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Preface

This volume originated as a proceedings of the series of three conferences on
Algebraic Geometry titled

Birational Geometry, Kähler–Einstein Metrics
and Degenerations

Organized by us before COVID-19 pandemic in the following cities:

1. Moscow in Russia (8–13 April 2019),
2. Shanghai in China (10–14 June 2019),
3. Pohang in Korea (18–22 November 2019).

The pilot conference in Moscow was hosted by Laboratory for Mirror Symmetry
and Automorphic Forms, whichwas founded in 2017 to consolidate the achievements
of Moscow school in Homological Mirror Symmetry and Birational geometry. The
Soviet school of algebraic geometry, founded by Igor Shafarevich, played a very
important role in modern Mathematics for decades until the collapse of the Soviet
Union in 1991. Then the importance of research originating from Russia diminished
due to the scientific emigration. To rectify this situation, High School of Economics
(Moscow) established three research laboratories: Laboratory of Algebraic Geom-
etry and its Applications directed by Fedor Bogomolov (New York University),
Laboratory of Representation Theory and Mathematical Physics directed by Andrey
Okounkov (Columbia University), and Laboratory for Mirror Symmetry and Auto-
morphic Forms directed by Ludmil Katzarkov (University of Miami). These labo-
ratories attracted top mathematicians who supervised young researchers and orga-
nized many international conferences and workshops, which invigorated Russian
mathematics.

Following the successful launch of our conference in Russia, we continued the
series in Shanghai. Known as the “Paris in the East”, Shanghai, in its heyday, was
the most socially, culturally and economically advanced city in Asia. Embracing the
reform and opening-up policies in the last 40 years, Shanghai has been the center
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of the country’s commercial and cultural renaissance. The city has long charmed
its visitors with tranquil tree-lined streets, designer boutiques and those majestic
colonial buildings along the Bund, on the bank of the Huangpu River, the city’s
iconic river. Adding to the old charm is the famed skyline of Pudong on the other
side of the river. Our conference site was located in this most urbanized part of the
city, at the Institute of Mathematical Science (IMS) at ShanghaiTech University.

The modern mathematical research and education in China has been greatly influ-
enced by Russia through the adaptation of its northern neighbor’s higher education
system and Russia-trained mathematicians in the 1950s. The impact is so profound
that it is still felt today. Shanghai has long considered to be the most important math-
ematics research hub on the south side of the Yangtze River, with Beijing as its coun-
terpart in the north. First rate results are routinely produced by the up-and-coming
young researchers, as well as the more established ones, across all disciplines but
more prominently in the fields of geometry, representation theory, dynamical systems
and PDE. There is a quite vibrant community of seasoned algebraic geometers in
Shanghai, notably those from East China Normal University, Fudan University and
our host, IMS.

Founded in 2018, IMS, with Xiuxiong Chen as its founding director, has set its
mission on nourishing a newgeneration of creative talents in all areas ofmathematics.
Thanks to its globe recruiting efforts, the institute has now over two dozens of tenured
and tenure-track members on its faculty, with research areas covering Algebraic
Geometry, Number Theory, Representation Theory, Geometric Analysis, Partial
Differential Equations, Probability, Statistics, Numerical Analysis and Computa-
tional Mathematics. The institute will double its faculty size in the next decade
and expand into other areas of mathematics, in particular in applied mathematics
including data sciences. The institute has been enjoying its success with some high-
profile research publications of the faculty in the last two years. Some of the recent
achievements at the institute are featured in this volume.

The last conference of the series was held in Pohang, located in the south-eastern
part ofKorea.The city has been apowerhouse in the rapidly growingKorean economy
for the last half century. The conference was hosted by the Center for Geometry and
Physics (CGP) which was founded in July 2012 as one of the first research centers
of the Institute for Basic Science (IBS). IBS was established in November 2011
as Korea’s first dedicated basic science research institute. The center is located on
the intellectually dynamic campus of Pohang University of Science and Technology
(POSTECH) in Pohang, Korea. Members and visitors at the Center are immediately
immersed in an intellectual network that reaches beyond the peaceful seaside city.

The CGP originated in a government funded award, via IBS, to the research
program of its director, Yong-Geun Oh. This program aims to help establish and
develop the emerging field of symplectic algebraic topology through a collabora-
tive effort by experts in fields such as symplectic geometry, dynamical systems,
algebraic geometry and mathematical physics. The center is now established as an
international institution with a broad scope, focusing more generally on geometry
and mathematical physics.
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Even though Korea has a long and rich intellectual history, its participation in
the modern scientific and mathematical communities is relatively new. In particular,
institutes dedicated solely to mathematics are very rare, making the CGP a valuable
institution with the potential to serve an important function within the larger Korean
scientific community. The center’s emphasis on international collaboration will offer
a chance for scholars with similar passions to plant ideas together and watch them
grow, no matter where they are on the globe, and will allow the center to serve as a
bridge between Korean mathematicians and the international mathematical commu-
nity. Pursuing this mission, the center hosted one of the three conferences in Pohang
and contributed a couple of articles to this volume.

Fifty two mathematicians participated in our three conferences:

Valery Alexeev (Athens, Georgia), Harold Blum (Salt Lake City), Morgan
Brown (Miami), Jacob Cable (Manchester), Minglian Cai (Shanghai), Paolo Cascini
(London), Ivan Cheltsov (Edinburgh), Xiuxiong Chen (Stony Brook), Sung Rak
Choi (Seoul), Giulio Codogni (Rome), Thibaut Delcroix (Montpellie), Ruadhai
Dervan (Cambridge), Kento Fujita (Osaka), Alexei Golota (Moscow), Zhengyu Hu
(Taipei), Jun-MukHwang (Seoul), Yosuke Imagi (Shanghai), Chen Jiang (Shanghai),
Ludmil Katzarkov (Miami), Jonghae Keum (Seoul), Igor Krylov (Seoul), Kyoung-
Seog Lee (Pohang), Chi Li (New Jersey), Qifeng Li (Seoul), Yan Li (Beijing),
Yijia Liu (Montreal), Yuchen Liu (Chicago), Costya Loginov (Moscow), Dimitri
Markushevich (Lille), JesusMartinez-Garcia (Essex), DavidWitt Nystrom (Gothen-
burg), Yuji Odaka (Kyoto), Takuzo Okada (Saga), Jihun Park (Pohang), Jinhyung
Park (Seoul), Alexander Petkov (Sofia), Yuri Prokhorov (Moscow), Victor Przy-
jalkowski (Moscow), Julius Ross (Chicago), Yanir Rubinstein (College Park), Taro
Sano (Kobe), Costya Shramov (Moscow), Charlie Stibitz (Chicago), Hendrik Suess
(Jena), Andrey Trepalin (Moscow), Junwu Tu (Shanghai), Nivedita Viswanathan
(Loughborough), Joonyeong Won (Seoul), Kewei Zhang (Beijing), Chuyu Zhou
(Beijing), Ziwen Zhu (Salt Lake City), Ziquan Zhuang (Princeton).

The conference cites, Moscow, Shanghai and Pohang, are united in the beautiful
conference poster made by Elena Cheltsova, a Russian artist based in Edinburgh
(Scotland).

Sixty nine mathematicians contributed forty three research and survey papers to
this volume including 2018 Fields Medalist Caucher Birkar:

Terutake Abe, Edoardo Ballico, Grigory Belousov, Mohamed Benzerga, Caucher
Birkar, Charles Boyer, Gavin Brown, Jaroslaw Buczynski, Igor Burban, Ivan
Cheltsov, Giulio Codogni, Thibaut Delcroix, Adrien Dubouloz, Kento Fujita, Eliza-
bethGasparim, StanislavGrishin, Yoshinori Hashimoto, ZhengyuHu,Yosuke Imagi,
Kobina Jamieson, Dasol Jeong, Chen Jiang, Ming-Chang Kang, Ilya Karzhemanov,
Alexander Kasprzyk, Ludmil Katzarkov, Julien Keller, Young-Hoon Kiem, In-kyun
Kim, Sergey Kudryavtsev, Nikon Kurnosov, Antonio Laface, Kyoung-Seog Lee, Chi
Li, Yan Li, Zhenye Li, Yuchen Liu, Yota Maeda, Leonid Makar-Limanov, Dimitri
Markouchevitch, Jesus Martinez-Garcia, Anne Moreau, David Witt Nystrom, Yuji
Odaka, Jihun Park, Jinhyung Park, Zsolt Patakfalvi, Jennifer Paulhus, Alexander
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Petkov, Andrea Petracci, Tristram de Piro, Yuri Prokhorov, Rodrigo Quezada, Julius
Ross, Francisco Rubilar, Yanir Rubinstein, Taro Sano, Cristiano Spotti, Hendrik
Suess, Bruno Suzuki, Josef Svoboda, Matei Toma, Christina Tonnesen-Friedman,
Nivedita Viswanathan, Joonyeong Won, Egor Yasinsky, Yuri Zarhin, Kewei Zhang,
Ziquan Zhuang.

Many of them were participants of our Moscow—Shanghai—Pohang confer-
ences, while the others helped to expand the research breadth of the volume—the
diversity of their contributions reflects the vitality of modern Algebraic Geometry.
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Traveling across borders has become much easier in recent decades. We have
also benefited from contemporary mobility technologies, so that we can share and
develop our ideas without any serious barriers. The series of three conferences in
Moscow, Shanghai, and Pohang have been held under such circumstances. It is,
however, an irony that the mobility enhanced by contemporary technologies boosted
the COVID-19 pandemic. In the pandemic, we made a lot of efforts to find new ways
of communicating and collaborating to contribute to the knowledge of mankind.
Some of them were successful, and some of them were unsatisfactory. We have been
struggling to step forward to a new world. It seems that we have been through the
darkest part of the pandemic, which might be too optimistic at this moment. At any
rate, we at least know that at the end of the pandemic, there will be another world
waiting for uswhere the normalwill be different from the previous ones. Even though
many things will be changed, we believe that we will freely and continually meet
and share our ideas sometime and somewhere in the real world or even in the virtual
world, because our cultural world is one country, as addressed by David Hilbert.

Edinburgh, UK
Stony Brook, USA
Coral Gables, USA
Pohang, Korea (Republic of)
June 2022

Ivan Cheltsov
Xiuxiong Chen

Ludmil Katzarkov
Jihun Park
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Classification of Exceptional
Complements: Elliptic Curve Case

Terutake Abe

Abstract We classify the log del Pezzo surface (S, B) of rank 1 with no 1-,2-,3-,4-,
or 6-complementswith the additional condition that B has one irreducible component
C which is an elliptic curve and C has the coefficient b in B with 1

n �(n + 1)b� = 1
for n = 1, 2, 3, 4, and 6.

Keywords Del Pezzo surfaces · Complements

1 Introduction

This paper is a part of the project to classify “log del Pezzo surfaces with no regular
complements”, that is, the pairs (S,B) of surface S and boundary B on S such that:

(EX1) −(K + B) is nef ((S, B) is “quasi log del Pezzo”),
(EX2) −(K + B) has no regular complements i.e. it has no n-complements for any

of n ∈ {1, 2, 3, 4, 6}.
We assume throughout that coefficients of B are “standard”, i.e. B = ∑

bi Ci with
bi = m−1

m wherem natural number, or bi ≥ 6
7 . An invariant δ for such a pair is defined

in [8, 5] by

δ(S, B) = �{E |E is an exceptional or non-exceptional divisor

with log discrepancy a(E) ≤ 1
7 for K + B}

and it was proved there that δ ≤ 2 [8, Theorem 5.1]. We can assume, after crepant
blow ups of exceptional E’s with a(E) ≤ 1

7 , that those E are all non-exceptional,
and thus,

I would like to thank Professor Shokurov for setting the problem and for his valuable suggestions.

T. Abe (B)
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2 T. Abe

(EX3) (S, B) is 1
7− log terminal.

Now define the divisor D by D = ∑
di Ci where di = 1 if bi ≥ 6

7 and di = bi oth-
erwise. And write C = �D� = ∑

a(Ci )≤ 1
7

Ci . We know by [8, Lemma 4.2] that if δ ≥ 1

then we can successively contract curves semi-negative with respect to K + B, but
not components of C , and thereby assume

(EX4) ρ(S) = 1.

The conditions (EX1), (EX2) and (EX3), as well as the condition on the coefficients,
are preserved under this reduction.We form aminimal resolution f : (Smin, Bmin) →
(S, B) where Bmin is a crepant pullback, i.e. KSmin + Bmin = f ∗(K + B) = K +
f −1(B) + �e j E j satisfies K + Bmin · E j = 0 for all j . From Smin we contract (−1)-
curves successively to get a smooth model S′ which is either P2 or Fm :

g : (Smin, Bmin) → (S′, B ′).

If δ ≥ 1 we have pa(C) ≤ 1, and the same is true for the birational image of C on
S′ as well [8, Proposition 5.4]. In this paper we consider the case

• δ = 1.

Thus, C is an irreducible curve of arithmetic genus ≤ 1. We write C = C1, and
B = bC + ∑r

i=2 bi Ci = bC + B1, with bi ∈ {0, 1
2 ,

2
3 ,

3
4 ,

4
5 ,

5
6 } and b ≥ 6

7 .

1.1 The Dual Graph of a Configuration

In the following we use the language of graphs to talk about the the configuration of
curves.

The dual graph of a configuration of curves is a (weighted-multi) graph where
we have a vertex for each curve and an n-ple edge for each intersection point with
multiplicity n between two curves. Each vertex has a weight ∈ Z which is the self-
intersection number of the curve.

Graphically, we use • (“b(lack)-vertex”) to represent exceptional curves with
self-intersection number ≤ −2, ◦ (“w(hite)-vertex”) for (−1)-curves, and squares
for curves with non-negative self-intersection. The weight of a vertex is shown by
a number next to each vertex, and multiplicity of an edge by the number of lines
joining the two end vertices.

“Blow up of an edge” means the transformation of the graph reflecting the blow
up of the corresponding point, that is, introduce a new white vertex, decrease the
multiplicity of edge by 1, decrease the weight of the both end vertices of the edge
by 1, and join them to the new white vertex by a simple edge. “Blow up of a vertex”
reflects the blow up of a point on the curve outside the intersection with neighboring
curves: introduce a white vertex, decrease the weight of the vertex by 1, and join it
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to the new white vertex by a simple edge. Blow up of a complete subgraph of any
cardinality k can be defined in the same way.

1.2 Types of Singularities on C

Lemma 1.1 (i) The singularity of C is at worst a node, and it is outside Sing(S) ∪
Supp(B1).

(ii) At most one component Ci of B1 passes through each point P ∈ C. If P in a
smooth point of S, then the intersection is normal ,with one possible exception
where Ci has coefficient 1

2 and has a simple tangency with C at a smooth point
P of S.

(iii) Singularity P of S on C is a cyclic quotient singularity, i.e. log terminal sin-
gularities with resolution graph An (a chain), where C meets one end curve of
the chain normally. If another component Ci passes through P, then it meets
the other end curve normally.

Proof Note that K + D, as defined above, is log canonical by the existence of local
complements [7, Corollary 5.9.]. Then all the statements follow from the classifica-
tion of surface log canonical singularities ([3], or [1]) and 1

7 -log terminal condition.
For example, for (iii), if we had a type Dn singularity, (case (6) in [3, Theorem 9.6])
we would have a log discrepancy ≤ 1

7 . Note also that the exception in (ii) is the only
case where K + D is not log terminal at P [8, Proposition 5.2]. �

As is well known, the singularities mentioned above are isomorphic, analytically,
to the origin 0 in the quotient of C2 by the action of cyclic group μm of order m,
where the generator ε = e

2π i
m acts by

(z1, z2) �→ (ε−k · z1, ε · z2), where 1 ≤ k ≤ m and gcd(m, k) = 1.

Theminimal resolutionof such a singularity has a chainof rational curves E1, E2, . . . ,

Er as its exceptional locus, and the coefficients (w1, w2, . . . , wr ) in the continued
fraction expansion

m

m − k
= w1 − 1

w2 − 1

w3 − · · ·
give their self intersection numbers (cf. for example, [2]). We call such a singularity
P type [m, k]. We extend this correspondence to incorporate the information on the
component Ci that passes through P (cf. [7, Corollary 3.10], [8, Lemma 2.22]).

Namely, if the component Ci has the standard coefficient d−1
d and the singularity

P has type (m ′, k ′), we represent it by the pair (m, k) = (dm ′, dk ′). The “dual graph”
of the minimal resolution of this singularity is (Fig. 1).

Generalizing the notation of [4], we may denote the same singularity by (w1,

w2, . . . , wr )d with the underline indicating the curve meeting C .
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Fig. 1 The dual graph of the
minimal resolution of
singularity of type (m′, k′)

r

i

-w1 -w2 -w

bC Cd-1
dE1 E E2 r

This singularity has the minimal log discrepancy

mld(P, K + B) = a(E1) = 1+(m−k)(1−b)

m (≤ 1+ 1
7 (m−k)

m ),

where m = d · (index of P). Also we denote the co-discrepancy, or the coefficient,
of P by e(P, K + B) = 1 − mld(P, K + B).

Now the 1
7 -log terminal condition

1+ 1
7 (m−k)

m > 1
7

is equivalent to k < 7. Therefore the possible singularities on C are put into 21
= 6(6 + 1)/2 (infinite) series according to the pair (m(mod k), k) with 1 ≤ k ≤ 6.
This will be convenient later on.

2 Elliptic Curve Case

Nowwe start the classification of the case pa(C) = 1. Thus,C ∈ S is a smooth curve
of genus 1 or a rational curve with one node by Lemma1.1. We call it the “elliptic
curve case”.

Lemma 2.1 In the “elliptic curve case”, the condition (EX2) is equivalent to the
condition that (S, B) has log-singularities on C. That is, either S has singularities
on C, or B has components other than C (which intersect C since ρ(S) = 1).

Proof If (S, B) is smooth on C , then (K + f ∗(D)).C = (K + C).C = 0 on Smin,
so K + D = K + C ∼ 0 on S and (EX2) is not satisfied. In fact K + B = K + bC
has a 1-complement. On the other hand if (S, B) has a singularity on C , then (K +
f ∗(D)).C > (K + C).C = 0 so we have K + D > 0 on S, which implies (EX2).

�

The case when S is a cone (P2 or Qm) has been classified elsewhere and from it we
have only one case withC=elliptic: S = F2, C =double section,B1 = 1

2C2 whereC2

is a generator of the cone. Then C ≡ 2H ≡ −K , C2 ≡ 1
2 H . So K + 6

7C + 4
7C2 ≡ 0

and K + B has 7-complement = 0. It also has the trivial 8-complement: K + 7
8C +

1
2C2 ≡ 0 (This is the entry �1 in the table at the end).

From now on we assume S is not a cone.
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Lemma 2.2 Inequality C2 ≥ 3 holds on Smin. If (S, B) has two singularities on C,
then C2 ≥ 6. On the other hand, the minimum log discrepancy of the singularity P on
C with respect to K + B (hence also with respect to K + bC) is at least 1 − (C2/7).

Proof Because −(K + B) is nef,

0 ≥ (K + B).C = KSmin + bC + �bi Ci + �d j E j · C

≥ −(1 − b)C2 + �bi + �P(1 − mld(P))

≥ −(1 − b)C2 + min{bi , 1 − mld(P)}
≥ − 1

7C2 + 3
7 .

Note that, because of Lemma1.1, 1 − mld(P) = d j for the exceptional curve E j

meeting C . The last inequality holds because we have at least one nonzero bi or
1 − mld(P) by Lemma2.1 and the minimum nonzero value for bi is 1

2 , that for
1 − mld(P) is 1

2 · 6
7 = 3

7 , the latter being attained when P in duVal of type A1.
Therefore, C2 ≥ 3. By the same calculation, if there are two singularities on C we
have 0 ≥ − 1

7C2 + 6
7 . On the other hand, the second inequality in particular implies

that 1 − mld(P) ≤ (1 − b)C2 ≤ 1
7C2, whence the second assertion. �

2.1 Reduction to F2

We need the following

Lemma 2.3 Let E be a (−1)-curve on Smin. Then on its image f∗(E), S has either
at least two singularities, or one singularity that is not log-terminal for K + E.

Proof If , on E , S had at most one singularity P that is log-terminal for K + E , i.e.
a cyclic quotient singularity such that E meets one end curve E1 of the chain of the
resolution, then we would have

( f∗(E))2 = E . f ∗ f∗(E) = E .(E + (1 − a(E1))E1) = −1 + (1 − a(E1)) < 0

which is absurd since ρ(S) = 1. �

Now we can prove

Lemma 2.4 We can always obtain F2 as a smooth model of S (and C as a double
section).

Proof pa(C) = 1 means that after reconstruction, C is either a cubic in P2, curve of
bidegree (2, 2) on F0, or a double section of F2. Suppose S′ is P2 and C is a cubic,
since there are no irreducible curves with arithmetic genus 1 on Fm , with m ≥ 3. If
g : Smin → P

2 contracts two or more exceptional curves to a point P ∈ P
2, then we

can choose different contractions to get S′ = F2. Therefore we may assume that we
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have only one exceptional curve for g over each center P ∈ P
2, and we shall derive

a contradiction.
Since all the curves contracted by g are (−1)-curves on Smin, no exceptional curve

Ei for f are contracted and all of them are present on P
2 as divisors. Thus we have

an inequality

0 ≥ deg(KP2 + bC + B ′
1) = −3 + 6

7 · 3 + deg(B ′
1) = − 3

7 + deg(B ′
1)

Therefore, since the coefficients are standard, no component Ci other than C are
present on P

2. And we have

�d j ≤ �d j · deg(E j ) = deg(B ′
1) ≤ 3

7 (*)

We have the two possibilities:
(1) B has at least one component, sayC2, other thanC . Then by the above,C2 must

be contracted on P
2 and is a (−1)-curve on Smin. Therefore, by Lemma2.3, S must

have either at least two singularities on C2, or a singularity that is not log-terminal
for K + C2. In the former case, then, we would have �d j ≥ ( 12 + 1

2 )b2 ≥ 1
2 > 3

7 ,
contradicting (∗). In the latter case, we have an exceptional curve E with a(E, K +
C2) ≤ 0. Then because a(E, K + b2C2) is a linear function of b2 and we also have
a(E, K + 0 · C2) = a(E, K ) ≤ 1, we have a(E, K + b2C) ≤ 1 − b2. Thus d2 =
1 − a(E, K + B) ≥ 1 − a(E, K + b2C2) ≥ b2 ≥ 1

2 > 3
7 , again a contradiction to

(∗).
(2) B has no other components than C , i.e. B = bC , and S has a singularity on

C . Then (∗) implies that and we have K + B > 0 except in the following case: S
has only one duVal singularity P of type A1 on C , the exceptional curve E1 of the
resolution of P is a line onP2, b = 6

7 , and B ′
1 has no other component than E1, so that

KP2 + B ′ = K + 6
7C + 3

7 E1 ∼ 0. In particular all the singularities on S are duVal
so

f ∗(K + B) = KSmin + Bmin = K + 6

7
C + 3

7
E1

Also, the triviality of K + B means that pull back g∗ is crepant so that the above is
also equal to g∗(K + B ′). On the other hand, since E1.C = 3 on P

2 and E1.C = 1
on Smin, two of the intersection points of E1 and C has to be blown up on Smin.
The exceptional curve E for the first of such blowups would have the coefficient
6
7 + 3

7 − 1 = 2
7 in KSmin + Bmin = g∗(K + B ′). Contradicting the explicit form of

Bmin given above.
If we have a model S′ = F0, then we have had at least one contraction of (−1)-

curve so we can get S′ = P
2 by choosing other contractions, and we are reduced to

the previous case. �
Therefore we have a P1-fibration p : Smin → F2 → P

1. Now our strategy for the
classification is to start from F2 = S′, make blow ups to construct Smin, choose Bmin

on it so that resulting (S, B)would have singularities onC (⇔ (EX2) by Lemma2.1)
and would satisfy (EX1), (EX3), and (EX4).
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The conditions (EX1) and (EX4) implies that the number of (−n)-curves, n ≥ 2,
on Smin must equal ρ(Smin) − 1, and they are all exceptional for the resolution f .
These curves are either in the fibres of p, or they are not, i.e. they are (multi-) sections
of p. As for the number of curves of each type, we have the following:

Lemma 2.5 [9, Lemma 1.5] We have

r = �{Exceptional curves Ei ’s of the resolution f that are not in the fibres of p} − 1

= �{(−1)-curves on Smin that are in the fibres of p.}
− �{Singular fibres of p}

Proof Add (2 + �{Ei ’s that are in the fibres of p}) to both sides, and we get two
expressions for ρ(Smin). �

2.2 The Search for Exceptions

Case 1 r = 0, i.e. minimal section � on F2 is the only Ei with p(Ei ) = P
1.

Then there is only one (−1)-curve in each singular fibre of p. Therefore on each
fibre F modified we have to have initially two blow ups at the same point P . Sup-
pose C2 = w before the modification, then according as the intersection multiplicity
i = I (P; F ∩ C) = 2, 1, or 0, i.e. according as P = tangency of F and C , normal
intersection of F and C , or P ∈ F \ (F ∩ C), we get one of the three dual graphs in
the Fig. 2 below.

In the figure the b-vertex at the bottom is the minimal section � ∈ F2. In the
case (III), the curve C and neighboring (−2)-curve (= F) have either two normal
intersections, one simple tangency, or C has a node on F .

Case(III) gives a non log canonical point (cf. Lemma1.1(i)) and is excluded.
Case(II) gives one example with trivial complement (entry �2 in the table at the end):

Fig. 2 Three dual graphs for
case 1

-2

-2

-1

-2

C
w-2

E

E

2

3

E1

-2

-2

-1

-2

C
w-1

E

E

E

2

3

1

-2

-2

-1

-2

C
w

E

E

E

2

1

3



8 T. Abe

S = Gorenstein del Pezzo surface with singularities A1 + A2,

C = elliptic curve through A1 and A2 points,

K+B = K + 6

7
C ≡ 0

7(KSmin+Bmin) = 7(K + 6

7
C + 3

7
E1 + 4

7
E2 + 2

7
E2) ∼ 0

(Following [5], we denote the Gorenstein del Pezzo surfaces of rank 1 by its singu-
larity type, for example, S(A1 + A2) for the surface above, and their resolution by
e.g. S̃(A1 + A2).)

Since we already have K + B ≡ 0, if we make any more blow ups (which have
to be on the unique (−1)-curve) or add other components to B, we would have
K + B > 0 and (S, B) will violate (EX1). So we need not consider this case any
longer. Thus we are left with case (I), i.e. two initial blow ups at the ramification
point of C → P

1 (tangency of C and a fibre). In particular, in all the remaining cases,
C2 ≤ 6, because C2 = 8 on F2.

This implies that a smooth fibre F cannot be a component of B ′
1, because if it

were, we would have 0 ≥ (K + bC + B1).C ≥ −(1 − b)C2 + 1
2 F.C ≥ − 6

7 + 1
2 ×

2 = 1
7 , a contradiction. Therefore only singularities on C are those coming from the

intersection of C and the singular fibres.
After (I), we can only blow up a point on the unique (−1)-curve on each fibre:

otherwise we would introduce more than one (−1)-curves in a fibre, violating r = 0.
There are two types of such blow ups. One is the blow ups of the intersection of C
and the (−1)-curve, (blow up of the edge between the white vertex and C) which
decrease C2. The other is the blow ups of a point of (−1)-curve outside C .

We start from the first type of blow ups and get the resolutions of Gorenstein log
del Pezzos of rank 1 with K 2 = C2 ≥ 3 (Lemma2.2):

S̃(A1 + A2) −→ S̃(A4) −→ S̃(D5) −→ S̃(E6)

↘ ↘
S̃(2A1 + A3) −→ S̃(A1 + A5).

Each “−→” represents one blow up, and each “↘” two blow ups on a new fibre .
Then, starting from one of these, we make the second type of blow ups, which

decrease the minimal log discrepancy of S, until either (EX1) or (EX3) is violated
(see below). The Gorenstein rank 1 surfaces listed above are the image of Smin under
the morphism φ|C | defined by the linear system |C | on it. We denote it by SC , and its
resolution (one of the above) by S̃C .

Note that C meets every (−1)-curve E on SC since C ∼ −KSC and −K .E = 1.
Consider blow ups on one fibre starting at one such E . By Lemma2.3, on E , S has
either at least two singularity or one singularity that is not log-terminal for K + E .
That is, on S̃C , either E meets at least two trees T1, T2 of b-vertices, or one tree T3

that gives non-log-terminal point for K + E .
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Now consider the transformation of the subgraph consisting or C , E , and trees of
b-vertices Ti meeting E on SC . It should always contain a unique w-vertex.

If we blow up the vertex E , i.e. blow up a point on E other than the intersection
points with neighboring exceptional curves, then after the transformation C would
meet the b-vertex E in the black graph T1 − E − T2 or E − T3. Either of these would
contracts to a non-log-terminal point on S for K + C , contradicting Lemma1.1. (For
an example of the first situation, consider blow up of the white vertex in the configu-
ration (I) in the Fig. 2 above. For the second, consider the same in the configuration
of the table �9.) Therefore the first blow up has to be at the intersection point of E
and one of the neighboring b-vertices, i.e. blow up of the edge joining E and one of
its neighbors.

The same argument, repeated for the newwhite vertex E1 at each stage, shows that
successive blow ups also must be at the edge joining E1 and a neighboring b-vertex,
because the trees now meeting E1 are even bigger than those that met E . Thus, by
induction, we see that the full inverse image of E is of the form E − T − E1 − T ′,
where T and T ′ are chains of b-vertices (T , or T ′ may be a part of a larger tree. And
E may meet another tree T ′′ in which case T should be empty — Remember that
C meets E), and E1 is a w-vertex. The blow up described above either increases the
weight of an end vertex of T next to E1, or adds one (−2)-curve E1 to it, depending on
which side of E1 we blow up. Either of such transformations (those which preserve
log-terminal property), if repeated infinitely many times, make the log-discrepancy
with respect to K + bC of the resulting singularity on C monotonically decrease
toward 1 − b ≤ 1

7 . Hence by Lemma2.2, after finite number of steps, (EX3) will
be violated (or perhaps, (EX1) may be violated first). Therefore this procedure of
successive blowups must terminate.

We can now refine Lemma2.2 as follows:
If C2 < 6 then we have only one singularity by Lemma2.2. But on the other

hand, if C2 ≥ 5 we can have only one singular fibre, which means that in every case
we have only one singularity of (S, B) on C . (EX1) restricts the possible types of
singularities [m, k] on C as follows:

0 ≥ K + bC + B ′ · C = −(1 − b)C2 + (k−1)+b(m−k)

m

= 1

7
C2 + (k−1)+ 6

7 (m−k)

m ,

or

(6 − C2)m ≤ 7 − k.

In this way, we find that there are 20 possible S’s , with a few different B’s for
some of the S’s. These are summarized in the table below.

Case 2 r = 1, i.e. we have one exceptional curve, say E , other than � that is a
section of P1-fibration p.

Thus, exactly one fibre contains two (−1)- curves in it. If we modify at any other
fibre it has to start like (I) of the Fig. 2 (two blow ups at the tangency with the fibre)
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because (II) and (III) have been eliminated. In particular each time we blow up on a
new fibre we decrease C2 by at least 2.

Claim Any exceptional curve E that is a (mutli-)section of p is in fact a 1-section
that is disjoint from �.

Proof Let E be a (multi-)section, and d = multE (B ′
1). Then if F is a fibre of p, we

have
0 ≥ (K + B ′).F ≥ (K + bC + d E).F ≤ −2 + 6

7 · 2 + d.

Hence d ≤ 2
7 < 3

7 . So E cannot intersect C on Smin. Therefore all the intersection
point of C and E have to be blown up on Smin. If E is not a 1-section disjoint from
�, then we have C.E ≥ 6 on F2. So we would have C2 ≤ 8 − 6 = 2 on Smin which
is impossible according to Lemma2.2. This proves the claim.

So let E be a simple section disjoint from �. Then E .C = 4.
Suppose E intersects C at one point with multiplicity 4. Then after four blowups

at this point we get S̃(A1 + A3) (the configuration of the table �17, with a different
choice of fibration), which has already been studied in the case 1 above.

If E intersects C at two points with multiplicity 3 and 1 respectively, then by the
above observation we have at least 3 + 2 = 5 blow ups on C , which gives S̃(3A2),
with C passing through three (−1)-curves joining three A2 points. Since C2 = 3
by Lemma2.2 C can have at worst A1 (=“type [2,1]”) point on it, but that cannot
be attained: We could at best choose B1 = 1

2C2 where C2 = (image of one of the
(−1)-curves meeting C) and thus get type [2,2] point on C , which is worse than
A1 = t ype[2, 1].

If E intersects C at more than 3 points, then we have at least six blow ups on C
thus C2 ≤ 2, which is impossible by Lemma2.2.

Finally, if E intersects C at two points with multiplicity 2 each, we would have
two (−1)-curves in each fibre, and this violates (EX4).

Thus, we get no new examples from case 2.

Case 3 r ≥ 2, i.e. we have at least two exceptional curves, say, E1 and E2, other
than �, that are sections of p.

Ei are simple sections. Then because C.Ei = 4 and E1.E2 = 2, we must have at
least 4 + 4 − 2 = 6 blow ups on C in order to separate Ei ’s from C . Then C2 ≤ 2
and by Lemma2.2, this is impossible. �

It turns out that in every case K + B has a 7-complement. Moreover, we can
choose g so that in every case B ′

1 has only one component which is a fibre of F2.



Classification of Exceptional Complements: Elliptic Curve Case 11

Table
Thus we get the following table. Here,

• The first column shows the configuration on Smin of the exceptional curve Ei ’s,
(−1)-curves, and the components of B. ‘◦’ denote (−1)-curve, ‘•’ are the Ei ’s
with self intersection number (≤ −2) attached, with ‘←’ indicating (one possible)
� ⊂ F2 after a suitable sequence of contractions of (−1)-curves. Squares are
curves with non negative self intersection.

• The second column gives the fractional part B1 of the boundary B, or rather, of D.
• The third column gives the number ( 67 ≤) max{b|K + bC + B1 ≤ 0} (< 1)
• The fourth column gives an example of n-complements.
• The last column lists numerical relations between some relevant divisors on S,
with H being the generator of Pic(S).

Note that we can compute intersection numbers on Smin using the crepant pull-
backs, and a divisor on S is Cartier iff its crepant pullback is Cartier, i.e. iff it is
integral (cf. [6]).

The table is organized according to SC , the image of Smin under the morphism
defined by the linear system |C |.

(1) S = S(A − 1) = Q2 (=quadratic cone ⊂ P
3, SC = its Veronese image)

configuration B1 max(b) complements divisors(Pic(S)=Z[H ])

1

C

-2
+8

2C
0

1
2 C2

7

8
• 7-compl.= 0
(K + 6

7C + 4
7C2 ≡ 0)

• trivial 8-compl.

−K ≡ C ≡ 2H

C2 ≡ 1
2 H

(2) SC = S7 (= a del Pezzo with degree 7)

2 -2

-2

-1

-2

+7
C

0
6

7 trivial 7-compl.
(K + 6

7C ≡ 0)

−K ≡ H

C ≡ 7
6 H
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(3) SC = S(A1 + A2)

3 -2

-2

-2

+6
C2

C

1
2 C2

9

10
trivial 10-compl.

(K + 9
10 C + 1

2 C2 ≡ 0)

−K ≡ C ≡ H

C2 ≡ 1
6 H

2
3 C2

8

9
trivial 9-compl.

(K + 8
9C + 2

3 C2 ≡ 0)

3
4 C2

7

8
trivial 8-compl.

(K + 7
8C + 3

4 C2 ≡ 0)

4
5 C2

13

15
7-compl.=0

(K + 6
7C + 6

7C2 ≡ 0)

5
6C2

31

36
7-compl.=0

(K + 6
7C + 6

7C2 ≡ 0)

4

-3

-2

-2

-2

C2

+6
C

0
8

9
• 7-compl.=C2

(K + 6
7C + 2

7 C2 ≡ 0)
• trivial 9-compl.

−K ≡ 8
12 H

C ≡ 9
12 H

C2 ≡ 1
12 H

5

-2

-2

-3

C2

-2
+6

C

0
9

10
• 7-compl.=3C2

(K + 6
7C + 3

7C2 ≡ 0)
• trivial 10-compl.

−K ≡ 9
15 H

C ≡ 10
15 H

C2 ≡ 1
15 H

6

-2

C
+6

C2

3- 2-2-

-3

0
7

8
• 7-compl.=2C2

(K + 6
7C + 2

7 C2 ≡ 0)
• trivial 8-compl.

−K ≡ 14
40 H

C ≡ 16
40 H

C2 ≡ 1
40 H

(continued)
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7

-2

C2

-3

-3
+6

C

-2

-2 0
13

15
7-compl.=C2

(K + 6
7C + 1

7C2 ≡ 0)

−K ≡ 13
35 H

C ≡ 15
35 H

C2 ≡ 1
35 H

8

-2

C
+6

C2

2- 3- 2-2-

-4

0
19

22
7-compl.=C2

(K + 6
7C + 1

7C2 ≡ 0)

−K ≡ 19
77 H

C ≡ 22
77 H

C2 ≡ 1
77 H

(4) SC = S(A4)

9

-2
C

-2

-2

-2

+5

2C

1
2 C2

9

10
• 7-compl.=C2

(K + 6
7C + 5

7C2 ≡ 0)

• trivial 10-compl.

−K ≡ C ≡ H

C2 ≡ 1
5 H

2
3 C2

13

15
7-compl.=0
(K + 6

7C + 5
7C2 ≡ 0)

10

-2

-2

-2

-3
C

+5

C2

-2

0
10

11
• 7-compl.=4C2
(K + 6

7C + 4
7C2 ≡ 0)

• trivial 11-compl.

−K ≡ 10
22 H

C ≡ 11
22 H

C2 ≡ 1
22 H

1
2 C2

19

22
7-compl.=0
(K + 6

7C + 4
7C2 ≡ 0)

11

-2

-2

-2

C

-2
-4

-2

C2

+5

0
15

17
7-compl.=3C2
(K + 6

7C + 3
7C2 ≡ 0)

−K ≡ 15
3·17 H

C ≡ 17
3·17 H

C2 ≡ 1
3·17 H

(continued)
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12

-2

-2

-2

C

+5
-3

-2

2C

-3

0
7

8
• 7-compl.=2C2
(K + 6

7C + 2
7 C2 ≡ 0)

• trivial 8-compl.

−K ≡ 14
48 H

C ≡ 16
48 H

C2 ≡ 1
48

13

-2

-2

-2

2- 2-

C2

+5

C

-2
-5

0
20

23
7-compl.=2C2
(K + 6

7C + 2
7 C2 ≡ 0)

−K ≡ 20
4·23 H

C ≡ 1
4 H

C2 ≡ 1
4·23 H

14

-2

-2

-2

2- 2-

C2

-2
-6

+5

C

-2

0
25

29
7-compl.=C2
(K + 6

7C + 1
7C2 ≡ 0)

−K ≡ 25
5·29 H

C ≡ 1
5 H

C2 ≡ 1
5·29 H

(5) SC = S(D5)

15

-2

-2

-2

C

-2

C2
-2

+4

1
2 C2

7

8
• 7-compl.=0
(K + 6

7C + 4
7C2 ≡ 0)

• trivial 8-compl.

−K ≡ C ≡ H

C2 ≡ 1
4 H

16

-2

-2

-2

C

-2

C2
-2

-3 +4

0
8

9
• 7-compl.=2C2
(K + 6

7C + 2
7 C2 ≡ 0)

• trivial 9-compl.

−K ≡ 8
18 H

C ≡ 9
18 H

C2 ≡ 1
18 H
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(6) SC = S(A3 + 2A1)

17

-2

2- 2-

C

-2

+4

-2

C2

1
2 C2

7

8
• 7-compl.=0)
(K + 6

7 C + 4
7 C2 ≡ 0)

• trivial 8-compl.

−K ≡ C ≡ H

C2 ≡ 1
4 H

18

-2

2- 2-

C

+4

-2

C2
-2

-3

C3

0
6

7
trivial 7-compl.
(K + 6

7 C ≡ 0)

−K ≡ 12
42 H

C ≡ 14
42 H

C2 ≡ 3
42 H
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(7) SC = S(E6)
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(8) SC = S(A5 + A1)
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Cylinders in Del Pezzo Surfaces
of Degree Two

Grigory Belousov

Abstract We consider del Pezzo surfaces of degree two and ample divisors on these
surfaces. For log pair (X, H), we define Fujita invariant of (X, H) by

μH := inf{λ ∈ R>0 | the R-divisor K X + λH is pseudo-effective}.

The smallest extremal face �H of the Mori cone that contains K X + μH H is called
the Fujita face of H . The Fujita rank of (X, H) is defined by rH := dim�H . Note
that rH = 0 if and only if −K X ≡ μH H . Let fH : X → Z be the contraction given
by the Fujita face �H of the divisor H . Then either fH is a birational morphism
or a conic bundle with Z ∼= P

1. In the former case, the R-divisor H is said to be
of type B(rH ) and in the latter case it is said to be of type C(rH ). Assume that
fH is a birational morphism. Then fH contracts rH extremal rays. Suppose that fH

contracts rH (−1)-curves. Then H is said to be of type smooth B(rH ). We’ll prove
that a smooth general del Pezzo surface X of degree two has no H -polar cylinder,
where H is an ample divisor of type B(rH ) and rH = 2. Also, we’ll prove that a del
Pezzo surface X of degree two with du Val singularities of types A1 has an H -polar
cylinder, where H is an ample divisor of type B(rH ).

Keywords Cylinders · Del Pezzo surfaces

1 Introduction

A log del Pezzo surface is a projective algebraic surface X with only quotient singu-
larities and ample anti-canonical divisor −K X . In this paper we assume that X has
only du Val singularities and we work over complex number field C. Note that a del
Pezzo surface with only du Val singularities is rational.
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Definition 1.1 (see [6]) Let M be anR-divisor on a projective normal variety X . An
M-polar cylinder in X is an open subset U = X\Supp(D) defined by an effective
R-divisor D such that D ≡ M and U ∼= Z × A

1 for some affine variety Z .

Let H be an R-divisor on a projective normal variety X . The existence of an
H -polar cylinder in X is important due to the following fact.

Theorem 1.2 (see [7], Corollary 3.2) Let Y be a normal algebraic variety over C
projective over an affine variety S with dimS Y ≥ 1. Let H ∈ Div(Y ) be an ample
divisor on Y , and let V = Spec A(Y, H) be the associated affine quasicone over Y .
Then V admits an effective Ga-action if and only if Y contains an H-polar cylinder.

Also, the existence of an H -polar cylinder in X is important due the connection
between the existence of a cylinder in a del Pezzo surface and tigers (see, [5]) on this
surface (see [1, 3, 4]).

There exist a classification of smooth del Pezzo surfaces X such that X has a−K X -
polar cylinder (see [4, 6]). Also, there exist a classification of del Pezzo surfaces X
with du Val singularities such that X has a −K X -polar cylinder (see [3]).

Definition 1.3 (see [2]) For log pair (X, H), we define Fujita invariant of (X, H)

by
μH := inf{λ ∈ R>0 | the R-divisor K X + λH is pseudo-effective}.

The smallest extremal face �H of the Mori cone that contains K X + μH H is called
the Fujita face of H . The Fujita rank of (X, H) is defined by rH := dim�H . Note
that rH = 0 if and only if −K X ≡ μH H .

Let fH : X → Z be the contraction given by the Fujita face �H of the divisor H .
Then either fH is a birational morphism or a conic bundle with Z ∼= P

1. In the former
case, the R-divisor H is said to be of type B(rH ) and in the latter case it is said to
be of type C(rH ). Assume that fH is a birational morphism. Then fH contracts rH

extremal rays. Suppose that fH contracts rH (−1)-curves. Then H is said to be of
type smooth B(rH ). Let E1, E2, . . . , ErH be all the curves contracted by fH . Then

K X + μH H ≡
rH∑

i=1

bi Ei ,

where bi > 0. So, we may assume that

H = −K X +
rH∑

i=1

ai Ei ,

where 0 < ai < 1 if Ei is a (−1)-curve, 0 < ai < l + 1 if Ei contains a singular
point of type Al . Indeed, assume that Ei contains a singular point P of type Al .
Let π : X̄ → X be the minimal resolution of P , let Ēi be the proper transform of
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Ei . Then the exceptional divisor of π consists of (−2)-curves D1, D2, . . . Dl with
Di · Di+1 = 1 and Di · D j = 0 when j �= i, i + 1, i − 1. Moreover, Ēi meets either
D1, either Dl and does not meet other component of the exceptional divisor. We may
assume that Ēi meets D1. Then

π∗Ei = Ēi + l

l + 1
D1 + l − 1

l + 1
D2 + · · · + 1

l + 1
Dl .

Hence, E2
i = − 1

l+1 . So, 0 < H · Ei = 1 − ai
1

l+1 if and only if 0 < ai < l + 1.
The main result of Sect. 2 is the following.

Theorem 1.4 Let X be a del Pezzo surface of degree two and let H be an ample
divisor on X. Assume that X has singular points only of type A1. Then X has an
H-polar cylinder when

• X has only one singular point and H is of type smooth B(rH );
• X has only one singular point, H is of type B(rH ) and rH ≥ 2;
• the number of singular points is at least two and H is of type B(rH );
• X has six singular points and H �≡ −μK X .

The main result of Sect. 3 is the following.

Theorem 1.5 Let X be a smooth del Pezzo surface of degree two such that there
do not exist two (−1)-curves that intersect tangentially. Let H be an ample divisor
on X of type B(rH ) and rH = 2, i.e. H ≡ −K X + λ1E1 + λ2E2. Put λ = λ1 + λ2.
Assume that λ < 1

7 . Then X does not have an H-polar cylinder.

Remark 1.6 In this paper we use the same symbols for curves on X and for the
proper transforms of these curves.

Remark 1.7 In this paper, in every diagram, dotted line is a (−1)-curve, solid line
is a (−n)-curve with n ≥ 2. Every diagram gives all scheme of intersection among
curves.

Note that the inequality λ < 1
7 is essential, i.e. there exists an ample divisor H on

X of type B(rH ) and rH = 2 such that X has an H -polar cylinder.

Example 1.8 Let X be a smooth del Pezzo surface, deg(X) = 2. Put

H ≡ −K X + λ1E1 + λ2E2,

where E1, E2 are (−1)-curves.Assume thatλ1 > 1
2 andλ2 > 1

2 .Note that there exists
a (−1)-curve E and a smooth rational curve C such that C meets E in one point, say
P and at this point multP(C · E) = 4. Moreover, C2 = 2, E1 · C = E2 · C = 1 and
E1 · E = E2 · E = 0. Note that there exist (−1)-curves E3, . . . , E7 such that Ei ·
E = 1, Ei · C = Ei · E j = 0 for every i = 3, 4, 5, 6, 7, j = 1, 2. Moreover, there
exists a rational curve M such that M passes through intersection point of C and E
and does not meet Ei for every i = 1, . . . , 7. We have
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Fig. 1 Curves in the surface
Y used in Example 1.8

F4

F3 M

F2

F1 EC

E1

E2

E3

E4

E5

E6

E7

H ≡ L = aC + (a − 1 + λ1)E1 + (a − 1 + λ2)E2 + (2c − 1)M + bE+
+(b − 1)(E3 + E4 + E5 + E6 + E7),

where a + b + c = 2. Since λ1 > 1
2 and λ2 > 1

2 , we see that there exist a, b, c such
that L is an effective divisor. Let g : Y → X be sequence of blowupswith exceptional
curves F1, . . . , F4 in this order. We have the following configuration on Y .

Note that there exists aP1-fibration h : Y → P
1 such that h has only three singular

fibers C1, C2 and C3, where

C1 = E + E3 + E4 + E5 + E6 + E7, C2 = C + E1 + E2, C3 = 2M + 2F2 + F1 + F3.

So,
X\Supp(L) ∼= F1\(K + L1 + L2 + L3),

where K is a unique (−1)-curve and L1, L2, L3 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F4, L1, L2, L3 correspond toC1, C2, C3 (Fig. 1).

The author is grateful to professor I. A. Cheltsov for suggesting me this problem
and for his help.

2 Del Pezzo Surfaces with Singularities of Type A1

Lemma 2.1 Let X be a del Pezzo surface with du Val singularities, deg(X) = 2 and
let H be an ample divisor of type B(rH ) and rH ≥ 2 or H is of smooth type B(rH )

on X. Assume that X has a unique singular point of type A1. Then X has an H-polar
cylinder.

Proof Let ϕ : X̃ → X be the minimal resolution of singularity of X and let D be
the exceptional divisor of ϕ. Note that there exists a divisor C such that C meets
D in one point, say P and at this point multP(C · D) = 2. Moreover, C is either
(0)-curve, either two (−1)-curves. Indeed, we see that X̃ can be obtained by blow
ups P2 in seven points P1, P2, . . . , P7, where P1, P2, P3 lie on one line L . Note that
D is the proper transform of L . Consider a linear system |2T |, where T is the class
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of a line. We have dim |2T | = 5. So, there exists exactly one element C ′ ∈ |2T | such
that C ′ passes through P4, P5, P6, P7 and C ′ meets L in one point. Then C is the
proper transform of C ′.

2.1.1 Assume that rH = 1 and H = −K X + λE , where E is a (−1)-curve, 1 > λ >

0. Note that C · E = 1. Moreover, there exist (−1)-curves E1, E2, . . . , E6 such that
Ei · D = 1, Ei · C = Ei · E = 0 for every i . Indeed, E1, E2, E3 are the exceptional
curves of blow ups of P1, P2, P3, E4, E5, E6 are the proper transforms of lines
L74, L75, L76, where line Li j passes through Pi , Pj . Assume that C is a (0)-curve.
We have

ϕ∗(H) ≡ L = aC + (a − 1 + λ)E + bD + (b − 1)(E1 + E2 + E3 + E4 + E5 + E6),

where a + 2b = 3. Since λ > 0, we see that there exist a, b such that L is an effective
divisor. Let g : Y → X̃ be a sequence of blow upswith exceptional curves F1, . . . , F4

in this order. We have the following configuration on Y (Fig. 2).
Note that there exists a P1-fibration h : Y → P

1 such that h has only two singular
fibers C1 and C2, where

C1 = 2E + 2C + 2F2 + F1 + F3, C2 = D + E1 + E2 + E3 + E4 + E5 + E6.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F4, L1, L2 correspond to C1, C2.

