Fold 1 Fold 2 Fold 3

Rank 1 IL ventricles (V) IL ventricles (V) IL ventricles (V)

Rank 2 Hippocampus (V) LH voxel volume (R) Hippocampus (V)

Rank 3 RH SVR (R) Sex RH mesh volume (R)

Rank 4 Sex RH SVR (R) RH SVR (R)

Rank 5 LH SVR (R) LH SVR (R) Slice index

Our proposed model and only ViT (SAM) can provide attention maps for
model interpretability while others fail to visualize such information. Note that
training of only ViT (Adam) failed, and thus its visualization map is not mean-
ingful. However, our method used cascaded approach by training the ViT and
TabNet models to avoid such an effect. We demonstrate that our proposed
method outperformed other baseline methods and obtained clear interpretable
visualization maps that precisely highlight the MTA relevant regions (Fig. 2).
Furthermore, our TabNet model can identify influential tabular features and
therefore provide interpretable results as shown in Table 3.
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Fig. 2. The input image of each row is an MRI slice representing the MTA group 2,1,0
in order. Each column shows the visualization map for each model for the corresponding
slice. As shown in the figure, our method produces more accurate visualization maps.
The first-row map (MTA group 2) indicates the region of the MTA and ventricle. The
second (MTA group 1) and third row (MTA group 0) point to the MTA region.

4 Conclusion

In this paper, we proposed a novel framework that can exploit multi-modality
data consisting of image and tabular features when training transformer-based
models. We trained transformer-based models using multi-modality data while
keeping a clear interpretable visualization map and comparable prediction per-
formance. Our experiments showed that our method outperforms previous
approaches and other baselines that combine image and tabular data in MTA
group prediction. Moreover, we demonstrated that transfer learning can further
improve the model’s performance.

Future works include development of independent MTA score classification
models for each left and right using the original MTA score definition by crop-
ping the specific medial temporal lobe region. Furthermore, we will extend our
proposed model to solve a multi-tasking problem for MTA score prediction and
Alzheimer’s disease diagnosis.
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11. Mårtensson, G., et al.: Avra: automatic visual ratings of atrophy from mri images
using recurrent convolutional neural networks. NeuroImage Clin. 23, 101872 (2019)

12. Martins, A., Astudillo, R.: From softmax to sparsemax: a sparse model of attention
and multi-label classification. In: International Conference on Machine Learning,
pp. 1614–1623. PMLR (2016)

13. Mobadersany, P., et al.: Predicting cancer outcomes from histology and genomics
using convolutional networks. Proc. Natl. Acad. Sci. 115(13), E2970–E2979 (2018)

14. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining
nonlinear classification decisions with deep taylor decomposition. Pattern Recogn.
65, 211–222 (2017)

15. Park, H.Y., Park, C.R., Suh, C.H., Shim, W.H., Kim, S.J.: Diagnostic performance
of the medial temporal lobe atrophy scale in patients with Alzheimer’s disease: a
systematic review and meta-analysis. Eur. Radiol. 31(12), 9060–9072 (2021)

16. Park, Y.W., et al.: Radiomics features of hippocampal regions in magnetic res-
onance imaging can differentiate medial temporal lobe epilepsy patients from
healthy controls. Sci. Rep. 10(1), 1–8 (2020)

17. Pölsterl, S., Sarasua, I., Gutiérrez-Becker, B., Wachinger, C.: A wide and deep
neural network for survival analysis from anatomical shape and tabular clinical
data. In: Cellier, P., Driessens, K. (eds.) ECML PKDD 2019. CCIS, vol. 1167, pp.
453–464. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43823-4 37

18. Pölsterl, S., Wolf, T.N., Wachinger, C.: Combining 3D image and tabular data via
the dynamic affine feature map transform. In: de Bruijne, M., et al. (eds.) MICCAI
2021. LNCS, vol. 12905, pp. 688–698. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-87240-3 66

19. Scheltens, P., Launer, L.J., Barkhof, F., Weinstein, H.C., van Gool, W.A.: Visual
assessment of medial temporal lobe atrophy on magnetic resonance imaging: inter-
observer reliability. J. Neurol. 242(9), 557–560 (1995)

20. Scheltens, P., et al.: Atrophy of medial temporal lobes on MRI in” probable”
Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological
correlates. J. Neurol. Neurosurg. Psych. 55(10), 967–972 (1992)

21. Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: Smoothgrad: remov-
ing noise by adding noise. arXiv preprint arXiv:1706.03825 (2017)

http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2010.01412
https://doi.org/10.1007/978-3-030-43823-4_37
https://doi.org/10.1007/978-3-030-87240-3_66
https://doi.org/10.1007/978-3-030-87240-3_66
http://arxiv.org/abs/1706.03825


134 D. Lee et al.

22. Spasov, S., et al.: A parameter-efficient deep learning approach to predict con-
version from mild cognitive impairment to Alzheimer’s Disease. Neuroimage 189,
276–287 (2019)

23. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In: International
Conference on Machine Learning, pp. 10347–10357. PMLR (2021)

24. Van Griethuysen, J.J., et al.: Computational radiomics system to decode the radio-
graphic phenotype. Can. Res. 77(21), e104–e107 (2017)

25. Wang, W., Tran, D., Feiszli, M.: What makes training multi-modal classification
networks hard? In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12695–12705 (2020)



Automatic Lesion Analysis for Increased
Efficiency in Outcome Prediction

of Traumatic Brain Injury

Margherita Rosnati1,2,3(B), Eyal Soreq2,3, Miguel Monteiro1, Lucia Li2,3,
Neil S. N. Graham2,3, Karl Zimmerman2,3, Carlotta Rossi4, Greta Carrara4,

Guido Bertolini4, David J. Sharp2,3, and Ben Glocker1

1 BioMedIA Group, Department of Computing,
Imperial College London, London, UK

margherita.rosnati12@imperial.ac.uk
2 UK Dementia Research Institute Care Research and Technology Centre,

Imperial College London, London, UK
3 Department of Brain Sciences, Faculty of Medicine,

Imperial College London, London, UK
4 Laboratory of Clinical Epidemiology, Istituto di Ricerche Farmacologiche Mario

Negri IRCCS, Bergamo, Italy

Abstract. The accurate prognosis for traumatic brain injury (TBI)
patients is difficult yet essential to inform therapy, patient management,
and long-term after-care. Patient characteristics such as age, motor and
pupil responsiveness, hypoxia and hypotension, and radiological findings
on computed tomography (CT), have been identified as important vari-
ables for TBI outcome prediction. CT is the acute imaging modality of
choice in clinical practice because of its acquisition speed and widespread
availability. However, this modality is mainly used for qualitative and
semi-quantitative assessment, such as the Marshall scoring system, which
is prone to subjectivity and human errors. This work explores the pre-
dictive power of imaging biomarkers extracted from routinely-acquired
hospital admission CT scans using a state-of-the-art, deep learning TBI
lesion segmentation method. We use lesion volumes and corresponding
lesion statistics as inputs for an extended TBI outcome prediction model.
We compare the predictive power of our proposed features to the Mar-
shall score, independently and when paired with classic TBI biomarkers.
We find that automatically extracted quantitative CT features perform
similarly or better than the Marshall score in predicting unfavourable
TBI outcomes. Leveraging automatic atlas alignment, we also identify
frontal extra-axial lesions as important indicators of poor outcome. Our
work may contribute to a better understanding of TBI, and provides
new insights into how automated neuroimaging analysis can be used to
improve prognostication after TBI.
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1 Introduction

Traumatic brain injury (TBI) is a leading cause of death in Europe [27]. In the
UK alone, 160,000 patients with TBI are admitted to hospitals annually, with an
estimated yearly cost of £15 billion [21]. The accurate prediction of TBI outcome
is still an unresolved challenge [9,13] whose resolution could improve the therapy
and after-care of patients. Due to its acquisition speed and wide availability,
computed tomography (CT) is the imaging modality of choice in clinical practice
[14] and a key component in TBI outcome prediction [4]. The Marshall score
[17] is one of the most widely used metrics to evaluate TBI injury severity.
However, it does not leverage the rich information content of CT imaging [2] and
requires a radiologist to assess the CT scan manually, which is time-consuming.
Years of acquisition of CT of TBI patients generated rich datasets, opening
the possibility of automatic extraction of CT biomarkers. These could enable a
deeper and broader use of imaging data, augmenting the skills of radiologists and
reducing the workload, allowing them to see more patients. Machine learning for
medical imaging is a growing research field with advances in medical imaging
segmentation [25] and classification [6]. It can be used for fast and autonomous
outcome prediction of TBI using imaging data.

This work explores the predictive power of novel TBI biomarkers computa-
tionally extracted from hospital admission CT scans. TBI lesion volumes are
automatically extracted from the scans; then, lesion statistics are derived to
inform the prediction of TBI outcome. We compare the discriminate power of
our proposed features to the Marshall score features independently and when
paired with clinical TBI biomarkers.

In particular, we make the following contributions:

– Novel machine-learning driven imaging biomarkers. We extract inter-
pretable measurements for TBI lesion quantification;

– Human-level performance on unfavourable outcome prediction. We
reach comparable, if not superior, performance to manually extracted CT
biomarkers when predicting unfavourable outcome, both in isolation and
when paired with clinical TBI biomarkers;

– Imaging biomarker relevance. We show that features relating to extra-
axial haemorrhage in the frontal lobe are important for the prediction of
outcome, confirming previous clinical findings in a data-driven manner.

2 Related Work

The prediction of TBI of outcome has primarily been tackled using clinical fea-
tures. Jiang et al. [12] and Majdan et al. [15] used clinical features such as
age and motor score to predict the patient outcome with a regression model.
Pasipanodya et al. [22] focused on predictions for different patient subgroups.
Huie et al. [10] provide an extensive review of clinical biomarkers for the predic-
tion of unfavourable outcome in TBI. More recently, Bruschetta et al. [3] and
Matsuo et al. [18] investigated using the same predictors with machine learning
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models, such as support vector machines and neural networks. Researchers also
used more complex features to predict TBI outcome, such as electroencephalo-
grams [20] and magnetic resonance imaging (MRI) [8].

A stream of research within TBI focuses on features extracted from CT.
Recent work adopted neural networks for TBI lesion segmentation and midline
shift quantification [11,19].

Similarly to our work, Plassard et al. [24] and Chaganti et al. [5] used
multi-atlas labelling to extract radiomics from different brain regions and pre-
dict a variety of TBI end-points, yet excluding unfavourable outcome. Pease et
al. [23] trained a convolutional neural network using CT scans and clinical TBI
biomarkers to predict the TBI outcome and achieved comparable performance to
IMPACT. Unlike the biomarkers we designed, the authors extracted deep learn-
ing features, which are not interpretable by humans. In parallel to our work,
Yao et al. [28] trained a neural network to segment epidural haematomas and
used the resulting segmentation volumes to predict patient mortality. Our work
differs because we focused on the more challenging and clinically relevant prob-
lem of predicting TBI unfavourable outcome. TBI outcomes are measured by the
patient state scale Glasgow Outcome Scale Extended (GOS-E), where a score of
4 or below defines an unfavourable outcome.

