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Abstract This paper provides a non-standard analogue of Bezout’s theorem for
algebraic curves. We achieve this by showing that, in all characteristics, the notion
of Zariski multiplicity coincides with intersection multiplicity when we consider
the full families of projective degree d and degree e curves in P2(L). The result
is particularly interesting in that it holds even when we consider intersections at
singular points of curves or when the curves contain non-reduced components.
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The techniques of non-standard analysis, originally developed for the real numbers,
were recently introduced by Zilber in the context of Zariski structures. In [17], he
gives a rigorous notion of Zariski multiplicity, which, in the case of 2 curves C1

and C2, intersecting in a point a, can count the number of intersections of the 2
curves in an infinitely small neighborhood of a after moving one of the curves. This
idea was used intuitively in the work of the Italian school of algebraic geometry,
in particular by Severi. One advantage of this approach is that it avoids an over
reliance on algebra, in favour of a more geometric approach. The successes of their
work are well known; the development of the notion of genus for algebraic curves,
building on the original ideas of Plucker, and the classification of algebraic surfaces.
This paper sets out to show that this non-standard analysis can be useful in algebraic
geometry, by providing a more geometric framework for understanding intersections
of algebraic curves in the plane. In particular, themain result of the paper, a geometric
proof of Bezout’s theorem, enhances an important idea in the foundational work of
the Italian school. We assume some familiarity with certain notions from algebraic
and analytic geometry, as well as the material from Sects. 1–5 of [7]. We summarise
the relevant facts, for the proofs of the paper, in the following three sections.
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1 Etale Morphisms and Algebraic Multiplicity

Definition 1.1 A morphism f of finite type between varieties X and Y is said to be
etale if for all x ∈ X there are open affine neighborhoods U of x and V of f (x) with
f (U ) ⊂ V such that restricted to these neighborhoods the pull back on functions is
given by the inclusion;

f ∗ : L[V ] → L[V ] [x1, . . . , xn]
< f1, . . . , fn >

and

det (
∂ fi

∂x j
)(x) �= 0 , (∗)

The coordinate free definition of etale is that f should be flat and unramified,
where a morphism f is unramified if the sheaf of relative differentials �X/Y = 0,
clearly this last confition is satisfied using the condition (∗). If we tensor the exact
sequence,

f ∗�Y → �X → �X/Y → 0

with L(x) the residue field of x , we obtain an isomorphism

f ∗�Y ⊗ L(x) → �X ⊗ L(x).

Identifying �X ⊗ L(x) with T ∗
x,X gives that

d f : (mx/m2
x )

∗ → (m f (x)/mx
f (x))

∗

is an isomorphism of tangent spaces or dually f ∗(m f (x)) = mx . Call this property
of etale morphisms (∗∗).

We will also require some facts about the etale topology on an algebraic variety
Y , see [14] for more details. We consider a category Yet whose objects are etale mor-
phismsU → Y andwhose arrows are Y -morphisms fromU → V . This category has
the following 2 desirable properties. First given y ∈ Y , the set of objects of the form
(U, x) → (Y, y) form a directed system, namely (U, x) ⊂ (U ′, x ′) if there exists an
etale morphism U → U ′ taking x to x ′. Secondly, we can take “intersections” of
open sets Ui and U j by considering Ui j = Ui ×Y U j ; the projection maps are easily
show to be etale and the composition of etale maps is etale, so Ui j → Y still lies
in Yet . If Y is an irreducible variety over L , then all etale morphisms into Y must
come from reduced schemes of finite type over L , though they may well fail to be
irreducible considered as algebraic varieties. Now we can define the local ring of Y
in the etale toplogy to be;

O∧
y,Y = lim→,y∈U OU (U )
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As any open set U of Y clearly induces an etale morphism U →i Y of inclusion,
we have that Oy,Y ⊂ O∧

y,Y . We want to prove that O∧
y,Y is a Henselian ring and in fact

the smallest Henselian ring containing Oy,Y . We need the following lemma about
Henselian rings, which can be found in [15].

Lemma 1.2 Let R be a local ring with residue field L, and maximal idealm. Suppose
that R satisfies the following condition.

If f1, . . . fn ∈ R[x1, . . . xn] and the reductions modulo the maximal ideal m,

f̄1 . . . f̄n have a common root ā in Ln, for which Jac( f̄ )(ā) = (
∂ f̄i

∂x j
)i j (ā) �= 0, then

ā lifts to a common root in Rn (*).
Then R is Henselian.

It remains to show that O∧
y,Y satisfies (∗).

Proof Given f1, . . . fn satisfying the condition of (∗), we can assume the coefficients
of the fi belong to OUi (Ui ) for covers Ui → Y ; taking the intersection U1...i ...n we
may even assume the coefficients define functions on a single etale cover U of Y .
By the remarks above we can consider U as an algebraic variety over L , and even an
affine algebraic variety after taking the corresponding inclusion. We then consider
the variety V ⊂ U × An defined by Spec( R(U )[x1,...,xn ]

f1,... fn
). Letting u ∈ U denote the

point in U lying over y ∈ Y , the residue of the coefficients of the fi at u corresponds
to the residue in the local ring R, which tells us exactly that the point (u, ā) lies in
V . By the Jacobian condition, we have that the projection π : V → U is etale at the
point (u, ā), and hence on some open neighborhood of (u, ā), using Nakayama’s
Lemma applied to �V/U . Therefore, replacing V by the open subset U ′ ⊂ V gives
an etale cover of U and therefore of Y , lying over y. Now clearly the coordinate
functions x1, . . . xn restricted to U ′ lie in O∧

y,Y and lift the root ā to a root in O∧
y,Y �

We define the Henselization of a local ring R to be the smallest Henselian ring
R′ ⊃ R, with R′ ⊂ Frac(R)alg . We have in fact, see [14], that;

Theorem 1.3 Given an algebraic variety Y , O∧
y,Y is the Henselization of Oy,Y

We recall the following Definition 3.6.7 from [17];

Definition 1.4 Let F ⊂ D × Mk be a finite covering of D and (a, b) ∈ F , then;

Multb(a, F/D) = Card(F(a′, ∗Mk)) ∩ Vb

for a′ ∈ Va generic in D over M, where;

Va = {a′ ∈ ∗D : π(a′) = a}

M ≺ ∗M and π : ∗M → M is a universal specialisation.

Definition 1.5 If F is a finite covering of D, we say that F is unramified in the sense
of Zariski structures if for all (a, b) ∈ F , multb(a, F/D) = 1.
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The following theorem requires some knowledge of Zariski structures, see
Sects. 1–4 of [7], or Sect. 2 of this paper.

Theorem 1.6 Zariski multiplcity is preserved by etale morphisms Let π : X → Y be
an etale morphism with Y smooth, then any (ab) ∈ graph(π) ⊂ X × Y is unramified
in the sense of Zariski structures.

For this we need the following fact whose algebraic proof relies on the fact that
etale morphisms are flat, see [13];

Fact 1.7 Any etale morphism can be locally presented in the form

V
g−−−−→ Spec((A[T ]/ f (T ))d)

⏐
⏐
�π

⏐
⏐
�π ′

U
h−−−−→ Spec(A)

where f (T ) is a monic polynomial in A[T ], the derivative f ′(T ) is invertible in
(A[T ]/ f (T ))d , g, h are isomorphisms and (A[T ]/ f (T ))d = { h

dn : h ∈ A[T ], n ∈
Z≥0}.

Using Lemma 4.6 of [7] and the fact that the open set V is smooth, we may safely
replace graph(π) by graph(π ′) ⊂ F ′′ × F where F ′′ is the projective closure of
Spec((A[T ]/ f (T )), F is the projective closure of Spec(A) and graph(π ′) is the
projective closure of graph(π ′) and show that (g(b)a) is Zariski unramified. Note
that over the open subset U = Spec(A) ⊂ F , graph(π ′) = Spec(A[T ]/ f (T )) as
this is closed in U × F ′′. For ease of notation, we replace (g(b)a) by (ba).

Suppose that f has degree n. Let σ1 . . . σn be the elementary symmetric functions
in n variables T1, . . . Tn . Consider the equations

σ1(T1, . . . , Tn) = a1

. . .