Assume that C = R1 + R2, where R1, R2 are (−1)-curves. We may assume that
E meets R1. We have

ϕ∗(H) ≡ L = a R2 + (2a − 1)R1 + (2a − 2 + λ)E + bD + (b − 1)(E1 + E2 + E3 + E4 + E5),

where a + b = 2. Since λ > 0, we see that there exist a, b such that L is an effective
divisor. Let g : Y → X̃ be a sequence of blow ups with exceptional curves F1, F2, F3

in this order. We have the following configuration on Y (Fig. 3).
Note that there exists a P1-fibration h : Y → P

1 such that h has only two singular
fibers C1 and C2, where

C1 = 2E + 2R1 + 2F1 + R2 + F2, C2 = D + E1 + E2 + E3 + E4 + E5.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F3, L1, L2 correspond to C1, C2 (Figs. 2 and
3).
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Fig. 2 Curves in the surface
Y in case when C is a
(0)-curve

F4

F3 F1

F2

C
E

D

E1

E2

E3

E4

E5

E6

Fig. 3 Curves in the surface
Y in case when C is
reducible
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E3

E4

E5

2.1.2 Assume that rH = 2 and H = −K X + λ1E1 + λ2E2, where E1, E2 are (−1)-
curves, 1 > λ1 ≥ λ2 > 0. Note that C · E1 = C · E2 = 1. Moreover, there exist
(−1)-curves E3, E4, E5, E6 such that Ei · D = 1, Ei · C = Ei · E j = 0 for every
i = 3, 4, 5, 6, j = 1, 2. Note that E1, E2, E3, E4, E5 are the exceptional curves of
blow ups of P4, P5, P1, P2, P3 correspondingly, E6 is the proper transform of line
L76, where line Li j passes through Pi , Pj . Assume that C is a (0)-curve. Note that
there exist (0)-curves M1, M2 such that M1, M2 pass through the intersection point
of D and C , and M1 · D = M2 · D = M1 · C = M2 · C = 1, M j · Ei = 0 for every
i = 1, 2, 3, 4, 5, 6, j = 1, 2. Note that M1, M2 are the proper transforms of lines
L6, L7, where L6 passes through P6 and the intersection point of L and C ′, L6

passes through P7 and the intersection point of L and C ′. We have

ϕ∗(H) ≡ L = aC + (a − 1 + λ1)E1 + (a − 1 + λ2)E2 + bD+
+(b − 1)(E3 + E4 + E5 + E6) + cM1 + cM2,

where a + b + c = 2. Since λ1 ≥ λ2 > 0, we see that there exist a, b, c such that
L is an effective divisor. Let g1 : Y1 → X̃ be the blow up of intersection point of
C and D, F1 be the exceptional divisor of g1. Let g2 : Y2 → Y1 be the blow up of
intersection point of C , D and F1, F2 be the exceptional divisor of g2. We have the
following configuration on Y2 (Fig. 4).

Note that there exists aP1-fibration h : Y2 → P
1 such that h has only three singular

fibers C1, C2, C3, where

C1 = C + E1 + E2, C2 = F1 + M1 + M2, C3 = D + E3 + E4 + E5 + E6.

So,
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X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2 + L3),

where K is a unique (−1)-curve and L1, L2, L3 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F2, L1, L2, L3 correspond to C1, C2, C3.

Assume that C = R1 + R2, where R1, R2 are (−1)-curves. Assume that E1 and
E2 meet R1. Note that there exist (−1)-curves M1, M2 such that M1 and M2 meet
R2. We have

ϕ∗(H) ≡ L = a R1 + (a − 1 + λ1)E1 + (a − 1 + λ2)E2 + bD+
+(b − 1)(E3 + E4 + E5) + cR2 + (c − 1)M1 + (c − 1)M2,

where a + b + c = 3. Since λ1 ≥ λ2 > 0, we see that there exist a, b, c such that L
is an effective divisor. Let g : Y → X̃ be the blow up of intersection point of C and
D, F be the exceptional divisor of g. We have the following configuration on Y
(Fig. 5).

Note that there exists aP1-fibration h : Y2 → P
1 such that h has only three singular

fibers C1, C2, C3, where

C1 = R1 + E1 + E2, C2 = R2 + M1 + M2, C3 = D + E3 + E4 + E5.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2 + L3),

where K is a unique (−1)-curve and L1, L2, L3 are fibers. Then X has an H -polar
cylinder. Assume that E1 meets R1 and E2 meets R2. We have

ϕ∗(H) ≡ L = a R1 + a R2 + (a − 1 + λ1)E1 + (a − 1 + λ2)E2 + bD+
+(b − 1)(E3 + E4 + E5 + E6),

where a + b = 2. Since λ1 ≥ λ2 > 0, we see that there exist a, b such that L is an
effective divisor. Let g1 : Y1 → X̃ be the blow up of intersection point ofC and D, F1

be the exceptional divisor of g1. Let g2 : Y2 → Y1 be the blow up of intersection point
of D and F1, F2 be the exceptional divisor of g2.We have the following configuration
on Y2 (Fig. 6).

Note that there exists a P1-fibration h : Y3 → P
1 such that h has only two singular

fibers C1 and C2, where

C1 = D + E3 + E4 + E5 + E6, C2 = F1 + R1 + R2 + E1 + E2.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),
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Fig. 4 Curves in the surface
Y2 used in 2.1.2 in case when
C is a (0)-curve
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Fig. 5 Curves in the surface
Y used in 2.1.2 in case when
C is reducible
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Fig. 6 Curves in the surface
Y2 used in 2.1.2 in case when
C is reducible
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where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F2, L1, L2 correspond to C1, C2 (Figs. 4, 5 and
6).

2.1.3 Assume that rH = 2 and H = −K X + λE + λ1ϕ(E1), where E, E1 are (−1)-
curves such that E1 meets D, 1 > λ > 0, 2 > λ1 > 0. We have the same picture as
in Case2.1.1. So, X has an H -polar cylinder.

2.1.4 Assume that rH=3and H = −K X + λ1E1 + λ2E2 + λ3E3,where E1, E2, E3

are (−1)-curves, 1 > λ1 ≥ λ2 ≥ λ3 > 0. Note that C · E1 = C · E2 = C · E3 = 1.
Moreover, there exist (−1)-curves E4, E5, E6 such that Ei · D = 1, Ei · C = Ei ·
E j = 0 for every i = 4, 5, 6, j = 1, 2, 3. Note that E1, E2, E3, E4, E5, E6 are the
exceptional curves of blow ups of P4, P5, P6, P1, P2, P3 correspondingly. Assume
thatC is a (0)-curve. Note that there exists a (0)-curve M such that M passes through
the intersection point of D and C , and M · D = M · C = 1, M · Ei = 0 for every
i = 1, 2, 3, 4, 5, 6. Note that M is the proper transform of line L7 that passes through
P7 and the intersection point of L and C ′. We have
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Fig. 7 Curves in the surface
Y3 used in 2.1.4
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ϕ∗(H) ≡ L = aC + (a − 1 + λ1)E1 + (a − 1 + λ2)E2 + (a − 1 + λ3)E3 + bD+
+(b − 1)(E4 + E5 + E6 + M),

where a + b = 2. Since λ1 ≥ λ2 ≥ λ3 > 0, we see that there exist a, b such that L is
an effective divisor. Let g1 : Y1 → X̃ be the blow up of intersection point ofC and D,
F1 be the exceptional divisor of g1. Let g2 : Y2 → Y1 be the blow up of intersection
point of C , D and F1, F2 be the exceptional divisor of g2. Let g3 : Y3 → Y2 be the
blow up of intersection point of C and F2, F3 be the exceptional divisor of g3. We
have the following configuration on Y3 (Fig. 7).

Note that there exists a P1-fibration h : Y3 → P
1 such that h has only two singular

fibers C1 and C2, where

C1 = C + E1 + E2 + E3, C2 = M + F1 + F2 + D + E4 + E5 + E6.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F3, L1, L2 correspond to C1, C2.

Assume that C = R1 + R2, where R1, R2 are (−1)-curves. We may assume that
E1, E2 meet R1 and E3 meets R2. Then, we have the same picture as in Case2.1.2
(see Fig. 5). So, X has an H -polar cylinder.

2.1.5 Assume that rH = 3 and H = −K X + λ1E1 + λ2E2 + λ3ϕ(E3), where E1,

E2, E3 are (−1)-curves such that E3 meets D, 1 > λ1 ≥ λ2 > 0, 2 > λ3 > 0. We
have the same picture as in Case2.1.2. So, X has an H -polar cylinder.

2.1.6 Assume that rH = 4 and H = −K X + λ1E1 + λ2E2 + λ3E3 + λ4E4, where
E1, E2, E3, E4 are (−1)-curves, 1 > λ1 ≥ λ2 ≥ λ3 ≥ λ4 > 0. Note that C · Ei = 1
for every i = 1, 2, 3, 4. Moreover, there exist (−1)-curves E5, E6, E7 such that
Ei · D = 1, Ei · C = Ei · E j = 0 for every i = 5, 6, 7, j = 1, 2, 3, 4. Note that
E1, E2, E3, E4, E5, E6, E7 are the exceptional curves of blow ups of P4, P5, P6, P7,

P1, P2, P3 correspondingly. Assume that C is a (0)-curve. We have
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Fig. 8 Curves in the surface
Y used in 2.1.6
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ϕ∗(H) ≡ L = aC + (a − 1 + λ1)E1 + (a − 1 + λ2)E2 + (a − 1 + λ3)E3+
+(a − 1 + λ4)E4 + (2b − 1)D + (2b − 2)(E5 + E6 + E7),

where a + b = 2. Sinceλ1 ≥ λ2 ≥ λ3 ≥ λ4 > 0,we see that there exist a, b such that
L is an effective divisor. Let g : Y → X̃ be a sequence of blow ups with exceptional
curves F1, . . . , F4 in this order. We have the following configuration on Y (Fig. 8).

Note that there exists a P1-fibration h : Y → P
1 such that h has only two singular

fibers C1 and C2, where

C1=C + E1 + E2 + E3 + E4, C2 = F3 + F1 + 2F2 + 2D + 2E5 + 2E6 + 2E7.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F4, L1, L2 correspond to C1, C2.

Assume that C = R1 + R2, where R1, R2 are (−1)-curves. We see that E1, E2

meet R1 and E3, E4 meet R2. Then, we have the same picture as in Case2.1.2 (see
Fig. 5). So, X has an H -polar cylinder.

2.1.7 Assume that rH = 4 and

H = −K X + λ1E1 + λ2E2 + λ3E3 + λ4ϕ(E4),

where E1, E2, E3, E4 are (−1)-curves such that E4 meets D,

1 > λ1 ≥ λ2 ≥ λ3 > 0,

2 > λ4 > 0.Wehave the samepicture as inCase2.1.4. So, X has an H -polar cylinder.

2.1.8 Assume that rH = 5 and

H = −K X + λ1E1 + λ2E2 + λ3E3 + λ4E4 + λ5E5,
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where E1, E2, E3, E4, E5 are (−1)-curves, 1 > λi > 0 for every i . Note that C ·
Ei = 1 for every i = 1, 2, 3, 4, 5. Moreover, there exists a (−1)-curve E6 such that
E6 · D = 1, E6 · C = E6 · Ei = 0 for every i = 1, 2, 3, 4, 5. Note that E6 is the
exceptional curve of blowupof P1, E1, E2 are the proper transforms of lines L24, L34,
where line Li j passes through Pi , Pj , E3, E4, E5 are the proper transforms of conics
C56, C57, C67, where conic Ci j passes through P2, P3, P4, Pi , Pj . Assume that C
is a (0)-curve. Note that there exists a (0)-curve M such that M passes through
the intersection point of D and C , and M · D = M · C = 1, M · Ei = 0 for every
i = 1, 2, 3, 4, 5, 6. Note that M is the proper transform of line that passes through
P4 and the intersection point of L and C ′. We have

ϕ∗(H) ≡ L = aC + (a − 1 + λ1)E1 + (a − 1 + λ2)E2 + (a − 1 + λ3)E3+
+(a − 1 + λ4)E4 + (a − 1 + λ5)E5 + bD + (b − 1)E6 + (3b − 3)M,

where a + b = 2. Since λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ λ5 > 0, we see that there exist a, b
such that L is an effective divisor. Let g : Y → X̃ be a sequence of blow ups with
exceptional curves F1, . . . , F5 in this order. We have the following configuration on
Y (Fig. 9).

Note that there exists a P1-fibration h : Y → P
1 such that h has only two singular

fibers C1 and C2, where

C1 = C + E1 + E2 + E3 + E4 + E5, C2 = 3M + 3F1 + 3F2 + 2F3 + F4 + D + E6.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F5, L1, L2 correspond to C1, C2.

Assume thatC = R1 + R2,where R1, R2 are (−1)-curves.We see that E1, E2, E3,

E4 meet R1 and E5 meets R2. We have

ϕ∗(H) ≡ L = a R1 + (a − 1 + λ1)E1 + (a − 1 + λ2)E2 + (a − 1 + λ3)E3+
+(a − 1 + λ4)E4 + (2b − 1)R2 + (2b − 2 + λ5)E5 + bD + (b − 1)E6,

where a + b = 2. Sinceλ1 ≥ λ2 ≥ λ3 ≥ λ4 > 0,we see that there exist a, b such that
L is an effective divisor. Let g : Y → X̃ be a sequence of blow ups with exceptional
curves F1, F2, F3 in this order. We have the following configuration on Y (Fig. 10).

Note that there exists a P1-fibration h : Y → P
1 such that h has only two singular

fibers C1 and C2, where

C1 = R1 + E1 + E2 + E3 + E4, C2 = 2E5 + 2R2 + 2F1 + F2 + D + E6.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),
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Fig. 9 Curves in the surface
Y used in 2.1.8 in case when
C is a (0)-curve
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Fig. 10 Curves in the
surface Y used in 2.1.8 in
case when C is reducible
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where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F3, L1, L2 correspond to C1, C2 (Figs. 9
and 10).

2.1.9 Assume that rH = 5 and

H = −K X + λ1E1 + λ2E2 + λ3E3 + λ4E4 + λ5ϕ(E5),

where E1, E2, E3, E4, E5 are (−1)-curves such that E5 meets D,

1 > λ1 ≥ λ2 ≥ λ3 ≥ λ4 > 0,

2 > λ5 > 0.Wehave the samepicture as inCase2.1.6. So, X has an H -polar cylinder.

2.1.10 Assume that rH = 6 and

H = −K X + λ1E1 + λ2E2 + λ3E3 + λ4E4 + λ5E5 + λ6E6,

where E1, E2, E3, E4, E5, E6 are (−1)-curves,

1 > λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ λ5 ≥ λ6 > 0.

Put λ = λ1 + λ2 + λ3 + λ4 + λ5 + λ6. Let fH : X → Z be the contraction given
by the Fujita face �H of the divisor H . We see that Z is a cone. Then X̃ can
be obtained by blow ups F2 in six points P1, P2, . . . , P6 and E1, E2, . . . , E6 are
the exceptional curves. So, there exists a P

1-fibration ψ : X̃ → P
1 such that D is
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a section and every Ei is contained in singular fiber. So, there exist (−1)-curves
E ′
1, E ′

2, E ′
3, E ′

4, E ′
5, E ′

6 such that Ei + E ′
i are singular fibers and E ′

i · D = 1, E ′
i ·

C = 0 for i = 1, 2, 3, 4, 5, 6. Assume that C is a (0)-curve. Note that there exists a
fiber M such that M passes through the intersection points of D and C . So, λi Ei ≡
−λi E ′

i + λi M , i = 1, 2, 3, 4, 5, 6. Assume that λ > 2λ1. We have

ϕ∗(H) ≡ L = aC + (2a − 2 + λ)M + bD + (b − 1 − λ1)E ′
1+

+(b − 1 − λ2)E ′
2 + (b − 1 − λ3)E ′

3 + (b − 1 − λ4)E ′
4 + (b − 1 − λ5)E ′

5 + (b − 1 − λ6)E6,

where a + b = 2. Since λ > 2λ1 and λ1 ≥ λi for every i = 2, 3, 4, 5, 6, we see that
there exist a, b such that L is an effective divisor. Let g : Y → X̃ be a sequence of
blow ups with exceptional curves F1, . . . , F4 in this order. We have the following
configuration on Y (Fig. 11).

Note that there exists a P1-fibration h : Y → P
1 such that h has only two singular

fibers C1 and C2, where

C1 = D + E ′
1 + E ′

2 + E ′
3 + E ′

4 + E ′
5 + E ′

6, C2 = 2M + 2F1 + 2F2 + F3 + C.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. So we may assume that λ ≤ 2λ1. Then λ1 > λ2. We have

ϕ∗(H) ≡ L = aC + (a − 1 + λ − λ1)M + (a − 1 + λ1)E1 + bD + (b − 1 − λ2)E ′
2+

+(b − 1 − λ3)E ′
3 + (b − 1 − λ4)E ′

4 + (b − 1 − λ5)E ′
5 + (b − 1 − λ6)E ′

6,

where a + b = 2. Since λ1 > λ2 and λ − λ1 > λ2, we see that there exist a, b such
that L is an effective divisor. Let g : Y → X̃ be a sequence of blow ups with excep-
tional curves F1, F2, F3 in this order. We have the following configuration on Y (Fig.
12).

Note that there exists a P1-fibration h : Y → P
1 such that h has only two singular

fibers C1 and C2, where

C1 = D + E ′
2 + E ′

3 + E ′
4 + E ′

5 + E ′
6, C2 = M + F1 + F2 + C + E1.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F3, L1, L2 correspond to C1, C2.

Assume that C = R1 + R2, where R1, R2 are (−1)-curves. We see that either R1

either R2 is contained in a fiber of ψ . We may assume that R2 is contained in a fiber
of ψ . We may assume that E1, E2, E3, E4, E5 meet R1 and E6 + R2 is a fiber of ψ .
We may assume that
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1 > λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ λ5 > 0.

As above, there exist (−1)-curves E ′
1, E ′

2, E ′
3, E ′

4, E ′
5 such that Ei + E ′

i are singular
fibers and E ′

i · D = 1, E ′
i · C = 0 for i = 1, 2, 3, 4, 5. So, λi Ei ≡ −λi E ′

i + λi (E6 +
R2). Assume that λ1 > λ2. We have

ϕ∗(H) ≡ L = a R1 + (a + λ − λ6)R2 + (a − 1 + λ)E6 + (a − 1 + λ1)E1 + bD+
+(b − 1 − λ2)E ′

2 + (b − 1 − λ3)E ′
3 + (b − 1 − λ4)E ′

4 + (b − 1 − λ5)E ′
5,

where a + b = 2. Since λ1 > λ2 and λ − λ1 > λ2, we see that there exist a, b such
that L is an effective divisor. Let g : Y → X̃ be a sequence of blow ups with excep-
tional curves F1, F2 in this order. We have the following configuration on Y (Fig.
13).

Note that there exists a P1-fibration h : Y → P
1 such that h has only two singular

fibers C1 and C2, where

C1 = D + E ′
2 + E ′

3 + E ′
4 + E ′

5, C2 = F1 + R1 + R2 + E1 + E6.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Assume that λ1 = λ2. We have

ϕ∗(H) ≡ L = a R1 + (2a − 1 + λ − λ6)R2 + (2a − 2 + λ)E6 + bD + (b − 1 − λ1)E ′
1+

+(b − 1 − λ2)E ′
2 + (b − 1 − λ3)E ′

3 + (b − 1 − λ4)E ′
4 + (b − 1 − λ5)E ′

5,

where a + b = 2. Since λ − λ6 > 2λ1 and λ1 ≥ λi for every i = 2, 3, 4, 5, we see
that there exist a, b such that L is an effective divisor. Let g : Y → X̃ be a sequence
of blow ups with exceptional curves F1, F2, F3 in this order. We have the following
configuration on Y (Fig. 14).

Note that there exists a P1-fibration h : Y → P
1 such that h has only two singular

fibers C1 and C2, where

C1 = D + E ′
1 + E ′

2 + E ′
3 + E ′

4 + E ′
5, C2 = 2E6 + 2R2 + 2F1 + F2 + R1.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F3, L1, L2 correspond to C1, C2 (Figs. 11, 12,
13 and 14).
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Fig. 11 Curves in the
surface Y used in 2.1.10 in
case when C is a (0)-curve
and λ > 2λ1
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Fig. 12 Curves in the
surface Y used in 2.1.10 in
case when C is a (0)-curve
and λ ≤ 2λ1
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Fig. 13 Curves in the
surface Y used in 2.1.10 in
case when C is reducible and
λ1 > λ2
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Fig. 14 Curves in the
surface Y used in 2.1.10 in
case when C is reducible and
λ1 = λ2
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2.1.11 Assume that rH = 6 and

H = −K X + λ1E1 + λ2E2 + λ3E3 + λ4E4 + λ5E5 + λ6ϕ(E6),

where E1, E2, E3, E4, E5, E6 are (−1)-curves such that E6 meets D,

1 > λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ λ5 > 0,
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2 > λ6 > 0. We have the same picture as in Case2.1.8. So, X has an
H -polar cylinder.

�

Lemma 2.2 Let X be a del Pezzo surface with du Val singularities, deg(X) = 2 and
let H be an ample divisor of type B(rH ) on X. Assume that X has two singular points
of type A1. Then X has an H-polar cylinder.

Proof Let ϕ : X̃ → X be the minimal resolution of singularities of X and let D =
D1 + D2 be the exceptional divisor of ϕ. Note that there exists a divisor C such
that C · D1 = 2 and C meets D1 in one point. Moreover, D2 · C = 0. Note that C
is either (0)-curve, either two (−1)-curves. Indeed, we see that X̃ can be obtained
by blow ups P2 in seven points P1, P2, . . . , P7, where P1, P2, P3 lie on one line L
and P3, P4, P5 lie on one line L ′, i.e. P3 is the intersection point of L and L ′. Note
that D1 is the proper transform of L , D2 is the proper transform of L ′. Consider a
linear system |2T |, where T is the class of a line. We have dim |2T | = 5. So, there
exists exactly one element C ′ ∈ |2T | such that C ′ passes through P4, P5, P6, P7 and
C ′ meets L in one point. Then C is the proper transform of C ′.

2.2.1 Assume that rH = 1 and H = −K X + λE , where E is a (−1)-curve, 1 > λ >

0. Note that C · E = 1. Moreover, there exist (−1)-curves E1, E2, E3, E4 such that
Ei · D1 = 1, Ei · D2 = 0, Ei · C = Ei · E = 0 for every i = 1, 2, 3, 4, there exists a
(−1)-curve E5 such that E5 · D1 = E5 · D2 = 1, Ei · E5 = E5 · C = E5 · E = 0 for
every i = 1, 2, 3, 4. Note that E, E1, E2, E5 are the exceptional curves of blow ups
of P6, P1, P2, P3 correspondingly, E3, E4 are the proper transforms of lines L47, L57,
where line Li j passes through Pi , Pj . Assume that C is a (0)-curve. We have

ϕ∗(H) ≡ L = aC + (a − 1 + λ)E + bD1 + (b − 1)(E1 + E2 + E3 + E4) + (b − 1)D2+
+(2b − 2)E5,

where a + 2b = 3. Since λ > 0, we see that there exist a, b such that L is an effective
divisor. Let g : Y → X̃ be a sequence of blow upswith exceptional curves F1, . . . , F4

in this order. We have the following configuration on Y (Fig. 15).
Note that there exists a P1-fibration h : Y → P

1 such that h has only two singular
fibers C1 and C2, where

C1 = 2E + 2C + 2F2 + F1 + F3, C2 = D1 + E1 + E2 + E3 + E4 + 2E5 + D2.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F4, L1, L2 correspond to C1, C2.

Assume that C = R1 + R2, where R1, R2 are (−1)-curves. We have
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Fig. 15 Curves in the
surface Y used in 2.2.1 in
case when C is a (0)-curve
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Fig. 16 Curves in the
surface Y used in 2.2.1 in
case when C is reducible
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ϕ∗(H) ≡ L = a R2 + (2a − 1)R1 + (2a − 2 + λ)E + bD1 + (b − 1)(E1 + E2 + E3)+
+(b − 1)D2 + (2b − 2)E4,

where a + b = 2. Since λ > 0, we see that there exist a, b such that L is an effective
divisor. Let g : Y → X̃ be a sequence of blow ups with exceptional curves F1, F2, F3

in this order. We have the following configuration on Y (Fig. 16).
Note that there exists a P1-fibration h : Y → P

1 such that h has only two singular
fibers C1 and C2, where

C1 = 2E + 2R1 + 2F1 + R2 + F2, C2 = D1 + E1 + E2 + E3 + 2E4 + D2.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F3, L1, L2 correspond to C1, C2 (Figs. 15
and 16).

2.2.2 Assume that rH = 1 and H = −K X + λϕ(E), where E is a (−1)-curve such
that E meets D2, 2 > λ > 0. Note thatC · E = 1.Moreover, there exist (−1)-curves
E1, E2, E3, E4 such that

Ei · D1 = 1, Ei · C = Ei · D2 = 0.

Note that E, E1, E2 are the exceptional curves of blow ups of P4, P1, P2 corre-
spondingly, E3, E4 are the proper transforms of lines L56, L57, where line Li j passes
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through Pi , Pj . Assume thatC is a (0)-curve. Note that there exist (0)-curves M1, M2

such that M1, M2 pass through the intersection point of D1 and C , and

M1 · D1 = M2 · D1 = M1 · C = M2 · C = 1, M1 · D2 = M2 · D2 = 0, M j · Ei = 0

for every i = 1, 2, 3, 4, j = 1, 2. We see that M1, M2 are the proper transforms of
lines that passes through P6, P7 and the intersection point of L and C ′. We have

ϕ∗(H) ≡ L = aC +
(

a − 1 + λ

2

)
D2 + (2a − 2 + λ)E + bD1+

+(b − 1)(E1 + E2 + E3 + E4) + cM1 + cM2,

where a + b + c = 2. Since λ > 0, we see that there exist a, b, c such that L is an
effective divisor. Let g1 : Y1 → X̃ be the blow up of intersection point of C and D1,
F1 be the exceptional divisor of g1. Let g2 : Y2 → Y1 be the blow up of intersection
point of C , D1 and F1, F2 be the exceptional divisor of g2. We have the following
configuration on Y2 (Fig. 17).

Note that there exists aP1-fibration h : Y2 → P
1 such that h has only three singular

fibers C1, C2, C3, where

C1 = C + 2E + D2, C2 = F1 + M1 + M2, C3 = D1 + E1 + E2 + E3 + E4.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2 + L3),

where K is a unique (−1)-curve and L1, L2, L3 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F2, L1, L2, L3 correspond to C1, C2, C3.

Assume that C = R1 + R2, where R1, R2 are (−1)-curves. We may assume that
E meets R1. Note that there exist (−1)-curves M1, M2 such that M1 and M2 meet
R2. We have

ϕ∗(H) ≡ L = a R1 +
(

a − 1 + λ

2

)
D2 + (2a − 2 + λ)E + bD1+

+(b − 1)(E1 + E2 + E3) + cR2 + (c − 1)M1 + (c − 1)M2,

where a + b + c = 3. Since λ > 0, we see that there exist a, b, c such that L is an
effective divisor. Let g : Y → X̃ be the blow up of intersection point of C and D1, F
be the exceptional divisor of g. We have the following configuration on Y (Fig. 18).

Note that there exists aP1-fibration h : Y → P
1 such that h has only three singular

fibers C1, C2, C3, where

C1 = R1 + 2E + D2, C2 = R2 + M1 + M2, C3 = D1 + E1 + E2 + E3.
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Fig. 17 Curves in the
surface Y2 used in 2.2.2 in
case when C is a (0)-curve
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Fig. 18 Curves in the
surface Y used in 2.2.2 in
case when C is reducible
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So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2 + L3),

where K is a unique (−1)-curve and L1, L2, L3 are fibers. Then X has an H -polar
cylinder.Note that K corresponds to F , L1, L2, L3 correspond toC1, C2, C3 (Figs. 17
and 18).

2.2.3 Assume that rH = 2 and H = −K X + λ1E1 + λ2E2, where E1, E2 are (−1)-
curves, 1 > λ1 ≥ λ2 > 0. Note that C · E1 = C · E2 = 1. Moreover, there exist
(−1)-curves E3, E4 such that Ei · D1 = 1, Ei · D2 = 0, Ei · C = Ei · E j = 0 for
every i = 3, 4, j = 1, 2. Note that there exists a (−1)-curve E5 such that E5 · D1 =
E5 · D2 = 1, Ei · E5 = E5 · C = 0 for every i = 1, 2, 3, 4.Note that E1, E2, E3, E4,

E5 are the exceptional curves of blow ups of P6, P7, P1, P2, P3 correspondingly.
Assume that C is a (0)-curve. Note that there exist (0)-curves M1, M2 such that
M1, M2 pass through the intersection point of D1 and C , and

M1 · D1 = M2 · D1 = M1 · C = M2 · C = 1, M1 · D2 = M2 · D2 = 0, M j · Ei = 0

for every i = 1, 2, 3, 4, 5, j = 1, 2. We see that M1, M2 are the proper transforms
of lines that passes through P4, P5 and the intersection point of L and C ′. We have

ϕ∗(H) ≡ L = aC + (a − 1 + λ1)E1 + (a − 1 + λ2)E2 + bD1 + (b − 1)(E3 + E4)+
+(b − 1)D2 + (2b − 2)E5 + cM1 + cM2,

where a + b + c = 2. Since λ1 ≥ λ2 > 0, we see that there exist a, b, c such that
L is an effective divisor. Let g1 : Y1 → X̃ be the blow up of intersection point of
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C and D1, F1 be the exceptional divisor of g1. Let g2 : Y2 → Y1 be the blow up of
intersection point of C , D1 and F1, F2 be the exceptional divisor of g2. We have the
following configuration on Y2 (Fig. 19).

Note that there exists aP1-fibration h : Y2 → P
1 such that h has only three singular

fibers C1, C2, C3, where

C1 = C + E1 + E2, C2 = F1 + M1 + M2, C3 = D1 + E3 + E4 + 2E5 + D2.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2 + L3),

where K is a unique (−1)-curve and L1, L2, L3 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F2, L1, L2, L3 correspond to C1, C2, C3.

Assume that C = R1 + R2, where R1, R2 are (−1)-curves. Assume that E1 and
E2 meet R1. Note that there exist (−1)-curves M1, M2 such that M1 and M2 meet
R2. We have

ϕ∗(H) ≡ L = a R1 + (a − 1 + λ1)E1 + (a − 1 + λ2)E2 + bD1 + (b − 1)E3+
+(b − 1)D2 + (2b − 2)E4 + cR2 + (c − 1)(M1 + M2),

where a + b + c = 3. Since λ1 ≥ λ2 > 0, we see that there exist a, b, c such that L
is an effective divisor. Let g : Y → X̃ be the blow up of intersection point of C and
D1, F be the exceptional divisor of g. We have the following configuration on Y
(Fig. 20).

Note that there exists aP1-fibration h : Y2 → P
1 such that h has only three singular

fibers C1, C2, C3, where

C1 = R1 + E1 + E2, C2 = R2 + M1 + M2, C3 = D1 + E3 + 2E4 + D2.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2 + L3),

where K is a unique (−1)-curve and L1, L2, L3 are fibers. Then X has an H -polar
cylinder. Assume that E1 meets R1 and E2 meets R2. We have

ϕ∗(H) ≡ L = a R1 + a R2 + (a − 1 + λ1)E1 + (a − 1 + λ2)E2 + bD+
+(b − 1)(E3 + E4) + (b − 1)D2 + (2b − 2)E5,

where a + b = 2. Since λ1 ≥ λ2 > 0, we see that there exist a, b such that L is an
effective divisor. Let g1 : Y1 → X̃ be the blow up of intersection point ofC and D, F1

be the exceptional divisor of g1. Let g2 : Y2 → Y1 be the blow up of intersection point
of D and F1, F2 be the exceptional divisor of g2.We have the following configuration
on Y2 (Fig. 21).
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Fig. 19 Curves in the
surface Y2 used in 2.2.3 in
case when C is a (0)-curve
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Fig. 20 Curves in the
surface Y used in 2.2.3 in
case when C is reducible
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Note that there exists a P1-fibration h : Y3 → P
1 such that h has only two singular

fibers C1 and C2, where

C1 = D1 + E3 + E4 + 2E5 + D2, C2 = F1 + R1 + R2 + E1 + E2.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F2, L1, L2 correspond to C1, C2, C3 (Figs. 19,
20 and 21).
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Fig. 21 Curves in the surface Y2 used in 2.2.3 in case when C is reducible
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2.2.4 Assume that rH = 2 and H = −K X + λE + λ1ϕ(E1), where E, E1 are (−1)-
curves such that E1 meets D1, 1 > λ > 0, 2 > λ1 > 0. We have the same picture as
in Case2.2.1. So, X has an H -polar cylinder.

2.2.5 Assume that rH = 2 and H = −K X + λ1ϕ(E1) + λϕ(E), where E1, E are
(−1)-curves such that E1 meets D1, E meets D2, 2 > λ1 ≥ λ > 0.We have the same
picture as in Case2.2.2. So, X has an H -polar cylinder.

2.2.6 Assume that rH=3 and H= − K X+λ1E1 + λ2E2 + λ3E3, where E1, E2, E3

are (−1)-curves, 1 > λ1 ≥ λ2 ≥ λ3 > 0. Note that C · E1 = C · E2 = C · E3 = 1.
Moreover, there exists a (−1)-curves E4 such that E4 · D1 = 1, E4 · C = E4 · D2 =
E4 · E j = 0 for every j = 1, 2, 3. Note that there exists a (−1)-curve E5 such that
E5 · D1 = E5 · D2 = 1, E5 · C = E5 · E j = 0 for every j = 1, 2, 3, there exists a
(0)-curve M such that M passes through the intersection point of D1 and C , and
M · D1 = M · C = 1, M · Ei = M · D2 = 0 for every i = 1, 2, 3, 4, 5. Note that
E1, E2, E4, E5 are the exceptional curves of blow ups of P6, P7, P1, P3 correspond-
ingly, E3 is the proper transform of line that passes through P2 and P4, M is the
proper transform of conic that passes through P5 and the intersection point of L and
C ′. Assume that C is a (0)-curve. We have

ϕ∗(H) ≡ L = aC + (a − 1 + λ1)E1 + (a − 1 + λ2)E2 + (a − 1 + λ3)E3 + bD+
+(b − 1)(E4 + D2 + M) + (2b − 2)E5,

where a + b = 2. Since λ1 ≥ λ2 ≥ λ3 > 0, we see that there exist a, b such that L is
an effective divisor. Let g1 : Y1 → X̃ be the blowup of intersection point ofC and D1,
F1 be the exceptional divisor of g1. Let g2 : Y2 → Y1 be the blow up of intersection
point of C , D1 and F1, F2 be the exceptional divisor of g2. Let g3 : Y3 → Y2 be the
blow up of intersection point of C and F2, F3 be the exceptional divisor of g3. We
have the following configuration on Y3 (Fig. 22).

Note that there exists a P1-fibration h : Y3 → P
1 such that h has only two singular

fibers C1 and C2, where

C1 = C + E1 + E2 + E3, C2 = M + F1 + F2 + D1 + E4 + 2E5 + D2.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F3, L1, L2 correspond to C1, C2.

Assume that C = R1 + R2, where R1, R2 are (−1)-curves. We may assume that
E1, E2 meet R1, E3 meets R2. Then, we have the same picture as in Case2.2.3 (see
Fig. 20). So, X has an H -polar cylinder.

2.2.7 Assume that rH = 3 and H = −K X + λ1E1 + λ2E2 + λ3ϕ(E3), where E1,

E2, E3 are (−1)-curves such that E3 meets D1, 2 > λ3 > 0, 1 > λ1 ≥ λ2 > 0. We
have the same picture as in Case2.2.3. So, X has an H -polar cylinder.
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Fig. 22 Curves in the
surface Y3 used in 2.2.6
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2.2.8 Assume that rH = 3 and H = −K X + λ1E1 + λ2ϕ(E2) + λ3ϕ(E3), where
E1, E2, E3 are (−1)-curves such that E3 meets D1, E2 meets D2, 1 > λ1 > 0,
2 > λ2 ≥ λ3 > 0. Note that C · E1 = C · E2 = 1, C · E3 = 0. Moreover, there exist
(−1)-curves E4, E5 such that Ei · D1 = 1, Ei · D2 = 0, Ei · C = Ei · E1 = Ei ·
E2 = 0 for every i = 3, 4, 5. Note that E1, E2, E3, E4 are the exceptional curves
of blow ups of P6, P4, P1, P2 correspondingly, E5 is the proper transform of line
that passes through P5 and P7. Assume that C is a (0)-curve. Note that there exists
a (0)-curve M such that M passes through the intersection point of D1 and C , and
M · D1 = M · C = 1, M · D2 = 0, M · Ei = 0 for every i = 1, 2, 3, 4, 5. We see
that M is the proper transform of line that passes through P7 and the intersection
point of L and C ′. We have

ϕ∗(H) ≡ L = aC + (a − 1 + λ1)E1 +
(

a − 1 + λ2

2

)
D2 + (2a − 2 + λ2)E2 + bD+

+(b − 1)(E3 + E4 + E5 + M),

where a + b = 2. Since λ1 > 0 and λ2 > 0, we see that there exist a, b such that L is
an effective divisor. Let g1 : Y1 → X̃ be the blowup of intersection point ofC and D1,
F1 be the exceptional divisor of g1. Let g2 : Y2 → Y1 be the blow up of intersection
point of C , D1 and F1, F2 be the exceptional divisor of g2. Let g3 : Y3 → Y2 be the
blow up of intersection point of C and F2, F3 be the exceptional divisor of g3. We
have the following configuration on Y3 (Fig. 23).

Note that there exists a P1-fibration h : Y3 → P
1 such that h has only two singular

fibers C1 and C2, where

C1 = C + E1 + D2 + 2E2, C2 = M + F1 + F2 + D + E3 + E4 + E5.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F3, L1, L2 correspond to C1, C2.

Assume that C = R1 + R2, where R1, R2 are (−1)-curves. We may assume that
E2 meets R1, E3 meets R2. Then, we have the same picture as in Case2.2.2 (see
Fig. 18). So, X has an H -polar cylinder.
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Fig. 23 Curves in the
surface Y3 used in 2.2.8
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2.2.9 Assume that rH = 4 and H = −K X + λ1E1 + λ2E2 + λ3E3 + λ4E4, where
E1, E2, E3, E4 are (−1)-curves, 1 > λ1 ≥ λ2 ≥ λ3 ≥ λ4 > 0. Note that C · Ei = 1
for every i = 1, 2, 3, 4. Moreover, there exists a (−1)-curve E5 such that E5 · D1 =
E5 · D2 = 1, E5 · C = E5 · E j = 0 for every j = 1, 2, 3, 4, there exists a (−1)-
curve E6 such that E6 · D1 = 1 and E6 · D2 = E6 · C = E6 · Ei = 0 for every
i = 1, 2, 3, 4, 5. Note that E1, E2, E5, E6 are the exceptional curves of blow ups of
P6, P7, P3, P1 correspondingly, E3, E4 are the proper transforms of lines L24, L25,
where line Li j passes through Pi , Pj . Assume that C is a (0)-curve. We have

ϕ∗(H) ≡ L = aC + (a − 1 + λ1)E1 + (a − 1 + λ2)E2 + (a − 1 + λ3)E3+
+(a − 1 + λ4)E4 + (2b − 1)D1 + (2b − 2)D2 + (4b − 4)E5 + (2b − 2)E6,

where a + b = 2. Sinceλ1 ≥ λ2 ≥ λ3 ≥ λ4 > 0,we see that there exist a, b such that
L is an effective divisor. Let g : Y → X̃ be a sequence of blow ups with exceptional
curves F1, . . . , F4 in this order. We have the following configuration on Y (Fig. 24).

Note that there exists a P1-fibration h : Y → P
1 such that h has only two singular

fibers C1 and C2, where

C1 = C + E1 + E2 + E3 + E4, C2 = 4E5 + 2D1 + 2D2 + 2E6 + 2F2 + F3 + F1.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F4, L1, L2 correspond to C1, C2.

Assume that C = R1 + R2, where R1, R2 are (−1)-curves. We may assume that
E1, E2 meet R1, E3, E4 meet R2. Then, we have the same picture as in Case2.2.3
(see Fig. 20). So, X has an H -polar cylinder.

2.2.10 Assume that rH = 4 and H = −K X + λ1E1 + λ2E2 + λ3E3 + λ4ϕ(E4),
where E1, E2, E3, E4 are (−1)-curves such that E4 meets D1, 2 > λ4 > 0, 1 >

λ1 ≥ λ2 ≥ λ3 > 0. We have the same picture as in Case2.2.6. So, X has an H -polar
cylinder.
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Fig. 24 Curves in the
surface Y used in 2.2.9
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2.2.11 Assume that rH = 4 and

H = −K X + λ1E1 + λ2E2 + λ3ϕ(E3) + λ4ϕ(E4),

where E1, E2, E3, E4 are (−1)-curves such that E4 meets D1, E3 meets D2, 2 > λ3 ≥
λ4 > 0, 1 > λ1 ≥ λ2 > 0. Note that C · E4 = 0, C · Ei = 1 for every i = 1, 2, 3.
Moreover, there exists a (−1)-curve E5 such that E5 · D1 = 1, E5 · C = E5 · E j = 0
for every j = 1, 2, 3, 4. Note that E1, E2, E3, E4, E5 are the exceptional curves of
blow ups P6, P7, P4, P1, P2 correspondingly. Assume thatC is a (0)-curve. Note that
there exists a (0)-curve M such that M passes through the intersection point of D1 and
C , and M · D1 = M · C = 1, M · D2 = M · Ei = 0 for every i = 1, 2, 3, 4, 5, 6.We
see that M is the proper transform of line that passes through P5 and the intersection
point of L and C ′. We have

ϕ∗(H) ≡ L = aC + (a − 1 + λ1)E1 + (a − 1 + λ2)E2 + (2a − 2 + λ3)E3+
+

(
a − 1 + λ3

2

)
D2 +

(
b + λ4

2

)
D1 + (b − 1 + λ4)E4 + (b − 1)E5 + (2b − 2)M,

where a + b = 2. Since 2 > λ3 ≥ λ4 > 0 and 1 > λ1 ≥ λ2 > 0, we see that there
exist a, b such that L is an effective divisor. Let g : Y → X̃ be a sequence of blow ups
with exceptional curves F1, . . . , F4 in this order.We have the following configuration
on Y (Fig. 25).

Note that there exists a P1-fibration h : Y → P
1 such that h has only two singular

fibers C1 and C2, where

C1=C + E1 + E2 + 2E3 + D2, C2 = 2M + 2F1 + 2F2 + D1 + E4 + E5 + F3.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F4, L1, L2 correspond to C1, C2.
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Fig. 25 Curves in the surface Y used in 2.2.11

Assume that C = R1 + R2, where R1, R2 are (−1)-curves. We may assume that
E3 meets R1, E1, E2 meet R2. Then, we have the same picture as in Case2.2.2 (see
Fig. 18). So, X has an H -polar cylinder.

2.2.12 Assume that rH = 5 and

H = −K X + λ1E1 + λ2E2 + λ3E3 + λ4E4 + λ5ϕ(E5),

where E1, E2, E3, E4, E5 are (−1)-curves such that E5 meets D1. We have the same
picture as in Case2.2.9. So, X has an H -polar cylinder.

2.2.13 Assume that rH = 5 and

H = −K X + λ1E1 + λ2E2 + λ3E3 + λ4ϕ(E4) + λ5ϕ(E5),

where E1, E2, E3, E4, E5 are (−1)-curves such that E4 meets D2, E5 meets D1,

2 > λ4 ≥ λ5 > 0, 1 > λ1 ≥ λ2 ≥ λ3 > 0.

Note that C · Ei = 1 for every i = 1, 2, 3, 4, C · E5 = 0. Note that E1, E2, E4, E5

are the exceptional curves of blow ups of P6, P7, P4, P1 correspondingly, E3 is the
proper transform of line that passes through P2 and P5. Assume that C is a (0)-curve.
Note that there exists a (0)-curve M such that M passes through the intersection
point of D1 and C , and M · D1 = M · C = 1, M · D2 = M · Ei = 0 for every i =
1, 2, 3, 4, 5. We see that M is the proper transform of line that passes through P5 and
the intersection point of L and C ′. We have

ϕ∗(H) ≡ L = aC + (a − 1 + λ1)E1 + (a − 1 + λ2)E2 + (a − 1 + λ3)E3+
+(2a − 2 + λ4)E4 +

(
a − 1 + λ4

2

)
D2 +

(
b + λ5

2

)
D1 + (b − 1 + λ5)E5 + (3b − 3)M,

where a + b = 2. Since λ4 > 0 and λ1 ≥ λ2 ≥ λ3 > 0, we see that there exist a, b
such that L is an effective divisor. Let g : Y → X̃ be a sequence of blow ups with
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exceptional curves F1, . . . , F5 in this order. We have the following configuration
on Y (Fig. 26).

Note that there exists a P1-fibration h : Y → P
1 such that h has only two singular

fibers C1 and C2, where

C1 = C + E1 + E2 + E3 + 2E4 + D2, C2 = 3M + 3F1 + 3F2 + 2F3 + F4 + D1 + E5.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F5, L1, L2 correspond to C1, C2.

Assume thatC = R1 + R2, where R1, R2 are (−1)-curves.We see that E1, E2, E4

meet R1 and E3 meets R2. We have

ϕ∗(H) ≡ L = a R1 + (a − 1 + λ1)E1 + (a − 1 + λ2)E2 + (2a − 2 + λ4)E4+
+

(
a − 1 + λ4

2

)
D2 +

(
b + λ5

2

)
D1 + (b − 1 + λ5)E5 + (2b − 1)R2 + (2b − 2 + λ3)E3,

where a + b = 2. Since λ4 ≥ λ5 > 0 and λ1 ≥ λ2 ≥ λ3 > 0, we see that there exist
a, b such that L is an effective divisor. Let g : Y → X̃ be a sequence of blow ups
with exceptional curves F1, F2, F3 in this order. We have the following configuration
on Y (Fig. 27).

Note that there exists a P1-fibration h : Y → P
1 such that h has only two singular

fibers C1 and C2, where

C1 = C + E1 + E2 + 2E4 + D2, C2 = 2E3 + 2R2 + 2F1 + F2 + D1 + E3.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F3, L1, L2 correspond to C1, C2 (Figs. 26
and 27).

�

Lemma 2.3 Let X be a del Pezzo surface with du Val singularities, deg(X) = 2 and
let H be an ample divisor of type B(rH ) on X. Assume that X has three singular
points of type A1. Then X has an H-polar cylinder.

Proof Let ϕ : X̃ → X be the minimal resolution of singularities of X and let

D = D1 + D2 + D3
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Fig. 26 Curves in the surface Y used in 2.2.13 in case when C is a (0)-curve
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Fig. 27 Curves in the surface Y used in 2.2.13 in case when C is reducible

be the exceptional divisor of ϕ. Note that there exists a divisorC such thatC · D1 = 2
and C meets D1 in one point. Moreover, D2 · C = D3 · C = 0. Note that C is either
(0)-curve, either two (−1)-curves. Indeed, we see that X̃ can be obtained by blow
ups P2 in seven points P1, P2, . . . , P7, where P1, P2, P3 lie on one line L , P3, P4, P5

lie on one line L ′ and P1, P5, P6 lie on one line L ′′, i.e. P1, P3, P5 are the intersection
points of lines L , L ′, L ′′. Note that D1 is the proper transform of L , D2 is the proper
transform of L ′ and D3 is the proper transform of L ′′. Consider a linear system |2T |,
where T is the class of a line. We have dim |2T | = 5. So, there exists exactly one
element C ′ ∈ |2T | such that C ′ passes through P4, P5, P6, P7 and C ′ meets L in one
point. Then C is the proper transform of C ′.

2.3.1 Assume that rH = 1 and H = −K X + λE , where E is a (−1)-curve, 1 >

λ > 0. Note that C · E = 1. Moreover, there exist (−1)-curves E1, E2 such that
E1 · D1 = E1 · D2 = 1,

E1 · D3 = 0, E2 · D1 = E2 · D3 = 1, E2 · D2 = 0, E1 · C = E1 · E = E2 · C = E2 · E = 0,

there exist (−1)-curves E3, E4 such that

E3 · D1 = E4 · D1 = 1, Ei · E j = E j · C = E j · E = D2 · E j = D3 · E j = 0
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for every i = 1, 2, j = 3, 4. Note that E, E1, E2, E3 are the exceptional curves of
blow ups of P7, P3, P1, P2 correspondingly, E4 is the proper transform of line that
passes through P4 and P6. Assume that C is a (0)-curve. We have

ϕ∗(H) ≡ L = aC + (a − 1 + λ)E + bD1 + (b − 1)(D2 + D3 + E3 + E4) + (2b − 2)E1+
+(2b − 2)E2,

where a + 2b = 3. Since λ > 0, we see that there exist a, b such that L is an effective
divisor. Let g : Y → X̃ be a sequence of blow upswith exceptional curves F1, . . . , F4

in this order. We have the following configuration on Y (Fig. 28).
Note that there exists a P1-fibration h : Y4 → P

1 such that h has only two singular
fibers C1 and C2, where

C1=2E + 2C + 2F2 + F1 + F3, C2 = D1 + E3 + E4 + 2E1 + 2E2 + D2 + D3.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F4, L1, L2 correspond to C1, C2.

Assume that C = R1 + R2, where R1, R2 are (−1)-curves. We may assume that
E meets R1. We have

ϕ∗(H) ≡ L = a R2 + (2a − 1)R1 + (2a − 2 + λ)E + bD1 + (b − 1)(D2 + D3 + E3)+
+(2b − 2)E1 + (2b − 2)E2,

where a + b = 2. Since λ > 0, we see that there exist a, b such that L is an effective
divisor. Let g : Y → X̃ be a sequence of blow ups with exceptional curves F1, F2, F3

in this order. We have the following configuration on Y (Fig. 29).
Note that there exists a P1-fibration h : Y4 → P

1 such that h has only two singular
fibers C1 and C2, where

C1 = 2E + 2R1 + 2F1 + R2 + F2, C2 = D1 + E3 + 2E1 + 2E2 + D2 + D3.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F3, L1, L2 correspond to C1, C2 (Figs. 28 and
29).