3 Methods

Study Design. We analysed data from the observational studies The Collab-
orative REsearch on ACute Traumatic Brain Injury in intensiVe Care Medicine
in Europe (CREACTIVE, NCT02004080), and BIOmarkers of AXonal injury
after TBI (BIO-AX-TBI, NCT03534154 [7]), the latter being a follow-up study
to CREACTIVE. From these observational studies, sub-studies collecting CT
scans recruited 1986 patients admitted to intensive care with a diagnosis of TBI
between 2013 and 2019 from 21 European hospitals. CREACTIVE recruited
patients admitted to a hospital due to suspected TBI, whereas for BIO-AX-TBI,
the criterion was moderate-severe TBI as defined in [16]. The studies did not
define a protocol for acquisition or scanner type. Hence, the CT scans collected
were a heterogeneous dataset akin to clinical scenarios.

Data Cleaning. We discarded patients for whom trauma time, hospital admis-
sion and discharge, admission CT scan, and the patient outcome measure GOS-E
were not recorded. In addition, we discarded patients who had surgery before the
scan, whose scan could not be automatically aligned to an atlas, and for whom
one of the clinical TBI biomarkers - age, Glasgow Coma Scale motor score and
pupil responsiveness, hypoxia and hypotension - or Marshall score was missing.
A flowchart of the patient selection can be found in the appendix Fig. 5. Of the
remaining 646 patients, 389 (60.2%) had an unfavourable outcome, of which 225
(34.8%) died. The median age is 56.6, and 74.9% of the patients are male. Out
of the 21 centres, we selected three centres with 59 patients as an independent
replication holdout test set, and we used the remaining 18 centres with 587
patients as a training set.
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Fig. 1. Example of feature extraction. A CT scan (1st row) is fed through a seg-
mentation neural network, outputting lesion volumes (2nd row + legend). We either
aggregated the lesion volumes globally or calculated the volumes over each cuboidal
region to provide localised measures (3rd and 4th rows).

Feature Extraction. All CT scans were standardised via automatic atlas
registration to obtain rigid alignment to MNI space. We then used the deep-
learning lesion segmentation method, BLAST-CT, described in [19]. The method
produces a voxel-wise classification of intraparenchymal haemorrhages (IPH),
extra-axial haemorrhages (EAH), perilesional oedemas (PLO) and intraventric-
ular haemorrhages (IVH), and reports respective Dice similarity coefficients of
65.2%, 55.3%, 44.8% and 47.3% for lesions above 1 mL.

From the 3D segmentations, we extracted two types of statistical features,
global and local lesion biomarkers. We calculated all connected components for
each lesion type and discarded any connected region of 0.02 mL or less to remove
noise. We determined this threshold by visual inspection of the scans. From the
separate lesions1, we extracted the following global lesion biomarkers: the total
number of lesions, the median lesion volume, the 25th and 75th lesion volume
percentiles, and the mean lesion volume. Next, we partitioned the registered 3D
scans four ways for each axis, creating 43 = 64 equidimensional cuboids. We
chose four partitions to balance feature granularity and human interpretability.
We extracted local lesion biomarkers for each lesion type by calculating the

1 Each lesion is a connected component.
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Table 1. Models performance when predicting unfavourable outcome. Marshall score
is described in [17], global features refer to disjoint lesion statistics, and local features
refer to lesion volume per cuboid (see Feature extraction). The clinical biomarkers
are age, motor and pupil responsiveness, hypoxia and hypotension.

Features
Cross-validation Hold-out set

AUROC AUROC Precision Recall
Marshall score 76.7 +/- 7.7 73.2 69.6 61.5
global lesion features 72.4 +/- 5.8 80.9 70.0 80.8
local lesion features 77.2 +/- 5.5 83.3 65.6 80.8
local + global lesion features 77.2 +/- 6.5 84.0 74.1 76.9

Features
Cross-validation Hold-out set

AUROC AUROC Precision Recall
Marshall score + clinical biomarkers 81.6 +/- 3.9 84.7 69.2 69.2
global + clinical biomarkers 82.1 +/- 4.3 87.5 80.8 80.8
local + clinical biomarkers 83.0 +/- 4.4 87.7 84.0 80.8
local + global + clinical biomarkers 81.1 +/- 4.8 87.2 77.8 80.8

total lesion volume in each cuboidal region. Figure 1 shows an example of brain
partitioning and the corresponding indexing.

Modelling and Performance Evaluation. We used a Random Forest Clas-
sifier with 300 estimators to predict a patient’s favourable or unfavourable out-
come. An unfavourable outcome, defined as a GOS-E score of 4 or below, is a
typical target in TBI outcome prediction. We compared eight predictive models
based on different sets of features. The first four models use imaging features
alone: 1) the Marshall score; 2) global lesion biomarkers; 3) local lesion biomark-
ers; 4) global and local lesion biomarkers. The second set of models uses the
imaging features above, together with the clinical TBI biomarkers (age, motor
and pupil responsiveness, hypoxia and hypotension). Note that the clinical TBI
biomarkers and Marshall score are the same as those used in the state-of-the-art
IMPACT-CT model [26].

We evaluated model performance using the area under the receiver-operator
curve (AUROC), precision, recall, and true positive rate at a 10% false positive
rate. In addition to evaluating performance on the holdout test set, we also mea-
sured cross-validation performance on the training set. We calculated statistical
significance through a permutation test on the holdout set’s metrics and the sta-
tistical relevance of each feature using the average Gini importance. In addition,
a cross-validation per clinical centre can be found in appendix Table 2.

4 Results

Local and Global Lesion Biomarkers Performed Similarly or Better
than Marshall Score. Using local and global lesion biomarkers achieved a
cross-validation AUROC of 76.7 ± 7.7% compared to 77.0 ± 6.6% when using the
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(a) Imaging biomarkers (b) Imaging + clinical biomarkers

Fig. 2. ROC curves of models predicting unfavourable outcome. The dashed lines indi-
cate the true positive rate for a fixed false positive rate of 10%. Global and local
biomarkers always produce a better or equivalent performance than the Marshall score.

Marshall score (Table 1 top). On the holdout set, the improvement of AUROC
was 10.8%, from 73.2% using the Marshall score to 84.0% using local and global
lesion biomarkers. Similarly, the precision improved by 4.5% and the recall by
15.4%. For a false positive rate of 10%, the volumetric features yielded a true
positive rate of 73.1% compared to 43.5% for the Marshall score (Fig. 2a). Testing
the statistical significance of these improvements, we found that improvement
in AUROC in the holdout set was statistically significant (one-way p-value <
0.05), whereas all other metrics on the holdout set were statistically comparable.

Local Lesion Biomarkers and Clinical Features Performed Similarly or
Better than Features Used in IMPACT-CT. When adding the clinical TBI
features to the local lesion biomarkers, the AUROC was 83.0 ± 4.4% in cross-
validation and 87.7% on the holdout set, compared to 81.6 ± 3.9% and 84.7%,
respectively, for clinical TBI and Marshall score biomarkers (Table 1 bottom).
Similarly, the holdout set’s precision, recall and true-positive rate improved by
3%, 14.8% and 34.6%, respectively (Fig. 2b). When tested, the improvement in
true positive rate was significant (one-way p-value < 0.05), whereas the remain-
ing holdout set metrics for the two experiments were statistically comparable.

Extra-Axial Haemorrhage was the Most Important Feature. When con-
sidering feature importance when using global lesion biomarkers (Fig. 3b), EAH
was the statistical feature with the highest importance score, and IVH was the
feature with the lowest. The lesion count and maximum lesion size were the most
important factors. As per the global lesion biomarkers, EAH was the statistical
feature with the highest importance scores when using local lesion biomarkers
to predict unfavourable outcome (Fig. 4). In addition IVH in the second-bottom
transverse plane, second-bottom coronal plane ((1, 2, )), EAH in the second-
front coronal plane ((1, 1, ) and (2, 1, )) were important.
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(a) Mean lesion size stratified per le-
sion type and outcome. Unfavourable
outcome can be qualified by larger av-
erage IPH, EAH and PLO.

(b) Feature importance of global le-
sion biomarkers when predicting un-
favourable outcome. The numbers and
colour intensity refer to the Gini im-
portance (rescaled by 10−2).

Fig. 3. Global feature statistics and their importance for outcome prediction.

Fig. 4. Feature importance of local lesion biomarkers when predicting unfavourable
outcome. Each row represents the feature importance of different lesion types, and
each column represents a transversal slice, similarly to Fig. 1. For each transverse slice,
each row represents a coronal slice, whereas each column represents a sagittal slice.
The numbers and colour intensity refer to the Gini importance (rescaled by 10−3).
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5 Discussion

We show that the predictive power of the automatically extracted imaging fea-
tures is comparable to or superior to that of the Marshall score. Furthermore,
the automatically extracted features in conjunction with clinical TBI biomarkers
perform at least as well as the features used in IMPACT-CT (Marshall score and
clinical TBI biomarkers). The advantage of our approach is that, unlike the Mar-
shall score, automatically extracted imaging features do not require a radiologist
to manually review the scan, allowing faster patient care, and reducing workload.
Our method generalises well across different scanner types and acquisition proto-
cols as shown from the consistent results on the training set cross-validation and
the independent hold-out set. Although other approaches, such as advanced fluid
biomarker or magnetic resonance imaging, have also shown promise in improving
outcome prediction [8], the described method has the advantage of using data
which is currently collected routinely, obviating the need for revised clinical
investigation protocols.

The interpretability of the lesion features is an important step in discovering
data-driven prognostic biomarkers, contributing to the clinical understanding of
TBI. Reinforcing previous results [1], we found that frontal EAH is an important
indicator of poor TBI outcomes.

Although no ground truth segmentation was available, the clinicians (LL
and DS) qualitatively reviewed a subset of the automatic segmentations. We
concluded that the segmentation model tended to produce some errors, such as
partially mislabelling lesion types and under-estimating their size. An example
can be seen in the appendix Fig. 6. Unfortunately, given the absence of ground
truth, we could not quantify the extent of these issues. Nevertheless, there is
strong evidence for the soundness of the model through both the predictive per-
formance and the feature importance maps. For example, the feature importance
of IVH is high where the ventricles occur.

