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Abstract We prove the Yau–Tian–Donaldson conjecture for cohomogeneity one
manifolds, that is, for projective manifolds equipped with a holomorphic action of
a compact Lie group with at least one real hypersurface orbit. Contrary to what
seems to be a popular belief, such manifolds do not admit extremal Kähler metrics
in all Kähler classes in general. More generally, we prove that for rank one polarized
spherical varieties, G-uniform K-stability is equivalent to K-stability with respect to
special G-equivariant test configurations. This is furthermore encoded by a single
combinatorial condition, checkable in practice.We illustrate on examples and answer
along the way a question of Kanemitsu.
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1 Introduction

A compact complex manifold X equipped with a holomorphic action of a real com-
pact Lie group K such that there is at least one real hypersurface orbit K · x in X is
called a (compact) cohomogeneity one manifold. Such manifolds have played a key
role in complex geometry, especially in Kähler geometry, for being the easiest non-
homogeneousmanifolds to study. Indeed, under the previous assumption, the generic
orbit of K is a real hypersurface as well, so that any K -equivariant condition on the
manifold must reduce to a one-variable condition. It is the underlying reason why
Calabi’s construction [7] of extremal Kähler metrics on Hirzebruch surfaces works,
a construction which gave birth to the Calabi ansatz which applies in many more
situations. It was also the method Koiso and Sakane [22] used to produce the first
examples of non-homogeneous compact Kähler–Einstein manifolds with positive
curvature.

T. Delcroix (B)
CNRS, University of Montpellier, Montpellier, France
e-mail: thibaut.delcroix@umontpellier.fr
URL: http://delcroix.perso.math.cnrs.fr/

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Cheltsov et al. (eds.), Birational Geometry, Kähler–Einstein Metrics
and Degenerations, Springer Proceedings in Mathematics & Statistics 409,
https://doi.org/10.1007/978-3-031-17859-7_10

205

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17859-7_10&domain=pdf
mailto:thibaut.delcroix@umontpellier.fr
http://delcroix.perso.math.cnrs.fr/
https://doi.org/10.1007/978-3-031-17859-7_10


206 T. Delcroix

Though these initial examples are a bit old, very recent works highlight how these
manifolds are still very useful in complex geometry. Let us simply illustrate this
with one example, where cohomogeneity one manifolds appear under the guise of
two-orbits manifolds (under a complex Lie group). A well studied and long-standing
conjecture attributed to Iskovskikh stated that Picard rank one projective manifolds
should have a semistable tangent bundle (in the sense ofMumford–Takemoto). Kane-
mitsu [19] disproved this conjecture by studying the Picard rank one, two-orbits
manifolds whose classification was obtained by Pasquier [26]. It was actually not
the first appearance of these manifolds in Kähler geometry to disprove a conjecture
since the author proved in [10] that they provided infinitely many counterexamples
to a shorter-lived conjecture of Odaka and Okada [25] stating that all Picard rank
one Fano manifolds should be K-semistable. We must inform the reader here that
the conjecture of Odaka and Okada was disproved as well by Fujita [14] with two
counterexamples.

In the present note, we will not disprove any conjecture but confirm the Yau–
Tian–Donaldson conjecture for projective cohomogeneity one manifolds.

Theorem 1.1 On a projective cohomogeneity one manifold, a Kähler class admits
a constant scalar curvature Kähler metric if and only if it is K-stable with respect to
special equivariant test configurations. The latter amounts to a single combinatorial
condition checkable in practice.

The content of the note is as follows. In Sect. 2 we explain how projective coho-
mogeneity one manifolds coincide with (non-singular) rank one spherical varieties,
briefly recall their classification, then recall some of the results in [12] for the special
case of rank one spherical varieties. Section3 is devoted to the proof of our main
theorem, and of the corresponding K-stability statement which holds for singular
varieties as well. In the remaining section, we illustrate the result on some examples.
It appears that, due to various different hypotheses in papers dealing with cohomo-
geneity one manifolds, a common belief is that they admit extremal Kähler metrics
in all Kähler classes (see e.g. [8, 18]). We thus exhibit an example of cohomogeneity
one projective manifold which admits both Kähler classes with cscK metrics and
Kähler classes with no extremal Kähler metrics. We then answer a question of Kane-
mitsu on the existence of Kähler–Einstein metrics on non-horospherical Picard rank
one manifolds, then study two related Picard rank two cohomogeneity one manifolds
and show that they are strong Calabi dream manifolds in the sense of [24].

2 Recollections

2.1 Cohomogeneity One Manifolds and Spherical Varieties

Let X be a projective complexmanifold, equippedwith a holomorphic action of a real
connected compact Lie group K . The manifold X is of cohomogeneity one if there
exists at least one orbit of K of real codimension one. It then follows from [17, Sect. 2]
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that the manifold is almost-homogeneous under the action of the complexification
G := KC, that is, G acts with an open orbit G · x for some x ∈ X . We denote by H
the stabilizer of such a point, and identify G/H with G · x ⊂ X . Furthermore, the
complement X \ G/H consists of one or two orbits, on which K acts transitively.