2.3.2 Assume that rH = 1 and H = −K X + λϕ(E), where E is a (−1)-curve such
that E meets D2, 2 > λ > 0. Note that C · E = 1. Moreover, there exists a (−1)-
curve E1 such that E1 · D1 = E1 · D3 = 1, E1 · D2 = E1 · C = E1 · E = 0, there
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Fig. 28 Curves in the surface Y used in 2.3.1 in case when C is a (0)-curve

F3

F2 R2

F1

R1

E

D1

E2

E3

E1

D2
D3

Fig. 29 Curves in the surface Y used in 2.3.1 in case when C is reducible

exist (−1)-curves E2, E3 such that Ei · D1 = 1, Ei · C = Ei · D2 = Ei · D3 = 0
for every i = 2, 3. Note that E, E1, E2 are the exceptional curves of blow ups of
P4, P1, P2 correspondingly, E3 is the proper transform of line that passes through
P5 and P7. Assume that C is a (0)-curve. Note that there exist (0)-curves M1, M2

such that M1, M2 pass through the intersection point of D1 and C , and M1 · D1 =
M2 · D1 = M1 · C = M2 · C = 1, M1 · D2 = M2 · D2 = 0, M1 · D3 = M2 · D3 =
0, M j · Ei = 0 for every i = 1, 2, 3, j = 1, 2.We see that M1 is the proper transform
of line that passes through P5 and the intersection point of L and C ′, M2 is the proper
transform of conic that passes through P3, P5, P6, P7 and the intersection point of L
and C ′. We have

ϕ∗(H) ≡ L = aC +
(

a − 1 + λ

2

)
D2 + (2a − 2 + λ)E + bD1 + (b − 1)(E2 + E3 + D3)+

+(2b − 2)E1 + cM1 + cM2,

where a + b + c = 2. Since λ > 0, we see that there exist a, b, c such that L is an
effective divisor. Let g1 : Y1 → X̃ be the blow up of intersection point of C and D1,
F1 be the exceptional divisor of g1. Let g2 : Y2 → Y1 be the blow up of intersection
point of C , D1 and F1, F2 be the exceptional divisor of g2. We have the following
configuration on Y2 (Fig. 30).
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Fig. 30 Curves in the
surface Y2 used in 2.3.2 in
case when C is a (0)-curve
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Note that there exists aP1-fibration h : Y2 → P
1 such that h has only three singular

fibers C1, C2, C3, where

C1 = C + 2E + D2, C2 = F1 + M1 + M2, C3 = D1 + 2E1 + E2 + E3 + D3.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2 + L3),

where K is a unique (−1)-curve and L1, L2, L3 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F2, L1, L2, L3 correspond to C1, C2, C3.

Assume that C = R1 + R2, where R1, R2 are (−1)-curves. We may assume that
E meets R1. Note that there exist (−1)-curves M1, M2 such that M1 and M2 meet
R2. We have

ϕ∗(H) ≡ L = a R1 +
(

a − 1 + λ

2

)
D2 + (2a − 2 + λ)E + bD1 + (b − 1)E2 + (b − 1)D3+

+(2b − 2)E1 + cR2 + (c − 1)M1 + (c − 1)M2,

where a + b + c = 3. Since λ > 0, we see that there exist a, b, c such that L is an
effective divisor. Let g : Y → X̃ be the blow up of intersection point of C and D1, F
be the exceptional divisor of g. We have the following configuration on Y (Fig. 31).

Note that there exists aP1-fibration h : Y2 → P
1 such that h has only three singular

fibers C1, C2, C3, where

C1 = R1 + 2E + D2, C2 = R2 + M1 + M2, C3 = D1 + 2E1 + E2 + D3.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2 + L3),

where K is a unique (−1)-curve and L1, L2, L3 are fibers. Then X has an H -
polar cylinder. Note that K corresponds to F , L1, L2, L3 correspond to C1, C2, C3

(Fig. 30).
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2.3.3 Assume that rH = 2 and H = −K X + λ1E1 + λ2E2, where E1, E2 are (−1)-
curves, 1 > λ1 ≥ λ2 > 0. Note that C · E1 = C · E2 = 1. Moreover, there exist
(−1)-curves E3, E4 such that

E3 · D1 = E4 · D1 = E3 · D3 = E4 · D2 = 1,

E3 · D2 = E4 · D3 = 0, Ei · C = Ei · E j = 0 for every i = 3, 4, j = 1, 2. Note that
E1, E3, E4 are the exceptional curves of blow ups of P7, P3, P1 correspondingly, E2

is the proper transform of line that passes through P2 and P5. Assume that C is a
(0)-curve. Note that there exist (0)-curves M1, M2 such that M1, M2 pass through
the intersection point of D1 and C and Mi · D j = Mi · Ek = 0 for every i = 1, 2,
j = 2, 3, k = 1, 2, 3, 4. We see that M1 is the proper transform of line that passes
through P5 and the intersection point of L and C ′, M2 is the proper transform of
conic that passes through P2, P4, P5, P6 and the intersection point of L and C ′. We
have

ϕ∗(H) ≡ L = aC + (a − 1 + λ1)E1 + (a − 1 + λ2)E2 + bD1 + (b − 1)(D2 + D3)+
+(2b − 2)(E3 + E4) + cM1 + cM2,

where a + b + c = 2. Since λ1 ≥ λ2 > 0, we see that there exist a, b, c such that
L is an effective divisor. Let g1 : Y1 → X̃ be the blow up of intersection point of
C and D1, F1 be the exceptional divisor of g1. Let g2 : Y2 → Y1 be the blow up of
intersection point of C , D1 and F1, F2 be the exceptional divisor of g2. We have the
following configuration on Y2 (Fig. 32).

Note that there exists aP1-fibration h : Y2 → P
1 such that h has only three singular

fibers C1, C2, C3, where

C1 = C + E1 + E2, C2 = F1 + M1 + M2, C3 = D1 + 2E3 + 2E4 + D2 + D3.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2 + L3),

where K is a unique (−1)-curve and L1, L2, L3 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F2, L1, L2, L3 correspond to C1, C2, C3.

Assume that C = R1 + R2, where R1, R2 are (−1)-curves. We may assume that
E1, E2 meet R2. Let g : Y → X̃ be the blow up of intersection point of C and D1, F
be the exceptional divisor of g. We obtain the same picture as in Fig. 31 (E1 = M1,
E2 = M2). On the other hand, we have

ϕ∗(H) ≡ L = a R1 + (a − 1)D2 + (2a − 2)E + bD1 + (b − 1)E2 + (b − 1)D3+
+(2b − 2)E1 + cR2 + (c − 1 + λ1)M1 + (c − 1 + λ2)M2,

where a + b + c = 3. Since λ1 ≥ λ2 > 0, we see that there exist a, b, c such that L
is an effective divisor. As in Case2.3.2, X has an H -polar cylinder (Figs. 32).
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Fig. 31 Curves in the
surface Y used in 2.3.2 in
case when C is reducible
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Fig. 32 Curves in the
surface Y2 used in 2.3.3
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2.3.4 Assume that rH = 2 and H = −K X + λE + λ3ϕ(E3), where E, E3 are (−1)-
curves such that E3 meets D1, 1 > λ > 0, 2 > λ3 > 0. We have the same picture as
in Case2.3.1. So, X has an H -polar cylinder.

2.3.5 Assume that rH = 2 and H = −K X + λ1ϕ(E2) + λ2ϕ(E), where E2, E are
(−1)-curves such that E2 meets D1, E meets D2, 2 > λ1 ≥ λ2 > 0. We have the
same picture as in Case2.3.2. So, X has an H -polar cylinder.

2.3.6 Assume that rH = 3 and H = −K X + λ1E1 + λ2E2 + λ3ϕ(E3), where E1,

E2, E3 are (−1)-curves, E3 · D3 = 1, 1 > λ1 ≥ λ2 > 0, 2 > λ3 > 0. Note that
C · Ei = 1 for every i = 1, 2, 3. Moreover, there exist (−1)-curves E4, E5 such
that E4 · D1 = 1, E4 · D2 = E4 · D3 = E4 · C = E4 · Ei = 0 for every i = 1, 2, 3, 5
and E5 · D1 = E5 · D2 = 1, E5 · C = E5 · Ei = 0 for every i = 1, 2, 3, 5. Note that
E1, E3, E4, E5 are the exceptional curves of blow ups of P7, P6, P2, P3 correspond-
ingly, E2 is the proper transform of line that passes through P1 and P4. Assume that
C is a (0)-curve. We have

ϕ∗(H) ≡ L = aC + (a − 1 + λ1)E1 + (a − 1 + λ2)E2 + (2a − 2 + λ3)E3+
+

(
a − 1 + λ3

2

)
D3 + (2b − 1)D1 + (2b − 2)D2 + (4b − 4)E5 + (2b − 2)E4,

where a + b = 2. Sinceλ1 ≥ λ2 > 0 andλ3 > 0,we see that there exist a, b such that
L is an effective divisor. Let g : Y → X̃ be a sequence of blow ups with exceptional
curves F1, . . . , F4 in this order. We have the following configuration on Y (Fig. 33).
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Fig. 33 Curves in the surface Y used in 2.3.6

Note that there exists a P1-fibration h : Y → P
1 such that h has only two singular

fibers C1 and C2, where

C1 = C + E1 + E2 + 2E3 + D3, C2 = 4E5 + 2D1 + 2D2 + 2E4 + 2F2 + F1 + F3.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F4, L1, L2 correspond to C1, C2.

Assume that C = R1 + R2, where R1, R2 are (−1)-curves. We may assume that
E3 meets R1, E1, E2 meet R2. Then, we have the same picture as in Case2.3.2 (see
Fig. 31). So, X has an H -polar cylinder.

2.3.7 Assume that rH = 3 and H = −K X + λ1E1 + λ2ϕ(E2) + λ3ϕ(E3), where
E1, E2, E3 are (−1)-curves, E3 · D3 = 1, E2 · D2 = 1, 1 > λ1 > 0, 2 > λ2 ≥ λ3 >

0. Note that C · Ei = 1 for every i = 1, 2, 3. Moreover, there exists a (−1)-curve E4

such that E4 · D1 = 1,

E4 · D2 = E4 · D3 = E4 · C = E4 · E j = 0

for every j = 1, 2, 3. Note that E1, E2, E3, E4 are the exceptional curves of blow
ups of P7, P4, P6, P2 correspondingly. Assume that C is a (0)-curve. Note that there
exists a (0)-curve M such that M passes through the intersection point of D1 and C ,
and

M · D1 = M · C = 1, M · D2 = M · D3 = M · Ei = 0

for every i = 1, 2, 3, 4. We see that M is the proper transform of line that passes
through P5 and the intersection point of L and C ′. We have
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Fig. 34 Curves in the surface Y used in 2.3.7

ϕ∗(H) ≡ L = aC + (a − 1 + λ1)E1 + (2a − 2 + λ2)E2 + (2a − 2 + λ3)E3+
+

(
a − 1 + λ2

2

)
D2 +

(
a − 1 + λ3

2

)
D3 + bD1 + (b − 1)E4 + (3b − 3)M,

where a + b = 2. Sinceλ1 > 0 andλ2 ≥ λ3 > 0,we see that there exist a, b such that
L is an effective divisor. Let g : Y → X̃ be a sequence of blow ups with exceptional
curves F1, . . . , F5 in this order. We have the following configuration on Y (Fig. 34).

Note that there exists a P1-fibration h : Y → P
1 such that h has only two singular

fibers C1 and C2, where

C1 = C + E1 + 2E2 + 2E3 + D2 + D3, C2 = 3M + 3F1 + 3F2 + 2F3 + F4 + D1 + E4.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F5, L1, L2 correspond to C1, C2.

Assume that C = R1 + R2, where R1, R2 are (−1)-curves. Note that we have the
same picture as in Case2.3.2 (see Fig. 31). So, X has an H -polar cylinder (Fig. 34).

2.3.8 Assume that rH=3 and H = −K X + λ1ϕ(E1) + λ2ϕ(E2) + λ3ϕ(E3), where
E1, E2, E3 are (−1)-curves, E1 · D1=E2 · D2 = E3 · D3 = 1, 2 > λ1 ≥ λ2 ≥ λ3 >

0. Note that C · E2 = C · E3 = 1, C · E1 = 0. Moreover, there exists a (−1)-curve
E4 such that E4 · D1 = 1,

E4 · D2 = E4 · D3 = E4 · C = E4 · E j = 0

for every j = 1, 2, 3. Note that E1, E2, E3 are the exceptional curves of blow ups
of P2, P4, P6 correspondingly, E4 is the proper transform of line that passes through
P5 and P7. Assume that C is a (0)-curve. Note that there exists a (0)-curve M such
that M passes through the intersection point of D1 and C , and M · D1 = M · C = 1,
M · D2 = M · D3 = M · Ei = 0 for every i = 1, 2, 3, 4.We see that M is the proper
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transform of line that passes through P5 and the intersection point of L and C ′. We
have

ϕ∗(H) ≡ L = aC + (2a − 2 + λ2)E2 + (2a − 2 + λ3)E3 +
(

a − 1 + λ2

2

)
D2+

+
(

a − 1 + λ3

2

)
D3 +

(
b + λ4

2

)
D1 + (b − 1 + λ4)E1 + (b − 1)E4 + (2b − 2)M,

where a + b = 2. Since λ1 ≥ λ2 ≥ λ3 > 0, we see that there exist a, b such that L
is an effective divisor. Let g : Y → X̃ be a sequence of blow ups with exceptional
curves F1, . . . , F4 in this order. We have the following configuration on Y (Fig. 35).

Note that there exists a P1-fibration h : Y → P
1 such that h has only two singular

fibers C1 and C2, where

C1 = C + 2E2 + 2E3 + D2 + D3, C2 = 2M + 2F1 + 2F2 + D + E1 + E4 + F3.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F4, L1, L2 correspond to C1, C2.

Assume that C = R1 + R2, where R1, R2 are (−1)-curves. We may assume that
E2 meets R1, E3 meets R2. Note that there exists E5 such that E5 is a (−1)-curve and
E5 · D1 = 1, E5 · D2 = E5 · D3 = E5 · Ei = 0 for every i = 1, 2, 3, 4. We have

ϕ∗(H) ≡ L = a R1 +
(

a − 1 + λ2

2

)
D2 + (2a − 2 + λ2)E2 +

(
b + λ1

2

)
D1 + (b − 1 + λ1)E1+

+(b − 1)E4 + (b − 1)E5 + cR2 +
(

c − 1 + λ3

2

)
D3 + (2c − 2 + λ3)E3,

where a + b + c = 3. Since λ1 ≥ λ2 ≥ λ3 > 0, we see that there exist a, b, c such
that L is an effective divisor. Let g : Y → X̃ be the blow up of intersection point of
C and D1, F be the exceptional divisor of g. We have the following configuration
on Y (Fig. 36).

Note that there exists aP1-fibration h : Y → P
1 such that h has only three singular

fibers C1, C2, C3, where

C1 = R1 + 2E2 + D2, C2 = R2 + 2E3 + D3, C3 = D1 + E1 + E4 + E5.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2 + L3),

where K is a unique (−1)-curve and L1, L2, L3 are fibers. Then X has an H -polar
cylinder.Note that K corresponds to F , L1, L2, L3 correspond toC1, C2, C3 (Figs. 35
and 36).
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Fig. 35 Curves in the surface Y used in 2.3.8 in case when C is a (0)-curve

Fig. 36 Curves in the
surface Y used in 2.3.8 in
case when C is reducible
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2.3.9 Assume that rH = 4 and

H = −K X + λ1E1 + λ2ϕ(E2) + λ3ϕ(E3) + λ4ϕ(E4),

where E1, E2, E3, E4 are (−1)-curves such that E4 meets D1, 2 > λ > 0, E2 meets
D2, E3 meets D3, 1 > λ1 > 0, 2 > λ2 ≥ λ3 ≥ λ4 > 0. We have the same picture as
in Case2.3.7. So, X has an H -polar cylinder.

2.3.10 Assume that rH = 4 and

H = −K X + λ1E1 + λ2E2 + λ3ϕ(E3) + λ4ϕ(E4),

where E1, E2, E3, E4 are (−1)-curves such that E3 meets D3, E4 meets D1, 2 >

λ3 ≥ λ4 > 0, 1 > λ1 ≥ λ2 > 0. We have the same picture as in Case2.3.6. So, X
has an H -polar cylinder.

�

Lemma 2.4 Let X be a del Pezzo surface with du Val singularities, deg(X) = 2 and
let H be an ample divisor of type B(rH ) on X. Assume that X has four singular
points of type A1. Then X has an H-polar cylinder.
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Proof Let ϕ : X̃ → X be the minimal resolution of singularities of X and let

D = D1 + D2 + D3 + D4

be the exceptional divisor of ϕ.

2.4.1 Assume that rH = 1 and H = −K X + λE , where E is a (−1)-curve, 1 > λ >

0. Note that we can obtain X̃ by the following way. Consider a conic B onP2. Choose
three points P1, P2, P3 on B and one point P4 such that P4 /∈ B. Let ψ1 : X ′ → P

2

be the blow ups of P1, P2, P3, P4, and S1, S2, S3, E be the exceptional curves of ψ1

such that Si corresponds to Pi , E corresponds to P4. Put B ′ is the proper transform of
B. Let ψ2 : X̃ → X ′ be the blow ups of intersection points of B ′ and S1, S2, S3, and
E1, E2, E3 be the exceptional curves ofψ2. Then the proper transform of B is D1, the
proper transforms of S1, S2, S3 are D2, D3, D4. Note that there exists line C ′ on P

2

such thatC ′ meets B in one point. PutC is the proper transformofC ′ on X̃ .We see that
C · D1 = 2 andC meets D1 in one point. Moreover, D2 · C = D3 · C = D4 · C = 0,
C · E = 1 and C is (0)-curve. We have

ϕ∗(H) ≡ L = aC + (a − 1 + λ)E + bD1 + (b − 1)(D2 + D3 + D4)+
+(2b − 2)(E1 + E2 + E3),

where a + 2b = 3. Since λ > 0, we see that there exist a, b such that L is an effective
divisor. Let g : Y → X̃ be a sequence of blow upswith exceptional curves F1, . . . , F4

in this order. We have the following configuration on Y (Fig. 37).
Note that there exists a P1-fibration h : Y → P

1 such that h has only two singular
fibers C1 and C2, where

C1 = 2E + 2C + 2F2 + F1 + F3, C2 = D1 + 2E1 + 2E2 + 2E3 + D2 + D3 + D4.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F4, L1, L2 correspond to C1, C2 (Fig. 37).

2.4.2 Assume that rH = 1 and H = −K X + λϕ(E), where E is a (−1)-curve such
that E meets D4, 2 > λ > 0. Note that we can obtain X̃ by the following way.
Consider a conic L on P

2. Choose two points P1, P2 on L and two points P3, P4

such that P3 /∈ B and P4 /∈ L . Let ψ1 : X ′ → P
2 be the blow ups of P1, P2, P3, P4,

and S1, E2, S3, S4 be the exceptional curves of ψ1 such that Si corresponds to Pi , E2

corresponds to P2. Put L ′ is the proper transform of L . Let ψ2 : X̃ → X ′ be the blow
ups of the intersection point P ′

1 of L ′ and S1 and two points P ′
3, P ′

4 on S3, S4, and
E1, E ′, E be the exceptional curves of ψ2. Then the proper transform of L is D1, the
proper transforms of S1, S3, S4 are D2, D3, D4 correspondingly. Consider a linear
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Fig. 37 Curves in the surface Y used in 2.4.1

system |2T |, where T is the class of a line. We have dim |2T | = 5. So, there exists
exactly one element C ′ ∈ |2T | such that C ′ passes through P4, P5, P6, P7 and C ′
meets L in one point, C ′ passes through P3, P4 and the proper transform of C ′ on X ′
passes through P ′

3, P ′
4. PutC is the proper transform ofC ′. ThenC is either (0)-curve,

either two (−1)-curves. Note that C · E = 1. Moreover, there exist a (−1)-curve E3

such that

E3 · D1 = 1, E3 · D2 = E3 · D3 = E3 · D4 = E3 · E1 = E3 · E2 = E3 · E = 0.

We see that E3 is the proper transform of line that passes through P3 and the proper
transform of this line passes through P ′

3. Assume that C is a (0)-curve. Note that
there exists a (0)-curves M such that M passes through the intersection point of
D1 and C and M · D j = M · Ek = 0 for every j = 2, 4, k = 1, 2, 3, M · E = 0,
M · D3 = 1. Note that M is the proper transform of the line that passes through P3

and the intersection point of L and C ′. We have

ϕ∗(H) ≡ L = aC + (2a − 2 + λ)E +
(

a − 1 + λ

2

)
D4 + bD1 + (b − 1)(D2 + E2 + E3)

+(2b − 2)E1 + 2cM + cD3,

where a + b + c = 2. Since λ > 0, we see that there exist a, b, c such that L is an
effective divisor. Let g1 : Y1 → X̃ be the blow up of intersection point of C and D1,
F1 be the exceptional divisor of g1. Let g2 : Y2 → Y1 be the blow up of intersection
point of C , D1 and F1, F2 be the exceptional divisor of g2. We have the following
configuration on Y2 (Fig. 38).

Note that there exists aP1-fibration h : Y2 → P
1 such that h has only three singular

fibers C1, C2, C3, where

C1 = C + 2E + D4, C2 = F1 + 2M + D3, C3 = D1 + 2E1 + E2 + E3 + D2.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2 + L3),
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Fig. 38 Curves in the
surface Y2 used in 2.4.2 in
case when C is a (0)-curve

F2

C F1

E

D1

M1

M2

E2

E1

D2D3

D4

Fig. 39 Curves in the
surface Y used in 2.4.2 in
case when C is reducible
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where K is a unique (−1)-curve and L1, L2, L3 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F2, L1, L2, L3 correspond to C1, C2, C3.

Assume that C = R1 + R2, where R1, R2 are (−1)-curves. We may assume that
E meets R1. Let g : Y → X̃ be the blow up of intersection point of C and D1, F be
the exceptional divisor of g. We have the following configuration on Y (Fig. 39).

On the other hand,

ϕ∗(H) ≡ L = a R1 + (2a − 2 + λ)E +
(

a − 1 + λ

2

)
D4 + bD1 + (b − 1)D2 + (2b − 2)E1+

+(b − 1)E3 + cR2 + (2c − 2)E2 + (c − 1)D3,

where a + b + c = 3. Since λ > 0, we see that there exist a, b, c such that L is an
effective divisor. Note that there exists a P

1-fibration h : Y → P
1 such that h has

only three singular fibers C1, C2, C3, where

C1 = R1 + 2E + D4, C2 = R2 + 2E2 + D3, C3 = D1 + 2E1 + D2 + E3.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2 + L3),

where K is a unique (−1)-curve and L1, L2, L3 are fibers. Then X has an H -polar
cylinder.Note that K corresponds to F , L1, L2, L3 correspond toC1, C2, C3 (Figs. 38
and 39).

2.4.3 Assume that rH = 2 and H = −K X + λ1E1 + λ2E2, where E1, E2 are (−1)-
curves, 1 > λ1 ≥ λ2 > 0.We can obtain X̃ by the sameway as inCase2.4.1. So, there
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Fig. 40 Curves in the
surface Y2 used in 2.4.3
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exists a (0)-curve C such that C · D1 = 2 and C meets D1 in one point. Moreover,
D2 · C = D3 · C = D4 · C = 0, C · E1 = C · E2 = 1. Moreover, there exist (−1)-
curves E3, E4 such that

E3 · D1 = E4 · D1 = E3 · D3 = E4 · D2 = 1,

E3 · D2 = E4 · D3 = 0, Ei · C = Ei · E j = 0 for every i = 3, 4, j = 1, 2, Ei · D4 =
0 for every i = 1, 2, 3, 4. We see that there exists a (0)-curve M such that M passes
through the intersection point of D1 and C and M · D2 = M · D3 = M · Ei = 0 for
every i = 1, 2, 3, 4, M · D4 = 1. Note that M is the proper transform of the line that
passes through P3 and the intersection point of L and C ′. We have

ϕ∗(H) ≡ L = aC + (a − 1 + λ1)E1 + (a − 1 + λ2)E2 + bD1 + (b − 1)(D2 + D3)+
+(2b − 2)(E3 + E4) + 2cM + cD4,

where a + b + c = 2. Since λ1 ≥ λ2 > 0, we see that there exist a, b, c such that
L is an effective divisor. Let g1 : Y1 → X̃ be the blow up of intersection point of
C and D1, F1 be the exceptional divisor of g1. Let g2 : Y2 → Y1 be the blow up of
intersection point of C , D1 and F1, F2 be the exceptional divisor of g2. We have the
following configuration on Y2 (Fig. 40).

Note that there exists aP1-fibration h : Y2 → P
1 such that h has only three singular

fibers C1, C2, C3, where

C1 = C + E1 + E2, C2 = F1 + 2M + D4, C3 = D1 + 2E3 + 2E4 + D2 + D3.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2 + L3),

where K is a unique (−1)-curve and L1, L2, L3 are fibers. Then X has an H -
polar cylinder. Note that K corresponds to F2, L1, L2, L3 correspond to C1, C2, C3

(Fig. 40).

2.4.4 Assume that rH = 2 and H = −K X + λ1E1 + λ2ϕ(E2), where E1, E2 are
(−1)-curves such that E2 meets D1, 1 > λ1 > 0, 2 > λ2 > 0.This case is impossible.
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Indeed, let X → Y be the contraction of E1, ϕ(E2). We obtain a del Pezzo surface
Y with ρ(Y ) = 2 and Y has three singular points of type A1. Let f : Y → Z be the
contraction of extremal ray. We have two cases.

(1) Z = P
1. Note that every singular fiber of f contains at most two singular points.

So, there exists a singular fiber C that contains one singular point. We see that
C consists of two curves. Then ρ(Y ) ≥ 3, a contradiction.

(2) Z is a del Pezzo surface with ρ(Z) = 1. Note that Z has three or two singular
points of type A1. This is impossible by classification (see, for example, [8]).

2.4.5 Assume that rH = 2 and H = −K X + λ1ϕ(E1) + λ2ϕ(E2), where E1, E2 are
(−1)-curves such that E1 meets D3, E2 meets D4, 2 > λ1 ≥ λ2 > 0. We can obtain
X̃ by the sameway as in R111S. So, there exists a divisorC such thatC · D1 = 2 and
C meets D1 in one point. Moreover, D2 · C = D3 · C = D4 · C = 0. Note that C is
either (0)-curve, either two (−1)-curves. Note that C · E1 = C · E2 = 1. Moreover,
there exist (−1)-curves E3, E4 such that E3 · D1 = 1,

E3 · D2 = E3 · D3 = E3 · D4 = E3 · C = E3 · E j = 0

for every j = 1, 2, E4 · D1 = E4 · D2 = 1,

E4 · D3 = E4 · D4 = E4 · C = E4 · E j = 0

for every j = 1, 2, 3. Assume that C is a (0)-curve. We have

ϕ∗(H) ≡ L = aC + (2a − 2 + λ1)E1 + (2a − 2 + λ2)E2 +
(

a − 1 + λ1

2

)
D3+

+
(

a − 1 + λ2

2

)
D4 + (2b − 1)D1 + (2b − 2)E3 + (4b − 4)E4 + (2b − 2)D2,

where a + b = 2. Since λ1 ≥ λ2 > 0, we see that there exist a, b such that L is an
effective divisor. Let g : Y → X̃ be a sequence of blow ups with exceptional curves
F1, . . . , F4 in this order. We have the following configuration on Y (Fig. 41).

Note that there exists a P1-fibration h : Y → P
1 such that h has only two singular

fibers C1 and C2, where

C1 = C + 2E1 + 2E2 + D3 + D4, C2 = 4E4 + 2D1 + 2D2 + 2E3 + 2F2 + F1 + F3.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2),

where K is a unique (−1)-curve and L1, L2 are fibers. Then X has an H -polar
cylinder. Note that K corresponds to F4, L1, L2 correspond to C1, C2.
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Fig. 41 Curves in the surface Y used in 2.4.5

Assume that C = R1 + R2, where R1, R2 are (−1)-curves. We may assume that
E2 meets R1, E1 meets R2. Note that we have the same picture as in Case2.4.2 (see
Fig. 39). So, X has an H -polar cylinder (Fig. 41).

2.4.6 Assume that rH = 3. Let fH : X → Z be the contraction given by the Fujita
face �H of the divisor H . Note that Z is a del Pezzo surface with ρ(Z) = 1. By
classification (see, for example, [8]), we see that Z has one singular point of type
A1. So,

H = −K X + λ1ϕ(E1) + λ2ϕ(E2) + λ3ϕ(E3),

where E1, E2, E3 are (−1)-curves such that E1 meets D3, E2 meets D4, E3 meets
D1, 2 > λ1 ≥ λ2 ≥ λ3 > 0. We have the same picture as in Case2.4.5. So, X has an
H -polar cylinder.

�

Lemma 2.5 Let X be a del Pezzo surface with du Val singularities, deg(X) = 2 and
let H be an ample divisor of type B(rH ) on X. Assume that X has five singular points
of type A1. Then X has an H-polar cylinder.

Proof Let ϕ : X̃ → X be the minimal resolution of singularities of X and let

D = D1 + D2 + D3 + D4 + D5

be the exceptional divisor ofϕ. Let fH : X → Y be the contraction given by the Fujita
face �H of the divisor H . Assume that rH = 2. Then Y is a del Pezzo surface with
ρ(Y ) = 1.Note thatY has at least three singular point of type A1, a contradiction (see,
for example, [8]). So, rH = 1. Let g : Y → Z be the contraction of extremal ray. As
above, Z = P

1. Assume that there exists a singular fiber C such that C contains only
one singular point. ThenC consists of two curves. Hence, ρ(Y ) ≥ 3, a contradiction.
So, Y has four singular points of type A1. We see that H = −K X + λϕ(E), where E
is a (−1)-curve such that E meets D5, 2 > λ > 0. Note that we can obtain X̃ by the
followingway.Consider three lines L , L ′L ′′ onP2 such that L , L ′L ′′ pass throughone
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point P . Let P1, P2, P3, P4 be points on P2 such that P1 ∈ L , P2,∈ L ′, P3, P4 ∈ L ′′
and Pi �= P for i = 1, 2, 3, 4. Letψ1 : X ′ → P

2 be the blow ups of P, P1, P2, P3, P4,
and S, S1, S2, S3, S4 be the exceptional curves ofψ1 such that Si corresponds to Pi , S
corresponds to P . Letψ2 : X̃ → X ′ be the blow ups of the intersection points of L , L ′
and S1, S2, and S′

1, S′
2 be the exceptional curves of ψ2. Then the proper transform

of L , L ′, L ′′ are D1, D2, D3, the proper transforms of S1, S2 are D4, D5. Note that
there exists a conic C ′ on P

2 such that C ′ meets L in one point, C ′ passes through
P2, P3, P4 and the proper transform of C ′ on X ′ passes through the intersection point
of L ′ and S2. PutC is the proper transform ofC ′ on X̃ . ThenC is a (0)-curve such that
C · D1 = 2 and C and D1 intersect tangentially, C · Di = 0 for every i = 2, 3, 4, 5,
C · E = 1.Moreover, there exist (−1)-curves E1, E2 such that E1 · D1 = E1 · D2 =
1, E1 · D3 = E1 · D4 = E1 · D5 = 0, E2 · D1 = E2 · D3 = 1, E2 · D2 = E2 · D4 =
E2 · D5 = 0, there exists a (0)-curve M such that M passes through the intersection
point of D1 and C , and M · D4 = 1, M · E = M · D j = M · Ei = 0 for every i =
1, 2, j = 2, 3, 5. We have

ϕ∗(H) ≡ L = aC + (2a − 2 + λ)E +
(

a − 1 + λ

2

)
D5 + bD1 + (b − 1)(D2 + D3)+

+(2b − 2)(E1 + E2) + 2cM + cD4,

where a + b + c = 2. Since λ > 0, we see that there exist a, b, c such that L is an
effective divisor. Let g1 : Y1 → X̃ be the blow up of intersection point of C and D1,
F1 be the exceptional divisor of g1. Let g2 : Y2 → Y1 be the blow up of intersection
point of C , D1 and F1, F2 be the exceptional divisor of g2. We have the following
configuration on Y2 (Fig. 42).

Note that there exists aP1-fibration h : Y2 → P
1 such that h has only three singular

fibers C1, C2, C3, where

C1 = C + 2E + D5, C2 = F1 + 2M + D4, C3 = D1 + 2E1 + 2E2 + D2 + D3.

So,
X̃\Supp(L) ∼= X\Supp(ϕ(L)) ∼= F1\(K + L1 + L2 + L3),

where K is a unique (−1)-curve and L1, L2, L3 are fibers. Then X has an H -
polar cylinder. Note that K corresponds to F2, L1, L2, L3 correspond to C1, C2, C3

(Fig. 42). �

Lemma 2.6 Let X be a del Pezzo surface with du Val singularities, deg(X) = 2
and let H be an ample divisor on X such that H �≡ −μK X . Assume that X has six
singular points of type A1. Then X has an H-polar cylinder.

Proof Let fH : X → Y be the contraction given by the Fujita face�H of the divisor
H . Assume that Y is a del Pezzo surface. Since ρ(X) = 2, we see that ρ(Y ) = 1.
Moreover, Y has at least five singular points of type A1, a contradiction (see, for
example, [8]). So, H is of type C(rH ). Since ρ(X) = 2, we see that every fiber of
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Fig. 42 Curves in the
surface Y2 used in Lemma
2.5
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fH consists of one curve. Then H = −K X + μC , where C is a (0)-curve, μ > 0.
Let fH : X → P

1 be the P1-fibration. Note that C is a fiber of fH . We see that fH

has three singular fibers C1, C2, C3 and every singular fiber contains two singular
points. Note that there exists a section F such that F passes through three singular
points and −K X ≡ 2F . Then

H ≡ L = 2F + μ

3
C1 + μ

3
C2 + μ

3
C3.

So, X\Supp(L) ∼= F1\(K + L1 + L2 + L3), where K is a unique (−1)-curve and
L1, L2, L3 are fibers. Then X has an H -polar cylinder. �

So, Theorem1.4 follows from Lemmas2.1, 2.2, 2.3, 2.4, 2.5, 2.6.

3 Smooth Del Pezzo Surfaces

Let X be a smooth del Pezzo surface of degree two such that there does not exist two
(−1)-curves that intersect tangentially. Assume that there exists an H -polar cylinder,
where

H ≡ −K X + λ1E1 + λ2E2,

where E1, E2 are (−1)-curves and λ1 + λ2 < 1
7 . Put D ≡ H and X \ Supp(D) ∼=

Z × A
1.

Theorem 3.1 ([2], Theorem5.1.1) Let X be a smooth del Pezzo surface,deg(X) = 2
and let H be an ample divisor on X,

H ≡ −K X + λ1E1 + λ2E2.

Assume that X has an H-polar cylinder. Then there exists a point P such that (X, D)

is not lc at P.

The natural projection X \ Supp(D) ∼= Z × A
1 → Z induces a rational map

φ : X ��� P
1. Resolving the base locus of φ we obtain a sequence of blow-ups

ϕ : W → X such that there exists a P1-fibration π : W → P
1 and
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KW + D̄ +
∑

bi Ri = ϕ∗(K X + D),

where D̄ is the proper transform of D, Ri is the exceptional curves of the birational
morphismπ and bi > 0.Moreover, wemay assume that Supp(D̄ + ∑

bi Ri ) consists
of one section and every singular fiber. Let

W = Wn → Wn−1 → · · · → W1 → X

be a sequence of blow-ups and Ri be the exceptional curve of ϕi . Put D(k) = D̄ +
k∑

i=1
bi Ri where D̄ is the proper transform of D on Wk .

Lemma 3.2 E1 �⊂ Supp D and E2 �⊂ Supp D.

Proof Assume that E1 is a component of D. Note that E1 does not pass through
P . So, E1 meets only one component of D. Denote this component by D1. Put
D = aE1 + ∑

ai Di . We see that

1 − λ1 = E1 · (−K X + λ1E1 + λ2E2) = −a + a1.

So, a1 > 1 − λ1. Assume that D1 is a (−1)-curve. Note that X can be obtained by
blow ups P2 in seven points P1, P2, . . . , P7 in general position. Put C is a conic that
passes through P1, P2, . . . , P5, L is a line that passes through P6, P7. We see that
the proper transform of C and L are (−1)-curves. So, for every (−1)-curve E there
exists a (−1)-curve E ′ such that E · E ′ = 2. Moreover, if E ′′ is a (−1)-curve that
meets E then E ′′ does not meet E ′. So, there exists a (−1)-curve E3 on X such that
E3 · D1 = 2, E3 · E1 = 0, E3 · E2 ≤ 1. Since E3 is not a component of D, we see
that

1 + λ2 ≥ E3 · (−K X + λ1E1 + λ2E2) ≥ 2a1 > 2 − 2λ1,

a contradiction. Assume that −K X · D1 = 2. Then D1 is a (0)-curve. Note that there
exist at least three curves E3, E4, E5 such that E3 · D1 = E4 · D1 = E5 · D1 = 2
and Ei · E2 ≤ 1 for every i = 3, 4, 5. We see that at least one of E3, E4, E5 is not a
component of D. We may assume that E3 is not a component of D. Then

1 + λ2 ≥ E3 · (−K X + λ1E1 + λ2E2) ≥ 2a1 > 2 − 2λ1,

a contradiction. Assume that −K X · D1 ≥ 3. Then

2 + λ1 + λ2 = −K X · (−K X + λ1E1 + λ2E2) ≥ 3a1 > 3 − 3λ1,

a contradiction. �

So, we may assume that E1 �⊂ Supp D, E2 �⊂ Supp D. Let g : X ′ → X be the
blow-up of P . Since X ′ has −K X ′ + λ1E1 + λ2E2-polar cylinder, we see that there
exists a (−2)-curve on X ′ (see [2]). So, there exist only two cases.
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(1) There exists rational singular curve C ∈ | − K X | such that P is the double sin-
gular point of C .

(2) There exists a (−1)-curve that passes through P .

Assume that we have the first case. Note that E1 and E2 meet C . Let f : X ′ → Y
be the contraction of E1 and E2. Since X ′ is a del Pezzo surface of degree one, we see
that Y is smooth del Pezzo surface of degree three. As in [2], we have a contradiction.
So, we may assume that there exists a (−1)-curve that passes through P .

Lemma 3.3 Put D = ∑
ai Di . Then ai < 2+λ1+λ2

3 for every i . Moreover, assume
that Di is a (−1)-curve or a (0)-curve. Then ai ≤ 1+λ1+λ2

2 .

Proof Assume that Di is a (−1)-curve. As above (see Lemma3.2), we see that there
exists a (−1)-curve E3 on X such that E3 · Di = 2, E3 · E1 ≤ 1, E3 · E2 ≤ 1. Then

1 + λ1 + λ2 ≥ E3 · (−K X + λ1E1 + λ2E2) ≥ 2ai .

Then ai ≤ 1+λ1+λ2
2 . Assume that Di is a (0)-curve. Note that there exist at least three

(−1)-curves E3, E4, E5 on X such that

E3 · Di = E4 · Di = E5 · Di = 2

and Ei · E j ≤ 1 for every i = 3, 4, 5, j = 1, 2. Then at least one of these curves is
not a component of D. Assume that this is E3. Then

1 + λ1 + λ2 ≥ E3 · (−K X + λ1E1 + λ2E2) ≥ 2ai .

Then ai ≤ 1+λ1+λ2
2 . So, −K X · Di ≥ 3. Then

2 + λ1 + λ2 = −K X · D > 3ai .

Hence, ai < 2+λ1+λ2
3 . �

Lemma 3.4 Every component of D passes through P.

Proof Assume that there exists a component D1 of D such that D1 does not pass
through P . Then D1 is a (−1)-curve. Since D is connected, we see that there exists
a component D2 of D such that D2 · D1 = 1. Moreover, D1 · Di = 0 for all i ≥ 3.
Then

1 + r1λ1 + r2λ2 = D1 · (−K X + λ1E1 + λ2E2) = −a1 + a2,

where r1 = E1 · D1, r2 = E2 · D1. Hence, a2 > 1, a contradiction (see
Lemma3.3).

�
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3.1 P is an Intersection Point of Two (−1)-Curves

Note that D = aE + bE ′ + ∑
ai Di , where E, E ′ are (−1)-curves that pass through

P , Di are irreducible components. Consider W1.

Lemma 3.5 There does not exist a component Di of D such that the proper transform
of Di on W1 is a (−n)-curve (n ≥ 2), Di meets R1 and Di is not E or E ′.

Proof Assume that there exists a component Di of D such that the proper transform
of Di on W1 is a (−n)-curve (n ≥ 2), Di meets R1 and Di is not E or E ′. Then Di

is a (−1)-curve on X . We may assume that i = 1. Since there exists a P1-fibration
π : W → P

1, we see that there exists a component D2 of D such that D2 is a (−1)-
curve and D2 meets E or meets E ′ or meets D1. Assume that D2 meets E . Then
a > 1, a contradiction (see Lemma3.3). By the same reason D2 does not meet E ′
and D1. �

Lemma 3.6 The birational morphism ϕ2 blows up either the intersection point of
R1 and the proper transform of E, or the intersection point of R1 and the proper
transform of E ′.

Proof Assume that ϕ2 blows up P ′ and P ′ /∈ E , P ′ /∈ E ′. Since there exists a P
1-

fibration π : W → P
1, we see that there exists a component D1 of D such that D1 is

a (−1)-curve and D1 meets E or meets E ′. Assume that D1 meets E . Then a > 1, a
contradiction (see Lemma3.3). �

So, we may assume that ϕ2 blows up the intersection point of R1 and the proper
transform of E . Then b1 ≥ 2b. Indeed, since every component of D passes through
P (see Lemma3.4), we see that R1 is a unique component of D(1) that meets E ′.
Then

0 ≤ E ′ · (−KW1 + λ1E1 + λ2E2) = E ′ · D(1) = −2b + b1.

Lemma 3.7 b ≤ 1+λ1+λ2
3 , b1 ≤ 2

3 (1 + λ1 + λ2).

Proof We see that X can be obtained by blow ups P2 in seven points P1, P2, . . . , P7

in general position. Note that we may assume that E, E ′ are the proper transforms of
lines L1, L2, E1, E2 are exception curves and P1, P2 ∈ L1, P3, P4 ∈ L2. We see that
there exists a conic C that passes through P1, P5, P6, P7 and the intersection point
of L1 and L2. The proper transform of C on W1 is a (−1)-curve E3. We have

E3 · R1 = E3 · E ′ = 1.

Moreover, E3 · E1 ≤ 1, E3 · E2 ≤ 1. Then

1 + λ1 + λ2 ≥ E3 · (−KW1 + λ1E1 + λ2E2) ≥ b1 + b ≥ 3b.

Hence, b ≤ 1+λ1+λ2
3 . �
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Lemma 3.8 There does not exist a component Di of D such that the proper transform
of Di on W2 is a (−n)-curve (n ≥ 2), Di meets R2 and Di is not E.

Proof Assume that there exists a component Di of D such that the proper transform
of Di on W2 is a (−n)-curve (n ≥ 2), Di meets R2 and Di is not E . Then Di is
a (0)-curve on X . We may assume that i = 1. As above, there exists a component
D2 of D such that D2 is a (−1)-curve and D2 meets one of E, E ′, R1, D1. Since
a ≤ 1+λ1+λ2

2 and b ≤ 1+λ1+λ2
3 , we see that D2 meets D1. Then a1 > 1, a contradiction

(see Lemma3.3). �

Lemma 3.9 b2 < 1+3λ1+3λ2
2 .

Proof We have

λ1 + λ2 = −KW2 · (−KW2 + λ1E1 + λ2E2) = −KW2 · D(2) > −a + b2.

Then, by Lemma3.3,

b2 < a + λ1 + λ2 ≤ 1 + 3λ1 + 3λ2

2
.

�

Lemma 3.10 The birational morphism ϕ3 blows up either the intersection point of
R2 and the proper transform of E, or the intersection point of R2 and the proper
transform of R1.

Proof Assume that ϕ3 blows up P ′ and P ′ /∈ E , P ′ /∈ R1. Since there exists a P1-
fibration π : W → P

1, we see that there exists a component D1 of D such that D1

is a (−1)-curve and D1 meets E or meets E ′ or meets R1. Since a ≤ 1+λ1+λ2
2 and

b ≤ 1+λ1+λ2
3 , we have a contradiction. �

Consider the case when ϕ3 blows up the intersection point of R2 and the proper
transform of E . Note that in this case b2 ≥ 3b. Indeed,

0 = R1 · (−KW2 + λ1E1 + λ2E2) = R1 · D(2) = b2 − 2b1 + b.

Then b2 = 2b1 − b ≥ 3b. By Lemma3.9, b < 1+3λ1+3λ2
6 .

Lemma 3.11 There does not exist a component Di of D such that the proper trans-
form of Di on W3 is a (−n)-curve (n ≥ 2), Di meets R3 and Di is not E.

Proof Assume that there exists a component Di of D such that the proper transform
of Di on W3 is a (−n)-curve (n ≥ 2), Di meets R3 and Di is not E . Then Di is a
(−2)-curve on W3. Hence, Di · (−K X ) = 3. We may assume that i = 1. As above,
there exists a component D2 of D such that D2 is a (−1)-curve and D2 meets one of
E, E ′, R1, R2, D1. Since a ≤ 1+λ1+λ2

2 and b ≤ 1+3λ1+3λ2
6 , we see that D2 meets D1.

Then a1 > 1, a contradiction (see Lemma3.3). �
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Lemma 3.12 The birational morphism ϕ4 blows up the intersection point of R3 and
the proper transform of R2.

Proof Assume that ϕ4 blows up P ′ and P ′ /∈ E , P ′ /∈ R2. Since there exists a P1-
fibration π : W → P

1, we see that there exists a component D1 of D such that D1 is
a (−1)-curve and D1 meets one of E, E ′, R1, R2. As above, we have a contradiction.
Assume that ϕ4 blows up the intersection point of R3 and the proper transform of E .
Then E is a (−5)-curve on W4 and there does not exist another component Di of
D(4) such that Di is a (−n)-curves on W4. Therefore,

−2 + λ1 + λ2 = −KW4 · D(4) > −KW4 · aE = −3a.

Then a > 2−λ1−λ2
3 , a contradiction (see Lemma3.3). �

Since ϕ4 blows up the intersection point of R3 and the proper transform of R2, we
see that b3 ≥ 4a − 2. Indeed,

−2 = E · (−KW3) ≤ E · (−KW3 + λ1E1 + λ2E2) = E · D(3) = −4a + b3.

Note that (W3, D(3)) is not lc in P ′, where P ′ is the intersection point of R3 and
the proper transform of R2. Put P ′′ is the intersection point of R2 and the proper
transform of E . By property of blow ups, we see that multP ′′(Di ) ≥ multP ′(Di ) for
every component Di of D. Then 4a − 2 ≥ a. Hence, a ≥ 2

3 , a contradiction (see
Lemma3.3).

Consider the case when ϕ3 blows up the intersection point of R2 and the proper
transform of R1. Then b2 ≥ 3a − 1. Indeed,

−1 = E · (−KW2) ≤ E · (−KW3 + λ1E1 + λ2E2) = E · D(2) = −3a + b2.

As above, 3a − 1 ≥ a. So, a ≥ 1
2 . By Lemma3.9, we see that b2 < 1. Note that

a, b, b1 are also less than one. As above, there does not exist a component Di of D
such that the proper transform of Di on W3 is a (−n)-curve (n ≥ 2), Di meets R3,
and ϕ4 blows up either the intersection point of R3 and the proper transform of R1,
or the intersection point of R3 and the proper transform of R2.

Assume that ϕ4 blows up the intersection point of R3 and the proper transform of
R1. Then b3 ≥ 5a − 2. Indeed,

0 = R2 · (−KW3 + λ1E1 + λ2E2) = −2b2 + a + b3.

So, b3 = 2b2 − a ≥ 5a − 2. On the other hand,

−1 + λ1 + λ2 = −KW3 · D(3) > −KW3 · (aE + b1R1 + (5a − 2)R3) = 4a − b1 − 2.

We obtain b1 > 4a − 1 − λ1 − λ2 ≥ 1 − λ1 − λ2, a contradiction (see Lemma3.7).
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Assume that ϕ4 blows up the intersection point of R3 and the proper transform of
R2. Then b3 = 3b1 − b − 1. Indeed,

−1 = R1 · (−KW3 + λ1E1 + λ2E2) = −3b1 + b + b3.

So, b3 = 3b1 − b − 1 ≥ 5b − 1. As above, 5b − 1 ≥ 2b. Hence, b ≥ 1
3 On the other

hand,

−1 + λ1 + λ2 = −KW3 · D(3) > −KW3 · (aE + b1R1 + b3R3) = −a − b1 + b3 = −a − b + 2b1 − 1.

We obtain a > 3b − λ1 − λ2 ≥ 1 − λ1 − λ2, a contradiction (see Lemma3.3). So,
P is not an intersection point of two (−1)-curves.

3.2 P is Not an Intersection Point of Two (−1)-Curves

Let E be a unique (−1)-curve that passes through P . Note that E1, E2 do not meet
E . Put D = aE + ∑

ai Di , where Di are irreducible components. Consider W1.

Lemma 3.13 b1 ≤ 1+λ1+λ2
2 .

Proof We see that X can be obtained by blow ups P2 in seven points P1, P2, . . . , P7

in general position. Note that we may assume that E is the proper transform of line
L , E1, E2 are exception curves and P6, P7 ∈ L . We see that there exists a rational
cubic curve C such that C passes through P1, P2, . . . , P6 and C has a singularity in
P . The proper transform of C on W1 is a (−1)-curve E3. We have

E3 · R1 = 2, E3 · E1 = E3 · E2 = 1.

Then
1 + λ1 + λ2 = E3 · (−KW1 + λ1E1 + λ2E2) ≥ 2b1.