In summary, our results show that automatically extracted CT features
achieve human-level performance in predicting the outcome of TBI patients with-
out requiring manual appraisal of the scan. In future work, the interpretability
of the machine learning features may allow for a deeper clinical understand-
ing of TBI, a notably complex condition. However, further work is needed to
improve the robustness of lesion segmentation models and their evaluation on
new unlabelled datasets.
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Appendix

1,986 patients recruited

1,599 patients with a CT DICOM

1,550 patients with all of injury,
admission and discharge data

1,264 patients with scan taken within 48
of injury and prior to surgical intervention

1,025 patients with GOS-E

703 patients with age, motor score, pupil
reactivity. hypoxia and hypotension data

646 patients without scan registration
failure

49 patients with missing data

259 patients without GOS-E recording

322 patients without clinical TBI biomarkers

Fig. 5. Patient selection flow-chart
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Fig. 6. Extreme example of mis-segmented CT scan. The lesion labels are intra-
parenchymal (IPH), extra-axial (EAH) and intraventricular (IVH) haemorrhages, and
perilesional oedemas (PLO). The extra-axial label on fourth and fifth slices is erro-
neous; the opacity on the left side of the brain in the third slice should be labelled as
oedema.

Table 2. Cross validation per centre. Each row represents a trained model, trained
on all training data but the centre. The first column is the centre name, the second
contains the number of patients, the third the number of patients with unfavourable
outcome. The fourth to eleventh columns report the AUROC on the centre data using
features described in the first row (for more details see Methods). The results obtained
with the Marshall score and global + local features were statistically comparable when
taken in isolation and when adding clinical features.

Centre
N. test patients

(% of tot)

unfav. outcome

(% of test)

Marshall

score
global local

global

+ local

Marshall

score + clinical

global

+ clinical

local

+ clinical

global + local

+ clinical

SI009 80 (12.4%) 80 (56.7%) 66.5 62.8 69.5 68.3 76.6 73.8 74.1 72.8

IT079 71 (11.0%) 71 (59.2%) 78.1 72.0 75.8 75.1 83.8 83.1 82.0 78.5

IT100 79 (12.2%) 79 (79%) 90.0 85.3 90.7 89.3 90.9 93.4 94.0 93.0

IT544 30 (4.6%) 30 (51.7%) 77.3 74.0 77.5 80.4 82.8 80.4 81.6 81.7

IT064 27 (4.2%) 27 (64.3%) 83.7 70.6 84.1 81.1 80.1 79.5 90.6 85.8

IT442 14 (2.2%) 14 (66.7%) 77.6 79.6 62.2 67.3 83.7 69.4 75.5 71.4

IT062 11 (1.7%) 11 (64.7%) 79.5 59.8 66.7 57.6 81.8 90.2 86.4 84.1

IT099 11 (1.7%) 11 (64.7%) 63.6 62.1 81.8 78.8 89.4 81.8 86.4 84.8

IT651 5 (0.8%) 5 (38.5%) 55.0 85.0 77.5 82.5 65.0 90.0 85.0 87.5

IT513 8 (1.2%) 8 (66.7%) 81.3 71.9 68.8 78.1 70.3 78.1 75.0 78.1

IT101 3 (0.5%) 3 (37.5%) 86.7 53.3 80.0 66.7 93.3 56.7 73.3 73.3

CH001 1 (0.2%) 1 (12.5%) 42.9 71.4 42.9 57.1 71.4 85.7 57.1 57.1

IT036 6 (0.9%) 6 (85.7%) 91.7 100.0 83.3 66.7 100.0 83.3 83.3 83.3

IT034 4 (0.6%) 4 (57.1%) 95.8 91.7 100.0 100.0 100.0 100.0 100.0 100.0

IT590 3 (0.5%) 3 (50%) 83.3 77.8 100.0 100.0 55.6 77.8 100.0 100.0

IT724 4 (0.6%) 4 (100%) na na na na na na na na

IT057 4 (0.6%) 4 (100%) na na na na na na na na

IT088 2 (0.3%) 2 (100%) na na na na na na na na

References

1. Atzema, C., Mower, W.R., Hoffman, J.R., Holmes, J.F., Killian, A.J., Wolf-
son, A.B., National Emergency X-Radiography Utilization Study (NEXUS) II
Group, et al.: Prevalence and prognosis of traumatic intraventricular hemorrhage
in patients with blunt head trauma. J. Trauma Acute Care Surg. 60, 1010-7 (2006)

2. Brown, A.W., et al.: Predictive utility of an adapted Marshall head CT classifica-
tion scheme after traumatic brain injury. Brain Injury 33, 610–617 (2019)



Automatic Lesion Analysis for Increased Efficiency in Outcome Prediction 145

3. Bruschetta, R., et al.: Predicting outcome of traumatic brain injury: is machine
learning the best way? Biomedicines 10, 686 (2022)

4. Carter, E., Coles, J.P.: Imaging in the diagnosis and prognosis of traumatic brain
injury. Expert Opinion Med. Diagnostics 6, 541–554 (2012)

5. Chaganti, S., Plassard, A.J., Wilson, L., Smith, M.A., Patel, M.B., Landman,
B.A.: A Bayesian framework for early risk prediction in traumatic brain injury.
In: Medical Imaging 2016: Image Processing, vol. 9784. International Society for
Optics and Photonics (2016)

6. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection
in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma,
I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–
418. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5 51

7. Graham, N.S.N., et al.: Multicentre longitudinal study of fluid and neuroimaging
BIOmarkers of axonal injury after traumatic brain injury: the BIO-AX-TBI study
protocol. BMJ Open 10, e042093 (2020)

8. Graham, N.S., et al.: Axonal marker neurofilament light predicts long-term out-
comes and progressive neurodegeneration after traumatic brain injury. Sci. Transl.
Med. 13, eabg9922 (2021)

9. Helmrich, I.R., et al.: Development of prognostic models for health-related quality
of life following traumatic brain injury. Qual. Life Res. 31(2), 451–471 (2021)

10. Huie, J.R., Almeida, C.A., Ferguson, A.R.: Neurotrauma as a big-data problem.
Curr. Opinion Neurol. 31, 702–708 (2018)

11. Jain, S., et al.: Automatic quantification of computed tomography features in acute
traumatic brain injury. J. Neurotrauma 36, 1794–1803 (2019)

12. Jiang, J.Y., Gao, G.Y., Li, W.P., Yu, M.K., Zhu, C.: Early indicators of prognosis
in 846 cases of severe traumatic brain injury. J. Neurotrauma 19, 869–874 (2002)

13. Kalanuria, A.A., Geocadin, R.G.: Early prognostication in acute brain damage:
where is the evidence? Curr. Opinion Critical Care 19, 113–122 (2013)

14. Kim, J.J., Gean, A.D.: Imaging for the diagnosis and management of traumatic
brain injury. Neurotherapeutics 8, 39–53 (2011)

15. Majdan, M., Brazinova, A., Rusnak, M., Leitgeb, J.: Outcome prediction after
traumatic brain injury: comparison of the performance of routinely used severity
scores and multivariable prognostic models. J. Neurosci. Rural Pract. 8, 20–29
(2017)

16. Malec, J.F., et al.: The mayo classification system for traumatic brain injury sever-
ity. J. Neurotrauma 24, 1417–1424 (2007)

17. Marshall, L.F., et al.: The diagnosis of head injury requires a classification based
on computed axial tomography. J Neurotrauma 9, S287–S292 (1992)

18. Matsuo, K., Aihara, H., Nakai, T., Morishita, A., Tohma, Y., Kohmura, E.:
Machine learning to predict in-hospital morbidity and mortality after traumatic
brain injury. J. Neurotrauma 37, 202–210 (2020)

19. Monteiro, M., et al.: Multiclass semantic segmentation and quantification of trau-
matic brain injury lesions on head CT using deep learning: an algorithm develop-
ment and multicentre validation study. Lancet Digital Health 2, e314–e322 (2020)

20. Noor, N.S.E.M., Ibrahim, H.: Machine learning algorithms and quantitative elec-
troencephalography predictors for outcome prediction in traumatic brain injury: a
systematic review. IEEE Access 8, 102075–102092 (2020)

21. Parsonage, M.: Traumatic brain injury and offending. Centre for Mental health
(2016)

https://doi.org/10.1007/978-3-642-40763-5_51


146 M. Rosnati et al.

22. Pasipanodya, E.C., Teranishi, R., Dirlikov, B., Duong, T., Huie, H.: Characterizing
profiles of TBI severity: predictors of functional outcomes and well-being. J. Head
Trauma Rehabil. (2022)

23. Pease, M., et al.: Outcome prediction in patients with severe traumatic brain injury
using deep learning from head CT scans. Radiology 304 (2022)

24. Plassard, A.J., Kelly, P.D., Asman, A.J., Kang, H., Patel, M.B., Landman, B.A.:
Revealing latent value of clinically acquired CTs of traumatic brain injury through
multi-atlas segmentation in a retrospective study of 1,003 with external cross-
validation. In: Medical Imaging 2015: Image Processing, vol. 9413. International
Society for Optics and Photonics (2015)

25. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

26. Steyerberg, E.W., et al.: Predicting outcome after traumatic brain injury: devel-
opment and international validation of prognostic scores based on admission char-
acteristics. PLoS Med. 5, e165 (2008)

27. Tagliaferri, F., Compagnone, C., Korsic, M., Servadei, F., Kraus, J.: A systematic
review of brain injury epidemiology in Europe. Acta neurochirurgica 148, 255–268
(2006)

28. Yao, H., Williamson, C., Gryak, J., Najarian, K.: Automated hematoma segmenta-
tion and outcome prediction for patients with traumatic brain injury. Artif. Intell.
Med. 107, 101910 (2020)

https://doi.org/10.1007/978-3-319-24574-4_28


Autism Spectrum Disorder Classification
Based on Interpersonal Neural

Synchrony: Can Classification be
Improved by Dyadic Neural Biomarkers

Using Unsupervised Graph
Representation Learning?

Christian Gerloff1,2,3(B) , Kerstin Konrad1,2, Jana Kruppa1,4,
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Abstract. Research in machine learning for autism spectrum disorder
(ASD) classification bears the promise to improve clinical diagnoses.
However, recent studies in clinical imaging have shown the limited gener-
alization of biomarkers across and beyond benchmark datasets. Despite
increasing model complexity and sample size in neuroimaging, the clas-
sification performance of ASD remains far away from clinical applica-
tion. This raises the question of how we can overcome these barriers to
develop early biomarkers for ASD. One approach might be to rethink
how we operationalize the theoretical basis of this disease in machine
learning models. Here we introduced unsupervised graph representations
that explicitly map the neural mechanisms of a core aspect of ASD,
deficits in dyadic social interaction, as assessed by dual brain record-
ings, termed hyperscanning, and evaluated their predictive performance.
The proposed method differs from existing approaches in that it is more
suitable to capture social interaction deficits on a neural level and is
applicable to young children and infants. First results from functional
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near-infrared spectroscopy data indicate potential predictive capacities
of a task-agnostic, interpretable graph representation. This first effort to
leverage interaction-related deficits on neural level to classify ASD may
stimulate new approaches and methods to enhance existing models to
achieve developmental ASD biomarkers in the future.

