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Abstract The purely log terminal blow-ups of three-dimensional terminal toric sin-
gularities are described. The three-dimensional divisorial contractions f : (Y, E) →
(X � P) are described provided that Exc f = E is an irreducible divisor, (X � P)

is a toric terminal singularity, f (E) is a toric subvariety and Y has canonical singu-
larities.
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Introduction

Let (X � P)be a log canonical singularity and let f : Y → X be its blow-up. Suppose
that the exceptional locus of f consists of only one irreducible divisor: Exc f = E .
Then f : (Y, E) → (X � P) is called a purely log terminal blow-up, canonical blow-
up or terminal blow-up, if (1), (2) or (3) are satisfied respectively: (1) KY + E is plt
and−E is f -ample; (2)−KY is f -ample and Y has canonical singularities; (3)−KY

is f -ample and Y has terminal singularities.
The definition of plt blow-up implicitly requires that the divisor E be Q-Cartier.

Hence Y is a Q-gorenstein variety. By the inversion of adjunction (see [11, Theorem
17.6]) KE + DiffE (0) = (KY + E)|E is klt.

The importance of study of purely log terminal blow-ups is that: some very impor-
tant questions of birational geometry for n-dimensional varieties, contractions can
be reduced to the smaller dimension n − 1, using purely log terminal blow-ups
(for instance, see the papers [20–22, 26]). In dimension two, purely log terminal
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blow-ups are completely classified and the classification of two-dimensional non-
divisorial log terminal extremal contractions of local type is obtained using them
[22]. For three-dimensional varieties the first similar problem is to get the same
explicit geometric classification of three-dimensional Mori contraction of local type
as in two-dimensional case. The next problem is the first difficulty to realize this
approach.

Problem. Describe the class of all log del Pezzo surfaces, generic P1-fibrations
which can be the exceptional divisors of some purely log terminal blow-ups of three-
dimensional terminal singularities.

Suppose that f (E) = P is a point. Then we solve this problem in the case of
terminal toric singularities (Theorem 6.2). Moreover we obtain the description of plt
blow-ups of Q-factorial three-dimensional toric singularities (Theorem 6.4). Purely
log terminal and canonical blow-ups are divided into toric and non-toric blow-ups
up to analytic isomorphism. The study of non-toric plt blow-ups is reduced to the
description of plt triples (S, D, �) in dimension two (Definition 4.9).

Also we obtain the description of canonical blow-ups of three-dimensional termi-
nal toric singularities (Theorem 6.5). The study of non-toric canonical blow-ups is
reduced to the description of the following two interrelated objects: (a) toric canonical
blow-ups of (X � P) and (b) some triples (S, D, �) in dimension two.

Immediate corollary of Theorem 6.5 is that the terminal blow-ups of three-
dimensional terminal toric singularities are toric up to analytic isomorphism. This
corollary was proved in the papers [2, 6, 8] by another methods.

Suppose that f (E) is a one-dimensional toric subvariety (curve) of the toric
singularity (X � P). Then the description of plt and canonical blow-ups is given in
Theorems 3.7, 3.8, 3.9 and in Corollary 3.10.

I am grateful to Professors Yu.G. Prokhorov and I.A. Cheltsov for valuable
advices.

1 Preliminary Results and Facts

All varieties are algebraic and are assumed to be defined overC, the complex number
field. The main definitions, notations and notions used in the paper are given in [9,
11, 22]. See [1, Sect. 3.10] on minimal model program with scaling. The definition
of Diff and its main properties are given in the papers [25, Sect. 3], [11, Chap. 16].
By (X � P) denote the algebraic germ of the variety X at the point P .

A smooth point is a special case of singularity by our definition. For example, Du
Val singularity of type A0 is a smooth point.

Let f : Y ��� X be a birational map and let D be a divisor on the variety X . By
DY denote the proper transform of D on the variety Y . If Y = ˜X , Y = X ′ or Y = X ,
then for notational convenience we use the notation ˜D = D

˜X , D′ = DX ′ or D = DX
respectively. The similar notation is used for subvarieties of X .
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The contraction f : Y → X is a projective morphism of the normal variety such
that f∗OY = OX . A blow-up is a birational divisorial contraction. A Q-factoriality
means analytical Q-factoriality in this paper.

The proper irreducible subvariety � of X is said to be a center of canonical singu-
larities of (X, D), if there exist the birational morphism f : Y → X and the excep-
tional divisor E ⊂ Y such that � = f (E) and a(E, D) ≤ 0. The set of canonical
singularity centers of (X, D) and X is denoted by CS(X, D) and CS(X) respec-
tively.

By our definition the toric varieties, toric morphisms are considered up to ana-
lytic isomorphism (analytical identification), if they are not explicitly defined by
fans. Shokurov’s (hypothetical) criterion on the characterization of toric varieties is
formulated in [26, Chap. 6]. By definition of weighted blow-up, its center is a point
always, that is, its every weight is positive.

Wewrite all singularities of surface in brackets. For example, the notation S(A1 +
1
5 (1, 2)) means that the surface S has two singular points of types A1 and 1

5 (1, 2)
exactly.

We actively use a structure of the local toric conic bundle f : S → (C � P),
where dim S = 2 and ρ(S/C) = 1. By [22, Lemma 7.1.11] the surface S has two
singularities of types 1

r (1, q) and 1
r (1,−q) over the point P only, where r ≥ 1.

Proposition 1.1 ([11, Lemma 6.2]) Let fi : Yi → X be two divisorial contractions
of normal varieties, where Exc fi = Ei are irreducible divisors and −Ei are fi -
ample divisors. If E1 and E2 define the same discrete valuation of the function field
K(X), then the contractions f1 and f2 are isomorphic.

Proposition 1.2 Let fi : Yi → (X � P) be two divisorial contractions to a point P,
where Exc fi = Ei are irreducible divisors. Suppose that the varieties Yi , X have log
terminal singularities, E1 and E2 define the same discrete valuation of the function
field K(X), the divisor −E1 is f1-ample, the divisor −E2 is not f2-ample. Then there
exists the small flopping contraction (with respect to KY2) g : Y2 → Y1 such that f2
and f1 ◦ g are isomorphic.

Proof Let KY2 = f ∗
2 K X + aE2. If a > 0, then we put L = −KY2 . If a ≤ 0, then

we put L = −(KY2 + (−a + ε)E2), where ε is a sufficiently small positive ratio-
nal number. Since −E2 is a f2-nef divisor, then the linear system |nL| is free
over X for n 
 0 and gives a contraction g : Y2 → Y ′

2 over X by the base point
free theorem [9, Remark 3.1.2]. A curve C is exceptional for g if and only if
L · C = E2 · C = KY2 · C = 0. Therefore g is a flopping contraction and Y ′

2
∼= Y1 by

Proposition 1.1. �

The next example shows the idea of Proposition 1.2.

Example 1.3 Let (X � P) ∼= ({x1x2 + x2
3 + x4

4=0} ⊂ (C4
x1x2x3x4 , 0)). Consider the

divisorial contraction f1 : Y1 → (X � P) induced by the blow-up of the maximal
ideal of the point (C4 � 0). Then Exc f1 ∼= P(1, 1, 2), the variety Y1 has only one sin-
gular point denoted by Q, and (Y1 � Q) ∼= ({y1y2 + y23 + y24 = 0} ⊂ (C4

y1 y2 y3 y4 , 0)).
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This singularity is notQ-factorial and let g : Y2 → (Y1 � P) be itsQ-factorialization.
We obtain the divisorial contraction f2 : Y2 → (X � P), whereY2 is a smooth 3-fold,
Exc f2 ∼= F2, and −KY2 is not a f2-ample divisor.

Definition 1.4 Let (X � P) be a log canonical singularity and let f : Y → X be its
blow-up. Suppose that the exceptional locus of f consists of only one irreducible
divisor: Exc f = E . Then f : (Y, E) → (X � P) is called a canonical blow-up if
−KY is f -ample and Y has canonical singularities. Note that the definition of canon-
ical blow-up implies that (X � P) is a canonical singularity. The canonical blow-up
is said to be a terminal blow-up if Y has terminal singularities.

Remark 1.5 Using the notation of Definition 1.4, we have the following properties
of canonical blow-ups.

(1) The definition of canonical (resp. terminal) blow-up implies easily that (X � P)

is a canonical (resp. terminal) singularity.
(2) The divisor −E is f -ample and a(E, 0) > 0.
(3) Let fi : (Yi , Ei ) → (X � P) be two canonical blow-ups. If E1 and E2 define the

same discrete valuation of the function field K(X) then the blow-ups f1 and f2
are isomorphic by Proposition 1.1.

(4) Let (X � P) be a Q-factorial singularity. Then Y is a Q-factorial variety also,
ρ(Y/X) = 1 and ρ(E) = 1 [4, Sect. 5].

Theorem 1.6 Let (X � P) be a canonical singularity and (X � P, D) be a pair
with canonical singularities, where D is a boundary. Assume that a(E, D) = 0
and a(E, 0) > 0 for some irreducible exceptional divisor E. Then there exists a
canonical blow-up such that its exceptional divisor and E define the same discrete
valuation of the function field K(X). Moreover, if E is a unique exceptional divisor
with a(E, D) = 0 then its canonical blow-up is a terminal blow-up.

Proof By Proposition 21.6.1 of the paper [11] we consider the birational contraction
˜f : (˜Y , ˜E) → (X � P) with the following three properties:

(1) ˜E is a unique irreducible exceptional divisor of Exc ˜f ;
(2) ˜E and E define the same discrete valuation of the function field K(X);
(3) if (X � P) is Q-factorial then ρ(˜Y/X) = 1 and Exc ˜f = ˜E .
The proof of Proposition 21.6.1 of [11] holds in any dimension since we can

apply MMP with scaling to prove it. Let ˜f be not the required canonical blow-up.
If Exc ˜f = ˜E then by Proposition 1.2 we have ˜f ∼= f ◦ g, where f is the required
blow-up. Consider the remaining case when Exc ˜f = ˜E ∪ �, where � = ∅ and
codim

˜Y � ≥ 2. Let H be a general Cartier divisor containing the set ˜f (Exc ˜f ).
Then K

˜Y + D
˜Y + εH

˜Y ≡ −εa ˜E over X , where a > 0. For 0 < ε � 1 we apply
K

˜Y + D
˜Y—MMP with scaling of H

˜Y . We obtain a birational map ϕ : ˜Y ��� Y ′,
which is a composition of log flips, and we also obtain a divisorial contraction
f ′ : Y ′ → X such that Exc f ′ = E ′, where E ′ is an irreducible divisor. Therefore,
by Proposition 1.2 we have the required canonical blow-up. �
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Definition 1.7 Let (X � P) be a log canonical singularity and let f : Y → X be its
blow-up. Suppose that the exceptional locus of f consists of only one irreducible
divisor: Exc f = E . Then f : (Y, E) → (X � P) is called a purely log terminal
blow-up if the divisor KY + E is purely log terminal and −E is f -ample.

Remark 1.8 Definition1.7 implicitly requires that the divisor E beQ-Cartier.Hence
Y is aQ-gorenstein variety. By the inversion of adjunction KE + DiffE (0) = (KY +
E)|E is klt.

Remark 1.9 Using the notation of Definition 1.7 we have the following properties
of purely log terminal blow-ups.

(1) The variety f (E) is normal [19, Corollary 2.11].
(2) If (X � P) is a log terminal singularity then−(KY + E) is a f -ample divisor. A

purely log terminal blow-up of log terminal singularity always exists byTheorem
1.5 of [13] since we can apply MMP with scaling to prove it (see also Theorem
1.10).

(3) If (X � P) is a strictly log canonical singularity then a(E, 0) = −1. A purely
log terminal blow-up of strictly log canonical singularity exists if and only if
there is only one exceptional divisor with discrepancy −1 [13, Theorem 1.9],
since we can apply MMP with scaling to prove Theorem 1.9 of [13].

(4) If (X � P) is a Q-factorial singularity then Y is a Q-factorial variety also,
ρ(Y/X) = 1 and ρ(E) = 1 [19, Remark 2.2], [4, Sect. 5]. Hence, forQ-factorial
singularity we can omit the requirement that −E be f -ample in Definition 1.7
because it holds automatically.

(5) Let fi : (Yi , Ei ) → (X � P) be two purely log terminal blow-ups. If E1 and E2

define the same discrete valuation of the function field K(X) then the blow-ups
f1 and f2 are isomorphic by Proposition 1.1.

(6) Let −E be not a f -ample divisor in Definition 1.7. Then such blow-up can
differ from some plt blow-up by a small flopping contraction only (with respect
to the canonical divisor KY ) [13, Corollary 1.13]. This statement is similar to
Proposition 1.2.

(7) Let f : (Y, E) → (X � P) be a toric blow-up of a toricQ-gorenstein singularity.
Assume that Y is aQ-gorenstein variety and Exc f = E is an irreducible divisor.
It is obvious that KY + E is a plt divisor. Therefore, if (X � P) is Q-factorial
singularity then f is a plt blow-up.

Theorem 1.10 ([13, Theorem 1.5], [19, Proposition 2.9]) Let X be a kawamata log
terminal variety and let D = 0 be a boundary on X such that (X, D) is log canonical,
but not purely log terminal. Then there exists an inductive blow-up f : Y → X such
that:

(1) the exceptional locus of f contains only one irreducible divisor E (Exc( f ) =
E);

(2) KY + E + DY = f ∗(K X + D) is log canonical;
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(3) KY + E + (1 − ε)DY is purely log terminal and anti-ample over X for any
ε > 0;

(4) if X is Q-factorial then Y is also Q-factorial and ρ(Y/X) = 1.

Proof The proofs of [13, Theorem 1.5], [19, Proposition 2.9] hold in any dimension
since we can apply MMP with scaling to prove them. �

Remark 1.11 Inductive blow-up is a plt blow-up. Conversely, for any plt blow-up
f : (Y, E) → (X � P) there exists a pair (X, D) such that f is its inductive blow-
up. Indeed, put D = f ( 1n DY ), where DY ∈ | − n(KY + E)| is a general element for
n 
 0.

Definition 1.12 Let (X/Z , D) be a contraction of varieties, where D is a subbound-
ary. Then aQ-complement of K X + D is an effectiveQ-divisor D′ such that D′ ≥ D,
K X + D′ is log canonical and K X + D′ ∼Q 0/Z for some n ∈ N.

Definition 1.13 Let (X/Z , D) be a contraction of varieties. Let D = S + B be a
subboundary on X such that B and S have no common components, S is an effective
integral divisor and �B� ≤ 0. Then we say that K X + D is n-complementary if there
is a Q-divisor D+ (called an n-complement) such that

(1) n(K X + D+) ∼ 0/Z (in particular, nD+ is an integral divisor);
(2) the divisor K X + D+ is log canonical;
(3) nD+ ≥ nS + �(n + 1)B�.
The divisor K X + D+ is also called an n-complement.

Definition 1.14 For n ∈ N put

Pn = {a | 0 ≤ a ≤ 1, �(n + 1)a� ≥ na}.

Proposition 1.15 ([25, Lemma 5.4]) Let f : X → Y be a birational contraction and
let D be a subboundary on X. Assume that K X + D is n-complementary for some
n ∈ N. Then KY + f (D) is also n-complementary.

Proposition 1.16 ([26, Lemma 4.4]) Let f : X → Z be a birational contraction of
varieties and let D be a subboundary on X. Assume that

(1) the divisor K X + D is f -nef;
(2) the coefficient of every non-exceptional component of D meeting Exc f belongs

to Pn;
(3) the divisor K Z + f (D) is n-complementary.

Then the divisor K X + D is also n-complementary.

Proposition 1.17 ([22, Proposition 4.4.1]) Let f : X → (Z � P) be a contraction
and D be a boundary on X. Put S = �D� and B = {D}. Assume that
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(1) the divisor K X + D is purely log terminal;
(2) the divisor −(K X + D) is f -nef and f -big;
(3) S = 0 near f −1(P);
(4) every coefficient of D belongs to Pn.

Further, assume that near f −1(P) ∩ S there exists an n-complement KS + Diff S(B)+
of KS + Diff S(B). Then near f −1(P) there exists an n-complement K X + S + B+
of K X + S + B such that Diff S(B)+ = Diff S(B+).

2 Toric Blow-ups

We refer the reader to [18] for the basics of toric geometry.

Definition 2.1 Let N be the lattice Zn in the vector linear space NR = N ⊗Z R and
M be its dual lattice HomZ(N , Z) in the vector linear space MR = M ⊗Z R. We
have a canonical pairing 〈 , 〉 : NR × MR → R.

For a fan � in N the corresponding toric variety is denoted by TN (�). For a
k-dimensional cone σ ∈ � the closure of corresponding orbit is denoted by V (σ).
This is a closed subvariety of codimension k in TN (�).

Example 2.2 (1) Let the vectors e1, . . . , en be aZ-basis of N , wheren ≥ 2.Consider
the cone

σ = R≥0e1 + . . . + R≥0en−1 + R≥0(a1e1 + . . . + an−1en−1 + ren).

Let the fan� consists of the cone σ and its faces. Then the affine toric variety TN (�)

is the quotient space (Cn � 0)/Zr with the action 1
r (−a1, . . . ,−an−1, 1).

(2) Let

σ = 〈e1, e2, e3, e4〉 = 〈(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1,−1)〉

for the lattice N ∼= Z3. Let the fan � consists of the cone σ and its faces. The affine
toric variety (X � P) = TN (�) is a three-dimensional non-degenerate quadratic
cone in C4. Let

�1 = {〈e1, e2, e3〉, 〈e1, e2, e4〉, their faces}

and
�2 = {〈e1, e3, e4〉, 〈e2, e3, e4〉, their faces}.

Then the birational contractions ψi : TN (�i ) → TN (�) are small resolutions for i =
1, 2, and Excψ1 = V (〈e1, e2〉), Excψ2 = V (〈e3, e4〉). The birational map
TN (�1) ��� TN (�2) is a flop.

Let f : (Y, E) → (X � P) be a toric blow-up, where Y isQ-gorenstein, Exc f =
E is an irreducible divisor. Then f is a plt blow-up. Let us prove it. The divisor
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KY + E is plt. Let a = (a1, a2, a3) be a primitive vector defining f . Consider any
three-dimensional cone σ′ giving non-Q-factorial singularity of subdivision of the
cone σ by a. Then the cone σ′ gives non-Q-gorenstein singularity by Proposition 4.3
(i) [24], since there is no any vector m ∈ MQ such that 〈m, ei 〉 = 1 for every i and
〈m, a〉 = 1. Hence −E is a f -ample divisor. This completes the proof.

Let f (E) = P . Then Y = TN (˜�) and

˜� = {〈e1, e3, a〉, 〈e1, e4, a〉, 〈e2, e3, a〉, 〈e2, e4, a〉, their faces},

where a = (a1, a2, a3), gcd(a1, a2, a3) = 1, a1 > 0, a2 > 0, a1 + a3 > 0 and a2 +
a3 > 0.

Obviously, the converse is also true. Any such vector a defines a plt blow-up.
Let f (E) = C and dim C = 1. Then, up to a permutation of the faces of the cone

σ we have C = 〈e2, e3〉, Y = TN (̂�) and

̂� = {〈e2, e4, a〉, 〈e1, e3, a〉, 〈e1, e4, a〉, their faces},

where a = (0, a2, a3), gcd(a2, a3) = 1, a2 > 0, a3 > 0.
Obviously, the converse is also true. Any such vector a defines a plt blow-up.
The variety Y has the singularities 1

a3
(0,−a2, 1), 1

a2
(0, 1,−a3), 1

a2+a3
(−a3,

−a2, 1). The surface E is a toric conic bundle, ρ(E/C) = 2, the single singu-
lar point of E (with a center of the third singularity of Y ) has type Aa2+a3−1 and
DiffE (0) = a2−1

a2
E1 + a3−1

a3
E2, where E1, E2 are corresponding sections.

We will calculate a structure of f by the following way (for convenience). Let us
consider (X � P) ⊂ (C4, 0) as the embedding {x1x2 + x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0).
The weighted blow-up of (C4, 0) with weights w = (w1, w2, w3, w4) provided that
w1 + w2 = w3 + w4 induces a toric blow-up f ′ : (Y ′, E ′) → (X � P), where

Exc f ′ = E ′ ∼= {x1x2 + x3x4 ⊂ Px1x2x3x4(w1, w2, w3, w4)}−

is an irreducible divisor. If put w1 = a1 + a3, w2 = a2, w3 = a2 + a3 and w4 = a1,
then we can easily compare the natural affine covers of Y and Y ′ and prove that
f and f ′ are isomorphic blow-ups. Note that C = {x1 = x2 = x3 = 0} in the case
C = f ′(E ′).

Proposition 2.3 ([18, pages 36–37]) The following statements are satisfied:

(1) (X � P) is a three-dimensional Q–factorial toric terminal singularity if and
only if (X � P) ∼= (C3 � 0)/Zr (q,−1, 1), where gcd(r, q) = 1;

(2) (X � P) is a three-dimensional non-Q–factorial toric terminal singularity if
and only if (X � P) ∼= ({x1x2 + x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0)).

Theorem 2.4 ([17]) Let (X � P) be a three-dimensional cyclic singularity of type
1
r (a1, a2, a3). Then (X � P) is a canonical singularity if and only if one of the
following holds:
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(1) a1 + a2 + a3 ≡ 0(mod r);
(2) ai + a j ≡ 0(mod r) for some i = j;
(3) (X � P) has type 1

9 (1, 4, 7) or type 1
14 (1, 9, 11).

Proposition 2.5 Let f : (Y, E) → (X � P) be a toric canonical blow-up of three-
dimensional toric terminal singularity, f (E) = C and dim C = 1. Then we have the
following statements.