Then b1 ≤ 1+λ1+λ2
2 . �

Lemma 3.14 The birational morphism ϕ2 blows up the intersection point of R1 and
the proper transform of E.

Proof Assume that ϕ2 blows up a point P ′ ∈ R1 and P ′ is not the intersection point
of R1 and the proper transform of E . Since

−KW3 · D(3) = −1 + λ1 + λ2 < 0,

we see that there exists a component N of D(3) such that N is a (−3)-curve on W3 and
the coefficient of N in D(3) is at least 1 − λ1 − λ2, a contradiction (see Lemmas3.3
and 3.13). �
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Lemma 3.15 There does not exist a component Di of D such that the proper trans-
form of Di on W2 is a (−n)-curve (n ≥ 2), Di meets R2 and Di is not E.

Proof Assume there exists a component Di of D such that the proper transform of
Di on W2 is a (−n)-curve (n ≥ 2), Di meets R2 and Di is not E . Note that n = 2
and Di is a (0)-curve on X . We may assume that i = 1. Since there exists a P

1-
fibration π : W → P

1, we see that there exists a component D2 of D such that D2

is a (−1)-curve and D2 meets E or meets R1 or meets D1. Assume that D2 meets
E . Then a > 1, a contradiction (see Lemma3.3). Assume that D2 meets R1. Then
b1 > 1, a contradiction (see Lemma3.13). Assume that D2 meets D1. Then a1 > 1,
a contradiction (see Lemma3.3). �

Lemma 3.16 The birational morphism ϕ3 blows up either the intersection point of
R2 and the proper transform of E, or the intersection point of R2 and the proper
transform of R1.

Proof Assume that ϕ3 blows up P ′ and P ′ /∈ E , P ′ /∈ R1. Then W3 has only one
(−3)-curve E , and every component of D(3) has self-intersection at least −2. So,

−1 + λ1 + λ2 = −KW3 · D(3) ≥ −a.

Then a ≥ 1 − λ1 − λ2, a contradiction. �

Lemma 3.17 Assume that ϕ3 blows up the intersection point of R2 and the proper
transform of R1. Then there does not exist a component Di of D such that the proper
transform of Di on W3 is a (−n)-curve (n ≥ 2), Di meets R3.

Proof Assume that there exists a component Di of D such that the proper transform
of Di on W3 is a (−n)-curve (n ≥ 2), Di meets R3. We may assume i = 1. As above,
there exists a component D2 of D such that D2 is a (−1)-curve and D2 meets one of
the proper transform of D1, R1, R2, E . Assume that D2 meets the proper transform
of E . Then a > 1, a contradiction. Assume that D2 meets the proper transform of
R1. Then b1 > 1, a contradiction. Assume that D2 meets the proper transform of
D1. Then a1 > 1, a contradiction. Assume that D2 meets the proper transform of R2.
Then b2 > 1. Consider W2. We have

λ1 + λ2 = −KW2 · D(2) ≥ −KW2 · (b2R2 + aE) = b2 − a.

Then a > 1 − λ1 − λ2, a contradiction. �

Lemma 3.18 The birational morphism ϕ3 does not blow up the intersection point
of R2 and the proper transform of R1.

Proof Assume that ϕ3 blows up the intersection point of R2 and the proper transform
of R1. Then b2 = 3a − 1. Consider W4. Put P ′ = ϕ4(R4). Assume that P ′ /∈ R2 and
P ′ /∈ R1. As above, there exists a component D1 of D such that D1 is a (−1)-curve
on W3 and D1 meets one of the proper transform of R1, R2, E . Assume that D1 meets
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E . Then a > 1, a contradiction (see Lemma3.3). Assume that D1 meets R1. Then
b1 > 1, a contradiction (see Lemma3.13). Assume that D1 meets R2. Then b2 > 1.
Hence, 3a − 1 > 1. So, a > 2

3 , a contradiction (see Lemma3.3). Assume that P ′ is
the intersection point of R3 and R1. We have

−2 + λ1 + λ2 = −KW4 · D(4) ≥ −a − 2b1.

Hence, a > 1
3 (2 − λ1 − λ2) or b1 > 1

3 (2 − λ1 − λ2), a contradiction (see Lem-
mas3.13, 3.3). Assume that P ′ is the intersection point of R3 and R2. Note that
b2 = 3a − 1. Since there does not exist a component Di of D such that the proper
transform of Di on W3 is a (−n)-curve where n ≥ 2 (see Lemma3.17), we see that

−2 + λ1 + λ2 = −KW4 · D ≥ −a − 3a + 1 − b1 = −4a − b1 + 1.

Then 4a + b1 ≥ 3 − λ1 − λ2. Hence, a > 1
5 (3 − λ1 − λ2) or b1 > 1

5 (3 − λ1 − λ2),
a contradiction (see Lemmas3.13, 3.3). �

By Lemmas3.18 and 3.16, we see that ϕ3 blows up the intersection point of R2

and the proper transform of E . Then b2 = 2b1. Indeed,

0 = R1 · (−KW2 + λ1E1 + λ2E2) = R1 · D(2) = 2b2 − b1.

Lemma 3.19 There does not exist a component Di of D such that the proper trans-
form of Di on W3 is a (−n)-curve (n ≥ 2), Di meets R3 and Di is not E.

Proof Assume that there exists a component Di of D such that the proper transform
of Di on W3 is a (−n)-curve (n ≥ 2), Di meets R3 and Di is not E . We may assume
i = 1. As above, there exists a component D2 of D such that D2 is a (−1)-curve
and D2 meets one of the proper transform of D1, R1, R2, E . Assume that D2 meets
the proper transform of E . Then a > 1, a contradiction. Assume that D2 meets the
proper transform of R1. Then b1 > 1, a contradiction. Assume that D2 meets the
proper transform of D1. Then a1 > 1, a contradiction. Assume that D2 meets the
proper transform of R2. Then b2 > 1. Consider W2. We have

λ1 + λ2 = −KW2 · D(2) ≥ −KW2 · (b2R2 + aE) = b2 − a.

Then a > 1 − λ1 − λ2, a contradiction. �

Lemma 3.20 The birational morphism ϕ4 blows up the intersection point of R3 and
the proper transform of R2.

Proof Put P ′ = ϕ4(R4). Assume that P ′ /∈ R2 and P ′ /∈ E . As above, there exists
a component D1 of D such that D1 is a (−1)-curve and D1 meets one of the
proper transform of R1, R2, E . Assume that D1 meets E . Then a > 1, a contra-
diction (see Lemma3.3). Assume that D1 meets R1. Then b1 > 1, a contradiction
(see Lemma3.13). Assume that D1 meets R2. Then b2 > 1. Consider W2. We have
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λ1 + λ2 = −KW2 · D(2) > b2 − a.

Then a > 1 − λ1 − λ2, a contradiction (see Lemma3.3). Assume that P ′ is the inter-
section point of R3 and the proper transform of E . We have

−2 + λ1 + λ2 = −KW4 · D(4) ≥ −aKW4 · E = −3a.

Hence, a > 1
3 (2 − λ1 − λ2), a contradiction (see Lemma3.3). �

By Lemma3.20 ϕ4 blows up the intersection point of R3 and the proper transform
of R2. Then b3 = 4a − 2. As above, 4a − 2 ≥ a. Hence, a ≥ 2

3 , a contradiction (see
Lemma3.3). So, Theorem1.5 is proved.
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Finiteness of Real Structures on KLT
Calabi–Yau Regular Smooth Pairs of
Dimension 2

Mohamed Benzerga

Abstract In this article, we prove that a smooth projective complex surface X which
is regular (i.e. such thath1(X,OX ) = 0) andwhichhas aR-divisor� such that (X,�)

is a KLT Calabi–Yau pair has finitely many real forms up to isomorphism. For this
purpose, we construct a complete CAT(0) metric space on which Aut X acts properly
discontinuously and cocompactly by isometries, using Totaro’s Cone Theorem. Then
we give an example of a smooth rational surface with finitely many real forms but
having a so large automorphism group that [2] does not predict this finiteness.
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1 Introduction

A real form of a complex projective variety X is a scheme over R whose complexi-
fication is C-isomorphic to X . A real structure on X is an antiregular (or antiholo-
morphic) involution σ : X → X (cf. [10, Chap. 2]). Two real structures σ and σ′ are
equivalent if there is a C-automorphism ϕ of X such that σ′ = ϕσϕ−1.

ByWeil descent of the base field (cf. [12, III.§1.3]), there is a bijective correspon-
dence between the set of R-isomorphism classes of real forms of X and the set of
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The results of this paper are motivated by the study of the finiteness problem for
real forms of rational surfaces. We already addressed this question in our previous
article [2] whose main result, combined with [loc. cit. §3.2], states as follows:

Theorem 1 Let X be a smooth complex rational surfaces and let Aut ∗X be the
image of the natural morphism Aut X → O(Pic X).

If Aut ∗X does not contain a non-abelian free group Z ∗ Z then X has finitely
many real forms up to R-isomorphism.

However, this result does not completely solve the problem since there are ratio-
nal surfaces whose automorphism group does contain a non-abelian free group (cf.
Example4.1). In fact, it is not known how Aut ∗X can be large for a rational surface
X . For example, up to our knowledge, the problem of the finite generation of the
group Aut ∗X is open (but Lesieutre constructed in [8] a six-dimensional variety X
such that Aut ∗X is not finitely generated and he showed that X is an example of a
smooth projective variety having infinitely many non-isomorphic real forms1).

The aim of this article is to prove the following result:

Theorem 2 Let X be a smooth projective complex surface which is regular (i.e.
q(X) := h1(X,OX ) = 0).

If there is a R-divisor � on X such that (X,�) is a KLT Calabi–Yau pair,2 then
X has finitely many real forms up to R-isomorphism.

The proof of this result uses different kind of tools than those we used in [2] and
mostly geometric actions on complete CAT(0) metric spaces: roughly speaking,
a metric space is CAT(0) if it has “nonpositive curvature”. We will give precise
definitions in Sect. 2. Then, we recall the definition of KLT Calabi–Yau pairs and we
prove finiteness of real forms for them using Totaro’s Cone Theorem3.3. We give
an example of a rational surface whose finiteness of real forms cannot be deduced
from Theorem1 but is obtained from Theorem3.4. Finally, we present an example
of a rational surface for which the finiteness problem remains open and which can
be equipped of a Q-divisor � such that (X,�) is log-canonical Calabi–Yau.

2 Preliminaries: Geometric Actions on CAT(0) Spaces

We begin this section by a brief explanation of the link between finiteness of real
forms and geometric (i.e. proper and cocompact) actions on CAT(0) spaces, which
are a generalization of manifolds with nonpositive curvature (see [3, I.1.3, II.1.1]):
this will be our main tool in order to turn our finiteness problem into a problem of
hyperbolic geometry.

1 To the best of our knowledge, it is the first known example.
2 See Definition3.1.
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Definition 2.1 • A geodesic between two points a and b in a metric space (X, d)

is a map γ : [0, �] → X such that γ(0) = a, γ(�) = b and ∀t, t ′ ∈ [0, �], d(γ(t),
γ(t ′)) = |t − t ′| (in particular, γ is continuous and � = d(a, b)). A geodesic tri-
angle � in X consists of three points x, y, z ∈ X and three geodesic segments
[x, y], [y, z], [z, x].

• Ametric space (X, d) is geodesic if every two points in X are joined by a geodesic
(not necessarily unique).

• A geodesic metric space (X, d) is said to be a CAT(0) space if for every geodesic
triangle� in X , there exists a triangle�′ inR

n endowedwith the euclideanmetric,
with sides of the same length as the sides of �, such that distances between points
on � are less than or equal to the distances between corresponding points on �′.

• [3, I.8.2]3 Let � be a group acting by isometries on a metric space X . The action
is said to be proper (or properly discontinuous) if4

∀x ∈ X, ∃r > 0, {γ ∈ �|γ.B(x, r) ∩ B(x, r) �= ∅} is finite.

Theorem 2.2 ([3, II.2.8]) If a group � acts geometrically (i.e. properly discontinu-
ously and cocompactly by isometries) on a complete CAT(0) space, then � contains
only finitely many conjugacy classes of finite subgroups. �

3 As explained in op.cit., I.8.3, if every closed ball of X is compact, then this definition is equivalent
to the standard definition where the open balls are replaced by the compact subsets of X : for us,
this is always the case.
4 Denoting by B(x, r) = {y ∈ X |d(x, y) < r} the open ball of center x ∈ X and radius r ≥ 0.



74 M. Benzerga

3 Finiteness Theorem

Firstly, let us introduce the surfaces we deal with (cf. [13], [14, 8.2, 8.4] for a slightly
more general definition):

Definition 3.1 (KLT Calabi–Yau pair)
Let X be a smooth projective complex variety and � be a R-divisor on X .

(X,�) is a KLT (resp. log-canonical) Calabi–Yau pair if there exists a resolu-
tion π : (˜X , ˜�) → (X,�) satisfying the following conditions:

• K
˜X + ˜� = π∗(KX + �);

• ˜� has simple normal crossings and his coefficients are < 1 (KLT condition), resp.
≤ 1 (log-canonical condition);

• � is an effective R-divisor such that KX + � is numerically trivial (Calabi–Yau
condition).

Example 3.2 Let us present here some examples of KLT Calabi–Yau pairs. The
reader may also look at Examples4.1 and 4.2.

• Of course, there are irrational surfaces X having a R-divisor � such that (X,�) is
KLT Calabi–Yau (simply think of X being Calabi–Yau smooth and� = 0). There
are less trivial examples, like some P

1-bundles over elliptic curves (cf. [1, 1.4]).
• If X is a Halphen surface of index m ≥ 2 (for the definition, cf. [5, Sect. 2]) and

F a reduced fibre of the elliptic fibration on X with simple normal crossings,

then

(

X,
1

m
F

)

is a KLT Calabi–Yau pair: for, the definition of a Halphen surface

shows that F ∼ −mKX and
1

m
< 1. If X is of index 1, then

(

X,
1

2
(F + F ′)

)

is a

KLT Calabi–Yau pair for two distinct reduced smooth fibers F and F ′ of X → P
1.

• Similarly, if X is aCoble surface and if the special fibre F (see [5, Proposition 3.1])

is reduced and has simple normal crossings, then

(

X,
1

2
F

)

is a KLT Calabi–Yau

pair.

For our purposes, we need the following finiteness theorem:

Theorem 3.3 (Cone theorem for KLT Calabi–Yau pairs—[14, 8.7]) Let (X,�) be
a KLT Calabi–Yau pair.

If X is a surface, then the action ofAut X on the nef cone has a rational polyhedral
fundamental domain (i.e. it is the closed convex cone spanned by a finite set of Cartier
divisors in Pic X ⊗Z R). �

The aim of this article is to prove the following result:

Theorem 3.4 Let X be a smooth projective complex surface which is regular (i.e.
q(X) := h1(X,OX ) = 0).

If there is a R-divisor � on X such that (X,�) is a KLT Calabi–Yau pair, then
X has finitely many real forms up to R-isomorphism.
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Thus, Example3.2 shows that our previous result about finiteness of real forms
for Cremona special surfaces, i.e. (cf. [2, 3.2]) is a special case of this result when the
fibre F wementioned in Example3.2 above is reduced with simple normal crossings.

Strategy of the proof.—Let σ be a real structure on X and let Aut #X (resp. Aut ∗X )
be the kernel (resp. the image) of the natural morphism p : Aut X → O(Pic X). If
G = 〈σ〉 acts on Aut X by conjugation (i.e. ∀ϕ ∈ Aut X, σ.ϕ := σϕσ−1), then the
exact sequence

1 −→ Aut #X −→ Aut X −→ Aut ∗X −→ 1

is G-equivariant and induces an exact sequence in Galois cohomology. By [12,
I.§5.5, Corollary 3], it suffices to prove that H 1(G,Aut ∗X) is finite and that ∀b ∈
Z1(G,Aut X), H 1(G, (Aut #X)b) is finite. But this last condition is true for every
smooth irreducible projective complex variety by [12, III.§4.3] and [2, 1.2] (see also
the proof of Theorem 2.5 in loc. cit.). Thus, we need only to show the finiteness of
H 1(G,Aut ∗X).

Now, for the special case of KLT Calabi–Yau pairs, the idea is the following:
using Totaro’s Cone Theorem, we will construct a complete CAT(0) space on which
Aut ∗X � 〈σ∗〉 acts geometrically (where σ∗ ∈ O(Pic X) is the isometry induced by
σ). Then, we will be able to conclude that H 1(G,Aut ∗X) is finite using Theorem2.2
together with the following result (which can be proved easily using the definitions
as in the proof of [2, Theorem 2.4]) :

Lemma 3.5 Let G = 〈σ〉 � Z/2Z, A be a G-group and A � G the semidirect prod-
uct defined by the action of G on A.

If A � G has a finite number of conjugacy classes of elements of order 2 (in par-
ticular, if it has finitely many conjugacy classes of finite subgroups), then H 1(G, A)

is finite.
− − − ∗ ∗ ∗ − − −

Before beginning the proof of this theorem, let us give some definitions to clarify
the terms we use:

Definition 3.6 Let X be either Hn or R
n (5).

• A subset C of X is convex if ∀x, y ∈ C , the geodesic segment linking x and y is
contained in C .

• A side of C is a maximal nonempty convex subset of the relative boundary ∂C
(cf.[11, p. 195, 198]).

• A (convex) polyhedron of X is a nonempty closed convex subset of X whose col-
lection of sides is locally finite. In what follows, we will always say “polyhedron”
instead of “convex polyhedron”.

5 In what follows, whenwritingR
n , it is understood asR

n equippedwith its euclideanmetric (which
is denoted by En in [11]).
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• Let X be a subset of eitherHn orR
n . A fundamental polyhedron (or polyhedral

fundamental domain) for the action of a discrete group � of isometries of X is
a polyhedron P whose interior P̊ is such that the elements of {g(P̊), g ∈ �} are
pairwise disjoint and X =

⋃

g∈�

g(P). Moreover, P is a locally finite fundamental

polyhedron if the set {g(P), g ∈ �} is locally finite, i.e. if for all compact K ⊆ X ,
there are only finitely many elements of {g(P), g ∈ �} which intersect K .

Proof of Theorem 3.4 We begin by explaining how we can turn our problem into a
problem of hyperbolic geometry. Hodge index Theorem shows that the signature of
the intersection form onNS(X) = Pic X is (1, n), where rk Pic X = n + 1. Note that
this is the only place where we use the fact that h1(X,OX ) = 0. In fact, we could
try to remove this hypothesis but we should replace Aut #X and Aut ∗X with the
analogous groups corresponding to the action of Aut X on NS(X) instead of Pic X
but we do not have a general result of cohomological finiteness for the kernel of the
action of Aut X on NS(X) whereas we gave such a result for the kernel of the action
of Aut X on Pic X in the paragraph “Strategy of the proof” above.

Thus, we obtain the hyperboloid model of the hyperbolic space
Hn := {v ∈ Pic X ⊗Z R | v2 = 1, v.H > 0} equipped with the distance
d : (u, v) �→ argcosh(u.v) (where u.v is the intersection product of u and v and
H is an ample divisor class on X .

The radial projection π : Pic X ⊗Z R → Pic X ⊗Z R from the origin onto the
hyperplane {v ∈ Pic X ⊗Z R | v.E0 = 1} � R

n maps the hyperboloid Hn onto the
open unit ball Dn of this hyperplane: when endowed with the appropriate metric,
this is the Klein (projective) model of Hn and π restricts to an isometry Hn → Dn .
The geodesic lines of this model are straight line segments so that the convex subsets
of Dn (for the hyperbolic metric) are exactly its convex subsets for the euclidean
metric of Dn ⊆ R

n . Note that πmaps the isotropic half-cone {v ∈ Pic X ⊗Z R | v2 =
0, v.E0 > 0} onto the boundary ∂Dn (which can be seen as the set of lines of
this isotropic half-cone). We also want to mention the Poincaré ball model Bn of
Hn which is obtained from the hyperboloid model by means of a stereographic
projection from the south pole of the unit sphere of Pic X ⊗Z R on the hyperplane
{v ∈ Pic X ⊗Z R | v.E0 = 0}.

Finally, if we denote by Nef X the nef effective cone of X and if N := π(Nef X ∩
Hn) � (Nef X ∩ Hn)/R

∗, then we see easily that N is a closed convex subset of
Dn and that, by Totaro Cone Theorem3.3, Aut X (or Aut ∗X ) acts on it with a
finitely sided polyhedral fundamental domain (namely, the projection onto Dn of
a polyhedral fundamental domain of the action on Nef X ). Note that, as we said
in the statement of Theorem3.3, there is a fundamental domain P of the action of
Aut X on Nef X which is the closed convex cone generated by finitely many points
of Pic X ⊗Z R; hence, P := π(P) ⊆ Dn is the convex hull of finitely many points
and classical results about convex polyhedra of R

n show that such a convex set is
the intersection of finitely many half spaces and has finitely many sides (which are
defined by the bounding hyperplanes of P). Hence, this is also true for P := P ∩ Dn ,
the fundamental polyhedron of the action of Aut X on N .



Finiteness of Real Structures on KLT Calabi–Yau Regular … 77

In order to use Lemma3.5 and Theorem2.2, we have to prove that Aut ∗X � 〈σ∗〉
acts properly and cocompactly by isometries on a CAT(0) complete metric space. In
fact, we are reduced to prove Lemma3.9, which is the adaptation to our case of [11,
12.4.5, 1⇒ 2] (where we replaced a fundamental domain of the action on Hn by a
fundamental domain on a closed convex subset, which is our N ), and Lemma3.10.
The proof ends on Sect.2. �
Lemma 3.7 Any discrete subgroup � of Isom (Hn) acts properly discontinuously
onHn.

Proof Note that the action of Isom (Hn) � O+(1, n) on Hn is transitive and that
the stabilizer of a point x ∈ Hn (in the hyperboloid model) is the orthogonal group
O(x⊥) � On(R). Thus, this action induces a bijectionHn � O+(1, n)/On(R). Since
� is discrete in the locally compact group O+(1, n) and since On(R) is compact, the
result follows from [15, 3.1.1]. �

Before stating our Lemmas3.9 and 3.10, let us give some other definitions (cf.
[11]):

Definition 3.8 Let � be a discrete subgroup of Isom (Hn).

• A point a ∈ ∂Hn is a limit point of � if there is a point x of Hn and a sequence
(gi ) of elements of � such that (gi (x)) converges to a.

• In thePoincaré ballmodel Bn , anhoroball based at a pointa ∈ ∂Bn is anEuclidean
ball contained in Bn which is tangent to ∂Bn at the point a.

• Assume � contains a parabolic element (cf. [11, Sect. 4.7]) having a ∈ ∂Hn as
its fixed point. horocusp region is an open horoball B based at a point a ∈ ∂Hn

such that
∀g ∈ � \ Stab�(a), g(B) ∩ B = ∅.

The following Lemma develops and makes more precise an idea of Totaro in [14,
Sect. 7]:

Lemma 3.9 Let � be a discrete subgroup of Isom (Hn), L(�) the set of limit points
of � inHn, C(�) the convex hull of L(�) inHn and N a �-invariant closed convex
subset of Hn.

If the action of � on N has a finitely sided polyhedral fundamental domain P,
then there exists a finite union (maybe empty) V0 of horocusp regions with disjoint
closures such that (P ∩ C(�)) \ V0 is compact.

Sketch of proof The proof of this lemma is an adaptation of the proof of [11, 12.4.5,
1⇒ 2]: we replaced the fundamental domain of the action on Hn by a fundamental
domain of the action on a closed convex subset, which is our N and we replaced
geometrical finiteness hypothesis for � (which is more general than the existence of
a finitely sided fundamental polyhedral domain of � onHn) by the hypothesis of the
existence of a finitely sided fundamental polyhedral domain for the action of � on
N . Thus, we have to check all the proofs of the results used by [11] in the proof of
[11, 12.4.5, 1⇒ 2] in order to replace Hn by a closed convex subset N . The details
of these verifications are in the Appendix. Here, we sum up the main points:
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• if P0 is a fundamental polyhedron of the action of � on Hn , then P = P0 ∩ N is
a fundamental polyhedron of the action of � on Hn

• by (6.6.10, 8.5.7), likeHn , a closed convex subset N ofHn is a proper geodesically
connected and geodesically complete metric space6: indeed, N is proper as a
subspace of the proper metric space Hn , N is geodesically complete, as it is
complete, and it is geodesically connected, since it is convex. From this fact, we
can deduce that the action of� on N has a (locally finite) exact convex fundamental
polyhedron, e.g. a Dirichlet polyhedron, by (5.3.5, 6.6.13) and (6.7.4 (2)) since
the group is discrete (and hence acts properly discontinuously, cf. Lemma3.7) and
since there is a point a ∈ N whose stabilizer �a is trivial (by (6.6.12)).

• for the other points, it is a question of replacing Hn by N and checking that
everything remains true (sometimes by using convexity and/or closedness of N in
Hn). �

Lemma 3.10 Let C be a closed convex subset of Hn, � a discrete subgroup of
Isom (Hn) stabilizing C, V0 a finite family of open horoballs with disjoint closures
and V1 :=

⋃

γ∈�

γ(V0).

There is a family of open horoballs with disjoint closures, obtained by shrinking
the horoballs of V1, whose union U is such that C \U is a complete CAT(0) space.

Proof By [3, II.11.27], for every family U of disjoint7 open horoballs, Hn \U is a
completeCAT(0) space for the induced lengthmetric (this distance is definedbetween
2 points as the infimum of the lengths of rectifiable curves ofHn \U between those
two points ; it is different from the metric induced by the hyperbolic metric on
Hn \U ). Thus, C \U is complete as a closed subset of the complete spaceHn \U .

It remains to study geodesic connectedness (term of [11, Sect. 1.4]) or convexity
(term of [3, I.1.3]) of C \ V1 in Hn \ V1 to conclude (using [3, II.1.15.(1)]) that
C \ V1 is CAT(0) for the metric induced by the distance of Hn \ V1 (which is itself
the length metric induced by the metric ofHn). So let x, y ∈ C \ V1 : if the geodesic
γ of Hn joining x and y is contained in Hn \ V1, then it is also contained in C \ V1

since C is convex. Otherwise, Im γ passes through at least one horoball and [3,
II.11.33, II.11.34] shows that a geodesic δ of Hn \ V1 linking x and y is obtained
by concatenation of the hyperbolic geodesics which are tangent to the bounding
horospheres of the horoballs crossed by γ on the one hand and geodesics of these
horospheres on the other hand. A priori, it may happen that Im δ is not contained inC .
But we can shrink V0 so that the antipodal point of the base point of each horosphere
of V0 belongs to C (8), which causes this effect on all the horoballs of V1 under a
finite number of operations. Hence, the geodesics of the horospheres are contained
in C and the hyperbolic geodesics are contained in C because they join two points of
C . Thus, if we denote by U the result of this shrinking of V1, we showed that C \U

6 A metric space is proper or finitely compact if every bounded closed subset of it is compact.
7 This is the key point which explains why we had to prove Lemma3.9.
8 More simply, the horospheres do not “get out” of C .
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is geodesically connected inHn \U and this shows thatC \U is a complete CAT(0)
space. �
End of the proof of Theorem 3.4 We apply Lemma3.9 with � = Aut ∗X , N = π
(Nef (X) ∩ Hn) � Nef (X)/R

∗ and P being a fundamental polyhedron of the action
of � on N : this gives us a finite family V0 of open horoballs with disjoint closures
and a convex subset PC = P ∩ C(�) of P such that PC \ V0 is compact. Thus, �

acts properly (by Lemma3.7) and cocompactly on C \ V1 where C := N ∩ C(�)

and V1 :=
⋃

γ∈�

γ(V0) (note that C(�) is a �-invariant closed convex subset of Hn).

Now, by Lemma3.10, we can replace V1 by another family U of open horoballs
with disjoint closures such that C \U is a complete CAT(0) space. The compacity
of a fundamental domain is preserved by this shrinking because P \ (U ∩ P) is a
bounded closed subset ofHn , so it is compact becauseHn is a proper metric space.
By the way, one can verify that the proof of [11, 12.4.5, 1⇒ 2] allows to shrink the
horoballs without trouble.

Finally, we can conclude that Aut ∗X acts properly and cocompactly on the
complete CAT(0) space C \U . It is not enough: in order to apply Lemma3.5 and
Theorem2.2, we must obtain the same result for Aut ∗X � 〈σ∗〉, where σ is a real
structure on X . By Lemma3.7, the discrete isometry group Aut ∗X � 〈σ∗〉 acts prop-
erly on Hn (hence also on Hn ∩ (C \U )). Since there is a fundamental domain of
Aut ∗X � 〈σ∗〉 which is a closed subset of that of Aut ∗X which is compact, we see
that Aut ∗X � 〈σ∗〉 also acts cocompactly: this concludes the proof. �
Remark 3.11 In fact, we could give a much shorter proof of Theorem3.4 if N were
smooth complete.

First, note that N is a pinched Hadamard manifold9 as a convex subset ofHn: in
particular, note that it is simply connected because of its convexity (which can be
seen in the Klein model, where convexity is the same as Euclidean convexity and
really implies simply connectedness).

Now, if we denote by P a fundamental domain of the action of Aut X on N ⊆ Dn ,
we remark that P is a fundamental domain of the action of Aut X on N ⊆ Dn and
that it is a convex polyhedron of the Klein model Dn ofHn and also of the Euclidean
space R

n (since convexity in the Klein model is the same as Euclidean convexity).
Indeed, by Definition3.6, we need to check that P has a locally finite collection of
sides. But this is true since Totaro Cone Theorem3.3 shows that it is finitely sided (as
we have seen in the beginning of the proof of Theorem3.4). Thus, by [11, 6.4.8], P
has finite volume. Therefore, P is also of finite volume. Since there is a fundamental
domain P ′ of Aut X � 〈σ〉 which is contained in P , we see that P ′ is also of finite
volume. Thus, the quotient of N by � := Aut X � 〈σ〉 is a finite volume quotient of
the pinched Hadamard manifold N and [4, 5.4.2, F5, 6.1, 5.5.2] shows that � has
finitely many conjugacy classes of finite subgroups: thus X has a finite number of
real forms by Lemma3.5.

9 A pinched Hadamard manifold is a complete simply connected Riemannian manifold whose
all sectional curvatures lie between two negative constants.
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4 Two Examples

Example 4.1 Here we study the example given by Totaro in [13]: it is a blow-up X
of P

2 at 12 points and we show that Aut X contains a subgroup isomorphic to Z ∗ Z.
Since there exists a R-divisor � such that (X,�) is a KLT Calabi–Yau pair, X has
finitely many non-isomorphic real forms and this finiteness cannot be deduced from
Theorem1.

Let ζ = e2iπ/3. We denote by X the blow-up of P
2 at the 12 points of the set P =

{[1 : ζ i : ζ j ], (i, j) ∈ [[0; 2]]2} ∪ {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}. Let C1, . . . ,

C9 be the lines of P
2 of equations (y = x), (y = ζx), (y = ζ2x), (z = x), (z =

ζx), (z = ζ2x), (z = y), (z = ζ y), (z = ζ2y). We can easily verify that each line
Ci passes exactly through 4 of the points of P and that each point blown-up is the
intersection point of exactly 3 of the Ci : this is called the dual of Hesse configura-
tion.10

Note that

(

X,
1

3

9
∑

i=1

̂Ci

)

is a KLT Calabi–Yau pair because:

• X is smooth;

• 1

3

9
∑

i=1

̂Ci has simple normal crossings and its coefficients are < 1;

• −KX = 1

3

9
∑

i=1

̂Ci .

Now, let us give some results aboutAut X . Firstly, one can show that if a line D passes
through one of the points [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] and one of the [1 : ζ i : ζ j ],
then D is one of the Ci : for example, if D passes through [1 : 0 : 0] and one of the
[1 : ζ i : ζ j ], then, in the affine chart (x �= 0) of P

2, we have D = (z = ζ j−i y).

We claim that Aut #X = {Id} : since all the points blown-up belong to P
2, it

suffices to check that there does not exist any line passing through at least 11 of the
12 points ofP (in fact, Aut #X is non-trivial if and only ifP does not contain 4 points
in general position, i.e. if and only if all the points of P are collinear except maybe
only one of them). But if D was such a line, then it would necessarily pass through
one of the points [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] and one of the [1 : ζ i : ζ j ]: thus,
D would be one of the Ci . Since none of the Ci passes through 11 of the 12 points
blown-up, we see that D does not exist: this proves the claim.

By the end of the example of [13, Sect. 2], we have (denoting E := C/Z[ζ]):

Aut X � Aut ∗X = (Z/3Z)2 �
GL2(Z[ζ])

Z/3Z
= Aut ((E × E)/(Z/3Z))

10 Hesse configuration itself is not interesting for our purposes: since it contains exactly 9 points
(and 12 lines), the surface obtained by blowing up these points has finitely many non-equivalent
real structures by Theorem1.
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Finally, we want to show that Aut X contains a subgroup isomorphic to Z ∗ Z:

• it is well-known that SL2(Z) contains finite index subgroups isomorphic to Z ∗ Z

(for example, S :=
〈[

1 2
1

]

,

[

1
2 1

]〉

has index 12, cf. [6, II.25]) ;

• GL2(Z[ζ]) acts on E × E = C
2/(Z[ζ]2) bymatrix product and

GL2(Z[ζ])
Z/3Z

is the

quotient by the subgroup generated by ζ.I2. Clearly, two elements of SL2(Z) (or

even GL2(Z)) are never equal modulo 〈ζ.I2〉 so SL2(Z) injects into
GL2(Z[ζ])

Z/3Z
:

this concludes the proof.

Example 4.2 ([7, 6.10]) As promised, we now describe the example of a rational
surface for which the finiteness problem for real forms remains open.

Let L1, . . . , L5 be five lines in general linear position in P
2. For i, j ∈ [[1; 4]],

we denote by pi j the intersection point of Li and L j . Let us fix a cubic C3 passing
through the points pi j and intersecting L5 at three distinct points q1, q2, q3. Finally,
let a be another point of L5.

We consider the blow-up X of P
2 at the 10 points pi j , qk and a: it is a nodal

Coble surface since | − KX | = ∅ and | − 2KX | = {C6 := R1 + R2 + R3 + R4 +
2R5}, where the Ri ’s are the strict transform of the Li ’s in X (note that X is nodal
since R1,…,R4 are (−2)-curves).

In [7], it is claimed that Aut X has infinitely many orbits on the set of (−1)-curves
of X but, in a private communication, Dolgachev explained me that there is a gap in
the proof of this fact (more precisely, the elements of the group G constructed in op.
cit. cannot be lifted to the double covering S(A) of X ramified along R1 + · · · + R4).
Note that if it were true, this would show that X does not contain a divisor� such that
(X,�) is a KLT Calabi–Yau pair. For, if such a divisor existed, then Cone Theorem
would imply that Aut X has finitely many orbits on the extremal rays of the nef cone
of X and this would be true also for its dual cone, which is the cone of curves of X
(cf. [9, 4.1]): this is absurd because (−1)-curves form an Aut X -invariant subset of
the set of extremal rays of NE(X).

However, note that

(

X,
1

2
C6

)

is a log-canonical Calabi–Yau pair since
1

2
C6 =

1

2
(R1 + R2 + R3 + R4) + R5 has clearly simple normal crossings, has coefficients

≤ 1 and satisfies the condition KX + 1

2
C6 ≡ 0.

Acknowledgements The author is grateful to Frédéric Mangolte for asking him this question, and
also for his advice and help.Wewant to thank JulieDéserti, IgorDolgachev, ViatcheslavKharlamov,
Stéphane Lamy and Burt Totaro for useful comments, discussions or emails.



82 M. Benzerga

5 Appendix

In this appendix, we provide a detailed proof of Lemma3.9, i.e. a detailed inspection
of all the proofs of the results used by [11] in the proof of [11, 12.4.5] in order to
replaceHn by a closed convex subset N . We recall here the statement of Lemma3.9:

Lemma3.9 Let � be a discrete subgroup of Isom (Hn), L(�) the set of limit points
of � inHn, C(�) the convex hull of L(�) inHn and N a �-invariant closed convex
subset of Hn.

If the action of � on N has a finitely sided polyhedral fundamental domain P,
then there exists a finite union (maybe empty) V0 of horocusp regions with disjoint
closures such that (P ∩ C(�)) \ V0 is compact.

In what follows, all numbers like (12.4.2) refer to [11]. Moreover, when some
notations are undefined, please consider they are the same as in [11],mutatis mutan-
dis. Finally, when some results cited in the diagram (Fig. 1) are not cited in the text
below, then these are general results which apply to our case either without any
change, or changing onlyHn into N .

Some remarks are widely used below so we gather them here:

• if P0 is a fundamental polyhedron of the action of � on Hn , then P = P0 ∩ N is
a fundamental polyhedron of the action of � on Hn

• by (6.6.10, 8.5.7), likeHn , a closed convex subset N ofHn is a proper geodesically
connected and geodesically complete metric space11: indeed, N is proper as a
subspace of the proper metric space Hn , N is geodesically complete, as it is
complete, and it is geodesically connected, since it is convex. From this fact, we
can deduce that the action of� on N has a (locally finite) exact convex fundamental
polyhedron, e.g. a Dirichlet polyhedron, by (5.3.5, 6.6.13) and (6.7.4 (2)) since
the group is discrete (and hence acts properly discontinuously, cf. Lemma3.7) and
since there is a point a ∈ N whose stabilizer �a is trivial (by (6.6.12)).

• if � is a discrete group of isometries ofHn (seen as Poincaré half-space), then the
stabilizer �∞ of the point at infinity induces a discrete subgroup of Isom (Rn−1) =
Isom (∂Hn \ {∞}). By (5.4.6), there is a �∞-invariant affine subspace Q of R

n−1

of dimension m ≤ n − 1 and �∞ is a finite extension of a Z
m . By (7.5.2), �∞ is a

crystallographic isometry group of R
m � Q, i.e. Q/�∞ is compact

• for the other points, it is a question of replacing Hn by N and checking that
everything remains true (sometimes by using convexity and/or closedness of N in
Hn).

(12.3.7): � is a discrete subgroup of Isom (Hn) so we can define “limit point”,
“bounded parabolic point”... with regard to its action on thewhole spaceHn . Note that
a is a limit point if and only if ∃(gi ) ∈ �N,∀x ∈ Hn, gi (x) −−−−→

i→+∞ a: in particular,

if x ∈ N , then ∀i, gi (x) ∈ N . The rest of the proof can be followed, except that we
can check that the geodesic ray Ri is contained in N .

11 A metric space is proper or finitely compact if every bounded closed subset of it is compact.
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(12.4.3) Firstly, note that (12.4.2) is not necessary for our purposes since P is
finitely-sided.We canmake the same reasoningwith N instead ofHn: if P is a funda-
mental polyhedron of� acting on N , then {g(P)| g ∈ �} is an exact tessellation of N
and {νg(P)| g ∈ �} = T is an exact tessellation of ν(N ) ⊆ R

n−1. But
⋃

g∈�

g(P) = N

soU ⊆ ν(N ). SinceU is an open closed subset of R
n−1 andU ⊆ ν(N ), we see that

U is open and closed in the non-empty connected space ν(N ) so that U = ν(N ).
(12.4.4) The beginning of the proof remains valid: it shows that if x ∈ P ∩ L(�),

where P is the closure of P in Hn , then the stabilizer �x is infinite and elementary
of parabolic type (cf. [11, Sect. 5.5]). Of course, T is an exact tessellation of ν(N )

instead of R
n−1. If c ∈ N is a cusp point of �, then U (Q, r) ∩ N �= ∅ because

U (Q, r) is a neighborhood of c: thus it suffices to replace U (Q, r) by N ∩U (Q, r)
in the end of the proof to conclude.

(12.4.5) Firstly, we note that (12.4 Corollary 3) is a direct corollary of (12.3.7),
(12.4.1) and (12.4.4) and that P is the closure of P inHn . It suffices to replace:

• “� is geometrically finite” by “the fundamental polyhedron of � on N is finitely-
sided” (see (Sect. 12.4, Example 1));

Fig. 1 We framed with bold lines the “initial” results, i.e. those whose proof does not require
anything else that standard definitions and results (in topology, group theory, etc.) or those whose
statement can be adapted to our case without examining their proof and the results used by it
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• in view of the statement of our Lemma3.9, all the statements made in the proof
of (12.4.5) concerning π, V , M are useless for our purposes and all we need is

V0 :=
m

⋃

i=1

Bi

and we have to note that K is a closed subset of Bn included in the closed subset N
(since P ⊆ N ) hence K is a closed subset of N .
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Anticanonical Volumes of Fano 4-Folds

Caucher Birkar

Abstract We find an explicit upper bound for the anticanonical volumes of Fano
4-folds with canonical singularities.

Keywords Fano varieties · Anticanonical volumes
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1 Introduction

We work over an algebraically closed field of characteristic zero.
Fano varieties constitute a fundamental class of algebraic varieties in algebraic

geometry and many other fields. Due to their special features, it is more likely to
have a detailed classification of Fano varieties compared to other classes such as
Calabi–Yau varieties or varieties of general type.

An important step in classifying Fano varieties is to obtain an explicit upper bound
for their anticanonical volume under mild conditions on the singularities. Bounding
the anticanonical volume of smooth Fano 3-folds goes back to Fano himself and it is
a crucial step in showing that smooth Fano 3-folds form a bounded family. Similarly
boundedness of anticanonical volume of smooth Fano varieties of fixed dimension
is used to show that such Fano varieties are bounded: see Nadel [14] for the Picard
number one case and Kollár–Miyaoka–Mori [10] for the general case which also
uses Mori’s bend and break technique.

Not surprisingly everything gets more complicated when we allow singularities.
The surface case is well-understood. An explicit upper bound for anticanonical vol-
ume of Fano 3-folds with canonical singularities is a quite recent result of Jiang–Zou
[6]: the upper bound is 324. In the Q-factorial Picard number one case, an explicit
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upper bound was earlier found by Lai [12] for ε-log canonical (ε-lc for short) Fano
3-folds. For more partial results in dimension 3, see [8, 11], and the references
in [6].

In this note we find an explicit upper bound for Fano 4-folds with canonical
singularities.

Theorem 1.1 Any Fano variety X of dimension 4 with canonical singularities has

vol(−K X ) = (−K X )4 ≤ (104μ(3, 1) + 8)4

where

μ(3, 1) = (840)2
(
6
(
μ

(
2, 1

2

) + 1
2

)
1
2

)3

is given by Lemma2.3 below and in turn μ(2, 1
2 ) is given by the formula

μ(2, δ) =
(
48

δ2

)
2

64
δ3

appearing in Lemma2.2 below.

To the best of our knowledge this is the first result of its kind in dimension 4 for
singular Fano varieties. The proof closely follows the proof of [2, Theorem 1.6]. We
did not aim to find an optimal bound but rather just an explicit bound. The upper
bound in the theorem is unlikely to be anywhere close to the optimal bound. The
number μ(3, 1) is an explicit (not necessarily optimal) upper bound on cofficients of
divisors 0 ≤ BV ∼R −KV for Fano 3-folds V with canonical singularities. Here 3
stands for dimension and 1 stands for 1-log canonical which is the same as canonical.
A similar notation is used below in dimension 2.

In dimension 3 we prove a more general result.

Theorem 1.2 Let ε be a positive real number. Let X be a Fano variety of dimension
3 with ε-lc singularities. Then for any 0 < δ < ε we have

vol(−K X ) ≤
(
6 (μ (2, δ) + ε − δ)

ε − δ

)3

.

In particular, taking δ = ε
2 , we have

vol(−K X ) ≤ v(3, ε) :=
(
6
(
μ

(
2, ε

2

) + ε
2

)
ε
2

)3

.

Here the choice δ = ε
2 is arbitrary. When δ tends to ε, the right hand side of the

first inequality tends to +∞. Similarly when δ tends to 0 again the right hand side
tends to +∞. So the right hand side takes minimum for some value δ ∈ (0, ε).
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Chen Jiang informed us that he also has a proof of this theorem using different
arguments.

Thanks to the referees for their helpful comments.

2 Proof of Results

We will use standard terminology in birational geometry regarding pairs, singular-
ities, etc. Recall that a pair (X, B) has ε-log canonical (ε-lc) singularities if its log
discrepancies are at least ε. When B = 0 we just say that X has ε-lc singularities.

Proposition 2.1 Let d ≥ 2 be a natural number and δ < ε be positive real numbers.
Assume that X is a Fano variety of dimension d with ε-lc singularities and with
vol(−K X ) > (2d)d . Then for any real number a > d

d√vol(−K X )
, there is a pair (V,�V )

where

• 0 < dim V < d,
• V is a δ-lc Fano variety,
• KV + �V ∼Q 0, and
• there is a component of �V with coefficient more than

(1 − 2a)(ε − δ)

2a
.

Proof Step 1. In this step we introduce some notation. Let α = d
d√vol(−K X )

. Then

vol(−αK X ) = αd vol(−K X ) = dd .

It is enough to prove the proposition for a rational number a > α sufficiently close
to α. Then vol(−aK X ) > dd . Since vol(−K X ) > (2d)d but

vol(−2αK X ) = 2d vol(−αK X ) = (2d)d ,

we have 2α < 1, so we can assume that 2a < 1.

Step 2. In this step we create a family of divisors and a covering family of subvari-
eties on X . Since vol(−aK X ) > dd , there exists 0 ≤ B ∼Q −aK X such that (X, B)

is not klt (cf. [7, Lemma 3.2.2]). Pick a closed point x ∈ X outside the non-klt locus
of (X, B). Then again since vol(−aK X ) > dd , there exists 0 ≤ C ∼Q −aK X such
that (X, C) is not klt at x . ChangingC up toQ-linear equivalence we can assume that
(X, C) is not klt but lc at x . Perhaps increasing a slightly and changing C again we
can assume that (X, B + C) has a unique non-klt place whose centre, say G, contains
x [1, Lemma 2.16] (also see [7, Lemma 3.2.3] and its proof). Now put � = B + C .

In the above construction B is fixed but � depends on x . We have thus created a
family of divisors � and a covering family of non-klt centres G on X .
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By construction,

−(K X + �) = −(K X + B + C) ∼Q −(K X − aK X − aK X ) = −(1 − 2a)K X

is ample as 2a < 1. Therefore, the non-klt locus of (X,�) is connected, by the
connectedness principle [9, Theorem 17.4]. This locus contains G together with the
non-klt locus of (X, B). Since x was chosen outside the non-klt locus of (X, B) and
since G contains x , G is not contained in the non-klt locus of (X, B). Then G inter-
sects another non-klt centre of (X,�). This in particular means dim G > 0 because
no other non-klt centre contains x .

Step 3. In this step we apply adjunction. From now on we assume that G is a
general member of the above covering family. Let F be the normalisation of G. By
[7, Theorem 4.2] (also see [2, Construction 3.9 and Theorem 3.10]), we can write an
adjunction formula

(K X + �)|F ∼Q KF + �F := KF + �F + PF

where �F ≥ 0 and PF is pseudo-effective. Increasing a slightly and adding to � we
can assume PF is big and effective.

By assumption δ ∈ (0, ε). Recall that G intersects another non-klt centre of
(X,�). Then we can choose PF such that we can assume (F,�F ) is not δ-lc by
[2, Lemma 3.14(2)].

Step 4. In this step we define a boundary �F ′ and a divisor NF ′ . Let F ′ → F be a
log resolution of (F,�F ). Let KF ′ + �F ′ be the pullback of KF + �F . Define �F ′

on F ′ as follows. For each prime divisor D on F ′ define the coefficient

μD�F ′ :=
⎧⎨
⎩
0 ifμD�F ′ < 0,
μD�F ′ if 0 ≤ μD�F ′ ≤ 1 − δ,

1 − δ ifμD�F ′ > 1 − δ

Clearly (F ′,�F ′) is a klt pair, in fact, it is δ-lc.
Put

NF ′ := �F ′ − �F ′ .

Note that any component D of NF ′ with negative coefficient is also a component of
�F ′ with negative coefficient. Since the components of�F ′ with negative coefficient
are exceptional over F , we deduce that the pushdown of NF ′ to F is effective.

Step 5. In this step we consider a birational model F ′′ from which we obtain
a Mori fibre space F ′′′ → T . Let (F ′′,�F ′′) be a log minimal model of (F ′,�F ′)

over F . We use NF ′′ ,�F ′′ to denote the pushdowns of NF ′ ,�F ′ . We will use similar
notation for other divisors and for pushdown to F ′′′ defined below. By construction,
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KF ′′ + �F ′′ + NF ′′ = KF ′′ + �F ′′ ∼Q 0/F,

so NF ′′ is anti-nef over F . On the other hand, the pushdownof NF ′′ to F is effective. So
by the negativity lemma, NF ′′ ≥ 0. In particular, �F ′′ ≥ 0. Moreover, since (F,�F )

is not δ-lc, (F ′′,�F ′′) is not δ-lc while (F ′′,�F ′′) is δ-lc. Therefore, NF ′′ 
= 0.
Since −(K X + �) is ample, −(KF + �F ) is ample, hence −(KF ′′ + �F ′′) is

semi-ample and big. Pick a general

0 ≤ L F ′′ ∼Q −(KF ′′ + �F ′′)

so that (F ′′,�F ′′ + L F ′′) is δ-lc. Now running an MMP on KF ′′ + �F ′′ + L F ′′ ends
with a Mori fibre space F ′′′ → T because

KF ′′ + �F ′′ + L F ′′ + NF ′′ = KF ′′ + �F ′′ + L F ′′ ∼Q 0

and NF ′′ 
= 0.

Step 6. In this step we finish the proof. By [7, Theorem 4.2], [2, Theorem 3.12], we
canwrite K X |F = KF + 	F where (F,	F ) is sub-ε-lc and	F ≤ �F (	F mayhave
negative coefficients). Let KF ′′ + 	F ′′ be the pullback of KF + 	F . Then (F ′′,	F ′′)

is also sub-ε-lc, so the coefficients of 	F ′′ are ≤ 1 − ε. Moreover, 	F ′′ ≤ �F ′′ .
By construction NF ′′′ is ample over T . Let D′′ be a component of NF ′′ so that D′′′

is ample over T . By the definition of �F ′ and the fact �F ′′ ≥ 0, the components of
NF ′′ are exactly the components of �F ′′ with coefficient > 1 − δ. So we have

μD′′(�F ′′ − 	F ′′) > 1 − δ − (1 − ε) = ε − δ.