If there are two orbits in the complement, they are disconnected and the manifold
is G-equivariantly birational to a G-homogeneous P1-bundle over a generalized flag
manifold for G [17, Proposition 3.1]. Such manifolds are, from a different point
of view, called rank one horospherical varieties. They belong to the large class of
spherical varieties, well-studied from the algebraic point of view. In fact, in the case
where there is only one orbit in the complement, the manifold is a rank one spherical
manifold as well [9, Corollary 2.4]. We now turn to rank one spherical varieties in
general.

2.2 On Rank One Spherical Varieties

Let G denote a connected complex reductive group, and fix a Borel subgroup B of
G and a maximal torus T in B. We let X(T ) denote the lattice of characters of T .
We denote by R+ the set of positive roots of G and by 2� = ∑

α∈R+ α the sum of
its positive roots.

A spherical subgroup of G is a subgroup H such that B H is open in G. The
homogeneous space G/H is then called spherical. The rank of a spherical homo-
geneous space is the rank of its weight lattice M , defined as the set of weights of
B-semi-invariant rational functions on G/H .

Spherical homogeneous spaces of rank one are completely classified up to
parabolic induction, by the work of Akhiezer [1]. More precisely, there is a finite list
of families of primitive cases (G, H) (we only list the groups G and H up to isogeny,
there can be one or two corresponding homogeneous spaces G/H depending on the
couple (G, H)):

• the reductive symmetric spaces of rank one

– (SOm+1, S(O1 ×Om)) for m ≥ 1,
– (SLm+1, S(GL1 ×GLm)) for m ≥ 2,
– (Sp2m,Sp2 ×Sp2n−2) for n ≥ 3,
– (F4,SO9),

• four other affine homogeneous spaces corresponding to the couples (G2,SL3),
(SO7, G2),

• and three non affine families described precisely in [1, p. 68, Examples].

An arbitrary spherical homogeneous space of rank one G/H is then obtained from
the primitive cases as follows. There exists a parabolic subgroup P of G, and a
reductive quotient G̃ of P such that G/H is the quotient of G × G̃/H̃ where P acts
diagonally and G̃/H̃ is in the list of primitive spherical homogeneous spaces of rank
one.
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As already highlighted in the discussion of cohomogeneity one manifolds, there
are two very different types of rank one spherical homogeneous spaces, according to
whether G̃ = C

∗ or G̃ is semisimple. In the case when G̃ = C
∗, the resulting homo-

geneous space G/H is called a rank one horospherical homogeneous space. Then
the group of G-equivariant automorphisms of G/H is of dimension one. Otherwise,
the group of G-equivariant automorphisms of G/H is finite.

Spherical varieties of rank one are the normal G-equivariant embeddings of rank
one spherical homogeneous spaces G/H . They are classified by colored fans [21]
in N ⊗ R, where N = Hom(M,Z). For primitive rank one spherical homogeneous
spaces, there is a unique G-equivariant projective embedding, described in details
as well (for most cases) in [1]. The corresponding fan is without colors and consists
either of the toric fan of P1 (if G = C

∗), or consists of a single one-dimensional
cone and its zero dimensional face {0}. If X is a projective horospherical rank one
spherical variety, its colored fan consists again of the toric fan of P1, but now each of
the two one-dimensional cones can carry colors (and if they do, the corresponding
added G-orbits are not of codimension one). If X is a projective non-horospherical
rank one spherical variety, the colored fan again consists of {0} and a single one-
dimensional cone, which can now be colored (again, in this case, the added G-orbit
is not of codimension one). If X is a non-horospherical projective rank one spherical
variety, the generator of M which evaluates negatively on the colored cone is called
the spherical root of G/H .

2.3 On Uniform K-Stability

Our references for this section are [4, 15]. We recall the main notions for the reader’s
convenience. Let G be a complex reductive group, and let (X, L) be a G-polarized
variety. A (normal, ample) G-equivariant test configuration for (X, L) consists of
the data of a normal (G × C

∗)-variety X̂ , a (G × C
∗)-linearized ample line bundle

L̂ on X̂ , and a C∗-equivariant flat morphism π : X̂ → C whose fiber (X1, L1) over
1 is G-equivariantly isomorphic to (X, Lr ) for some r ∈ Z>0.

For k ∈ N, let dk denote the dimension dim H 0(X0, Lk
0), let λ1,k, . . . ,λdk ,k denote

the weights of theC∗-action on H 0(X0, Lk
0) induced by the action ofC

∗ on X̂ , which
stabilizes the central fiber X0. Let wk denote the sum of the λi,k . The quotient

wk
kdk

admits an expansion in powers of k at infinity:

wk

kdk
= F0 + F1k−1 + o(k−1).

The non-Archimedean J-functional of a test configuration (X̂ , L̂) is

J N A(X̂ , L̂) := sup{λi,k/k | k ∈ Z>0, 1 ≤ i ≤ dk} − F0

and the non-Archimedean Mabuchi functional is defined by
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M N A(X̂ , L̂) := −F1

on test configurationswith a reduced central fiber, and vary linearlywith base changes
of the form z 	→ zm .

The G-polarized variety (X, L) is K-stable with respect to G-equivariant special
test configurations if M N A(X̂ , L̂) ≥ 0 for all test configurationswith a normal central
fiber X0, with equality if and only if X̂ is G-equivariantly isomorphic to X × C.