σn(T1, . . . , Tn) = an (*)

where a1, . . . an are the coefficients of f with appropriate sign. These cut out a closed
subscheme C ⊂ Spec(A[T1 . . . TN ]). Suppose (ba) ∈ graph(π ′) = Spec(A[T ]/
f (T )) is ramified in the sense of Zariski structures, then I can find (a′b1b2) ∈ Vabb

with (a′b1),(a′b2) ∈ Spec(A(T )/ f (T )) and b1, b2 distinct. Then complete (b1b2) to
an n-tuple (b1b2c′

1 . . . c′
n−2) corresponding to the roots

of f over a′. The tuple (a′b1b2c′
1 . . . c′

n−2) satisfies C , hence so does the specialisa-
tion (abbc1 . . . cn−2). Then the tuple (bbc1 . . . cn−2) satisfies (∗)with the coefficients
evaluated at a. However such a solution is unique up to permutation and corresponds
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to the roots of f over a. This shows that f has a double root at (ab) and therefore
f ′(T )|ab = 0. As (ab) lies inside Spec(A[T ]/ f (T ))d , this contradicts the fact that
f ′ is invertible in A[T ]/ f (T ))d .

We also review some facts about algebraic multiplicity and show that algebraic
multiplicity is preserved by etale morphisms.

Definition 1.8 Given projective varieties X1, X2 and a finite morphism f : X1 →
X2, the algebraic multiplicity multalg

a f (a)(X1/X2) of f at a ∈ X1 is length(Oa,X1/

f ∗m f (a)) where m f (a) is the maximal ideal of the local ring O f (a).

Remark 1.9 Note that this is finite, by the fact that finite morphisms have finite
fibres and the ring Oa,X1/ f ∗m f (a) is a localisation of the fibre f −1( f (a)) ∼=
R( f −1(U )) ⊗R(U ) L ∼= R( f −1(U ))/m f (a) where U is an affine subset of X2 con-
taining f (a).

We now have the following.

Theorem 1.10 (Algebraic multiplicity is preserved by etale morphisms) Given
finite morphisms f : X3 → X2 and g : X2 → X1 with f etale. If a ∈ X3, then
multalg

a,g f (a)(X3/X1) = multalg
f (a),g f (a)(X2/X1).

Proof This result is essentially given in [15]. Let O∧
f (a),X2

be the Henselisation
of the local ring at f (a). By base change, we have an etale morphism f ′ : X ′ =
X3 ×X2 Spec(O∧

f (a)) → Spec(O∧
f (a)). By the definition of an etale morphism given

above, we may write this cover locally in the form Spec(O∧
f (a)

[x1,...,xn ]
f1,..., fn

), with

det ( ∂ fi

∂x j
) �= 0 at each closed point in the fibre over f (a). At the closed point a,

let ai be the residues of the xi in L , then we have that (a1, . . . an) is a common
root for { f̄1, . . . , f̄n} where f̄i is obtained by reducing fi with respect to the maxi-
mal ideal m f (a),X2 of O∧

f (a). As O∧
f (a) is Henselian, by the above, and the determi-

nant condition, we can lift the roots ai to roots αi of the fi in O∧
f (a). We therefore

obtain a subscheme Z = Spec(O∧
f (a)

[x1,...,xn ]
<x1−α1,...,xn−αn

>) of X ′ which is isomorphic
to Spec(O∧

f (a)) under the restriction of f . Let Q be the OX ′ ideal defining Z , we
then have that ma,X ′ = f ∗m f (a),X2 ⊕ Qa . As f is etale, by (∗∗) after Definition 1.1
above, ma,X ′ = f ∗m f (a),X2 , therefore Qa = 0 and by Nakayama’s lemma Q = 0 in
an open neighborhood of a in X ′. This gives that Z = X ′ in an open neighborhood
of a. Hence we obtain the sequence O f (a),X2 → f ∗ Oa,X3 →i∗ Oa,X ′ (***) where
the map i∗ f ∗ is the inclusion of O f (a),X2 inside O∧

f (a),X2
. Now if n ⊂ m f (a),X2 is

the pullback g∗mg f (a),X1 , we have that length(O f (a),X2/n) = length(O∧
f (a),X2

/n),
hence the result follows by (∗ ∗ ∗) as required. �



730 T. de Piro

2 Zariski Multiplicity

Wework in the context of Theorem 3.3 in [7]. Namely, W (we used the notation V in
[7]) will denote a smooth projective variety defined over an algebraically closed field
L , considered as a Zariski structure with closed sets given by algebraic subvarieties
defined over L . All notions connected to the definition of Zariski multiplicity will
come from a fixed specialisation map π : W (Kω) → W (L) where Kω denotes a
"universal" algebraically closed field containing L = K0. We consider D a smooth
subvariety of some cartesian power W m and a finite cover, with respect to projection
onto the first coordinate, F ⊂ D × W k , all defined over L (*). This allows us tomake
sense of Zariskimultiplicity. In general,we canmove freely betweenZariski structure
notation and algebraic geometry notation. Clearly (∗) makes sense algebraically.
Conversely, if X and Y denote fixed projective varieties defined over L with Y
smooth and a finite morphism f : X → Y over L is given , then we can reduce
to the situation of (∗) by taking F to be graph( f ) ⊂ X × Y with the projection
map onto the second factor and W to be the corresponding projective space Pn(L)

where X, Y ⊂ Pn(L). We can even take W to be the 1-dimensional Zariski structure
P1(L) by using the embedding of Pn(L) into the N ’th Cartesian power of P1(L)

for sufficiently large N .
We use the definition of Zariski multiplicity for irreducible finite covers, see

Definition 1.4 and also given in 4.1 of [7]. We will also require the following gener-
alisation.

Definition 2.1 Let F ⊂ D × W k be an equidimensional, finite cover of smooth D,
with irreducible components C1, . . . , Cn . Then for (ab) ∈ F , we define
Multab(F/D) = ∑

(ab)∈Ci
Multab(Ci/D).

Clearly this is well defined using the definition of Zariski multiplicity for irre-
ducible covers. However, until Lemma 2.10, the assumption that F is irreducible
will be in force.

Lemma 2.2 (Zariski multiplicity is multiplicative over composition) Suppose that
F1, F2 and F3 are smooth, irreducible, with F2 ⊂ F1 × W k and F3 ⊂ F2 × W l finite
covers. Let (abc) ∈ F3 ⊂ F1 × W k × W l. Then multabc(F3/F1) = multab(F2/F1)

multabc(F3/F2).

Proof To see this, let m = multab(F2/F1) and n = multabc(F3/F2). Choose a′ ∈
Va ∩ F1(Kω)generic over L . Bydefinition,wecanfinddistinctb1 . . . bm inW k(Kω) ∩
Vb such that F2(a′, bi )holds.As F2 is afinite cover of F1,wehave thatdim(a′bi/L) =
dim(a′/L) = dim(F1) = dim(F2), so each (a′bi ) ∈ Vab ∩ F2 is generic over L .
Again by definition, we can find distinct ci1 . . . cin in W l(Kω) ∩ Vc such that
F3(a′bi ci j ) holds. Then the mn distinct elements (a′bi ci j ) are in Vabc, so by def-
inition of multiplicity multabc(F3/F1) = mn as required. �

Lemma 2.3 Let hypotheses be as in the above lemma with the extra condition that
the cover F3/F2 is etale. Then for (abc) ∈ F3, multabc(F3/F1) = multab(F2/F1)
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Proof This is an immediate consequence of Lemma 2.2 and Theorem 1.6. �

Lemma 2.4 (Zariski multiplicity is summable over specialisation) Suppose that
F ⊂ D × W k is a finite irreducible cover with D smooth. Suppose (ab) ∈ F,
a′ ∈ Va ∩ D and a′′ ∈ Va′ ∩ D with a′′ generic over L. Then

Multab(F/D) = �b′∈Vb∩F(a′)Multa′b′(F/D)

where F(a′) = {y ∈ F : pr(y) = a′} and pr : F → D is a projection.

Proof Suppose F(a′′b1), . . . F(a′′bn) hold with bi ∈ Vb, so {b1, . . . , bn}witness the
fact that Multab(F/D) = n. Write {b1, . . . bn} as {b11, . . . , b1m1 , b21, . . . , b2m2 , . . . ,

bi1, . . . bi j , . . . , bimi , . . . , bnmn } (*), where bi j maps to ai in the specialisation taking
a′′ to a′. To prove the lemma, it is sufficient to show that F(a′y) ∩ Vb = {a1, . . . , an}
and Mult(a′ai )(F/D) = mi . The second statement just follows from the fact that a′′
is generic in D over L in Va′ . To prove the first statement, suppose we can find an+1

with F(a′an+1) and an+1 ∈ Vb but an+1 /∈ {a1, . . . an}. By Theorem 3.3 in [7], we
can find c with F(a′′c) and (a′′c) specialising to (a′an+1). As an+1 ∈ Vb, (a′an+1)

specialises to (ab), hence so does (a′′c). Therefore, c must witness the fact that
Multab(F/D) = n and appear in the set {b1, . . . , bn}. This clearly contradicts the
arrangement of {b1, . . . , bn} given in (∗). �

Definition 2.5 Let F ⊂ U × V × W k be an irreducible finite cover of U × V with
U and V smooth.