Note that
�F ′′ − 	F ′′ = (KF ′′ + �F ′′) − (KF ′′ + 	F ′′)

∼Q (K X + �)|F ′′ − (K X |F ′′) = �|F ′′ ∼Q −2aK X |F ′′ .

On the other hand,

L F ′′ ∼Q −(K X + �)|F ′′ ∼Q −(1 − 2a)K X |F ′′

= 1 − 2a

2a
(−2aK X |F ′′) ∼Q

1 − 2a

2a
(�F ′′ − 	F ′′).

Now let V be a general fibre of F ′′′ → T . Then from

KF ′′′ + �F ′′′ := KF ′′′ + �F ′′′ + 1 − 2a

2a
(�F ′′′ − 	F ′′′) + NF ′′′

∼Q KF ′′′ + �F ′′′ + L F ′′′ + NF ′′′ = KF ′′′ + �F ′′′ + L F ′′′ ∼Q 0
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and its restriction to V we get (V,�V ) such that KV + �V ∼Q 0. On the other hand,
since (F ′′,�F ′′ + L F ′′) is δ-lc, (F ′′′,�F ′′′ + L F ′′′) is δ-lc, hence we see that F ′′′ is
δ-lc, so V is a δ-lc Fano variety with 0 < dim V < d.

Since D′′′ is a component of �F ′′′ − 	F ′′′ with coefficient > ε − δ and since D′′′
intersects V , we deduce that �V has a component with coefficient more than

(1 − 2a)(ε − δ)

2a
.

�

Lemma 2.2 Let ε be a positive real number. Let X be an ε-lc Fano surface and let
B ≥ 0 be an R-divisor with K X + B ∼R 0. Then the coefficient of each component
of B is ≤ μ(2, ε) where

μ(2, ε) :=
(
48

ε2

)
2

64
ε3 .

Proof By the proof of [5, Theorem 2.8], any coefficient of B is at most

l(ε) := (2 + 4ε)(4F�64/ε3�+2 − 4)

ε2

where Fn denotes the Fibonacci number defined by F0 = F1 = 1 and Fn = Fn−1 +
Fn−2 for n ≥ 2. Inductively we can easily see that Fn ≤ 2n−1. So

l(ε) ≤ 24F�64/ε3�+2

ε2
≤ μ(2, ε) :=

(
48

ε2

)
264/ε

3
.

�

Proof (of Theorem 1.2) Let X be a Fano 3-fold with ε-lc singularities. The right
hand side of the both inequalities in Theorem1.2 are more than 63, so it is enough
to treat the case when vol(−K X ) > 63. Pick a positive real number δ < ε and pick a
real number a > 3

3√vol(−K X )
. Applying Proposition2.1, there is a pair (V,�V ) where

• 0 < dim V < 3,
• V is a δ-lc Fano variety,
• KV + �V ∼Q 0, and
• there is a component of �V with coefficient more than

(1 − 2a)(ε − δ)

2a
.

So dim V = 1 or 2. If dim V = 1, then V  P
1, so

(1 − 2a)(ε − δ)

2a
< μ(1, δ) := 2.
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On the other hand, if dim V = 2, then by Lemma2.2, we have

(1 − 2a)(ε − δ)

2a
< μ(2, δ) =

(
48

δ2

)
2

64
δ3 .

Note that μ(1, δ) < μ(2, δ). Thus we can calculate that

1

a
<

2(μ(2, δ) + ε − δ)

ε − δ
.

Fixing δ and taking the limit when a approaches α := 3
3√vol(−K X )

, we see that

1

α
≤ 2(μ(2, δ) + ε − δ)

ε − δ
.

This in turn gives

vol(−K X ) ≤
(
2 (μ(2, δ) + ε − δ)

ε − δ

)3

33.

Applying this to δ := ε
2 , we have

vol(−K X ) ≤
(
2

(
μ

(
2, ε

2

) + ε
2

)
ε
2

)3

33.

�

The next lemma is preparation for the proof of boundedness of volume in dimen-
sion 4.

Lemma 2.3 Let X be a Fano 3-fold with canonical singularities and let B ≥ 0 be
an R-divisor with K X + B ∼R 0. Then the coefficient of each component of B is
≤ μ(3, 1) where

μ(3, 1) := (840)2v(3, 1) = (840)2
(
6
(
μ

(
2, 1

2

) + 1
2

)
1
2

)3

.

Proof By applying [3, Proposition 2.4] to a terminal crepant model of X , we deduce
that I K X is Cartier for some natural number I ≤ 840. On the other hand, we need
an upper bound for the vol(−K X ). Such a bound is given by Theorem1.2 which is

v(3, 1) =
(
6
(
μ

(
2, 1

2

) + 1
2

)
1
2

)3

.
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One could also use the upper bound vol(−K X ) ≤ 324 by [6] but to make the theorem
logically independent of [6] we will use v(3, 1).

Let D be a component B. Then

μD B ≤ (μD B)D · (−I K X )2 ≤ B · (−I K X )2

= (I )2(−K X )3 ≤ (840)2v(3, 1).

�

Proof (of Theorem1.1) Let X be a Fano 4-fold with canonical singularities. We can
assume that vol(−K X ) > 84. Pick a positive real number δ ∈ ( 1213 , 1) and pick a real
number a > α := 4

4√vol(−K X )
. Applying Proposition2.1, there is a pair (V,�V )where

• 0 < dim V < 4,
• V is a δ-lc Fano variety,
• KV + �V ∼Q 0, and
• there is a component of �V with coefficient more than

(1 − 2a)(1 − δ)

2a
.

Since δ ∈ ( 1213 , 1) and since V is δ-lc of dimension at most 3, V actually has canonical
singularities, by [4, 13]. Therefore, considering the cases dim V = 1, 2, 3 separately,
we have

(1 − 2a)(1 − δ)

2a
< max{μ(1, 1), μ(2, 1), μ(3, 1)} = μ(3, 1).

So we get
1

a
<

2(μ(3, 1) + 1 − δ)

1 − δ
.

Taking limit as a approaches α we then have

1

α
=

4
√
vol(−K X )

4
≤ 2(μ(3, 1) + 1 − δ)

1 − δ
.

In turn taking limit when δ approaches 12
13 we see that

vol(−K X ) ≤
(
8
(
μ(3, 1) + 1

13

)
1
13

)4

= (104μ(3, 1) + 8)4.

We can now apply Lemma2.3 to get an explicit bound. �
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Constant Scalar Curvature Sasaki
Metrics and Projective Bundles

Charles P. Boyer and Christina W. Tønnesen-Friedman

Abstract In this paper we consider the Boothby-Wang construction over twist 1
stage 3 Bott orbifolds given in terms of the log pair (Sn,�m). We give explicit con-
stant scalar curvature (CSC) Sasaki metrics either directly from CSCKähler orbifold
metrics or by using the weighted extremal approach of Apostolov and Calderbank.
The Sasaki 7-manifolds (orbifolds) are finitely covered by compact simply con-
nected manifolds (orbifolds) with the rational homology of the 2-fold connected
sum of S2 × S5.

Keywords Admissible construction · Extremal sasaki metrics · CSC sasaki
metrics
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Introduction

Arguably the foremost problem in Sasaki geometry is that of determining which iso-
topy classes of Sasakian structures admit Sasaki metrics of constant scalar curvature
(CSCS). The Sasaki version of the Yau-Tian-Donaldson conjecture says roughly that
CSCS metrics correspond to the affine variety satisfying some type of K-stability
requirement. Collins and Székelyhidi [28] proved that a CSC Sasaki metric implies
the K-semistablility of corresponding affine Kähler variety. Recently, following the
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important work in the Kähler category by Chen and Cheng [23, 24], He and Li [36,
37] have related the existence of CSC Sasaki metrics to the reduced properness of
the Mabuchi K-energy.

Complementary to these existence results, it is important to explore explicit exam-
ples. Of particular interest to us are those Sasaki manifolds (orbifolds) that admit a
transverse admissible construction [3]. A special case of such Sasaki orbifolds consist
of principle S1 orbibundles over Bott manifolds (orbifolds) [9, 33] to be described in
the first Section. In this paper we discuss two fairly explicit methods for constructing
constant scalar curvature Sasaki metrics on a class of 7-manifolds having the rational
cohomology of the 2-fold connected sum of S2 × S5. Specifically, these 7-manifolds,
M7

n,m, arise by a Boothby-Wang construction over a polarized admissible orbifold,
Sn,m, given as a log pair (Sn,�m), where Sn = P

(
1⊕ O(n1, n2)

) −→ CP
1 × CP

1

and �m =
(
1 − 1

m0

)
e0 +

(
1 − 1

m∞

)
e∞, with e0 and e∞ are the infinity sections

of the bundle Sn. The first method is the standard Boothby-Wang construction on
twist one stage 3 Bott orbifolds (KS orbifolds). The second method applies the
weighted extremal approach ofApostolov andCalderbank [1]. Bothmethods employ
the admissible construction at the Kähler level (see [3]) either directly or indirectly.
Specifically, in Sect. 4, with themainwork horses being Propositions 4.16 and Propo-
sition 4.14 (the latter with limitations as mentioned in Remark 4.15), we prove The-
orem 4.17 which together with Remark 4.18 give.

Main Theorem. Let M7
n,m be a Boothby-Wang constructed manifold with maximal

symmetry over a polarized KS orbifold. Then there always exists a positive constant
scalar curvature Sasaki metric in the Sasaki cone.

In terms of K-stability we have the following corollary of the Main Theorem and
Corollary 1.1 of [28].

Corollary Let M7
n,m be a Boothby-Wang constructed Sasaki manifold over the KS

orbifold (Sn,�m). Then there exists a Reeb vector field ξ in the Sasaki cone such
that the corresponding polarized affine variety (Y, ξ) is K-semistable, equivalently
the Sasakian structure (ξ, η,�, g) is K-semistable.

In the Gorenstein case, a much stronger statement is known, namely the Sasaki
version of the famous Chen-Donaldson-Sun [25–27] result by Collins and Székely-
hidi [29]. In particular, the recent classification of all smooth Fano threefolds that
admit Kähler-Einstein metrics [2] gives a classification of all regular Sasaki-Einstein
manifolds over smooth KS threefolds.

It is interesting to compare the Sasaki-Einstein solutions obtained from the
Boothby-Wang construction from the orbifold Kähler-Einstein solutions of Sect. 4.4
with those described in [18]. Both types live on simply connected 7-manifolds with
the rational cohomology of the 2-fold connected sum of S2 × S5 with torsion in H 4.
However, they are of a somewhat different nature. Those in [18] have holomorphic
twist 2, whereas, those in this paper have holomorphic twist 1. Assuming they have
the same torsion group one may ask whether they are homotopy equivalent, have
the same diffeomorphism type, and/or belong to inequivalent CR structures, contact
structures, etc.
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1 The Projective Bundles

We view our projective bundle as a special type of stage 3 Bott manifold, namely
the Bott tower M3(0, n1, n2) where n1, n2 ∈ Z. We recall the definition of a stage k
Bott manifold of the Bott tower of height n:

Mn
πn−→ Mn−1

πn−1−−→ · · · → M2
π2−→ M1 = CP

1 π1−→ {pt}

where Mk is defined inductively as the total space of the projective bundle

P(1⊕ Lk)
πk−→ Mk−1

with fiber CP
1, and some holomorphic line bundle Lk on Mk−1.We refer to [9, 33]

for details. In this paper we treat twist 1 stage 3 Bott manifolds M3(0, n1, n2) and
orbifolds. Explicitly these are ruled manifolds of the form

Sn = P
(
1⊕ O(n1, n2)

) −→ CP
1 × CP

1 (1)

with n1, n2 ∈ Z
∗. To this we add an orbifold structure given in terms of the log pair

(Sn,�m) where

�m =
(
1 − 1

m0

)
e0 +

(
1 − 1

m∞

)
e∞ (2)

and e0, e∞ are defined by the zero and infinity sections of the bundle. A motivation
of our study comes from the 1986 paper of Koiso and Sakane [44] where they study
Kähler-Einstein metrics on projectivizations of the form P(1⊕ L1 ⊗ext L2) over
N × N where N has a Kähler-Einstein metric. For this reason we refer to our log
pairs (Sn,�m) as KS orbifolds. The underlying complex manifolds are smooth toric
varietieswhoseKähler geometrywas studied in [9]. The positive integersm0, m∞ are
called ramification indices. For each choice of orbifold Kähler form ωn,m, defining
an integer Kähler class on (Sn,�m) we have a principal S1 orbibundle

S1 −→ M7 −→ (Sn,�m)

with an induced Sasakian structureSn,m; moreover, when the class [ωn,m] is primitive
in H 2

orb((Sn,�m), Z), M7 is simply connected. While there are only 2 equivalences
classes of Fano KS manifolds, it is clear from Proposition 1.1 below that log Fano
KS orbifolds are abundant.

In [16] we described a functor from the category of S3
w Sasaki joins to the cat-

egory of Bott orbifolds. However, as noted there, this functor is not surjective on
objects. One purpose of this paper is to study this lack of surjectivity in the partic-
ular case of twist 1 stage 3 Bott orbifolds. A key notion of Sasaki joins is that of
cone decomposability which can be thought of as the Sasaki version of de Rham
decomposability in the Kähler case [14]. Cone decomposability is an invariant of the
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underlying Sasaki CR structure. We shall see how our KS orbifolds give rise to both
cone decomposable Sasakian structures as well as Sasakian structures that are likely
cone indecomposable. See Remark 3.10 below.

Note that the ordinary Bott manifold M3(0, n1, n2) corresponds to the trivial orb-
ifold (Sn,∅). We denote by K Sorb the set of manifolds with these orbifold structures,
that is,

K Sorb = {(Sn,�m) | n1, n2 ∈ Z
∗, m0, m∞ ∈ Z

+}.

Such orbifolds are the objects of a groupoid whose morphisms are biholomorphisms
that intertwine the orbifold structures. Actuallywe are interested in polarizedKSorb-
ifolds that are polarized by a (primitive) orbifold Kähler class [ωn,m] ∈ H 2

orb(Sn, Z).
These form the objects of our groupoidKS whose morphisms are biholomorphisms
that intertwine the orbifold structures and intertwine their orbifold Kähler classes.
We remark that since the objects of KS are themselves orbifolds, we are working
with a 2-category. The action of the Coexter group Sym2 � Z

3
2 on K Sorb is gener-

ated by the transposition (Sn,�m) 	→ (Sn2,n1 ,�m) and the fiber inversion sending
(Sn,�m) 	→ (S−n,�m∞,m0). Note the interchange of ramification indices m0, m∞
induced by the fiber inversion map.

Of special interest is the full subgroupoidKSmon ofmonotoneKS orbifolds which
we now describe. Consider the orbifold canonical divisor or dually the orbifold first
Chern class. In particular, when is the orbifold (Sn,�m) log Fano, equivalently when
does corb

1 (Sn,�m) lie in the Kähler cone? From Sect. 1.3 of [18] we have

corb
1 (Sn,�m) =

(
2 − n1

m∞

)
y1 +

(
2 − n2

m∞

)
y2 +

( 1

m0
+ 1

m∞

)
y3

=
(
2 + n1

m0

)
x1 +

(
2 + n2

m0

)
x2 +

( 1

m0
+ 1

m∞

)
x3. (3)

with respect to the invariant bases {x1, x2, x3} and {y1, y2, y3}, respectively. For
i = 1, 2 here xi = yi is the class of the Fubini-Study metric on the ith factor of the
product CP

1 × CP
1 pulled back to Sn, while x3(y3) is the Poincaré dual of e∞(e0),

respectively. From this we arrive at a special case of Lemma 1.2 of [18].

Proposition 1.1 The orbifold (Sn,�m) in K Sorb is log Fano if and only if the
inequalities

n1

m∞
< 2,

n2

m∞
< 2, − n1

m0
< 2, − n2

m0
< 2

hold.

We obtain a primitive Kähler class corb
1 (Sn,�m)

In,m
in H 2

orb((Sn,�m), Z) with Fano
index given by

In,m = gcd(2mv0v∞ − n1v0, 2mv0v∞ − n2v0, v0 + v∞) (4)
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where m = (m0, m∞) = m(v0, v∞) = mv and m = gcd(m0, m∞). Here we have
used the identity x3 = y3 − n1x1 − n2x2. The orbifold (Sn,�m) is log Fano if and
only if

corb
1 (Sn,�m) = 1

mv0v∞

[(
2mv0v∞ − n1v0

)
y1 +

(
2mv0v∞ − n2v0

)
y2 +

(
v0 + v∞

)
y3

]

is positive.
The Poincaré dual to corb

1 (Sn,�m) is the orbifold anti-canonical divisor which
is an ample Q-divisor on Sn when corb

1 (Sn,�m) is positive. The primitive class
corb
1 (Sn,�m)

In,m
can be represented by an orbifold Kähler form ωn,m on Sn, or equivalently

an orbifold Kähler metric gn,m.

2 The Orbifold Boothby-Wang Construction

The well known Boothby-Wang Theorem [21] that associates regular contact struc-
tures to the total space of S1 bundles over symplectic manifolds generalizes easily to
the orbifold category. See for example Theorem 7.1.3 of [11]. Here as in this theorem
we are interested in Sasakian structures over Kählerian structures. Given an integral
Kähler class [ωn,m] ∈ H 1,1

orb((Sn,�m), Z)we shall always choose a Kähler formωn,m

withmaximal symmetry. In this case the total space M of the corresponding principal
S1 orbibundle has amaximal family t+ of Sasakian structures, called the Sasaki cone.
Moreover, choosing a connection 1-form η on M such that dη = ωn,m determines a
natural Sasakian structure Sn,m = (ξ, η,�, g) in t+. We refer to this construction as
the orbifold Boothby-Wang construction. Generally, unlike (Sn,�m), the total space
M has an orbifold structurewhose underlying topological space is singular with finite
cyclic singularities. The general problem of finding conditions when M is smooth is
quite subtle [40, 43, 49]: however, Kegel and Lange show that M is a smooth mani-
fold if and only if Hr

orb(M, Z) = 0 for all r > 2n + 1. More precisely M is smooth if

and only if multiplication by the Euler class Hr
orb(Z, Z)

∪e−−−−−→ Hr+2
orb (Z, Z) in the

Gysin sequence of the orbibundle M−−−→Z is an isomorphism for all r > 2n + 1.
As we shall see in Sect. 3.5 precise conditions can be obtained in certain special cases
(see also [11]).

The question arises as to when there exists a constant scalar curvature Sasaki
metric in t+ and how many. In the Gorenstein case this was answered by Futaki,
Ono, and Wang [32], but the general CSC case remains open. Some partial results
have been obtained by Legendre [45], and by the authors [17, 19] and references
therein.

Remark 2.1 In categorical language we work with the groupoid SKS whose
objects {M7

n,m} are simply connected quasiregular Sasaki 7-orbifolds whose pro-
jective algebraic base is a Koiso-Sakane orbifold, and whose morphisms are orb-
ifold biholomorphisms. Here the objects are classes of Sasakian or Koiso-Sakane
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structures, thus again, they are 2-categories. We are mainly interested in certain
subgroupoids, namely, the full subgroupoid SKSF of positive Sasakian structures
whose base Koiso-Sakane orbifold is log Fano. Actually, we consider the full sub-

groupoidSKSM F whoseKähler formωn,m lies in corb
1 (Sn,�m)

In,m
, that is theKoiso-Sakane

base orbifold is (Sn,�m) is monotone log Fano. We also define the subgroupoids
SKSm,SKSF

m,SKSM F
m consisting of the corresponding objects with fixed m. The

objects of the groupoid SKSm are Sasaki classes on the 7-manifolds M7
m whose

cohomology we describe in the next section. The morphisms are those induced by
diffeomorphisms that intertwine the corresponding Sasakian structures.

3 The Topology of the Orbifolds

In this section we describe both the orbifold topology of (Sn,�m) and topology
of the total space of the principal S1 orbibundles over the log Fano Koiso-Sakane
orbifolds (Sn,�m). First we recall the cohomology ring of the complex manifold Sn

which is well known and can be found in [9] and references therein.

H∗(Sn, Z) = Z[y1, y2, y3]/
(
y21 , y22 , y3(−n1y1 − n2y2 + y3)

)
(5)

We remark that the addition of orbifold structures on the invariant divisors does not
effect the cohomology H∗(Sn, Z); however, as we shall see it strongly effects the
cohomology of the Sasakian 7-manifolds.

3.1 The Orbifold Cohomology Groups

Next we compute the orbifold cohomology groups.

Lemma 3.1

Hr
orb((Sn,�m), Z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z if r = 0

Z
3 if r = 2

Z
3 ⊕ Z

2
m0 ⊕ Z

2
m∞ if r = 4

Z ⊕ Z
3
m0 ⊕ Z

3
m∞ if r = 6

Z
3
m0 ⊕ Z

3
m∞ if r = 8, 10, · · ·

0 if r is odd.

Proof Using Lemma 4.3.7 of [11] we compute the Leray spectral sequence of the
classifying map

p : B(Sn,�m)−−−−→ Sn.
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The Leray sheaf of p is the derived functor sheaf Rs p∗Z, that is, the sheaf associated
to the presheaf U 	→ H s(p−1(U ), Z). For s > 0 the stalks of Rs p∗Z at points of U
vanish ifU lies in the regular locus of (Sn,�m)which is the complement of the union
of the zero e0 and infinity e∞ sections of the natural projection Sn−−→CP

1 × CP
1. At

points of e0 and e∞ the fibers of p are the Eilenberg-MacLane spaces K (Zm0 , 1) and
K (Zm∞, 1), respectively. So at points of e0(e∞) the stalks are the group cohomology
H s(Zm0 , Z)

(
H s(Zm∞ , Z)

)
. This is Z for s = 0 and Zm0(Zm∞) at points of e0(e∞)

when s > 0 is even; it vanishes when s is odd. The E2 term of the Leray spectral
sequence of the map p is

Er,s
2 = Hr (Sn, Rs p∗Z)

and by Leray’s theorem this converges to the orbifold cohomology
Hr+s

orb ((Sn,�m), Z). Now Er,0
2 = Hr (Sn, Z) and Er,s

2 = 0 for r or s odd. For r = 0
the only continuous section of Rs p∗Z is the 0 section which implies that E0,s

2 = 0
for all s. Now we have E2r,2s

2 = 0 for r > 2 and

E2,2s
2 = H 2(Sn, R2s p) = H 2(e0, Zm0) ⊕ H 2(e∞, Zm∞) = Z

2
m0 ⊕ Z

2
m∞ ,

E4,2s
2 = H 4(Sn, R2s p) = H 4(e0, Zm0) ⊕ H 4(e∞, Zm∞) = Zm0 ⊕ Zm∞ .

One easily sees that this spectral sequence collapses whose limit is the orbifold
cohomology Hr

orb((Sn,�m), Z) which implies the result. �

In addition Lemma 3.1 implies

Lemma 3.2 πorb
1 (Sn,�m) = 1.

Proof From the homotopy sequence of the orbibundle

CP
1[v]/Zm −→ (Sn,�m) −→ CP

1 × CP
1

one easily sees that πorb
1 (Sn,�m) is Abelian. But this implies

πorb
1 (Sn,�m) ≈ H orb

1 (Sn,�m), Z),

and this vanishes by Lemma 3.1 and universal coefficients. �

3.2 The Cohomology of the Branched Covers

We consider the total space M7
n,m of an S1 orbibundle over a KS orbifold (Sn,�m)

with an orbifold Kähler form ωn,m. Note that in our case Sn is a smooth projective
variety so M7

n,m is a Seifert bundle as defined in the foundational paper [48] of Orlik
and Wagreich (see also the more recent unpublished description by Kollár [42]).
A fundamental result of Orlik and Wagreich says that every C

∗ Seifert bundle is a
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branched cover over a principalC∗ bundle. In our case this branching occurs precisely
along the orbifold divisor �m. The goal is to understand the integral cohomology of
M7

n,m. However, before treating the orbifold case, we need to consider the regular
case.

3.3 The Regular Case

For simplicity we treat only the case where the Kähler class is primitive, i.e.

[ωn] = c1y1 + c2y2 + c3y3 with ci ∈ Z
+, gcd(c1, c2, c3) = 1. (6)

From Sect. 3.3 of [9] this is a Kähler class for all positive ci if n1n2 > 0, whereas, if
n1n2 < 0, it is a Kähler class for c1 > 0, c2 > −n2c3, c3 > 0.

One sees from the long exact homotopy sequence of the fibration

S1 −→ M7
n −→ Sn (7)

that

Lemma 3.3 Let M7
n denote the total space of the principal S1 bundle over a KS

manifold Sn defined by a primitive Kähler class [ωn] ∈ H 2(Sn, Z). Then M7
n has the

rational cohomology of the 2-fold connected sum 2#(S2 × S5), and we have

1. π1(M7
n) = 1,

2. π2(M7
n) = Z

2.

Thus, by the Hurewicz Theorem we also have H2(M7
n, Z) = Z

2 which implies that
H 3(M7

n, Z)tor = 0. One can also see from the Leray-Serre spectral sequence of the
fibration (7) that M7

n has the rational cohomology of the 2-fold connected sum
2#(S2 × S5), and we also have H 3(M7

n, Z) = 0. We now show that all such sim-
ply connected spaces have nonzero torsion in H 4. There will be zero torsion in H 4 if
and only if the differential d2 : E2,1

2 −→ E4,0
2 is invertible over Z. This differential

is represented by the matrix

C =
⎛

⎝
c2 c3 0
c1 0 c3
0 c1 + n1c3 c2 + n2c3

⎞

⎠ (8)

with respect to thebasis {α ⊗ y1,α ⊗ y2,α ⊗ y3}of E2,1
2 and thebasis {y1y2, y1y3, y2y3}

of E4,0
2 . But then we have

− det C = c3[c2(c1 + n1c3) + c1(c2 + n2c3)] (9)
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which implies that the order of H 4(M7
n, Z) is c3[c2(c1 + n1c3) + c1(c2 + n2c3)].

This is always greater than 1, so H 4(M7
n, Z)tor �= 0. Summarizing we have

Theorem 3.4 Let M7
n denote the total space of the principal S1 bundle over a KS

manifold Sn defined by a primitive Kähler class [ωn] = c1x1 + c2x2 + c3x3. Then

Hr (M7
n, Z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z if r = 0, 7

Z
2 if r = 2, 5

Greg if r = 4

0 otherwise.

where Greg is an Abelian group of order c3[c2(c1 + n1c3) + c1(c2 + n2c3)]. More-
over, Greg is never the identity.

Example 3.1 The simplist case is the standard product CP
1 × CP

1 × CP
1 with

Kähler class
[ω] = c1x1 + c2x2 + c3x3, gcd(c1, c2, c3) = 1

and n1 = n2 = 0 which gives |Greg| = 2c1c2c3. Taking c1 = c2 = c3 = 1 gives the
homogeneous space

M7 = (
SU (2) × SU (2) × SU (2)

)
/U (1) × U (1)

with its Sasaki-Einstein metric (see for example [10]). Here Greg = Z2.

Example 3.2 Monotone Fano case. Up to equivalence there are two monotone
Fano cases polarized by the first Chern class, namely, n = (1,−1) and n = (1, 1).
From Eqs. (3) and (6) we have c1 = 1, c2 = 3, c3 = 2 when n = (1,−1), and
c1 = 1, c2 = 1, c3 = 2 when n = (1, 1). These give |Greg| = 20 and |Greg| = 12,
respectively. Note that M7

1,−1 is conjecturely
1 cone indecomposable; whereas, M7

1,1
is cone decomposible. The latter is described by Theorem 2.5 in [16] with l1 =
(1, 1), w1 = (1, 1), l2 = (1, 2), and w2 = (3, 1).

3.4 The General Case; Branched Covers

Returning to the orbifold case,we consider theLeray spectral sequence of the quotient

map M7
n,m

π
−→ (Sn,�m) viewed as an S1-Seifert bundle over (Sn,�m). Since the

fibers are S1 we only have the R1π∗ZM direct image sheaf, the E2 term of the Leray
spectral sequence

E p,q
2 = H p(Sn, Rqπ∗Z) (10)

1 See Remark 3.10 below.
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satisfies E p,q
2 = 0 when q �= 0, 1, and this converges to H p+q(M7

n,m, Z). So the only
differentials are those induced by

d2 : E0,1
2 = H 0(Sn, R1π∗ZM) −→ E2,0

2 = H 2(Sn, Z) ≈ Z
3. (11)

We note that the sheaf injection

R1π∗ZM −→ ZSn (12)

is multiplication by 1 on the regular locus, multiplication by m0 on e0 and by m∞ on
e∞. So the image of the map (11) is the order μ = lcm(m0, m∞) times a primitive
orbifold Kähler class [ωn,m] ∈ H 2

orb((Sn,�m), Z). To compute the cohomology of
such spaces we consider the C

∗ Seifert bundle over (Sn,�m) which is the cone
C(M7

n,m) = Yn,m = M7
n,m × R

+ so that Yn,m|r=1 = M7
n,m. Now Yn,m is a branched

cover of Yn,m/Zμ with branching locus�m. This follows from [42] by identifying the
orbifold class [ωn,m]with the rational first Chern class c1(Y/X) in [42] with X = Sn.
Nowgenerally the total space M7

n,m is a Sasaki orbifoldwhose underlying topological
space is a compactly generated Hausdorff space which allows us to apply the theory
of ramified covers [8, 50]. The space M7

n,m is simply connected, and a μ-fold cover
of the total space of the ordinary S1 bundle defined by the primitive integral class
μ[ωn,m]. Thus, we have the commutative diagram of Seifert orbibundles:

S1 −−−→ M7
n,m

f−−−→ (Sn,�m)
⏐⏐⏐�

⏐⏐⏐⏐�
π

⏐⏐⏐�

S1/Zμ −−−→ M7
n,m/Zμ

fμ−−−→ (Sn,∅).

(13)

Note that since M7
n,m/Zμ is the total space of a principal S1 bundle over the simply

connected smooth projective algebraic variety Sn defined by a primitive integral class
μ[ωn,m], it is a simply connected smooth 7-manifold. Moreover, the covering map
π induces a map of the corresponding Leray spectral sequences, and since the fiber
is an S1 the only nonzero higher direct image sheaf is R1π∗Z. This gives the natural
isomorphism R1π∗QM ≈ QSn which then implies

Lemma 3.5 There is an isomorphism H∗(M7
n,m, Q) ≈ H∗(M7

n,m/Zμ, Q).

However, we would also like information about integral cohomology groups. For
this we consider the transfer homomorphism for ramified covers [50]. Following
[8] we apply this to our branched cover π : M7

n,m−−−→M7
n,m/Zμ. Theorem 5.4 of [8]

says that the transfer homomorphism

τ : H∗(M7
n,m, Z)−−−→H∗(M7

n,m/Zμ, Z)
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induces multiplication by μ in H∗(M7
n,m/Zμ, Z). We set Greg = H 4(M7

n,m/Zμ, Z)

and apply this to ∗ = 4. If gcd(|G|,μ) = 1 we see that

τ ◦ π∗ : Greg = H 4(M7
n,m/Zμ, Z)−−−→Greg = H 4(M7

n,m/Zμ, Z)

is an isomorphism which implies that π∗ : H 4(M7
n,m/Zμ, Z)−−−→H 4(M7

n,m, Z)

is injective. Thus, π∗(Greg) is a subgroup of H 4(M7
n,m, Z) in this case. When

gcd(|Greg|,μ) �= 1 the homomorphism τ ◦ π∗ has a non-trivial kernel. This ker-
nel consists of all the prime factors Zp

r1
i

× · · · × Zp
rk
k
of Greg such that pi is a prime

in μ. Denote this group by Gμ
reg In this case H 4(M7

n,m, Z) contains the subgroup of
Greg containing only those prime factors whose primes p are not in μ, that is the
factor group Greg/Gμ

reg . Summarizing we have

Lemma 3.6 H 4(M7
n,m, Z) contains Greg/Gμ

reg.

We also have

Lemma 3.7 H 3(M7
n,m, Z) = 0.

Proof The only non-zero term of total degree 3 in (10) is

E2,1
2 = H 2(Sn, R1π∗Z)

where we have a differential

d2 : E2,1
2 = H 2(Sn, R1π∗Z)−−−→E4,0

2 = H 4(Sn, Z) = Z
3.

This differential gives torsion in H 4(M7
n,m, Z) implying that H 4(M7

n,m, Q) vanishes
which in turn implies that E2,1

r = 0 for r > 2 which proves the lemma. �

Theorem 3.8 Let M7
n,m denote the total space of the principal S1 orbibundle over a

KS orbifold (Sn,�m) defined by a primitive orbifold Kähler class [ωn,m] = c1x1 +
c2x2 + c3x3 such that μ[ωn,m] is a primitive class in H 2(Sn, Z). Then

Hr (M7
n,m, Z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z if r = 0, 7

Z
2 if r = 2, 5

G if r = 4

0 otherwise.

where G is an Abelian group that contains Greg/Gμ
reg. In particular, if

gcd(|Greg|,μ) = 1 then G contains Greg.

Proof Since [ωn,m] is a primitive orbifold class and (Sn,�m) has πorb
1 (Sn,�m) = 1,

then the orbifold M7
n,m has πorb

1 (M7
n,m) = 1 by the long exact homotopy sequence of

the classifying spaces. The remainder of the theorem then follows from
Lemmas 3.5–3.7. �
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Remark 3.9 It follows from Theorem 3.4 that Greg is never the identity; although,
we can have Greg = Gμ

reg so that Greg/Gμ = 1 in this case. However, this does not
imply that H 4(M7

n,m, Z) is the identity.

Remark 3.10 Let M be a Boothby-Wang Sasaki manifold over CP
1 × CP

1. The
set of KS orbifolds KS0 splits into a disjoint union two types; those that have a
polarization such that the corresponding Boothby-Wang constructed Sasaki orbifold
is represented by a quasi-regular ray in the w-cone of a join of the form M �l S3

w,
and those that do not have such a polarization. The former are characterized by the
condition n1n2 > 0 (seeTheorem4.3 below) and the corresponding Sasakimanifolds
are called cone decomposable (seeDefinitions 3.1 and 4.1 in [14]). It remains an open
question whether a Boothby-Wang constructed Sasaki orbifold over the latter type,
with n1n2 < 0, is necessarily cone indecomposable or simply not represented by a
quasi-regular ray in the w-cone of a join of the form M �l S3

w.

3.5 When M7 is an S3
w-Join

Generally, we are interested in how G depends on m and n. Unfortunately, Theorem
3.8 does not give us much useful information about this dependence. However, we
can determine this dependence in a particular cone decomposable case, namely when
the space M7

n,m can be represented as a join of the form Ml,w = M �l S3
w where M is a

principal S1 bundle over CP
1 × CP

1. Let M5 denote the total space of the Boothby-
Wang bundle over CP

1 × CP
1 determined by the Kähler class k1y1 + k2y2 with

k1, k2 ∈ Z
+. When k1 and k2 are relatively prime, M5 is diffeomorphic to S2 × S3.

More generally S2 × S3 is an k-fold cover of M5, namely we have M5 ≈ (S2 ×
S3)/Zk where k = gcd(k1, k2). Moreover, if gcd(l∞, w0) = gcd(l∞, w∞) = 1, Ml,w

will be smooth, and we have an S1 bundle

S1−−−−→M5 × S3
w−−−−→M5 �l S3

w

which gives the homotopy exact sequence

0−−−→π2(M5)−−−→π2(M5 �l S3
w)−−−→Z−−−→Zk−−−→π1(M5 �l S3

w)−−−→1.
(14)

So when k = 1 so M5 = S2 × S3, the join M7
l,w will also be simply connected with

π2(M7
l,w) = Z

2. More generally, the topological analysis proceeds as in Sect. 4 of
[17], see also [18]. We consider the commutative diagram of fibrations
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(S2 × S3)/Zk × S3
w −−−−→ Ml,w −−−−→ BS1

⏐⏐⏐⏐�
=

⏐⏐⏐�

⏐⏐⏐⏐⏐�
ψ

(S2 × S3)/Zk × S3
w −−−−→ CP

1 × CP
1 × BCP

1[w] −−−−→ BS1 × BS1

(15)

where BG is the classifying space of a group G or Haefliger’s classifying space [35]
of an orbifold if G is an orbifold. Note that H 2((S2 × S3)/Zk, Z) = Z ⊕ Zk . The
diagram gives a map of spectral sequences, and we note that the lower fibration is a
product of well understood fibrations. The E2 term of the top fibration is

E p,q
2 = H p(BS1, Hq(S2 × S3 × S3

w, Z)) ≈ Z[s] ⊗ �[α,β, γ], (16)

where α is a 2-class, β, γ are 3-classes, and s1, s2 are the positive generators of
H∗(BS1, Z). By the Leray-Serre Theorem this converges to H p+q(Ml,w, Z). The
non-vanishing differentials of the bottom product fibration are, first d4(β) = s21 and
second d4(γ) = w0w∞s22 and those induced by naturality. As described in [17] we
also have ψ∗s1 = l∞s and ψ∗s2 = −l0s. So by naturality the differentials of the top
fibration are d4(β) = l2∞s2 and d4(γ) = w0w∞l20s2. Now Ml,w is smooth if and only
if gcd(l∞, w0w∞) = 1. This gives H 4(Ml,w, Z) = Zl2∞ × Zw0w∞l20

= Zw0w∞l20 l2∞ .

4 Admissible Projective Bundles

Admissible projective bundles were described in general [3]. Here we will restrict
ourselves to a specific type of these, namely projective bundles of the form

Sn = P(1⊕ O(n1, n2))−−→CP
1 × CP

1

that satisfy the following conditions:

• For i = 1, 2 let (±ωi ,±gi ) be Kähler metrics with constant scalar curvature
±2si = ±4/ni on CP

1. [It is assumed that ni �= 0.] The ± means that either
+gi or −gi is positive definite.

• O(n1, n2)−−→CP
1 × CP

1 is the holomorphic line bundle overCP
1 × CP

1 which
satisfy

c1(O(n1, n2)) = 1

2π
[ω1 + ω2] = n1x1 + n2x2

On admissible projective bundles such as the ones defined above we can now
construct the admissible metrics, [3]. Here we recover the main points of this con-
struction.
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Consider the standard circle action on Sn = P(1⊕ O(n1, n2))−−→CP
1 × CP

1.
It extends to a holomorphic C

∗ action. The open and dense set S0
n of stable points

with respect to the latter action has the structure of a principal circle bundle over the
stable quotient. The hermitian norm on the fibers induces via a Legendre transform
a function z : S0

n → (−1, 1) whose extension to Sn consists of the critical manifolds
e0 := z−1(1) = P(1⊕ 0) and e∞ := z−1(−1) = P(0 ⊕ O(n1, n2)). Letting θ be a
connection one form for the Hermitian metric on S0

n , with curvature dθ = ω1 + ω2,
an admissible Kähler metric and form are given (up to scale) by the respective
formulas

g = 1 + r1z

r1
g1 + 1 + r2z

r2
g2 + dz2

�(z)
+ �(z)θ2, ω = 1 + r1z

r1
ω1 + 1 + r2z

r2
ω2 + dz ∧ θ,

(17)

valid on S0
n . Here � is a smooth function with domain containing (−1, 1) and ri ,

i = 1, 2 are real numbers of the same sign as gi and satisfying 0 < |ri | < 1. The
complex structure yielding this Kähler structure is given by the pullback of the
base complex structure along with the requirement Jdz = �θ. The function z is
hamiltonian with K = J grad z a Killing vector field. In fact, z is the moment map
on Sn for the circle action, decomposing M into the free orbits S0

n = z−1((−1, 1))
and the special orbits z−1(±1). Finally, θ satisfies θ(K ) = 1.

Now g is a (positive definite) Kähler metric which extends smoothly to all of Sn

if and only if � satisfies the following positivity and boundary conditions

(i) �(z) > 0, −1 < z < 1, (i i) �(±1) = 0, (i i i) �′(±1) = ∓2. (18)

The Kähler class�r = [ω] of an admissible metric as in (17) is also called admis-
sible and is uniquely determined by the parameters r1, r2, once the data associated
with M (i.e. si = 2/ni , gi etc.) is fixed. Indeed, we have

�r = [ω1]
r1

+ [ω2]
r2

+ 2π�,

where � is the Poincare dual of e0 + e∞. For a more thorough description of �,
please consult Sect. 1.3 of [3]. Note that on Sn any Kähler class is admissible up to
scale. Using that y3 − x3 = n1x1 + n2x2, we can also write

�r/2π = n1
r1

x1 + n2
r2

x2 + x3 + y3

= n1(1+r1)
r1

x1 + n2(1+r2)
r2

x2 + 2x3

= n1(1−r1)
r1

x1 + n2(1−r2)
r2

x2 + 2y3.
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Define a function F(z) by the formula �(z) = F(z)/pc(z), where pc(z) = (1 +
r1z)(1 + r2z). Since pc(z) is positive for −1 ≤ z ≤ 1, conditions (18) are equivalent
to the following conditions on F(z).

(i) F(z) > 0, −1 < z < 1, (i i) F(±1) = 0, (i i i) F ′(±1) = ∓2pc(±1).
(19)

4.1 Orbifolds

Now we allow our admissible metrics to compactify as orbifold metrics on the log
pair

(Sn,�m) = (
P(1⊕ O(n1, n2),�m

) −−→CP
1 × CP

1,

where

�m = (1 − 1/m0)D1 + (1 − 1/m∞)D2 = (1 − 1/m0)e0 + (1 − 1/m∞)e∞,

and m0, m∞ ∈ Z
+. Then (18) generalizes to

(i) �(z) > 0, −1 < z < 1,
(i i) �(±1) = 0,
(i i i) �′(−1) = 2/m∞, and �′(1) = −2/m0.

(20)

and, with �(z) = F(z)/pc(z) as above, we get that this is equivalent to

(i) F(z) > 0, −1 < z < 1,
(i i) F(±1) = 0,
(i i i) F ′(−1) = 2pc(−1)/m∞, and F ′(1) = −2pc(1)/m0.

(21)

Note that this does not change the expression for �r above whereas from (3) we
already know that the adjusted Chern class is

corb
1 (Sn,�m) =

(
2 − n1

m∞

)
x1 +

(
2 − n2

m∞

)
x2 +

(
1

m0
+ 1

m∞

)
y3

=
(
2 + n1

m0

)
x1 +

(
2 + n2

m0

)
x2 +

(
1

m0
+ 1

m∞

)
x3.

.

4.2 Connection with S3
w-Joins

Consider (Sn,�m) = (
P(1⊕ O(n1, n2),�m

) −−→CP
1 × CP

1, polarized with a
primitive orbifold Kähler class [ωn,m]. As mentioned above, this will be the rescale
of some admissible Kähler class �r determined by r = (r1, r2). If n1n2 > 0, we
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will say that [ωn,m] is diagonally admissible if and only if r1 = r2. Note that if
n1n2 < 0, it is never possible to have r1 = r2, since the sign of ri is equal to the
sign of ni . Note that diagonally admissible is equivalent to being admissible (up to
scale) as defined (more narrowly) in Sect. 2.5.1 of [19] with N = CP

1 × CP
1 and

[ωN ] = n1
n x1 + n2

n x2, where n = (sign of ni ) gcd(|n1|, |n2|).
Indeed, suppose n1n2 > 0 and r1 = r2 = r in the above setting. Then the admis-

sible metric simplifies to

g = 1 + rz

r
gNn + dz2

�(z)
+ �(z)θ2, ω = 1 + rz

r
ωNn + dz ∧ θ, (22)

with admissible Kähler class

�r/2π = n
r

( n1
n x1 + n2

n x2
) + x3 + y3

= n(1+r)

r

( n1
n x1 + n2

n x2
) + 2x3

= n(1−r)

r

( n1
n x1 + n2

n x2
) + 2y3,

where gNn = n1g1 + n2g2. As such, we can view this metric as an admissible metric
on Sn = P(1⊕ Ln)−−→N , where N = CP

1 × CP
1 and

• (±ωNn ,±gNn ) is a Kähler metric with constant scalar curvature ±4s = ±4( 1
n1

+
1
n2

). [The ± still means that either +gNn or −gNn is positive definite.]
• Ln−−→N is the holomorphic line bundle over N = CP

1 × CP
1 which satisfy

c1(Ln) = 1

2π
[ωNn ] = n

(n1

n
x1 + n2

n
x2

)
.

This special case, is exactly of the type considered in e.g. Sect. 5 of [17] or more
generally (including cyclic orbifolds N ) in Sect. 2.5 of [19]. Note that the base metric
(±ωNn ,±gNn ) is only Kähler-Einstein if also n1 = n2.

Now consider the natural Boothby-Wang constructed Sasaki structure on the S1-
bundle M → N defined by the primitive [ωN ] = ( n1

n x1 + n2
n x2

)
. Following Propo-

sition 4.22 of [14] (with the amendment of Lemma 2.12 and Corollary 2.14 of [19])
we then realize the following connection with S3

w-joins.

Proposition 4.1 For n1n2 > 0, r1 = r2 = r rational, n = (sign of ni ) gcd(|n1|,
|n2|), and gcd(m1, m2, |n|) = 1, there is a choice of co-prime w0, w∞ ∈ Z

+ and
co-prime l0, l∞ such that, when we form the S3

w-join Ml0,l∞,w := M �l0,l∞ S3
w0,w∞ =

M �l S3
w, the quasi-regular quotient of Ml0,l∞,w by the flow of the Reeb vector

field ξv determined by (v0, v∞) in the w-cone (where m = gcd(m0, m∞) and m =
(m0, m∞) = mv = m(v0, v∞)), is the log pair (Sn,�m) with induced (transverse)
Kähler class m gcd(s, w0v∞)[ωn,m] where s = gcd(l∞, |w0v∞ − w∞v0|) and [ωn,m]
is a orbifold primitive class that is an appropriate rescale of the admissible class �r
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on (Sn,�m). The join is smooth if and only if gcd(w0, l∞) = gcd(w∞, l∞) = 1. In
particular, the join is smooth if m0 = m∞ = 1.

Proof We follow the proof of Proposition 4.22 in [14] (including the paragraphs
leading up to the proposition), to identify the join by first picking w = (w0, w∞) to
be the unique positive, integer, and co-prime solution of

r = w0m∞ − w∞m0

w0m∞ + w∞m0

and then, as the next step, picking the pair (l0, l∞) as the unique, positive integers,
and co-prime solution of

l∞n = l0(w0m∞ − w∞m0).

Proposition 4.22 in [14] was slightly misleading in implying that the quasi-regular
quotient of ξv would always produce a primitive orbifold Kähler class, but, with
Lemma 2.12 and Corollary 2.14 of [19] in hand, we can say that the transverse Kähler
class is m gcd(sϒN , w0v∞l0)[ωn,m] where [ωn,m] is a orbifold primitive class that is
an appropriate rescale of the admissible class �r on (Sn,�m) and ϒN is the orbifold
order of N . Since ϒN = 1 and gcd(s, l0) = 1 (recall gcd(l0, l∞) = 1) we get the
desired Kähler class.

The rest of the claims follow straight from the proof Proposition 4.22 in [14]. In
particular, note that m = l∞/s, as it should be according to Theorem 3.8 in [17]. �

Remark 4.2 Note that when the join is smooth, it is easy to see that gcd(s, w0v∞) =
1 and so the transverse Kähler class is m[ωn,m]. In particular, if m0 = m∞ = 1, we
do have a primitive (and admissible) transverse Kähler class.

Combining Theorem 2.7 and Lemma 2.12 from [19] for the“only if” and
Proposition 4.1 for the “if”, we arrive at the following theorem.

Theorem 4.3 Assume gcd(m1, m2, |n1|, |n2|) = 1 and [ωn,m] is a orbifold primitive
class on (Sn,�m). There exist a constant k ∈ Z

+ such that the polarized orbifold
(Sn,�m, k[ωn,m]) is the quotient with respect to (the canonical Reeb vector field in) a
quasi-regular ray in the w-cone of a (possibly non-smooth) join of the form M �l S3

w,
where M is a Boothby-Wang constructed Sasaki manifold over CP

1 × CP
1, if and

only if n1n2 > 0 and [ωn,m] is a diagonally admissible Kähler class.

Suppose now that n1n2 > 0, we are in the log Fano case as in Proposition 1.1, and
the polarization is chosen such that corb

1 (Sn,�m) = In,m[ωn,m]. Since

corb
1 (Sn,�m) =

(
2 − n1

m∞

)
x1 +

(
2 − n2

m∞

)
x2 +

(
1

m0
+ 1

m∞

)
y3 and a diagonally

admissible Kähler class is a rescale of �r = (1−r)

r (n1x1 + n2x2) + 2y3 for some
0 < |r | < 1 with rni > 0, we see that [ωn,m] = corb

1 (Sn,�m)/In,m is diagonally
admissible if and only if
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2 − n1

m∞
=

(
1

m0
+ 1

m∞

)
n1(1 − r)

2r
and 2 − n2

m∞
=

(
1

m0
+ 1

m∞

)
n2(1 − r)

2r
,

i.e.,

n1

(
1

m∞
+

(
1

m0
+ 1

m∞

)
(1 − r)

2r

)
= 2 = n2

(
1

m∞
+

(
1

m0
+ 1

m∞

)
(1 − r)

2r

)
.

This clearly implies that we must have n1 = n2. On the other hand, if n1 = n2 (and
still assuming log Fano) we can solve for an appropriate r . In conclusion,

Corollary 4.4 In the log Fano case, there exists a constant k ∈ Z
+ such that the

polarized orbifold (Sn,�m, kcorb
1 (Sn,�m)) is the quotient with respect to a quasi-

regular ray in the w-cone of a (possibly non-smooth) join of the form M �l S3
w, where

M is a Boothby-Wang constructed Sasaki manifold over CP
1 × CP

1, if and only if
n1 = n2.

Returning to Proposition 4.1 and Theorem 4.3, we note that in the case where
(Sn,�m, [ωn,m]) is the quotient with respect to a quasi-regular ray in the w-cone of
a join of the form M �l S3

w (so assuming k = 1 in Theorem 4.3, i.e., assuming the
transverseKähler class is primitive)wemust have thatm = 1 and gcd(s, w0v∞) = 1.
The first equality implies that l∞ = s = gcd(l∞, |w0v∞ − w∞v0|) and hence l∞ is a
factor of |w0v∞ − w∞v0|. Sincewe also have that gcd(l∞, w0v∞) = 1,wemust have
gcd(l∞, w∞v0) = 1 and in particular gcd(w0, l∞) = gcd(w∞, l∞) = 1. This means
that M �l S3

w is smooth. We therefore have the following companion to Theorem 4.3.