Keywords: Graph representation learning · ASD · Interbrain
networks

1 Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects
approximately 1% of the population [30] and is characterized by impairments in
reciprocal social interaction, communication, and repetitive stereotypic behavior
[20]. Of these symptoms, deficits in social interaction are often considered as most
central to the disorder [24]. Since ASD is associated with a high global burden
of disease [2], early detection and intervention are of utmost importance for
optimal long-term outcomes [10]. Diagnosing ASD is currently exclusively based
on behavioral observation and anamnestic information. Especially at early ages,
it is a challenging, time-consuming task, requiring a high level of clinical expertise
and experience.

Brain imaging may provide a complementary source of information. Over
the last decades, a vast body of research has documented anatomical and func-
tional brain differences between individuals with ASD and healthy controls (e.g.,
[11]), however, despite increasing model complexity they failed to reveal consis-
tent neural biomarkers. Current machine learning models predict ASD diagno-
sis based on functional magnetic resonance imaging data from large datasets
(n>2000) with an area under the curve (AUC) of ∼0.80 [26]. However, even
when information leakage is avoided by adequate cross-validation (CV) proce-
dures (e.g., [14,26]), the predictive accuracy typically decreases in medical imag-
ing applications when validating with private hold-out sets (see [18,26,27]: from
AUC = 0.80 to AUC = 0.72). Increasing sample sizes may improve this situa-
tion, however, this is often not feasible with clinical data and recent results using
the largest database currently available for ASD (ABIDE) suggest an asymp-
totic behavior of AUC, with AUC = 0.83 for 10,000 ASD subjects [26]. While
an AUC = 0.83 is promising, this is still far away from classification accuracies
(AUC of up to 0.93) when applying machine learning methods to behavioral
data obtained from a social interactive situation, such as ADOS [23]. One app-
roach to overcome these roadblocks might be to rethink how we operationalize
the theoretical basis of disease in machine learning models.

Although ASD is characterized by social difficulties during interaction with
others [4], MRI data used for ASD classification has typically been acquired
without any social interactive context. Participants lay still and alone in an
MRI scanner during resting state and structural scans (e.g., [26]) and only a
few studies used simple social tasks, such as passively viewing social scenarios
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(e.g., [8]). We suggest that a more ecologically valid neurobiological measure of
social interaction could be derived from dyadic setups that simultaneously assess
the brains of interacting subjects. Such “hyperscanning” settings typically use
less intrusive imaging techniques, such as functional near-infrared spectroscopy
(fNIRS), that are more tolerable to young children. Previous studies using a vari-
ety of tasks [1] have demonstrated that statistical dependencies of brain activity
emerge across individuals, suggesting interpersonal neural synchrony (INS). Ini-
tial results in ASD suggest reduced INS during joint attention, communication,
and cooperative coordination tasks ([19,25,29], but see [16] for contradictory
findings). Considering that the clinical diagnosis of ASD is crucially dependent
on analysing interactive, reciprocal behavior, it appears particularly promising
to employ such interbrain measures for the classification of ASD.

Recently, we formalized INS using bipartite graphs, with brain regions of
the two participants as two sets of nodes and inter-brain connections as edges
[13]. We proposed to accommodate the non-Euclidean structures using network
embeddings to predict experimental conditions from inter-brain networks. Gen-
erally, to discriminate among graphs that belong to different classes or clini-
cal groups requires a graph representation that can either be part of an end-
to-end model, such as graph neural networks (e.g., [15]), or of an encoder,
e.g., Graph2Vec [17]. The former is typically trained in a supervised or semi-
supervised fashion to learn class associations directly. The latter requires an
intermediate step, i.e. unsupervised training to derive a task-agnostic represen-
tation which can subsequently be used for classification using a range of available
algorithms. This allows to compare the predictive capacities of connectivity esti-
mators vs. graph representations based on the same classifier. Additionally, task-
related intrabrain data indicate that classifiers might benefit from lower-vector
representations when sample sizes are low [6].

To summarize, we aim to contribute to the field of machine learning for
clinical imaging by exploring, for the first time, unsupervised graph representa-
tion learning and its potential to contribute to the classification of ASD using a
hyperscanning dataset [16]. Since such datasets are rare and typically small, this
should be considered as a first step to demonstrate feasibility and to encourage
1) application of these methods to other tasks and 2) consider the collection of
larger hyperscanning cohorts to further explore this approach. Specifically, we
aim to contribute by:

– Operationalization of Theoretical Basis. We propose a new methodolog-
ical approach that aims to encode a core aspect of ASD (i.e. deficits in social
interaction) at the neural level by applying network embeddings on graph
representations of interpersonal neural synchrony.

– Predictive Validity. We assessed the predictive validity to classify ASD
dyads based on graph representations of interbrain networks. We examined
how the employed connectivity estimator and different types of network
embeddings influence classification performance.

– Future Contribution to Early Life Biomarkers and Beyond. The pro-
posed method differs from existing approaches in that it i) allows to capture
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social interaction deficits on a neural level and ii) is applicable to young chil-
dren and infants. Moreover, we present a task-agnostic graph representation
of interbrain synchrony that is applicable for ASD classification and beyond,
e.g., using statistical models for inferential inquiries.

2 Methods

2.1 Problem Formulation

We formalize the problem of whether graph representations of INS can classify
participants with or without ASD diagnosis.

First, given a set of graphs denoted by X = (G1, . . . , Gn) we intend to train
an encoder φ parameterized by ΘE . The encoder learns unsupervised from sim-
ilarities in graph space a matrix representation of all graphs Z ∈ R|X|×δ with
Zi ∈ Rδ representing the graph Gi ∈ X. The size δ of the network embedding is
either parameterized via ΘE or given by the encoder.

Second, the predictive capacities of various φ are evaluated in an inductive
learning regime by a classifier Ĉ : Z �→ Y parameterized by ΘC . The labels
denoted by Y = (y1, . . . , yn) represent graphs with ASD (yi = 1) or without
ASD (yi = 0). Finally, the performance metric e (ŷ; y) of each φ is assessed.

2.2 Functional Connectivity

Functional connectivity estimators (FC) quantify the statistical relationship
between two neural signals. They can be used for further network construc-
tion (see Definition 1) or serve as features for ASD classification (e.g., in intra-
brain studies [26]). Here, we evaluate whether graph representations carry further
beneficial information (e.g., topological properties) than the pure connectivity
estimator. As connectivity estimators vary in the captured dynamics between
signals, we calculated, based on the continuous wavelet transform, the follow-
ing estimators to systematically account for different aspects of the dynam-
ics: wavelet coherence (WCO), phase-locking value (PLV), Shannon entropy
(Entropy). WCO captures mostly concurrent synchronization between two brain
signals of two participants in time-frequency space. While WCO also accounts for
amplitude differences, PLV considers only phase synchronization. In contrast to
WCO and PLV, Entropy captures non-linear, delayed forms of synchronization.

2.3 Graph Representation Learning

While FCs describe a pairwise association between two brain regions, the esti-
mator itself does not capture the multiple interdependencies and topological
properties of the brain which has been shown to be organized and function as
a network. A system formulation that accounts for these network characteris-
tics and encodes social interaction, a core aspect of ASD, at neural level are
interbrain networks [13].
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Definition 1. In accordance with [13], interbrain networks can be specified by
a bipartite graph G = (V1 ∪ V2, E) where V1 and V2 denote brain regions of par-
ticipant 1 and participant 2, respectively. E ⊆ V1 × V2 represents the edges with
the corresponding weights W , defined by the specific connectivity estimator.

Based on three distinct FCs and the subsequently derived interbrain net-
works, we assessed the predictive capacities of state-of-the-art graph representa-
tion learning. In the following, we describe what sets each encoder apart.

NMF-Based Interbrain Network Embedding (NMF-IBNE) provides a
lower-vector representation that encodes proximity of the topological properties
of a bipartite graph [13]. This embedding does not assume a connected bipartite
graph and can operate together with graph reduction procedures stratifying for
non-interaction related connectivity. It leverages substructures based on a priori
specified graph properties of interest (here, nodal density). Importantly, its basis
matrix enables a direct interpretation of the contribution of each brain region
due to the non-negative constraints of the NMF.

Local Degree Profile (LDP) encodes the graph structure based on the nodal
degree of a node and its neighbors [7]. For this purpose, the encoder maps the
nodal degree, its mean, minimum, maximum, and standard deviation of the first
neighbors via a histogram or empirical distribution function.

Graph2Vec employs the neural network architecture skip-gram in graph space
[17]. Conceptually, given X and a sequence of sampled subgraphs from differ-
ent nodes, the algorithm minimizes log-likelihood of the rooted subgraph corre-
sponding to a specific G. Each subgraph is derived via the Weisfeiler-Lehman
relabeling process around each node.

GL2Vec aims to adjust Graph2Vec for an edge-centric case [9]. In the same
spirit, it minimizes the likelihood of the rooted subgraph but instead of operating
directly on G, it transforms each graph into a line graph. Thereby, it extracts
edge-centric substructures and enhances the integration of edge properties, which
sets it apart from the other approaches.

Diffusion-Wavelet-Based Node Feature Characterization (DWC)
describes an algorithm that assesses the topological similarities using a diffu-
sion wavelet and node features [28]. The eigenvalues of the Laplacian matrix
describe the temporal frequencies of a signal on G. Coefficients derived from a
wavelet kernel represent the energy transferred between nodes, whereas nodes
with similar energy patterns have similar structural roles.

Geometric Scattering (Scattering) applies the invariant scattering trans-
form on graphs [12]. Like DWC, the algorithm encodes topological similarities
via diffusion wavelets but on the normalized Laplacian to consider nodal degree.
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Feather performs random walks on the normalized adjacency matrix [22].
Assuming that the correlation between node properties is related to the role sim-
ilarity, it pools the r-scaled weighted characteristic from the adjacency matrix.

2.4 Classifier

We employed two common classifiers for ASD classification, specifically, L2 reg-
ularized logistic regression and support-vector-machines (e.g., [26]).

2.5 Hyperparameter Optimization

Let Θ =
{
ΘE , ΘC

}
denote the model hyperparameters, we aim to select a model

parametrization by splitting each training set Dtrain into kinner = 3 training and
distinct test sets. Hyperparameter optimization was performed via a Gaussian
Process based on this cross-validation setting. The area under the curve of the
receiver operating characteristic (ROC-AUC) was used as the evaluation score
to estimate Θ̂ = arg minΘL (CΘ;Dtrain).