Given (u, v, x) ∈ F we define;

Le f t Multu,v,x (F/D) = Card(Vx ∩ F(u′, v)) for u′ ∈ Vu ∩ U generic over L .

Right Multu,v,x(F/D) = Card(Vx ∩ F(u, v′)) for v′ ∈ Vv ∩ V generic over L .

We first show that both left and right multiplicity are well defined. In order
to see this, observe that the fibres F(u, V ) and F(U, v) are finite covers of V
and U respectively with U and V smooth. Moreover, the fibres F(u, V ) and
F(U, v) are equidimensional covers of V and U respectively. In order to see
this, as U is smooth, it satisfies the presmoothness axiom with the smooth pro-
jective variety W k given in Definition 1.1 of [7]. The fibre F(u, V ) = F ∩ (W k ×
{u} × V ). By presmoothness, each irreducible component of the intersection has
dimension at least dim(F) + dim(W k × V ) − dim(U × V × W k) = dim(F) −
dim(U ) = dim(V ). As F(u, V ) is a finite cover of V , it has exactly this dimen-
sion. Now we can use the definition of Zariski multiplicity given in Definition 2.1.

We then claim the following.

Lemma 2.6 (Factoring Multiplicity) In the situation of the above definition, we
have that;
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Multu,v,x (F/U × V ) = �x ′∈(Vx ∩F(y,u′,v)) Right Multx ′,u′,v(F/U × V ) for u′
generic in U over L.

Multu,v,x (F/U × V ) = �x ′∈(Vx ∩F(y,u,v′))Le f t Multx ′,u,v′(F/U × V ) for v′
generic in V over L.

Proof We just prove the first statement, the proof of the second is apart from
notation identical. By the construction in Sect. 2 and Lemma 3.2 of [7], we can
choose algebraically closed fields L = K0 ⊂ Kn1 ⊂ Kn2 ⊂ Kω, and tuples u′ ∈
Kn1 , v′ ∈ Kn2 such that u′ is generic in U over L , v′ is generic in V over
Kn1 with specialisations π1 : Pn(Kn1) → Pn(L) and π2 : Pn(Kn2) → Pn(K1) such
that π2(u′v′) = (u′v) and π1(u′v) = (uv). Now dim(u′v′/L) = dim(v′/L(u′)) +
dim(u′/L) = dim(V ) + dim(U ), hence u′v′ is generic inU × V over L . Therefore
Multu,v,x = Card(Vx ∩ F(u′v′)). Let S = {y11, . . . , y1m1 , . . . , yi ji , . . . , yn1, . . . ,

ynmn } be distinct elements in Vx ∩ W k witnessing this multiplicity such that for 1 ≤
ji ≤ mi , π2(yi ji ) = zi ∈ Vx ∩ W k . It is sufficient to show that Right Multu′v,zi (F/U
× V ) = mi and {z1, . . . zn} enumerates Vx ∩ F(y, u′, v). The first statement follows
as v′ ∈ Vv ∩ V is generic in V over L(u′). For the second statement, suppose that
we can find zn+1 ∈ Vx ∩ F(y, u′, v) with zn+1 /∈ {z1, . . . zn}. Consider F(u′, V ) as a
finite cover of V , defined over L(u′), so by the above F(u′, V ) is an equidimensional,
see Definition 2.9 finite cover of V . Then, as v′ was chosen to be generic in V over
L(u′), choosing an irreducible component of F(u′, V ) passing through (zn+1, u′v),
by the lifting result of Theorem 3.3 in [7], we can find yn+1 ∈ Vzn+1 ∩ W k such that
F(yn+1, u′, v′). Clearly, yn+1 ∈ S which contradicts the definition of S. �

Theorem 3.3 of [7] does not hold in the case when D fails to be smooth. However,
in the case of etale covers, we still have the following result;

Lemma 2.7 Lifting Lemma for Etale Covers

Let F ⊂ D × W k be an etale cover of D defined over L, with the projection map
denoted by f . Then given a ∈ D, (ab) ∈ F and a′ ∈ Va ∩ D generic over L, we can
find b′ ∈ Vb such that F(a′, b′) holds. Moreover b′ is unique, hence Multab(F/D) =
1. Moreover, in the situation of Lemma 2.3, without requiring that F2 is smooth, we
have that for (abc) ∈ F3, multabc(F3/F1) = multab(F2/F1).

Proof Using the definition of etale given in Sect. 1 above, we can assume that the
cover is given algebraically in the form f ∗ : L[D] → L[D] [x1,...,xn ]

f1,..., fn
with det ( ∂ fi

∂x j
)i j

(x) �= 0 for all x ∈ F . So we can present the cover in the form f1(x, y) = 0, f2(x, y)

= 0, . . . , fn(x, y) = 0, with y in D and x in An(L). Let Lm be the algebraic closure
of the field generated by L and ḡ(a) where ḡ is a tuple of functions defining D
locally. Consider the system of equations f1(x, a) = f2(x, a) = . . . = fn(x, a) = 0
defined over Lm . Then this system is solved by b in Lm with the property that
det ( ∂ fi

∂x j
)i j (b) �= 0 (*). Now suppose that a′ ∈ Va ∩ D is chosen to be generic over

L . By the construction given in Lemma 2.2 of [7], we may assume that a′ lies
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in Ls[[t1/r ]], the formal power series in the variable t1/r for some algebraically
closed field Ls extending Lm . This is a henselian ring, hence if we consider the
system of equations f1(x, a′) = f2(x, a′) = . . . = fn(x, a′) = 0 with coefficients
in Ls[[t1/r ]], by the fact that the system specialises to a solution in Ls with the
condition (*) we can find a solution b′ in Ls[[t1/r ]]. Then (a′b′) lies in F and by
construction b′ ∈ Vb. The uniqueness result follows from the proof of Theorem 1.6.
For the last part, suppose that multab(F2/F1) = n, then we can find a′ ∈ Va ∩ F1

generic over L and {b1, . . . bn} ∈ Vb ∩ W k distinct such that F(a′, bi ) holds. Each
(a′bi ) is generic in F2 over L , hence by the previous part of the lemma, we can find a
unique ci ∈ Vc ∩ W l such that F3(a′bi ci ) holds. This show that multabc(F3/F1) = n
as required. �

Lemma 2.8 (Lifting Lemma for Etale Covers with Right(Left) Multiplicity) Let
hypotheses be as in Lemma 2.2, with the additional assumption that F1 = U × V ,
F2 is a smooth irreducible cover of F1 and F3 is an irreducible etale cover of F2.
Then, with notion as in Definition 2.5, given (uvbc) ∈ F3, Right Multuvbc(F3/F1) =
Right Multuvb(F2/F1). Similarly for left multiplicity.

Proof Suppose that Right Multuvb(F2/F1) = n, then for v′ ∈ Vb generic in V over
L , we can find {b1, . . . , bi , . . . bn} ∈ Vb with F2(uv′bi ) holding. For each bi we claim
that there exists a unique ci ∈ Vc such that F3(uv′bi ci ) holds. For the existence, we
can use Lemma 2.7, with the simple modification that, with the notation there, if Lm

is the algebraic closure of the field generated by ḡ(uv), then provided dim(V ) ≥ 1,
we can find v′ ∈ Vv ∩ V generic over L with uv′ ∈ Ls[[t1/r ]] for some algebraically
closed field Ls containing Lm . For the uniqueness, we can use the fact that Zariski
multiplicity is summable over specialisation, see Lemma 2.4, and the fact that for
generic (u′v′b′

i ) ∈ Vuvb ∩ F2, we can find a unique c′
i ∈ Vc such that F3(u′v′b′

i c
′
i )

holds. Finally, we claim that {b1c1, . . . , bncn} enumerate F3(uv′xy) ∩ Vbc. This is
clear by the above proof and the fact that {b1, . . . , bn} enumerates F2(uv′x) ∩ Vb.�

Definition 2.9 We say that g : F → D is an equidimensional finite cover of D if
F = ⋃

1≤i≤k Fi with Fi irreducible, dim(F) = dim(Fi ), and g : Fi → D finite.