(1) Let (X � P) be a Q-factorial singularity, that is, it is (C3
x1x2x3 � 0)/Zr (−1,

−q, 1), where gcd(r, q) = 1, 0 < q ≤ r − 1 and r ≥ 1. Determine the numbers u, v
by the equality uq + vr = 1, where 0 ≤ u ≤ r − 1 and u, v ∈ Z. Consider the cone
σ defining (X � P) (see example 2.2 (1)). Let (w1, w2, w3) be a primitive vector
defining f .

Then we have one of the two following cases up to permutation of coordi-
nates: either 2A) C = {x1 = x2 = 0}/Zr , (w1, w2, w3) = (1, w2, 0), or 2B) C =
{x2 = x3 = 0}/Zr , (w1, w2, w3) = (0, w2, 1). The variety Y has the singularities
1
r (−1, w2 − q, 1), 1

rw2
(−1 + uw2,−uw2, 1) in Case 2A) and 1

r (−1,−w2 − q, 1),
1

rw2
(uw2,−uw2 − 1, 1) in Case 2B).
Converse is also true: every such numbers (w1, w2, w3) define a canonical blow-

up.
A general element of the linear system | − KY | has Du Val singularities.
Let Q be a central point of second singularity in each of the two cases. Then

Q ∈ CS(Y ) if and only if r ≥ 2. Therefore f is a terminal blow-up if and only if it
is the blow-up of the ideal of the curve C [8].

(2) Let (X � P) be a non-Q-factorial singularity, that is, (X � P) ∼= ({x1x2 +
x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0)). Then C = {x1 = x2 = x3 = 0} up to permutation of
coordinates, f is induced by the blow-up of (C4, 0) with weights (w1, w2, w1 +
w2, 0), where w1 = 1, w2 > 0 or w1 > 0, w2 = 1. Converse is also true: every such
numbers induce a canonical blow-up. A general element of the linear system | − KY |
has Du Val singularities.

The morphism f is a terminal blow-up if and only if (w1, w2, w3, w4)=(1, 1, 2, 0).

Proof Let us prove (1). Put e′
1 = e1, e′

2 = e2 and e′
3 = e1 + qe2 + re3 (see Example

2.2 (1)). Then w = wi e′
i + w j e′

j for some i < j and wi , w j ∈ Z≥1. We have Y =
TN (�) and

� = {〈e′
k, e′

i , w〉, 〈e′
k, e′

j , w〉, their faces},

where k is a third index other than the indices i and j . Consider an induced blow-up
of general hyperplane section passing through the general point of C . Then w1 = 1
orw2 = 1. Now the statement is proved by a simple enumeration of the indices i and
j . As an example, consider i = 1, j = 2. There are the two possibilities of weights:
(w1, 1, 0) and (1, w2, 0). Let (w1, 1, 0). The variety Y is covered by two affine
charts with singularities of types 1

r (−q, qw1 − 1, 1) and 1
rw1

(−w1, qw1 − 1, 1). By
Theorem 2.4 applied to the second singularity it follows that either q = 1, orw1 = 1,
or r = 1. All these variants are realized, it is Case (2A). The possibility (1, w2, 0) is
considered similarly.
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The proper transform of {x2 = 0}/Zr (−1,−q, 1) is Du Val element of | − KY |.
The statement Q ∈ CS(Y ) is obvious if we consider a blow-up with the weights

(−1 + uw2, (r − u)w2, 1) in Case (2A) and (uw2, (r − u)w2 − 1, 1) in Case (2B)

provided that r ≥ 2.
Statement (2) obviously follows from Example 2.2 (2). The proper transform

of {xw2
1 + x2 = 0}|X ({x1 + xw1

2 = 0}|X ) is Du Val element of | − KY | for the first
(second) possibility. �

Proposition 2.6 Let f : (Y, E) → (X � P) be a toric canonical blow-up of three-
dimensional toric terminal point, where f (E) = P. Then we have the following
statements.

(1) Let (X � P) be a smooth point. Then f is a weighted blow-up with weights
(w1, w2, 1), (l, l − 1, 2), (15, 10, 6), (12, 8, 5), (10, 7, 4), (9, 6, 4), (8, 5, 3),
(7, 5, 3), (6, 4, 3), (5, 3, 2) or (9, 5, 2) in some coordinate system, where l ≥ 3.
Converse is also true: every such weights define a canonical blow-up. In all cases,
except case (9, 5, 2), a general element of the linear system | − KY | has Du Val
singularities. In case (9, 5, 2) we have

min{m|∃D ∈ | − mKY | such that (Y, (1/m)D)has canonical singularities} = 3.

The morphism f is a terminal blow-up if and only if it is a weighted blow-up with
weights (w1, w2, 1) in some coordinate system, where gcd(w1, w2) = 1.

(2) Let (X � P) be a Q-factorial singularity of an index ≥ 2, that is, it is of
type 1

r (−1,−q, 1), where gcd(r, q) = 1, 0 < q ≤ r − 1 and r ≥ 2. Let us consider
the cone σ defining the singularity (X � P) (see Example 2.2 (1)). Determine the
numbers u, v by the equality uq + vr = 1, where 0 ≤ u ≤ r − 1 and u, v ∈ Z. Let
(w1, w2, w3) be a primitive vector defining f .

Then we have one of the two following cases: either 2A) (w1, w2,

w3) = (1, w2, w3), w3 ≤ min(r − 1, rw2−1
q ) up to permutation of the numbers w1

and w2 provided that q = 1, or 2B) (w1, w2, w3) = (w1, w2, w1 + w2 − 1), w1 ≥ 2,
w2 ≥ 2, 0 ≤ w1(r − 1) − w2 ≤ r − 2, q = r − 1. Converse is also true: every such
numbers (w1, w2, w3) define a canonical blow-up. A general element of the linear
system | − KY | has Du Val singularities.

The morphism f is a terminal blow-up if and only if it is a weighted blow-up with
weights (u, 1, r − u) [8].

(3) Let (X � P) be a non-Q-factorial singularity, that is, (X � P) ∼= ({x1x2 +
x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0)). Then f is induced by the weighted blow-up of (C4, 0)
with weights (w1, w2, w3, w4) up to analytical isomorphism of (C4, 0), where 1 +
w2 = w3 + w4, w1 = 1. Converse is also true: every such weights induce a canonical
blow-up. A general element of the linear system | − KY | has Du Val singularities.

The morphism f is a terminal blow-up if and only if (w1, w2, w3, w4) = (1, 1, 1, 1)
[2].

Proof Let us prove (1). Now we classify canonical blow-ups. To be definite, assume
that w1 ≥ w2 ≥ w3, where (w1, w2, w3) are primitive weights of f . By P1, P2
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and P3 denote the zero-dimensional orbits (points) of Y . These points have types
1
w1

(w2, w3, w1 − 1), 1
w2

(w1, w3, w2 − 1) and 1
w3

(w1, w2, w3 − 1) respectively.
Assume that Cases (1) and (1) of Theorem 2.4 are satisfied at the points P1 and

P2 respectively. Then w1 = w2 + w3 − 1 and w2|(2w3 − 2). Thus we obtain the
weights (l, l, 1), where l ≥ 1 and (3w3 − 3, 2w3 − 2, w3), where w3 ≥ 2. For the
second possibility, the singularity is of type 1

w3
(3, 2, 1) at the point P3, therefore

w3 ≤ 6, and it is easy to prove that every value w3 = 2, . . . , 6 is realized.
Assume that Cases (1) and (2) of Theorem 2.4 are satisfied at the points P1

and P2 respectively. As above we obtain w1 = w2 + w3 − 1 and have one of the
following possibilities: (i1) w3 = 1, w3 = 2 or (i2) 2w3 − 1 = w2, w2 = 1, . . . , 4.
These possibilities are realized.

Assume that Cases (1) and (3) of Theorem 2.4 are satisfied at the points P1 and
P2 respectively. Thenw1 = w2 + w3 − 1. Let the singularity be of type 1

9 (1, 4, 7) =
1
9 (5, 2, 8) at the point P2, in particular, w2 = 9. Hence w3 = 2 or w3 = 5. It fol-
lows easily that these possibilities are not realized. Let the singularity be of type
1
14 (1, 9, 11) = 1

14 (5, 3, 13) at the point P2, in particular, w2 = 14. Hence w3 = 3 or
w3 = 5. It follows easily that these possibilities are not realized.

Assume that Cases (2) and (1) of Theorem 2.4 are satisfied at the points P1 and P2

respectively. Thenwe obtain the two possibilities: (i)w1 = w2 + w3,w2 = 2w3 − 1,
w3 = 2, 3 or (ii) w3 = 1. These possibilities are realized.

Assume that Cases (2) and (2) of Theorem 2.4 are satisfied at the points P1 and
P2 respectively. As above it is easy to prove that new weights do not appear.

Assume that Cases (2) and (3) of Theorem 2.4 are satisfied at the points P1 and
P2 respectively. As above it is easy to prove that this case is not realized.

Assume that Cases (3) of Theorem 2.4 are satisfied at the point P1. Then
(w1, w2, w3) = (9, 5, 2) or (14, 5, 3). It is obvious that only the first possibility is
realized.

For any weights obtained, except case (9, 5, 2), we can easily find a surface
S ⊂ X with Du Val singularity at the point P such that a(S, E) = 0. For example,
the surface S is given (locally at the point P) by the equations x1x2 + xw1+w2

3 = 0
and x2

1 + x3
2 + x2x3

3 = 0 for cases (w1, w2, 1) and (5, 3, 2) respectively. Therefore
SY ∈ | − KY | has Du Val singularities.

In case (9, 5, 2) the variety Y has the two non-terminal isolated singularities at
the points P1 and P2 (CS(Y ) = {P1, P2}). Let C ⊂ E = P(9, 5, 2) be a curve not
passing through the points P1 and P2. Then a (quasihomogeneous) degree of C is at
least 45 since it must be divided by 9 and 5. Hence m ≥ 3, and the required element
D is the proper transform of x5

1 + x9
2 + x23

3 = 0. The other statements of (1) are
obvious.

Let us prove (2). Now we classify canonical blow-ups. The variety Y is covered
by three affine charts with singularities of types 1

w3
(−w1,−w2, 1), 1

rw2−qw3
(−w1 +

uw2 + vw3,−uw2 − vw3, 1) and 1
rw1−w3

(−w1, qw1 − w2, 1) respectively. The cor-
responding zero-dimensional orbits of Y are denoted by P1, P2 and P3. Note that
rw1 − w3, rw2 − qw3 ∈ Z≥1. Obviously, a(S, 0) = 1

r (w3 + rw2 − qw3 + rw1 −
w3) − 1. The minimal discrepancy of (X � P) is equal to 1

r . If a(S, 0) = 1
r , that
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it is easy to calculate that f is a terminal blow-up, that is, a weighted blow-up with
weights (u, 1, r − u) [8]. Therefore we suppose that a(S, 0) > 1

r .
Since Y has canonical singularities, then for some j ∈ {1, 2, 3} we have the

inequality 1
r ≥ a(S, 0)/N j and one of the two following requirements: either Pj ∈

CS(Z), or the singularity at the point Pj is of type 1
N j

(1,−1, 0), where N j ≥ 2,
N1 = w3, N2 = rw1 − w3, N3 = rw2 − qw3. This is called Property R j . Note if
j = 3 then w1 = 1. Therefore we suppose that j ≤ 2.

Let w1 = max{w1, w2, w3}. Assume that Case (1) of Theorem 2.4 is satisfied
at the point P2. Then q = 1 and w2 = 1. Assume that Case (2) of Theorem 2.4
is satisfied at the point P2. Then, either w1 = w2 = w3 = 1, or q = 2, w1 = w2,
w1 ≥ 2, r ≥ 3. Since the inequality of Property R2 holds then the second possibility
is not realized. It is not hard to prove that Case (3) of Theorem 2.4 is not realized at
the point P2.

Let w2 = max{w1, w2, w3}. Property R1 is not realized. Therefore Property R2

holds. Then w2 = w3, and we have w1 = 1 by Theorem 2.4 for the point P1.
Let us consider the last case w3 > max{w1, w2}. The possibility w1 = 1 holds.

Therefore we suppose that w1 ≥ 2. If w2 = 1 then Theorem 2.4 for the point P2

implies q = 1. Therefore we suppose that w2 ≥ 2.
Assume that Case (1) of Theorem 2.4 is satisfied at the point P1. Thenw1 + w2 −

1 = w3. If the inequality of Property R1 holds then q = r − 1. Therefore we suppose
that Property R2 holds and N2 > w3. It is not hard to prove that Case (3) of Theorem
2.4 is not realized at the point P2. If Case (1) of Theorem 2.4 is satisfied at the
point P2 then the inequality of Property R2 implies that (q − 1)w1 − w2 + 1 = 0,
but this equality contradicts the same inequality. Therefore the singularity is of type
1

N2
(1,−1, 0) at the point P2. Therefore w1 = 1. We obtain the contradiction.
Assume that Case (2) of Theorem 2.4 is satisfied at the point P1. Thenw1 + w2 =

w3 and Property R2 holds. Let Case (3) of Theorem 2.4 be satisfied at the point P2.
Then it is not hard to prove that (w1, w2, w3, r) = (2, 2q + 5, 2q + 7, q + 8). We
obtain a contradictionwith Theorem2.4 for the point P3 since 0 < uw2 + vw3 ≤ N3.
Let Case (1) of Theorem 2.4 be satisfied at the point P2. The inequality of Property R2

implies that (q − 1)w1 − w2 + 1 = 0, but this equality contradicts the same inequal-
ity. Therefore the singularity is of type 1

N2
(1,−1, 0) at the point P2. Considering two

possibilities: N2 ≤ w1 and N2 > w1, it is easy to obtain a contradiction.
Now, applying the blow-up classification obtained, we can prove that the proper

transform of the divisor

Sk = {xk = 0}/Zr ⊂ (C3
x1x2x3 , 0)/Zr (−1,−q, 1)

is Du Val element of | − KY | for some k. The other statements of 2) are obvious.
Let us prove (3). Consider Example 2.2 (2). Now we classify canonical blow-

ups. Obviously, a(S, 0) = w1 + w2 − 1 = w3 + w4 − 1. The variety Y is covered
by three affine charts with singularities of types 1

w1
(w3, w4,−1), 1

w2
(w3, w4,−1),

1
w3

(w1, w2,−1) and 1
w4

(w1, w2,−1) respectively. The minimal discrepancy of (X �
P) is equal to 1. If a(S, 0) = 1 then it is easy to calculate that f is a terminal blow-up
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induced by the weighted blow-up with weights (1, 1, 1, 1) [2]. Therefore we sup-
pose that a(S, 0) > 1. Since Y has canonical singularities then 1 ≥ a(S, 0)/w j for
some j . Hence wi = 1 for some i = j such thatwi + w j − 1 = a(S, 0). The proper
transform of {x

w j

i + x j = 0}|X is Du Val element of | − KY |. The other statements
of (3) are obvious. �

Definition 2.7 Let (X � P) be an n-dimensional Q-factorial toric singularity. Then
(X � P) ∼= (Cn � 0)/G, whereG is an abelian group acting freely in codimension 1.
The singularity (Cn � 0)/G is given by the simplicial cone σG in the lattice N = Zn .

Let a power series (polynomial) ϕ = ∑

m am xm ∈ C[[x1, x2, . . . , xn]] be G-
semiinvariant.

The Newton polyhedron �+(ϕ) in Rn is the convex hull of the set

⋃

xm∈ϕ

(m + σ∨
G), where σ∨

G is a dual cone in MR.

For any face γ of �+(ϕ) we define

ϕγ =
∑

m∈γ

am xm .

The function ϕ is said to be non-degenerate if, for any compact face γ of the
Newton polyhedron, the polynomial equation ϕγ = 0 defines a smooth hypersurface
in the complement of the set x1x2 . . . xn = 0. The effective Weil divisor D on X is
said to be non-degenerate if the G-semiinvariant polynomial ϕ defining D in Cn is
non-degenerate.

For any effective Weil divisor D there exists the fan � depending on Newton
polyhedron �+(ϕ) such that TN (�) is a smooth variety and a toric birational mor-
phismψ : TN (�) → Cn is a resolution of non-degenerate singularities of D. So,ψ is
said a partial resolution of (X, D). In particular, if D is a non-degenerate boundary
thenψ is a toric log resolution of the pair (X, D). If (X � P) is a smooth variety then
this statement was proved in the paper [27]. Note that the proof from the paper [27]
is rewritten immediately in our case if we will use our Newton polyhedron instead
of standard Newton polyhedron.

The next Theorems 2.8 and 2.9 are criteria of the characterization of toric plt and
canonical blow-up respectively. They explicitly show a nature of non-toric contrac-
tions.

Theorem 2.8 Let f : (Y, E) → (X � P) be a plt blow-up of Q-factorial toric sin-
gularity, and let f (E) be a toric subvariety. Then f is a toric morphism (under a
suitable identification) if and only if there exists an effective non-degenerate Weil
divisor D on (X � P) and a number d > 0 with the following properties:

(1) a(E, d D) = −1;
(2) E is a unique exceptional divisor of (X, d D) with discrepancy ≤ −1 and

�d D� = 0.
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Proof First let us prove the necessary condition. Let DY ∈ | − n(KY + E)| be a
general element for n 
 0. Put D = f (DY ) and d = 1

n . Then KY + E + d DY =
f ∗(K X + d D) is a plt divisor. Since DY is a general divisor by construction, then D
is an irreducible reduced non-degenerate divisor.

Finally let us prove the sufficient condition. Consider the toric log resolution
ψ : Z → X of (X, d D). Write

K Z + d DZ +
∑

ai Ei = ψ∗
(

K X + d D
)

.

By theorem assertion (Z , d DZ + ∑

ai Ei ) is a plt pair. Therefore E ⊂ Excψ.
Considering corresponding fans (see [24]) we have the composition of toric

log flips Z ��� Z ′ over (X � P) such that the (induced) toric divisorial contrac-
tion ψ′ : Z ′ → (X � P) is isomorphic to ψ′

1 ◦ ψ′
2, where ψ′

1, ψ′
2 are toric diviso-

rial contractions and E = Excψ′
1. Therefore f and ψ′

1 are isomorphic by Remark
1.9 (5). �
Theorem 2.9 Let f : (Y, E) → (X � P) be a canonical blow-up of Q-factorial
toric singularity, and let f (E) be a toric subvariety. Then f is a toric morphism
(under a suitable identification) if and only if there exists an effective non-degenerate
Weil divisor D on (X � P) and a number d > 0 with the following properties:

(1) a(E, d D) = 0;
(2) (X, d D) has canonical singularities and �2d D� = 0.

Proof First let us prove the necessary condition. Let DY ∈ | − nKY | be a general
element for n 
 0. Put D = f (DY ) and d = 1

n . Then the divisor KY + d DY =
f ∗(K X + d D) has canonical singularities. Since DY is a general divisor by con-
struction, then D is an irreducible reduced non-degenerate divisor.

Finally let us prove the sufficient condition. Consider the toric log resolution
ψ : Z → X of (X, d D). Write

K Z + d DZ +
∑

ai Ei = ψ∗
(

K X + d D
)

.

By theorem assertion (Z , d DZ + ∑

ai Ei ) is a terminal pair. Therefore E ⊂ Excψ.
Considering corresponding fans (see [24]) we have the composition of toric log flips
Z ��� Z ′ over (X � P) such that the (induced) toric divisorial contractionψ′ : Z ′ →
(X � P) is isomorphic to ψ′

1 ◦ ψ′
2, where ψ′

1, ψ
′
2 are toric divisorial contractions and

E = Excψ′
1. Therefore f and ψ′

1 are isomorphic by Proposition 1.1. �
Definition 2.10 The subvariety Y is said to be a non-toric subvariety of the toric
pair (X, D), if there is not any toric structure of X such that (X, D) is a toric pair
and Y is a toric subvariety.

Example 2.11 Consider the toric variety X = Px1x2x3(1, 2, 3).
(1) Let D = 0. The point P is a non-toric subvariety of (X, D) if and only if P =

(0 : 1 : a), where a = 0. The irreducible curve C is a non-toric subvariety of (X, D)

if and only ifC = {x1 = 0},C = {x2 + ax2
1 = 0} andC = {x3 + ax2x1 + bx3

1 = 0}.
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(2) Let D = {x1 = 0} + {x2 = 0}. The point P is a non-toric subvariety of (X, D)

if and only if P = (0 : 1 : a), where a = 0. The irreducible curve C is a non-toric
subvariety of (X, D) if and only if C = {x1 = 0}, C = {x2 = 0} and C = {x3 +
ax2x1 + bx3

1 = 0}.
(3) Let D = {x1 = 0} + {x2 = 0} + {x3 = 0}. The point P is a non-toric subvari-

ety of (X, D) if and only if P = (1 : 0 : 0), P = (0 : 1 : 0) and P = (0 : 0 : 1). The
irreducible curve C is a non-toric subvariety of (X, D) if and only if C = {x1 = 0},
C = {x2 = 0} and C = {x3 = 0}.

Next Theorems 2.12 and 2.13 are two-dimensional analogs of main theorems.
Their proofs clearly describe the main method used in this paper.

Theorem 2.12 ([22]) Let f : (Y, E) → (X � P) be a plt blow-up of two-dimen-
sional toric singularity. Then f is a toric morphism (under a suitable identification).

Proof A two-dimensional toric singularity is always Q-factorial. Let f be a non-
toric morphism (up to identification). Let DY ∈ | − n(KY + E)| is a general element
of n 
 0. Put DX = f (DY ) and d = 1

n . Then (X, d DX ) is a log canonical pair,
a(E, d DX ) = −1 and E is a unique exceptional divisor with discrepancy −1.

By Criterion 2.8 there exists a toric divisorial contraction g : Z → X with the
following properties.

(A) The exceptional set Exc g = S is an irreducible divisor (S ∼= P1), the divisors
S and E define the different discrete valuations of the function field K(X).

(B) By � denote the center of E on S. Then the point � is a non-toric subvariety
of Z for any toric structure of (X � P). In the other words, � is a non-toric
subvariety of the toric pair (S,Diff S(0)).