Proposition 4.5 Consider the polarized orbifold (Sn,�m, [ωn,m]), where [ωn,m] is
a primitive integer orbifold Kähler class and gcd(m0, m∞, |n1|, |n2|) = 1.

If (Sn,�m, [ωn,m]) is the quotient with respect to (the canonical Reeb vector field
in) a quasi-regular ray in the w-cone of a join of the form M �l S3

w, then this join is
smooth. Moreover, in this case gcd(m0, m∞) = 1.

4.3 Connection with Yamazaki’s Fiber Joins

In [54] T. Yamazaki introduced the fiber join for K -contact structures and in [20]
this was extended to Sasaki structures. In the smooth case (m0 = m∞ = 1) of KS
orbifolds, it follows from Sect. 5.3 of [20] that Sn polarized by a primitive Kähler
class, which in turn is an appropriate rescale of �r, is the quotient of the regular ray
in the t+sphr cone of a Yamazaki fiber join over CP

1 × CP
1, if an only if there exist

k1
1, k2

1, k1
2, k2

2 ∈ Z
+ such that

k1
1 − k1

2 = n1 k2
1 − k2

2 = n2

k1
1 − k1

2

k1
1 + k1

2

= r1
k2
1 − k2

2

k2
1 + k2

2

= r2. (23)
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In that case, the corresponding Yamazaki fiber join is given as follows2:
Let π j : CP

1 × CP
1 → CP

1 denote the natural projection to the j t factor of the
product CP

1 × CP
1 → CP

1 and let K denote the canonical bundle on CP
1. Let Li

be a holomorphic line bundle over CP
1 × CP

1 → CP
1 given by Li = k1

i π
∗
1K

−1
2 +

k2
i π

∗
2K

−1
2 , for k j

i ∈ Z
+. The choice of L1 and L2 can be given by the matrix K =(

k1
1 k2

1
k1
2 k2

2

)
. Note that c1(Li ) are both in theKähler cone ofCP

1 × CP
1 and hence Li are

positive line bundles overCP
1 × CP

1. Each c1(Li ) also defines a principal S1-bundle
overCP

1 × CP
1, Mi → CP

1 × CP
1, andwe identify Li with Mi ×S1 C. Then Mi

π→
CP

1 × CP
1 has a natural Sasaki structure definedby theBoothby-Wang construction.

Consider now L∗
1 ⊕ L∗

2 and equip each L∗
i with a Hermitian metric giving us a norm

di : L∗
i → R

≥0. Then, the fiber join, MK = M1 � f M2 is defined as the S3-bundle
over S whose fibers are given by d2

1 + d2
2 = 1. Now MK has a natural C R-structure

(D, J ) with a family, t+sphr , of compatible Sasaki structures Sa = (ξa, ηa,�a, ga),
where a = (a1, a2) ∈ (R+)2 and (a1, a2) = (1, 1) corresponds to the regular Sasaki
structure in t+sph(D, J ). Note that t+sph is a proper subcone of the unreduced Sasaki
cone t+ of (MK ,D, J ).

Remark 4.6 In [20] we did not consider the more general question of determining
the quotients of quasi-regular Sasaki structures in t+sph and the transverse Kähler
class. We conjecture that those would indeed be certain polarized KS orbifolds and
will explore this in future studies.

4.4 Ricci Solitons and Kähler-Einstein

It is well-known that there exists a unique Kähler-Ricci soliton on any toric com-
pact Fano complex orbifold [30, 51–53, 55]. The existence proofs by Wang-Zhu
[53], Shi-Zhu [51] and Donaldson [30] all use a continuity method and thus do not
provide an explicit expression of the Kähler-Ricci soliton. It is therefore interesting
to explore cases where explicit descriptions of Kähler-Ricci solitons are possible.
Explicit examples can be found in e.g.[31, 46].

Here we want to explore the Ricci Soliton and more specifically the Kähler-
Einstein equations under the constraint of the orbifold endpoint conditions (21).
This will yield explicit examples on Fano (Sn,�m) and is essentially a mild orbifold
extension of the work by Koiso and Sakane [41, 44].Wewill follow in their footsteps
using the notation of Sect. 3 of [4].

The admissible metrics are Ricci solitons with V = ( c
2 ) gradgz if and only if

ρ − λω = LV ω, (24)

2 We refer to [20] for details and a more general description of the Yamazaki fiber joins.
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where the Ricci form is

ρ = s1ω1 + s2ω2 − 1

2
ddc log F =

(
s1 − 1

2

F ′(z)
pc(z)

)
ω1 +

(
s2 − 1

2

F ′(z)
pc(z)

)
ω2 − 1

2

(
F ′
pc

)′
(z) dz ∧ θ

and λ, c ∈ R. Obviously, c = 0 corresponds to Kähler-Einstein metrics. Since
LV ω = ( c

2 ) ddcz and si = 2/ni , Eq. (24) becomes a pair of ODEs

F ′(z)
pc(z)

+ c F(z)
pc(z)

= 4/n1 − 2λ
(
z + 1

r1

)

F ′(z)
pc(z)

+ c F(z)
pc(z)

= 4/n2 − 2λ
(
z + 1

r2

)
,

(25)

Note that (25) implies that n1 = n2 if and only if r1 = r2.
Note that (ii) and (iii) of (21) together with (25) implies the necessary conditions

2λ = 1

m0
+ 1

m∞
(26)

and

r1 =
1

m0
+ 1

m∞
4
n1

+ 1
m0

− 1
m∞

, r2 =
1

m0
+ 1

m∞
4
n2

+ 1
m0

− 1
m∞

. (27)

On the other hand, assuming (26) and (27), the ODEs of (25) are equivalent to the
single ODE

F ′(z)
pc(z)

+ c F(z)
pc(z)

=
(

1
m∞ − 1

m0

)
−

(
1

m0
+ 1

m∞

)
z (28)

Further, (28) and (ii) of (21) together imply (iii) of (21). In summary, we will get an
admissible Ricci soliton solution as in (24) exactly when (26) and (27) are satisfied
and (28) has a solution F(z) that satisfies (i) and (ii) of (21).

Notice that since we require 0 < |ri | < 1 and ri ni > 0, (27) has an appropriate
solution (r1, r2) iff

n1

m∞
< 2,

n2

m∞
< 2, − n1

m0
< 2, − n2

m0
< 2.

This is exactly the Fano condition in Proposition 1.1. In turn, under this condition,
(26) and (27) correspond exactly to corb

1 (Sn,�m) = λ�r/2π.
Similarly to the smooth case, we shall see that in the Fano case, there is indeed

always an admissible Ricci soliton in the appropriate Kähler class:
Using the integrating factor method, observe that

F(z) = e−c z
∫ z

−1 ec t
((

1
m∞ − 1

m0

)
−

(
1

m0
+ 1

m∞

)
t
)

pc(t)dt

= e−c z
∫ z

−1 ec t (t − t0)g(t)dt

(29)
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solves (28) and (ii) of (21) iff G(c) = 0, where

G(k) = ek t0

∫ 1

−1
ek (t−t0)(t − t0)g(t)dt, (30)

t0 = m0−m∞
m0+m∞ , and g(t) = −( 1

m0
+ 1

m∞ )pc(t).
Note that t0 ∈ (−1, 1) and g(t) < 0 for t ∈ [−1, 1]. Thus e−kt0G(k) is a strictly

decreasing function of k tending to ∓∞ as k → ±∞, and hence has a unique zero
c (consistent with the uniqueness of Ricci solitons).

To check (i) of (21) we consider another auxiliary function

h(z) = ec zF(z) =
∫ z

−1
ec t (t − t0)g(t)dt.

Note that the sign of h(z) equals the sign of F(z). In particular, h(±1) = 0, and (due
to (iii) of (21)) h is positive to the immediate right of z = −1 and immediate left
of z = +1. Now, since h′ clearly has exactly one zero (namely t0) in (−1, 1), it is
positive on (−1, 1). Therefore (i) of (21) is also satisfied.

Combining the arguments above with Proposition 1.1 we conclude the following.

Proposition 4.7 For (Sn,�m) the following conditions are equivalent:

• The inequalities n1
m∞ < 2, n2

m∞ < 2, − n1
m0

< 2, − n2
m0

< 2 are satisfied;
• (Sn,�m) is log Fano;
• There exist a Kähler-Ricci soliton on (Sn,�m).

In this case, the Kähler-Ricci soliton (g,ω) is admissible and satisfies ρ = LV ω, with
λ = 1

2m0
+ 1

2m∞ and V = ( c
2 ) gradgz for a suitable real constant c. The Kähler-Ricci

soliton is Kähler-Einstein iff this c is equal to zero.

Of course this can also be seen as an orbifold extension of Theorem 3.1 in
[3] (which in turn is essentially due to Koiso [41]) in the case of Sn = P(1⊕
O(n1, n2))−−→CP

1 × CP
1.

Remark 4.8 Note that, assuming we are in the Fano case, c in the above proposition
is a non-zero multiple of the Futaki invariant, F(V ), of corb

1 (Sn,�m) applied to V .
This underscores the well-known fact that the existence of a Kähler-Ricci Soliton
with respect to a non-trivial holomorphic vector field is an obstruction to the existence
of a Kähler-Einstein metric.

4.4.1 Kähler-Einstein

Now we turn our attention to Kähler-Einstein examples on (Sn,�m). From the work
above we see that under the assumption that the log Fano condition and (27) hold,�r
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contains an admissible Kähler-Einstein metric with ρ = ( 1
2m0

+ 1
2m∞ )ω if and only

if G defined in (30) satisfies that G(0) = 0, i.e.,

∫ 1

−1

(( 1

m∞
− 1

m0

)
−

(
1

m0
+ 1

m∞

)
t
)
(1 + r1t)(1 + r2t)dt = 0. (31)

Carrying out the integration in (31) and substituting (27), we have the following

Proposition 4.9 The Bott orbifold (Sn,�m) admits a Kähler-Einstein metric (which
happens to be admissible) iff the following two conditions are satisfied

1. (Sn,�m) is log Fano (i.e., n1
m∞ < 2, n2

m∞ < 2, − n1
m0

< 2, − n2
m0

< 2)
2.

24(m3
0m2∞ − m2

0m3∞) − 8(n1 + n2)(m
3
0m∞ − m2

0m2∞ + m0m3∞) + 3n1n2(m
3
0 − m2

0m∞ + m0m2∞ − m3∞) = 0

Example 4.1 If we assume n1 = 1 and n2 = 2, then the equation in Proposition 4.9
rewrites to

6(2m0m∞ − m0 + m∞)(m2
0(−1 + 2m∞) − m2

∞(1 + 2m0)) = 0.

Clearly 2m0m∞ − m0 + m∞ = 0 has no positive integer solutions (m0, m∞). Like-
wise, assume by contradiction that (m0, m∞) are positive integer solutions of

m2
0(−1 + 2m∞) − m2

∞(1 + 2m0) = 0,

i.e.,
m2

0(−1 + 2m∞) = m2
∞(1 + 2m0).

Since gcd(2mi ± 1, mi ) = 1 for i = 0,∞ we see that this would imply that m0 =
m∞ (since they would have to have the same prime factorization). But m0 = m∞
will clearly never solve the equation.

Remark 4.10 The diophantine nature of the equation in Proposition 4.9 makes it
hard to spot solutions other than the classic smooth Koiso-Sakane example (see
Example 4.2 below). Further, Example 4.1 and Proposition 4.9 tells us that there exist
at least one pair n = (n1, n2) such that for all pairs m = (m0, m∞) ∈ Z

+ × Z
+, the

Bott orbifold (Sn,�m) admits no Kähler-Einstein metric. For these reasons we will
instead view a choice of (r1, r2) ∈ Q

2 such that 0 < |ri | < 1 as a pair of parameters
that determine a unique KE example on the appropriate corresponding KS orbifold.

From this point of view, note that (31) is equivalent to the equation

m∞
m0

= 3 + r1r2 − r1 − r2
3 + r1r2 + r1 + r2

. (32)
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and, assuming (32), Eq. (27) is equivalent to

n1

m0
= 2r1(3 + r1r2 − r1 − r2)

3 + 2r1r2 + r21
,

n2

m0
= 2r2(3 + r1r2 − r1 − r2)

3 + 2r1r2 + r22
. (33)

We notice that if we pick a rational pair (r1, r2) such that 0 < |ri | < 1, then there
is a unique quadruple of appropriate integers (n1, n2, m0, m∞), solving (32) and
(33), such that ni has the same sign as ri , mi > 0, and gcd(|n1|, |n2|, m0, m∞) = 1.
This yields a KE example on the corresponding KS orbifold (Sn,�m)−−→CP

1 ×
CP

1 with fibers CP
1[v0, v∞)]/Zm . Here we have used our earlier notation; m =

gcd(m0, m∞) and m = (m0, m∞) = mv = m(v0, v∞).

Example 4.2 Assume r1 = r and r2 = −r with r ∈ (0, 1) ∩ Q. Then (32) and (33)
yields

m∞
m0

= 1,
n1

m0
= 2r,

n2

m0
= −2r.

When r = 1/2 this yields theKoiso-Sakane smoothKähler-Einsteinmetric onP(1 ⊕
O(1,−1)) → CP

1 × CP
1 ([44]). In general, wewrite r = p/q in reduced formwith

co-prime integers 0 < p < q. Then

(n1, n2, m0, m∞) =
⎧
⎨

⎩

(2p,−2p, q, q) if q is odd

(p,−p, q/2, q/2) if q is even

This gives us Kähler-Einstein metrics on P(1⊕ O(2p,−2p)) with fibers CP
1/Zq

and on P(1⊕ O(p,−p)) with fibers CP
1/Zq/2, respectively. Using (4) we see that

the index is equal to 2 if q is odd and equal to 1 if q is even.

Belowwewill exploremore examples beyond theKoiso-Sakane examples.We set
ri = pi/qi with qi ∈ Z

≥2 and pi ∈ Z such that 0 < |pi | < qi and gcd(|pi |, qi ) = 1.
Further, without loss we can assume that r1, hence p1, is positive. We then observe
that (32) and (33) are equivalent to

m∞
m0

= 3q1q2+p1 p2−p1q2−p2q1
3q1q2+p1 p2+p1q2+p2q1

n1
m0

= 2p1(3q1q2+p1 p2−p1q2−p2q1)
3q2

1q2+2p1 p2q1+p2
1q2

n2
m0

= 2p2(3q1q2+p1 p2−p1q2−p2q1)
3q1q2

2+2p1 p2q2+p2
2q1

.

(34)

Note that, due to 0 < |pi | < qi , the denominator of each the right hand fractions
in (34) are all positive. Further, the numerator of the first two right hand fractions
are positive while the numerator of the last right hand fraction has the same sign as
p2. Thus if we set
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k = gcd

⎛

⎜
⎜
⎝

(3q1q2 + p1 p2 + p1q2 + p2q1)
(
3q2

1q2 + 2p1 p2q1 + p21q2
) (
3q1q2

2 + 2p1 p2q2 + p22q1
)
,

(3q1q2 + p1 p2 − p1q2 − p2q1)
(
3q2

1q2 + 2p1 p2q1 + p21q2
) (
3q1q2

2 + 2p1 p2q2 + p22q1
)
,

2p1(3q1q2 + p1 p2 − p1q2 − p2q1)(3q1q2 + p1 p2 + p1q2 + p2q1)
(
3q1q2

2 + 2p1 p2q2 + p22q1
)
,

2|p2|(3q1q2 + p1 p2 − p1q2 − p2q1)(3q1q2 + p1 p2 + p1q2 + p2q1)
(
3q2

1q2 + 2p1 p2q1 + p21q2
)

⎞

⎟
⎟
⎠

we have an appropriate solution (n1, n2, m0, m∞) to (34) given by

n1 = 2p1(3q1q2+p1 p2−p1q2−p2q1)(3q1q2+p1 p2+p1q2+p2q1)(3q1q2
2+2p1 p2q2+p2

2q1)
k

n2 = 2p2(3q1q2+p1 p2−p1q2−p2q1)(3q1q2+p1 p2+p1q2+p2q1)(3q2
1q2+2p1 p2q1+p2

1q2)
k

m0 = (3q1q2+p1 p2+p1q2+p2q1)(3q2
1q2+2p1 p2q1+p2

1q2)(3q1q2
2+2p1 p2q2+p2

2q1)
k

m∞ = (3q1q2+p1 p2−p1q2−p2q1)(3q2
1q2+2p1 p2q1+p2

1q2)(3q1q2
2+2p1 p2q2+p2

2q1)
k .

(35)

Each of these solutions then yields a KE example on the KS orbifold (Sn,�m) =
(P(1⊕ O(n1, n2)),�m) with fibers CP

1[m0/ gcd(m0, m∞), m∞/ gcd(m0, m∞)]/
Zgcd(m0,m∞).

Proposition 4.11 There exists a four-parameter family of KS orbifolds with KE
orbifold metrics. The parameters (p1, p2, q1, q2) are integers such that 0 < p1 < q1,
0 < |p2| < q2, and gcd(|pi |, qi ) = 1.

Remark 4.12 One might ask the following question. Suppose we have a co-
prime quadruple (n1, n2, m0, m∞) satisfying the conditions in Proposition 4.9, that
is, (Sn,�m) admits a KE metric with n = (n1, n2) and m = (m0, m∞). Fixing
n = (n1, n2), does there exist another pair m̃ = (m̃0, m̃∞) with m̃ �= m, such that
(n1, n2, m̃0, m̃∞) is coprime and also satisfies the conditions in Proposition 4.9. In
other words, if n has an appropriate choice of m such that (Sn,�m) admits a KE
metric, is this m then unique?

Example 4.3 If we pick p1 = p2 = 1, q1 = 2, and q2 = q > 2, then (35) becomes

n1 = 4(5q−1)(7q+3)(3q2+q+1)
k = 2(5q−1)(7q+3)(3q2+q+1)

k̂
n2 = 2(5q−1)(7q+3)(13q+4)

k = (5q−1)(7q+3)(13q+4)
k̂

m0 = 2(7q+3)(13q+4)(3q2+q+1)
k = (7q+3)(13q+4)(3q2+q+1)

k̂

m∞ = 2(5q−1)(13q+4)(3q2+q+1)
k = (5q−1)(13q+4)(3q2+q+1)

k̂
,

where

k̂ = gcd

⎛

⎜
⎜
⎝

2(5q − 1)(7q + 3)
(
3q2 + q + 1

)
,

(5q − 1)(7q + 3) (13q + 4) ,

(7q + 3) (13q + 4)
(
3q2 + q + 1

)
,

(5q − 1) (13q + 4)
(
3q2 + q + 1

)

⎞

⎟
⎟
⎠ .
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Likewise, if we pick p1 = 1, p2 = −1, q1 = 2, and q2 = q > 2, then (35)
becomes

n1 = 4(5q+1)(7q−3)(3q2−q+1)
k = 2(5q+1)(7q−3)(3q2−q+1)

k̂
n2 = −2(5q+1)(7q−3)(13q−4)

k = −(5q+1)(7q−3)(13q−4)
k̂

m0 = 2(7q−3)(13q−4)(3q2−q+1)
k = (7q−3)(13q−4)(3q2−q+1)

k̂

m∞ = 2(5q+1)(13q−4)(3q2−q+1)
k = (5q+1)(13q−4)(3q2−q+1)

k̂
,

where

k̂ = gcd

⎛

⎜⎜
⎝

2(5q + 1)(7q − 3)
(
3q2 − q + 1

)
,

(5q + 1)(7q − 3) (13q − 4) ,

(7q − 3) (13q − 4)
(
3q2 − q + 1

)
,

(5q + 1) (13q − 4)
(
3q2 − q + 1

)

⎞

⎟⎟
⎠ .

The appendix contains a table representing a sample family of these solutions as
well as the classic smooth Koiso-Sakane example from Example 4.2. Using (4), we
calculated the (orbifold) index In,m of each (Sn,�m).

4.5 Extremal and CSC Kähler Metrics

More generally, the admissible metrics are extremal, as defined by Calabi [22], if
and only if the scalar curvature of g, which is given as a function of z by

Scal(g) = 2s1r1
1 + r1z

+ 2s2r2
1 + r2z

− F ′′(z)
pc(z)

, (36)

is a holomorphic potential, i.e., a linear affine function of z. Following the arguments
in [3] and considering the orbifold case at hand, it is easy to see that the proof of
Proposition 11 together with Sect. 2.2 in [3] adapts to give us the following result.

Proposition 4.13 Any Kähler class �r on (Sn,�m) admits an admissible extremal
metric with scalar curvature equal to an affine linear function of z. Moreover, this
metric is (positive) CSC (i.e., the function is constant) if and only if α0β1 − α1β0 = 0,
where

αr =
∫ 1

−1
tr pc(t)dt

βr =
∫ 1

−1

(
r1s1(1 + r2t) + r2s2(1 + r1t)

)
tr dt

+ (−1)r pc(−1)/m∞ + pc(1)/m0.

(37)
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In the smooth case, this has been thoroughly explored in [34, 38, 39], as well as
Sect. 3.4 of [3]. Here we will just mention that with s1 = 2/n1 and s2 = 2/n2, the
equation α0β1 − α1β0 = 0 is equivalent to f (r1, r2) = 0 where

f (r1, r2) =9(m0 − m∞)n1n2 − 6(m0 + m∞)n1n2(r1 + r2) + 6(m0 − m∞)n1n2r1r2

+ 3n2(4m0m∞ − n1(m0 − m∞))r21 + 3n1(4m0m∞ − n2(m0 − m∞))r22
− (4m0m∞(n1 + n2) − 3(m0 − m∞)n1n2)r

2
1r22 .

(38)

Proposition 4.14 For any value of n1, n2 �= 0, there exist a choice of m0 and m∞
such that (Sn,�m) admits Kähler classes �r with admissible constant scalar cur-
vature Kähler metrics.

Proof In the case of n1n2 < 0 we can choose m0 = m∞ and the existence of CSC
Kähler classes follows from [39] (see also [3] for details using the present notation).
In the case of n1n2 > 0, notice that f (0, 0) = 9(m0 − m∞)n1n2 while f (1, 1) =
8m∞(m0(n1 + n2) − 3n1n2). So, if we choose m0 and m∞ such that m∞ > m0 >
3n1n2
n1+n2

, we have f (0, 0) < 0 and f (1, 1) > 0. This means that any continuous curve
going from (0, 0) to (1, 1) in the square 0 < r1, r2 < 1must contain at least one point
(r1, r2) where f vanishes. This ensures the existence of solutions 0 < r1, r2 < 1 to
the equation f (r1, r2) = 0. In turn, this implies the existence of classes �r with
admissible constant scalar curvature Kähler metrics. �

Example 4.4 When m0 = m∞ = 1, n1 = 1, and n2 = −1, we have f (r1, r2) =
−12(−1 + r1 − r2)(r1 + r2), reconfirming the smoothCSCKählermetrics onP(1⊕
O(1,−1)−−→CP

1 × CP
1 as stated in Theorem 9 of [3].

Remark 4.15 Note that in general there is no guarantee the C SC Kähler classes �r

from Proposition 4.14 are rational (i.e. both r1 and r2 are rational) and thus useful
from the Sasakian geometry point of view.With the constraint that r1, r2 are rational,
the equation f (r1, r2) = 0 is diophantine in nature. Suppose f (r1, r2) �= 0 for some
rational class �r and assume we have a Boothby-Wang constructed Sasaki manifold
defined by an integer orbifold Kähler class obtained by an appropriate rescale of
�r . We shall see in the next subsection that then we will have a CSC Sasaki metric
somewhere else in the Sasaki cone of this Sasaki manifold. The key to seeing this is
to use the connection discovered by Apostolov and Calderbank in [1] between the
so-called weighted extremal metrics and extremal metrics appearing as transverse
structures for different rays in the same Sasaki cone.
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4.6 Weighted Extremal Metrics

Let (M, g,ω) be a Kähler orbifold of complex dimension m, f a positive Killing
potential on M , and (weight) p ∈ R. Then the ( f, p)-Scalar curvature of g is given
by

Scal f,p(g) = f 2Scal(g) − 2(p − 1) f �g f − p(p − 1)|d f |2g, (39)

If Scal f,p(g) is a Killing potential, g is said to be a ( f, p)-extremal Kähler metric.
The case p = 2m has been studied by several people and is interesting due to the fact
that Scal f,2m(g) computes the scalar curvature of the Hermitian metric h = f −2g.

However, the case of interest to us here is when p = m + 2. This case is related
to the study of extremal Sasaki metrics [1, 5, 6]. Indeed, if we assume that the
Kähler class [ω/2π] is an integer orbifold class giving a Boothby-Wang constructed
(smooth) Sasaki manifold over (M, g,ω), then Scal f,m+2(g)

f is equal to the transverse
scalar curvature of a certain Sasaki structure (determined by f ) in the Sasaki cone.
More precisely, if χ is the Reeb vector field of the Sasaki structure coming directly
from the Boothby-Wang construction over (M, g,ω) and f is viewed as a pull-back
to the Sasaki manifold, then (mod D) ξ := f χ is a Reeb vector field in the Sasaki
cone giving a new Sasaki structure. While the pull-back from M of Scal(g) is the
Tanaka-Webster scalar curvature of the Tanaka-Webster connection induced byχ, the
expression Scal f,m+2(g)

f pulls back from M to be the Tanaka-Webster scalar curvature
of the Tanaka-Webster connection induced by ξ. The latter is then also identified
with the transverse scalar curvature of the Sasaki structure defined by ξ. This fact is
seen from the details of the proof of Lemma 3 in [1]. As also follows from [1] (see
their Theorem 1), the Sasaki structure determined by f is extremal if and only if g
is ( f, m + 2)-extremal.

Now, returning to our orbifolds at hand we have that m = 3 and so m + 2 = 5.
Note that |z + b| for b ∈ R such that |b| > 1 defines a Killing potential on (Sn,�m).

It is not hard to check that Sect. 2 and the existence result in the second half of
Theorem 3.1. of [7] adapts to get us the next proposition. Note in particular, that
whether we use f = z + b (when (b > 1) or f = −(z + b) (when b < −1), the
formula for Scal f,p in (39) will give us the same result, i.e., the right hand side of
(19) in [7]. In general the assumption of b > 1 in [7] is merely practical and all the
arguments are easily adapted to include the b < −1 case as well. Further, the root
counting argument in the proof of Theorem 3.1.in [7] is not affected by our mild
orbifold conditions.

Proposition 4.16 Let b ∈ R such that |b| > 1. Any Kähler class �r on (Sn,�m)

admits a (|z + b|, 5)-extremal Kähler metric with weighted scalar curvature
Scal|z+b|,5 = A1z + A2 for constants A1, A2 given as the unique solutions of the
following linear system

α1,−6 A1 + α0,−6 A2 = 2β0,−4

α2,−6 A1 + α1,−6 A2 = 2β1,−4,

(40)
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where

αr,−6 =
∫ 1

−1
(t + b)−6tr pc(t)dt

βr,−4 =
∫ 1

−1

(2r1
n1

(1 + r2t) + 2r2
n2

(1 + r1t)
)

tr (t + b)−4dt

+ (−1)r (b − 1)−4 pc(−1)/m∞ + (1 + b)−4 pc(1)/m0.

(41)

Moreover, assuming that �r is rational and we can form a Boothby-Wang constructed
Sasaki manifold with respect to an appropriate rescale of �r, the extremal Sasaki
structure determined by f = |z + b| has constant scalar curvature if and only if
Scal|z+b|,5 = A1z + A2 is a constant multiple of |z + b|, i.e., if and only if A1b −
A2 = 0.

Suppose a rational �r is given on a specific (Sn,�m). Solving the linear system for
A1 and A2 in Proposition 4.16 (note that α2

1,−6 − α0,−6α2,−6 �= 0) and simplifying
a bit, the equation A1b − A2 = 0 may be re-written as h(b) = 0 where

h(b) = (b2 − 1)7(b(α1,−6β0,−4 − α0,−6β1,−4) − (α1,−6β1,−4 − α2,−6β0,−4)).

(42)
Using (41) we see that h(b) simplifies as a polynomial of degree 5 in the variable b
with leading coefficient equal to 2 f (r1,r2)

9m0m∞n1n2
, where f (r1, r2) is given by (38). Since

further limb→±1∓ h(b) > 0, we conclude that unless f (r1, r2) = 0 (in which case
�r itself has an admissible CSC representative), there must exist at least one value
b ∈ (−∞,−1) ∪ (1,+∞) such that h(b) = 0, hence A1b − A2 = 0, and therefore,
for this b value, the extremal Sasaki structure determined by f = |z + b| has constant
scalar curvature. If b is an irrational number, then the corresponding Sasaki structure
is irregular.

Theorem 4.17 Suppose �r is a rational admissible Kähler class on a KS orbifold
of the form (Sn,�m). Let S be a Boothby-Wang constructed Sasaki manifold given
by an appropriate rescale of �r. Then the corresponding Sasaki cone will always
have a (possibly irregular) CSC-ray (up to isotopy).

Remark 4.18 It is not too difficult (using (36) and (21)) to produce some admissible
Kählermetric of positive scalar curvature in�r. Using the correspondingKähler form
of this metric for the Boothby-Wang construction, we can use Lemma 5.2 in [12])
to conclude that the CSC-ray alluded to in the theorem above has positive transverse
scalar curvature. This together with Theorem 4.17 proves the main theorem in the
introduction.

Remark 4.19 The observations in this section—in particular, Proposition 4.16 and
Theorem 4.17—can be generalized to a larger group of admissible manifolds [13].
Indeed, in [13] we use a more general version of Proposition 4.16 to answer the open
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question in Problem 6.1.2 of [15] by providing a counter example where the Sasaki
cone contains some extremal Sasaki structures, but no CSC Sasaki metric at all.

Example 4.5 Suppose m1 = m2 = 1 and suppose n1 > 4. Now let r1 = 5n2
1−4

n1(n2
1+4)

,

r2 = 2/n1, and n2 be equal to any positive integer. Note that since n1 > 4 we
have ensured that ri ∈ (0, 1) for i = 1, 2 and r1 �= r2. Then �r is a rational (non-
diagonally) admissible Kähler class on the smooth KS manifold (Sn). Note that
since �r is non-diagonally admissible, we know from Theorem 4.3 that Sn (with
any appropriate rescale of �r) is not the quotient of a regular ray in the w-cone of
the type of S3

w-join described in Theorem 4.3. Further, it can be shown (as we will
do near the end of this example) that Sn (with any appropriate rescale of �r) is also
not the quotient of the regular ray in the t+sphr cone of a Yamazaki fiber join over
CP

1 × CP
1. The Boothby-Wang constructed Sasaki manifold over Sn, given by an

appropriate rescale of �r is thus in a certain sense a truly new example.
By Theorem 8 and Proposition 11 of [3] we know that the Kähler class �r, while

having an extremal admissible Kähler metric representative, does not admit a CSC
Kähler metric. [This fact can also easily be checked by seeing that f (r1, r2) from
(38) cannot be zero in this case.] We now calculate that with the given choices of
(m, n, r), we have that h(b) from (42) is equal to

h(b) = 4(n1 − 2b)p(b)

9n5
1

(
n2
1 + 4

)2
n2

where p(b) is given by

p(b) = 3n8
1n2 − 4n7

1 − 13n6
1n2 + 268n5

1 + 1252n4
1n2 − 544n3

1 − 1456n2
1n2 + 192n1 + 192n2

− 4n1
(
9n6

1n2 + 20n5
1 + 482n4

1n2 + 64n3
1 − 464n2

1n2 − 64n1 + 224n2
)

b

+ 16
(
n7
1 + 79n6

1n2 − 17n5
1 − 35n4

1n2 + 56n3
1 + 32n2

1n2 − 16n1 − 16n2
)

b2

− 4n1
(
63n6

1n2 − 20n5
1 + 106n4

1n2 − 64n3
1 − 16n2

1n2 + 64n1 − 32n2
)

b3

+ (21n8
1n2 − 12n7

1 + 21n6
1n2 + 4n5

1 + 268n4
1n2 − 352n3

1 − 208n2
1n2 + 64n1 + 64n2)b4.

Clearly, b = n1/2 is a rational root of h(b). Note that since n1 > 4 and n2 > 0, we
also have that

• The b4 coefficient of p(b) is positive
• p(±1) > 0
• p′(−1) < 0 and p′(1) > 0
• f (b) := p′′(b) is a concave up 2nd order polynomial with f (±1) > 0, f ′(−1) <

0, and f ′(1) > 0. Thus any roots of f (b) would be inside the interval (−1, 1).

Putting this together we have that p(b) is positive and decreasing at b = −1, positive
and increasing at b = 1, and concave up for |b| ≥ 1. Hence p(b) has no roots in
(−∞,−1) ∪ (1,+∞) and hence b = n1/2 is the ONLY root of h(b).
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All in allwe conclude thatwhile the original regular ray coming from theBoothby-
Wang constructed Sasaki manifold over Sn, given by an appropriate rescale of �r

is not CSC, the CSC ray alluded to in Theorem 4.17 is quasi-regular. It would be
interesting to explore what the transverse Kähler orbifold is for this ray. Conjecturely,
it may be a KS orbifold.

Finally, let us finish this example by confirming that Sn (with any appropriate
rescale of�r) is also not the quotient of the regular ray in the t

+
sphr cone of aYamazaki

fiber join over CP
1 × CP

1:
For Sn (with an appropriate rescale of �r) to be such a quotient, it follows from

Sect. 4.3 and (23) that there should exist k1
1, k2

1, k1
2, k2

2 ∈ Z
+ such that

k1
1 − k1

2 = n1, k2
1 − k2

2 = n2,
k1
1 − k1

2

k1
1 + k1

2

= 5n2
1 − 4

n1
(
n2
1 + 4

) ,
k2
1 − k2

2

k2
1 + k2

2

= 2/n1.

This would place further restrictions on n1 and n2 and, in particular, we would need

n1 to satisfy that
n2
1(n2

1+4)
5n2

1−4
is a positive integer (that positive integer is k1

1 + k1
2). By

the following elementary lemma this is not possible and so Sn (with any appropriate
rescale of �r) is not the quotient of the regular ray in the t+sphr cone of a Yamazaki
fiber join.

Lemma 4.20 For all integers x ≥ 3,
x2(x2+4)
5x2−4 is NOT an integer.

Proof Assume for contradiction that there exists an integer x ≥ 3 such that
x2(x2+4)
5x2−4

is an integer. Let d > 1 be a prime divisor of 5x2 − 4. Then, due to our assumption,
d | x2 or d | (x2 + 4). If d | x2, then, since also d | (5x2 − 4), we have that d | 4 and
so d = 2. If d | (x2 + 4), then, since again d | (5x2 − 4), we have that d | (5(x2 +
4) − (5x2 − 4)), i.e., d | 24, and so d = 2 or d = 3.

By considering the three possible cases x = 3k, x = 3k + 1, and x = 3k + 2
with k ∈ Z, we realize that 3 � (5x2 − 4). Therefore, d = 2 and 5x2 − 4 is even.
This implies that x2 is even and hence x is even. In particular, x �= 3 and moving
forward we may assume x ≥ 4.

Since 5x2 − 4 is even, we have that (5x2 − 4) = 2i for some non-negative integer
i . We also know that 5x2 − 4 ≥ 76 (since x ≥ 4), so i > 6.

Now, writing x = 2k for some k ∈ Z
+ we see that (5x2 − 4) = 2i implies that

20k2 − 4 = 2i and hence 5k2 = 2i−2 + 1. Thus 5k2 is odd, which gives us that k2 is
odd and hence k is odd. Let us write k = 2l + 1 for some l ∈ Z

+. So x = 2(2l + 1).
Then

x2
(
x2 + 4

) = 22(4l2 + 4l + 1)(22(4l2 + 4l + 1) + 4)

= 22(4l2 + 4l + 1)(22(4l2 + 4l + 2))

= 22(4l2 + 4l + 1)(23(2l2 + 2l + 1))

= 25(2(2l2 + 2l) + 1)(2(l2 + l) + 1).
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Since (2(2l2 + 2l) + 1)(2(l2 + l) + 1) is odd, we realize that
x2(x2+4)
5x2−4 =

(2(2l2+2l)+1)(2(l2+l)+1)
2i−5 . Since i > 6, this cannot possible be an integer and hence we

have arrived at a contraction. This completes the proof of the lemma. �

As an immediate consequence of Theorem 4.17 we get the following special case
of the existence result for toric Sasaki-Einstein metrics due to Futaki, Ono, andWang
[32].

Corollary 4.21 Suppose a KS orbifold of the form (Sn,�m) is log Fano and con-
sider a Boothby-Wang constructed Sasaki manifold over (Sn,�m) given by some
Kähler form representing corb

1 (Sn,�m)/In,m. Then the corresponding Sasaki cone
will always have a (possibly irregular) Sasaki-Einstein structure (up to isotopy).

Proof First, we note that c1(D) = 0 and so the CSC Sasaki metrics from Theorem
4.17 above are now η-Einstein. Second, we see from Proposition 5.3 in [12]) that
since the basic first Chern class of the initial Sasaki metric is positive (as a pullback
of the positive class corb

1 (Sn,�m)/In,m), the average transverse scalar curvature of
any Sasaki structure in the Sasaki cone must be positive. In particular, the transverse
(constant) scalar curvature of any η-Einstein structure in the cone must be positive.
This means that any η-Einstein ray admits a Sasaki-Einstein structure. �

Remark 4.22 Examples similar in spirit to Corollary 4.21, but also including non-
toric cases have been given by Mabuchi and Nakagawa [47]. See also [6] and refer-
ences therein.

Acknowledgements The authors of this paper have benefitted from conversations with Vestislav
Apostolov, David Calderbank, Hongnian Huang, Eveline Legendre, and Carlos Prieto.
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Appendix

p1 q1 p2 q2 n1 n2 m0 m∞ m v0 v∞ In,m

1 2 −1 15 5124072 −740316 6438801 4797538 126251 51 38 89
1 2 −1 14 775675 −120061 972325 726685 10235 95 71 83
1 2 −1 13 48 −8 60 45 15 4 3 7
1 2 −1 12 2080161 −375516 2591676 1951756 31996 81 61 71
1 2 −1 11 1462832 −288008 1815479 1373876 49067 37 28 65
1 2 −1 10 110483 −23919 136479 103887 2037 67 51 59
1 2 −1 9 129720 −31188 159330 122153 5311 30 23 53
1 2 −1 8 80401 −21730 98050 75850 1850 53 41 47
1 2 −1 7 25944 −8004 31349 24534 1363 23 18 41
1 2 −1 6 124527 −44733 148629 118141 3811 39 31 35
1 2 −1 5 59072 −25376 69296 56303 4331 16 13 29
1 2 −1 4 525 −280 600 504 24 25 21 23
1 2 −1 3 1440 −1008 1575 1400 175 9 8 17
1 2 −1 2 1 −1 1 1 1 1 1 1
1 2 1 2 51 51 85 45 5 17 9 13
1 2 1 3 10416 7224 15996 9331 1333 12 7 19
1 2 1 4 31217 16492 46004 28196 1484 31 19 25
1 2 1 5 8208 3496 11799 7452 621 19 12 31
1 2 1 6 30015 10701 42435 27347 943 45 29 37
1 2 1 7 54808 16796 76570 50065 2945 26 17 43
1 2 1 8 51389 13806 71154 47034 1206 59 39 49
1 2 1 9 552 132 759 506 253 3 2 5
1 2 1 10 1112447 239659 1521101 1021013 20837 73 49 61
1 2 1 11 36000 7056 49000 33075 1225 40 27 67
1 2 1 12 456837 82128 619440 420080 7120 87 59 73
1 2 1 13 3134336 520384 4236251 2884256 90133 47 32 79
1 2 1 14 466923 72013 629331 429939 6231 101 69 85
1 2 1 15 5522472 795204 7425486 5087833 137509 54 37 91

TABLE: This gives a sample of Kähler−Einstein orbifold solutions. See
Example 4.3.
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Toric Sarkisov Links of Toric Fano
Varieties

Gavin Brown, Jarosław Buczyński, and Alexander Kasprzyk

Abstract We explain a web of Sarkisov links that overlies the classification of Fano
weighted projective spaces in dimensions 3 and 4, extending results of Prokhorov.

Keywords Sarkisov links · Toric geometry

1 Introduction

A normal projective n-dimensional complex variety is called Fano if it has ample
anticanonical class and canonical singularities. The construction and classification
of Fano n-folds is a major concern of birational geometry. Dimensions n = 3 and
4 are at the cutting edge, where birational methods of construction play a central
role. In various respects, toric Fano varieties arise at the extremes of classification
(compare [5]). In this paper we consider the toric birational geometry of certain
toric Fano 4-folds, and in particular the Sarkisov links between them; we review
terminology in Sect. 2.1 and the results are surveyed in Sect. 5, with full details
of over a million links relegated to a webpage [4]. Although as a study of the 4-
dimensional Sarkisov program this is a baby case, it does provide a large number
of examples and gives some indication of the 4-fold phenomena we can expect to
encounter when we push beyond toric. It also describes classes of new toric Fano
4-folds, as we discuss in Sect. 2.3.
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A Fano polytope is a polytope � ⊂ R
n = L ⊗ R whose vertices lie on a fixed

lattice L ∼= Z
n and whose only strictly interior lattice point p ∈ �◦ ∩ L is the origin.

A Fano polytope is terminal if its vertices are the only lattice points lying on its
boundary, and it isQ-factorial (or simplicial) if each facet is an (n − 1)-simplex. In
3 dimensions Fano polytopes are classified up toAut(L) into 674, 688 cases [20, 21]:
12, 190 are simplicial; 634 are terminal; 233 are Q-factorial terminal, and of these
only 8 have the minimal number of four vertices, the terminal simplicial tetrahedra.
In 4 dimensions, Fano polytopes are not yet classified, but the terminal simplicial
polytopes (on five vertices) are, with 35, 947 cases [22].

Toric geometry connects these two realms. Given a Fano polytope�, the spanning
fan� of� is the collection of lattice cones on the facets and smaller strata of�. This
fan � determines a normal complex projective variety X = X� [14, 15], that has
ample anticanonical class −KX (by the convexity of �) and canonical singularities
(by the assumption on�◦ ∩ L) [25]. In otherwords, X is a Fano n-foldwith canonical
singularities, and furthermore it is terminal or Q-factorial exactly when � is. In the
Q-factorial case, the Picard rank ρX of X is the number of vertices of � minus n.
A Mori–Fano n-fold is a Q-factorial terminal Fano n-fold X with ρX = 1. The
toric Mori–Fano n-folds are those weighted projective spaces and their quotients by
the finite discriminant group L/〈vertices(�)〉, often called fake weighted projective
spaces (compare [8, 6.4]), that have terminal singularities. Thus there are precisely 8
toric Mori–Fano 3-folds (compare [1]), and 35, 947 toric Mori–Fano 4-folds (of
which 24, 511 are weighted projective spaces).

Toricmaps from X are controlledby the combinatorics of the fan�. Prokhorov [24,
Sect. 10] works out a beautiful web of Sarkisov links between 7 of the weighted pro-
jective space 3-folds. In this paper we complete that web with all possible toric links.
We then extend the programme into dimension 4, closely following [25], giving
examples to illustrate the phenomena that arise, and providing full results online
at [4] (with associated Magma code [2] that generates them). Guerreiro [16] recently
computed all Sarkisov links from P

4 that start with a weighted point blowup, which
we discuss in Sect. 6.1.

Before starting, we return to the polytope point of view. Reid [25, (4.2)] defines
the shed of a fan � to be

shed� =
⋃

C∈�(n)

shedC

where the union is over the top-dimensional cones C of �, and shedC is the convex
hull of the primitive points on each (extreme) ray of C together with the origin.
When � is the spanning fan of a Fano polytope �, then shed� = �; in contrast,
if� is the fan of X with−KX not nef, then the shed is not convex; see [25, (4.3)] or the
shed of Y2 in Fig. 1. In these terms, the operations (3.1–3) below are lattice piecewise
linear (LPL) surgeries on the shed, adding or removing vertices, or snapping LPL
portions of the boundary into other LPL configurations, all the time preserving the
property that the only lattice points in the shed are its vertices and the internal origin.
A Sarkisov link then appears as a kind of LPL origami, moving from one Fano
polytope to another by a series of LPL modifications, as we illustrate in Fig. 1.
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Fig. 1 The sheds of the toric fans of X ← Y1 ��� Y2 → X ′ in the link (4.1)

2 The Context

2.1 Overview of the Sarkisov Program

A morphism ϕ : V → S of normal projective varieties is, by definition, a Mori fibre
space ifϕ∗OV = OS , V hasQ-factorial terminal singularities, dim S < dim V , ρV =
ρS + 1 and −KV is ϕ-ample. The Sarkisov program [10, 17] decomposes birational
maps f : V ��� V ′ between Mori fibre spaces. It factorises any such birational map
into a composition of very particular birational maps called Sarkisov links, which
we explain in our context below, and so understanding individual Sarkisov links
becomes crucial. Sarkisov links are built by patching together steps of the form

U
↙ ↘

V1 V2

↘ ↙
S

(2.1)

The key point is that ρU/S = 2 in the square (2.1), so that up to isomorphism U
admits at most two S-morphisms of relative Picard rank 1 with connected fibres. The
construction of a Sarkisov link is an inductive procedure in which the map U → V1

is given and we must solve for U → V2 (over S). The link is called bad, and we
abandon it, if U → V2 does not exist, or if the properties of V2 break any running
hypotheses, for example on the singularities permitted. (See [11, 2.2] for full details
in these terms.)

When X is a Mori–Fano n-fold, a Sarkisov link will always take the form

Y1 ��� Y2 ��� · · · ��� Ys
↙ ↘ ↙ ↘

X Z1 Zs = X ′
(2.2)

where g1 : Y1 → X is an extremal extraction (that is, g1∗OY1 = OX , Y1 has terminal
Q-factorial singularities, ρY1/X = 1 and −KY1 is relatively ample), each Yi ��� Yi+1

is a generalised flip (that is, a flip or a flop or an antiflip) that wemay factorise as a pair
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of birationalmorphismsYi → Zi ← Yi+1.WhenYi ��� Yi+1 is an antiflip, the link is
bad if Yi+1 does not have terminal singularities. The final extremal contraction Ys →
X ′ may be to another Fano n-fold X ′, or have dim Zs < dim Ys so that Ys → Zs is
a strict Mori fibre space; the link is referred to as being of Type I or Type II in these
two cases respectively [11] (the opposite naming convention is used in [17]).

2.2 Hard Fano Varieties from Easy Ones

Sarkisov links (2.2) of Type I relate certain members of one family of Fano varieties
with certain members of another. In Sect. 4, we calculate all Sarkisov links composed
of toric maps between any two toric Fano 3-folds. The results are listed in Table1,
and our choice of presentation illustrates how we might treat this idea as passing
from simpler varieties to more complicated ones. Corti–Mella [13] describe links
from (general) quasismooth codimension 2 Fano 3-fold to a (particular) singular
Fano hypersurface. Those links start with a projection. Reversing that step as an
‘unprojection’ is the key idea behind the constructions in codimension 4 of [6],
which are extended to Sarkisov links in [9]. One may view this construction and
classification method, and results of Takeuchi, Takagi and others [26, 27], in this
same light: crudely speaking, they list the possible numerical data that could be
realised by a Sarkisov link, and then construct or eliminate each case.

In three dimensions, the Graded Ring Database [4] presents a first overview of the
numerical data of the classification of Fano 3-folds, again, crudely speaking, listing
the possible numerical data that a Fano3-foldmight have,with the aimof constructing
or eliminating each case; see [5, Fig. 1]. In that picture, families are connected by
projection, but the numerical data of Sarkisov links, such as [27, (2.8)] or [26, 0.3],
is missing. We regard our exercise here is a first (very baby) step in understanding
how the possible numerical data of Sarkisov links between Fano varieties might be
included in the Graded Ring Database.