A G-equivariant test configuration (X̂ , L̂) may be twisted by a one-parameter
subgroup μ : C∗ → AutG(X) of the group of automorphisms of X commuting with
the action ofG. This amounts to keeping the same total space, but changing the action
of C∗ using the one-parameter subgroup μ. More explicitly, over C∗, X̂ is G × C

∗-
equivariantly isomorphic to X × C

∗, and one may consider the action of C∗ given
by t · (x, s) = (μ(t) · x, s). This action turns out to extend to X̂ , and the resulting
data of X̂ , L̂ equipped with this new action of C∗ defines a new test configuration
for (X, L). One can also make sense of twists by rational multiples of one-parameter
subgroups via base change. The G-polarized variety X, L) is G-uniformly K-stable
if there exists an ε > 0 such that M N A(X̂ , L̂) ≥ ε inf{J N A(twist of (X̂ , L̂))} for all
test configurations.

2.4 On K-Stability of Spherical Varieties

Let X be a rank one G-spherical variety, with spherical lattice M . Let N =
Hom(M,Z). If it is not horospherical, denote by σ its spherical root, and let σ∗ ∈ N
be the dual element. If it is horospherical, choose any generator σ of M , and let again
σ∗ ∈ N be the dual element.

Let L be an ample line bundle on X , with moment polytope �+. Recall that the
moment polytope is the closure of the set of all λ/k ∈ X(T ) ⊗ R, where λ run over
the weights of B-stable lines in H 0(X, L⊗k). It lies in an affine line in X(T ) ⊗ R,
with direction M ⊗ R. Choose an element χ of �+, then there exists s− < s+ ∈ Q

such that
�+ = {χ + tσ | t ∈ [s−, s+]}.

Let R+
X denote the set of positive roots of G which do not vanish identically on �+.

Set for t ∈ R,

P(t) :=
∏

α∈R+
X

〈α,χ + tσ〉
〈α,�〉 , Q(t) :=

⎛

⎝
∑

α∈R+
X

〈α,�〉
〈α,χ + tσ〉

⎞

⎠ P(t).

Finally, for any continuous function g on [s−, s+], set

L(g) = g(s−)P(s−) + g(s+)P(s+) −
∫ s+

s−
2g(t)(a P(t) − Q(t)) dt
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where a is such that L(1) = 0, and

J (g) =
∫ s+

s−
(g(t) − inf g)P(t) dt .

The constant a may be explicitly computed as

a = P(s−) + P(s+) + 2
∫ s+

s− Q(t)dt

2
∫ s+

s− P(t)dt

Note that the moment polytope lies in the positive Weyl chamber of G, that is, all
positive roots evaluate non-negatively on elements of �+. As a consequence, P and
Q are positive on ]s−, s+[, and J (g) = 0 if and only if g ≡ 0.

The following criteria for K-stability of (X, L) follow from [12]. Note that we
switch here from concave to convex functions to simplify notations.

Theorem 2.1

1. A polarized rank one horospherical variety (X, L) is G-uniformly K-stable if and
only if there exists ε > 0 such that

L(g) ≥ ε inf
l∈R∗ J (g + l)

for all rational piecewise linear convex functions g : [s−, s+] → R.
2. A polarized rank one spherical variety (X, L) which is not horospherical is G-

uniformly K-stable if and only if there exists ε > 0 such that

L(g) ≥ εJ (g)

for all non-decreasing rational piecewise linear convex functions g : [s−, s+] →
R.

3. A polarized rank one horospherical variety (X, L) is K-stable with respect to
G-equivariant special test configurations if

L(g) = 0

for all affine functions g on [s−, s+].
4. A polarized rank one spherical variety (X, L) which is not horospherical is K-

stable with respect to G-equivariant special test configurations if

L(g) > 0

for all affine strictly increasing functions g on [s−, s+].
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Remark 2.2 The proof of the above theorem is detailed in several steps in [12]. It
relies on translating all the data of test configurations and non-Archimedean func-
tionals into combinatorial data, thanks to the general theory of spherical varieties.

More precisely, test configurations are classified by piecewise linear functions on
the moment polytope of the spherical variety (X, L) (with some conditions on the
slopes related to spherical roots), with affine functions corresponding to test config-
urations with a normal central fiber up to base change. This classification is obtained
by seeing the moment polytope of the (compactified) test configuration (X̂ , L̂) as cut
out from the cylinder over the moment polytope of (X, L), an image originally used
byDonaldson for toric varieties. The expression of the non-Archimedean functionals
are then obtained through the relation between the representations given by spaces
of sections of a line bundles over a spherical variety and the moment polytope.

Remark 2.3 Observe thatL is linear andL(1) = 0.As a consequence, since [s−, s+]
is one-dimensional, if L(id) = 0 for the identity function id : [s−, s+] → R, s 	→ s,
thenL(g) = 0 for all affine functions on [s−, s+]. Similarly, ifL(id) > 0, thenL(g) >

0 for all affine strictly increasing functions on [s−, s+]. Hence there is actually only
one condition to check in order to check K-stability with respect to G-equivariant
test configurations for a polarized rank one spherical variety. Furthermore, to avoid
computing the contant a independently, one can note that

(

2
∫ s+

s−
P(t)dt

)

L(id) =
(

2
∫ s+

s−
P(t)dt

)(

s− P(s−) + s+ P(s+) + 2
∫ s+

s−
t Q(t)dt

)

−
(

2
∫ s+

s−
2t P(t)dt

)(

P(s−) + P(s+) + 2
∫ s+

s−
Q(t)dt

)

where the multiplicative constant 2
∫ s+

s− P(t)dt is positive, so it is enough to check
vanishing or positivity of the above quantity in order to checkK-stability with respect
to G-equivariant special test configurations.