Condition (B) implies that the surface Z has the two singular points P1 and P2, which
lie on the curve S. Also � is a non-toric point of (S,Diff S(0)) ∼= (P1, n1−1

n1
P1 +

n2−1
n2

P2), where n1 ≥ 2, n2 ≥ 2. Write

K Z + d DZ + aS = g∗(K X + d DX
)

,

where a < 1. Hence

a
(

E, S + d DZ
)

< a
(

E, aS + d DZ
) = −1.

Therefore K Z + S + d DZ is not a log canonical divisor at the point � and is an
anti-ample over X divisor. Hence, by the inversion of adjunction, KS + Diff S(d DZ )

is not a log canonical divisor at the point � and is an anti-ample divisor. We obtain
the contradiction

0 > deg
(

KS + Diff S(d DZ )
)

> −2 + n1 − 1

n1
+ n2 − 1

n2
+ 1 ≥ 0.

�
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Theorem 2.13 [16] Let f : (Y, E) → (X � P) be a canonical blow-up of two-
dimensional toric singularity. Then (X � P) is a smooth point, and f is a weighted
blow-up with weights (1,α) (under a suitable identification).

Proof Theorem assertion implies that (X � P) is a terminal point, therefore it is
smooth.

Assume that f is a toric morphism then f is a weighted blow-up of the smooth
point with weights (β,α). Since Y is Du Val surface then α = 1 or β = 1.

Let f be a non-toric morphism (up to identification). Let DY ∈ | − nKY | be a
general element for n 
 0. Put DX = f (DY ) and d = 1

n . The pair (X, d DX ) has
canonical singularities and a(E, d DX ) = 0.

By Criterion 2.9 there exists a toric divisorial contraction g : Z → X with the
following properties.

(A) The exceptional set Exc g = S is an irreducible divisor (S ∼= P1), the divisors
S and E define the different discrete valuations of the function field K(X).

(B) By � denote the center of E on S. Then the point � is a non-toric subvariety
of Z for any toric structure of (X � P). In the other words, � is a non-toric
subvariety of the toric pair (S,Diff S(0)).

Condition (B) implies that the surface Z has the two singular points P1 and P2,
which lie on the curve S. Also� is a non-toric point of (S,Diff S(0)) ∼= (P1, n1−1

n1
P1 +

n2−1
n2

P2), where n1 ≥ 2, n2 ≥ 2. Write

K Z + d DZ + S = g∗(K X + d DX
) + (a(S, d DX ) + 1)S,

where a(S, d DX ) ≥ 0. Since S is (locally) Cartier divisor at the point �, then

a
(

E, S + d DZ
) ≤ a

(

E, d DX
) − 1 = −1.

Therefore K Z + S + d DZ is not a plt divisor at the point � and is an anti-ample
divisor over X . Hence, by the inversion of adjunction KS + Diff S(d DZ ) is not a klt
divisor at the point � and is an anti-ample divisor. We obtain the contradiction

0 > deg
(

KS + Diff S(d DZ )
) ≥ −2 + n1 − 1

n1
+ n2 − 1

n2
+ 1 ≥ 0.

�

Example 2.14 Theorems 2.12 and 2.13 cannot be generalized in dimension at least
three for divisorial contraction to a point. Consider the blow-up g : Z → (X � P)

with the weights (1, . . . , 1), where (X � P) ∼= (Cn
x1...xn

� 0) and consider the divi-
sors D = {x2

1 + · · · + x2
n = 0}, T i = {xi = 0}, where i = 1, . . . , n and n ≥ 3. The

exceptional set Exc g = S is isomorphic to Pn−1, Q = S ∩ DZ is a smooth quadric.
Let g̃ : ˜Z → Z be the standard blow-up of the ideal IQ . By the base point free theorem
[9] the linear system |m D

˜Z |gives a divisorial contractionϕ : ˜Z → Y ,which contracts
the divisor S

˜Z
∼= Pn−1 form 
 0. Since the divisor K

˜Z + S
˜Z + ∑n

i=1 T i
˜Z

∼ 0/Y has
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log canonical singularities, then by Shokurov’s criterion on the characterization of
toric varieties for divisorial contractions to a Q-factorial singularity [11, Theorem
18.22], the morphism ϕ is toric. Hence Y has only one singularity and its type is
1
r (1, . . . , 1). Let l be a straight line in a general position in S

˜Z . Considering ϕ we
have S

˜Z · l = −r , and considering g ◦ g̃ we have S
˜Z · l = −3, hence r = 3.

We obtain a non-toric divisorial contraction f : Y → (X � P). The variety Y has
only one singularity and its type is 1

3 (1, . . . , 1). Thus, if n ≥ 4, then Y is a terminal
variety, and if n = 3, then Y is a canonical non-terminal variety (cf. [6]). The blow-up
f is plt since the exceptional set Exc f is a cone over a smooth (n − 2)-dimensional
quadric.

We will apply the following special case of Shokurov’s criterion on the charac-
terization of toric varieties.

Proposition 2.15 Let f : (X, D) → (Z � P) be a small contraction of the Q-
factorial threefold X. Assume that D = ∑r

i=1 Di , where Di is a prime divisor for
each i . Assume that K X + D is a log canonical divisor, −(K X + D) is a f -nef divi-
sor and Exc f = C is an irreducible curve (ρ(X/Z) = 1). Then r ≤ 4. Moreover,
the equality holds if and only if the pair (X/Z � P, D) is analytically isomorphic to
a toric pair, in particular, K X + D ∼ 0/Z.

Proof If the pair (X/Z � P, D) is analytically isomorphic to a toric pair then all
statements immediately follow from the description of toric log flips [24]. Let r ≥ 4.
Let the divisor K X + D′ be a Q-complement of K X + D. It exists, since we can add
to the divisor D the necessary number of general hyperplane sections of X . So, by
abundance theorem [11, Theorem 8.4] the Q-complement D′ required is constructed
for our contraction (X/Z � P, D).

Put D′ = ∑

di D′
i . We will prove that D′ = D. For any Q-Weil divisor B =

∑

bi Bi we define ||B|| = ∑

bi . Put

Dhor =
∑

i : D′
i ·C>0

di D′
i and Dvert =

∑

i : D′
i ·C≤0

di D′
i .

Let f + : X+ → Z be a log flip of f and Exc f + = C+. �

Lemma 2.16 ([23, Lemma2.10])We have ||Dhor|| = ||Dvert|| = 2. Hence, D = D′.
Moreover, C ⊂ Supp Dhor, C+ ⊂ Supp(Dvert)+ and D′

i · C = 0 for all i .

Proof Since K X + D is a log canonical divisor then ||Dvert|| ≤ 2. Since K X+ + D+
is a log canonical divisor then ||Dhor|| ≤ 2. The statements remained are obvious.�

Let S be an irreducible component of the divisor Dvert and let F = D − S.
The divisorial log contraction (S,Diff S(F)) → ( f (S) � P) is toric by the two-
dimensional Shokurov’s criterion on the characterization of toric varieties [26, Theo-
rem6.4]. In particular, it is a toric blow-up of cyclic singularity. Thus, the singularities
of X are toric by three-dimensional Shokurov’s criterion on the characterization of
toric varieties for Q-factorial singularities [11, Theorem 18.22]. Replacing X by X+
it can be assumed that −(K X + S) is a f -ample divisor and S · C < 0.
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In order to prove the proposition we will apply somemodification, which is a toric
one by its nature. After it we will get some small contraction, which is analytically
isomorphic to a small toric contraction of Example 2.2 (2). Therefore the initial
contraction is a toric up to analytical isomorphism.

Now, taking toric blow-ups of X (every timewe take an one blow-upwith a unique
exceptional divisor that has a minimal discrepancy of a singularity considered and
consider two extremal rays on a variety obtained), it can be assumed that S is a
smooth surface, and X is a smooth variety outside the curves C . The condition that
−(K X + S) is f -ample holds is preserved, since the discrepancies of exceptional
divisors of (X, S) are less than and equal to 0. In some analytical neighborhood of
every point of C the variety X is analytically isomorphic to 1

k (q, 1) × C1, where
(k, q) = 1.

Assume that k ≥ 2. Consider a natural cyclic cover ψ : X → X of degree k. Put
C = ψ−1(C) and let Z be the normalization of Z in the function field of X . Let
f : X → (Z � P) be the induced small contraction of the curve C . Thus we can
assume that k = 1, that is, X is a smooth variety.

Since−KS is a f -ample divisor then f : S → f (S) is the contraction of the (−1)
curve C and (K X + S) · C = −1. We have S · C = −m, K X · C = m − 1 for some
m ∈ Z≥1.

Letm ≥ 2. Using the natural section ofOX (S)we can construct a degreem-cyclic
cover ϕ : ˜X → X ramified along S (cf. [11, Theorem 5.4]). Let ˜C = ϕ−1(C) and let
˜Z be the normalization of Z in the function field of ˜X . Let ˜f : ˜X → (˜Z � ˜P) be the
induced small contraction of the curve ˜C . By the ramification formula

K
˜X · ˜C = ϕ∗

(

K X + m − 1

m
S
)

· ˜C = K X · C + m − 1

m
S · C = 0.

Thus we can assume that f is a small flopping contraction with respect to K X

(K X · C = 0), that is, we can assume that m = 1.
Since the minimal discrepancy of three-dimensional terminal non-cDV singu-

larity is strict less than 1 then (Z � P) ∼= (g = 0 ⊂ (C4, 0)) is an isolated cDV
(terminal) singularity. Note that (D1 + D2) · C = (D3 + D4) · C = 0 up to per-
mutation of components of D. Hence L1 and L2 are Cartier divisors, where
L1 = f (D1) + f (D2) and L2 = f (D3) + f (D4). By Bertini theorem [12, Theorem
4.8] the pair (Z � P, H + Li ) is log canonical for any i = 1, 2, where H is a gen-
eral hyperplane section passing through the point P . By the inversion of adjunction
(H � P, Li |H ) is a log canonical pair. Thus, the classification of two-dimensional
log canonical pairs [11] implies that (H � P) is a cyclic singularity at the point P ,
that is, it has type Ak . By the paper [5] or the paper [7] the singularity (H � P) is of
type A1. Thus

(Z � P) ∼= (xy + z2 + t2l = 0 ⊂ (C4, 0))

and f (D) = {x = 0}|Z + {y = 0}|Z . Since (Z � P, f (D)) is a log canonical pair
then we can take the weighted blow-up of (C4, 0) with the weights (l, l, l, 1) and
obtain l = 1. This completes the proof.



Blow-ups of Three-dimensional Toric Singularities 441

Remark 2.17 Let ρ(P) be a rank of local analytic group of Weil divisors at the
point P . Then the Proposition 2.15 implies easily Shokurov’s criterion on the
characterization of toric varieties for three-dimensional singularities (Z � P) if
ρ(P) = 1, and hence the same criterion for three-dimensional divisorial contrac-
tions f : X → (Z � P) if ρ(P) = 1.

3 Three-dimensional Blow-ups. Case of Curve

Example 3.1 Now we construct the examples of three-dimensional non-toric plt
blow-ups f : (Y, E) → (X ⊃ C � P) provided that (X � P) is aQ-gorenstein toric
singularity, dim f (E) = 1 and the curve C = f (E) is a toric (smooth) subvariety.
Depending on a type of (X � P) we consider two Cases A1) and A2).

(A1) Let (X � P) be a Q-factorial toric singularity, that is, (X � P) ∼= (C3 �
0)/G, where G is an abelian group acting freely in codimension 1.

All plt blow-ups are constructed by the procedure illustrated on the next diagram
(Fig. 1) and defined below.

First step. Let g0 : (Z0, S0) → (X ⊃ C � P) be a toric blow-up, where Exc g0 =
S0 is an irreducible divisor and g0(S0) = C . Recall that g0 is a plt blow-up, the sur-

face S0 is a toric conic bundle, ρ(S0/C) = 1 and Diff S0(0) = w1
0−1
w1

0
E1
0 + w2

0−1
w2

0
E2
0 +

d0−1
d0

F0, where E1
0 , E2

0 are some sections of conic bundle, F0 is a fiber over P and
w1

0, w
2
0, d0 ∈ Z≥1. Let us remark that the numbers w1

0, w
2
0 determine g0. Moreover,

d0 = 1 if (X � P) is a smooth point.
Assume that there exists a curve �0 ⊂ S0 with the following two properties:

(1) KS0 + Diff S0(0) + �0 is a plt and g0-anti-ample divisor; (2) �0 is a non-toric
subvariety in any analytical neighborhood of the fiber F0 on the toric variety Z0

for any toric structure of (X � P), that is, the curve �0 is a non-toric subvariety of
(S0,Diff S0(0)) in any analytical neighborhood of F0 on S0.

By considering the general fiber over a general point of C we obtain wi
0 = 1

for some i = 1, 2. To be definite, put w1
0 = 1 and let Q0 = E2

0 ∩ F0. Applying the
adjunction formula it is easy to prove that�0 ∩ F0 = Q0,w2

0 ≥ 2, d0 = 1, (S0 � Q0)

is of type 1
r0

(1, 1) (r0 ≥ 1) and �0 · F0 = � · E2
0 = 1

r0
.

Fig. 1 Case of Curve.
Construction in Q-factorial
case
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Remark 3.2 Let (X � P) be a terminal singularity, that is, (X � P) ∼= (C3
x1,x2,x3 �

0)/Zr (−1,−q, 1). Then r = r0 and one of the following cases holds by simple
calculation.

(1)C = {x1 = x2=0}, g0 is a blow-upwithweights (w2
0, 1, 0), r0|w2

0 or (1, w
2
0, 0),

r0|(w2
0 − q + 1).

(2) C = {x1 = x3 = 0}, g0 is a blow-up with weights (w2
0, 0, 1), r0|(w2

0 + 1 + q)

or (1, 0, w2
0), r0|(w2

0 − q + 1).
(3) C = {x2 = x3 = 0}, g0 is a blow-up with weights (0, w2

0, 1), r0|(w2
0 + 1 + q)

or (0, 1, w2
0), r0|w2

0.

Consider an arbitrary toric structure of Z0 in any neighborhood of the point Q0

such that�0 is also a toric subvariety of Z0. Let h0 : (Y0, (S1)Y0) → (Z0 ⊃ �0 � Q0)

be an arbitrary toric blow-up of the curve �0 with an unique exceptional divisor
(Exc h0 = (S1)Y0 ). The structures of h0 and g0 are similar, in particular, h0 is deter-
mined by some numbers w1

1 and w2
1, (S0)Y0

∼= S0.
The set of all possible blow-ups h0 for any toric structure of (Z0 � Q0, �0) is

denoted by H0.
Let (D0)Z0 be a toric Weil divisor of (Z0 � Q0) such that (D0)Z0 |S0 = �0 and

a((S1)Y0 , (D0)Z0 + S0) = −1. Let T be a toric Weil divisor of (X � P) such that
TZ0 ∩ S0 = E2

0 . Then KY0 + (S1)Y0 + (S0)Y0 + (D0)Y0 + TY0 ∼ 0 is lc by Inversion
of Adjunction. The ray R+[(F0)Y0 ] gives the divisorial contraction of (S0)Y0 onto a
curve, denoted by h′

0 in our diagram. We obtain a non-toric blow-up g1 : (Z1, S1) →
(X ⊃ C � P), where S1 = Exc g1, g1(S1) = C and (S1)Y0

∼= S1. Since g1 be a toric
blow-up (under identification) in some neighborhood of any point other than P , then

Diff S1(0) = w3
1−1
w3

1
E2
1 + w

j
1−1

w
j
1

E1
1 + d1−1

d1
(F1)Z0 , j ∈ {1, 2}, E2

1 = h′
0((S0)Y0) and E1

1

are some sections, F1 is a fiber over P , w3
1 ∈ Z≥3 and d1 ∈ Z≥1. Hence g1 is a plt

blow-up.
Second step. Assume that there exists a curve �1 ⊂ (S1)Y0 with the following

two properties: (1) K(S1)Y0
+ Diff (S1)Y0

(0) + �1 is a plt and h0-anti-ample divisor,
h0 : �1 → �0 is a surjective morphism and (2) �1 is not a center of any blow-up of
H0, that is, �1 is a non-toric subvariety of ((S1)Y0 ,Diff (S1)Y0

(0)) in any analytical
neighborhood of the fiber (F1)Y0 over P .

The triples ((S1)Y0 ,Diff (S1)Y0
(0), �1) and (S0,Diff S0(0), �0) have the same struc-

tures and (with similar notation) w1
1 = 1, Q1 = (E2

1)Y0 ∩ (F1)Y0 , �1 ∩ (F1)Y0 = Q1,
w2

1 ≥ 1, d1 = 1, ((S1)Y0 � Q1) is of type 1
r1

(1, 1) (r1 ≥ 1) and �1 · (F1)Y0 = �1 ·
(E2

1)Y0 = 1
r1
.

Consider an arbitrary toric structure of Y0 in any neighborhood of the point Q1

such that �1 is also a toric subvariety of Y0. Let h1 : (Y1, (S2)Y1) → (Y0 ⊃ �1 � Q1)

be an arbitrary toric blow-up of the curve �1 with an unique exceptional divisor
(Exc h1 = (S2)Y1 ), (S1)Y1

∼= (S1)Y0 .
The set of all possible blow-ups h1 for any toric structure of (Y0 � Q1, �1) is

denoted by H1.
Let (D1)Y0 be a toric Weil divisor of (Y0 � Q1) such that (D1)Y0 |S1 = �1 and

a((S2)Y1 , (D1)Y0 + (S0)Y0 + (S1)Y0) = −1. We have 1-complement KY1 + (S2)Y1 +
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(S1)Y1 + (S0)Y1 + (D1)Y1 ∼ 0/X by Inversion of Adjunction applied to the surfaces
(Si )Y1 . By the cone theorem we have:

(1) there exists a divisorial contraction h′
1,1 : Y1 → Y1,1 of (S1)Y1 onto a curve,

(S2)Y1
∼= (S2)Y1,1 ;

(2) there exists a small contractionϕ1,1 of an extremal raygeneratedby (F0)Y1,1 . Let
ϕ+
1,1 be a log flip of ϕ1,1, Excϕ+

1,1 = (F+
0 )Y1,2 , h′

1,2 : Y1,1 ��� Y1,2 be a corresponding
birational map;

(3) there exists a divisorial contraction h′
1,3 : Y1,2 → Z2 of (S0)Y1,2 onto a curve.

Thus we obtain a birational map h′
1 = h′

1,3 ◦ h′
1,2 ◦ h′

1,1 : Y1 ��� Z2. Put S2 =
(S2)Z2 . Since (E2

0)Y1,1 ∩ (F0)Y1,1 = (Q0)Y1,1 then (D1)Y1,1 · (F0)Y1,1 > 0 and the divi-
sor (D1)Z2 contains the fiber (F+

0 )Z2 and two sections of the local conic bundle
S2 → C , ρ(S2/C) = 1, K Z2 + S2 + (D1)Z2 ∼ 0/X is lc. By Shokurov’s criterion
on the characterization of toric varieties (S2,Diff S2(0)) → C is a toric conic bundle
[26]. We obtain a non-toric plt blow-up g2 : (Z2, S2) → (X ⊃ C � P).

We prove the following proposition.

Proposition 3.3 The pair (Si ,Diff Si (0)) is klt and local toric conic bundle (1-
complementary), ρ(Si/C) = 1, gi is a non-toric plt blow-up for i = 1, 2.

Third step. Assume that there exists a curve �2 ⊂ (S2)Y1 with the following
two properties: (1) K(S2)Y1

+ Diff (S2)Y1
(0) + �2 is a plt and h1-anti-ample divisor,

h1 : �2 → �1 is a surjective morphism and (2) �2 is not a center of any blow-up of
H1, that is, �2 is a non-toric subvariety of ((S2)Y1 ,Diff (S2)Y1

(0)) in any analytical
neighborhood of the central fiber F2 of (S2)Y1 over P .

The triple ((S2)Y1 ,Diff (S2)Y1
(0), �2) has the same structures as the previous ones.

In particular (with similar notation), w1
2 = 1 and w2

2 ≥ 1.

Proposition 3.4 There is no any blow-up h2 : (Y2, (S3)Y2) → (Y1 ⊃ �2) of the curve
�2 with unique exceptional divisor such that (S3)Y2 is realized by some plt blow-up
g3 : (Z3, (S3)Z3) → (X ⊃ C � P).

Proof Assume the converse. Consider a general point of C . Let F3 be a fiber of
(S3)Y2 over P . Put � = Diff (S3)Z3

(0) for simplicity. Since w2
0 + w2

1 + w2
2 + 1 ≥ 5

then � has some component (a section of conic bundle) with a coefficient ≥ 4/5.
We claim that K(S3)Z3

+ � is 1 or 2-complementary. Assume that K(S3)Z3
+ � is

not 1-complementary. Then the divisor K(S3)Z3
+ αF3 + � is lc, but not plt for some

α ≤ 1, and consider its inductive blow-up σ : ˜X → (S3)Z3 with exceptional divisor
˜E . The curve (F3)˜X can be contracted in the appropriate MMP over C . Denote this
contraction by ˜X → X . The divisor K X + E + �X is plt.

Let K
˜X + ˜E + �

˜X be nonnegative on (F3)˜X .We can extend complement of KE +
DiffE (�X ) on X , pull back on ˜X and push-down them on (S3)Z3 . There are only
two cases: (1) DiffE (�X ) = 1/2P1 + 1/2P2 + (1 − 1/m)P3 and 2) DiffE (�X ) =
1/2P1 + 2/3P2 + 4/5P3, where {Pi } are some points, m ≥ 5. We obtain 2- or 6-
complement.