Lemma 2.10 The following versions of the above properties hold when we consider
finite equidimensional covers, possibly with components, with the definition of Zariski
multiplicity given in Definition 2.1.

Proof For Lemma 2.3, we replace the hypotheseswith F1 is smooth irreducible, F2 is
an equidimensional finite cover of F1 and F3 is an etale cover of F2. We then claim,
using notation as in Lemma 2.2, that multabc(F3/F1) = multab(F2/F1). By defi-
nition multabc(F3/F1) = ∑

(abc)∈Ci
(multabc(Ci/F1)), where Ci are the irreducible

components of F3 passing through (abc). As F3 is an etale cover of F2, the images of
the Ci are precisely the irreducible components Di of F2 passing through (ab), each
Ci is an etale cover of Di and multab(F2/F1) = ∑

(ab)∈Di
(multab(Di/F1)). Hence,

it is sufficient to prove the result in the case when F2 and F3 are irreducible. This is
just Lemma 2.3.
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For Lemma 2.4, we replace the hypothesis with F is an equidimensional finite
cover of D. The proof then goes through exactly as in the lemmawith the observation
that if we find an+1 ∈ Vb and F(a′an+1) then we can find an irreducible component
C passing through (a′an+1) which allows us to apply Theorem 3.3 in [7] to obtain c
with C(a′′c) and (a′′c) specialising to (a′an+1).

For Definition 2.5, we alter the hypothesis to F is an equidimensional finite cover
of U × V . Again, we can use an identical proof to show that left multiplicity and
right multiplicity are well defined. The proof of Lemma 2.6 with the new hypothesis
on F is identical.

We don’t require amodified version of Lemma 2.7, the result we need is contained
in the modified proof of Lemma 2.3.

For Lemma 2.8, we alter the hypotheses to F2 is an equidimensional cover of F1

and F3 is an etale cover of F2.We then claim that for (uvb) a non-singular point of F2

and (uvbc) ∈ F3, necessarily non-singular as well, that Right Multuvbc(F3/F1) =
Right Multuvb(F2/F1) and similarily for left multiplicity. To prove this, note that as
(uvb) and (uvbc) are non-singular points, there exist unique components C and D
passing through (uvb) and (uvbc) respectively. Now replacing C and D by the open
subsets C ′ and D′ of smooth points, we can apply the definition of Right Multiplicity
and the proof of Lemma 2.8. �

3 Analytic Methods

In order to use the method of etale morphisms, which preserve Zariski multiplicity,
we need to work inside the Henselisation of local rings L[x1, . . . , xn](x1,...,xn). In the
next section, we will only need the result for the local ring in 2 variables L[x, y](x,y).

We let L[[x1, . . . , xn]] denote the ring of formal power series in n variables, which
is the formal completion of L[x1, . . . , xn](x1,...,xn) with respect to the canonical order
valuation, see for example Sect. 2 of [7]. The following is a classical result, requiring
the fact that etale morphisms are flat, used in the proof of the Artin approximation
theorem. This relates the henselisation of the ring L{x1, . . . , xn} of strictly conver-
gent power series in several variables with its formal completion L[[x1, . . . , xn]],
see [3] or [16]. Namely, that the henselisation of (L[x1, . . . xn](x1,...xn)) is equal to
L[[x1, . . . xn]] ∩ L(x1, . . . xn)

alg , where L(x1, . . . xn)
alg is the algebraic closure of

the function field L(x1, . . . xn).
This implies that

O∧
0̄,An

∼= L[[x1, . . . xn]] ∩ L(x1, . . . xn)
alg

The following result, which can be found in [4], is essential for the next section.
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Lemma 3.1 (Weierstrass Preparation) Let F(x1, . . . xn) be a polynomial in
L[x1, . . . , xn] which is regular in the variable xn. Then we have F(x1, . . . , xn) =
U (x1, . . . , xn)G(x1, . . . , xn) where U (x1, . . . , xn) is a unit in the local ring L[[x1,
. . . , xn]] and
G(x1, . . . , . . . xn) is a Weierstrass polynomial in xn with coefficients in L[[x1, . . . ,
xn−1]]

We will require the Weierstrass decomposition to hold inside the henselisation of
(L[x1, . . . , xn]), therefore we need to show that the Weierstass data can be found
inside L(x1, . . . , xn)

alg . This is achieved by the following lemma.

Lemma 3.2 (Definability of Weierstrass data) Let F(x1, . . . , xn) be a polyno-
mial with coefficients in L such that F is regular in xn, then if F(x1, . . . , xn) =
U (x1, . . . , xn)G(x1, . . . , xn) is the Weierstrass decomposition of F with G(x1, . . . ,
xn) = xm

n + a1(x1, . . . , xn−1)xm−1
n + · · · + am(x1, . . . , xn−1), and ai ∈ L[[x1, . . . ,

xn−1]],U (x1, . . . , xn) ∈ L[[x1, . . . , xn]], then ai (x1, . . . , xn−1) ∈ L(x1, . . . , xn−1)
alg

and U (x1, . . . , xn) ∈ L(x1, . . . , xn)
alg.

Proof This can be proved by rigid analytic methods. Equip L with a complete non-
trivial non-archimedean valuation v and corresponding norm ||.||v , this can be done
for example by assuming that L is a power series field of large transcendence degree
with a non-archimidean valuation, see [4, 6]. Let Tn−1(L) be the free Tate algebra
in the indeterminate variables x1, . . . , xn−1 over L , that is the subalgebra of strictly
convergent power series in L[[x1, . . . , xn−1]]. By the proof ofWeierstrass preparation
in [4], as F ∈ Tn−1(L)[xn], the coefficients ai lie in Tn−1(L) and U (x1, . . . , xn) ∈
Tn−1(L)[xn]. Now choose (u1, . . . un−1) ⊂ L transcendental over the coefficients of
F with max({||ui ||}) ≤ 1. Then if s1(ū), . . . , sm(ū) denote the roots of F(ū, xn)

with ||si (ū)|| ≤ 1, then both U (ū, si (ū)) and G(ū, si (ū)) define elements of L and
moreover, by a theorem in [16], we have that the coefficients ai (ū) are symmetric
functions of the si (ū). Hence the ai (ū) belong to L(ū)alg . As ū was transcendental,
we have that each ai ∈ L[x1, . . . , xn−1]alg . AsU (x1, . . . xn) = F/G(x1, . . . , xn), we
clearly have that U (x1, . . . , xn) ∈ L[x1, . . . , xn]alg as well. �

4 Families of Curves in P2(L)

We consider the family Qd of projective curves in P2(L) with degree d. An element
of Qd may be written;

∑

0≤i+ j≤d

ai j (X/Z)i (Y/Z) j = 0

which, rewriting in homogenous form, becomes;

∑

0≤i+ j≤d

ai j X i Y j Zd−(i+ j) = 0
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For ease of notation, we will use affine coordinates x = X/Z and y = Y/Z . More
generally, if we give an affine cover, we implicitly assume that it can be projectivized
by taking ȳ = (y1, . . . , yn) = (Y1/Z , . . . , Yn/Z). As the notion of Zariski multiplic-
ity is local, this will not effect our calculations.

Now consider two such families Qd and Qe. Then we have the cover obtained by
intersecting degree d and degree e curves

Spec(L[x, y, ui j , vi j ]/ < s(ui j , x, y), t (vi j , x, y) >) → Spec(L[ui j , vi j ]).(∗)

where

s(ui j , x, y) =
∑

0≤i+ j≤d

ui j x
i y j

t (vi j , x, y) =
∑

0≤i+ j≤e

vi j x
i y j

We denote the parameter space for degree d curves by U and the parameter space
for degree e curves by V . These are affine spaces of dimension (d + 1)(d + 2)/2
and (e + 1)(e + 2)/2 respectively. Both Qd and Qe are irreducible. The cover (*)
is generically finite, that is there exists an open subset U ′ ⊂ Sp(L[ui j , vi j ]) for
which the restricted cover has finite fibres. Throughout this section, we will denote
the base space of the cover by U × V , bearing in mind that we implicitly mean
by this (U × V ) ∩ U ′. Now, given 2 fixed parameters sets ū and v̄, with (ū, v̄) ∈
U ′, corresponding to curves Cū and Cv̄ , the algebraic multiplicity of the cover (∗)

at (00, ū, v̄) is exactly the intersection multiplicity I (Cū, Cv̄ , 00) of the curves at
(00). The cover (*) is equidimensional as U × V satisfies the presmoothness axiom
with the smooth projective variety P2(L). Restricting to a finite cover over U ′, by
definition 2.1 we can also define the Zariski multiplicity of the cover at the point
(00, ū, v̄). The main result that we shall prove in this paper is the following, which
generalises an observation given in [12].