3 Uniform K-Stability of Rank One Spherical Varieties

In this section we will prove Theorem1.1 as a consequence of the following K-
stability result applying to singular varieties as well.

Theorem 3.1 A polarized rank 1 G-spherical variety is G-uniformly K-stable if and
only if it is K-stable with respect to G-equivariant special test configurations.

Let us first show how it proves the Yau–Tian–Donaldson conjecture for cohomo-
geneity one manifolds.

Proof of Theorem 1.1 It suffices to work on rational Kähler classes since the
extremal cone is open in the Kähler cone [23], and the Kähler cone coincides with
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the cone of ample real line bundles on spherical manifolds since these manifolds are
Mori dream spaces [5, 16], hence rationalKähler classes are dense in theKähler cone.
One of the direction is known: existence of cscK metrics implies K-(poly)stability
[3], hence in particular K-stability with respect to special equivariant test configura-
tions. For the other direction, it suffices to apply Theorem3.1 together with Odaka’s
appendix to [12], which shows that for spherical manifolds, G-uniform K-stability
implies the existence of cscK metrics. �

The result is of course more precise in view of Theorem2.1. It shows first that
for rank one G-horospherical varieties, G-uniform K-stability is equivalent to the
vanishing of the Futaki invariant on the (at most one-dimensional) center of the group
of automorphism. Second, if the variety is not horospherical, it admits a unique G-
equivariant special test configuration, and it suffices to check that its Donaldson–
Futaki invariant is positive.

In the course of the proof, we will use the following remarkable properties for the
sign of a P − Q. Recall first that by definition of amoment polytope, the polynomials
P and Q are positive on ]s−, s+[.
Lemma 3.2 Assume that P(s±) = 0, then (a P − Q)(t) is negative for t ∈ [s−, s+]
close to s±.

Proof Let V± ⊂ R+
X be the subset of rootsα ∈ R+

X such that 〈α,χ + s±σ〉 = 0. If V±
is not empty, then the polynomial a P vanishes to the order exactly Card(V±) at s±,
while the polynomial Q vanishes to the order exactly Card(V±) − 1 at s±. It follows
that in the same situation, since P and Q are positive on ]s−, s+[, (a P − Q)(t) is
negative when t ∈]s−, s+[ is close enough to s±. �

Lemma 3.3 The locus where a P − Q is non-negative on � is [t−, t+] for some
t± ∈ [s−, s+].
Proof Since P is positive on [s−, s+], a P − Q is of the same sign as

a −
∑

α∈R+
X

〈α,�〉
〈α,χ + tσ〉

on [s−, s+]. Since the reciprocal of an affine function on R is convex on the locus
where this affine function is positive, the above function is concave on [s−, s+]. It
follows that its non-negative locus is a segment in [s−, s+]. �

Proof of Theorem 3.1 In order to show the main result by contradiction, we assume
that (X, L) is a polarized rank one G-spherical variety which is K-stable with respect
to G-equivariant special test configurations but not G-uniformly K-stable. For a con-
vex function g : [s−, s+] → R, let us denote by ‖g‖ the quantity inf l∈R∗ I(g + l) if
X is horospherical, and I(g) if not. By Theorem2.1, since (X, L) is not G-uniformly
K-stable, one can find a sequence ( fn) of rational piecewise linear convex functions
from [s−, s+] to R such that for all n, ‖ fn‖ = 1 and the sequence (L( fn)) converges
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to a limit l ≤ 0. Note that if the limit can be taken to be strictly negative, then the
sequence can be assumed constant. Further note that, if X is not horospherical, the
fn can and are assumed to be non decreasing.
Let us first modify the sequence a bit. Since both L and ‖·‖ are invariant under

addition of a constant, we may assume that all the functions in the sequence satisfy
inf fn = 0. Fix some s0 in ]t−, t+[, where t− and t+ are provided by Lemma3.3. If
X is horospherical, we can further assume that 0 = inf fn = fn(s0), by adding to
fn one of its subdifferential at s0. This does not change ‖ fn‖ by definition, and it
does not change L( fn) by the assumption that (X, L) is K-stable with respect to
G-equivariant special test configurations. If X is not horospherical, then since the fn

are non decreasing, the infimum is attained at s−.
Under these modifications, the sequence (

∫
fn P) is bounded in R. If X is not

horospherical, this is immediate since
∫

fn P = ‖ fn‖ = 1. If X is horospherical, we
prove it by contradiction. Assume that there is a subsequence of ( fn) (still denoted
by ( fn) for simplicity) such that

∫
fn P → +∞. Consider the functions gn = fn∫

fn P .

Then ‖gn‖ → 0 while
∫

gn P = 1. By the pre-compactness result in [12, Proposi-
tion 7.2], the sequence (gn) converges (up to subsequence again) to a function g∞ on
]s−, s+[, and the convergence is uniform on all compact subsets. The latter ensures
that ‖gn‖ converges to ‖g∞‖, which is thus equal to zero. This is possible only if g∞
is affine. Finally, since 0 = inf gn = gn(s0), this implies that g∞ is the zero function.
This is in contradiction with the convergence lim

∫
gn P = 1.1

Nowwecan apply the pre-compactness result [12, Proposition 7.2] to the sequence
( fn) itself. Replacing ( fn) by a subsequence, we can and do assume that ( fn) con-
verges to a convex function f∞ on ]s−, s+[ and the convergence is uniformoncompact
subsets.