Let K
˜X + ˜E + �

˜X be negative on (F3)˜X . The divisor−(K
˜X + ˜E + �

˜X ) is ample
over C . Similarly 2- or 6-complement of K

˜E + Diff
˜E (�

˜X ) can be extended on ˜X
and we have 2- or 6-complement D+ of K X with a((S3)Y2 , D+) = −1.
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Fig. 2 Case of Curve.
Construction in
non-Q-factorial case

Consider the case of 6-complement. Since a((S3)Y2 , D+) = −1 then there is one
possibility a((S0)Y2 , D+) = −1/2, D+|S0 = (7/6)�0 + . . . and a((S1)Y2 , D+) ≤
−2/3. Since F3 ⊂ (Si )Y2 for i = 0, 1 then KY2 + a((S0)Y2 , D+)(S0)Y2 + a((S1)Y2 ,

D+)(S1)Y2 + (S3)Y2 is not lc, the contradiction.
Thus we have 1- or 2-complement. Therefore the coefficients of D+ are equal 1

or 1/2 and a((S0)Y2 , D+) ≤ −1/2. We have the same contradiction as above. �

(A2) Let (X � P) be a non-Q-factorial terminal toric three-dimensional singu-
larity, that is, (X � P) ∼= ({x1x2 + x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0)) by Proposition 2.3.
Let f : (Y, E) → (X ⊃ C � P) be some plt blow-up. Let ϕi : Xi → (X � P) be

any of two Q-factorializations, Excϕi = Ci (i = 1, 2). Let ψi : (Yi , Ei ) → (Xi ⊃
CXi � PXi ) be a plt blow-up of CXi such that Ei and E define the same discrete
valuation of the function fieldK(X), ρ(Ei/C) = 1. The blow-up ψi was constructed
in the previous case of Q-factorial singularities. Let Yi ��� Y be a log flip for the
curve (Ci )Yi . Thus f has constructed and ρ(E/C) = 2.

We give another construction and prove that (E,Diff E (0)) → C is a toric conic
bundle by the procedure illustrated on the next diagram (Fig. 2) and defined below.

First step. Let g0 : (Z0, S0) → (X ⊃ C � P) be any toric plt blow-up, where
g0(S0) = C . Its description is given in example 2.2 2), whose notation is used. Let
F0 = F1

0 + F2
0 be a fiber over the point P . Put Q0 = F1

0 ∩ F2
0 .

Second step. Assume that there exists a curve �0 ⊂ S0 with the following two
properties: (1) KS0 + Diff S0(0) + �0 is a plt and g0-anti-ample divisor; 2) �0 is a
non-toric subvariety in any analytical neighborhood of the fiber F0 on the toric
variety Z0 for any toric structure of (X � P), that is, the curve �0 is a non-toric
subvariety of (S0,Diff S0(0)) in any analytical neighborhood of F0 on S0.

Considering a fiber over a general point of C we have a2 = 1 or a3 = 1. To be
definite, puta2 = 1 and F2

0 ∩ E2 = ∅. By simple calculations�0 ∩ (F1
0 ∪ F2

0 ) = Q0,
F1
0 · �0 = a3

a3+1 and F2
0 · �0 = 1

a3+1 .
Consider an arbitrary toric structure of Z0 in any neighborhood of the point Q0

such that�0 is a toric subvariety of Z0 also. Let h0 : (Y0, (S1)Y0) → (Z0 ⊃ �0 � Q0)

be an arbitrary toric blow-up of the curve �0 with an unique exceptional divisor
(Exc h0 = (S1)Y0 ), (S0)Y0

∼= S0.
The set of all possible blow-ups h0 for any toric structure of (Z0 � Q0, �0) is

denoted by H0.
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Let (D0)Z0 be a toric Weil divisor of (Z0 � Q0) such that (D0)Z0 |S0 = �0 and
a((S1)Y0 , (D0)Z0 + S0) = −1. Let T1 and T2 be toric Weil divisors of (X � P) such
that

KS0 + Diff S0((T1 + T2)Z0 + (D0)Z0) = KS0 + F2
0 + E2 + �0 ∼ 0.

Thepairs (X � P, T1 + T2 + (D0)X ) and ((S1)Y0 ,Diff (S1)Y0
((T1 + T2)Y0 + (D0)Y0

+ (S0)Y0)) are lc. Since T1 + T2 is Cartier divisor then (D0)X is Cartier divisor. The
curves (F1

0 )Y0 and (F2
0 )Y0 generate extremal rays of NE(Y0/X) that give small con-

tractions. Let h′
0,1 : Y0 ��� Y0,1 be any of two log flips. Since our pairs are lc then

ρ((S0)Y0,1/C) = 1. Let h′
0,2 : Y0,1 → Z1 be a divisorial contraction of (S0)Y0,1 onto a

curve.
Thus we obtain a birational map h′

0 = h′
0,2 ◦ h′

0,1 : Y0 ��� Z1 and a non-toric
blow-up g1 : (Z1, S1) → (X ⊃ C � P), ρ(S1/C) = 2. It can be proved by direct
computation that −S1 is g1-ample divisor, but if we consider the construction of g1
through two Q-factorializations of (X � P) as done above, then it is obvious that the
divisor −S1 is g1-ample. The divisor Diff S1((T1 + T2)Z1 + (D0)Z1) consists of four
curves and gives 1-complement of KS1 + Diff S1(0). By Shokurov’s criterion on the
characterization of toric varieties (S1,Diff S1((T1 + T2)Z1 + (D0)Z1) → C is a toric
conic bundle [26]. Thus g1 is a plt blow-up.

Third step. Assume that there exists a curve �1 ⊂ (S1)Y0 with the following
two properties: (1) K(S1)Y0

+ Diff (S1)Y0
(0) + �1 is plt and h0-anti-ample divisor,

h0 : �1 → (�0)Z0 is a surjective morphism and (2) �1 is not a center of any blow-up
ofH0, that is, �1 is a non-toric subvariety of ((S1)Y0 ,Diff (S1)Y0

(0)) in any analytical
neighborhood of the central fiber F1 of (S1)Y0 over P .

The triple ((S1)Y0 ,Diff (S1)Y0
(0), �1) has the same structures as in the previous

case of Q-factorial singularities, and we use its notation.
Consider an arbitrary toric structure of Y0 in any neighborhood of the point Q1

such that �1 is also a toric subvariety of Y0. Let h1 : (Y1, (S2)Y1) → (Y0 ⊃ �1 � Q1)

be an arbitrary toric blow-up of the curve �1 with an unique exceptional divisor
(Exc h1 = (S2)Y1 ), (S1)Y1

∼= (S1)Y0 .
Let (D1)Y0 be a toric Weil divisor of (Y0 � Q1) such that (D1)Y0 |S1 = �1 and

a((S2)Y1 , (D1)Y0 + (S0)Y0 + (S1)Y0) = −1. Considering the case of Q-factorial sin-
gularities and construction of g0 ◦ h0 through Q-factorializations of (X � P) we
have (E2)Y0 ⊂ (D1)Y0 and hence F2

0 ⊂ (D1)Y0 . Thus we have 1-complement KY1 +
(S2)Y1 + (S1)Y1 + (S0)Y1 + (D1)Y1 ∼ 0/X by Inversion of Adjunction applied to the
surfaces (Si )Y1 . By the cone theorem we have:

(1) there exists a divisorial contraction h′
1,1 : Y1 → Y1,1 of (S1)Y1 onto a curve,

(S2)Y1
∼= (S2)Y1,1 ;

(2) there exists a small contraction of (F1
0 )Y1,1 , h′

1,2 : Y1,1 ��� Y1,2 is a correspond-
ing log flip;

(3) there exists a small contraction of (F2
0 )Y1,2 , h′

1,3 : Y1,2 ��� Y1,3 is a correspond-
ing log flip;

(4) there exists an divisorial contraction h′
1,4 : Y1,3 → Z2 of (S0)Y1,3 onto a curve.

Thus we obtain a birational map h′
1 = h′

1,4 ◦ h′
1,3 ◦ h′

1,2 ◦ h′
1,1 : Y1 ��� Z2, the

local conic bundle (S2)Z2 → C , ρ((S2)Z2/C) = 2 and K Z2 + (S2)Z2 + (D1)Z2 ∼
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0/X is lc. Let F2 = F1
2 + F2

2 be a fiber over P and the curves F1
2 , F2

2 appear due to
log flips h′

1,2, h′
1,3 respectively. By the construction the divisor (D1)Z2 contains two

sections of (S2)Z2 and F1
2 .

If we consider this construction through two Q-factorializations of (X � P)

then (S2)Z2 is anti-ample over C and (F1
0 )Y1,1 ∩ (F2

0 )Y1,1 = (Q0)Y1,1 . Since (F2
0 )Y1,2 ·

(F2
0 )Y1,2 = 0, KY1,2 + (S0)Y1,2 + (S2)Y1,2 + (D1)Y1,2 ∼ 0 then for some e > 0 we have

(D1)Y1,2 · (F2
0 )Y1,2 = e(E2)Y1,2 · (F2

0 )Y1,2 > 0 and (D1)Z2 contains F2
2 .

ByShokurov’s criterion on the characterization of toric varieties ((S2)Z2 ,Diff (S2)Z2

(0)) → C is a toric conic bundle [26].We obtain a non-toric plt blow-up g2 : (Z2, S2)
→ (X ⊃ C � P), where S2 = (S2)Z2 .

We prove the following proposition.

Proposition 3.5 The pair (Si ,Diff Si (0)) is klt and local toric conic bundle (1-
complementary), ρ(Si/C) = 1, gi is a non-toric plt blow-up for i = 1, 2.

Example 3.6 Let us describe the non-toric canonical blow-ups (they will be non-
terminal blow-ups always) g : (Y, E) → (X ⊃ C � P) provided that (X � P) is a
toric terminal singularity, C = g(E) is a toric (smooth) subvariety and dim C = 1.
Depending on a type of (X � P) we consider two Cases (B1) and (B2).

(B1) Let (X � P) be a Q-factorial terminal singularity. Let g : (Z , S) → (X ⊃
C � P) be any toric canonical blow-up (see Proposition 2.5).

Assume that there exists a curve � ⊂ S with the following two properties: (1)
KS + Diff S(0) + � is g-anti-ample divisor, and � does not contain any center of
canonical singularities of Z ; (2) � is a non-toric subvariety in any analytical neigh-
borhood of the fiber F (over P) on the toric variety Z for any toric structure of
(X � P), that is, the curve � is a non-toric subvariety of (S,Diff S(0)) in any ana-
lytical neighborhood of F on S.

Thus (X � P) is a smooth point, S is a smooth surface, Diff S(0) = k−1
k E , where

k ≥ 2 and E is some section by Proposition 2.5. By adjunction formula � is smooth,
Q = � ∩ F ∩ E , � · F = 1.

Let (X � P, D) be any pair with canonical singularities such that D is a boundary,
� ∈ CS(Z , DZ − a(S, D)S). Obviously, DZ |S = � + aF and a(S, D) = 0, where
a ≥ 0.

Considering the blow-up (C3
x1x2x3 � 0) ∼= (X ⊃ C � P) with weights (k, 1, 0),

C = {x1 = x2 = 0} and the divisor given by the equation x2
1 + x1x2 + x1xm

3 + bxk
2 =

0, then clearly, there is a divisor D for any such curve �.
By Theorem 1.6 there exists a divisorial contraction h : (˜Y , ˜E) → (Z ⊃ �) such

that a(˜E, D) = 0, Exc h = ˜E is an irreducible divisor and h(˜E) = �. Applly K
˜Y +

D
˜Y + ε˜S–MMP. Since ρ(˜Y/X) = 2 and K

˜Y + D
˜Y + ε˜S ≡ ε˜S over X , then after

log flips ˜Y ��� Y (perhaps their lack) we obtain a divisorial contraction h′ : Y → Y ,
which contracts S onto a curve CY .

Thus we obtain a non-toric canonical blow-up f . Since CY ∈ CS(Y ) by the con-
struction then f is not a terminal blow-up.

(B2) Let (X � P) be a non-Q-factorial terminal toric three-dimensional sin-
gularity, that is, (X � P) ∼= ({x1x2 + x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0)). Consider a Q-
factorialization g : ˜X → X , ˜T = Exc g and ˜P = ˜T ∩ ˜C . We apply the construction
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from (B1) for the curve ˜C ⊂ (˜X � ˜P) such that the divisor D from the construction
has the form g∗ DX , where DX is aQ-Cartier divisor. We obtain a non-toric canonical
blow-up f : Y + → ˜X . Let Y + ��� Y be a log flip for the curve TY + . Thus we obtain
a required non-toric canonical blow-up f (anti-amplness of E is proved as in case
(A2)).

Let us describe the curves �. Let g : (Z , S) → (˜X � ˜P) be a toric canonical
blow-up obtained in the first step of the construction. Let ψ : Z ��� Z+ be a toric
log flip for the curve TZ . So g+ : (Z+, S+) → (X � P) is a toric canonical blow-
up. The structure of the curve �S+ is completely identical to the structure of the
curve � considered in case (A2). To prove that any such curve �S+ is realizable, it
suffices to consider a divisor of the form xi1 + bxk

i2
= 0 on (X � P) for some b, k,

{i1, i2} = {1, 2} or {3, 4}.
Theorem 3.7 Let f : (Y, E) → (X ⊃ C � P)be a plt blow-up of three-dimensional
toric terminal singularity, where dim f (E) = 1. Assume that the curve C = f (E)

is a toric subvariety of (X � P). Then, either f is a toric morphism (see Example
2.2), or f is a non-toric morphism described in Example 3.1.

Proof By Example 3.1 we must only consider the case when (X � P) is a Q–
factorial singularity. Let f be a non-toric morphism (up to analytic isomorphism).
Let DY ∈ | − n(KY + E)| be a general element for n 
 0. Put DX = f (DY ) and
d = 1

n . The pair (X, d DX ) is log canonical, a(E, d DX ) = −1, and E is a unique
exceptional divisor with discrepancy −1.

By the construction of partial resolution of (X, d DX ) (see Definition 2.7 and the
paper [27]) and by Criterion 2.8, there exists a toric divisorial contraction g : Z → X
dominated by partial resolution of (X, d DX ) (up to toric log flips) and the following
properties are fulfilled.

(A) The exceptional set Exc g = S is an irreducible divisor, the divisors S and E
define the different discrete valuations of the function fieldK(X), and g(S) = C .

(B) By � denote the center of E on the surface S. Then the curve � is a non-toric
subvariety of Z . In the other words, � is a non-toric subvariety of (S,Diff S(0)).

Obviously, a(S0, d DX ) < 0. By Example 3.1 (in its notation) we must prove
only that the anti-ample over X divisor KS0 + Diff S0(0) + �0 is plt in some analyt-
ical neighborhood of the fiber F0 ⊂ S0. We can choose the divisor d DX such that
Supp(d DX |S0) ⊂ �0 ∪ F ∪ �′

0 ∪ E2
0 , where �′

0 is a general divisor on S0.
Assume that KS0 + Diff S0(0) + �0 is not a plt divisor. By the adjunction formula

the curve �0 is smooth. By connectedness lemma KS0 + Diff S0(0) + �0 is not a
plt divisor at unique point, and denote this point by G0. The point G0 is a non-toric
subvariety of (S0,Diff S0(0)). Moreover, the curve�0 is locally a non-toric subvariety
at the pointG0 only.By the constructionof partial resolution [27] (in a small analytical
neighborhood of the pointG0) there exists a divisorial toric contraction ĝ0 : ̂Z0 → Z0

such that Exc ĝ0 = S′′
0 is an irreducible divisor, ĝ(S′′

0 ) = G0 and the two following
conditions are satisfied.

(1) Put S′
0 = (S0)̂Z0

and C0 = S′
0 ∩ S′′

0 . Let c(�0) be the log canonical threshold
of �0 for the pair (S0,Diff S0(0)). Then ĝ0|S′

0
: S′

0 → S0 is the toric inductive blow-up
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of KS0 + Diff S0(0) + c(�0)�0 (see Theorems 1.10 and 2.12), and the point ̂G0 =
C0 ∩ (�0)S′

0
is a non-toric subvariety of (S′′

0 ,Diff S′′
0
(0)).

(2) The divisor Diff S′′
0
(d D

̂Z0
+ a(S0, d DX )S′

0) is a boundary in some small ana-
lytical neighborhood of the point ̂G0.

Let H be a general hyperplane section of sufficiently large degree passing
through the point P such that it does not contain the curve C . Then there exists
a number h > 0 such that a(S′′

0 , d DX + h H) > −1, and the point ̂G0 is a center
of (S′′

0 ,Diff S′′
0
(d D

̂Z0
+ a(S0, d DX )S′

0 + h H
̂Z0

)). Therefore we obtain a contradic-
tion for the pair (S′′

0 ,Diff S′′
0
(d D

̂Z0
+ a(S0, d DX )S′

0 + h H
̂Z0

)) and the point ̂G0 by
Theorem 4.2. �

We have proved the next theorem too.

Theorem 3.8 Let f : (Y, E) → (X ⊃ C � P)be a plt blow-up of three-dimensional
toric Q-factorial singularity, where dim f (E) = 1. Assume that the curve C = f (E)

is a toric subvariety of (X � P). Then, either f is a toric morphism (see Example
2.2), or f is a non-toric morphism described in Example 3.1.

Theorem 3.9 Let f : (Y, E) → (X ⊃ C � P) be a canonical blow-up of three-
dimensional toric terminal singularity, where dim f (E) = 1. Assume that the curve
C = f (E) is a toric subvariety of (X � P). Then, either f is a toric morphism (see
Proposition 2.5), or f is a non-toric morphism and described in Example 3.6.

Proof Let f be a non-toric morphism (up to analytic isomorphism). Let DY ∈
| − nKY | be a general element for n 
 0. Put DX = f (DY ) and d = 1

n . The pair
(X, d DX ) has canonical singularities and a(E, d DX ) = 0. Now the arguments of
the proof of Theorem 3.7 can be obviously applied, and we have a(S, d DX ) = 0,
this completes the proof. �

Corollary 3.10 Under the same assumption as in Theorem 3.9 the two following
statements are satisfied:

(1) [8] if f is a terminal blow-up then the (toric) morphism f is isomorphic to the
blow-up of the ideal of the curve C and an index of (X � P) is equal to 1, that is, either
(X � P) is a smooth point or (X � P) ∼= ({x1x2 + x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0));
(2) if f is a non-toric morphism then an index of (X � P) is equal to 1.

4 Toric Log Surfaces

Definition 4.1 Let P(w) = Px1x2x3x4(w1, w2, w3, w4), where w1 + w2 = w3 + w4

and gcd(w1, w2, w3, w4)=1. Put (w1, w2, w3, w4) = (a1d23d24, a2d13d14, a3d14d24,
a4d13d23), where di j = gcd(wk, wl) and i, j, k, l are mutually distinct indices from
1 to 4. The toric pair

(

S, D
) = (

x1x2 + x3x4 ⊂ P(w),Diff S/P(w)(0)
)
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Fig. 3 ODP surface

is called an ODP pair, ρ(S) = 2. By Proposition 1.6 of [14]we have D = ∑

i< j,1≤i≤2
di j −1

di j
Ci j , where Ci j = {xi = x j = 0} ∩ S.

Let f : (Y, E) → (X � P) be a toric plt blow-up of three-dimensional ordinary
double point. Then (E,Diff E (0)) is an ODP pair by Example 2.2. Converse is also
true: every ODP pair is realized by some toric plt blow-up of three-dimensional
ordinary double point.

To be definite, assume thatw1 ≤ w2,w3 ≤ w4,w2 ≤ w4, P1 = (1 : 0 : 0 : 0), . . .,
P4 = (0 : 0 : 0 : 1). The surface S has a cyclic singularity at the point Pi for every
i = 1, 2, 3, 4 (see Fig. 3).

Since OP(w)(wi )|S = {xi = 0}|S = 1
dik

Cik + 1
dil

Cil for the corresponding differ-

ent indices k and l, then it is easy to calculate that C2
13 = d2

13(w3 − w2)/(w2w4) ≤
0, C2

23 = d2
23(w2 − w4)/(w1w4) ≤ 0, C2

14 = d2
14(w4 − w2)/(w2w3) ≥ 0 and C2

24 =
d2
24(w2 − w3)/(w1w3) ≥ 0. In particular, Mori cone NE(S) is generated by the two
rays R+[C13], R+[C23].

Now we prove a two-dimensional non-toric point theorem. An one-dimensional
analog (dim S = 1) of Theorem 4.2 (1) is obvious (see the proofs of Theorems 2.12
and 2.13 also).

Theorem 4.2 Let (S, D) be a toric pair, where S is a normal projective surface.
Assume that D = ∑r

i=1 di Di , where Di is a prime divisor and 1
2 ≤ di ≤ 1 for each

i . Assume that there exists the boundary T such that T ≥ D and −(KS + T ) is an
ample divisor. Assume that some point � is a center of LCS(S, T ), and there exists
the analytical neighborhood U of � such that KS + T is a log canonical divisor in
the punctured neighborhood U\�. Then the point � is a toric subvariety of (S, D)

if one of the two following conditions is satisfied:
(1) ρ(S) = 1;
(2) ρ(S) = 2, two different extremal rays of NE(S) give two toric conic bundles;
(3) (S, D) is ODP pair.

Proof Let the point � be a non-toric subvariety of (S, D). We will obtain a contra-
diction.
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Consider Condition (1). It is clear that this theorem is sufficient to prove in the
case di = 1

2 for all i .
Since −(KS + T ) is an ample divisor, then replacing T by some divisor we

can assume that LCS(S, T ) ∩ U = �. Hence, connectedness lemma implies that
LCS(S, T ) = �.

The toric projective surface S (with Picard number ρ(S) = 1) is determined by
the fan � in the lattice N ∼= Z2, where

� = {〈n1, n2〉, 〈n2, n3〉, 〈n1, n3〉, their faces
}

.

Thus surface S has at most three singular points. If the number of singularities is
less than or equal to two, then there exists an isomorphism of the lattice N such that
n1 = (1, 0), n2 = (0, 1), and therefore S ∼= Px1x2x3(a1, a2, 1).