Theorem 4.1 In all characteristics, the algebraic multiplicity and Zariski multiplic-
ity of the cover (∗) coincide at (00, ū, v̄).

Definition 4.2 We say that a monic polynomial p(x, ȳ) is Weierstrass in x if
p(x, ȳ) = xn + · · · + q j (ȳ)xn− j + · · · + qn(ȳ) with q j (0̄) = 0.

Definition 4.3 Let F(x, ȳ) be a polynomial in x with coefficients in L[ȳ]. We say
the cover

Spec(L[x ȳ]/ < F(x, ȳ) >) → Spec(L[ȳ])

is generically reduced if for generic ū ∈ Spec(L[ȳ]), F(x, ū) has no repeated
roots.
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Definition 4.4 Let F → U × V be a finite cover with U and V smooth, such that
for (ū, v̄) ∈ U × V the fibre F(ū, v̄) consists of the intersection of algebraic curves
Fū, Fv̄ . We call the family sufficiently deformable at (ū0, v̄0) if there exists ū′ ∈ U
generic over L such that Fū′ intersects Fv̄0 transversely at simple points.

We now require a series of lemmas.

Lemma 4.5 Let F(x, ȳ) be a Weierstrass polynomial in x with F(0, 0̄) = 0 then
algebraic multiplicity and Zariski multiplicity coincide at (0, 0̄) if the cover

Spec(L[x ȳ]/ < F(x, ȳ) >) → Spec(L[ȳ])

is generically reduced.

Proof Wehave that F(x, ȳ) = xn + q1(ȳ)xn−1 + . . . + qn(ȳ)where qi (0̄) = 0. The
algebraic multiplicity is given by length(L[x]/F(x, 0̄)) = ord(F(x, 0̄) = n in the
ring L[x] with the canonical valuation. We first claim that the Zariski multiplicity is
the number of solutions to xn + q1(ε̄)xn−1 + . . . + qn(ε̄) = 0 (†), where ε̄ is generic
in V0̄. For suppose that (a, ε̄) is such a solution, then F(a, ε̄) = 0 and by special-
isation F(π(a), 0̄) = 0. As F is a Weierstrass polynomial in x , π(a) = 0, hence
a ∈ V0, giving the claim. We have that Disc(F(x, ȳ)) = Resȳ(F, ∂ F

∂x ) is a regular
polynomial in ȳ defined over L . By the fact that the cover is generically reduced,
this defines a proper closed subset of Spec(L[ȳ]). Therefore, Disc(F(x, ȳ))|ε̄ �= 0,
hence (†) has no repeated roots. This gives the lemma. �

Lemma 4.6 Let F(x, ȳ) be any polynomial with F(x, 0̄) �= 0 and F(0, 0̄) = 0. Then
if the cover Spec(L[x, ȳ]/ < F(x, ȳ) >) → Spec(L[ȳ]) is generically reduced, the
Zariski multiplicity at (0, 0̄) equals ord(F(x, 0̄)) in L[x].
Proof By theWeierstrass Preparation Theorem, Lemma 3.1, we canwrite F(x, ȳ) =
U (x, ȳ)G(x, ȳ) with U (x, ȳ), G(x, ȳ) ∈ L[[x, ȳ]], G(x, ȳ) a Weierstrass polyno-
mial in x and deg(G) = ord(F(x, 0̄)), see also the more closely related state-
ment given in [2]. By Lemma 3.2, we may take the new coefficients to lie inside
the Henselized ring L[x, ȳ]∧

0̄
, hence inside some finite etale extension L[x, ȳ]ext

of L[x, ȳ] (possibly after localising L[x, ȳ] corresponding to an open subset of
Spec(L[x, ȳ]) containing (0, 0̄)). Now we have the sequence of morphisms;

Sp(L[x, ȳ]ext/U G) → Spec(L[x, ȳ]/F) → Spec(L[ȳ])

The left hand morphism is etale at 0̄, hence by Lemma 2.3 or Lemma 2.7, to
compute the Zariski multiplicity of the right hand morphism, we need to compute
the Zariski multiplicity of the cover

Spec(L[x, ȳ]ext/U G) → Spec(L[ȳ])

at (0, 0̄)li f t , themarked point in the cover above (0, 0̄). Choose ε̄ ∈ V0̄, the fibre of the
cover is given formally analytically by L[[x, ȳ]]/ < U G > ⊗L[ȳ],ȳ �→ε̄ L , hence by
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solutions to U (x, ε̄)G(x, ε). By definition of Zariski multiplicity, we consider only
solutions (x ε̄) inV(0,0̄)li f t . AsU (x, ȳ) is a unit in the local ring L[x, ȳ]ext

(0,0̄)li f t , wemust

have U (x, ε̄) �= 0 for such solutions, otherwise by specialisation U ((0, 0̄)li f t ) = 0.
Hence, the solutions are given by G(x, ε̄) = 0. Now, we use the previous lemma to
give that the Zariski multiplicity is exactly deg(G) as required. �

Now return to the cover

Sp(L[x, y, ui j , vi j ]/ < s(ui j , x, y), t (vi j , x, y) >) → Sp(L[ui j , vi j ]) (*)

We will show below, Lemma 4.12, that this is a sufficiently deformable family at
(ū0, v̄0) when Cū0 and Cv̄0 define reduced curves. We claim the following.

Lemma 4.7 Suppose parameters ū0 and v̄0 are chosen such that Cū0 and Cv̄0 are
reduced Weierstrass polynomials in x. Then the Zariski multiplicity of the cover (∗)

at (0, 0, ū0, v̄0) equals the intersection multiplicity I (Cū0 , Cv̄0 , (0, 0)) of Cū0 and
Cv̄0 at (0, 0).

Proof Introduce new parameters ū′ and v̄′. Let Cū′
ū0 and C v̄′

v̄0
denote the curves Cū0

and Cv̄0 deformed by the parameters ū′ and v̄′ respectively. That is Cū′
ū0 is given by

the new equation�1≤i+ j≤d(u0
i j + u′

i j )xi y j . Let F(y, ū′, v̄′) = Res(Cū′
ū0 , C v̄′

v̄0
). Then,

F(0, 0̄, 0̄) = Res(s(u0
i j , x, 0), t (v0

i j , x, 0)) = 0

asCū0 andCv̄0 areWeierstrass in x and share a common solution at (0, 0). By a result
due to Abhyankar, see for example [1], ordy(F(y, 0̄, 0̄))=�x I (Cū0 , Cv̄0 , (x0)) at
common solutions (x, 0) to Cū0 and Cv̄0 over y = 0. As Cū0 and Cv̄0 are Weier-
strass polynomials in x , this is just I (Cū0 , Cv̄0 , (0, 0)). By the previous lemma and
the fact that F(y, ū, v̄) is generically reduced (see argument (†) below), it is there-
fore sufficient to prove that the Zariski multiplicity of the cover (∗) at (00, ū0, v̄0)

equals the Zariski multiplicity of the cover Spec(L[y, ū′, v̄′]/ < F(y, ū′, v̄′) >) →
Spec(L[ū′, v̄′]) (**) at (0, 0̄, 0̄). Suppose theZariskimultiplity of (∗∗) equalsn. Then
there exist distinct y1, . . . , yn ∈ V0 and (δ̄, ε̄) generic in V(0̄,0̄) ∩ U × V such that
F(yi , δ̄, ε̄) holds. Consider Q(ū′, v̄′) = Res(F(y, ū′, v̄′), ∂ F/∂y(y, ū′, v̄′)). This
defines a closed subset of U × V defined over L , we claim that this in fact proper
closed (†). By the fact that the family is sufficently deformable at (ū0, v̄0), we
can find (ū, v̄0) such that Cū intersects Cv̄0 transversely at simple points. With-
out loss of generality, making a linear change of coordinates, we may suppose
that for there do not exists points of intersection of the form (x1y) and (x2y)

for x1 �= x2. By Abhyankar’s result, this implies that F(y, ū′, v̄0) has no repeated
roots. Then, by genericity of (δ̄, ε̄), we have that Q(δ̄, ε̄) �= 0. Hence F(yi , δ̄, ε̄) is
a non-repeated root. By Abhyankar’s result, we can find a unique xi with (xi yi )

a common solution to the deformed curves C δ̄
ū0 and C ε̄

v̄0
. We claim that each

(xi yi ) ∈ V00. As C δ̄
ū0(xi yi ) = 0, by the fact (ū0, δ̄, yi ) specialises to (ū0, 0̄, 0) and