3 Experiment

3.1 Dataset

To examine the capacities of the graph representations for classifying ASD, we
used the hyperscanning dataset provided by [16]. The cohort consists of 18 chil-
dren and adolescents diagnosed with ASD and 18 typically developed children
and adolescents, matched in age (8 and 18 years) and gender. Each child per-
formed a cooperative and competitive computer game with the parent and an
adult stranger in two task blocks. During the game, the prefrontal brain activi-
ties were measured concurrently using fNIRS. fNIRS is an optical imaging tech-
nique that measures neural activity through concentration changes in oxygenated
(HbO) and deoxygenated (HbR) hemoglobin. The brain’s metabolic demand for
oxygen and glucose increases in active brain areas. Thereby, the concentration
of HbO increases and HbR decreases. HbO and HbR were preprocessed consis-
tently with [16]. Overall, this allows the construction of 136 ASD-related and
144 healthy control-related graphs for HbO and HbR each (see Sect. 2.2).

3.2 Evaluation Regimes

We examine the capacities to discriminate between graphs according to ASD
status by performing i) CV and ii) a cross-chromophore test (CCT; see [13]).
While HbO is most commonly analyzed in fNIRS studies, HbO was used in (i)
and HbR served as the test set in (ii). Importantly, in (i) and (ii) unsupervised
representation learning was evaluated in an inductive learning regime in which
we do not expose φ to test data during training. In (i), we employed a nested-
stratified CV to ensure a generalizable evaluation and avoid information leakage
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during hyperparameter optimization. To this end, X was randomly partitioned
into kout = 5 mutually exclusive subsets, where we strictly ensure that all data
from one dyad is in one subset and that the proportion of ASD to healthy control
dyads is preserved to ensure generalization across dyads. HbO and HbR rely on
the same neurovascular coupling mechanism but have inverse characteristics. In
(ii), training was performed in an isolated fashion on HbO to assess the test
performance on HbR-based networks. This kind of out-of-distribution test is a
unique opportunity of fNIRS to test predictive capacities across chromophores.
For both evaluation regimes (i, ii), performance was quantified by ROC-AUC
as an established performance metric in ASD classification [26]. For (i), mean
and standard deviation across all folds were reported. In clinical settings, an
evaluation of the performance variance might be particularly important (see
also [5]). Thus, we employed a Bayesian correlated t-test [3] accounting for the
correlation of overlapping training sets. Further, by randomly shuffling Y , we
tested the robustness of the results against training on randomly labeled data.

3.3 Implementation Details and Reproducibility

Code, Parameter, and Metric Versioning. Mlflow served as a tracking
and versioning environment. Parameters and performance metrics were stored
in a non-relational database. The versioned code of embeddings and evaluation
regimes is available in the repository: https://github.com/ChristianGerloff/IBN-
ASD-classification.

Unit Tests and Technical Reproducibility. To accommodate best practices
from software development, the repository includes unit tests. Dependencies were
managed using Poetry. Experiments were run inside a docker container on a
remote instance with 4× 3.1 GHz Intel Xeon processors and 16 GiB memory.

3.4 ASD Classification Performance

Summarized, the rigorous and conservative evaluation demonstrated the chal-
lenges in ASD classification. Only results of NMF-IBNE based on Shannon
entropy indicate potential capacities to predict ASD in this dataset. FC may
be less robust as it suffered from particularly high variance in ROC-AUC on
randomly labeled data. This might indicate that INS-based ASD classification
could potentially benefit from graph representations.

Specifically, the CV results shown in Table 1 suggest that concurrent and
linear forms of interaction-related synchrony (WCO, PLV) did not allow to dif-
ferentiate between ASD and healthy subjects, in line with findings on popula-
tion level [16]. In contrast, across both classifiers, FC and NMF-IBNE showed
AUC above chance level, indicating that delayed, nonlinear forms of synchrony
(Entropy) may capture ASD-related aspects of social interaction. To verify these
results, a test based on randomized labels was performed (see Sect. 3.2). Models
above chance level that passed this test are marked in bold in Table 1. Only

https://github.com/ChristianGerloff/IBN-ASD-classification
https://github.com/ChristianGerloff/IBN-ASD-classification
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NMF-IBNE performed better than training on randomly labeled data across
classifiers (HDI lies right to zero, see Fig. 1A,B), speaking for the robustness of
the results. However, in this small cohort, NMF-IBNE showed only a weak ten-
dency for increased performance of NMF-IBNE compared to FC (see Fig. 1C).
Importantly, in contrast to other graph representation models, NMF-IBNE yields
model intrinsic interpretability that enables to study the neural basis of ASD
from an inferential perspective (see also [21]).

CCT revealed that HbO and HbR embeddings are distinct. In addition to
systematic differences between HbR and HbO, both are differentially affected by
physiological and motion artifacts.

Table 1. Classification performance of cross-validation and cross-chromophore test.

WCO PLV Entropy

SVM Ridge SVM Ridge SVM Ridge

CV FC 0.50± 0.04 0.55± 0.09 0.53± 0.04 0.55± 0.06 0.53± 0.11 0.59± 0.07

NMF-IBNE 0.54± 0.11 0.48± 0.07 0.52± 0.05 0.54± 0.06 0.60± 0.05 0.61± 0.05

LDP 0.49± 0.02 0.51± 0.09 0.51± 0.07 0.43± 0.06 0.47± 0.11 0.51± 0.09

Graph2Vec 0.50± 0.01 0.50± 0.01 0.52± 0.05 0.50± 0.04 0.54± 0.07 0.50± 0.01

GL2Vec 0.53± 0.04 0.51± 0.01 0.50± 0.00 0.52± 0.03 0.49± 0.09 0.50± 0.00

DWC 0.48± 0.08 0.48± 0.03 0.49± 0.02 0.47± 0.03 0.46± 0.12 0.50± 0.11

Scattering 0.56± 0.04 0.49± 0.07 0.48± 0.03 0.43± 0.04 0.53± 0.07 0.54± 0.10

Feather 0.47± 0.06 0.46± 0.08 0.52± 0.03 0.50± 0.04 0.49± 0.04 0.54± 0.08

CCT FC 0.53 0.56 0.50 0.51 0.56 0.61

NMF-IBNE 0.46 0.46 0.56 0.53 0.50 0.50

LDP 0.52 0.54 0.49 0.47 0.50 0.58

Graph2Vec 0.49 0.50 0.49 0.49 0.47 0.49

GL2Vec 0.50 0.50 0.50 0.50 0.49 0.50

DWC 0.57 0.57 0.50 0.50 0.50 0.57

Scattering 0.57 0.52 0.49 0.49 0.56 0.55

Feather 0.50 0.51 0.51 0.48 0.57 0.57

Fig. 1. (A) Strong evidence was found for superior AUC of NMF-IBNE compared to
model performance on randomized labels. (B) FC showed high uncertainty and no
evidence of predictive validity in the randomization test. (C) Posterior distribution
indicated a weak tendency of increased AUC in NMF-IBNE compared to FC.
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4 Conclusion

Recent studies in clinical imaging and other areas of machine learning have
shown that despite an increasing model complexity, generalization across bench-
mark datasets may be limited. Therefore, current ASD classification performance
using resting-state data may not be sufficient for clinical applications, even when
sample size increases. Developing methods that provide a more precise represen-
tation of neural data which is better suited to capture the specific aspects of a
disorder is of utmost importance.

Here we introduced unsupervised learning of graph representations that
explicitly map the neural mechanisms of a core aspect of ASD (i.e. deficits in
dyadic social interaction) and combined these with classification algorithms. We
employed a rigorous evaluation regime to ensure predictive validity.

These first results indicate that ASD classification based on hyperscanning
data is still challenging, yet network embeddings might contribute to improve the
development of biomarkers. Furthermore, the choice of the connectivity estima-
tor appears to be important. In particular, nonlinear structures of time-varying
synchrony, e.g. captured by Shannon entropy, should be explored in greater detail
in hyperscanning. Further, the results indicate that HbO and HbR, which are
differentially affected by physiological effects and artifacts, might be treated as
related but distinct features in future ASD studies. Certainly, further bench-
marking is necessary in larger samples, however, our results indicate that the
collection of such datasets should be pushed forward to advance the development
and validation of neural biomarkers in ASD. Importantly, our proposed method
is suitable for young children, an age at which behavioral diagnostic markers are
less reliable but at the same time, it is an early detection and intervention that
can dramatically increase long-term outcomes in ASD. Notably, this approach
may move forward the scientific investigation of ASD beyond diagnostic classi-
fication: Interpretable network embeddings such as NMF-IBNE are trained in a
task-agnostic fashion, are thus applicable to many settings and allow for flexible
downstream applications, e.g. to address inferential scientific inquiries such as
changes after intervention.
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Abstract. Single-subject mapping of resting-state brain functional
activity to non-imaging phenotypes is a major goal of neuroimaging. The
large majority of learning approaches applied today rely either on static
representations or on short-term temporal correlations. This is at odds
with the nature of brain activity which is dynamic and exhibit both short-
and long-range dependencies. Further, new sophisticated deep learning
approaches have been developed and validated on single tasks/datasets.
The application of these models for the study of a different targets typ-
ically require exhaustive hyperparameter search, model engineering and
trial and error to obtain competitive results with simpler linear mod-
els. This in turn limit their adoption and hinder fair benchmarking in
a rapidly developing area of research. To this end, we propose fMRI-
S4; a versatile deep learning model for the classification of phenotypes
and psychiatric disorders from the timecourses of resting-state functional
magnetic resonance imaging scans. fMRI-S4 capture short- and long-
range temporal dependencies in the signal using 1D convolutions and
the recently introduced state-space models S4. The proposed architec-
ture is lightweight, sample-efficient and robust across tasks/datasets. We
validate fMRI-S4 on the tasks of diagnosing major depressive disorder
(MDD), autism spectrum disorder (ASD) and sex classification on three
multi-site rs-fMRI datasets. We show that fMRI-S4 can outperform exist-
ing methods on all three tasks and can be trained as a plug&play model
without special hyperpararameter tuning for each setting (Code available
at https://github.com/elgazzarr/fMRI-S4.)