Suppose that the point � is a non-toric subvariety of (S, D′), where D′ = D −
1
2 D j = ∑

i = j
1
2 Di . Then the divisor D can be replaced by the other divisor D′ < D.

Therefore we have the four possibilities for the pair (S, D) and the point �.
(A) S has three singular points and D = 0. In this possibility � /∈ Supp(Sing S).
(B) � /∈ Di1 ∪ Di2 , where i1 = i2. To be definite, let Di1 − Di2 be a nef divisor.
(C) S has two singular points, that is, S ∼= P(a1, a2, 1), where a1 ≥ 3, a2 ≥ 2 and

� = (b : 1 : 0), where b = 0.
(D) S ∼= P(a1, a2, 1), D = 1

2 {x1 = 0} + 1
2 {x2 = 0}, a1 ≥ 2, a2 ≥ 1 and � = (1 :

0 : b), where b = 0.
Possibility (B) is impossible since LCS(S, T − 1

2 Di1 + 1
2 Di2) = � ∪ Di2 , that is,

we have the contradiction with connectedness lemma. Possibility (D) is impossible
since LCS(S, T − 1

2 {x1 = 0} + {x3 = 0}) = � ∪ {x3 = 0}, that is, we have the con-
tradiction with connectedness lemma. Consider possibility (C). Write T = a{x3 =
0} + T ′, where {x3 = 0} ⊂ Supp(T ′) and 0 ≤ a < 1. The divisor KS + {x3 = 0} +
T ′ is not log canonical at the point �, therefore by the inversion of adjunction we
have

({x3 = 0} · T ′)
�

> 1. We obtain the contradiction

1 <
({x3 = 0} · T ′)

�
< {x3 = 0} · (−KS) = a1 + a2 + 1

a1a2
≤ 1.

Consider possibility (A). Let f : (Y, E) → (S � �) be an inductive blow-up of
(S, T ) (see Theorem 1.10). By Theorem 2.12 the morphism f is a weighted blow-up
of smooth point with weights (α1,α2). Write KY + E + TY = f ∗(KS + T ). �

Lemma 4.3 The divisor KS has a 1-complement B+ such that � is a center of
LCS(S, B+).

Proof The divisor KY + E + (1 − δ)TY is plt and anti-ample for 0 < δ � 1. Since
ρ(Y ) = 2 then the cone NE(Y ) is degenerated by two extremal rays. By R1 and R2

denote these two rays. To be definite, let R1 gives the contraction f . If −(KY + E)

is a nef divisor then a 1–complement of KE + DiffE (0) = KE + α1−1
α1

P1 + α2−1
α2

P2

is extended to a 1–complement of KY + E by Proposition 1.17, therefore we obtain
the required 1–complement of KS by Proposition 1.15.
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Consider the last possibility: (KY + E) · R2 > 0, TY · R2 < 0. Let L(δ) ∈ | −
n(KY + E + (1 − δ)TY )| be a general element for n 
 0 and let M = (1 − δ)TY +
1
n L(δ), where δ > 0 is a sufficiently small fixed rational number. By construction,
KY + E + (1 + ε)M ≡ εM , KY + E + (1 + ε)M is a plt divisor. Therefore, apply-
ing (KY + E + (1 + ε)M)–MMP is a contraction of the ray R2 for 0 < ε � 1. The
corresponding divisorial contraction is denoted by h : Y → S, and the image of E
on the surface S is denoted by E , put Exc h = CY and CS = f (CY ). The divisor
KS + E is plt and anti-ample. Therefore, if 1–complement of KE + Diff E (0) exists
then we consistently apply Theorems 1.17, 1.16 and 1.15 and obtain the required
1–complement of KS .

Suppose that there does not exist any 1–complement of KE + DiffE (0). It is
possible if and only if there are three singular points of S lying on the curve E .
It implies that α1 ≥ 2, α2 ≥ 2, the curve CY is contracted to a cyclic singularity,
and the curve CS passes through at most one singularity of S (see [11, Chap. 3]).
Let us apply Corollary 9.2 of the paper [10] for KS + E . We obtain that S has the
two singularities of type A1, which do not lie on the curve CS . Let V (〈n1〉) be the
closure of one-dimensional orbit passing through the two singular points of type A1.
Then there exists an isomorphism of the lattice N such that n1 = (1, 0), n2 = (1, 2),
and therefore n3 = (−2n + 1,−2), where n ≥ 2. By considering the cone 〈n2, n3〉
we obtain that the third singularity of S is of type 1

4n−4 (2n − 1, 1), its minimal
resolution graph consists of three exceptional curve chain with the self-intersection
indices −2, −n and −2 respectively. The following two cases are possible: (i) � ∈
V (〈n2〉) ∪ V (〈n3〉) and (ii) � /∈ V (〈n2〉) ∪ V (〈n3〉).

Consider formerCase (i). To be definite, let� ∈ V (〈n2〉), then V (〈n2〉) · (−KS) =
n

2n−2 ≤ 1, and therefore we obtain a contradiction for the same reason as in Case (C).
Consider latter Case (ii). Let g : Smin → S be aminimal resolution. Let us contract

all curves of Exc g, except the exceptional curve of the singularity 1
4n−4 (2n − 1, 1)

with the self-intersection index −n. We obtain the divisorial contractions Smin → ˜S
and ˜S → S. Note that ρ(˜S) = 2 and ˜S = TN (˜�), where the fan ˜� is given by �

with the help of subdivision of the cone 〈n2, n3〉 into the two cones 〈n2, n4〉, 〈n4, n3〉,
where n4 = (−1, 0). The surface ˜S is a conic bundle with irreducible fibers, and
its two fibers are non-reduced. These two fibers are the curves V (〈n2〉), V (〈n3〉),
and every such curve contains the two singularities of type A1. By ˜� denote the
transform of � on the surface ˜S. We have K

˜S + ˜B+
1 + ˜B+

2 + V (〈n4〉) ∼ 0, where
˜B+
1 ∼ V (〈n2〉) + V (〈n3〉) is the fiber passing through the point˜�, and ˜B+

2 ∼ V (〈n1〉)
is the section passing through the point˜�. By Proposition 1.15 we obtain the required
1–complement of KS . �

Assume that B+ = B+
1 + B+′

, where the irreducible curve B+
1 has an ordinary

double point singularity at the point �. By the inversion of adjunction we have
B+′ = 0, B+

1 ∩ Supp(Sing S) = ∅ and KS + B+
1 ∼ 0, therefore KS is Cartier divisor.

Classification of Del Pezzo surfaces with Du Val singularities (in our case Du Val
singularities are cyclic), with Picard number 1 and with three singular points implies
K 2

S ≤ 4 [3]. Write T = aB+
1 + T ′, where B+

1 ⊂ Supp(T ′) and 0 ≤ a < 1. Since

0 ∼ KY + E + ˜B+
1 = f ∗(KS + B+

1 ) then we obtain the contradiction
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0 >(KY + E + TY ) · ˜B+
1 ≥ (−1 + a)

(

˜B+
1

)2 =

= (−1 + a)
(

K 2
S − (α1 + α2)

2

α1α2

)

≥ 0.

Consider the last case B+ = B+
1 + B+

2 + B+′
, where the irreducible curves B+

1
and B+

2 have a simple normal crossing at the point �. We have (B+
1 ∪ B+

2 ) ⊃
Supp(Sing S) according to Corollary 9.2 of the paper [10] applied for KS + B+

1 +
B+
2 . To be definite, let the curve B+

1 contains two singular points of S. By the inversion
of adjunction, degDiff B+

1
(0) ≤ 1, and therefore the curve B+

1 passes through two sin-
gular points only, and they are of type A1. Such surfaces were classified in the proof
of Lemma 4.3, and therefore it can be assumed that the third singularity of S is of type

1
4n−4 (2n − 1, 1), B+′ = 0, B+

1 ∩ B+
2 = �, (B+

1 )2 = n − 1 and (B+
2 )2 = 1

n−1 , where

n ≥ 2. To be definite, assume that f ∗(B+
1 ) = ˜B+

1 + α1E and f ∗(B+
2 ) = ˜B+

2 + α2E .

Thus (˜B+
1 )2 = n − 1 − α1/α2, (˜B+

2 )2 = 1
n−1 − α2/α1, and therefore (˜B+

k )2 ≤ 0 for
either k = 1 or k = 2. Write T = a1B+

1 + a2B+
2 + T ′, where B+

1 , B+
2 ⊂ Supp(T ′),

0 ≤ a1 < 1, 0 ≤ a2 < 1. Since 0 ∼ KY + E + ˜B+
1 + ˜B+

2 = f ∗(KS + B+
1 + B+

2 ),
then we obtain the contradiction

0 >(KY + E + TY ) · ˜B+
k = (−1 + ak)

(

˜B+
k

)2 + T ′
Y · ˜B+

k ≥

≥ (−1 + ak)
(

˜B+
k

)2 ≥ 0.

Consider Condition (2). Such toric surface is determined by the fan� in the lattice
N ∼= Z2, where

� = {〈m1, m2〉, 〈m2, m3〉, 〈m3, m4, 〉, 〈m4, m1〉, their faces
}

,

m1 = (1, 0),m2 = (q, r),m3 = (−1, 0),m4=(−q,−r), q ≥ 1, r ≥ 1 and gcd(q, r)

= 1. Therefore S has four singularities of types 1
r (1,−q), 1

r (1, q), 1
r (1,−q) and

1
r (1, q) respectively.

Two different fibers passing through the point � are denoted by F1 and F2. Since
T · Fi ≥ 1 by Lemma 4.4 for i = 1, 2, then T − F1 − F2 is nef.

Lemma 4.4 Let O be a smooth point of the surface M. Assume (M, N ) is not a log
canonical pair at the point O, where N = d I + � ≥ 0, I ⊂ Supp�, d ≤ 1, I is an
irreducible curve which is a smooth at the point O. Then (� · I )O > 1.

Proof The proof follows by the inversion of adjunction, see, for example,
[12, Theorem 7.5]. �

Consider the index j such that Fj is non-toric subvariety of (S, D). Let F ′ and F ′′
be the closures of one-dimensional toric orbits provided that F ′ ∼Q F ′′ ∼Q

1
r Fj . We

obtain the contradiction (KS + T ) · Fi ≥ (−F ′ − F ′′ + D + Fj ) · Fi ≥ 0, where
the index i ∈ {1, 2} satisfies the condition i = j .
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Consider Condition (3). Assume that either � ∈ C13, or � ∈ C23. Let us consider
the first possibility. The second possibility is considered similarly. If � is a non-toric
point of (C13,DiffC13(D)) thenwe have a contradiction with one-dimensional analog
of this theorem since C2

13 < 0. Therefore, a4 = 1 and d23 = 1. The case C2
23 = 0 is

impossible also (in this case the surface S is a toric conic bundle, and we use its
structure). Thus C2

23 < 0 and consider the contraction ψ : S → S′ of C23. If ψ(�) is
a non-toric point of (S′,ψ(D)) then we have a contradiction with this theorem under
Condition (1). Therefore the curve C23 is contracted to a smooth point and d24 = 1.
We obtain the contradiction a2d13d14 = w2 > w4 = d13.

Assume that � ∈ C13 ∪ C23. Let C2
23 = 0. Then (w3, w4) = (w1, w2), (S, D) ∼=

(

Fw1−w2 ,
w2−1
w2

C13 + w1−1
w1

C24
)

and 2 ≤ w1 < w2. By Fj denote a fiber of S passing
through �. Then T ′ · Fj ≥ 1 by Lemma 4.4, where T = T ′ + αFj , Fj ⊂ Supp(T ′),
and we have the contradiction 0 > (KS + T ) · Fj ≥ (KS + Fj + T ′) · Fj ≥ 0.

Therefore C2
23 < 0, C2

13 < 0. Considering case by case the contractions of the
curves C13 and C23, we obtain that these curves are contracted to smooth points and
d13 = d23 = d24 = d14 = 1. Since C2

13 = − 1
a2a4

, C2
23 = − 1

a1a4
then (w1, w2, w3, w4)

= (a2, a2, a2 − 1, a2 + 1), a2 ≥ 3. It is easy to find a birational map

S ��� S′
(

1

a2 − 1
(1,−1) + 1

a2 − 1
(1, 1) + 1

a2 − 1
(1,−1) + 1

a2 − 1
(1, 1)

)

,

where ρ(S′) = 2, and in result of thismapwe obtain a contradictionwith this theorem
under Condition (2). To find this map it is enough to consider two (required) toric
blow-ups at the points P2, P4 and a contraction of proper transforms of C13 and
C23. �

Remark 4.5 Theorem 4.2 (1) can not be generalized to the case ρ(S) ≥ 2. Con-
sider the toric pair(S, D) = (F1,

1
2 E0) and the divisor T = 1

2 E0 + E ′
0 + F + δE∞

provided that F ∩ E ′
0 /∈ E0 ∪ E∞, where E0, E ′

0 are two different zero sections, E∞
is the infinity section, F is a fiber and 0 < δ < 1

2 . Put � = F ∩ E ′
0. Then � is a

non-toric point of (S, D), T ≥ D, KS + T is anti-ample log canonical divisor and
� ∈ LCS(S, T ).

Nevertheless, it is expected that Theorem 4.2 can be generalized to every dimen-
sion and every Picard number ρ(S), if we require the following condition, instead of
Conditions (1), (2) and (3): (S, D) = (E,Diff E (0)), where f : (Y, E) → (X � P)

is a toric plt blow-up of some toric singularity.

Definition 4.6 Let (�, D�) ∼= (P1,
∑r

i=1
mi −1

mi
Pi ). Assume that −(K� + D�) is an

ample divisor. Then, for set (m1, . . . , mr ) we have one of the following cases up
to permutations: (m1, m2), it is of type A; (2, 2, m), m ≥ 2, it is of type Dm+2;
(2, 3, 3), it is of type E6; (2, 3, 4), it is of type E7; (2, 3, 5), it is of type E8. In
Propositions 4.7 and 4.8 the classification according to types corresponds to the
types of (�, D�) = (�,Diff�(D)).

Proposition 4.7 Let (S, D) be a toric pair, where S is a normal projective surface
with ρ(S) = 1, and let D be a divisor with standard coefficients. Assume that there
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exists a curve � such that −(KS + D + �) is an ample divisor and (S, D + �) is a
plt non-toric pair. Let us denote a hypersurface of degree d in a weighted projective
space by Xd. Then one of the following cases is satisfied.

(1) (S, D, �) ∼= (P2
x1x2x3 ,

d1−1
d1

{x1 = 0}, X2) and d1 ≥ 1. It is of type A.

(2) (S, D, �) ∼= (P2
x1x2x3 ,

∑3
i=1

di −1
di

{xi = 0}, X1), the integer number triple (d1,
d2, d3) is either (2, 2, k), (2, 3, 3), (2, 3, 4) or (2, 3, 5), where k ≥ 2. They are of
types Dk+2, E6, E7 and E8 respectively.

(3) (S, D, �) ∼= (Px1x2x3(a1, 1, 1),
∑2

i=1
di −1

di
{xi = 0}, Xa1), the integer number

triple (a1, d1, d2) is either (2, 2, k1), (2, 3, k2), (2, k3, 1) or (3, 2, 1), where k1 ≥ 1,
1 ≤ k2 ≤ 2, k3 ≥ 4. In the first possibility, if k1 ≥ 2 then it is of type Dk1+2. In the
second possibility, if k2 = 2 then it is of type E6. The other possibilities are of type
A always.

(4) (S, D, �) ∼= (Px1x2x3(a1, 1, 1),
d1−1

d1
{x2 = 0}, Xa1+1), a1 ≥ 2 and d1 ≥ 1. It is

of type A.
(5) (S, D, �) ∼= (Px1x2x3(a2 + 1, a2, 1),

∑2
i=1

di −1
di

{xi = 0}, Xa2+1), the integer
number triple (a2, d1, d2) is either (2, 2, k1), (k2, 2, k3) or (k4, k5, 1), where k1 ≤ 3,
k2 ≥ 3, k3 ≤ 2, k4 ≥ 2 and k5 ≥ 3. In the first possibility, if k1 = 2 then it is of type
D6, and, if k1 = 3 then it is of type E7. In the second possibility, if k3 = 2 then it is
of type D2k2+2. The other possibilities are of type A always.

(6) (S, D, �) ∼= (Px1x2x3(2a2 + 1, a2, 1), 1
2 {x1 = 0}, X2a2+1), a2 ≥ 2. It is of type

D2a2+2.
(7) (S, D, �) ∼= (Px1x2x3(la2 − 1, a2, 1),

∑2
i=1

di −1
di

{xi = 0}, Xla2), a2 ≥ 2, the
integer number triple (l, d1, d2) is either (2, 2, 1) or (k1, 1, k2), where k1 ≥ 2 and
k2 ≥ 1. They are of types D2a2+1 and A respectively.

(8) (S, D, �) ∼= (Px1x2x3(a1, a2, 1),
d1−1

d1
{x3 = 0}, Xa1+a2), a1 > a2 ≥ 2 and d1 ≥

1. It is of type A.
(9) (S, D) ∼= (S( 1

r1
(1, 1) + 1

r2
(1, 1) + Ar1+r2−1),

d1−1
d1

D3), � ∼Q D3 is an irre-
ducible curve being different from D3, where D3 is the closure of one-dimensional
orbit passing through the first and second singular points, d1 ≥ 2 and r1, r2 ≥ 2. It
is of type A.

(10) (S, D) ∼= (S( 1
r1

(l, 1) + 1
r2

(l, 1) + A(r1+r2)/ l−1),
d1−1

d1
D3), the surface S has

three singular points, � ∼ D1 + D2, where Di is the closure of one-dimensional
orbit not passing through the i-th singular point of S, d1 ≥ 1, l ≥ 2 and l|(r1 + r2).
It is of type A.

Proof By the adjunction formula the curve � is smooth and irreducible. It follows
easily that, if P ∈ Supp D ∩ � then (S, D + �) is a toric pair in a sufficiently small
analytical neighborhood of P . If S is a smooth surface then S ∼= P2 and we have two
Cases (1) and (2).

Assume that S is a non-smooth surface having at most two singular points. Then
we have S ∼= Px1x2x3(a1, a2, 1) as before in the proof of Theorem 4.2. At first let
us consider the case of one singular point, that is, a1 ≥ 2 and a2 = 1. Then either
� ∼ OS(1),OS(a1) orOS(a1 + 1). The variant� ∼ OS(1) is impossible since KS +
D + � is not a plt divisor at the point (1 : 0 : 0). The other variants lead us to Cases
(3) and (4) respectively. At second let us consider the case of two singular points,
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that is, a1 > a2 ≥ 2. Put � = {ψ(x1, x2, x3) = 0}. Suppose that � � OS(a1 + a2),
OS(a1),OS(a2),OS(1) then ψ(x1, x2, x3) = bx1xl

3 + ϕ(x2, x3), and by considering
the point (1 : 0 : 0) we obtain b = 0, l = 1, � ∼ OS(a1 + 1) and xm

2 ∈ ϕ(x2, x3).
It leads us to Case (7). If � ∼ OS(a1) then by considering the point (0 : 1 : 0) we
obtain x1, xl

2x3 ∈ ψ(x1, x2, x3). It leads us to Cases (5) and 6). It is easy to prove
that cases � ∼ OS(a2) and � ∼ OS(1) are not realized. If � ∼ OS(a1 + a2) then
x1x2, xa1+a2

3 ∈ ψ(x1, x2, x3), and we have Case (8).
Assume that S is a surface having three singular points (it is the last possibility for

S). According to Corollary 9.2 of the paper [10] for the divisor KS + �, we obtain
that the curve � contains a singular point of S.

Suppose that the curve � contains only one singular point of S, then arguing
as above in the proof of Theorem 4.2, we obtain S = S(2A1 + 1

4n−4 (2n − 1, 1)),
where n ≥ 2, and � is locally a toric subvariety of (S � P), where (S � P) is of type

1
4n−4 (2n − 1, 1). By T1 and T2 denote the closures of one-dimensional orbits passing
through the singular point P . Since T1 ∼ T2 and (� · T1)P = (� · T2)P then � · Ti >

1. Therefore � − (4n − 4)T1 is an ample divisor, and we obtain the contradiction
with ampleness of −(KS + �) ∼ 2nT1 − �. Thus this possibility is not realized.

Suppose that the curve � passes through the two singular points P1 and P2

of S only. There exists a 1-complement of K� + Diff�(0), and we obtain the 1-
complement KS + � + T ∼ 0 of KS + � by Proposition 1.17. There are two Cases
(A) and (B).

(A) Let T is a reducible divisor. By the two-dimensional criterion on the char-
acterization of toric varieties [26, Theorem 6.4] we have T = T1 + T2, � ∼ T3,
D = d1−1

d1
T3, the singularities at the points Pj are of type 1

r j
(1, 1), where d1 ≥ 2,

r j ≥ 2 and Ti are the closures of one-dimensional orbits, and P1 ∈ T1. Let f : ˜S → S
be a minimal resolution at the points P1 and P2 only. By E1 denote the curve
such that f (E1) = P1. By the inversion of adjunction � · T3 = 1

r1
+ 1

r2
, hence

(�
˜S)

2 = �
˜S · (T3)˜S = 0, and the linear system |E1 + m�

˜S| gives the birational mor-
phism g : ˜S → Fr1 for m 
 0 [15, Proposition 1.10] such that the curve (T2)˜S is
contracted to a smooth point. The morphism g is toric and the third singularity of S
is of type Ar1+r2−1. We obtain Case (9).