Cū0 is a Weierstrass polynomial in x , we have that π(xi ) = 0 as well. This shows
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that the Zariski multiplicity of the cover (∗), referred to at the beginning of Sect. 4,
in this case, is at least n. Suppose the Zariski multiplicity of the cover (∗) is strictly
bigger than n, then we can find generic parameters {u′, v′} ⊂ V0,0 and distinct
{(x1y1), . . . , (xn+1yn+1)} ⊂ V(0,0) ∩ Cu

u0 ∩ Cv

v0
. If, for some yi , there exist at least

2 distinct x ji , with (x ji , yi ) ∈ {(x1y1), . . . , (xn+1yn+1)}, then ordyi F(y, u′, v′) ≥ 2,
contradicting the fact that F is generically reduced. Otherwise, there exist at least
n + 1 distinct yi , corresponding to solutions F(yi , u′, v′) = 0, with yi ∈ V0, (††).
Using the fact that ordy F(y, 0, 0) = n, and using Lemma 4.6, the Zariski multiplic-
ity of the cover Spec(L[ū, v̄, y]/ < F(y, ū, v̄) >) → Spec(L[ūv̄]) at (0, 0̄0̄) is n,
contradicting (††). �

We now have the following result;

Lemma 4.8 Let Cū0 and Cv̄0 be reduced curves, having finite intersection, then the
Zariski multiplicity, see Definition 1.4, of the cover (∗) at ((0, 0), ū0, v̄0) equals the
intersection multiplicity I (Cū0 , Cv̄0 , (0, 0)) of Cū0 and Cv̄0 at (0, 0).

Proof We have Cū0 = s(u0
i j , x, y) and Cv̄0 = t (v0

i j , x, y). By making the substitu-

tions Ū = ū0 + ū and V̄ = v̄0 + v̄, we may assume that ū0 = v̄0 = 0̄. Moreover, we
can suppose that;

s(0̄i j , x, 0) �= 0 and
t (0̄i j , x, 0) �= 0.(∗∗)

This can be achieved by making the invertible linear change of variables (x ′ =
x, y′ = λx + μy)with (λ, μ) ∈ L2 andμ �= 0, noting that asCū0 andCv̄0 are curves,
for some choice of (λ, μ), the corresponding polynomials s(u0

i j , x, y) and t (v0
i j , x, y)

do not vanish identically on the line λx + μy = 0. It is trivial to check that the
transformation preserves both Zariski multiplicity and intersection multiplicity, so
our calculations are not effected.

We may then apply the Weierstrass preparation theorem, Lemma 3.1, in the ring
L[[ui j , vi j , x, y]], obtaining factorisations s(ui j , x, y) = U1(ui j , x, y)S(ui j , x, y)

and t (vi j , x, y) = U2(vi j , x, y)T (vi j , x, y) where U1 and U2 are units in the local
rings L[[ui j , x, y]] and L[[vi j , x, y]], S, T are Weierstrass polynomials in x with
coefficients in L[[ui j , y]] and L[[vi j , y]] respectively. A close inspection of the
Weierstrass preparation theorem, see [2], shows that we can obtain the following
uniformity in the parameters ū and v̄.

Namely, if U = {ui j : s(ui j , x, 0) �= 0} and V = {vi j : t (vi j , x, 0) �= 0}, are the
constructible sets for which (∗) holds, then if we let RU and RV denote the coordinate
rings of U and V , we may assume U1, U2 lie in RU [[x, y]] and the coefficients of
S, T lie in RU [[y]] and RV [[y]] respectively. By Lemma 3.2, we may assume that
U1, U2, S and T lie in a finite etale extension RU×V [x, y]ext of the algebra A =
RU×V [x, y] (again, possibly after localisation corresponding to an open subvariety
of Spec(A). Now we have the sequence of morphisms.

Spec( RU×V [x,y]ext

<U1S,U2T >
) → Spec( RU×V [x,y]

<s,t> ) → Spec(RU×V ).



740 T. de Piro

We claim that the left hand morphism is etale at the point (0̄, 0̄, (00)li f t ). This
follows from the fact that RU×V [x, y]ext is an etale extension of RU×V [x, y] and the
maximal ideal given by (0̄, 0̄, (00)li f t ) contains < U1S, U2T >. Now consider the
cover;

Spec( RU×V [x,y]ext

<U1S,U2T >
) → Spec(RU×V ) (***)

For ū, v̄ in U × V , the fibre of this cover over ū, v̄ corresponds exactly to the
intersection of the reducible curves C ′

ū and C ′
v̄ which lift the original curves Cū

and Cv̄ to an etale cover of Spec(L[xy]). By Theorem 1.10 and Lemma 2.3, in the
case when Cū0 , Cv̄0 intersect at simple points, or Lemma 2.7, for singular points of
intersection, and the corresponding Lemma 2.10 for reducible covers, it is sufficient
to show that the Zariski multiplicity of the cover (***) at (0̄, 0̄, (00)li f t ) corresponds
to the intersection multiplicity of the curves C ′

ū0
, C ′

v̄0
at (00)li f t . The idea now is to

apply Lemma 4.7 to the Weierstrass factors of C ′
ū and C ′

v̄ . This will be achieved by
the “unit removal” lemma below, Lemma 4.15. �

In order to prove the "unit removal lemma", we first require somemore definitions
and a moving lemma for curves;

Definition 4.9 Let X → Spec(L[x, y]) be an etale cover in a neighboorhood of
(0, 0), with distiguished point (0, 0)li f t . We call a curve C on X passing through
(0, 0)li f t Weierstrass if, in the power series ring L[[x, y]], the defining equation of
C may be written as a Weierstrass polynomial in x with coefficients in L[[y]].
Definition 4.10 Let F → U × V be a finite equidimensional cover of a smooth base
of parameters U × V with a section s : U × V → F . We call the cover Weierstrass
with units if the fibres F(ū, v̄) can be written as the intersection of reducible curves
C ′

ū and C ′
v̄ in an etale cover Aū,v̄ of Uū,v̄ ⊂ Spec(L[x, y]) with the distinguished

point s(ū, v̄) lying above (0, 0) and C ′
ū, C ′

v̄ factoring as Uū Fū and Uv̄ Fv̄ with Uū, Uv̄

units in the local ring Os(ū,v̄),Aū,v̄
and Fū, Fv̄ Weierstrass curves in Aū,v̄ .

Let hypotheses on F, U and V be as above. We call the cover Weierstrass if the
fibres F(ū, v̄) can be written as above but with C ′

ū, C ′
v̄ Weierstrass curves in Aū,v̄ .

We say that aWeierstrass cover (with units) factors through the family of projective
degree d and degree e curves if the cover F → U × V factors as F → F ′ → U × V
where F ′ → U × V is the finite equidimensional cover obtained by intersecting the
families Qd and Qe restricted to U and V .

Lemma 4.11 The cover (***) in Lemma 4.8 is a Weierstrass cover with units fac-
toring through the family of projective degree d and degree e curves.

Proof Clear by the above definitions. �

Lemma 4.12 Moving Lemma for Reduced Curves
Let Qd and Qe be the families of all projective degree d and degree e curves. That is,
with the usual coordinate convention x = X/Z , y = Y/Z, Qd consists of all curves
of the form s(ū, x, y) = ∑

0≤i+ j≤d ui j x i y j . Then, if ū, v̄ are chosen in L, so that the
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reduced curves Cū and Cv̄ are defined over L, if the tuple ū′ is chosen to be generic
in U over L, the deformed curve Cū′

ū intersects Cv̄ transversely at simple points.