We want to show that, L( f∞) is well-defined and less than the limit l of L( fn).
Let us first isolate the negative contribution in L( f ) for an arbitrary non-negative
function f : [s−, s+] → R ∪ {+∞}which takes finite values where P is positive and
which is integrable with respect to (a P(t) − Q(t)) dt . By Lemma3.3, there exists
t− < t+ in [s−, s+] such that a P − Q is non-negative exactly on [t−, t+]. It follows
that

∫ t+
t− 2 f (t)(a P(t) − Q(t)) dt and L( f ) + ∫ t+

t− 2 f (t)(a P(t) − Q(t)) dt are both
non-negative, for any non-negative function f . We claim that the first expression
above is well defined and finite for f = f∞. If P is positive on [t−, t+], then since∫

f∞ P = 1, the claim holds. Lemma3.2 shows that, if P(s−) = 0 then s− < t− and
if P(s+) = 0, then t+ < s+. As a consequence, it is actually always the case that P
is strictly positive on [t−, t+] since P is positive on ]s−, s+[.

Since we assumed limL( fn) ≤ 0, and the negative contribution in the decom-
position of L( fn) above converges to − ∫ t+

t− 2 f∞(t)(a P(t) − Q(t)) dt , the positive
contribution of L( fn) must converge as well. Since the positive contribution is the
sum of positive terms

fn(s−)P(s−) + fn(s+)P(s+) −
∫ t−

s−
2 fn(t)(a P(t) − Q(t)) dt −

∫ s+

t+
2 fn(t)(a P(t) − Q(t)) dt

1 This shortcut is actually incorrect, but may be completed into a full argument, see [12].
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each of these terms must be bounded. This implies that f∞ is integrable with respect
to (a P(t) − Q(t)) dt and that limt→s± f∞(t) is finite when P(s±) is non-zero. By
a slight abuse of notations, we let f∞ : [s−, s+] → R ∪ {+∞} be the unique lower
semi-continuous extension of f∞. The last part of the penultimate sentence shows
that f∞(s±) is finite whenever P(s±) is, so L( f∞) is well defined and L( f∞) ≤ l.

Consider the affine function

h(t) = f∞(t−) + t − t−
t+ − t−

( f∞(t+) − f∞(t−)).

Note that the values f∞(t±) are finite by the discussion above. Convexity of f∞
implies h ≤ f∞ on [s−, t−] ∪ [t+, s+] and h ≥ f∞ on [t−, t+]. Thus both the positive
and negative contribution in L(h) are lower than that in L( f∞), hence

0 ≤ L(h) ≤ L( f∞) ≤ l ≤ 0.

In particular, we have shown that K-stability with respect to G-equivariant special
test configurations implies G-equivariant K-semistability.

To conclude the proof it remains to obtain a contradictionwith the initial definition
of the sequence ( fn). This final argument depends on the nature of X . If X is not
horospherical then all the functions fn are non decreasing, hence f∞ and h as well.
If the slope of h is strictly positive, then L(h) > 0 by assumption which provides
the contradiction. Else h is constant. Since f∞ is non decreasing, f∞ is constant on
[s−, t+]. All fn satisfy inf fn = fn(s−) = 0, so f∞(s−) = 0. But then either f∞ ≡ 0,
which contradicts ‖ f∞‖ = 1, or L( f∞) > 0, which is another contradiction.

We now conclude the horospherical case. Assume first that f∞ is affine. All the
functions fn satisfy fn(s0) = inf fn = 0, hence f∞ as well. Since s− < s0 < s+, this
shows that f∞ is the zero function, a contradiction with

∫
f∞ P = 1. Assume now

that f∞ is not affine, hence that f∞ �= h. Since a P − Q is a non-zero polynomial,
by considering the positive and negative contribution in L as before, we see that
L( f∞) > L(h) = 0. This is the final contradiction. �

4 Examples

4.1 An Example of Kähler Class with No Extremal Kähler
Metrics

We will here consider an example initially encountered in [2]. There, we considered
as an ingredient of the proof the existence of Kähler–Einstein metrics on some blow-
down of the G2-stable divisors in the wonderful compactification of G2/SO4. Such
varieties are rank one spherical (horosymmetric) varieties, Fano with Picard rank
one, and one of these does not admit (singular) Kähler–Einstein metrics. If we go
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back to the corresponding G2-stable divisor in the wonderful compactification of
G2/SO4, which is smooth, this should provide an example of cohomogeneity one
manifold and Kähler classes on it with no extremal Kähler metrics. We verify this in
the following paragraphs.

4.1.1 Recollection on the Group G2

We consider the exceptional group G2 with a fixed choice of Borel subgroup B and
maximal torus T , and an ordering of simple roots as in Bourbaki’s numbering, so
that α1 is the short root and α2 is the long root.