2.3 The Midpoints of Sarkisov Links

The endpoints of a Sarkisov link are not the only places a Fano variety might appear.
The Sarkisov link (2.2) may include a flop Yi → Zi ← Yi+1. In that case, Zi is a toric
Fano n-foldwith terminal singularities and Picard rank ρZi = 1, but withWeil divisor
class group of rank 2 so not Q-factorial. Karzhemanov’s famous example Z70 ⊂
P
37 [19, 1.2], the unique Fano 3-fold of degree −K 3

Z = 70, is of this nature, though
it is not toric. Starting with X = P(1, 1, 4, 6), Karzhemanov makes a (weighted)
blowup X ← Y1 of a midpoint of the P(4, 6) stratum L ⊂ X to give a weak Fano 3-
foldY1 onwhich the proper transformof L is a flopping curve: Z70 is the anticanonical
image of Y1, namely the base of that flop.
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Table 1 Sarkisov links between the 8 toric Mori–Fano 3-folds and some Mori fibre spaces (Mfs).
We abbreviate a divisorial contraction (−r, a, b, c) by 1

r (a, b, c), omitting the fraction when r = 1.
Mfs are indicated only by F/B, where F is the fibre and B is the base
# X Blowup Antiflip Flop/Flip Blowdown End of link

1 P (1, 1, 1, 1) (1, 1, 0) Mfs P
2/P1

2 (1, 1, 1) Mfs P
1/P2

3 (1, 1, 2) (1, 1, 0) P(1, 1, 1, 2)

4 (1, 2, 3) 1, 1, −1, −2 (1, 1, 2) P(1, 1, 2, 3)

5 (1, 2, 5) 1, 1, −1, −4 1
3 (1, 1, 2) P(1, 3, 4, 5)

6 P(1, 1, 1, 2) 1
2 (1, 1, 1) P

1/P2

7 (1, 1, 1) 2, 1, −1, −1 Mfs P
2/P1

8 (1, 1, 2) 2, 1, −1, −3 (1, 1, 1) P(1, 1, 2, 3)

9 (1, 1, 2) Mfs P
1/P(1, 1, 2)

10 (1, 1, 3) (1, 1, 0) P(1, 1, 2, 3)

11 (1, 1, 3) 2, 1, −1, −5 1
2 (1, 1, 1) P(1, 2, 3, 5)

12 (1, 2, 3) 1, 1, −1, −1 (1, 2, 3) itself

13 (1, 3, 4) 1, 1, −1, −2 1
5 (1, 2, 3) P(1, 3, 4, 5)

14 (1, 2, 5) 1, 1, −1, −3 (1, 1, 2) P(1, 2, 3, 5)

15 (1, 2, 7) 1, 1, −1, −5 1
3 (1, 1, 2) P(2, 3, 5, 7)

and the inverse of 3

16 P(1, 1, 2, 3) 1
3 (1, 1, 2) Mfs P

1/P(1, 1, 2)

17 1
2 (1, 1, 1) 3, 1, −1, −1 Mfs P

2/P1

18 (1, 1, 2) 3, 1, −1, −5 1
3 (1, 1, 2) P(1, 2, 3, 5)

19 (1, 1, 3) 2, 1, −1, −3 Mfs P
2/P1

20 (1, 2, 3) Mfs P
1/P(1, 2, 3)

21 (1, 2, 3) 3, 2, −1, −5 (1, 1, 1) P(1, 2, 3, 5)

22 (1, 1, 4) 2, 1, −1, −5 (1, 1, 1) P(1, 3, 4, 5)

23 (1, 1, 5) 2, 1, −1, −7 1
2 (1, 1, 1) P(2, 3, 5, 7)

24 (1, 3, 4) 1, 1, −1, −1 (1, 3, 4) itself

25 (1, 3, 5) 1, 1, −1, −2 (1, 2, 3) P(1, 2, 3, 5)

26 (1, 4, 5) 1, 1, −1, −3 1
7 (1, 3, 4) P(2, 3, 5, 7)

27 (1, 3, 7) 1, 1, −1, −4 1
5 (1, 2, 3) P(3, 4, 5, 7)

and the inverses of 4, 8, 10

28 P(1, 2, 3, 5) 1
5 (1, 2, 3) Mfs P

1/P(1, 2, 3)

29 (1, 1, 3) 3, 1, −1, −4 (1, 1, 2) P(1, 3, 4, 5)

30 (1, 1, 4) 3, 1, −1, −7 1
3 (1, 1, 2) P(3, 4, 5, 7)

31 (1, 2, 5) 2, 1, −1, −5 1
5 (1, 2, 3) P

3/ 15 (1, 2, 3, 4)

and the inverses of 11, 14, 18, 21, 25

32 P(1, 3, 4, 5) 1
4 (1, 1, 3) 5, 1, −1, −3 Mfs P

2/P1

33 (1, 1, 2) 5, 1, −1, −7 1
5 (1, 1, 4) P(2, 3, 5, 7)

34 (1, 1, 3) 4, 1, −1, −7 1
4 (1, 1, 3) P(3, 4, 5, 7)

35 (1, 2, 3) 3, 1, −1, −5 1
7 (1, 2, 5) P(3, 4, 5, 7)

and the inverses of 5, 13, 22, 29

P(2, 3, 5, 7) the inverses of 15, 23, 26, 33

P(3, 4, 5, 7) the inverses of 27, 30, 34, 35

P
3/ 15 (1, 2, 3, 4) the inverse of 31
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The links we construct for toric Fano 4-folds provide around 10,000 such flopping
bases, each of which is a toric Fano 4-fold, the majority not known to us. Of these,
around 2000 arise as Z1 in (2.2), that is from a terminal weak Fano blowup of a
(possibly fake)weighted projective space. For example, if X = P(14, 2)with orbifold
point Q = (0 : 0 : 0 : 0 : 1) ∈ X , and X ← Y1 is the blowup of a smooth point P ∈
X , then the proper transform C ⊂ Y1 of the line L ∼= P(1, 2) through P and Q is a
flopping curve (and a toric stratum, for suitable torus). After contractingC , the result
is a Gorenstein Fano 4-fold Z1 ⊂ P

114 of degree 567 in its anticanonical embedding.
It is also possible for one of the Q-factorial, Picard rank 2 varieties Yi appearing

in a link (2.2) to be a Fano variety. Indeed if the link starts with a flip Y1 ��� Y2, then
Y1 is such a Fano variety, or if there is a sequence Yi−1 ��� Yi ��� Yi+1 comprising
an antiflip followed by a flip, then again Yi is a Fano variety; we give an example of
this in Sect. 5.1 below.

3 Operations on a Simplicial Fan

We summarise the toric operations that arise in the links we construct, closely
following Reid [25, Sect. 2–4], which also has guiding pictures. We start with a
terminal Fano (fake) weighted projective n-space X determined by a fan � of
cones C1, . . . ,Cn+1 on rays generated by vertices v1, . . . , vn+1 that are primitive
(indivisible in L). In the notation of (2.2), so that, for example, each Yi isQ-factorial
of Picard rank ρYi = 2, the steps of the link are:

(3.1) Terminal extractions.

The map X ← Y1 arises from a fan refinement �1 ⊂ �, where �1 is the subdivision
of � by the ray though a new primitive vertex v ∈ L .

In dimension 3, if v ∈ Ci and Ci is a terminal quotient singularity 1
ri
(1, a, ri − a)

of index ri > 1, thenv is necessarily the vertex of height ri + 1 insideCi , the so-called
Kawamata blowup [23] (denoted by 1

ri
(1, a, ri − a) in Table1). IfCi is a nonsingular

cone (its vertices s1, s2, s3 form a basis of L) then either v = s1 + as2 + bs3 ∈ C◦
i

for coprime a, b > 1 (denoted by (1, a, b) in Table1) or v = s1 + s2 ∈ ∂Ci , up to
permutations of the si (denoted by (1, 1, 0) in Table1). In dimension 4 there are no
general results specifying those v ∈ Ci that determine terminal extractions.

(3.2) Flips, flops and anti-flips [25, Sect. 3].

A map ϕi : Yi → Zi may arise by amalgamating a union of ≥ 2 cones C j of �i into
a single convex cone D. If D is not simplicial, then in our context (2.2) D necessarily
has n + 1 vertices and (as ρYi = 2 so ρYi/Zi = 1) there is a unique alternative way of
subdividing D into simplicial cones on the same vertices. This forms a new simpli-
cial fan �i+1, giving the composition Yi → Zi ← Yi+1 which is an isomorphism in
codimension 1 (see [25, (3.4)]).

Consider the vertices {s1, . . . , sn+1} of D, ordered so that s1, . . . , sn span one of
the cones C j of �i and thus lie on an affine hyperplane H ⊂ L . If sn+1 also lies



Toric Sarkisov Links of Toric Fano Varieties 135

on H , then Yi ��� Yi+1 is a flop (ϕi contracts only curves � with K� = 0) and Yi+1

again hasQ-factorial terminal singularities. If sn+1 lies on the same side of H as the
origin, then −KYi is ϕi -ample, Yi ��� Yi+1 is a flip, and again Yi+1 has Q-factorial
terminal singularities (see [25, Sect. 4]).

On the other hand, if sn+1 lies on the opposite side of H to the origin, then
Yi ��� Yi+1 is an anti-flip, and we lose control of the singularities of Yi+1: the shed
has grown and may now admit interior points. We must check: if the singularities
are terminal, then we continue with Yi+1; if not, then the link is bad.

In Table1 each of these operations is denoted by a vector (b1, . . . , bn+1) for
which

∑
bksk = 0.

(3.3) Divisorial contractions.

Continuing the notation of (3.2), if D is simplicial then ϕi is a divisorial contraction
to a point and Zi = X ′ is the end of the link (again as ρYi = 2 so ρYi/Zi = 1).

It may also happen that ϕi : Yi → Zi arises by a subset of cones of �i combining
to make a union of simplicial cones of a new fan, in which case ϕi is a divisorial
contraction to a locus of dimension > 0, and again we have reached the end of the
link.

(3.4) Mori fibre spaces [25, (2.5–6)].

When dim Zi < dim Yi , then i = s is the end of the link and Ys → Zs is a Mori fibre
space with (possibly fake) weighted projective spaces as fibres.

(3.5) Blowup and flip notation and the weights of C∗ variations.

As indicated above, Table1 abbreviates the data of each birational map by a sequence
of numbers, namely the coefficients of the linear relations among rays of the relevant
cones. For 4-fold output, including the much larger data set recorded at [4], we
abbreviate the birational maps as follows.

Blowups (and blowdowns) are determined by their centre P and the primitive
lattice point v on the the new subdividing ray that describes the blown-up fan. Thuswe
record blowups (and blowdowns) by two pieces of data, as follows: first, a sequence
[a0, a1, . . . , ad ] indicating the weights of coordinates along the blowup centre—that
is, the d-dimensional toric stratum P = P(a0, . . . , ad) being blown up—and, second,
a vector (b0, b1, . . . , b4−d) that gives the coefficients of the minimal integral relation
defining v in terms of the rays of P (in some order that is not recorded). The notation
does not determine the (singularity) type of the centre being blown up, other than
its dimension and lattice index, but that can be recovered unambiguously from the
weighted projective space.

Some examples illustrate this notation for blowups of a toric 4-fold:

• [1](−1, 1, 1, 1, 2) is the (1, 1, 1, 2)-weighted blowup of a nonsingular toric point-
stratum. The blowup is determined by the fan subdivision at a ray through v =
s1 + s2 + s3 + 2s4 ∈ L , where si are the vertices of a regular 4-dimensional cone
corresponding to the point, while the sequence [1] indicates that this is a cone of
index 1, that is, a regular cone.
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• [1, 1](−1, 1, 1, 1) is the ordinary blowup of a nonsingular toric curve stratum
The blowup is determined by the subdivision at v = s1 + s2 + s3, which lies on a
regular 3-dimensional cone with vertices si .

• [3](−3, 1, 1, 1, 2) is the blowup by v = 1
3 (s1 + s2 + s3 + 2s4) in a 4-dimensional

cone of index 3.
• [4](−2, 1, 1, 1, 1) is the blowup by v = 1

2 (s1 + · · · + s4) in a 4-dimensional cone
of index 4, for which

∑
si is divisible by 2 in the lattice L , but not by 4.

• [2, 2](−2, 1, 1, 1) is the Kawamata blowup along a curve of transverse 1
2 (1, 1, 1)

singularities, that is, the blowup by v = 1
2 (s1 + s2 + s3) in the corresponding 3-

dimensional cone.
• [2, 4](−2, 1, 1, 1) is the unique extremal extraction along a curve of generically
transverse 1

2 (1, 1, 1) singularities that equals the Kawamata blowup at a general
point. (This occurs, for example, as the start of a link from P(1, 1, 2, 3, 4).)

For flips and other isomorphisms in codimension 1, we record a sequence of integers
that are the coefficients of the minimal integral relation among the rays of D, in the
notation of (3.2). They may also be treated as weights for a C∗ action; see [3, Sect.
1] for example.

• (4, 1,−1,−1,−3) is a 4-fold flop contracting P(4, 1) and P(1, 1, 3) on the two
sides respectively to a common point in the base.

• (2, 1, 0,−1,−1) is a 4-fold flip over a curve in the base that makes a Francia flip
(namely (2, 1,−1,−1) in a 3-fold) over each point of the curve.

In each case, the rays involved may or may not generate the whole lattice, but we do
not record this co-index.

4 Extending Prokhorov’s Web

Prokhorov [24, Sect. 10] computes links from 3-fold weighted projective spaces that
start with the Kawamata blowups of quotient singularities. We list all toric Sarkisov
links between toric Mori–Fano 3-folds in Table1, and discuss some particular cases
here. Since we list the 3-folds X with smaller weights first (as one might if using
Sarkisov links to construct ‘complicated’ Fano 3-folds from ‘simple’ ones), the typ-
ical behaviour is a relatively high discrepancy blowup followed by an antiflip; the
picture would be reversed if we listed larger weights first. By [23, 5], it remains only
to consider the blowups of 1-strata that do not pass through a quotient singularity and
weighted blowups (1, a, b) of a smooth 0-stratum. The latter is an infinite collection
of blowups, and we discuss bounds in Sect. 4.4.
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4.1 Links from a Smooth Point

Consider the weighted (1, 1, 2) blowup of the smooth 0-stratum of P(1, 3, 4, 5). This
extends to a Sarkisov link:

(−1,1,1,2) Y1
(4,1,−1,−3)��� Y2 (3,1,1,−1)

↙ ↘ ↙ ↘
P(1, 3, 4, 5) Z1 P(1, 2, 3, 5)

In terms of the rays of the fan, we start with {(1, 1, 0), (0,−1, 1), (1,−1,−1),
(−2, 0,−1)}, and the blowup inserts

(0, 1, 0) = 1 · (−2, 0,−1) + 1 · (0,−1, 1) + 2 · (1, 1, 0). (−1, 1, 1, 2)

The flip then expresses the two subdivisions

4 · (0, 1, 0) + 1 · (1,−1,−1) = 1 · (−2, 0,−1) + 3 · (1, 1, 0) (4, 1,−1,−3)

after which the ray (1, 1, 0) can be contracted.

4.2 Links from the Eighth Toric Mori–Fano 3-Fold

We denote the action of ε ∈ Z/5 act on P
3 by (ε, ε2, ε3, ε4) by 1

5 (1, 2, 3, 4).
Then P

3/ 1
5 (1, 2, 3, 4) is a well-known toric Mori–Fano 3-fold which is a fake

weighted projective space (compare [1]). Its only toric extremal extraction is
the 1

5 (1, 2, 3) blowup of any of the four quotient singularities, and this extends to a
Sarkisov link:

(−5,1,2,3) Y1
(5,1,−1,−2)��� Y2 (5,2,1,−1)

↙ ↘
X = P

3/ 1
5 (1, 2, 3, 4) P(1, 2, 3, 5) = X ′

(4.1)

In coordinates, X may be defined by the four cones on the vertices

v1 = (0, 1, 1), v2 = (−1, 0,−2), v3 = (−1,−2, 1), v4 = (2, 1, 0)

(whose sum is the origin, but which generate only a sublattice of index 5), Y1 is the
1
5 (1, 2, 3) blowup at the new vertex v5 = (1, 1, 0) which satisfies

5 · v5 = 1 · v2 + 2 · v1 + 3 · v4 (−5, 1, 2, 3)
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Y2 is the flip by subdividing 〈v1, v3, v4, v5〉 the other way, corresponding to the linear
relation

5 · v5 + 1 · v3 = 1 · v1 + 2 · v4 (5, 1,−1,−2)

and X ′ = P(1, 2, 3, 5) follows from blowing down

5 · v5 + 2 · v3 + 1 · v2 = v4 (5, 2, 1,−1)

leaving
1 · v1 + 2 · v2 + 3 · v3 + 5 · v5 = 0. (1, 2, 3, 5)

4.3 Links from 1-Dimensional Centres

A toric 1-stratum L ⊂ X is the centre of an extremal extraction only when X is
smooth in a neighbourhood of L and X ← Y1 is the blowup of L . In each case there
is only a single L ⊂ X up to symmetry, and its blowup extends to a link; the blowup
(or blowdown) is denoted (1, 1, 0) in Table1.

4.4 Bounding Links from a Smooth Centre

Though the number of Sarkisov links between toric Fano 3-folds is finite, the num-
ber of terminal extractions from a smooth point is infinite, even in the toric case:
the (1, a, b) blowup is terminal for coprime a, b ≥ 1.

Consider the main case of the blowup of a point on P
3. We may define the fan

of P3 on the four rays e1, e2, e3 (the standard basis of L) and e4 = (−1,−1,−1),
and without loss of generality we consider blowing up by the point e5 = (a, 1, b)
with a > b > 1 coprime. (By symmetry, the only other cases are when b = 1, and
these smaller cases may be handled similarly.) Firstly, the blowup is indeed terminal.
After blowup, the edge e1, e3 must be antiflipped to e4, e5: indeed the equation

g134 = x − 3y + z

which supports the roof of the shed (g134 = 1) of cone σ134 = 〈e1, e3, e4〉 is strictly
positive at e5, as a ≥ 3 and b ≥ 2. This shows that −K is positive on the toric 1-
stratumcorresponding to 〈e1, e3〉, but evenwithout that observation the unionof cones
σ134 ∪ σ135 (which is strictly convex, as g134 > 0) may be differently subdivided into
convex cones by the hyperplane through e4 and e5.

After this antiflip, the lattice point v = (1, 0, 1) lies in the coneσ345 = 〈e3, e4, e5〉.
This cone has supporting equation (g345 = 1) where
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g345 =
(
3 − b

a − 1

)
x +

(
b − 2a − 1

a − 1

)
y + z

so that, if a > b ≥ 3, the blow up at v has discrepancy g345(v) − 1 = (3 − b)/(a −
1) ≤ 0, which violates terminality.

In the case a > b = 2, the link would end by contracting

e1 = 1
a−2 (1 · e2 + 2 · e4 + 1 · e5)

but that contraction to a quotient singularity 1
a−2 (1, 2, 1)has non-positive discrepancy

unless a − 2 ≤ 3. Thus wemust be in the situation a ≤ 5 and b = 2, and the possible
blowups leading to a Sarkisov link are indeed bounded.

4.5 Higher Rank Fano 3-Folds, Links and Relations

Since each link X ��� X ′ in Table1 identifies the big torus, it is easy to compose
sequences of these links to give birational automorphims X ��� X , describing rela-
tions in the Sarkisov program. Following [18], relations are derived from minimal
model programs (MMPs) on certain varieties Z with ρZ = 3. Explicitly in the toric
case, most links in Table1 arise by patching together two different MMPs on toric
Fano 3-folds Y with ρY = 2 (since one of the Yi in (2.2) is Fano, unless there is a
flop). Such Y are classified (into 35 cases, coincidentally), and further MMPs from
the 75 rank 3 toric Fano 3-folds describe relations. This can all be carried out by
similar, but bigger, toric considerations.

5 The Web of 4-Dimensional Toric Sarkisov Links

The main result of this paper is an attempt to construct data analogous to Table1
for toric Mori–Fano 4-folds. We do not attempt a complete classification of links;
compare [16] for the complete classification in the case X = P

4. Instead, for each
of the 35, 947 varieties we compute all toric (point, curve and surface) blowups of
discrepancy at most 5, and for each one either extend to a Sarkisov link or discard as
a bad link. Even subject to this severe constraint on discrepancy (at one end of the
link) there are over a million links, and we record them all in full detail online at [4].
We illustrate some general features of the results here by discussing links from three
exemplary starting points X .
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5.1 Blowups of P(1, 2, 3, 4, 5)

Under the given restrictions on blowups and their discrepancies, there are 275 Sark-
isov links from X = P(1, 2, 3, 4, 5).

For example, there are 4 ways of making a link from a (−5, 1, 2, 3, 4) blowup of
the index 5 point: after the blowup X ← Y1, these links are completed by

(i) Y1 → P(1, 2, 3, 4) Mori fibre space with P1 fibre
(ii) a (3, 1,−1,−1,−2) flop, then (4, 3, 1,−1,−2) flip to Y3 → P

1 Mori fibre
space with P(1, 1, 1, 2) fibre

(iii) a (2, 1, 0,−1,−1) flip, then (1, 2, 3, 4)-weighted blowdown Y2 → P(1, 1, 1,
2, 3) to a smooth point

(iv) a (4, 1,−1,−2,−3) antiflip, then (3, 2, 1,−1,−2) flip, then (1, 2, 2, 3)-
weighted blowdown Y3 → P(1, 1, 2, 3, 4) to a smooth point.

The last of these exhibits antiflip–flip behaviourwhich are rare for 3-folds (the index 1
cases in [7, 9, 13] all involve a flop, but Guerreiro has examples for special members
of a family in higher index). In particular, the variety Y2 in the middle of the link
is a Fano 4-fold: it has Picard rank 2, with both extremal rays flipping, and may be
defined as the (C×)2 quotient (

0 1 2 3 4 1
1 2 3 4 5 0

)

This phenomenon seems to be common in dimension 4.

5.2 Links Between Fake Weighted Projective Spaces

The web of Sarkisov links is of course connected, and so there are necessarily links
between fake weighted projective spaces with different discriminant groups. For
example there is a Sarkisov link

X = P(2, 3, 5, 5, 13)/ 1
5 (0, 1, 3, 4, 3) ��� X ′ = P(4, 5, 6, 7, 17)/ 1

2 (1, 1, 1, 0, 0)

that factorises as

(−25,1,5,6,14) Y1
(15,1,−1,−2,−8)��� Y2

(65,6,1,−7,−34)��� Y3 (25,7,5,2,−12)

↙ ↘
X X ′

that is, a divisorial extraction from a point, two consecutive flips, followed by a
divisorial contraction to a point. Again, this phenomenon is not something we have
seen in 3 dimensions (Campo [9] finds cases withmultiple flips, but always following
a flop). In particular, the variety Y1 is a Fano 4-fold with Picard rank 2.
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5.3 Blowups of P4

Starting with X = P
4, our bounds permit just one example in which the initial

extremal extraction is followed by a flop

(−1,1,1,2,2) Y1
(1,1,0,−1,−1)��� Y2 (P(1, 1, 1, 2)-bundle)

↙ ↘
P
4

P
1

However, allowing bigger discrepancies it is easy to construct cases of the form

P
4 ← Y1

flop��� Y2
flip��� Y3 → X ′

where the blowups have weights

(7, 8, 9, 12), (10, 11, 13, 17), (11, 12, 14, 19), (13, 14, 17, 22) (5.1)

and the resulting X ′ are respectively

P(1, 3, 4, 5, 12), P(1, 4, 6, 7, 17), P(1, 5, 7, 8, 19), P(1, 5, 8, 9, 22).

(The 4-tuples in (5.1) are simply the solutions (d, a, b, c) of the equationa + b + c =
4d + 1witha, b, c ≥ d ≥ 1,with any three coprime, forwhich theblowup (a, b, c, d)

of the standard toric P4 terminal, subject to the bound a, b, c, d ≤ 100. The equation
guarantees the flop.)

Similarly, our bounds permit only a single case when the blowup is followed by
a flip

(−1,3,3,4,5) Y1
(3,1,0,−1,−2)��� Y2 (4,1,1,1,−1)

↙ ↘
P
4

P(1, 1, 2, 2, 5)

Again higher discrepancies allow a handful of other cases P4 ← Y1
flip��� Y2 → X ′,

namely weighted blowups (4, 4, 5, 7), (5, 5, 6, 8), (12, 13, 15, 20) with X ′ respec-
tively P(1, 2, 3, 3, 7), P(1, 2, 3, 3, 8) and P(1, 5, 7, 8, 20). (These are the solutions
(d, a, b, c) to a + b + c < 4d + 1 with a, b, c ≤ 100, d ≤ 50 and the same addi-
tional conditions as above.) In each case, Y1 is a Fano 4-fold of Picard rank 2.

The typical behaviour, though, is that the extremal extraction is followed by an
antiflip. This can be followed by a flop or a flip, but a sequence of two antiflips is
common, as in the following:
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(−1,1,2,5,9) Y1
(1,1,−1,−4,−8)��� Y2

(2,1,−1,−3,−7)��� Y3 (5,4,3,1,−4)

↙ ↘
P
4

P(1, 4, 7, 8, 9)

In this case, Y3 is a Fano 4-fold of Picard rank 2.

6 Further Related Problems

6.1 High-Discrepancy Blowups

The list we describe above certainly misses some Sarkisov links, such as those
in Sect. 5.3, since we restrict attention to discrepancy at most 5 at one of the ends.
There are only finitely many Sarkisov links from any given centre, and with more
work one can bound the terminal extractions that initiate these links and describe all
the missing cases. In the case of X = P

4, Guerreiro [16] computes all 421 Sarkisov
links from P

4 that start with the blowup of a point.

6.2 Non-terminal Singularities

The classification [21] includes a further 348, 930 Fano 3-folds X with strictly canon-
ical singularities and ρX = 1. It makes sense to compute links of the form (2.2)
between these, for example by permitting crepant extractions, even though they
would be regarded as ‘bad’ links in the usual terminal situation.

6.3 Running the Sarkisov Program on Toric n-Folds

In the toric context, any two toric Mori–Fano n-folds X and Y have a common big
torus, and any such identification extends to a birational map X ��� Y . At first sight,
given any two Fano n-fold polytopes P1 and P2 and elements g1, g2 ∈ GL(n,Z), the
task is to compute a series of operations of the form (3.1–3) that takes the spanning
fan of g1(P1) to that of g2(P2), via fans on at most n + 1 rays. But the Picard rank
can increase when Mori fibre spaces appear, and the analysis may be rather subtle;
the Sarkisov program applies to Mori fibre spaces, not only Mori–Fano n-folds. This
is a much more substantial problem than the one we address in Sect. 5.
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6.4 Higher Picard Rank

The secondary fan of a toric variety V (of arbitrary Picard rank) contains the data
of all minimal model programs (MMPs). Magma [2] includes functions to run all
toric MMPs from a given V , inductively contracting all extreme rays of the Mori
cones that arise. The sets of all toric varieties and all their MMPs are infinite but
could be enumerated up to a bound. This would contain all Sarkisov links that are
dominated by such V and, following [18], relations in the toric Sarkisov program
among those.

6.5 Fano 3-Folds and 4-Folds More Generally

The toric case considered here is a test case for overlaying other (partial) classifica-
tions of Fano varieties by webs of Sarkisov links. Analysis of the numerical data of
possible links has had spectacular success contributing to the classification of par-
ticular types of Fano varieties (for example, in works of Takeuchi, Alexeev, Takagi
and Prokhorov, among others) and a ‘numerical’ web in the spirit of the Graded Ring
Database [4] may be possible.
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Du Val Singularities

Igor Burban

Abstract These are extended and updated notes of my lecture series on Du Val
surface singularities, given at the University of Kaiserlautern in the summer term
2002.

Keywords Du Val singularities · Quotient singularities · Crepant resolutions

1 Introduction

We consider quotient singularities C2/G, where G ⊆ SL2(C) is a finite subgroup.
Let C[[x, y]] be the ring of formal power series and C[[x, y]]G the corresponding
ring of invariants. Since the ring extension C[[x, y]]G ⊆ C[[x, y]] is finite, the Krull
dimension of C[[x, y]]G is two.

Note that C[[x, y]]�2 = C[[(x + y, xy)]] ∼= C[[x, y]], where �2 = 〈
σ | σ2 = e

〉
is

the symmetric group of order two and σ(x) = y. In order to get a more precise
connection between finite subgroups ofG ⊆ SL2(C) and the corresponding quotient
singularities, we need the following definition.

Definition 1.1 Let G ⊆ GLn(C) be a finite subgroup. An element g ∈ G is called
pseudo-reflection if it is conjugated to diag(1, 1, . . . , 1,λ), where λ �= 1 (note that
λ is a root of unity). A group G is called small if it contains no pseudo-reflections.

For the following results, we refer to [4, Sect. 4] and references therein.

Proposition 1.2 Let G ⊆ GLn(C) be a finite subgroup. Then the following results
are true.

(1) The ring of invariants C[[x1, x2, . . . , xn]]G is normal and Cohen–Macaulay.
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(2) There exists a small subgroup of GLn(C) such that

C[[x1, x2, . . . , xn]]G ∼= C[[x1, x2, . . . , xn]]G ′
.

(3) Let G ′,G ′′ ⊆ GLn(C) be two small subgroups. Then

C[[x1, x2, . . . , xn]]G ′ ∼= C[[x1, x2, . . . , xn]]G ′′

if and only if G ′ and G ′′ are conjugated.
(4) Let G ⊆ GLn(C) be a small finite subgroup. ThenC[[x1, x2, . . . , xn]]G is Goren-

stein if and only if G ⊆ SLn(C).

Remark 1.3 Note that every subgroup of SLn(C) is small.

Now we want to address the following question: what are finite subgroups of
SL2(C) up to conjugation?

2 Finite Subgroups of SL2(C)

Lemma 2.1 Every finite subgroup of SLn(C) (respectively, of GLn(C)) is conju-
gated to a subgroup of SUn(C) (respectively, of Un(C)).

Proof Let ( , ) be the standard Hermitian inner product onCn . For any u, v ∈ C
n

we put:

〈u, v〉 := 1

|G|
∑

g∈G
(gu, gv).

Note that for G ⊆ Un(C) we have: 〈 , 〉 = ( , ). Observe that 〈 , 〉 is a new
Hermitian inner product on C

n . Indeed:

• 〈u, u〉 ≥ 0.
• 〈u, u〉 = 0 implies u = 0.
• 〈u, v〉 = 〈v, u〉.
Moreover, for any h ∈ G we have:

〈hu, hv〉 = 1

|G|
∑

g∈G
(ghu, ghv) = 〈u, v〉.

Hence G is unitary with respect to 〈 , 〉. Moreover, we can find an isometry

S : (
C

n, 〈 , 〉) −→ (
C

n, ( , )
)
, i.e. an isomorphism of vector spaces C

n S−→
C

n such that 〈u, v〉 = (Su, Sv). We know that 〈gu, gv〉 = 〈u, v〉 for all g ∈ G and
u, v ∈ C

n . Hence we get (Su, Sv) = (Sgu, Sgv). Replacing u and v by S−1u and
S−1v we obtain:
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(u, v) = (SgS−1u, SgS−1v)

for all g ∈ G and u, v ∈ C
n . �

Now, we describe all finite subgroups of SU2(C). Recall that

SU2(C) = {
A ∈ SL2(C) | A−1 = A∗} =

{(
α β

−β̄ ᾱ

)∣∣∣∣ |α|2 + |β|2 = 1

}
.

Topologically, we have: SU2(C) ∼= S3.

Theorem 2.2 There is an exact sequence of groups

1 −→ Z2 −→ SU2(C)
π−→ SO3(R) −→ 1.

More precisely,

Ker(π) =
{
±

(
1 0
0 1

)}
.

Topologically, π is the map S3
2:1−→ RP

3.

From this theorem (a proof of which can be for instance found in [6]) it follows
that there is a close connection between finite subgroups of SU2(C) and SO3(R). A
classification of finite rotation groups of R3 is a classical result of F. Klein (dating
back to Plato).

Theorem 2.3 Up to conjugation, there are the followingfinite subgroups ofSO3(R):

(1) A cyclic subgroup Zn, generated, for instance, by

⎛

⎝
cos( 2πn ) − sin( 2πn ) 0
sin( 2πn ) cos( 2πn ) 0

0 0 1

⎞

⎠ .

(2) Dihedral group Dn (|Dn| = 2n), which is the automorphism group of a prism.
It is generated by a rotation a and a reflection b which satisfy the relations an =
e, b2 = e, (ab)2 = e. Note that the last relation can be replaced by ba = an−1b
or bab−1 = a−1.

(3) Group of automorphisms of a regular tetrahedron T = A4. Note that |T | = 12.
(4) Group of automorphisms of a regular octahedron O = S4, |O| = 24.
(5) Group of automorphisms of a regular icosahedron I = A5, |I | = 60.

A proof of this result can be for instance found in [6]. Observe that all non-cyclic
subgroups of SO3(R) have even order.

Lemma 2.4 The matrix

(−1 0
0 −1

)
is the only element of SU2(C) of order two.
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Proof From

(
α β

−β̄ ᾱ

)2

=
(

α2 − |β|2 αβ + βᾱ

−β̄α − β̄ᾱ ᾱ2 − |β|2
)

=
(
1 0
0 1

)

it follows that α2 = ᾱ2, thus α = ±ᾱ. Hence α = x with x ∈ R or α = i x with
x ∈ R. Moreover α �= 0, since otherwise must hold −|β|2 = 1. In the case α ∈ R

we have: αβ + βᾱ = 2αβ, hence β = 0 and α = ±1. If α = i x is purely imaginary
then α2 − |β|2 = −|x |2 − |β|2 < 0, contradiction. �

Let G ⊆ SU2(C) be a finite subgroup and SU2(C)
π−→ SO3(R) the covering from

Theorem2.2. Consider the following two cases.

(1) |G| is odd. Then G ∩ Z2 = {e} (there are no elements of order 2 in G). So
Ker(π) ∩ G = {e} and G

π−→ π(G) is an isomorphism. Hence G is cyclic.
(2) |G| is even. By Sylow’s theorem, G contains a subgroup of order 2k and, as a

consequence, an element of order 2. But there is exactly one such element in
SU2(C) (see Lemma2.4). Hence Ker(π) ⊆ G and G = π−1

(
π(G)

)
. So, in this

case G is the preimage of a finite subgroup of SO3(R).

Classification of Finite Subgroups of SL2(C)

From what was said above, we obtain a full classification of finite subgroups of
SL2(C) up to conjugation.

(1) A cyclic subgroup Zk . Let g be its generator. From gk = e it follows that

g ∼
(

ε 0
0 ε−1

)
,

where ε is some primitive root of 1 of kth order.
(2) Binary dihedral group Dn , |Dn| = 4n. To find the generators of Dn we have to

know the explicit form of the map SU2(C)
π−→ SO3(R). Skipping all details,

we just write down the final answer: Dn = 〈a, b〉 with relations
⎧
⎨

⎩

an = b2

b4 = e
bab−1 = a−1.

To be concrete,

a =
(

ε 0
0 ε−1

)
, where ε = exp

(
πi

n

)
and b =

(
0 1

−1 0

)
.

(3) Binary tetrahedral group T, |T| = 24. We have: T = 〈σ, τ ,μ〉, where

σ =
(
i 0
0 −i

)
, τ =

(
0 1

−1 0

)
, μ = 1√

2

(
ε7 ε7

ε5 ε

)
, ε = exp

(
2πi

8

)
.
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(4) Binary octahedral group O, |O| = 48. This group is generated by σ, τ ,μ as in
the case of T and by

κ =
(

ε 0
0 ε7

)
.

(5) Binary icosahedral subgroup I, |I| = 120. We have: I = 〈σ, τ 〉, where

σ = −
(

ε3 0
0 ε2

)
, τ = 1√

5

(−ε + ε4 ε2 − ε3

ε2 − ε3 ε − ε4

)
, ε = exp

(
2πi

5

)
.

Remark 2.5 A classification of all finite subgroups of GL2(C) can be for instance
found in [3]. The problem of classification of finite subgroups ofSL3(C) is evenmore
complicated; see [9]. Indeed, every finite subgroup G ⊆ GL2(C) can be embedded
into SL3(C) via the group monomorphism

GL2(C) −→ SL3(C), g �→
(
g 0
0 1

det(g)

)
.

Finite subgroups of GL2(C) provide main series of finite subgroups of SL3(C); see
[9] for details and proofs.

Now we can give a description of the corresponding invariant subrings.

3 Description of Du Val Singularities

Definition 3.1 Let X be a complex surface and p ∈ X its singular point. Then p is
a Du Val singularity if the completed ring ÔX,p is isomorphic to C[[x, y]]G , where
G ⊂ SL2(C) is a finite subgroup.

Now we provide a description of coordinate algebras of Du Val singularities.

(1) Consider a cyclic subgroup Zn = 〈g〉, g : x �→ εx, y �→ ε−1y, where ε = exp(
2πi
n

)
forn ≥ 2. It is not difficult to see that X = xn,Y = yn and Z = xy generate

the whole ring of invariants. We get:

C[[x, y]]Zn = C[[X,Y, Z ]]/(XY − Zn) ∼= C[[u, v, w]]/(u2 + v2 + wn)

is an An−1-singularity, where n ≥ 2.
(2) Binary dihedral group Dn , where n ≥ 2. It acts on C[[x, y]] by the rule

σ :
{
x �→ εx
y �→ ε−1y

τ :
{
x �→ −y
y �→ x,
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where ε = exp
(

πi
n

)
. The corresponding ring of invariants is generated by the

polynomials

F = x2n + y2n, H = xy(x2n − y2n) and I = x2y2.

They satisfy the relation

H 2 = x2y2(x4n + y4n − 2x2n y2n) = I F2 − 4I n+1.

It follows that

C[[x, y]]Dn ∼= C[[u, v, v]]/(un+1 + uv2 + w2).

It is an equation of a Dn+2-singularity.
(3) It can be checked that for the groups T,O, I we get the following hypersurface

singularities:

(a) E6: u3 + v4 + w2 = 0,
(b) E7: u3v + v3 + w2 = 0,
(c) E8: u3 + v5 + w2 = 0.

Summing up, we get the following result:

Theorem 3.2 Du Val singularities are precisely simple hypersurface singularities
of type An (for n ≥ 1), Dn (for n ≥ 4) or En (for n = 6, 7, 8).

We want now to answer our next question: what are minimal resolutions and dual
graphs of Du Val singularities?

4 A1-Singularity

In what follows, we refer to [8] for all definitions and basic notions, related with
algebraic geometry of complex surface singularities. Consider the singular sur-
face S = V (x2 + y2 + z2) ⊂ A3. We describe its blow-up at the singular point
o = (0, 0, 0). Recall that

Ã3 = {
((x, y, z), (u : v : w)) ∈ A3 × P2

∣∣ xv = yu, xw = zu, yw = zv
}
.

Take the chart u �= 0, i.e. u = 1. We get

⎧
⎨

⎩

x = x
y = xv
z = xw.
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What is S̃ = π−1(S\{o})? Consider first x �= 0.We describeπ−1(S\{o}) in this chart.
From the constraints

x2 + x2v2 + x2w2 = 0, x �= 0,

we get:
1 + v2 + w2 = 0, x �= 0.

In order to get a description of S̃, we should allow x to be arbitrary. Hence, in this
chart the surface S̃ is the cylinder V (1 + v2 + w2) ⊂ A3.What is π−1(o)?Obviously
it is the intersection of S̃ with the exceptional plane

(
(0, 0, 0), (u : v : w)

)
. In this

chart we just have to set x = 0 in addition to the equation of the surface S̃:

π−1(o) =
{
1 + v2 + w2 = 0

x = 0.

We see that E = π−1(o) is rational and since all three charts of S̃ are symmetric, we
conclude that E is smooth, so E ∼= P1.

Now we have to compute the self-intersection number E2. We do it using the fol-
lowing trick.

Let S̃
π−→ S be a minimal resolution of singularities of S. Then π induces an iso-

morphism of fields of rational functions C(S)
π∗−→ C(S̃). Let g ∈ C(S̃) be a rational

function. Then we have:

(g).E = degE
(
OE ⊗ OS̃(g)

) = degE (OE ) = 0.

In particular, for any f ∈ m ⊆ OS,0 we have:
(
π∗( f )

)
.E = 0.

Consider the function y ∈ OS,0 and put: g = π∗(y). In the chart u = 1 we get
g = xv. What is the vanishing set of g?

• x = 0 is an equation of E .
• v = 0 implies: w2 + 1 = 0, i.e. w = ±i . These equations define curves C1 and
C2.

It follows that (g) = E + C1 + C2 and we have the following picture:
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So, (g).E = E2 + C1.E + C2.E = E2 + 2 = 0. From it follows E2 = −2.

5 E6-Singularity

In this sectionwecompute aminimal resolutionof singularities X̃
π−→ X and thedual

graph of the E6-singularity X = V (x2 + y3 + z4) ⊂ A3. Let E = ∪n
i=1Ei = π−1(o)

be the corresponding exceptional divisor, where o = (0, 0, 0).
The strategy of computation of the self-intersection numbers E2

i will be the same

as for the A1-singularity: we consider the ring isomorphism C(X)
π∗−→ C(X̃) and

choose f ∈ mX ⊂ OX . Then the equalities
(
π∗( f )

)
.Ei = 0 for 1 ≤ i ≤ n will allow

to compute the self-intersection number of each irreducible component Ei . In what
follows, we take f = x ∈ C(X).

First step. Consider the blow-up of A3 at the point o:

Ã3 = {
((x, y, z), (u : v : w)) ∈ A3 × P2

∣∣ xv = yu, xw = zu, yw = zv
}
.

Take first the chart v �= 0 (i.e. v = 1). We get the equations

⎧
⎨

⎩

x = yu
y = y
z = yw.

To get the equation of the strict transform X̃1 of X , we assume that y �= 0. From the
conditions

y2u2 + y3 + y4w4 = 0, y �= 0

it follows that
u2 + y + y2w4 = 0.
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In this chart, the surface X̃1 is smooth. Indeed, the system

⎧
⎨

⎩

u = 0
1 + 2yw4 = 0

w3y2 = 0

has no solutions, hence X̃1 is smooth in this chart by Jacobi criterion.

A similar computation shows that in the chart u �= 0 (i.e. u = 1), the strict trans-
form X̃1 is smooth as well.

Finally, consider the chart w �= 0 (i.e. w = 1).

⎧
⎨

⎩

x = zu
y = zv
z = z.

From z2u2 + z3v3 + z4 = 0, z �= 0 we get the equation of the strict transform X̃1 of
X in this chart:

u2 + zv3 + z2 = 0.

Jacobi criterion implies that this surface has a unique singular point u = 0, v =
0, z = 0, or, in the global coordinates ((0, 0, 0), (0 : 0 : 1)). We see that this point
indeed belongs only to a one of three affine charts of X̃1.

We now need a description of the exceptional fibre E0 which is by definition
the intersection X̃1 ∩ {(

(0, 0, 0), (u : v : w)
)}
. To get its local equation in the chart

w = 1, we just have to add z = 0 to the system of equations describing X̃1. The
condition z = 0 implies that u = 0. Hence, we get:

E0 = {
((0, 0, 0), (0 : v : 1))} ∼= A1.

Going to the other charts shows that E0
∼= P1.

Finally, the function f in this chart gets the form f = zu.

Convention. Since the number of indices would grow exponentially with the number
of blow-ups, we shall always denote the local coordinates of all charts of all blowing-
ups X̃i by the letters (x, y, z).

Second step. We have the following situation:

⎧
⎨

⎩

surface x2 + zy3 + z2 = 0
function f = xz
exceptional divisor E0 x = 0, z = 0.

Consider again the blow-up of this surface at the point (0, 0, 0). It is easy to see that
the only interesting chart is
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⎧
⎨

⎩

x = yu
y = y
z = yw.

From the constraints

y2u2 + ywy3 + y2w2 = 0, y �= 0,

we get the equation of the strict transform:

u2 + y2w + w2 = 0.

Again y = 0, u = 0, w = 0 is the only singularity of the blown-up surface. The
exceptional fibre E1 of this blow-up has two irreducible components: y = 0 implies
u ± iw = 0 (we call these components E ′

1 and E ′′
1 ).

What is the preimage (under preimage we mean its strict transform) of E0? x =
0, z = 0 implies u = 0, w = 0.
The function f = xz gets in this chart the form f = y2uw.

Third step. We have the following situation:

⎧
⎪⎪⎨

⎪⎪⎩

surface x2 + y2z + z2 = 0
function f = xy2z
exceptional divisor E0 x = 0, z = 0
exceptional divisor E1 y = 0, x ± i z = 0.
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Let us consider the next blow-up at the point (0, 0, 0). Consider the chart

⎧
⎨

⎩

x = yu
y = y
z = yw.

From the constraints

y2u2 + y2yw + y2w2 = 0, y �= 0,

we get the equation of the strict transform:

u2 + yw + w2 = 0.

This is a singular surface with a single A1-singularity (what means that we are almost
done). The exceptional fibre E2 of this blow-up consists again of two irreducible
components E ′

2 and E
′′
2 given by the local equations y = 0, u ± iw = 0. The function

f is uy4w. It is easy to see that the preimage of E0 is given by the equations u =
0, w = 0.

What about the preimage of E1? We consider the affine chart A3 embedded into
A3 × P2 via the map (y, u, w) �→ (

(yu, y, yw), (u : 1 : w)
)
. But then the condi-

tion y = 0 would imply that the preimage of E1 belongs to the exceptional plane(
(0, 0, 0)(u : 1 : w)

)
. But it can not be true! The solution of this paradox is that the

preimage of the curve E1 lies in another coordinate chart.

Consider ⎧
⎨

⎩

x = x
y = xv
z = xw.

From
x2 + x2v2xw + x2w2 = 0, x �= 0

we get the equation of the strict transform

1 + xv2w + w2 = 0.

The exceptional fibre E2 in this chart is the intersection of the strict transform with
the plane x = 0, what implies w = ±i . The preimage of E1

{
x ± i z = 0

y = 0

is given by the closure of
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⎧
⎨

⎩

x ± i xw = 0
xv = 0
x �= 0.

Hence, the preimage of E1 is given by the equations

⎧
⎨

⎩

w = ±i
v = 0
x arbitrary.

In the picture it looks like:

It is easy to see that all intersections are transversal.

Fourth step. We have the following situation: there are two coordinate charts

⎧
⎪⎪⎨

⎪⎪⎩

surface x2 + yz + z2 = 0
function f = xy4z
exceptional divisor E0 x = 0, z = 0
exceptional divisor E2 y = 0, x ± i z = 0

and⎧
⎪⎪⎨

⎪⎪⎩

surface 1 + xy2z + z2 = 0
function f = x4y2z
exceptional divisor E1 y = 0, z = ±i
exceptional divisor E2 x = 0, z = ±i.

In the picture it looks like as follows:
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Our next step is the blowing-up at the point (0, 0, 0) in the first coordinate chart.
Again, in order to get equations of the preimages of E0, E1 and E2 we have to
consider two coordinate charts. In the first chart we have:

⎧
⎨

⎩

x = yu
y = y
z = yw.

The strict transform is the cylinder

u2 + w + w2 = 0.

The preimage of E0 is given by equations u = 0, w = 0, the exceptional fibre E3

is given by u2 + w + w2 = 0, y = 0, our function f = uy6w. In another chart we
have ⎧

⎨

⎩

x = x
y = xv
z = xw.

The strict transform is the closure of

x2 + x2vw + x2w2 = 0, x �= 0

i.e.
1 + vw + w2 = 0.

The exceptional fibre E3 is given by 1 + vw + w2 = 0, x = 0, the preimages of E ′
2

and E ′′
2 are given by v = 0, w = ±i , f = x6v4w.
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Summing up, the exceptional fibre E of the constructed resolution of singularities
X̃

π−→ X is given by the following configuration of projective lines:

E′
1

E′
2 E3 E′′

2

E′′
1

E0

The dual graph of this configuration is

Fifth step. We have to take into account three coordinate charts of a minimal resolu-
tion. ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎨

⎪⎪⎩

X̃ : x2 + z + z2 = 0
f : xy4z
E0 : x = 0, z = 0
E3 : y = 0, x2 + yz + z2 = 0⎧

⎪⎪⎨

⎪⎪⎩

X̃ : 1 + yz + z2 = 0
f : x6y4z
E3 : x = 0, x2 + yz + z2 = 0
E2 : y = 0, z = ±i⎧

⎪⎪⎨

⎪⎪⎩

X̃ : 1 + xy2z + z2 = 0
f : x6y2z
E1 : y = 0, z = ±i
E2 : x = 0, z = ±i.

Now we compute the divisor ( f ).
Let X ⊂ A3 be a normal surface, Y ⊂ X a closed curve, f ∈ C(X) a rational

function. Suppose that p ⊂ C[X ] is the prime ideal corresponding to Y . ThenC[X ]p
is a discrete valuation ring and

multY ( f ) = valC[X ]p( f ).

• Consider the first chart, in which f = xy6z = 0. If x = 0 then z = 0 or z = −1.
Note that E0 = V (p) with p = (x, z), whereas x = 0, z = −1 is the strict trans-
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formC of the curve x = 0 in the original singular surface X = V (x2 + y3 + z4) ⊂
A3.
What is the multiplicity of E0? The generator of the maximal ideal of the ring
(C[x, y, z]/(x2 + z + z2))p is x̄ and x̄2 ∼ z̄. Therefore multE0( f ) = 3.
Next, y = 0 gives an equation of E3. It is easy to see that multE3( f ) = 6. Note that
the curveC has transversal intersectionwith E3 at the point x = 0, y = 0, z = −1.

• Consider the second chart. We have: f = x6y4z = 0. The intersection of X̃ with
z = 0 is empty, x = 0 cuts out the divisor E3 and y = 0 the union of E ′

2 and E
′′
2 . The

same computation as above shows that multE3( f ) = 6 (what is not surprise and
makes us sure that we did not make a mistake in computations) and multE ′

2
( f ) =

multE ′′
2
( f ) = 4.

• In the same way we get: multE ′
1
( f ) = multE ′′

1
( f ) = 2. Therefore we obtain:

( f ) = 6E3 + 4(E ′
2 + E ′′

2 ) + 2(E ′
1 + E ′′

1 ) + 3E0 + C.

We have C.E3 = 1, all other intersection numbers of C with irreducible compo-
nents of E are zero. Intersection numbers of irreducible components are coded in
the dual graph (which is has type E6, see the picture above).

The entire job was done in order to compute self-intersections. For example,

( f ).E0 = 6 + 3E2
0 = 0 implies that E2

0 = −2.

In the same way we conclude that the self-intersection numbers of the other irre-
ducible components of E are −2 as well.

Remark 5.1 Let X be a normal surface singularity, X̃
π−→ X its minimal resolution

and E =
n⋃

i=1
Ei = π−1(o) the exceptional divisor. Suppose that X̃ is a good resolution

and Ei
∼= P1 with E2

i = −2 for all 1 ≤ i ≤ n. Then X is a simple hypersurface
singularity. Indeed we know that the intersection matrix (Ei .E j )

n
i, j=1 is negatively

definite; see [7]. Let � be the dual graph of X . Then the quadratic form given by
intersection matrix coincide with the Tits form of �:

Q�(x1, x2, . . . , xn) = −2
( n∑

i=1

x2i −
∑

1=i< j=n

ai j xi x j
)
,

where ai j is the number of arrows connecting vertices i and j . From a theorem of
Gabriel we know that Q is negatively definite (and quiver is representation finite) if
and only if � has ADE type; see [5]. Since our singularity is rational, it is taut and
hence is uniquely determined by its dual intersection graph; see [1].
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6 Two-Dimensional McKay Correspondence

Recall that we defined Du Val singularities as the quotient singularities C[[x, y]]G ,
whereG ⊆ SU2(C) is some finite subgroup. A natural question is: are there any con-
nections between representation theory ofG and geometry of the minimal resolution
of the corresponding quotient singularity?

Let us recall some standard facts about representations of finite groups; see for
instance [6].

Theorem 6.1 (Mashke) Let G be a finite group. Then the category ofC[G]-modules
is semi-simple.

This theorem means that any exact sequence of C[G]-modules splits. In particular,
every finite-dimensional C[G]-module is projective. It follows from Krull–Schmidt
theorem that any indecomposable projective module is isomorphic to a direct sum-
mand of the regular module. Let

C[G] ∼=
s⊕

i=0

�
ni
i

be a direct sum decomposition of C[G]. Then �0,�1, . . . , �s is the complete list
of indecomposable C[G]-modules.