(B) Let T is an irreducible divisor. To be definite, let Di be the closures of one-
dimensional orbits not passing through the i-th singular point of S = S( 1

r1
(a1, 1) +

1
r2

(a2, 1) + 1
r3

(a3, 1)). We have 1
r1

D1 ≡ 1
r2

D2 ≡ 1
r3

D3. To be definite, the curve �

passes through the first and second singular point of S. By the definition of 1–
complementwe obtain� · T = 1

r1
+ 1

r2
,� + T ∼ ∑3

i=1 Di . Hence, either� ∼ D1 +
D2, T ∼ D3 or � ∼ D3, T ∼ D1 + D2. Since 1–complement not passing through
the third singular point of S then it is of typeAr3−1. The case � ∼ D3 was considered
in Case (A). Since the curve � does not pass through the third singular point then we
have to consider the possibility remained: � ∼ D1 + D2 ∼ l D3, where l ≥ 2, l ∈ Z.
We obtain Case (10).

Suppose that the curve � passes through three singular points of S with the
indices r1, r2 and r3 respectively. By the inversion of adjunction the triple (r1, r2, r3)
is either (2, 2, k), (2, 3, 3), (2, 3, 4) or (2, 3, 5), where k ≥ 2. For the second and
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third variants there does not exist any surface S. For the first and fourth variants we
have S = S(2A1 + 1

4n−4 (2n − 1, 1)) and S ∼= P(2, 3, 5) respectively, where n ≥ 2.
These variants are considered as above mentioned case, when the curve � contains
only one singular point of S. �

Proposition 4.8 Let (S, D) be ODP pair. Assume that there exist a curve � and an
effective Q-divisor �′ such that KS + D + � + �′ is an anti-ample and plt divisor,
and (S, D + �) is a non-toric pair. Then d23 = d24 = 1, a1|a2 and � ∼ OP(w)(w2)|S

up to permutation of the coordinates. In particular, −(KS + D + �) is an ample
divisor and w1|w2. It is of type A.

Proof The sets � ∩ C13, � ∩ C23 consist of at most one point by the adjunction
formula. Moreover, we may assume that �′ = γ1C13 + γ2C23, where γ1 < 1 and
γ2 < 1. If C2

i3 = 0 then γi = 0, where i = 1, 2.
Let us prove that � · C13 > 0 and � · C23 > 0. Assuming the converse: � · C13 =

0, that is, � ∼ dC24. The possibility � · C23 = 0 is considered similarly. Since C23 ·
C24 = 1

a1
, a1(C23 · �) ∈ Z>0 then d ∈ Z>0. The divisor C24 − γC13 is nef for 0 ≤

γ ≤ 1
d13

, hence it is semiample by the base point free theorem [9]. Therefore, if
d ≥ 2 then we have a contradiction with connectedness lemma, since there exists
a Q–divisor �′′ such that ��′′� = 0 and D + � + �′ ∼Q C24 + C13 + �′′. Thus,
d = 1. Since the curve � is a non-toric subvariety of (S, D) then d24 ≥ 2, and we
have d13 = 1 by connectedness lemma again. We obtain the contradiction

0 > (KS + D + � + �′) · C23 ≥
≥

(d24 − 1

d24
C24 − C13 − C23 − C14 + �′

)

· C23 ≥

≥d24 − 1

d24
C24 · C23 − C13 · C23 = d23

(d24 − 1

w1
− 1

w4

)

≥ 0.

Thus, we proved that the sets � ∩ C13 and � ∩ C23 consist of one point only.
Suppose that P4 /∈ �. Then � ∼Q α1C14 + α2C24, α1 = a2(� · C13) ∈ Z>0 and

α2 = a1(� · C23) ∈ Z>0. By applying connectedness lemma we have α1 = α2 = 1.
Let us prove that d14 = d24 = 1. Assuming the converse: d14 ≥ 2. The possibility
d24 ≥ 2 is considered similarly. In order to apply connectedness lemma and obtain
a contradiction (for the disjoint curves C14, C23) we must only prove that D1 =
d14−1

d14
C14 + C24 + d24−1

d24
C24 − 1

d23
C23 is a semiample divisor. Since D1 · C23 > 0 and

D1 · C13 = d13(
d14−1

w2
− 1

w4
) ≥ 0 then D1 is a nef divisor and it is semiample by

the base point free theorem [9]. Finally, since KS + � + C13 + C23 ∼ 0 then KS is
Cartier divisor at the point P3, and the singularity at the point P3 is Du Val of type
1
w3

(w1, w2). Therefore w3 + w4 = w1 + w2 ≡ 0(modw3), w3|w4 and a3|a4.
Suppose that P4 ∈ �. Since the curve � is a (locally) toric orbit in some analytical

neighborhood of P4 then either � · C13 = 1
a4

or � · C23 = 1
a4
. Let us consider the

former case. The latter case is considered similarly. Write � ∼Q α1C23 + α2C24,
α1 = a4(� · C13) = 1 and α2 = a3(� · C14) ∈ Z>0. Arguing as above, we see that
α2 = 1, d24 = 1. If d23 = 1 then this proposition is proved. Let d23 ≥ 2. By the plt
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assumption of this proposition � · C23 = 1
a4

and d13 = 1. Considering � ∼Q C13 +
α′
2C14 we obtain α′

2 = 1, d14 = 1. This completes the proof. �

Definition 4.9 The triple (S, D, �) determined by the assertions of Propositions 4.7
or 4.8 is said to be a purely log terminal triple.

The following problem is important for the classification of plt blow-ups of three-
dimensional toric non-Q-factorial singularity (if we follow the method described in
this paper).

Problem. Let (S, D) = (E,Diff E (0)), where f : (Y, E) → (X � P) is a toric plt
blow-up of some toric three-dimensional (non-Q-factorial) singularity. Assume that
there exist a curve � and an effective Q-divisor �′ such that KS + D + � + �′ is an
anti-ample plt divisor, and � is a non-toric subvariety of (S, D). Classify the triples
(S, D, �).

5 Non-toric Three-dimensional Blow-ups. Case of Point

Example 5.1 Now we construct the examples of three-dimensional non-toric plt
blow-ups f : (Y, E) → (X � P) provided that (X � P) is a Q-gorenstein toric sin-
gularity and P = f (E). Depending on a type of (X � P) we consider two Cases
(A1) and (A2).

(A1). Let (X � P) be a Q-factorial toric singularity, that is, (X � P) ∼= (C3 �
0)/G, where G is an abelian group acting freely in codimension 1. All plt blow-ups
are constructed by the procedure illustrated on the next diagram (Fig. 4) and defined
below.

First step. Let g0 : (Z0, S0) → (X � P) be a toric blow-up, where Exc g0 = S0 is
an irreducible divisor and g0(S0) = P . Assume that there exists a curve�0 ⊂ S0 such
that (S0,Diff S0(0), �0) is a plt triple (see Definition 4.9). Such triples are classified
in Proposition 4.7 and are divided into the five types: A, Dl , E6, E7 and E8.

Remark 5.2 There exists an irreducible reduced Weil divisor � on X such that
�Z0 |S0 = �0. The surface� has a log terminal singularity at the point P . A singularity

Fig. 4 Case of Point.
Construction in Q-factorial
case
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type coincides with a type of the triple (S0,Diff S0(0), �0). In particular, if ψ is a G–
semi-invariant polynomial in C3 determining � then Du Val singularity {ψ = 0} ⊂
(C3 � 0) is of the same type.

The following lemma gives a restriction on the triple (S0,Diff S0(0), �0) in the
case of terminal singularities.

Lemma 5.3 Let (X � P) be a terminal singularity, that is, it is of type 1
r (−1,−q, 1),

where gcd(r, q) = 1 and 1 ≤ q ≤ r . Write Diff S0(0) = ∑3
i=1

di −1
di

Di , where Di are
the closures of corresponding one-dimensional orbits of the toric surface S0. Then
gcd(di , d j ) = 1 for i = j .

Proof It is sufficient to prove that the singularities of Z0 are cyclic. Consider the
cone σ determining the singularity (X � P) (see Example 2.2 (1)). By (w1, w2, w3)

denote the primitive vector defining the blow-up g0. Then Z0 is covered by three affine
charts with the singularities of types 1

w3
(−w1,−w2, 1), 1

rw2−qw3
(−w1 + uw2 +

vw3,−uw2 − vw3, 1) and 1
rw1−w3

(−w1, qw1 − w2, 1), where uq + vr = 1 and u,
v ∈ Z. �

According to Proposition 4.7 the curve �0 is locally a toric subvariety of Z0 in
every sufficiently small analytic neighborhood of each point of �0. Note also that Z0

is a smooth variety at a general point of �0.
Let h0 : (Y0,˜S1) → (Z0 ⊃ �0) be an arbitrary blow-up of the curve �0 with an

unique exceptional divisor (Exc h0 = ˜S1) for which the following three conditions
are satisfied.

(1) The morphism h0 is locally toric at every point of �0. In particular, ˜S0 ∼= S0,
ρ(˜S0) = 1.

(2) Let H0 be a general hyperplane section of Z0 passing through the general point
Q0 ∈ �0. Then the morphism h0 induces a weighted blow-up of the smooth point
(H0 � Q0) with weights (β1

0 ,β
2
0).

(3) h∗
0S0 = ˜S0 + β2

0
˜S1.

The set of all possible blow-ups h0 is denoted by H0. The morphism h′
0 gives

the divisorial contraction h′
0 : Y0 → Z1 which contracts the divisor ˜S0 to a point.

We obtain a non-toric blow-up g1 : (Z1, S1) → (X � P), where Exc g1 = S1 is an
irreducible divisor and g1(S1) = P .

Lemma 5.4 Let ˜�0 = ˜S0 ∩ ˜S1. Then

(˜�2
0)˜S1 = β1

0

(

KS0 + Diff S0(0)
) · �0

a(S0, 0) + 1
− β2

0(�
2
0)S0 .

Proof This formula follows from the following equalities

(˜�2
0)

˜S1
=β1

0
˜S0 · ˜�0 = β1

0 (S0 · �0 − β2
0
˜S1 · ˜�0) = β1

0 S0 · �0−
− β2

0 (˜�2
0)

˜S0
= β1

0 S0 · �0 − β2
0 (�2

0)S0 =
= β1

0 ((K Z0 + S0) · �0)/(a(S0, 0) + 1) − β2
0 (�2

0)S0 .

�
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Fig. 5 Type A

Fig. 6 Type Dl

In next Proposition 5.5 we will describe the pair (S1,Diff S1(0)). The surface ˜S1
is a conic bundle with ρ(˜S1) = 2, in particular, every geometric fiber is irreducible.
If we contract the section ˜�0 = ˜S0 ∩ ˜S1 of ˜S1 then we obtain the surface S1. The
curve �0 passes through a finite number of the singular points Q1, . . . , Qr of Z0

(r ≤ 3), and by ˜F1, . . . , ˜Fr denote the fibers of˜S1 over these points. In small analytic
neighborhoods of a general point of ˜�0 and a general point of some section ˜E0

the variety Y0 has the singularities of types C1 × 1
β1
0
(−β2

0 , 1) and C1 × 1
β2
0
(−β1

0 , 1)

respectively. By F1, . . . , Fr , E0 denote the transforms of ˜F1, . . . , ˜Fr , ˜E0 on the
surface S1 respectively. The empty circles are ˜F1, . . . , ˜Fr in the figures of Proposition
5.5. The singularities of˜S1 are into ovals. Note that the self-intersection index (˜�2

0)˜S1
was calculated in Lemma 5.4.

Proposition 5.5 Depending on a type of the triple (S0,Diff S0(0), �0) we have the
following structure of (S1,Diff S1(0)).
(1) Type A (Fig.5),

and

Diff S1(0) = k1 − 1

k1
F1 + k2 − 1

k2
F2 + β2

0 − 1

β2
0

E0.

The pair (S1,Diff S1(0)) is toric.
(2) Type Dl (l ≥ 4) (Fig.6),

and

Diff S1(0) = k1 − 1

k1
F1 + k2 − 1

k2
F2 + k2 − 1

k2
F3 + β2

0 − 1

β2
0

E0.

(3) Type E6 (Fig.7),
and

Diff S1(0) = k1 − 1

k1
F1 + k2 − 1

k2
F2 + k3 − 1

k3
F3 + β2

0 − 1

β2
0

E0.
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Fig. 7 Type E6

Fig. 8 Type E7

Fig. 9 Type E8

(4) Type E7, (Fig.8)
and

Diff S1(0) = k1 − 1

k1
F1 + k2 − 1

k2
F2 + k3 − 1

k3
F3 + β2

0 − 1

β2
0

E0.

(5) Type E8, (Fig.9)
and

Diff S1(0) = k1 − 1

k1
F1 + k2 − 1

k2
F2 + k3 − 1

k3
F3 + β2

0 − 1

β2
0

E0.

The pair (S1,Diff S1(0)) is klt, therefore g1 : (Z1, S1) → (X � P) is a non-toric
plt blow-up.

In cases A, Dl , E6, E7 and E8 we have a non-plt 1-, 2-, 3-, 4- and 6-complement
of (S1,Diff S1(0)) respectively.

Proof By the construction, themorphism h0|˜S1 : ˜S1 → �0 is locally toric. Therefore,
the surface ˜S1 has either no singularities in a fiber or only two singularities of types
1
r1

(1, b1) and 1
r1

(1,−b1). Let us show the local calculations. Consider the singularity
at the point Q1 of Z0 such that the curve �0 contains it. Let the cone 〈e1, e2, e3〉
determines locally the variety Z0 in some analytical neighborhood of Q1, �0 =
V (〈e2, e3〉) and S0 = V (〈e3〉). According to Proposition 4.7 we may assume e1 =
(1, 0, 0). We locally have Y0 = TN (�′), where
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�′ = {〈β, e1, e2〉, 〈β, e1, e3〉, their faces},

β = β1
0e2 + β2

0e3 and N ∼= Z3. Note that V (〈β〉) = ˜S1 and ˜F1 = V (〈β, e1〉) is the
fiber of ˜S1 over the point Q1. Write (Z0 � Q1) ∼= (C3 � 0)/G, (Y0 � Q′

1)
∼= (C3 �

0)/G1, (Y0 � Q′′
1)

∼= (C3 � 0)/G2, where Q′
1 = ˜F1 ∩ ˜E0, Q′′

1 = ˜F1 ∩ ˜S0, and G,
G1, G2 are the abelian groups acting freely in codimension 1. Hence, β2

0 |G| = |G1|
and β1

0 |G| = |G2|.
Finally, a corresponding complement of the pair (E0,Diff E0(Diff S1(0))) is

extended to a required complement of (S1,Diff S1(0)) by Proposition 1.17. �
Second step. Assume that there exists a curve �1 ⊂ S1 with the following two

properties: (1) KS1 + Diff S1(0) + �1 is an anti-ample divisor, h0 : (�1)˜S1 → �0 is a
surjective morphism and (2) �1 is not a center of any blow-up of H0, in particular,
if (S1,Diff S1(0)) is a toric pair then �1 is its non-toric subvariety. For convenience,
we put ˜�1 = (�1)˜S1 .

Lemma 5.6 The triples (S0,Diff S0(0), �0) and (S1,Diff S1(0), �1) are of type A.
Moreover,�1 ∼ E0 + Fj for some index j andβ2

0=1 (that is, E0 ⊂ Supp(Diff S1(0))).

Proof Let us remember that the pairs (S1,Diff S1(0)) were classified in Proposition
5.5, and we will use the same notation.

Put M = (K
˜S1 + Diff

˜S1(0) + ˜�1) · ˜E0. Note that M < 0. There are two possibil-
ities:

(1) ˜�1 ∼ ˜E0, ˜E0 ⊂ Supp(Diff
˜S1(0)) and ˜�1 = ˜E0;

(2) ˜�1 � ˜E0, ˜�1 ∼ a0˜E0 + ∑r
i=1 ai ˜Fi , where ai ∈ Z≥0 and a0 ≥ 1.

Suppose that the triple (S0,Diff S0(0), �0) does not have type A.Wewill prove that
it is impossible. Proposition 4.7 and Lemma 5.4 imply that (˜�2

0)˜S1 < −β2
0(�

2
0)S0 ≤

−β2
0 ≤ −1. Hence the proper transform of ˜�0 has the self-intersection index ≤

−2 on the minimal resolution of ˜S1. Consider possibility (1). Then M = −2 +
deg(Diff

˜E0
(0)) + 1

2
˜E2
0 = 1 − ∑3

i=1
1
ni

+ 1
2
˜E2
0 , where ni ≥ 2 for all i . Since the lin-

ear system |˜E0| is movable then ˜E2
0 = ˜E0 · ˜�1 ≥ 1

ni1
+ 1

ni2
(it is possible that i1 = i2),

and hence M ≥ 0. Consider possibility (2). If ai ≥ 1 for some i ≥ 1 then it is obvi-
ous that M ≥ 0. Therefore we have to consider the last case ˜�1 ∼ a0˜E0, where
a0 ≥ 2. Arguing as in possibility (1) and in its notation we have ˜E2

0 = 1
a0

˜E0 · ˜�1 ≥
2
a0

∑a0
k=1

1
nik

, where ik ∈ {1, 2, 3}, and hence M ≥ 0.

Suppose that the triple (S0,Diff S0(0), �0) is of type A. We will prove that possi-
bility (1) is not realized, and a0 = 1, r = 1, a1 = 1 in possibility (2).

Let mi = ri/ki be an index of the singularity at the point ˜Fi ∩ ˜E0 ∈ ˜S1, where
i = 1, 2. Lemma 5.4 implies that

(˜�2
0)˜S1 < −β2

0(�
2
0)S0 ≤ −β2

0

( 1

m1k1
+ 1

m2k2

)

. (1)

The morphism h′
0|˜S1 : ˜S1 → S1 contracts ˜�0 to a point of type 1

m3
(m1, m2) and h′

0|˜S1
is a toric blow-up corresponding to the weights (m1, m2). Hence
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(˜�2
0)˜S1 = − m3

m1m2
. (2)

Therefore m3 > β2
0(m1/k2 + m2/k1). The toric surface S1 is completely determined

by the triple (m1, m2, m3). For possibility (1) (recall that β2
0 ≥ 2) we obtain the

contradiction

M ≥ −2+ deg
(

Diff
˜E0

(k1 − 1

k1
˜F1 + k2 − 1

k2
˜F2

))

+ 1

2
˜E2
0 =

= − 1

m1k1
− 1

m2k2
+ m3

2m1m2
> 0.

The same calculations for possibility (2) imply a0 = 1, and since˜�1 is an irreducible
curve that the same calculations imply r = 1 and a1 = 1.

In order to prove the lemma we must prove only that the plt triple (S1,Diff S1(0),
�1) is of type A. Assuming the converse: its type differs from type A. For instance, let
us consider Case 6) of Proposition 4.7, the other cases are considered similarly. Thus
(S1,Diff S1(0), �1) = (Px1x2x3(2b2 + 1, b2, 1), 1

2 {x1 = 0},OS1(2b2 + 1)), where
b2 ≥ 2. Since ˜S1 → �0 is a toric conic bundle then there are one possibility only:
˜S1 → S1 is the weighted blow-up of singularity of type 1

b2
(1, 1) at the point

(0 : 1 : 0) with the weights (2b2 + 1, 1). Now (˜�2
0)˜S1 = − b2

2b2+1 by equality (2)

and (˜�2
0)˜S1 ≤ −( 12 + 1

2b2+1 ) by inequality (1). This contradiction concludes the
proof. �

Remark 5.7 A klt singularity is called weakly exceptional if there exists its unique
plt blow-up (see [13, 19]). A two-dimensional klt singularity is weakly exceptional
if and only if it is of type Dn , E6, E7 or E8. Lemma 5.6 shows the interesting
correspondence of the types.

Let h1 : (Y1, (S2)Y1) → (Y0 ⊃ ˜�1) be a blow-up of the curve ˜�1 with an unique
exceptional divisor (Exc h1 = (S2)Y1 ), (S1)Y1

∼= (S1)Y0 and the same structure as h0.
The set of all possible blow-ups h1 is denoted by H1.

By Proposition 4.7 there is 1-complement of KS1 + Diff S1(0) + ˜�1 that extends
to 1-complement of K Z1 + S1. Therefore we have 1-complement KY0 + ˜S1 + ˜S0 +
(D1)Y0 ∼ 0. Since (D1)X = (ψ = 0 ⊂ (C3 � 0))/G wecan slightly change the func-
tion ψ keeping all properties. Therefore there is at least a pencil of (D1)Y1 by proof
of Proposition 4.4.1 [22], and we can assume that a((S2)Y1 , (D1)X ) = −1.

If a(S0, (D1)X ) ≥ 0 then S0 · (D1)Z0 ≥ 2�0, hence KS0 + Diff S0((D1)Z0) is nef
by Proposition 4.7 and a(S0, (D1)X ) ≤ −1.

So we have 1-complement KY1 + (S2)Y1 + (S1)Y1 + (S0)Y1 + (D1)Y1 ∼ 0. By the
cone theorem we have:

(1) there exists an divisorial contraction h′
1,1 : Y1 → Y1,1 of (S1)Y1 onto a curve,

(S2)Y1
∼= (S2)Y1,1 ;
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(2) apply KY1,1 + (S0)Y1,1 + (S2)Y1,1 -MMP to contract small extremal rayby a small
contraction ϕ1,1. Put Excϕ1,1 = (F0)Y1,1 . Let ϕ+

1,1 be a log flip of ϕ1,1, Excϕ+
1,1 =

(F+
0 )Y1,2 , h′

1,2 : Y1,1 ��� Y1,2 be a corresponding birational map;
(3) there exists a divisorial contraction h′

1,3 : Y1,2 → Z2 of (S0)Y1,2 to a point.
Thuswe obtain a birationalmap h′

1=h′
1,3 ◦ h′

1,2 ◦ h′
1,1 : Y1 ��� Z2. Since (D1)Y1,1 ·

(F0)Y1,1 = −(KY1,1 + (S0)Y1,1 + (S2)Y1,1) · (F0)Y1,1 > 0, (D1)Y1,1 contains a some fiber
of (S2)Y1,1 and (D1)Y1,1 ⊃ (F0)Y1,1 by Proposition 4.7, then the divisor (D1)Z2 con-
tains the fiber (F+

0 )Z2 and ((S2)Z2 ,Diff (S2)Z2
(0)) is a toric pair by Shokurov’s cri-

terion on the characterization of toric varieties [26]. We obtain a non-toric blow-up
g2 : (Z2, S2) → (X � P).