Proof We can give an explicit calculation;

Let Cū′
ū be defined by the equation s(ū′, x, y) = ∑

0≤i+ j≤d u′
i j x

i y j and Cv̄ by
t (v̄, x, y) = ∑

0≤i+ j≤e vi j x i y j with {vi j : 0 ≤ i + j ≤ e} ⊂ L and {u′
i j : 0 ≤ i +

j ≤ d} algebraically independent over L . Let (x0y0) be a point of intersection, then
dim(x0y0/L) = 1, otherwise dim(x0y0/L) = 0 and, as L is algebraically closed,
we must have that x0, y0 ∈ L . Substituting (x0y0) into the equation s(ū′, x, y) = 0,
we get a non trivial linear dependence over L between u′

00 and u′
i j for 1 ≤ i + j ≤ d

which is impossible. Now, the locus of singular points for Cv̄ is defined over L and
hence (x0y0) is a simple point of Cv̄ . Now we further claim that s(ū′, x, y) = 0
defines a non-singular curve in P2(Kω) with transverse intersection to Cv̄ Con-
sider the conditions Sing(ū) given by ∃x0∃y0((

∂s
∂x (x0y0),

∂s
∂y (x0y0)) = (0, 0)) and

Non-Transverse(ū) by ∃x0∃y0(
∂s
∂x (x0y0)

∂t
∂y (x0y0) − ∂s

∂y (x0y0)
∂t
∂x (x0y0) = 0) By the

properness of P2(Kω), these conditions define closed subsets of the parameter space
U defined over L . We claim that this in fact a proper closed subset. This can be
proved in a number of ways. In the case where we restrict ourselves to affine curves,
the result follows from a classical result of Kleiman, see [10], as affine space A2(Kω)

is homogenous for the action of the additive group (A2(Kω),+). More generally, we
can use the moving lemma, given in [9], by observing that the class of all degree d
projective curves is closed under rational equivalence. We can also give an explicit
proof using Bertini’s theorem;

Observe that the curve Cū defines a complete linear system |Cū | corresponding
exactly to the zero loci of sections σ of the bundleOP2(d). We claim the following;

(i). The system |Cū | is base point free.

(ii). The system |Cū | separates points.

Nowwe can define amorphism�d : P2(K ) → Pd(d+3)/2(K ), by sending x ∈ P2

to the hyperplane Hx ⊂ U of curves of degree d, passing through x . By (i) and (i i),
the restriction of �d to Cv̄ is injective. By arguments on Frobenius for curves, given
in [7], we can assume that �d is an immersion. Using Bertini’s Theorem, a generic
hyperplaneHū′ of Pd(d+3)/2(K ) will intersect I m(Cv̄) transversely in simple points.
By definition of the morphism �d , and the fact that it is an immersion, the corre-
sponding curve Cū′

ū also intersects Cv̄ transversely in simple points.

One can also give an enumerative calculation, which was done in an older version
of this paper, see [5], but it seems unnecessary. �
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Remark 4.13 If we restrict the family of curves, the result in general fails. A simple
example is given by the family of all projective degree 3 curves Q0,0

3 passing through
(0, 0) with x = X/Z and y = Y/Z . If we take Cv̄ to be the cusp x2 − y3, then any
curve in Q0,0

3 will have a non-transverse intersection with Cv̄ at the origin.

Lemma 4.14 Moving Lemma for Curves with Finitely Many Marked Points
Let hypotheses be as in the previous lemma with Cū and Cv̄ defining reduced curves.
Suppose also that there exists finitely many marked points {p1, . . . , pn} on Cv̄ defined
over L. Then for ū′ ∈ U generic over L the deformed curve Cū′

ū intersects Cv̄ trans-
versely at finitely many simple points excluding the set {p1, . . . , pn}.
Proof As before, the condition that ū′ defines a curve Cū′

ū either with non-transverse
intersection to Cv̄ or passing through at least one of the points {p1, . . . , pn} is a
closed subset of U defined over L . Using the above proof and the obvious fact that
we can find a curve Cū′

ū not passing through any of the points {p1, . . . , pn}, we see
that it is proper closed. �

Lemma 4.15 Unit Removal for Reduced Curves
Let (π, s) : F → U × V be a Weierstrass cover with units factoring through projec-
tive degree d and degree e curves. Let (ū, v̄) ∈ U × V , then there exists a Weierstrass
cover (π ′, s ′) : F− → U ′ × V ′ with U ′ ⊂ U and V ′ ⊂ V open subsets, (ū, v̄) ∈
U ′ × V ′, such that Mult(ū,v̄,s(ū,v̄))(F/U × V ) = Multū,v̄,s ′(ū,v̄))(F−/U ′ × V ′).

Proof Let C ′
ū and C ′

v̄ be the Weierstrass curves with units in Aū,v̄ lifting the curves
Cū and Cv̄ . Now suppose that Multū,v̄,s(ū,v̄)(F/U × V ) = n. Then we can find
(ū′, v̄′) ∈ Vūv̄ ∩ U × V generic over L such that the deformed curve Cū′

ū intersects
C v̄′

v̄ at the n distinct points x1, . . . , xn in Vs(ū,v̄). Now using the Weierstrass fac-
torisations of Cū′

ū and C v̄′
v̄ , we claim that U ū′

ū (xi ) �= 0 and U v̄′
v̄ (xi ) �= 0. Suppose

not, then U ū′
ū (xi ) = U v̄′

v̄ (xi ) = 0 and as (ū′, v̄′, xi ) specialises to (ū, v̄, s(ū, v̄)), then
Uū(s(ū, v̄)) = Uv̄(s(ū, v̄)) = 0. This contradicts the fact that Uū and Uv̄ are units
in the local ring Os(ū,v̄),Aū,v̄

. Therefore, we must have that Fū′
ū (xi ) = F v̄′

v̄ (xi ) = 0.
This shows that Multū,v̄,s(ū,v̄)(F−/U × V ) ≥ n where F− → U × V is the cover
of U × V obtained by taking as fibres F−(ū, v̄) the intersection of the Weierstrass
factors Fū and Fv̄ . Formally, if F is defined by Spec( RU×V [x,y]ext

<U1S,U2T >
) then F− is defined

by Spec( RU×V [x,y]ext

<S,T >
). Clearly as F− ⊂ F is a union of components of F , we have

that Multū,v̄,s(ū,v̄)(F−/U × V ) ≤ n as well. This proves the lemma. �

We now complete the proof of Lemma 4.8. By unit removal, it is sufficient to
compute the Zariski multiplicity of the cover

Spec(
RU×V [x, y]ext

< S, T >
) → Spec(RU×V )

The fibre over (ū, v̄) of this cover corresponds exactly to the intersection of the
Weierstrass curves Fū and Fv̄ lifting Cū and Cv̄ . We then use Lemma 2.7, noting
that the Weierstrass factors are still reduced, see [2], to finish the result, with the
straightforward modification that we work in a uniform family of etale covers.
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We now turn to the problem of non-reduced curves. We will show the following
stronger version of Lemma 4.8.

Lemma 4.16 Let Cū0 and Cv̄0 be non-reduced curves having finite intersection,
then the Zariski multiplicity of the cover (*) at ((0, 0), ū0, v̄0) equals the intersection
multiplicity I (Cū0 , Cv̄0 , (0, 0)) of Cū0 and Cv̄0 at (0, 0).

First, we will require some more lemmas.

Lemma 4.17 Let Cū0 and Cv̄0 be reduced curves intersecting transversely at (0, 0).
Then the Zariski multiplicity, left multiplicity and right multiplicity of the cover (*)
at ((0, 0), ū0, v̄0) equals 1.

Proof First note that by Lemma 2.6, and the corresponding Lemma 2.10, and the fact
that a generic deformation C v̄′

v̄0
will still intersect Cū0 transversely by Lemma 4.12,

it is sufficient to prove the result for right multiplicity.
In order to show this we require the following result, given for analytic curves in

[2], we will only need the result for polynomials.
Implicit Function Theorem:
If G(X, Y ) is a power series with G(0, 0) = 0 then GY (0, 0) �= 0 implies there

exists a power series η(X) with η(0) = 0 such that G(X, η(X)) = 0.
In order to show that Right Mult(0,0),ū0,v̄0(F ′/U × V ) = 1,where F ′ is the family

obtained by intersecting degree d and degree e curves, we apply the implicit function
theorem to the curve Cū0 at the point (0, 0) of intersection with Cv̄0 . Let G(X, Y )

and H(X, Y ) denote the polynomials defining the curves. We have that G(0, 0) =
H(0, 0) = 0. Moreover, as the first curve is non-singular at (0, 0), we may also
assume that GY (0, 0) �= 0. Now let η(X) be given by the theorem. As the intersection
of the curves Cū0 and Cv̄0 is transverse, ordX H(X, η(X)) = 1.Now we have the
sequence of maps;

L[v̄] → L[X, Y ][v̄]
< G(u0, X, Y ), H(v̄, X, Y ) >

→ L[X ]ext [Y ][v̄]
< Y − η(X), H(v̄, X, Y ) >

.