Keywords: Functional connectivity · State space models · 1D CNNs ·
Major depressive disorder · Autism spectrum disorder

1 Introduction

Predicting non-imaging phenotypes from functional brain activity is one of the
major objectives of the neuroimaging and neuroscience community. The abil-
ity to map a scan of the brain to behaviour or phenotypes would advance our
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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understating of the brain function and enable the investigation of the underly-
ing pathophysiology of psychiatric disorders. To build such prediction models,
researchers have opted for machine learning to capture multivariate patterns in
brain functional activity that might act as a bio-marker for the phenotype in
question [1,32]. Functional magnetic resonance imaging (fMRI) offers a promis-
ing non-invasive tool to estimate brain functional activity by measuring the
blood-oxygenation-level-dependent (BOLD) signal as a proxy of the underlying
neuronal activity of the brain [23]. From a machine learning point of view, fMRI
is one of the most challenging data representations. The high dimensionality of
the data (4D, ≈ 1M voxels), low signal to noise ratio, data heterogeneity and lim-
ited sample sizes present major hurdles when developing learning models from
fMRI data. To overcome some of these limitations, researchers have opted for
summarized representations that facilitate learning from such data and can be
interpreted for biomarker discovery. One of the most popular representations is
functional connectivity (FC) [10]. FC is simply defined as the temporal corre-
lation in the BOLD signal changes between different regions of interest in the
brain (ROIs). The study of FC have provided a wealth of knowledge about the
brain function and dysfunction and have proved that there exists underlying
neural correlates of phenotypes that a machine learning model can learn [11].
Yet, FC in its most popular form is a static representation which implicitly
assumes that brain connectivity is static for the duration of the scan. In recent
years, there has been growing evidence that brain connectivity is dynamic as
the brain switch from cognitive states even at rest and more research is cur-
rently studying dynamic functional connectivity [18,26]. With the advancement
of deep learning, researchers have opted for sequential models such as RNNs,
LSTMs, 1D CNNs and Transformers to learn from ROIs timecourses directly
[5,7,8,12,22,39]. Because the number of parameters of these models scale with
the length of the timecourse and fMRI datasets are typically limited in sample
sizes, applying such models to cover the entire duration of the resting-state scan
is highly prone to overfitting. Further, recurrent models are not parallelizable
and similar to attention-based models are computationally expensive to train. A
practical solution is then to either i) crop the ROI timecourses, train the models
on the cropped sequences, then aggregate the predictions from all the crops (e.g.
via voting) to generate the final prediction at inference [5,8,12]. or ii) limit the
effective receptive field of the model using smaller kernels and fewer layers [7].
The former method is prevalent with recurrent and attention based models while
the latter is typically observed with convolutional models. fMRI BOLD signals
display rich temporal organization, including scale-free 1/f power spectra and
long-range temporal auto-correlations, with activity at any given time being
influenced by the previous history of the system up to several minutes into the
past [15,18]. Learning only from short-range temporal interactions (e.g. 30–40 s
as typically done when cropping or defining dynamic FC windows) ignores the
evolution of the signal and the sequential switching through cognitive states and
is more susceptible to psychological noise.
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Apart from capturing the true underlying dynamics of the data, a key con-
sideration when developing machine learning models is their utility and adop-
tion by the community. Today, for a researcher interested in investigating a
certain phenotype or a clinical outcome using machine learning, the main go-
to remains FC analysis using linear models or shallow kernel based methods.
The main reasons for this are i) Simplicity: easy to implement and interpret
without much engineering and hyperparameter tuning, ii) Sample-efficiency;
possible to train with small sample sizes as is often the case in clinical datasets.
iii) Computational-efficiency; do not require special hardware. iv) Perfor-
mance; most importantly is that they achieve the desired objective. Several
recent studies have reported competitive performance of linear models or shal-
low non-linear models against DL in phenotype prediction from neuroimaging
data [16,28].

To bridge this gap and to address the dynamic limitation in several DL archi-
tectures, we propose fMRI-S4; a powerful deep learning model that leverages
1D-CNNs and state-space models to learn short- and long-range saptio-temporal
features from rs-fMRI data. fMRI-S4 is open-source, data-efficient, easy to train,
and can outperform existing methods on phenotype prediction without requir-
ing special hyperparameter tuning for each task/dataset/ROI-template. We val-
idate our work on three multi-site datasets encompassing three different targets.
Namely, the UkBiobnak [30] for sex classification, ABIDE [4] for autism ASD
diagnosis, and Rest-Meta-MDD [38] for MDD diagnosis.

2 Methodology

2.1 Preliminaries

Phenotype prediction from rs-fMRI data can be formulated as a multivariate
timeseries classification problem. Let X ∈ RN×T represent a resting-state func-
tional scan where N denotes the number of brain ROIs as extracted using a
pre-defined template (The spatial dimension), and T represent the number of
timepoints sampled for the duration of the scan (The temporal dimension). Given
a labelled multi-site dataset D = {Xi, Yi}S

i=1, where Y is a non-imaging pheno-
type or a disorder diagnosis, the objective is to learn a parameterized function fθ

: X �→ Y . This is under the practical limitations of small sample size S(typically
in the order of hundreds in rs-fMRI multi-site datasets), and that scan duration
T and temporal resolution Tr are variable within the dataset since it is collected
from different scanning sites. The main challenge then becomes how to design
a generalizable fθ that can capture the underlying causal variables in the data
necessary to predict the target.

2.2 Learning Short-Range Dependencies with 1D Convolutions

The resting-state signal is characterized by low-frequency oscillations (0.01–
0.1 Hz). To extract informative features from such signal, a model has to learn
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the short-range dynamic dependencies that characterize the neural activations
responsible for generating the oscillations. While in essence, a feature extrac-
tion layer that scans the entire global signal (e.g. Transformers, Fully connected
layers, RNNs) can learn such local dependencies, leveraging the inductive bias
of convolutions significantly improve sample- and parameter- efficiency of the
model. Convolutional layers excel at learning local patterns using a translation
invariant sliding window and have been used in conjugation with global layers
to alleviate the memory bottleneck and enhance locality [21,29].

We utilize a convolutional encoder as first stage in the model to learn local
dependencies, improve the signal to noise ratio and to mix the features in the
spatial dimension. Our encoder consists of Kconv blocks, where each blocks con-
sists of a 1D convolutional layer with kernel size k and hidden dimension dmodel,
followed by batch normalization, and then relu activation. 1D CNNs treat the
N ROIs as input channels and thus the temporal kernel is fully connected across
the spatial dimension. This is a very useful property since the ordering of the
ROIs is arbitrary and the model is implicitly free to learn any spatial dependen-
cies necessary for the objective regardless of the parcellation template applied
during pre-processing.

2.3 Learning Long-Range Dependencies with State Space Models

1D convolutions are a powerful tool to model spatio-temporal dependencies. Yet,
they are limited by their receptive field in the temporal dimension. While this
can be improved by adding more layers, increasing the kernel size or using dila-
tion [24], the output features at each layer remain constrained by the receptive
field of the respective convolutional filter size. Given that 1DCNN models are
typically small (1–3 layers) [7,36], the output features only represent local depen-
dencies. Further, since fMRI datasets are usually collected at multiple locations
using different scanners, the temporal resolution of the data may vary across
the dataset, which deems finding an optimal kernel size and dilation factors a
challenging engineering task. A state space model (SSM) is a linear represen-
tation of dynamical systems in continuous or discrete form. The objective of
SSMs is to compute the optimal estimate of the hidden state given the observed
data [37]. SSMs have been widely in modelling fMRI signal, and its applica-
tions includes decoding mental state representation [6,17,19], inferring effective
connectivity [33], generative models for classifcation [31]. Inspired by the recent
developments in SSMs, specifically the S4 model [14], which utilizes state-space
models as sequence-to-sequence trainable layers and excel at long-range tasks,
we propose to integrate S4 layers in our fMRI classifier to capture the global
dependencies in the signal for single-subject prediction of non-imaging pheno-
types. SSM in continuous time-space maps a 1-D input signal u(t) to an M-D
latent state z(t) before projecting to a 1-D output signal y(t) as follows:

z
′
(t) = Az(t) + Bu(t) (1)

y(t) = Cz(t) + Du(t) (2)
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where A ∈ RM×M is the state-transition matrix, B ∈ RM×1, C ∈ R1×M and D ∈
R1×1 are projection matrices. To operate on discrete-time sequences sampled
with a step size of Δ, the SSM can be discretized using the bilinear method [34]
as follows:

zk = Āzk−1 + B̄uk yk = C̄zk + D̄uk (3)

Ā = (I − Δ/2 · A)−1(I + Δ/2 · A) B̄ = (I − Δ/2 · A)−1ΔB) C̄ = C

(4)

Given an initial state zk = 0 and omitting D (as it can be represented as a skip
connection in the model), unrolling 3 yields:

yk = C̄ĀkB̄u0 + C̄Āk−1B̄u1 + ... + C̄B̄uk

y = K̄ ∗ u K̄ = (C̄ĀiB̄)i∈[L]

(5)

The operator K̄ can thus be interpreted as a convolution filter and the state
space model can be trained as a sequence-to-sequence layer via learning param-
eters A, B, C and Δ with gradient descent. Training K̄ efficiently requires sev-
eral computational tricks. The S4 paper proposes the parameterization of A as
a diagonal plus low-rank (DPLR) matrix. This parameterization has two key
properties. First, this is a structured representation that allows faster computa-
tion using the Cauchy-kernel algorithm [25] to compute the convolution kernel
K very quickly. Second, this parameterization includes certain special matrices
called HiPPO matrices [13], which theoretically and empirically allow the SSM
to capture long-range dependencies better via memorization. For in-depth details
of the model we refer the readers to [27]. SSMs defines a map from RL �→ RL,
i.e. a 1-D sequence map. To handle multi-dimensional inputs/features RL×H ,
the S4 layer simply defines H independent copies of itself at and after applying
a non-linear activation function and layer normalization, the H feature maps
are mixed with a position-wise linear layer. This defines a single S4 block. In
our model, we stack Ks4 blocks on top of the convolutional layers, followed by a
global average pooling layer across the temporal dimension, a dropout layer and
a Linear layer with output dimension equal to the number of classes. Figure 1
demonstrates the overall architecture of the model.

2.4 fMRI-S4: Towards a Fixed Baseline

A key aspect when designing a classification model for fMRI is versatility. Ide-
ally, we would like to use fixed architecture and fixed training parameters for any
dataset/any target and obtain competitive results without the need of exhaustive
hyperparameter search and model engineering. This would improve the utility
and accessibility of the model for practitioners with different technical back-
grounds, and facilitate models benchmarking. The proposed fMRI-S4 model con-
stitutes several desirable properties that makes it feasible to find such optimal
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1D CNN

S4 Block
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BatchNorm
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LayerNorm
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Global AveragePooling1D

Linear
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Fig. 1. An overview of the fMRI-S4 Model. The 1D CNN Blocks learn short-range
temporal dependencies using a small kernel size and learn spatial dependencies across
the ROIs. The output features are then fed to a cascade of S4 Blocks to learn both
short- and long-range temporal dependencies.

architecture. The sliding window approach in 1D convolutions enable feature
extraction independent of the length of the time course. Further, it’s permu-
tation invariant in the spatial dimension, i.e. it can map any number of ROIs
with any arbitrary ordering into a fixed dimension. An S4 layer learn a global
representation of the data, and can thus eliminate the need to tailor the number
of layers in the model to cover the desired receptive field. Moreover, S4 learn an
adaptive discritization step size Δ, which further improve the flexibility of the
model with respect to the variable temporal resolution of the datasets. This setup
in turn can improve the odds of finding a set of optimal parameters for the model
and training that can achieve competitive results invariant to the task and the
dataset. To this end, we conducted Bayesian hyperparameter tuning using the
weights&biases platform [2] on independent validation sets on the three datasets
presented in Sect. 3.1 to find the optimal configuration of the model. The top
performing configurations converged to a highly overlapping set and based on
this we report our default configuration of the model which we use for all the
experiments in this work and recommend as a baseline. For the model architec-
ture we use dmodel = 256, Kconv = 1, KS4 = 2, dstate = 256. The rest of the
parameters are fixed as in the original S4 model. We trained the models using
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the cross-entropy loss optimized using AdamW Optimizer with a learning rate of
1e−4 and a weight decay of 1e−5. The training is run for 100 epochs with early
stop with patience = 10 conditioned on the best accuracy of an inner-validation
set. Training the model takes ≈ 15–20 min on a Nividia 16-GB P100 GPU. This
configuration constitutes 1.3 M trainable parameters.