We prove the following proposition.

Proposition 5.8 The pair (S2,Diff S2(0)) is toric (1-complementary) with the struc-
ture described in Proposition 5.5 (Type A), g2 is a non-toric plt blow-up.

Third step. Assume that there exists a curve �2 ⊂ S2 with the following two
properties: (1) KS2 + Diff S2(0) + �2 is an anti-ample divisor, h0 ◦ h1 : (�2)Y1 → �0

is a surjective morphism and (2)�2 is not a center of any blow-up ofH1, in particular,
�2 is a non-toric subvariety of (S2,Diff S2(0)).

Proposition 5.9 There is no any blow-up h2 : (Y2, (S3)Y2) → (Y1 ⊃ (�2)Y1) of the
curve (�2)Y1 with unique exceptional divisor such that (S3)Y2 is realized by some plt
blow-up g3 : Z3 → (X � P).

Proof Assume the converse. Repeat the procedure described in Diagram 4, but with
one change, replace the blow-up g0 : Z0 → X by the blow-up g1 : Z1 → X . There-
fore, returning to the main procedure, we can assume that there is 1-complement
KY2 + (S3)Y2 + (S2)Y2 + (S1)Y2 + (S0)Y2 + (D2)Y2 ∼ 0. Apply MMP to contract S1
and S2. Let Y2 ��� Y2,2 be a corresponding birational map. If (S0)Y2,2 contains one
fiber of (S3)Y2,2 then (S1)Y2 and (S0)Y2 contain a fiber of (S3)Y2 , a contradiction
with log canonicity. Therefore (S0)Y2,2 contains two fibers of (S3)Y2,2 . Then we obtain
the contradiction (K(S3)Y2,2

+ Diff (S3)Y2,2
((S0)Y2,2 + (D2)Y2,2)) · C > 0,whereC is any

section of the conic bundle (S3)Y2,2 . �

(A2). Let (X � P) be a non-Q-factorial terminal toric three-dimensional singu-
larity, that is, (X � P) ∼= ({x1x2 + x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0)).
Let f : (Y, E) → (X � P) be some non-toric plt blow-up. Let ϕi : Xi → (X �

P) be two Q-factorializations, Excϕi = Ci (i = 1, 2). Let ψi : (Yi , Ei ) → (Xi �
Qi ) be a plt blow-up for some i such that Ei and E define the same discrete valuation
of the function field K(X), Qi is a point. The blow-up ψi was constructed in the
previous case of Q-factorial singularities, ρ(Ei ) = 1.

Let Yi ��� Y i be a log flip for the curve (Ci )Yi . Considering another value of i we
see that −(Ei )Y i

is ample. Therefore Y i = Y and ρ(E) = 2.
We give another construction and prove that (E,Diff E (0)) is a toric pair by the

procedure illustrated on the next diagram (Fig. 10) and defined below.
First step. Let g0 : (Z0, S0) → (X � P) be a toric plt blow-up, where Exc g0 = S0

and g0(S0) = P (see Definition 4.1 and its notation). Assume that there exists a curve
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Fig. 10 Case of Point.
Construction in
non-Q-factorial case

�0 ⊂ S0 such that (S0,Diff S0(0), �0) is a plt triple (see Definition 4.9). Such triples
are classified in Proposition 4.8.

Remark 5.10 Note that there exists the divisor � = {x2 + γxw2/w1
1 + . . . = 0}|X

such that �Z |S = �0, and it has Du Val singularity of type Aw2/w1 , where γ = 0.

Let h0 : (Y0,˜S1) → (Z0 ⊃ �0) be an arbitrary blow-up of the curve �0 with an
unique exceptional divisor (Exc h0 = ˜S1) as in case (A1). The set of all possible
blow-ups h0 is denoted by H0.

There are two possibilities. The first possibility is as follows. There is a divi-
sorial contraction of ˜S0 to a curve: h′

0 : Y0 → Z1, and we obtain a non-toric plt
blow-up g1 : (Z1, S1) → (X � P), where Exc g1 = S1 and g1(S1) = P . The pair
(S1,Diff S1(0)) is toric as in Proposition 5.5 (1).

The second possibility is when the first possibility is not realized. The curves
(C13)Y0 and (C23)Y0 (see Definition 4.1) generate extremal rays of NE(Y0/X) that
give small contractions. Let us contract the second one and h′

0,1 : Y0 ��� Y0,1 be
a log flip. Let h′

0,2 : Y0,1 → Z1 be a divisorial contraction of (S0)Y0,1 to a point.
Thus we obtain a birational map h′

0 = h′
0,2 ◦ h′

0,1 : Y0 ��� Z1. As in case (A1) 1-
complement KS0 + C13 + C23 + �0 of KS0 + Diff S0(0) extends to 1-complement
K Z0 + S0 + (D0)Z0 such that a((S1)Y0 , (D0)Z0 + S0) = −1. Therefore the divisor
Diff S1((D0)Z1) consists of four curves and is 1-complement of KS1 + Diff S1(0). By
Shokurov’s criterion on the characterization of toric varieties (S1,Diff S1(0)) is a toric
pair. Thus g1 : Z1 → (X � P) is a non-toric plt blow-up.

Second step. Assume that there exists a curve �1 ⊂ S1 with the following two
properties: (1) KS1 + Diff S1(0) + �1 is an anti-ample divisor, h0 : (�1)˜S1 → �0 is a
surjective morphism and (2)�1 is not a center of any blow-up ofH0,�1 is a non-toric
subvariety of (S1,Diff S1(0)).

The self-intersection index �2
0 is calculated by Proposition 4.8. Lemmas 5.4 and

5.6 are also true in this case. So we have 1-complement KY1 + (S2)Y1 + (S1)Y1 +
(S0)Y1 + (D1)Y1 ∼ 0. By the cone theorem we have:

(1) there exists an divisorial contraction h′
1,1 : Y1 → Y1,1 of (S1)Y1 onto a curve,

(S2)Y1
∼= (S2)Y1,1 ;

(2) apply KY1,1 + (S0)Y1,1 + (S2)Y1,1 -MMP to contract small extremal ray, let
h′
1,2 : Y1,1 ��� Y1,2 be a corresponding log flip;
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(3) apply KY1,2 + (S0)Y1,2 + (S2)Y1,2 -MMP to contract either small extremal ray or
the divisor (S0)Y1,2 onto a curve; we obtain a birational map h′

1,3 : Y1,2 ��� Y1,3 or a
morphism h′

1,4 : Y1,3 → Z2 respectively;
(4) in the first case of (3) there exists a divisorial contraction h′

1,3 : Y1,3 → Z2 of
(S0)Y1,2 to a point.

Thus we obtain a birational map h′
1 : Y1 ��� Z2 and a non-toric blow-up g2 : (Z2,

S2) → (X � P). The pair (S2,Diff S2(0)) is toric by the same arguments as in case
(A1).

We prove the following proposition.

Proposition 5.11 The pair (Si ,Diff Si (0)) is klt and toric (1-complementary), ρ(Si )

= 2, gi is a non-toric plt blow-up for i = 1, 2.

Example 5.12 In this case we will construct examples of non-toric canonical blow-
ups and prove that they are not terminal blow-ups. Depending on a type of (X � P)

there are two Cases (B1) and (B2).
(B1).Let (X � P) ∼= (C3

x1x2x3 � 0). Let us consider a weighted blow-up g : (Z , S)

→ (X � P) with weights (w1, w2, w3) such that g(S) = P (that is, wi > 0 for
all i = 1, 2, 3), where gcd(w1, w2, w3) = 1. Write (w1, w2, w3) = (a1q2q3, a2q1q3,

a3q1q2), where qi = gcd(wk, wl) and i, k, l are mutually distinct indices from 1 to
3. Then

(

S,Diff S(0)
) ∼=

(

Px1x2x3

(

a1, a2, a3
)

,

3
∑

i=1

qi − 1

qi
{xi = 0}

)

.

Assume that g is a canonical blow-up.

Proposition 5.13 Let the curve � be a non-toric subvariety of (S,Diff S(0)). Assume
that � does not contain any center of canonical singularities of Z and −(KS +
Diff S(0) + �) is an ample divisor. Then we have one of the following possibilities
for weights (w1, w2, w3) up to permutation of coordinates.

Type (A). (w1, w2, w3) = (a1q3, a2q3, 1), � ∼ OS(a1 + a2).
Type (D). (w1, w2, w3)=(l, l − 1, 2), (l + 1, l, 1), (l, l, 1)and� ∼ OS(l),OS(2l),

OS(2) respectively, where l ≥ 2.
Type (E6). (w1, w2, w3) = (3, 2, 2), (6, 4, 3), (5, 3, 2), (4, 2, 1) and � ∼ OS(3),

OS(2), OS(9), OS(3) respectively.
Type (E7). (w1, w2, w3) = (3, 2, 2), (6, 4, 3), (9, 6, 4), (3, 3, 1), (5, 4, 2), (7, 5, 3),

(5, 3, 2) and � ∼ OS(3), OS(2), OS(3), OS(2), OS(5), OS(14), OS(6) respectively.
Type (E8). (w1, w2, w3) = (3, 2, 2), (6, 4, 3), (9, 6, 4), (12, 8, 5), (15, 10, 6),

(5, 4, 2), (10, 7, 4), (8, 5, 3) and � ∼ OS(3), OS(2), OS(3), OS(6), OS(1), OS(5),
OS(10), OS(15) respectively.

In all possibilities there is Du Val element �Z ∈ | − K Z | such that �Z |S =
� + ∑r

i=1 γi�i . Moreover, �Z |S = �, except the two possibilities: (l + 1, l, 1),
� ∼ OS(2l)(type D) and (5, 3, 2), � ∼ OS(6)(type E7). In these two possibilities
we have �Z |S = � + �1, where �1 ∼ OS(1) and OS(3) respectively.

Proof The proof follows from Proposition 2.6 by enumeration of cases. �
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Remark 5.14 Proposition 5.13 is similar to Proposition 4.7. Note that there is one-
to-one correspondence between the sets (w1, w2, w3, �) and the exceptional curves
of minimal resolution of Du Val singularity (� � P), where � = g(�Z ). Types in
Proposition 5.13 correspond to Du Val types of the singularity (� � P).

By Theorem 1.6 there exists a divisorial contraction h : (˜Y , ˜E) → (Z ⊃ �) for
any weights (β1, 1) such that

(1) Exc h = ˜E is an irreducible divisor and h(˜E) = �;
(2) the morphism h is locally toric for a general point of �;
(3) if H is a general hyperplane section passing through the general point Q ∈ �,

then h induces the weighted blow-up of the smooth point (H � Q) with weights
(β1, 1);

(4) h∗S = ˜S + ˜E and h∗�Z = �
˜Y + β1˜E .

Apply K
˜Y + �

˜Y + ε˜S–MMP. Since ρ(˜Y/X) = 2 and K
˜Y + �

˜Y + ε˜S ≡ ε˜S over
X , thenwe obtain a sequence of log flips˜Y ��� Y , and after it we obtain the divisorial
contraction h′ : Y → Y which contracts the proper transform S of ˜S.

Thus we obtain a required non-toric blow-up f : (Y, E) → (X � P), where
Exc f = E is an irreducible divisor and f (E) = P . Since KY + �Y = f ∗(K X + �)

then f is a canonical blow-up.
Finally let us prove that f is a non-terminal blow-up, that is, the singularities of

Y are non-terminal. We must prove only that the center of S on Y does not lie in �Y ,
since 0 = a(S,�). Let ˜Y = Y 1 ��� Y 2 ��� . . . ��� Y n = Y be a decomposition of
log flip sequence into elementary steps. If �Y i

is a nef divisor then by the base point
free theorem [9] the linear system |m�Y i

| gives the birational contraction h′ for
m 
 0. It contracts the proper transform of ˜S to a point, i = n, and this completes
the proof. Suppose that �Y i

is not a nef divisor. The cone NE(Y i/X) is generated
by two extremal rays. By Qi , Ri denote them, and to be definite, assume that the ray
Ri determines the next step of MMP. By construction, we have �Y i

· Qi > 0, and
hence −KY i

· Ri = �Y i
· Ri < 0. Since KY i

· Ri > 0 and the singularities of MMP
are canonical, then the ray Ri gives a log flip (that is, i < n), and after it we have
�Y i+1

· Qi+1 > 0. At the end we obtain that �Y j
is a nef divisor for some j . This

completes the proof.
(B2).Let (X � P) ∼= ({x1x2 + x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0)). Let us consider a toric
canonical blow-up g : (Z , S) → (X � P) (see Proposition 2.6 (3)).

Proposition 5.15 Let a curve � be a non-toric subvariety of (S,Diff S(0)). Assume
that � does not contain any center of canonical singularities of Z and −(KS +
Diff S(0) + � + �′) is an ample divisor, where �′ is some effective Q-divisor.
Then w1 = 1 and � ∼ OP(w1,w2,w3,w4)(w2)|S up to permutation of coordinates.
There exists Du Val element �Z ∈ | − K Z | such that �Z |S = �. In particular,
−(KS + Diff S(0) + �) is an ample divisor and (� � P) is Du Val singularity of
type Aw2 , where � = g(�Z ).

Proof The proof follows from Proposition 2.6 (3). �

Now we can apply the construction of Case (B1).



Blow-ups of Three-dimensional Toric Singularities 467

Another construction of same non-toric canonical blow-ups is the following one.
Consider a Q-factorialization g : ˜X → X and ˜T = Exc g. By G denote the center of
E on ˜X .Applying (if necessary) aflop ˜X ��� ˜X+ wemayassume thatG is a point. Let
us apply the above mentioned construction in Case (B1) for singularity (˜X � G). We
obtain a non-toric canonical blow-up f : Y → ˜X . Let Y ��� Y + be a log flip for the
curve TY . Thuswe obtain a non-toric canonical blow-up f + : (Y +, E+) → (X � P),
where E+ = Exc f + and f +(E+) = P .

6 Main Theorems. Case of Point

Example 6.1 Let (X � P) ∼= (C3
x1x2x3 � 0). Let us consider the weighted blow-up

g : (Z , S) → (X � P) with the weights (15, 10, 6). Then

(

S,Diff S(0)
) ∼=

(

P2,
1

2
L1 + 2

3
L2 + 4

5
L3

)

,

where Li are the straight lines, and the divisor
∑

Li is a complement to open toric
orbit of S.

Let � = {x2
1 + x3

2 + x5
3 = 0} ⊂ (X � P) be a divisor with Du Val singularity of

type E8. Then L = �Z |S is a straight line. Put Pi = Li ∩ L . Then the points Pi are
non-toric subvarieties of (S,Diff S(0)).

The main difference of structure of non-toric canonical blow-ups from the struc-
ture of non-toric plt blow-ups is shown in the following statements.

(1) We have Pi ∈ CS(Z ,�Z ) for every i . Thus Pi are the centers of some non-
toric canonical blow-ups of (X � P), that is, there exists the canonical blow-up
(Y, Ei ) → (X � P) such that the center of Ei on Z is the point Pi for every i .

(2) The points Pi are not the centers of any non-toric plt blow-ups of (X � P).
The proof of this fact is given in Theorem 6.2.

The origin of this difference is that S is not (locally) Cartier divisor at the points
Pi (cf. Theorem 2.13).

The straight line L ∈ CS(Z ,�Z ) is a center of some non-toric canonical and plt
blow-ups of (X � P). As might appear at first sight the class of non-toric canonical
blow-ups is much wider than the class of non-toric plt blow-ups, but it is not true. To
construct the non-toric canonical blow-ups, some necessary conditions used implic-
itly in this examplemust be satisfied. Namely, g is a canonical blow-up, a(S,�) = 0,
the straight line L does not contain any center of canonical singularities of Z .

Theorem 6.2 Let f : (Y, E) → (X � P) be a plt blow-up of three-dimensional toric
terminal singularity, where f (E) = P. Then, either f is a toric morphism, or f is
a non-toric morphism described in Sect.5.

Proof Let f be a non-toric morphism (up to analytical isomorphism). Let DY ∈
| − n(KY + E)| be a general element for n 
 0. Put DX = f (DY ) and d = 1

n . The
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pair (X, d DX ) is log canonical, a(E, d DX ) = −1 and E is a unique exceptional
divisor with discrepancy −1.

Let (X � P) be a Q–factorial singularity. According to the construction of partial
resolution of (X, d DX ) (see Definition 2.7) and Criterion 2.8 there exists a toric
divisorial contraction g : Z → X such that it is dominated by partial resolution of
(X, d DX ) (up to toric log flips), and one of the following Cases I and II occurs.

Case I. The exceptional set Exc g = S is an irreducible divisor, the divisors S and
E define the different discrete valuations of the function field K(X), and g(S) = P .
By � denote the center of E on the surface S. Then the center � is a non-toric
subvariety of Z . In the other words � is a non-toric subvariety of (S,Diff S(0)). If
� is a point then we assume that it does not lie on any one-dimensional orbit of the
surface S (up to analytical isomorphism (X � P) of course).

Case II. The variety Z is Q-gorenstein, hence it is Q-factorial. The exceptional
set Exc g = S1 ∪ S2 is the union of two exceptional irreducible divisors, S1, S2 and E
define mutually distinct discrete valuations of the function field K(X) and g(S1) =
g(S2) = P . To be definite, let ρ(S1) = 1, ρ(S2) = 2, and C = S1 ∩ S2 is a closure
of one-dimensional orbit of Z . By � denote the center of E on Z . In this case �

is a point and a non-toric subvariety of (S1,Diff S1(0)), � ∈ C , and the curve C has
the coefficient 1 in the divisor Diff S1(S2 + d DZ ). Mori cone NE(Z/X) is generated
by two extremal rays, denote them by R1 and R2. To be definite, let R1 gives the
divisorial contraction which contracts the divisor S1 to some point P1. Considering
toric blow-ups of P1 we may assume that Diff S1(S2 + d DZ ) is a boundary in some
analytical neighborhood of the point �.

If R2 gives the divisorial contraction which contracts the divisor S2 (onto curve)
then it is Case IIa. If R2 gives a small flipping contraction then it is Case IIb.

Let us consider Case IIb in more detail. Let Z ��� Z+ be a toric log flip induced
by R2. The corresponding objects on Z+ are denoted by the index +. For the toric
divisorial contraction g+ : Z+ → X we have ρ(S+

1 ) = 2, ρ(S+
2 ) = 1. Note that the

point �+ ∈ C+ = S+
1 ∩ S+

2 of E on Z+ can be a toric subvariety of (S+
2 ,Diff S+

2
(0)).

The morphism g+ is dominated by partial resolution of (X, d DX ) (up to toric log
flips), and the curve C+ has the coefficient 1 in the divisor Diff S+

2
(S+

1 + d DZ+).
Note that the equality g(Exc g) = P is proved similarly to Theorem 2.12 in both

Cases I and II.
Now, according to Sect. 5 the following lemma implies the proof of theorem (for

Q–factorial singularities). �
Lemma 6.3 It is possible Case I only. Moreover, � is a curve and KS + Diff S(0) +
� is a plt divisor.

Proof Let us consider Case I. Write

K Z + d DZ + aS = g∗(K X + d DX
)

,

where a < 1. Hence

a
(

E, S + d DZ
)

< a
(

E, aS + d DZ
) = −1.
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Therefore � ⊂ LCS(S,Diff S(d DZ )) and −(KS + Diff S(d DZ )) is an ample divisor.
Assume that � is a (irreducible) curve. We must prove that KS + Diff S(0) + �

is a plt divisor. Assume the converse. By the adjunction formula, � is a smooth
curve, and by connectedness lemma the divisor KS + Diff S(0) + � is not a plt one
at unique point denoted by G. The point G is a toric subvariety of (S,Diff S(0)) by
Theorem 4.2. Moreover, the curve � is locally a non-toric subvariety at the point
G only. According to the construction of partial resolution [27] there exists the
divisorial toric contraction ĝ : ̂Z → Z such that Exc ĝ = S2 is an irreducible divisor,
ĝ(S2) = G and the following two conditions are satisfied.

(1). Put S1 = S
̂Z and C = S1 ∩ S2. Let c(�) be the log canonical threshold of

� for the pair (S,Diff S(0)). Then ĝ|S1 : S1 → S is the inductive toric blow-up of
KS + Diff S(0) + c(�)� (see Theorems 1.10 and 2.12), and the point ̂G = C ∩ �S1
is a non-toric subvariety of (S2,Diff S2(0)).

(2). The divisor Diff S2(d D
̂Z + S1) is a boundary at the point ̂G.

Let H be a general hyperplane section of large degree passing through the point
P . Then we have a(Si , d DX + h H) = −1 and a(Sj , d DX + h H) > −1 for some
h > 0, i = j . If i = 1 and j = 2 then we have the contradiction with Theorem 4.2
for the pair (S2,Diff S2(d D

̂Z + S1)). Hence, we may assume that i = 2 and j = 1.
Mori cone NE(̂Z/X) is generated by two rays, denote them by ̂R1 and ̂R2. To be
definite, let ̂R2 gives the contraction ĝ.

At first assume that ̂R1 gives the contraction g1 : ̂Z → Z1 which contracts S1
(onto a curve). The contraction g1 is an isomorphism for the surface S2, therefore we
denote g1(S2) by S2 again for convenience. If Diff S2(d DZ1) is a boundary then we
have the contradiction with Theorem 4.2 applied for the pair (S2,Diff S2(d DZ1)). If
it is not a boundary then we have the following contradiction

0 > (1 + a(S1, d DX + h H))S1 · C0 =
= (KS1 + Diff S1(d D

̂Z + S2 + h H
̂Z )) · C0 ≥

≥(KS1 + Diff S1(0)
′ + �S1 + C + C0) · C0 ≥ (−F1 − F2 + �S1) · C0 ≥ 0,

where C0 is the closure of one-dimensional orbit of S1, having zero-intersection with
C , and F1, F2 are the two toric fibers (the closures of corresponding one-dimensional
toric orbits) of the toric conic bundle S1 → g1(S1), and the divisor Diff S1(0)

′ is a
part of Diff S1(0) provided that we equate to zero the coefficients of C and C0 in
Diff S1(0).