Up to scaling, theWeyl group invariant scalar product onX(T ) satisfies 〈α1,α1〉 =
2, 〈α1,α2〉 = −3 and 〈α2,α2〉 = 6. The fundamental weight for α1 is 2α1 + α2 and
the fundamental weight for α2 is 3α1 + 2α2. The positive roots and their scalar
product with an arbitrary element x1α1 + x2α2 read

〈α1, x1α1 + x2α2〉 = 2x1 − 3x2
〈α2, x1α1 + x2α2〉 = 3(−x1 + 2x2)

〈α1 + α2, x1α1 + x2α2〉 = −x1 + 3x2
〈2α1 + α2, x1α1 + x2α2〉 = x1
〈3α1 + α2, x1α1 + x2α2〉 = 3(x1 − x2)

〈3α1 + 2α2, x1α1 + x2α2〉 = 3x2

The half-sum of positive roots is � = 5α1 + 3α2.

4.1.2 The Facet of the Wonderful Compactification of G2/SO4 and Its
Kähler Classes

Let P1 be the parabolic subgroup of G2 containing B such that −α1 is not a root of
P1. Its Levi factor has adjoint form PSL2. From any P1-variety Y , one may build a
G2 variety X which is a homogeneous bundle over G2/P1 with fiber Y , simply by
considering the quotient of Y × G2 by the P1-action p · (y, g) = (p · y, g p−1). Such
a construction is sometimes (and in the following) referred to as parabolic induction
and it is particularly relevant for the geometry of horosymmetric varieties [11]. Let X
be the (non-singular) horosymmetric variety obtained by parabolic induction from
the P1-variety P

2, considered as the projectivization of the space of equations of
quadrics in P

1 on which P1 acts via the natural action of PSL2 on P
1. Its open orbit

G2/H is the corresponding parabolic induction from PSL2 /PSO2. Note that X is
the wonderful compactification of G2/H and that since it is a parabolic induction,
Aut0(X) = G2 [27, Proposition 3.4.1].

The variety X is a Picard rank two horosymmetric variety. Its spherical root is
σ = 2α2, and its spherical lattice M is the lattice generated by σ. We can describe its
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Kähler cone by using [6], recalled for the special case of horosymmetric varieties in
[11, 13].AnyKähler class on a projective spherical variety is the class of a real divisor.
The vector space of classes of real divisor is generated by the classes of all prime B-
stable divisors modulo the relations imposed by B-semi-invariant rational functions.
Here the prime B-stable divisors are the closure E of the unique codimension oneG2-
orbit (obtained by parabolic induction from the space of degenerate quadrics in P

1,
that is, double points), and the closures of the two colors D1 and D2 in G/H , where
D1 is the only codimension one B-orbit not stable under P1 (the codimension one
P2-orbit obtained by moving the unique color in P2), and D2 is the only codimension
one B-orbit not stable under P2. Note that D1 is also the pull-back of the ample
generator of the Picard group of G/P1. Since the spherical rank of G/H is one, there
is a single relation to consider, which amounts to 2D2 − E − 6D1 = 0, since the
image of D1 by the color map is the restriction −6σ∗ of the coroot α∨

1 to M ⊗ R,
and the image by the color map of D2 is the restriction 2σ∗ of the positive restricted
coroot α∨

2
2 (the image of E is the primitive generator of the valuation cone −σ∗).

In view of the above presentation, we can write a real divisor as s E + s1D1. Since
K-stability is invariant under scaling of the Kähler class, we may as well assume
s1 = 6. Brion’s ampleness criterion for the real line bundle s E + 6D1 translates
simply to the condition 0 < s < 1, and the moment polytope is then

�+(s) = 6(2α1 + α2) + {2tα2 | 0 ≤ t ≤ s}.

4.1.3 K-Stability Condition

We have

P(t) = 288

5
t (1 − t2)(9 − t2)

and

Q(t) =
(

1

6(1 − t)
+ 1

4t
+ 2

3(1 + t)
+ 5

12
+ 1

3 − t
+ 3

2(3 + t)

)

P(t)

= 24

5
(5t5 + 15t4 − 150t3 − 90t2 + 225t + 27).

In view of Remark2.3, we want to know when

(

s P(s) + 2
∫ s

0
t Q(t) dt

) ∫ s

0
P(t) dt −

(

P(s) + 2
∫ s

0
Q(t) dt

)∫ s

0
t P(t) dt > 0

(1)
The left hand side above is the polynomial

R(s) := 1152

175
s4(11s8 + 20s7 − 348s6 − 240s5 + 3123s4 + 1260s3 − 9072s2 + 5103).
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One can plug in specific values to check that

R

(
1

2

)

= 7315083

5600
> 0

and

R

(
98

100

)

= −12097691278181901659043

47683715820312500000
< 0.

In other words, there are Kähler classes on X with cscK metrics and Kähler classes
with no cscK metrics. Since Aut0(X) = G2 is semisimple, a Kähler class with no
cscK metrics does not admit any extremal Kähler metric either. Using numerical
approximation, one can be more precise: the Kähler class s E + 6D1 contains a cscK
metric if and only if s < s0, where s0 � 0.97202.

4.2 Strong Calabi Dream Manifolds of Cohomogeneity One,
and an Answer to a Question of Kanemitsu

Wewill now provide examples of cohomogeneity one manifolds which are not horo-
spherical and are strong Calabi Dreammanifolds in the sense of [24].We take a small
detour and choose slightly complicated manifolds to answer along the way a ques-
tion of Kanemitsu [19, Remark 4.1]: when does there exist a Kähler–Einstein metric
on cohomogeneity one manifolds with Picard rank one? The answer was already
known for most of such manifolds, namely for homogeneous ones (which admit
Kähler–Einsteinmetrics) and for horospherical, non-homogeneous ones (which have
non-reductive automorphism group [26] hence no Kähler–Einstein metrics by Mat-
sushima’s obstruction).