where L[X ]ext is an etale extension of L[X ] containing η(X). Note that η(X) is
trivially algebraic over L(X). This corresponds to a sequence of finite covers F1 →
F ′(u0, V ) → Spec(L[v̄]). The left hand morphism is trivially etale at (v̄0, (00)li f t ),
hence it is sufficient to compute the Zariski multiplicity of F ′ → Spec(L[v̄]) at
(v̄0, (00)li f t ) by Lemma 2.3, or the corresponding Lemma 2.10. This is a straightfor-
ward calculation, the fibre over v̄0 consists of the scheme Spec( L[X,η(X)]

G(X,η(X))
) = Spec(L)

as ordX (H(X, η(X))) = 1, hence is etale at the point (v̄0, (00)li f t ). By Theorem 1.6,
the Zariski multiplicity is 1. �

Lemma 4.18 Let hypotheses be as in Lemma 4.17, then for any (ū′, v̄′) ∈ V(ū0,v̄0),
we have that Card(F ′(ū′, v̄′) ∩ V0,0) = 1

Proof This follows immediately from Lemmas 4.17 and 2.4. �
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Definition 4.19 For ease of notation, given curvesCū andCv̄ of degree d and degree
e intersecting at x ∈ P2(Kω), we define Multx(Cū, Cv̄) to be the corresponding
Zariski multiplicity of the cover F ′ → U × V at the point (x, ū, v̄). Similarly for
left/right multiplicity.

We can now give the proof of Lemma 4.16.

Proof Case 1. Cv̄0 is a reduced curve (possibly having components). Write Cū0

as Gn1
1 (X, Y ) . . . Gnm

m (X, Y ) = 0 with Gi the reduced irreducible components of
Cū0 with degree di passing through (0, 0). Choose ε̄11 , . . . ε̄

n1
1 , . . . ε̄

j
i , . . . ε̄1m, . . . , ε̄nm

m
independent generic in Ui , the parameter space for degree di projective curves with
ε̄

j
i ∈ Vū0

i
, where ū0

i defines Gi . By repeated application of Lemma 4.14, the deformed

curves G
ε̄

j
i

i = 0 intersect Cv̄0 transversely at disjoint sets of points We denote by Z
ε̄

j
i

those points lying in V00. Now the curve defined by
∏

i j G
ε̄

j
i

i = 0 is a deformation
C ε̄

ū0 of Cū0 . We let Z ε̄ denote the points of intersection of C ε̄
ū0 with Cv̄0 in V00. Then

we have;

Z ε̄ =
⋃

i j

Z
ε̄

j
i

Card(Z ε̄ ) =
∑

i j

Card(Z
ε̄

j
i
)

By Lemma 2.4, we have that

Le f t Mult(00)(Cū0 , Cv̄0) =
∑

x∈Z ε̄

Le f t Multx(C
ε̄
ū0 , Cv̄0)

=
∑

i, j

∑

x∈Z
ε̄

j
i

Le f t Multx(C
ε̄
ū0 , Cv̄0)(∗)

We now claim that for a point x ∈ Z
ε̄

j
i
,

Le f t Multx(C
ε̄
ū0 , Cv̄0) = Le f t Multx(G

ε̄
j
i

i , Cv̄0)(∗∗)

This follows as both the reduced curves C ε̄
ū0
and G

ε̄
j
i

i intersect Cv̄0 transversely at
x . Hence, in both cases the left multiplicity is 1, by Lemma 4.17.

Combining (∗) and (∗∗), we obtain;

Le f t Mult(00)(Cū0 , Cv̄0) =
∑

i, j

∑

x∈Z
ε̄

j
i

Le f t Multx(G
ε̄

j
i

i , Cv̄0)
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Now using Lemma 2.4 again gives that;

Le f t Mult(00)(Cū0 , Cv̄0) =
m

∑

i=1

ni Le f t Mult(00)(Gi , Cv̄0)(∗ ∗ ∗)

If we go through exactly the same calculation with Mult replacing Left Mult, we
see as well that

Mult(00)(Cū0 , Cv̄0) =
m

∑

i=1

ni Mult(00)(Gi , Cv̄0)

By Lemma 4.8, this gives

Mult(00)(Cū0 , Cv̄0) =
m

∑

i=1

ni I (Gi , Cv̄0 , (00))

By a straightforward algebraic calculation, see the references below at the end of
the proof for the required more general result, this gives

Mult(00)(Cū0 , Cv̄0) = I (Cū0 , Cv̄0 , (00))

as required.
Case 2. Both Cū0 and Cv̄0 define non-reduced curves. Write Cū0 as above and

Cv̄0 as H e1
1 . . . H en

n with Hi the reduced compoments with degree ci of Cv̄0 passing
through (00). Then H1 . . . Hn = 0 defines a reduced curve passing through (00).
Now repeat the argument in Case 1 for the curves Cū0 and H1 . . . Hn = 0. Again let
Z ε̄ be the intersection points of the deformed curve Cε

ū0
with H1 . . . Hn = 0 in V(00).

By (***) of Case 1, Lemmas 2.4 and 4.18 with the fact that the intersection of C ε̄
ū0

with H1 . . . Hn is transverse, we have;

Card(Z ε̄ ) =
m

∑

i=1

ni Mult(00)(Gi , H1 . . . Hn)

Nowusing the argument in Case 1 applied to the reduced curves Gi and H1 . . . Hn ,
we have;

Card(Z ε̄ ) =
m

∑

i=1

ni

n
∑

j=1

I (Gi , Hj , (00))(∗)

We claim that for any component Hj

Card(Hj ∩ Z ε̄ ) =
m

∑

i=1

ni I (Gi , Hj , (00))
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This follows as the deformed curve C ε̄
ū0

a fortiori intersects Hj transversely at
simple points. Therefore, again by Case 1, gives the expected multiplicity. Now,
using this together with (*), we write Z ε̄ as ∪ j Z j

ε̄ where Z j
ε̄ are the disjoint sets

consisting of the intersection of C ε̄
ū0
with Hj . Then by Lemma 2.6, we have that

Mult(00)(Cū0 , Cv̄0) =
∑

j

∑

x∈Z j
ε̄

Right Multx(C
ε̄
ū0 , Cv̄0)

We can now calculate the Right Mult term by applying Case 1 to the intersection
of Cv̄0 with the reduced curve C ε̄

ū0
at the points of intersection x ∈ Z j

ε̄ . At a point

x ∈ Z j
ε̄ , we have that

Right Multx(C
ε̄
ū0 , Cv̄0) = e j I (C ε̄

ū0 , Hj , x) = e j

as the intersection is transverse. Finally this gives;

Mult(00)(Cū0 , Cv̄0) =
m

∑

i=1

n
∑

j=1

ni e j I (Gi , Hj , (00))

By an algebraic result, see [11] for the case of complex algebraic curves, or [8]
for its generalisation to algebraic curves in arbitrary characteristics, we have

Mult(00)(Cū0 , Cv̄0) = I (Cū0 , Cv̄0 , (00))

as required. �

The following version of Bezout’s theorem in all characteristics is now an easy
generalisation from the above lemma. For curves C1 and C2 in P2(L), we let
M(C1, C2, x)denote the intersectionmultiplicity or theZariskimultiplicity,we know
from the above that the two are equivalent.

Theorem 4.20 (Non-Standard Bezout)
Let C1 and C2 be projective curves of degree d and degree e in P2(L), possibly with
non-reduced components, intersecting at finitely many points {x1, . . . , xi , . . . xn},
then we have;

n
∑

i=1

M(C1, C2, xi ) = de

.

Of course, we could just quote the algebraic result given in [10] (though this in
fact only holds for reduced curves). Instead we can give a non-standard proof, which
in many ways is conceptually simpler and doesn’t involve any algebra.
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Proof Let Qd and Qe be the families of all projective degree d and degree e curves.
Then we have the cover F → U × V with F ⊂ U × V × P2(L) obtained by inter-
secting the families Qd and Qe. We have that

n
∑

i=1

M(C1, C2, xi ) =
n

∑

i=1

Multxi ∈F(ū0,v̄0)(F/U × V )

where (ū0, v̄0) define C1 and C2. By Lemma 4.3 in [7], this equals

∑

x∈F(ū,v̄)

Multx,ū,v̄(F/U × V )

where (ū, v̄) is generic in U × V . Using, for example, the proof of Lemma 4.12,
generically independent curves Cū and Cv̄ intersect transversely at a finite number
of simple points. Hence, by Lemma 4.17, the Zariski multiplicity calculated at these
points is 1. As the cover F has degree de, there is a total number de of these points
as required. �
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