At last assume that ̂R1 gives a flipping contraction. Let ̂Z ��� ̂Z+ be a cor-
responding toric log flip. The corresponding objects on ̂Z+ are denoted by the
index +. If the point ̂G+ is a non-toric subvariety of (S+

1 ,Diff S+
1
(0)) then we have

the contradiction with Theorem 4.2 applied for the pair (S+
1 ,Diff S+

1
(S+

2 ) + ̂�+).
Therefore we can assume that the point G+ is a toric subvariety. If the curve ̂�+
is a non-toric subvariety of (S+

1 ,Diff S+
1
(0)), then by the inversion of adjunction

the pair (S+
1 ,Diff S+

1
(S+

2 ) + ̂�+) is plt outside ̂G+, and we have the contradiction
with Proposition 4.7. Thus we have proved that ̂�+ and G+ are the toric subvari-
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eties of (S+
1 ,Diff S+

1
(0)). In particular, S+

1
∼= P(1, r1, r2), where gcd(r1, r2) = 1 and

(̂�+)2 = r1/r2. Considering the divisor D(δ) = (d − δ)D + h(δ)H for some δ ≥ 0
and h(δ) > 0 (h(0) = 1) instead of the divisor D(0) = d D, we may assume that the
whole construction is satisfied and a(E, D(δ)) = −1.

Let Diff S2(D(δ) − a(S1, D(δ))S1) ≥ 0 (for example, it holds if a(S1, D(δ)) <

0). Replacing the divisor H by other general divisor with ̂G ∈ Supp(H
̂Z ), we

may assume that the three following conditions are satisfied: (1) Diff S2(D(δ) −
a(S1, D(δ))S1) ≥ 0; (2) ̂G is a center of LCS(̂Z , D(δ)

̂Z − a(S1, D(δ))S1 − a(S2,
D(δ))S2); (3) a(S2, D(δ)) > −1. We obtain the contradiction with Theorem 4.2 for
the pair (S2,Diff S2(D(δ) − a(S1, D(δ))S1)).

Let Diff S2(D(δ) − a(S1, D(δ))S1) is not an effective divisor. The curve ̂�+ is
locally a toric subvariety in some analytical neighborhood of every point of ̂Z+,
therefore there exists a blow-up g : (Z ⊃ S3) → (̂Z+ ⊃ ̂�+), where Exc g = S3 is
an irreducible divisor such that g(S3) = ̂�+ and the following three conditions are
satisfied.
(A) The morphism g is locally a toric one at every point of̂�+, in particular, S1

∼= S1.
(B) Let H be a general hyperplane section of ̂Z+ passing through the general point
̂Q ∈ ̂�+. Then g induces a weighted blow-up of (H � ̂Q)with weights (β1,β2), and
g∗S+

1 = S1 + β2S3.
(C) Either the divisors S3 and E define the same discrete valuation of the function
fieldK(X) (Case C1), or the curve � ⊂ S3 being the center of E on Z is a non-toric
subvariety of (S3,Diff S3

(0)) (Case C2).
By C0 and F denote zero-section and a general fiber of S3 respectively.
Let us consider Case C1. Then D(δ)|S3

∼Q aC0 + bF by the generality of D,

where b ≥ 0 and a = 2 + a(S1, D(δ))/β1 − β2−1
β2

− β1−1
β1

≥ 1 + 1
β2
. We obtain the

contradiction (the calculations are similar to Lemma 5.4 and Proposition 5.5)

0 =(KS3
+ Diff S3

(D(δ) + S
+
2 − a(S1, D(δ))S

+
1 )) · C0 ≥

≥ −2 + 1 + r2 − 1

r2
+ C

2
0 > (r1 − 1)/r2 ≥ 0.

Let us consider Case C2. If a(S3, D(δ)) ≤ −1 then we require the condition
a(S3, D(δ)) = −1 to be satisfied instead of the condition a(E, D(δ)) = −1 in the
construction of D(δ), and we obtain similar contradiction as in Case C1. Therefore
we may assume that a(S3, D(δ)) > −1. Then � ∼ aC0 + bF , where either a ≥ 1,
b ≥ 1, or a ≥ 2, b ≥ 0, or a = 1, b = 0, � = C0, β2 ≥ 2. Continuing this line of
reasoning, we have the same contradictions for any possibility of �.

Now assume that � is a point. Theorem 4.2 implies that Diff S(d DZ ) is not a
boundary in any analytical neighborhood of �. Moreover, there is unique curve
passing through � with the coefficient ≥ 1 in the divisor Diff S(d DZ ). It is clear that
it is smooth at the point �, it is a non-toric subvariety of (S,Diff S(0)) and denote it
by T .

Let us prove that (S,Diff S(0) + T ) is a plt pair. Let H be a general hyper-
plane section of large degree passing through the point P such that � ∈ HZ .
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As above by Theorem 4.2, there exist some rational numbers 0 < δ < d, h > 0
and the divisor D′ = (d − δ)DX + h H such that (X, D′) is a log canonical pair,
LCS(Z , D′

Z − a(S, D′)S) = T and � is a center of (Z , D′
Z − a(S, D′)S). More-

over, we may assume that there are not another centers differing from � and T
by connectedness lemma. Now, according to the standard Kawamata’s perturbation
trick, there exists an effectiveQ-divisor D′′ on X such that the curve T is uniquemin-
imal center of (Z , D′′

Z − a(S, D′′)S). So, by the previous statement proved (when �

is a curve) (S,Diff S(0) + T ) is a plt pair.
Let us consider the blow-up g : (Z ⊃ S3) → (Z ⊃ T ) for the pair (X, D′) which

is similar to the blow-up g : (Z ⊃ S3) → (̂Z+ ⊃ ̂�+), where Exc g = S3. Let� ⊂ Z
be a center of E . There are two cases � = F , � is a point, where F is a fiber over the
point �. Applying Lemma 4.4 if � is a point, we obtain the contradiction in same
way as above

0 = (KS3
+ Diff S3

(D′ − a(S, D′)S)) · C0 > 0.

Let us prove that Case II is impossible. Let H be a general hyperplane section
of large degree passing through the point P . Then we have a(Si , d DX + h H) = −1
and a(Sj , d DX + h H) > −1 for some h > 0.

Let us introduce the following notation: let M = ∑

mi Mi be the divisor decompo-
sition on irreducible components, then we put Mb = ∑

i : mi >1 Mi + ∑

i : mi ≤1 mi Mi .
If i = 2 and j = 1 then we obtain the contradiction with Theorem 4.2 for the pair

(S1,Diff S1(d DZ + S2)b). Therefore i = 1 and j = 2.
Let us considerCase IIb. If�+ is a non-toric subvariety of (S+

2 ,Diff S+
2
(0)) thenwe

obtain the contradiction with Theorem 4.2 for the pair (S+
2 ,Diff S+

2
(d DZ+ + S+

1 )b).
Therefore we assume that �+ is a toric subvariety of (S+

2 ,Diff S+
2
(0)). The similar

(related) case have been considered, when � was a curve, therefore we do not repeat
its complete description. By construction, the curve C+ ⊂ S+

1 is exceptional and
contains at most one singularity of S+

1 . Since the pair (S+
1 ,Diff S+

1
(d DZ+ + h HZ+) is

not log canonical at the point�+, then (d DZ+ + h HZ+) · C+ = 1 + σ, where σ > 0.
Since the divisor −KS+

1
is a sum of four one-dimensional orbit closures, then

a(S+
2 , d DZ+ + h HZ+)S+

2 · C+ =
= (KS+

1
+ Diff S+

1
(d DZ+ + h HZ+)) · C+ ≥

≥ −(C+)2S+
1

− 1 − 1

r 1
+ 1 + σ ≥ σ > 0.

Since S+
2 · C+ < 0 then a(S+

2 , d DZ+ + h HZ+) < 0. Now, to obtain the contradic-
tionwithTheorem4.2 for the pair (S1,Diff S1(d DZ + h HZ − a(S2, d D + h H)S2)b),
it is sufficient to decrease the coefficient h slightly (then a(S1, d D + h H) > −1).

Let us consider Case IIa. Let g1 : Z → Z1 be a contraction of R2. The contraction
g1 is an isomorphism for the surface S1, therefore we denote g1(S1) by S1 again for
convenience. If the divisorDiff S1(d DZ1) is a boundary thenwe have the contradiction
with Theorem 4.2 for the pair (S1,Diff S1(d DZ1)), and if it is not a boundary then we
have the following contradiction
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0 > (1 + a(S2, d DX + h H))S2 · C0 =
= (KS2 + Diff S2(d DZ + S1 + h HZ )) · C0 ≥
≥ (KS2 + Diff S2(0)

′ + F + C + C0) · C0 ≥ 0,

where C0 is the closure of one-dimensional orbit of S2 having zero-intersection with
C , and F is a general fiber of the conic bundle S2 → g1(S2), and the divisor Diff S2(0)

′
is a part of Diff S2(0) provided that we equate to zero the coefficients of C and C0

in Diff S2(0). Note that the equality (DZ |S2 · C)� ≥ 1 have been applied here (see
Lemma 4.4); it is true since (S2, C + DZ |S2) is not a plt pair at the point � by the
construction. �

Let (X � P) be a non-Q–factorial singularity, that is, (X � P) ∼= ({x1x2 +
x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0)).We repeat the arguments given in Sect. 5. Let g : ˜X → X
be a Q-factorialization and let C = Exc g ∼= P1. Note that ˜X is a smooth variety. By
G denote the center of E on ˜X . If G is a point then it is a toric subvariety, and hence
the main theorem is reduced to the case of Q-factorial singularities. If G = C then
we consider the flop ˜X ��� ˜X+, and we may assume that G is a point by replacing
˜X by ˜X+.

Theorem 6.4 Let f : (Y, E) → (X � P) be a plt blow-up of three-dimensional toric
Q–factorial singularity, where f (E) = P. Then, either f is a toric morphism, or f
is a non-toric morphism described in Sect.5.

Proof We can repeat the proof of Theorem 6.2 without any changes in our case.
Lemma 5.3 gives some restrictions, when (X � P) is a terminal singularity, but it is
not used in what follows. �

Theorem 6.5 Let f : (Y, E) → (X � P) be a canonical blow-up of three-
dimensional toric terminal singularity, where f (E) = P. Then, either f is a toric
morphism (see Proposition 2.6), or f is a non-toric morphism described in Sect.5.

Proof Let f be a non-toric morphism (up to analytical isomorphism). Let DY ∈
| − nKY | be a general element for n 
 0. Put DX = f (DY ) and d = 1

n . The pair
(X, d DX ) has canonical singularities and a(E, d DX ) = 0.

Let (X � P) be a Q–factorial singularity. There is one of two Cases I and II
described in the proof of Theorem 6.2. We will use the notation from the proof of
Theorem 6.2. According to Sect. 5 the following proposition implies the proof of
theorem for Q–factorial singularities. �

Proposition 6.6 There exists a toric blow-up g such that we have Case I always, the
center � is a curve, a(S, d DX ) = 0 and (X � P) is a smooth point, in particular, g
is a canonical blow-up.

Proof Let us consider Case II. We may assume that C ⊂ Supp(Sing Z). Actually,
by taking toric blow-ups with the center C we obtain either the requirement, or Case
I (that is, there is some blow-up g such that the center of E is a curve and a non-toric
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subvariety of corresponding exceptional divisor). Therefore S1 and S2 are Cartier
divisors at the point �. Therefore we have

a(E, Si + d DZ ) ≤ a(E,−a(Si , d DX )Si + d DZ ) − 1 ≤ −1

for i = 1, 2
Let H be a general hyperplane section of large degree passing through the point P

and let � ∈ HZ . For any δ > 0 there exists a number h(δ) > 0 such that (X, D(δ) =
(d − δ)DX + h(δ)H) is a log canonical and not plt pair. Let DZ |S = ∑

di DS
i be a

decomposition on the irreducible components (S = S1 + S2). If it is necessary we
replace the divisor DX by D′

X in order to D′
Z |S = ∑

i : �∈DS
i

di DS
i . By the generality

of H and connectedness lemma, there exists δ > 0 with the following two properties.
(1) The pair (X, D(δ)) defines a plt blow-up (Y (δ), E(δ)) → (X � P).
(2) By T denote the center of E(δ) on Z . Then, either T = �, or T is a curve

provided that T ⊂ S2 and � ∈ T (note that case T ⊂ S1 is impossible, since it was
proved in Case I of Theorem 6.2).

Let T = �. Then we have Case II of Theorem 6.2, but it was proved that this case
is impossible.

Let T be a curve and let ψ : Z → Z ′ be a contraction of R1. The morphism ψ
contracts the divisor S1 to the point P1. By construction, KS′

2
+ Diff S′

2
(0) + TS′

2
is

not a plt divisor at the point P1, and it was proved in Case I of Theorem 6.2 that this
case is impossible.

Let us consider Case I. Write K Z + d DZ = g∗(K X + d DX ) + a(S, d DX )S,
where a(S, d DX ) ≥ 0. Since S is Cartier divisor at a general point of � then

a(E, S + d DZ ) ≤ a(E,−a(S, d DX )S + d DZ ) − 1 = −1.

Hence � ⊂ LCS(S,Diff S(d DZ )).
Let a(S, d DX ) = 0. Then Z has canonical singularities.
Assume that � is a curve. Then (X � P) is a smooth point by Lemma 6.7, which

is of independent interest. �

Lemma 6.7 Let g : (Z , S) → (X � P) be a toric canonical blow-up of three-
dimensional Q-factorial terminal toric singularity. Assume that there exists a curve
� ⊂ S such that it is a non-toric subvariety of (S,Diff S(0)), and it does not contain
any center of canonical singularities of Z. Let −(KS + Diff S(0) + �) be an ample
divisor. Assume that there exists a divisor D′

Z ∈ | − mK Z | for some m ∈ Z>0 such
that

(

Z , 1
m D′

Z

)

is a canonical pair and
(

1
m D′

Z

)|S = � + ∑

γi�i , where γi ≥ 0 for
all i . Then (X � P) is a smooth point.

Proof Assume the converse. We suppose that the reader knows the proof of Propo-
sition 2.6 (2), and we use its terminology. We have a(S, 0) = 1

r (w3 + rw2 − qw3 +
rw1 − w3) − 1. If a(S, 0) = 1

r then we have a contradiction obviously. There-
fore we suppose that a(S, 0) > 1

r . For some j ∈ {1, 2, 3} we have the inequality
1
r ≥ a(S, 0)/N j and one of the two following requirements: either Pj ∈ CS(Z), or
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the singularity at the point Pj is of type 1
N j

(1,−1, 0), where N j ≥ 2, N1 = w3,
N2 = rw1 − w3, N3 = rw2 − qw3.

The non-toric curve � is conveniently represented as � = DZ ∩ S, where D =
(ψ(x1, x2, x3) = 0)/Zr ⊂ (C3 � 0)/Zr (−1,−q, 1) and ψ is a quasihomogeneous
polynomial with respect to (N1, N2, N3).

Then Pj ∈ �, the singularity is of type 1
N j

(1,−1, 0) at the point Pj and N j/r ≥
1. Let us prove it. Let D′ = g(D′

Z ). If Pj /∈ � then we have the contradiction
a(S, 1

m D′) < a(S, 0) − N j/r ≤ 0, since � is a non-toric subvariety. Let Pj ∈ �.
Then Pj /∈ CS(Z), and if N j/r < 1, then we have the contradiction a(S, 1

m D′) ≤
N j/r − 1 < 0 since � is a non-toric subvariety.

Assume that Case (2A) of Proposition 2.6 takes place. Then j = 3. Since
N3 > max{N1, N2} then the singularity must be isolated at the point P3. We obtain
the contradiction. It is not hard to prove that Case (2B) of Proposition 2.6 is
impossible. �

Assume that � is a point. Then Diff S(d DX ) is a boundary, and hence we obtain
the contradiction with Theorem 4.2 for the pair (S,Diff S(d DX )) and the point �.

Let a(S, d DX ) > 0. We will obtain a contradiction. Note that the number of
exceptional divisors with discrepancy 0 is finite for the pair (X, d DX ). Now we will
carry out the procedure consisting of the two steps: (i1) replacing d DX by D(δ)
and (i2) replacing (X, d DX ) by other pair with canonical singularities (the variety
X is replaced by other variety also). As the result of finite number of steps of this
procedure we will obtain a contradiction. Let H1 be a general hyperplane section
of large degree containing the center of S on X (at this first step the point P is this
center, and note that this center can be a curve after replacing X as a result of step
(i2)). Also we require that (H1)Z |S ⊂ S is an irreducible reduced subvariety (curve)
not containing any zero-dimensional orbit of S. This last condition is necessary to
our procedure terminates obviously after a finite number of steps.

Let us consider the numbers δ ≥ 0,h(δ) ≥ 0 and thedivisor D(δ) = (d − δ)DX +
h(δ)H1 such that (X, D(δ)) has canonical singularities,� is a center of canonical sin-
gularities of (Z , D(δ)Z − a(S, D(δ))S), and one of the two following conditions are
satisfied: either (a1) a(S, D(δ)) = 0 or (a2) a(S, D(δ)) > 0 and there exists a center
of canonical singularities different from � for the pair (Z , D(δ)Z − a(S, D(δ))S).
Take the maximal number δ with such properties. By E again (for convenience) we
denote some exceptional divisor with discrepancy 0 for (X, D(δ)) such that its center
is � on Z . It is step (i1).

Let a(S, D(δ)) = 0 and � be a curve. By the above statement (X � P) is a
smooth point. We claim that h(δ) = 0, and thus we have the contradiction. Let us
prove it. Consider the general point Q of � and the general (smooth) hyperplane
section H passing through this point. Then (H � Q, (D(δ)Z )|H ) has canonical non-
terminal singularities. This is equivalent to multQ(D(δ)Z )|H = 1. Let us apply the
construction of non-toric canonical blow-ups from Sect. 5 to the curve � provided
that β1 = 1. As the result we obtain the non-toric canonical non-terminal blow-
up (Y ′′, E ′′) → (X � P). By the above a(E ′′, D(δ)) = 0. Since � ⊂ (H1)Z then
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the divisor (H1)Y ′′ contains the center of canonical singularities of Y ′′ (see Sect. 5)
always. Therefore h(δ) = 0.

Let a(S, D(δ)) = 0 and � be a point. Then Diff S(D(δ)) is a boundary and we
have the contradiction with Theorem 4.2.

Let a(S, D(δ)) > 0. Let ̂X → X be a log resolution of (X, D(δ)). Let us consider
the set E consisting of all exceptional divisors E ′ on ̂X with the two conditions: (1)
E ′ can be realized by some toric blow-up of (X � P) and (2) a(E ′, D(δ)) = 0.

Let E = ∅. Hence, if T ∈ CS(Z , D(δ)Z − a(S, D(δ))S) and T is a curve, then
T is a non-toric subvariety of (S,Diff S(0)). Let us consider the variety T ∈
CS(Z , D(δ)Z − a(S, D(δ))S)which is the maximal obstruction to increase a coeffi-
cient δ, that is, if put � = T then we can more increase the coefficient δ as the result
of step (i1). If T is a curve then we consider T instead of � and repeat the first step
(i1) to increase the coefficient δ (for the sake to be definite, we denote the curve T by
�). If T is a non-toric point lying on some toric orbit, then we are in Case II. We have
proved that Case II is reduced to Case I, besides we can assume that we consider the
pair (X, D(δ)) for some δ > 0. If T is a point not lying on any toric orbit then we
can consider the point T instead of � and increase δ as the result of step (i1). If T is
a toric point then we can consider the point T instead of � and increase δ and repeat
the procedure from the beginning with the same notation.

Let E = ∅. Let us consider the toric divisorial contraction g1 : Z1 → (X � P)

which realizes the set E exactly. In particular, K Z1 + D(δ)Z1 = g∗
1(K X + D(δ)). Let

P1 be a center of E on Z1. Let us consider locally the pair (Z1 ⊃ P1, D1 = D(δ)Z1)

instead of (X � P, D(δ)). It is step i2). Let us repeat the whole procedure. We obtain
a new divisor D1(δ) on Z1. Let a(S, D1(δ)) = 0. If the center of S on Z1 is a point
then we have the contradiction as above. If the center of S on Z1 is a closure of
one-dimensional toric orbit then we have the similar contradiction, but we must
use the results of Sect. 3 (Example 3.6 and Theorem 3.9) to prove h(δ) = 0. Let
a(S, D1(δ)) > 0. The case E = ∅ is considered as above (the set E will be another
one). In the case E = ∅we obtain a toric divisorial contraction g2 : Z2 → (Z1 ⊃ P1),
which is constructed similarly to the construction of g1. After it let us repeat thewhole
procedure. By construction of partial resolution of (X, d DX ) we obtain some pair
(Zk, Dk(δ)) in a finite numbers of steps such that a(S, Dk(δ)) = 0, and hence we
have the contradiction.

Let (X � P) be a non-Q–factorial singularity, that is, (X � P) ∼= ({x1x2 +
x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0)). According to Sect. 5 it is sufficient to prove that the
analog of Proposition 6.6 is satisfied for this singularity. Arguing as above in The-
orem 6.2, the required statement is reduced to the case of Q-factorial singularities,
this concludes the proof. �

Corollary 6.8 Under the same assumption as in Theorem 6.5 the two following
statements are satisfied:

(1) [2, 6, 8] if f is a terminal blow-up then f is a toric morphism (see Proposition
2.6);

(2) if f is a non-toric morphism then an index of (X � P) is equal to 1. �
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