3 Experiments and Results

3.1 Datasets

To evaluate the performance of the proposed model, we utilized three multi-site
rs-fMRI datasets each addressing a different objective.
1) Rest-Meta-MDD [38] is currently the largest open-source rs-fMRI database
for studying major depressive disorder including clinically diagnosed patients and
healthy controls from 25 cohorts in China. In this work, we use a sample of N =
1453 (628 HC/825 MDD) which survived the quality check to evaluate the model
performance on the task of MDD diagnosis. See [38] for the exact pre-processing
pipeline. We adopted the Harvard Oxford (HO) [3] atlas to segment the brain
into 118 cortical and subcortical ROIs.
2) ABIDE I+II [4] contains a collection of rs-fMRI brain images aggregated
across 29 institutions. It includes data from participants with autism spectrum
disorders and typically developing participants (TD). In this study, we used
a subset of the dataset with N = 1207 (558 TD/649 ASD) to evaluate the
model performance on the tasks of ASD diagnosis. We utilized the C-PAC pre-
processing pipeline to pre-process the data. Similarly, we adopted the HO atlas
to segment the brain.
3) UkBioBank [30] is a large-scale population database, containing in-depth
genetic and health information from half a million UK participants. In this work
we use a randomly sampled subset (N = 5500 (2750 M/2750 F F) to evaluate
the model performance on the sex classification task. The ROIs were extracted
using the Automated Anatomical Labeling (AAL) [35] atlas.

3.2 Clinical Results

We evaluated the performance of the fMRI-S4 model against following baselines:
SVM, BrainNetCNN [20], 1D-CNN [7], ST-GCN [12] and DAST-GCN
[9]. The input representation to the SVM and BrainNetCNN are the static
Person correlation matrices of the ROIs timecourses, while the rest of the meth-
ods operate directly on the ROIs timecourses. For a fair evaluation, we conduct
a hyperparameter search using weights&biases [2] for the baselines on a inde-
pendent validation set to select the best configuration for each task. Next, we
conducted the experiments using a repeated 5-fold cross validation scheme on
the two clinical tasks using the selected parameters for the baselines and the
fixed configuration presented in Sect. 2.4 for fMRI-S4. We report the results in
Table 1. For both tasks, fMRI-S4 outperform the best performing baseline (the
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1D-CNN) by 1.6 accuracy points (2.5% relative) and 2.4 accuracy points (3.4%
relative) on the Rest-Meta-MDD and ABIDE I+II datasets, respectively.
To demonstrate the efficacy of combining both 1D convolutions and state space
models, we conduct a simple ablation study with two models, i) fMRI-S4KS4=0;
where the S4 layers are removed and replaced by 2 convolutional layers. ii)
fMRI-S4Kconv=0; where no convolution layers are used, and spatio-temporal fea-
ture extraction is done using S4 layers only. In both cases, the accuracy of the
model drops by 2–4% for both datasets.

Table 1. 5-fold test metrics for fMRI-S4, ablated version of fMRI-S4 and baseline
models on the two clinical datasets.

Model Rest-Meta-MDD ABIDE I+II

Acc. (%) Sens. (%) Spec. (%) Acc. (%) Sens. (%) Spec. (%)

SVM 61.9± 3 73.0± 9 50.9± 8 69.5± 3 75.9± 5 63.0± 5

BrainNetCNN [20] 58.4± 5 50.1± 11 56.8± 8 66.6± 3 72.1± 4 61.2± 5

ST-GCN [12] 58.2± 4 48.6± 9 67.8± 7 65.3± 2 67.2± 3 63.4± 4

DAST-GCN [9] 60.7± 4 44.6± 7 75.8± 7 67.8± 2 70.8± 3 64.9± 3

1D-CNN [7] 63.8± 2 65.7± 3 61.9± 3 70.6± 2 72.7± 3 68.5± 3

fMRI-S4KS4=0 63.7± 3 68.5± 6 59.7± 6 71.7± 2 75.7± 5 67.8± 3

fMRI-S4Kconv=0 62.9± 2 67.5± 5 60.1± 5 70.4± 3 74.5± 3 66.1± 1

fMRI-S4 65.4± 3 66.9± 4 63.9± 4 73.0± 3 75.2± 4 70.8± 2

4 Evaluating Sample-Efficiency with the UkBioBnak

To compare the sample efficiency of fMRI-S4 against existing baseline, we con-
duct a training sample scaling experiment on the UkbioBank dataset for the
task of sex classification. Namely, we train the models using N = [500, 1000,
2000, 5000] class-balanced samples, and evaluate the performance of the trained
models on a fixed test set with N = 500 (250 M/250 F). The results presented
on Fig. 2 highlight that fMRI-S4 performs competitively at the smallest sample
sizes (N = 500) and continue to scale favourably against the baselines. Another
observation from the results is the scaling superiority of the dynamic models
(1D-CNNs, fMRI-S4, DAST-GCN) over static models with exception of the ST-
GCN model. This behaviour suggests that the evolution of the dynamic signal
contain discriminate information that can be better exploited by the deep learn-
ing models at larger training samples.
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Fig. 2. Scaling performance of the fMRI-S4 against existing baselines on the task of sex
classification on the UkbioBank dataset. The error bars represent results for 3 different
random seeds for initialisation and inner validation split. The test set is fixed for all
the experiments.

5 Discussion

In this work, we present fMRI-S4; a deep learning model that leverages 1D con-
volutions and state-space models for learning short- and long-range dependencies
necessary to capture the underlying dynamic evolution of the brain activity at
rest. We show fMRI-S4 improves the diagnosis of MDD, ASD and sex classifica-
tion from rs-fMRI data against existing methods using a fixed architecture for all
three tasks. We hope that this work can improve the adoption of dynamic DL-
based models in fMRI analysis and motivate the development of generalizable
methods. In our future work, we will investigate dynamic feature perturbation
to explain the predictions of fMRI-S4 in effort to obtain potential biomarkers
for psychiatric disorders.
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Abstract. Data augmentation techniques that improve the classifica-
tion and segmentation of natural scenes often do not transfer well to
brain imaging data. The conceptually most plausible augmentation tech-
nique for biological tissue, elastic deformation, works well on microscopic
tissue but is limited on macroscopic structures like the brain, as the
majority of mathematically possible elastic deformations of the human
brain are anatomically implausible. Here, we characterize the subspace
of anatomically plausible deformations for a participant’s brain image
by nonlinearly registering the image to the brain images of several refer-
ence participants. Using the resulting warp fields for data augmentation
outperformed both random elastic deformations and the non-augmented
baseline in age prediction from T1 brain images.

Keywords: Brain imaging · Machine learning · Data augmentation

1 Introduction

Digital processing of human brain images promises automated diagnosis and
prediction of treatment responses as well as insight into the underlying neurobi-
ology of neurological and psychiatric disease. Many such use cases rely on a-priori
unknown high-dimensional patterns in imaging data which may be invisible to
the human eye, so researchers turn to machine learning to identify predictive
statistical relationships in the data [1,2].

However, modern machine learning models often require larger amounts of
training data than are customarily collected in human brain imaging studies [3].
Particularly, clinical imaging datasets are often limited to small sample sizes
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due to small patient pools as well as logistical and financial constraints. In cases
where a data-hungry machine learning model needs to be trained on a small-
sample dataset, researchers often rely on data augmentation techniques [4]. The
idea behind data augmentation is to exploit dimensions of variation in the data
which are irrelevant for the prediction task at hand to generate additional train-
ing samples. For example, in computer vision, it is irrelevant for the classification
of cats versus dogs where the particular animal is located in the image, how it
is rotated, or what lightning conditions are captured in the image. Given this
insight, one may generate additional training samples by applying e.g. affine
transformations or intensity transformations to the images.

While these standard augmentation techniques work well in computer vision,
and particularly in the classification and segmentation of natural scenes, they do
not appear to transfer trivially to brain imaging data [5]. In contrast to natural
scenes, where translation, rotation and scale cannot be trivially accounted for
during a preprocessing stage, brain image acquisition and the resulting images
are highly homogeneous, and sophisticated software already takes care of skull
stripping and linear and nonlinear registration to a standard space. Critically,
these preprocessing steps are done by default to enable classical analyses such as
voxel-based morphometry and are further thought to reduce prediction-irrelevant
variance in the data so that little is gained by skipping these steps for machine
learning [6]. In sum, while there are obvious invariances in natural scenes (e.g.
lighting conditions might be different depending on the time of day), there are
(in the opinion of the authors) no obvious invariances for pre-registered brain
imaging data (e.g. no time-of-day effect on the intensity values in brain images).
Thus, most augmentation techniques used in computer vision do not successfully
transfer to neuroimaging-based phenotype prediction - in contrast to e.g. brain
tumor segmentation, which is more of a traditional computer vision task. For
instance, Dufumier et al. [5], report generally detrimental effects of affine trans-
formations, intensity transformations, and mirroring on prediction accuracy for
a variety of prediction tasks on structural neuroimaging data.

One potentially plausible augmentation is elastic deformation [7–9]. Elastic
deformations appear to work well for segmentation tasks, both on microscopy
images, e.g. for segmenting cells [8], as well for lesion segmentation on macro-
scopic human tissue [10,11]. The underlying intuition is that human tissue is
elastic - “squishy” - and thus can be elastically deformed - yielding substantially
more degrees of freedom than simple affine transformations. These intuitions
should hold for brain images. However, while there are reports of successful use
of elastic deformation for brain tumor segmentation [10,12], there are, to the
best of our knowledge, no literature reports of positive results for classifica-
tion/regression tasks.

We conjecture that, while on a microscopic level most deformations make
sense, macroscopic deformations on the whole brain are qualitatively different.
Anatomic heterogeneity in the brain happens on a limited set of dimensions of
variation. The space of possible elastic deformations is infinite so that in the
absence of a generative model of the brain, it is unclear which possible whole-
brain elastic deformations are anatomically meaningful. Implausible deforma-
tions may degrade training performance by obscuring relevant information and
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degrade generalisation performance by overtaxing the model’s expressive capac-
ity. Consequently, a major challenge in the application of elastic deformation
augmentation in neuroimaging is characterizing the potentially tiny subspace of
anatomically plausible elastic deformations.