By Pasquier’s classification [26], there are two Picard rank one, non-horospherical
cohomogeneity one manifolds, one acted upon by PSL2 ×G2, that we will denote by
X1, and one acted upon by F4, that we will denote byX2. Both are two orbit varieties
with semisimple automorphism group. More precisely, Aut0(X1) = PSL2 ×G2 and
Aut0(X2) = F4. We will first prove:

Theorem 4.1 There exist Kähler–Einstein metrics on X1 and X2.

This provides the missing cases in Kanemitsu’s question. Note that, after this
preprint appeared, Kanemitsu also answered his own question in [20]. As a corollary,
we also recover a result of [19].

Corollary 4.2 The tangent bundles of X1 and X2 are Mumford–Takemoto stable.

These manifolds Xi each admit a unique discoloration X̃i which is a smooth
projective Picard rank two cohomogeneity onemanifold which surjects equivariantly
to Xi and where the complement of the open orbit is of codimension one. We will
apply Theorem1.1 to obtain:
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Theorem 4.3 The manifolds X̃1 and X̃2 admits a cscK metric in all Kähler classes.
In other words, they are Calabi dream manifolds in the terminology of [8], and more
precisely strong Calabi dream manifolds in the terminology of [24].

We will in the paragraphs to follow provide the combinatorial data associated
to the manifolds under study. It is rather easy since these are horosymmetric. For
the discolorations, we will then determine the Kähler classes and compute the K-
stability condition as in the previous example. For the Kähler–Einstein metrics, it is
a bit faster to use directly the criterion in [10] since one needs only the polynomial
P up to scalar, and the polynomial Q is not needed.

4.2.1 Kähler–Einstein Metrics on X1

Let G denote the group PSL2 ×G2. We fix a choice of Borel subgroup B and of
maximal torus T ⊂ B. Let α0 denote the positive root of SL2 and let α1 and α2

denote the simple roots of G2, numbered so that α1 is the short root (in accordance
with Bourbaki’s standard numbering and with the previous example). We can choose
a Weyl group invariant scalar product on X(T ) satisfying 〈α0,α0〉 = 1 and the same
scaling as in the previous example for the restriction to G2. Of course, the root α0 is
orthogonal to α1 and α2.

It follows from the description of the variety X1 in [26] that its open orbit
G/H is obtained by parabolic induction from the rank one symmetric space
PSL2 ×PSL2 /PSL2, where the parabolic subgroup of G is the parabolic P2 asso-
ciated to the long root α2, whose Levi factor has adjoint form PSL2 ×PSL2. The
spherical lattice M for X1 is thus the lattice generated by α0 + α1.

Furthermore, the varietyX1 is the unique fully colored compactification of G/H .
It follows that the moment polytope �+ corresponding to the anticanonical line
bundle is the intersection with the positive Weyl chamber of the affine line with
direction R(α0 + α1) passing through the sum of positive roots α0 + 10α1 + 6α2.
If we write the moment polytope as

�+ = {(1 + t)α0 + (10 + t)α1) + 6α2 | u ≤ t ≤ v}

then we can determine u and v as the extreme values of t such that 〈αi , (1 + t)α0 +
(10 + t)α1) + 6α2〉 ≥ 0 for i ∈ {0, 1, 2}, that is, u = −1 and v = 2.

We may finally compute the K-stability condition, which is

∫ 2

−1
t (1 + t)2(2 − t)(8 − t)(10 + t)(4 + t) dt > 0.

By direct computation, the integral is equal to 120285
56 hence the condition is satisfied.
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4.2.2 CscK Metrics on the Discoloration ˜X1

The discoloration X̃1 of X1 is obtained by the following parabolic induction proce-
dure. Take the quotient of P3 × G by the diagonal action of the parabolic P2, where
the action on G is obvious and the action on P

3 is induced by the action of the Levi
factor of P2 and the obvious structure of two-orbit PGL2 ×PGL2-variety on P3 seen
as the projectivization of 2 by 2 matrices. It is a homogeneous P3-bundle over the
generalized flag manifold G/P2.

It is a rank one horosymmetric variety with Picard rank two. We can describe its
Kähler cone by using [6], recalled for the special case of horosymmetric varieties in
[11, 13].AnyKähler class on a projective spherical variety is the class of a real divisor.
The vector space of classes of real divisor is generated by the classes of all prime B-
stable divisors modulo the relations imposed by B-semi-invariant rational functions.
Here the prime B-stable divisors are the (G-stable) exceptional divisor E , and the
closures of the two colors D01 and D2 in G/H , where D01 is the only codimension
one B-orbit not stable under P0 and P1, and D2 is the only codimension one B-orbit
not stable under P2. Note that D2 is also the pull-back of the ample generator of
the Picard group of G/P2. Since the spherical rank of G/H is one, there is a single
relation to consider, which amounts to E + D2 − 2D1 = 0, since the image of D2

by the color map is the restriction of the coroot α∨
2 to M ⊗ R which coincides with

the generator of the colorless ray corresponding to E , and the image by the color
map of D01 is the only positive restricted coroot, the restriction of 1

2 (α
∨
0 + α∨

1 ) to
M ⊗ R.