In this paper, we describe a method for characterizing the subspace of bio-
logically plausible deformations by borrowing deformation fields from nonlinear
image registration. We (partially) register a given image to the brain image of a
different participant as a form of data augmentation. Essentially, we ask: How
would this brain look like in another person’s skull? We experimentally validate
the proposed data augmentation by partial registration on age prediction from
structural brain images.

Related Work. Other authors have applied similar approaches to anatomical
image segmentation [13,14]. However, it is unclear if results from image segmen-
tation will transfer to classification/regression tasks. Moreover, neither study
implemented a random elastic deformation baseline so that it is unclear whether
their custom deformations outperformed augmentation via random elastic defor-
mations.

2 Data Augmentation via Partial Nonlinear Registration

In the following sections, we introduce the fundamentals of elastic deformations,
identify the shared mathematical basis with nonlinear image registration, and
then show how to exploit these commonalities for data augmentation of brain
images.

Elastic Deformations. Elastic deformations can be generated directly on the
voxel level using a random displacement field convolved with a Gaussian filter
[7] or generated using a free-form deformation by modifying an underlying mesh
of control points [8,9]. The field of displacement vectors for the control points is
interpolated, often using cubic B-splines [15,16], into a voxel-level deformation
field or “warp field”. For data augmentation, one generally samples and applies
a random warp field each time one wants to augment the image, thus generating
potentially infinite randomly deformed versions of the original. Incidentally, free-
form deformation using warp fields represented as cubic B splines are also used
for nonlinear image registration, e.g. for registering a T1 image to the nonlinear
MNI template (see the following section) using FSL-FNIRT [17].

Biologically (Im-)plausible Elastic Deformations. Elastic deformations
allow for considerable degrees of freedom that result in essentially infinite poten-
tial warp fields. A majority of potential warp fields are anatomically implausible
(c.f. Fig. 1). How to meaningfully limit the space of possible elastic deformations
to anatomically plausible solutions is a challenging problem. Given the under-
lying shared mathematics, we suggest using warp fields derived from nonlinear
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Fig. 1. Randomly samples deformation fields can yield anatomically implausible
results.

registration to multiple reference images to span a subspace of plausible elastic
deformations.

Nonlinear Registration to a Reference Image is an Elastic Deforma-
tion. To compare MRI images of different subjects, e.g. for voxel-based mor-
phometry, one needs to relate corresponding voxels between images - a process
called image registration. The goal of image registration, is to relate any source
point (x, y, z) ∈ Z

3 to a point in the reference image (x′, y′, z′), i.e. a transform
T : (x, y, z) �→ (x′, y′, z′) needs to be found. This is generally achieved by a
combined transformation, consisting of a global and a local transformation [18].

In the simplest case, the global transformation can be described as a rigid
body transformation, with six degrees of freedom, describing the translation and
rotation of the image. More generally, global transformations can be expressed
as affine transformations, offering six additional degrees of freedom, allowing to
express scaling and shearing. This approach is generally referred to as linear
registration.

Applying only a global linear transformation can be insufficient. Additional
local nonlinear transformations can be used to improve the registration quality
[17]. Such local transformations are typically parameterized as free-form defor-
mations. Free-form deformations allow the manipulation of the source using a
mesh of control points that, when manipulated, modifies the shape of the under-
lying image. Effectively, nonlinear registration is an elastic deformation that
relies on the same underlying framework as augmentation via random elastic
deformations.

Partial Nonlinear Registration. We define a partial registration as a linearly
interpolated registration between a linearly registered image and a nonlinearly
registered one. Using a fixed interpolation factor λ ∈ [0, 1], we can blend between
both registrations, creating a partially registered image. Setting λ to zero we
obtain a linearly registered image, while setting λ to one, we obtain a fully
nonlinearly registered image. This technique allows us to randomly sample a λ
for partial registration to create multiple augmented images from a given brain
image, representing different degrees of registration to a given reference image.
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Fig. 2. For data augmentation, we nonlinearly register the source image to images from
several reference participants and retain the resulting deformation fields. At train time,
we randomly sample a reference participant, re-scale the corresponding deformation
field by a random factor, and use these re-scaled fields to warp the original image.

Registration to Multiple Reference Subjects. Conventionally images are
only co-registered between different imaging modalities of the same subject, or
they are registered to a standard space such as MNI space. However, images can
also be registered onto the brain of another person. Qualitatively, this procedure
is comparable to registering to a standard space MNI template.

Application for Data Augmentation. In aggregate, we suggest the following
approach for data augmentation: In the preprocessing phase, each training image
is registered to reference images of several different participants, discarding the
output image but retaining the resulting warp fields. For machine learning, every
time a given participant’s brain image is used in a training step, we randomly
select one of the pre-computed warp fields for that participant and then sample a
random percentage for partial registration. In different training steps, participant
A’s brain image may be used practically unchanged (approx. 0% partial registra-
tion) or slightly warped to the brain and skull shape of participant B (e.g. 10%
partial registration) or strongly warped to the brain and skull shape of partici-
pant C (e.g. 90% partial registration). See Fig. 2 for an illustration. This should
ensure that the warp fields used for elastic deformation data augmentation rep-
resent variation observable in the real world, i.e. anatomical variation between
different participants. Moreover, the partial registration approach ensures that
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the model never sees the exact same augmented image twice, even if only a finite
number of warp fields are available.

3 Experimental Validation on Brain-Age Prediction

Here we experimentally validate data augmentation via partial nonlinear regis-
tration on the widely-used “brain-age” paradigm, predicting age from structural
brain images. We compare augmentation via partial nonlinear registration to
structurally comparable random elastic deformations and other relevant base-
lines.

3.1 Methods

Imaging Data and Prediction Targets. For our analyses, we used mini-
mally processed T1 images (skull stripped and linearly registered to MNI space)
provided by the UK Biobank (application no. 33073, acquisition and process-
ing details [19]). We used images in the original 1 mm3 resolution and, during
training, normalized images by dividing by mean intensity.

We chose participant age as the prediction target because age data is readily
available and highly reliable. Brain-age prediction appears to have become one
of the most popular research paradigms in the application of machine learning
on neuroimaging data [20,21]. Ages were z-scored for training.

Warp Fields. We randomly selected 50 participants from the UK Biobank to
serve as anatomical reference images. The T1 image of each training participant
was nonlinearly registered to each of the reference participant’s T1 images, and
warp fields were retained for data augmentation. We used FSL-FNIRT for non-
linear registration, using the default configuration (10 mm control point grid),
except for a simplified sub-sampling schedule (4, 2, 1) for faster computation
[17]).

Deep Neural Network Architecture and Training Regime. We roughly
replicated the deep learning setup for brain-age prediction of Fish et al. [22],
thus minimizing our own design choices. Specifically, we used a ResNet-50 archi-
tecture in the 3D variant by Hara [23]. The Adam optimizer was applied with a
1cycle learning rate schedule [24] with 0.01 maximum learning rate over 50000
gradient update steps, minimizing mean squared error as a loss function. Other
hyperparameters are left as defaults provided by the PyTorch implementation.
No additional form of regularisation, such as weight decay or dropout was used.

Evaluation. We randomly selected 1000 participants from the UK Biobank as a
train set and a further 500 participants as a test set. No form of hyperparameter
tuning took place within this study so that there was no need for an extra
validation set. Each experiment was repeated for three random seeds.
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We compare our approach to three relevant baselines: The non-augmented
baseline applies no changes to the training data and represents a majority of
described training setups in the literature [25–27]. Mirroring i.e. flipping on the
sagittal plane, yielded promising results in our own preliminary experiments and
is used e.g. in [28,29]. Random elastic deformations use the same 10mm control
point grid as returned by FNIRT, but sample displacement vectors randomly
from a uniform distribution. Per convention, we limit displacements to half the
distance between control points to avoid folding (reducing the maximal displace-
ment by a factor of 0.5 or 0.1 yielded inferior results in preliminary experiments).
This configuration is meant to ensure comparability between random elastic
deformations and deformations derived from partial nonlinear registration.

3.2 Results

After training, we observed a test set mean absolute error (MEAN ± SD in years)
of 3.61 ± 0.08 for partial registration, 4.10 ± 0.03 for random elastic deformations,
4.10 ± 0.12 for mirroring, and 4.23 ± 0.05 for the non-augmented baseline. The
same rank order (in reverse) was observed in the training loss, with the non-
augmented baseline achieving the lowest training loss, followed by mirroring,
followed by the random elastic deformations, and tailed by partial registrations
with the highest training loss. In sum, our method outperformed the strongest
baseline by a 3.4σ margin. However, the overall variance in results between
different random seeds was substantial, so the results should be interpreted with
caution (Fig. 3).

Fig. 3. Train and test set metrics for age prediction from 1000 minimally preprocessed
T1 images using no augmentation, mirroring, random elastic deformations, the pro-
posed partial nonlinear registration. Moving window average smoothed. (Color figure
online)



176 M.-A. Schulz et al.

4 Discussion

In this work, we discuss the lack of effective and biologically plausible data aug-
mentation techniques for brain imaging data. Due to the elasticity of biological
tissue, we identify elastic deformations as a promising candidate technique. To
limit the infinite space of possible elastic deformations, we take advantage of
deformation fields derived from nonlinear registration to a reference image. On
the widely-used “brain-age” paradigm, we compared augmentation by partial
nonlinear registration to structurally comparable random elastic deformations
and other relevant baselines. We observed substantial improvements in predic-
tion accuracy using partial nonlinear registration. The increase in accuracy when
moving from random elastic deformations to augmentation by partial nonlinear
registration indicates that the latter did indeed provide superior, potentially
more anatomically plausible, augmentations.

While our results appear promising, at this point, there remain a number of
limitations. First of all, we can make no claim of generality for different types of
input data, different resolutions of input data, different preprocessing regimes,
nor can we claim generality with regards to different target variables. It is yet
unclear how effective augmentation techniques are at different sample sizes using
different deep learning architectures. Finally, it is unclear to what extent a full
(100%) registration to a reference image makes sense, given that it would, for
example, substantially alter the size of the brain ventricles, which are an impor-
tant predictor for age and other target phenotypes. Partial registration may have
to be limited to a lower maximal warping percentage for optimal results. Please
note that these limitations are not unique to this work but apply to practically all
techniques for data augmentation in neuroimaging-based phenotype prediction
discussed in the literature.

Another issue is the computation of the warp fields. In this study, we used
the FNIRT defaults for nonlinear registration. However, for the purposes of data
augmentation, it may be necessary to further constrain these warp fields, devi-
ating from conventional use, e.g. by increasing the “membrane energy” regular-
isation. Further, deformations fields take time to compute. There may be viable
shortcuts for generating these deformation fields, for example by relying on the
usually pre-existing deformation fields to nonlinear MNI standard space and
their inversions.

Note that within this study, no hyperparameters were tuned at any stage, and
all values were set to literature or software defaults. Fine-tuning with regards
to the creation of the warp fields or the percentage of partial registration may
further improve results.
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