The class of any real divisor is thus represented by a sE E + s2D2 for sE and s2
two real numbers. By Brion’s ampleness criterion, it is a Kähler class if and only if
0 < sE < s2, and the moment polytope is then

�+(sE , s2) := s2(3α1 + 2α2) + {t (α0 + α1) | 0 ≤ t ≤ sE },

where 3α1 + 2α2 is to be though of as the fundamental weight of α2 here.
Wemay now compute the unique condition for K-stability given by an equivariant

special test configuration for these polarizations. Since a Kähler class is K-stable if
and only if one of its positive multiple is, we can assume s2 = 1 and write s := sE

in the following, to simplify notations. The moment polytope is illustrated in Fig. 1.
Let P and Q denote the polynomials

P(t) = t2

15

(
t4 − 10t2 + 9

)

Q(t) = t

30

(
3t5 + 6t4 − 90t3 − 40t2 + 135t + 18

)

The Kähler class s E + D2 is G-uniformly K-stable if and only if s satisfies the
condition (1). By computing the polynomial on the left hand side, the condition is
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Fig. 1 Moment polytope
�+(s, 1)

s6

132300
(9s8 + 42s7 − 266s6 − 378s5 + 2135s4 + 1764s3 − 5292s2 + 2646) > 0,

and one can check that this condition is satisfied for all s ∈]0, 1[.

4.2.3 Kähler–Einstein Metrics on the F4-Variety X2

Let αi denote the simple roots of F4, ordered in accordance with Bourbaki’s num-
bering. Up to scaling, the Weyl group invariant scalar product is such that the matrix
of 〈αi ,α j 〉 is given by ⎛

⎜
⎜
⎝

2 −1 0 0
−1 2 −1 0
0 −1 1 − 1

2
0 0 − 1

2 1

⎞

⎟
⎟
⎠

It follows from the description of the varietyX2 in [26] that its open orbit F4/H is
obtained by parabolic induction from the rank one symmetric space Sp6 /Sp2 ×Sp4,
where the parabolic subgroup of F4 is the parabolic P1 associated to the root α1.
The spherical lattice M for X2 is the lattice generated by the restricted root of the
symmetric space, β := α2 + 2α3 + α4.

Furthermore, the varietyX2 is the unique fully colored compactification of F4/H .
It follows that the moment polytope corresponding to the anticanonical line bundle
is the intersection with the positive Weyl chamber of the affine line with direction
Rβ passing through 16α1 + 29α2 + 42α3 + 21α4, the sum of positive roots minus
the sum of positive roots of Sp6 fixed by the involution defining the symmetric space.
More explicitly, the moment polytope is

�+ = {tβ + 8ω1 | 0 ≤ t ≤ 8}

where ω1 = 2α1 + 3α2 + 4α3 + 2α4 is the fundamental weight for α1.
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The K-stability condition for the anticanonical line bundle thus reads

∫ 8

0
(t − 5)t7(256 − t2)2(64 − t2)2 dt > 0.

This condition is satisfied since the left hand side is equal to

3672386428957884416

153153
.

4.2.4 CscK Metrics on the Discoloration ˜X2

The discoloration X̃2 of X2 is obtained by the following parabolic induction proce-
dure. Take the quotient of Grass(2, 6) × F4 by the diagonal action of the minimal
parabolic P1, where the action on F4 is obvious and the action on Grass(2, 6) is
induced by the action of the Levi factor of P1 and the structure of two-orbit Sp6-
variety on Grass(2, 6) (this is the wonderful compactification of the symmetric space
Sp6 /Sp2 ×Sp4).

It is a rank one horosymmetric variety with Picard rank two. Again, its Kähler
cone is determined from combinatorial data using [6, 11, 13]. Here, the vector space
of real divisors is the quotient of the three dimensional vector space generated by
the exceptional divisor E and the closure of two colors D1 and D3, where Di is the
closure of the only codimension one B-orbit not stable under the minimal parabolic
Pi where i ∈ {1, 3}, by the relation D1 + E − 2D3 = 0. The relation follows from
the fact that the image of D1 under the color map is the restriction of the coroot
α∨
1 to M ⊗ R, which coincides with the primitive generator of the colorless ray

corresponding to the F4-orbit E , and the image by the color map of D3 is the only
positive restricted coroot, equal to (the restriction to M ⊗ R of) (α2 + 2α3 + α4)

∨,
which coincides with the double of the opposite of the generator of E . Note that D1

is the pull-back of the ample generator of the Picard group of F4/P1.
The class of any real divisor is thus represented, up tomultiple, by some s E + D1.

By Brion’s ampleness criterion, it is a Kähler class if and only if 0<s<1, and the
moment polytope is then

�+ = {tβ + ω1 | 0 ≤ t ≤ s}.

The Kähler class s E + D1 is F4-uniformly K-stable if and only if s satisfies the
condition (1) where, here, the polynomials P and Q are given by

P(t) = 1

27
t7(4 − t2)2(1 − t2)2

Q(t) = 1

28
t6(4 − t2)(1 − t2)(13t5 + 22t4 − 105t3 − 110t2 + 116t + 88).
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It is a tedious but workable task to verify that the polynomial on the left hand side
of condition (1) is positive for s ∈]0, 1[.
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