Lemma 6.2 Let C[G] ∼=
s⊕

i=0
�

ni
i be a decomposition of the regular module into a

direct sum of indecomposable ones. Then we have: dimC(�i ) = ni . In particular,

the following identity is true:
s∑

i=0
n2i = |G|.

Definition 6.3 Let G be a group and � = (V,�) be its finite dimensional complex

representation (i.e.V is a finite dimensional complex vector space andG
�−→ GL(V )

is a group homomorphism). Then the character of� = (V,�) is the functionG
χ�−→

C defined by the rule χ�(g) = Tr
(
�(g)

)
.

Remark 6.4 (1) It is easy to see that the character does not depend on the choice
of a representative from the isomorphism class of a representation:

Tr
(
�(g)

) = Tr
(
S−1�(g)S

)
.

(2) We have: χ�⊗� = χ�χ� and χ�⊕� = χ� + χ�.

(3) Moreover,

χ�(h−1gh) = Tr
(
�(h−1gh)

) = Tr
(
�(h)−1�(g)�(h)

) = Tr
(
�(g)

) = χ�(g).

It means that χ� is a central function, i.e. a function which takes the same value
for each pair of conjugate elements of G.
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Theorem 6.5 Any finite dimensional representation of a finite group G is uniquely
determined (up to an isomorphism) by its character.

Idea of the proof. Let ϕ,ψ be two central functions on G. Set

〈ϕ,ψ〉 := 1

|G|
∑

g∈G
χ�(g)χ�(h).

It defines a Hermitian inner product on the space of all central functions on G. The
theorem follows from the fact that χ�0 ,χ�1 , . . . ,χ�s is an orthonormal basis of this
vector space. Indeed, let � be any finite-dimensional representation of G. Then we
know that

� ∼=
s⊕

i=0

�
mi
i .

Then mi = 〈χ�,χ�i 〉 is clear.
Corollary 6.6 The number of indecomposable representations of a finite group G
is equal to the number of its conjugacy classes.

Definition 6.7 (McKay quiver) Let G ⊆ SU2(C) be a finite subgroup, �0,�1, . . . ,

�s all indecomposable representations of G. Let �0 be the trivial representation
and �nat its natural representation (i.e. the representation given by the inclusion
G ⊂ SU2(C)). Define the McKay graph of G as the following:

• Its vertices are indexed by �1, . . . , �s (note that we skip �0).

• Let�i ⊗ �nat ∼=
s⊕

j=0
�

ai j
j (or, equivalently,χiχnat =

s∑

i=0
ai jχ j ). Thenwe connect

vertices �i and � j by ai j vertices.

Remark 6.8 For all 1 ≤ i �= j ≤ s we have: ai j = a ji . Indeed,

ai j = 〈χiχnat,χ j 〉 = 1

|G|
∑

g∈G
χi (g)χnat(g)χ j (g) =

∑

g∈G
χi (g)χnat(g)χ j (g

−1).

Here we use that gn = e for some n ∈ N implying that �(g)n = id. It follows that
�(g) ∼ diag(ε1, ε2, . . . , εk) and

�(g−1) ∼ diag(ε−1
1 , ε−1

2 , . . . , ε−1
k ) = diag(ε̄1, ε̄2, . . . , ε̄k).

Since �nat is the natural representation, for all g ∈ G we have: �nat(g) ∈ SU2(C).
Let A ∈ SU2(C). If A ∼ diag(a, b) then A−1 ∼ diag(b, a) (asab = 1). Therefore

we have χnat(g) = χnat(g
−1). Then we can continue our equality:

∑

g∈G
χi (g)χnat(g)χ j (g

−1) =
∑

g∈G
χi (g)χnat(g

−1)χ j (g
−1) = 〈χi ,χnatχ j 〉 = a ji .
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Example 6.9 Let G = D3 be a binary dihedral group. As we already know, |D3| =
12. The group D3 has two generators a, b, which satisfy the following relations:

⎧
⎨

⎩

a3 = b2

b4 = e
aba = b−1.

The group D3 has four one-dimensional representations a = 1, b = 1; a = 1, b =
−1; a = −1, b = i and a = −1, b = −i . The natural representation is also known:
it is just

a =
(

ε 0
0 ε−1

)
, b =

(
0 1

−1 0

)
,

where ε = exp( πi
6 ) = 1

2 ±
√
3
2 i. There is also another irreducible two-dimensional

representation:

a =
(

cos 2π
3 i sin 2π

3
i sin 2π

3 cos 2π
3

)
, b =

(
0 1

−1 0

)
.

We have found all indecomposable representations of G (completeness of the list
follows from the fact that 1 + 1 + 1 + 1 + 4 + 4 = 12 = |D3|). We can collect the
obtained information into the character table.

χ(a) χ(b) dim
0 1 1 1 trivial
1 1 −1 1
2 −1 i 1
3 −1 −i 1
4 1 0 2 natural
5 −1 0 2

From this table it is easy to deduce that χ2
nat = χ0 + χ1 + χ5 and χ5χnat =

χ2 + χ3 + χ4. We get the McKay graph of D3:

4 5

2

3

22

1

0

1

1

1

Observe that it is also the dual graph of the D5-singularity. Note that the funda-
mental cycle of the D5-singularity is

Zfund = E1 + 2E4 + 2E5 + E2 + E3.
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Observe that the coefficients in this decomposition are the same as the dimensions
of the representations corresponding to the vertices of the McKay graph. Of course,
it is not a coincidence.

The following result is due to Artin and Verdier [2].

Theorem 6.10 (McKay correspondence) Let G ⊆ SU2(C) be a finite subgroup and
C[[x, y]]G be the corresponding invariant subring. Then the McKay graph of G coin-
cides with the dual graph of C[[x, y]]G. Furthermore, the dimension of the represen-
tation corresponding to a vertex of the McKay graph is equal to the multiplicity of
the corresponding component of the exceptional fibre in the fundamental cycle.

Acknowledgement I am indebted to the anonymous referees for their careful reading andnumerous
comments and remarks.
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K-Polystability of Two Smooth Fano
Threefolds

Ivan Cheltsov and Hendrik Süß

Abstract We give new proofs of the K-polystability of two smooth Fano threefolds.
One of them is a smooth divisor in P

1 × P
1 × P

2 of degree (1, 1, 1), which is unique

up to isomorphism. Another one is the blow up of the complete intersection
{

x0x3 +
x1x4 + x2x5 = x2

0 + ωx2
1 + ω2x2

2 + (
x2
3 + ωx2

4 + ω2x2
5

) + (
x0x3 + ωx1x4 + ω2x2

x5
)} ⊂ P

5 in the conic cut out by x0 = x1 = x2 = 0, where ω is a primitive cube

root of unity.

Keywords K-stability · Fano varieties · Alpha-invariant of Tian

1 Introduction

Let X be a smooth Fano threefold. Then X is contained in one of 105 families, which
are explicitly described in [4], These families are labeled asNo1.1,No1.2, . . ., No9.1,
No10.1, and members of each family can be parametrized by an irreducible rational
variety.

Theorem 1.1 ([1]) Suppose that X is a general member of the family NoN . Then

X is K-polystable ⇐⇒ N /∈

⎧⎪⎨
⎪⎩

2.23, 2.26, 2.28, 2.30, 2.31, 2.33, 2.35, 2.36, 3.14,

3.16, 3.18, 3.21, 3.22, 3.23, 3.24, 3.26, 3.28, 3.29,

3.30, 3.31, 4.5, 4.8, 4.9, 4.10, 4.11, 4.12, 5.2

⎫⎪⎬
⎪⎭

.

I. Cheltsov (B)
University of Edinburgh, Edinburgh, Scotland
e-mail: I.Cheltsov@ed.ac.uk

H. Süß
Friedrich Schiller University Jena, Jena, Germany
e-mail: hendrik.suess@uni-jena.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Cheltsov et al. (eds.), Birational Geometry, Kähler–Einstein Metrics
and Degenerations, Springer Proceedings in Mathematics & Statistics 409,
https://doi.org/10.1007/978-3-031-17859-7_8

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17859-7_8&domain=pdf
mailto:I.Cheltsov@ed.ac.uk
mailto:hendrik.suess@uni-jena.de
https://doi.org/10.1007/978-3-031-17859-7_8


166 I. Cheltsov and H. Süß

In the proof of this theorem, many explicitly given smooth Fano threefolds has
been proven to be K-polystable. Among them are the two threefolds described in
the abstract.

Let G be a reductive subgroup in Aut(X), and let f : X̃ → X be a G-equivariant
birational morphism with smooth X̃ , and let E be any G-invariant prime divisor in
X̃ . We say that E is a G-invariant prime divisor over X , and we let CX (E) = f (E).
Then

K X̃ ∼ f ∗(K X ) +
n∑

i=1

ai Ei

where E1, . . . , En are f -exceptional surfaces, and a1, . . . , an are strictly positive
integers. If E = Ei for some i ∈ {1, . . . , n}, we let AX (E) = ai + 1. Otherwise, we
let AX (E) = 1. The number AX (E) is known as the log discrepancy of the divisor
E . Then we let

SX (E) = 1

(−K X )n

∫ τ(E)

0
vol

(
f ∗(−K X ) − x E

)
dx

and β(E) = AX (E) − SX (E), where τ(E) is the pseudoeffective threshold of the
divisor E , i.e. τ(E) = sup{x ∈ R>0 | the divisor f ∗(−K X ) − x E is pseudoeffective}.
We have

Theorem 1.2 ([3, 6, 9]) The smooth Fano threefold X is K -polystable if β(F) > 0
for every G-invariant prime divisor F over X.

Now, we let

αG(X) = sup

⎧
⎨
⎩ε ∈ Q

∣∣∣∣∣∣
the log pair

(
X,

ε

m
D

)
is log canonical for any m ∈ Z>0

and everyG-invariant linear subsystemD ⊂ ∣∣ − mK X
∣∣

⎫
⎬
⎭ .

This number, known as the global log canonical threshold [2], has been defined in
[8] in a different way. But both definitions agree by [2, Theorem A.3]. If G is finite,
then

αG(X) = sup

{
ε ∈ Q

∣∣∣∣∣
the log pair (X, εD) is log canonical for every

G-invariant effectiveQ − divisor D ∼Q −K X

}
.

by [1, Lemma 1.4.1]. We have the following result:

Theorem 1.3 ([1, 8]) If αG(X) � 3
4 , then X is K-polystable.

In Sects. 2 and 3, we will use Theorems1.2 and 1.3 to prove that the Fano three-
folds described in the abstract are both K-polystable. The K-polystability of these
threefolds has been proved in [1] using a different approach. We believe that our
proof is deserved to be published, because our methods can be applied in to solve
other relevant problems.
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2 Smooth Divisor in P
1 × P

1 × P
2 of Degree (1, 1, 1)

Let X be the unique smoothFano threefold in the familyNo3.17.Then X is the divisor

{
x0y0z2 + x1y1z0 = x0y1z1 + x1y0z1

}
⊂ P

1 × P
1 × P

2,

where ([x0 : x1], [y0 : y1], [z0 : z1 : z2]) are coordinates on P
1 × P

1 × P
2.

Let G = Aut(X). Then G ∼= PGL2(C) � µ2, where µ2 is generated by an invo-
lution ι that acts as

([x0 : x1], [y0 : y1], [z0 : z1 : z2]
) 	→ ([y0 : y1], [x0 : x1], [z0 : z1 : z2]

)
,

and PGL2(C) acts on each factor via an appropriate irreducible SL2(C)-representa-
tion. More precisely, an element

(
a b
c d

) ∈ PGL2(C) acts as follows:

([x0 : x1], [y0 : y1], [z0 : z1 : z2]
) 	→ ([ax0 + cx1 : bx0 + dx1], [ay0 + cy1 : by0 + dy1],

[a2z0 + 2acz1 + c2z2 : abz0 + (ad + bc)z1 + cdz2 : b2z0 + 2bdz1 + d2z2]
)

Let E1 be the surface in P
1 × P

1 × P
2 that is given by

{
x0z2 − x1z1 = 0,

x1z0 − x0z1 = 0,
(2.1)

and let E2 be the surface in P
1 × P

1 × P
2 that is given by

{
y0z2 − y1z1 = 0,

y1z0 − y0z1 = 0.
(2.2)

Then E1 ⊂ X and E2 ⊂ X . Let π1 : X → P
1 × P

2 be the morphism that is given by

([x0 : x1], [y0 : y1], [z0 : z1 : z2]
) 	→ ([x0 : x1], [z0 : z1 : z2]

)
,

and let π2 : X → P
1 × P

2 be the morphism that is given by

([x0 : x1], [y0 : y1], [z0 : z1 : z2]
) 	→ ([y0 : y1], [z0 : z1 : z2]

)
.

Then π1 and π2 are birational. Moreover, the morphism π1 contracts E1 to a smooth
rational curveC1 ⊂ P

1 × P
2 that is given by (2.1), where we consider ([x0 : x1], [z0 :

z1 : z2]) as coordinates on P
1 × P

2. Similarly, the morphism π2 contracts the surface
E2 to a smooth rational curveC2 ⊂ P

1 × P
2 that is given by (2.2), where we consider

([y0 : y1], [z0 : z1 : z2]) as coordinates on P
1 × P

2.
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Observe that both morphisms π1 and π2 are PGL2(C)-equivariant. Therefore, we
have the following PGL2(C)-equivariant commutative diagram:

X
π1 π2

P
1 × P

2

pr2

P
1 × P

2

pr2

P
2

where pr2 is the projection to the second factor, the PGL2(C)-action on P
2 is faithful,

and pr2(C1) = pr2(C2) is the PGL2(C)-invariant conic given by z0z2 − z21 = 0.
Note that it follows from [1, Lemma 4.2.6] that the Fano threefold X is K-

polystable. Let us give an alternative proof of this assertion.
Let pr1 : P

1 × P
2 → P

1 be the projection to the first factor. Using pr1 ◦ π1

and pr1 ◦ π2, we obtain a PGL2(C)-equivariant P
1-bundle φ : X → P

1 × P
1, where

the PGL2(C)-action on the surface P
1 × P

1 is diagonal. Let C = E1 ∩ E2. Then
φ(C) is a diagonal curve. Denote its preimage on X by R. Then C = R ∩ E1 ∩ E2,
the curve C and the surface R are the only proper closed G-invariant irreducible
subvarieties in X , and −K X ∼ E1 + E2 + R.

Let H1 = (pr1 ◦ π1)
∗(OP1(1)), let H2 = (pr1 ◦ π2)

∗(OP1(1)), let HL = (pr2 ◦
π2)

∗(OP2(1)). Then the group Pic(X) is generated by H1, HL , E1. Moreover, it
easily follows from the description of the birational morphisms π1 and π2 that

H2 ∼ H1 + HL − E1,

E2 ∼ 2HL − E1,

R ∼ H1 + H2,

R ∼ 2H1 + HL − E1,

−K X ∼ 2H1 + 3HL − E1.

Note that H 2
1 · H2 = 0, H 2

1 · HL = 0, H 3
1 = 0, H 2

2 · H1 = 0, H1 · H2 · HL = 1, H 3
2 =

0, H1 · H 2
L = 1, H2 · H 2

L = 1, H 3
L = 0, H 2

2 · HL = 0.
By [2, Lemma 8.17], we have α(X) = 1

2 . Since −K X ∼ E1 + E2 + R and C =
R ∩ E1 ∩ E2, we also have αG(X) � 2

3 . In particular, we cannot apply Theorem1.3
to prove that the threefold X is K-polystable. Let us apply Theorem1.2 instead.

Let η : Y → X be a G-equivariant birational morphism, let D be a prime G-
invariant divisor in Y , let t be a non-negative real number, and let

SX (D, t) = 1

−K 3
X

∫ t

0
vol

(
η∗(−K X ) − x D

)
dx .



K-Polystability of Two Smooth Fano Threefolds 169

Then we have SX (D) = S(D,∞) and β(D) = AX (D) − SX (D). By Theorem1.2,
to prove that X is K-polystable it is enough to show that β(D) > 0. Let us first show
this in the case when η is an identify map:

Lemma 2.1 One has SX (R) = 4
9 and β(R) = 5

9 .

Proof Let x be a non-negative real number. Then

−K X − x R ∼R E1 + E2 + (1 − x)R.

On the other hand, the divisor −K X − R ∼ E1 + E2 ∼ 2HL is not big. This implies
that the divisor −K X − x R is pseudoeffective if and only if x � 1. i.e. we see
that τ(R) = 1, where τ(R) is the pseudoeffective threshold of the divisor R. More-
over, observe also that the divisor −K X − x R is nef for every x ∈ [0, 1], so that

SX (R) = 1

−K 3
X

∫ 1

0
(−K X − x R)3dx =

= 1

−K 3
X

∫ 1

0
(−K X )3 − 3R(−K X )2x+3R2(−K X )x2 − R3x3 dx =

= 1

36

∫ 1

0
12x2 − 48x + 36 dx = 4

9
.

Since AX (R) = 1, we have β(R) = 5
9 . �

Now, let f : X̃ → X be the blow-up of the curve C , let E be the f -exceptional
surface, let R̃, Ẽ1, Ẽ2 be the proper transforms on X̃ of the surfaces R, E1, E2,
respectively. Then E ∼= R̃ ∼= Ẽ1

∼= Ẽ2
∼= P

1 × P
1. Moreover, we have

Ẽ1 ∼ f ∗(E1) − E,

Ẽ2 ∼ f ∗(2HL − E1) − E,

R̃ ∼ f ∗(2H1 + HL − E1) − E .

Note that f ∗(H2) · f ∗(HL) · E = 0, f ∗(H1) · f ∗(HL) · E = 0, f ∗(HL) · f ∗(HL) ·
E = 0, f ∗(H1) · f ∗(H2) · E = 0, f ∗(H2) · f ∗(H2) · E=0, E2 · f ∗(H1) = −1, E2 ·
f ∗(H2) = −1, E2 · f ∗(HL) = −2, E · f ∗(H1) · f ∗(H1) = 0 and E3 = −4.

Lemma 2.2 One has SX (E) = 11
9 and β(E) = 7

9 . Moreover, if 0 � t � 1, then

SX (E, t) = 1

36

∫ t

0
(36 − 18x2 + 4x3)dx = 1

36
t4 − 1

6
t3 + t.

Proof Let x be a non-negative real number. Then

f ∗(−K X ) − x E ∼R f ∗(R + E1 + E2) − x E ∼R R̃ + Ẽ1 + Ẽ2 + (3 − x)E .
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which gives that τ(E) � 3, where τ(E) is the pseudoeffective threshold of the divi-
sor E . In fact, these equivalences also give τ(E) � 3, because the divisor R̃ + Ẽ1 +
Ẽ2 is not big, since the surfaces R̃, Ẽ1, Ẽ2 are disjoint and contractible (seeRemark2.5
below).

One can easily check that all restrictions ( f ∗(−K X ) − x E)|R̃ , ( f ∗(−K X ) −
x E)|Ẽ1

, ( f ∗(−K X ) − x E)|Ẽ2
, ( f ∗(−K X ) − x E)|E are nef for x ∈ [0, 1]. Therefore,

if 0 � x � 1, then the divisor f ∗(−K X ) − x E is nef, which gives

vol( f ∗(−K X ) − x E) =
(

f ∗(−K X ) − x E
)3 =

= f ∗(−K X )3 + 3x2 f ∗(−K X )E2 − x3E3 = 36 − 18x2 + 4x3.

If 3 > x > 1, then both surfaces Ẽ1 and Ẽ2 lies in the asymptotic base locus of
the big divisor f ∗(−K X ) − x E , because the divisor f ∗(−K X ) − x E intersect nega-
tively with the rulings of the natural projections Ẽ1 → C1 and Ẽ2 → C2. Moreover,
if x ∈ [1, 2], then the divisor

f ∗(−K X ) − x E − 1

2
(x − 1)

(
Ẽ1 + Ẽ2

) ∼R R̃ + 3 − x

2

(
Ẽ1 + Ẽ2

) + (3 − x)E

intersects trivially with the rulings of the projections Ẽ1 → C1 and Ẽ2 → C1,
and this divisor is nef. So, if x ∈ [1, 2], the Zariski decomposition of the divisor
f ∗(−K X ) − x E is

f ∗(−K X ) − x E ∼R

1

2
(x − 1)

(
Ẽ1 + Ẽ2

) +
(

f ∗(−K X ) − x E − 1

2
(x − 1)

(
Ẽ1 + Ẽ2

))

︸ ︷︷ ︸
positive part

.

Thus, if x ∈ [1, 2], then we have

vol( f ∗(−K X ) − x E) =
(

f ∗(−K X ) − x E − 1

2
(x − 1)

(
Ẽ1 + Ẽ2

))3 = 6x2 − 36x + 52.

Similarly, if x ∈ (2, 3), we see that the positive part of the Zariski decomposition
of the big divisor f ∗(−K X ) − x E is

f ∗(−K X ) − x E − 1

2
(x − 1)

(
Ẽ1 + Ẽ2

) − (x − 2)R̃.

Thus, if x ∈ [1, 2], then

vol( f ∗(−K X ) − x E) =
(

f ∗(−K X ) − x E − 1

2
(x − 1)

(
Ẽ1 + Ẽ2

) − (x − 2)R̃
)3 = 4(3 − x)3.

Summarizing and integrating, we see that
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SX (E) = 1

36

∫ 1

0
(36 − 18x2 + 4x3)dx + 1

36

∫ 2

1
(6x2 − 36x + 52)dx

+ 1

36

∫ 3

2
4(3 − x)3dx = 11

9
,

which gives β(E) = 7
9 , because AX (E) = 2. Similarly, we compute SX (E, t). �

In the following, we will need one well-known result.

Lemma 2.3 ([7, Theorem 5.1]) Let S = Fn for n ∈ Z�0, let s be a section of the
natural projection S → P

1 such that s2 = −n, and let f be a fiber of this projection.
Fix a faithful action of the group PGL2(C) on the surface S. If n = 0, then

(1) either PGL2(C) acts trivially on one of the factors of the surface S ∼= P
1 × P

1;
(2) orPGL2(C) acts diagonally on S, and the only proper closedPGL2(C)-invariant

subvariety in the surface S is its diagonal.

If n � 1, then S has exactly two proper closed irreducible PGL2(C)-invariant sub-
varieties: the curve s and a unique PGL2(C)-invariant curve in |s + nf | disjoint
from s.

The action of the group G lift to the threefold X̃ , and E ∩ R̃ is a G-invariant
irreducible curve,which is contained in the pencil |R̃|E |. Therefore, usingLemma2.3,
we see that the group PGL2(C)must act trivially on the fibers of the natural projection
E → C . Since the curves Ẽ1|E and Ẽ2|E are swapped by the action of the group G,
we conclude that the pencil |R̃|E | contains exactly two G-invariant curves: E ∩ R̃
and another curve, which we denote by C ′.

Now, let g : X̂ → X̃ be the blow up of the curve C ′, let R′ be the g-exceptional
surface, let Ê1, Ê2, Ê , R̂ be the proper transforms on X̂ of the surfaces Ẽ1, Ẽ2, E ,
R̃, respectively. Then we have

( f ◦ g)∗(−K X ) ∼R Ê1 + Ê2 + R̂ + 3Ê + 3R′,

so the pseudoeffective threshold τ(R′) is at least 3. In fact, we have τ(R′) = 3,
because the divisor Ê1 + Ê2 + R̂ + 3Ê is not big. On the other hand, we have

Lemma 2.4 One has β(R′) � 5
9 .

Proof Let x be a non-negative real number such that x < 3. Then Ê lies in the stable
base locus of the divisor ( f ◦ g)∗(−K X ) − x R′, and the positive part of the Zariski
decomposition of this divisor has the following form:

( f ◦ g)∗(−K X ) − x R′ − x

2
Ê − D

for an effective R-divisor D. Indeed, if � is a general fiber of the projection Ê → C ,
then
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(
( f ◦ g)∗(−K X ) − x R′

)
· � = −x

and Ê · � = −2, which implies the required assertion. Thus, we have

SX (R′) � 1

36

∫ 3

0
vol

(
( f ◦ g)∗(−K X ) − x

2
Ê

)
dx � 2SX (E) = 22

9
,

because SX (E) = 11
9 by Lemma2.2. Then

β(R′) = AX (R′) − SX (R′) = 3 − SX (R′) � 3 − 22

9
= 5

9

as required. �

The action of the group G lifts to X̂ , and the surfaces R′, Ê and R̂ are G-invariant.

Remark 2.5 There exists the following G-equivariant commutative diagram:

X̃
f h

X̂
g

υ

R X

φ

X

ψ

ϑ
W

C P
1 × P

1
P
1 × P

1

where h is the contraction of the surface R̃, υ is the contraction of the surfaces R′
and R̂, themapψ is aP

1-bundle, andϑ is the birational contraction of the surfaces Ê1

and Ê2. Moreover, one can show that X ∼= P(OP1×P1(2, 0) ⊕ OP1×P1(0, 2)), and W
is a G-equivariant quotient of the projective space P

3 by an involution that pointwise
fixes two skew lines. Using this, one can show that there exists an involution σ ∈
Aut(X) such that σ swaps the curves υ(R′) and υ(R̂). Then σ lifts to X̂ and swaps
the divisors R′ and R̂.

The threefold X̃ contains two G-invariant irreducible curves: the curves E ∩ R̃
and C ′. The threefold X̂ also contains just two G-invariant irreducible curves: Ê ∩ R̂
and Ê ∩ R′, which are swapped by the involution σ from Remark2.5. Blowing up
one of the curves, we obtain a new threefold that contains exactly three G-invariant
irreducible curves that can be described in a very similar manner. Now, iterating this
process, we obtain infinitely many G-invariant prime divisors over X , which can be
described using weighted blow ups.

Definition 2.6 Let V be a smooth threefold that contains two smooth irreducible
distinct surfaces A and B that intersect transversally along a smooth irreducible
curve Z , and let θ : U → V be the weighted blow up with weights (a, b) of the curve
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Z with respect to the local coordinates along Z that are given by the equations of
the surfaces A and B, and let F be the exceptional surface of the weighted blow up
θ . Then

• the morphism θ is said to be an (a, b)-blow up between A and B,
• the surface F is said to be an (a, b)-divisor between A and B.

Observe that (1, 1)-blow up in this construction is the usual blow up of the inter-
section curve. To proceed, we need the following well-known result:

Lemma 2.7 In the assumptions of Definition2.6 and notations introduced in this
definition, suppose that (a, b) = (1, 1) and Z ∼= P

1. Let n = |α − β|, where α and
β be integers such that

Z2 =
{

α on the surface A,

β on the surface B.

Denote by Ã and B̃ the proper transforms on U of the surfaces A and B, respec-
tively. Then F ∼= Fn, the surfaces Ã and B̃ are disjoint, Ã|F and B̃|F are sections of
the natural projection F → Z such that ( Ã|F )2 = (β − α) and (B̃|F )2 = (α − β).

Proof Left to the reader. �
Now, we are ready to prove

Lemma 2.8 All G-invariant prime divisors over X can be described as follows:

(1) the surfaces R, E or R′,
(2) an (a, b)-divisor between E and R̃,
(3) an (a, b)-divisor between Ê and R′.

Proof Let F be a G-invariant prime divisor over X that is different from R, E
and R′. Then its center on X̃ is either E ∩ R̃ or C ′, since R, E , R′, E ∩ R̃, C ′ are
the only proper closed G-invariant irreducible subvarieties in X̂ , because C and R
are the only proper closed G-invariant irreducible subvarieties in X . Keeping inmind
Remark2.5, we may assume that its center on X̃ is E ∩ R̃. Let us show that F is
an exceptional divisor of a weighted blow up between the surfaces E and R̃,

Let V0 = X and Z0 = E ∩ R̃. Then there exists a sequence of G-equivariant blow
ups

Vm
θm

Vm−1
θm−1 · · · θ2

V1
θ1

V0

such that θ1 is the blow up of the curve Z0, the surface F is the θm-exceptional
surface, the morphism θk is a blow up of a G-invariant irreducible smooth curve
Zk−1 ⊂ Vk−1 such that the curve Zk−1 is contained in the θk−1-exceptional surface
provided that k � 2.

For every k ∈ {1, . . . , m}, let Fk be the θk-exceptional surface, so that we have
F = Fm . To prove that F = Fm is an exceptional divisor of a weighted blow up
between E and R̃, it sufficient to prove the following assertion for every k:
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• the surface Fk contains exactly two PGL2(C)-invariant irreducible curves,
• the two PGL2(C)-invariant irreducible curves in Fk are disjoint,
• if C is a PGL2(C)-invariant irreducible curve in Fk , then C is cut out by the strict
transform of one of the following surfaces:

– the surface Fr for some r ∈ {1, . . . , m} such that r �= k,
– the surface E ,
– the surface R̃.

Clearly, it is enough to prove this assertion only for k = m. Let us do this.
Let F0 = E and F−1 = R̃. For every k ∈ {−1, 0, 1, . . . , m − 1}, let Fk be the

proper transform of the surface Fk on the threefold Vm . We claim that

(i) Fm
∼= Fn for some n > 0;

(ii) the surface Fm contains exactly two PGL2(C)-invariant irreducible curves,
(iii) the two PGL2(C)-invariant irreducible curves in Fm are disjoint,
(iv) if C is a PGL2(C)-invariant irreducible curve in Fm , then C 2 ∈ {−n, n},
(v) if C is a PGL2(C)-invariant irreducible curve in Fm , then

C = Fm ∩ Fr

for some r ∈ {−1, 0, 1, . . . , m − 1} and the following assertions hold:

• if C 2 = n on the surface Fm , then C 2 � 0 on the surface Fr ,
• if C 2 = −n on the surface Fm , then C 2 > 0 on the surface Fr .

Let us prove this (stronger than we need) statement by induction on m.
Suppose that m = 1. It follows from Lemma2.7 that F0 = E ∼= P

1 × P
1. More-

over, we also know that F−1 = R̃ ∼= P
1 × P

1. Furthermore, we have

Z2
0 = (

R̃|E · R̃|E
)2 = R̃2 · E = (

f ∗(H1 + H2) − E
)2 · E = 0

on the surface F0, and we have

Z2
0 = (

E |R̃ · E |R̃

)2 = E2 · R̃ = E2 · (
f ∗(H1 + H2) − E

) = 2

on the surface F−1. Then F1
∼= F2 by Lemma2.7. Moreover, since PGL2(C) acts

faithfully on the curve Z0, it acts faithfully on F1. Hence, ifC is a PGL2(C)-invariant
irreducible curve in F1, then it follows from Lemma2.3 that either C = F0 ∩ F1 or
C = F−1 ∩ F1. Using Lemma2.7 again, we see that

• if C = F0 ∩ F1, then C 2 = 2 on the surface F1, and C 2 = 0 on the surface F0,
• if C = F−1 ∩ F1, then C 2 = −2 on the surface F1, while C 2 = 2 on the sur-
face F0.

Thus, we conclude that our claim holds for m = 1. This is the base of induction.
Suppose that our claim holds for m � 1. Let us show that it holds for m + 1

blow ups. Let C be a PGL2(C)-invariant irreducible curve in Fm , let � : V → Vm
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be its blow up, and let F be the �-exceptional surface. By induction, we know that
Fm

∼= Fn for n > 0. Moreover, we also know that

C = Fm ∩ Fr

for some r ∈ {−1, 0, 1, . . . , m − 1}. Furthermore, one of the following two asser-
tions holds:

• either C 2 = n > 0 on the surface Fm , and C 2 � 0 on the surface Fr ,
• or C 2 = −n < 0 on the surface Fm , and C 2 > 0 on the surface Fr .

LetFm andFr be the strict transforms onV of the surfaces Fm and Fr , respectively.
ThenF ∩ Fm andF ∩ Fr are disjoint PGL2(C)-invariant irreducible curves that are
sections of the projection F → C . Let γ be the self-intersection C 2 on the surface
Fr . Then it follows from Lemma2.7 that Fm+1

∼= Fs for

s = n + |γ | > 0.

Thus, by Lemma2.3, the curvesF ∩ Fm andF ∩ Fr are the only PGL2(C)-invariant
irreducible curves in the surface F . Let C1 = F ∩ Fm and C2 = F ∩ Fr .

Suppose that C 2 = n on the surface Fm . In this case, we have γ � 0 and s =
n − γ > 0. By Lemma2.7, we have C2

1 = n > 0 on the surfaceFm , and C2
1 = −s on

the surface F . Similarly, we see that C2
2 = γ � 0 on the surface Fr , and C2

2 = s > 0
on the surface F . Thus, we see that the required claim holds for m + 1 blow ups in
this case.

Finally, we suppose that C 2 = −n on the surface Fm . Then γ > 0 and s = n +
γ > 0. By Lemma2.7, we have C2

1 = −n < 0 on the surface Fm , and C2
1 = s on

the surface F . Similarly, we have C2
2 = γ > 0 on the surface Fr , and C2

2 = −s < 0
on the surfaceF . Therefore, we proved that the required claim holds for m + 1 blow
up also in this case. Hence, it holds for any number of blow ups (by induction). �

It follows fromLemmas2.1, 2.2, 2.4 thatβ(R) > 0,β(E) > 0,β(R′) > 0, respec-
tively. So, to prove that X is K-polystable, it is enough to check that β(F) > 0 in
the following cases:

(1) when F is the (a, b)-divisor between E and R̃,
(2) when F is the (a, b)-divisor between Ê and R′.

We start with the first case.

Proposition 2.9 Let ν : Y → X̃ be the (a, b)-blow up between the surfaces E and R̃,
and let F be the ν-exceptional surface. Then β(F) > 0.

Proof Let E1, E2, E , R be the proper transforms on Y of the surfaces Ẽ1, Ẽ2, E ,
R̃, respectively. Take a non-negative real number x . Put η = f ◦ ν. Then

η∗(−K X ) − x F ∼R E1 + E2 + R + 3E + (a + 3b − x)F,
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so that the pseudoeffective threshold τ = τ(F) is at least a + 3b.
Suppose that x < τ . Then E lies in the stable base locus of the divisor η∗(−K X ) −

x F . Moreover, we claim that the positive part of the Zariski decomposition of this
divisor has the following form:

η∗(−K X ) − x

a + b
E − x F − D

for an effective R-divisor D. Indeed, if � is a general fiber of the projection E → C ,
then (

η∗(−K X ) − x F
)

· � = − x

a
,

because η∗(−K X ) · � = 0 and F · � = 1
a . On the other hand, we have E · � = − a+b

a ,
which implies the required claim. Thus, if 7b > 2a, then arguing as in the proof of
Lemma2.4, we get

SX (F) � (a + b)SX (E) = 11

9
(a + b),

because SX (E) = 11
9 by Lemma2.2. Thus, if b

a > 2
7 , then

β(F) = AX (F) − SX (F) = a + 2b − SX (F) � a + 2b − 11

9
(a + b) = 7b − 2a

9
> 0

as required. Hence, we may assume that b
a � 2

7 .
If x > 2b, then the surface R lies in the stable base locus of the divisor η∗(−K X ) −

x F .Moreover, in this case, theZariski decomposition of this divisor has the following
the form:

η∗(−K X ) − x

a + b
E − x − 2b

a + b
R − x F − D

for some effectiveR-divisor D (supported in E1, E2, E , R, F). Indeed, if � is a general
fiber of the natural projection R → φ(C). Then R · � = − a+b

b and

(
η∗(−K X ) − x F

)
· � = 2 − x

b
,

which implies that the Zariski decomposition has the required form for x > 2b. Then

SX (F) � 1

36

∫ 2b

0
vol

(
ϕ∗(−K X ) − x

a + b
E

)
dx + 1

36

∫ ∞

2b
vol

(
ϕ∗(−K X ) − x − 2b

a + b
R

)
dx =

= (a + b) · S

(
E,

2b

a + b

)
+ (a + b) · S(R) <

5

9
(a + b) + 4

9
(a + b) = a + b.

because we have S(R) = 4
9 by Lemma2.1, and we have S

(
E, 2b

a+b

)
< 5

9 by
Lemma2.2. This gives β(F) > 0, since AX (F) = a + 2b. �
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Finally, we deal with (a, b)-divisors between Ê and R′.

Proposition 2.10 Let ν : Y → X̂ be the (a, b)-blow up between the surfaces Ê
and R′, and let F be the ν-exceptional surface. Then β(F) > 0.

Proof Let E1, E2, E , R, R
′
be the proper transforms on Y of E1, E2, E , R̃, R′,

respectively. Take a non-negative real number x . Put η = f ◦ g ◦ ν. Then

η∗(−K X ) − x F ∼R E1 + E2 + R + 3E + 3R
′ + (3a + 3b − x)F,

so that the pseudoeffective threshold τ = τ(F) is at least 3a + 3b.
Suppose that x < τ . Then E lies in the stable base locus of the divisor η∗(−K X ) −

x F . Moreover, we claim that the positive part of the Zariski decomposition of this
divisor has the following form:

η∗(−K X ) − x

2a + b
E − x F − D

for an effective R-divisor D. Indeed, if � is a general fiber of the projection E → C ,
then (

η∗(−K X ) − x F
)

· � = − x

a
,

because η∗(−K X ) · � = 0 and F · � = 1
a . On the other hand, we have E · � = − 2a+b

a ,
which implies the required claim. Thus, we have

SX (F) � (2a + b)SX (E) = 11

9
(2a + b),

because SX (E) = 11
9 by Lemma2.2. Then

β(F) = AX (F) − SX (F) = 3a + 2b − SX (F) � 3a + 2b − 11

9
(2a + b) = 5a + 7b

9
> 0

as required. �

Thus, we see that β(F) > 0 for every G-invariant prime divisor F over the three-
fold X . Then X is K-polystable by Theorem1.2.

3 Blow up of a Complete Intersection of Two Quadrics in
a Conic

Let Q1 = { f = 0} ⊂ P
5, where

f = x0x3 + x1x4 + x2x5,
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and let Q2 = {g = 0} ⊂ P
5, where

g = x2
0 + ωx2

1 + ω2x2
2 + (x2

3 + ωx2
4 + ω2x2

5 ) + (x0x3 + ωx1x4 + ω2x2x5),

and ω is a primitive cubic root of unity. Let V4 = Q1 ∩ Q2. Then V4 is smooth. Let
G be a subgroup in Aut(P5) such that G ∼= µ2

2 � µ3, where the generator of µ3 acts
by [

x0 : x1 : x2 : x3 : x4 : x5
] 	→ [

x1 : x2 : x0 : x4 : x5 : x3
]
,

the generator of the first factor of µ2
2 acts by

[
x0 : x1 : x2 : x3 : x4 : x5

] 	→ [ − x0 : x1 : −x2 : −x3 : x4 : −x5
]
,

and the generator of the second factor of µ2
2 acts by

[
x0 : x1 : x2 : x3 : x4 : x5

] 	→ [ − x0 : −x1 : x2 : −x3 : −x4 : x5
]
.

Then G ∼= A4, and P
5 = P(U3 ⊕ U3), where U3 is the unique (unimodular) irre-

ducible three-dimensional representation of the group G. Note that Q1 and Q2 are
G-invariant, so that V4 is also G-invariant. Thus, we may identify G with a subgroup
in Aut(V4).

Let τ be an involution in Aut(P5) that is given by

[
x0 : x1 : x2 : x3 : x4 : x5

] 	→ [
x3 : x4 : x5 : x0 : x1 : x2

]
.

Then Q1 and Q2 are τ -invariant, so that V4 is also τ -invariant.
Using explicit description of the G-action on P

5, one can check that G does not
have fixed points in P

5, and there are no G-invariant lines in P
5. Moreover, every

G-invariant plane in P
5 is given by

⎧
⎪⎨
⎪⎩

λx0 + μx3 = 0,

λx1 + μx4 = 0,

λx2 + μx5 = 0,

where [λ : μ] ∈ P
1. Using this, we see that V4 contains exactly four G-invariant

conics. These conics are cut out on V4 by the following G-invariant planes: the plane
�1 given by x0 = x1 = x2 = 0, the plane �2 = τ(�1), the plane �3 given by

⎧
⎪⎨
⎪⎩

x0 = ωx3,

x1 = ωx4,

x2 = ωx5,
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and the plane �4 = τ(�3). We let C1 = V4 ∩ �1, C2 = V4 ∩ �2, C3 = V4 ∩ �3,
C4 = V4 ∩ �4. Then the conics C1, C2, C3, C4 are pairwise disjoint, C2 = τ(C1)

and C4 = τ(C3).
For every i ∈ {1, 2, 3, 4}, we let πi : Xi → V4 be the blow up of the conic Ci ,

and we denote by Ei the exceptional surface of the blow up πi . Then X1
∼= X2 and

X3
∼= X4 are smooth Fano threefolds No2.16, and the action of the group G lifts to

its action on them.
For every i ∈ {1, 2, 3, 4}, we have the following G-equivariant diagram:

Xi

πi ηi

V4 P
2

where the dashed arrow is a linear projection from the plane �i , and ηi is a conic
bundle that is given by the linear system |π∗

i (H) − Ei |, where H is a hyperplane
section of the threefold V4. In each case, we have P

2 = P(U3).

Lemma 3.1 ([1, Lemma 5.6.1]) One has E1
∼= E2

∼= E3
∼= E4

∼= P
1 × P

1.

For each i ∈ {1, 2, 3, 4}, let�i be the discriminant curve in P
2 of the conic bundle

ηi . Then�i is a (possibly reducible) quartic curvewith atmost ordinary double points.

Lemma 3.2 The curves �1, �2, �3, �4 are smooth.

Proof If i = 1, then the linear projection V4 ��� P
2 from the plane �1 is given by

[
x0 : x1 : x2 : x3 : x4 : x5

] 	→ [
x0 : x1 : x2

]
.

Using this, one can deduce that �1 is given by 4x4
0 − x2

0 x2
1 − x2

0 x2
2 + 4x4

1 − x2
1 x2

2 +
4x4

2 = 0. This curve is smooth. Thus, the curve �2
∼= �1 is also smooth.

Let y0 = x0 − ωx3, y1 = x1 − ωx4, y2 = x2 − ωx5, y3 = x3, y4 = x4, y5 = x5.
In new coordinates, the linear projection V4 ��� P

2 from the plane �3 is given by

[
y0 : y1 : y2 : y3 : y4 : y5

] 	→ [
y0 : y1 : y2

]
.

Then �3 is given by 4x4
0 − ωx2

0 x2
1 + (ω + 1)x2

2 x2
0 − 4(ω + 1)x4

1 − x2
1 x2

2 + 4ωx4
2 .

This curve is smooth, so that �4
∼= �3 is also smooth. �
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Observe that P
2 = P(U3) has three G-invariant conics. Denote them by C1, C2

and C3, and denote by F1,i , F2,i and F3,i their preimages on Xi via ηi , respectively.
Then

F1,i ∼ F2,i ∼ F3,i ∼ π∗
i (2H) − 2Ei .

For every i ∈ {1, 2, 3, 4} and j ∈ {1, 2, 3}, let F j,i = πi (Fj,i ). Then F j,i is an irre-
ducible surface in |2H | that is singular along the conic Ci . Without loss of gen-
erality, we may assume that F1,1 is cut out on V4 by the equation f1,1 = 0
for f1,1 = x2

0 + x2
1 + x2

3 , and the surface F2,1 is cut out on V4 by the equation
f2,1 = 0 for f2,1 = x2

0 + ωx2
1 + ω2x2

3 . Then the surface F3,1 is cut out on V4 by
the equation f3,1 = 0, where f3,1 = x2

0 + ω2x2
1 + ωx2

3 . Using the involution τ , we
also see that F1,2 = τ(F1,1), F2,2 = τ(F2,1) and F3,2 = τ(F3,1), so that we let
f1,2 = τ ∗( f1,1), f2,2 = τ ∗( f2,1) and f3,2 = τ ∗( f3,1). Then F1,3 is cut out by f1,3 = 0,
where f1,3 = (x0 − ωx3)2 + (x1 − ωx4)2 + (x2 − ωx5)2. Likewise, the surface F2,3

is cut out on V4 by the equation f2,3 = 0, where f2,3 = (x0 − ωx3)2 + ω(x1 −
ωx4)2 + ω2(x2 − ωx5)2, Similarly, F3,3 is cut out by f3,3 = 0, where f3,3 = (x0 −
ωx3)2 + ω2(x1 − ωx4)2 + ω(x2 − ωx5)2. Finally, we conclude that F1,4 = τ(F1,3),
F2,4 = τ(F2,3) and F3,4 = τ(F3,3), so that we let f1,4 = τ ∗( f1,3), f2,4 = τ ∗( f2,3)
and f3,4 = τ ∗( f3,3).

Remark 3.3 Using the explicit equations of the surfaces F1,1, F2,1, F3,1, F1,2, F2,2,
F3,2, F1,3, F2,3, F3,3, F1,4, F2,4, F3,4 given above, we can describe the incidence
relation between the surfaces F1,1, F2,1, F3,1, F1,2, F2,2, F3,2, F1,3, F2,3, F3,3, F1,4,
F2,4, F3,4 and the conics C1, C2, C3, C4. It is given in the following table: Here, No

F1,1 F2,1 F3,1 F1,2 F2,2 F3,2 F1,3 F2,3 F3,3 F1,4 F2,4 F3,4

C1 Node Node Cusp No Yes No No Yes No No Yes No
C2 No Yes No Node Node Cusp No Yes No No Yes No
C3 Yes No No Yes No No Node Node Cusp Yes No No
C4 Yes No No Yes No No Yes No No Node Node Cusp

means that the surface does not contains the conic, and in all other cases the surface
contains the conic. Likewise, Node means the the surface has an ordinary double
point in general point of the conic, and Cusp means that the surface has an ordinary
cusp in general point of the conic. In all remaining cases the surface is smooth at
general point of the conic (we will see later that it is smooth along this conic).

Corollary 3.4 For every i ∈ {1, 2, 3, 4}, one has αG(Xi ) � 3
4 .

Proof Observe that F3,i + Ei ∼ −K Xi . Moreover, it follows from Remark3.3 that
the surface F3,i is tangent to Ei along a section of the projection Ei → Ci . Thus, we
conclude that αG(Xi ) � lct(Xi , F3,i + Ei ) � 3

4 as required. �

Recall that the group G ∼= µ2
2 � µ3 has three different one-dimensional represen-

tations: the trivial representation with the character χ0, the non-trivial representation
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with the character χ1 that sends the generator of µ3 to ω, and the non-trivial repre-
sentation with the character χ2 that sends the generator of µ3 to ω2. On the other
hand, the polynomials f , g, f1,1, f2,1, f3,1, f1,2, f2,2, f3,2, f1,3, f2,3, f3,3, f1,4, f2,4,
f3,4 are semi-invariants of the group G considered as a subgroup in SL6(C). These
polynomials split into three groups with respect to the characters χ0, χ1 and χ2 as
follows:

(χ0) f , f1,1, f1,2, f1,3, f1,4 are G-invariants;
(χ1) f3,1, f3,2, f3,3, f3,4 are G-semi-invariants with character χ1;
(χ2) g, f2,1, f2,2, f2,3, f2,4 are G-semi-invariants with character χ2.

Note that f1,4 = −(ω + 2) f1,1 + (ω + 2) f1,2 + f1,3 and (ω + 1) f1,1 − ω f1,2 − (ω

+ 1) f1,3 + 2 f = 0, which implies that F1,1, F1,2, F1,3, F1,4 generate a pencil on V4,
which we denote by P0. Similarly, we have f3,4 = −(ω + 2) f3,1 + (ω + 2) f3,2 +
f3,3, and the surfaces F3,1, F3,2, F3,3, F3,4 generate two-dimensional linear system
(net), which we denote byM1. This linear systemM1 contains four pencils, which
we denote by P1,1, P1,2, P1,3 and P1,4, that consist of surfaces containing the conics
C1, C2, C3 and C4, respectively. Likewise, we have f2,4 = −(ω + 2) f2,1 + (ω +
2) f2,2 + f2,3 and (ω − 1) f2,1 − (ω + 2) f2,2 − (ω + 1) f2,3 + 2g = 0, so that F2,1,
F2,2, F2,3, F2,4 generates a pencil on V4, which we denote by P2.

For every i ∈ {1, 2, 3, 4}, denote by P i
0, P i

1,1, P i
1,2, P i

1,3, P i
1,4 and P i

2 the strict
transforms on Xi of the pencils P0, P1,1, P1,2, P1,3, P1,4 and P2. Then

P1
1,1 ∼ P1

2 ∼ −K X1 ,

P2
1,2 ∼ P2

2 ∼ −K X2 ,

P3
1,3 ∼ P3

0 ∼ −K X3 ,

P4
1,4 ∼ P4

0 ∼ −K X4 .

Moreover, we have F3,1 + E1 ∈ P1
1,1, F2,1 + E1 ∈ P1

2 , F3,2 + E2 ∈ P2
1,2, F2,2 +

E2 ∈ P2
2 , F3,3+E3 ∈ P3

1,3, F1,3 + E3 ∈ P3
0 , F3,4 + E4 ∈ P4

1,4, F1,4 + E3 ∈ P4
0 . This

implies that P1
1,1|E1 , P1

2 |E1 , P2
1,2|E2 , P2

2 |E2 , P3
1,3|E3 , P3

0 |E3 , P4
1,4|E4 , P4

0 |E4 are zero-
dimensional linear systems (which can be considered as G-invariant curves) in E1,
E2, E3, E4, respectively. Denote them by Z1, Z ′

1, Z2, Z ′
2, Z3, Z ′

3, Z4, Z ′
4, respec-

tively. Observe that Z1 �= Z ′
1, Z2 �= Z ′

2, Z3 �= Z ′
3 and Z4 �= Z ′

4. This follows from
the exact sequence of G-representations

0 → H 0
(
OXi

( − K Xi − Ei
)) → H 0

(
OXi

( − K Xi

))
� H 0

(
OEi

( − K Xi

∣∣
Ei

))
,

where the surjectivity of the last map follows from Kodaira vanishing. Alternatively,
one can show this using the explicit equations of the pencilsP0,P1,1,P1,2,P1,3,P1,4

and P2.
Recall that E1

∼= E2
∼= E3

∼= E4
∼= P

1 × P
1 by Lemma3.1. For every i ∈ {1, 2,

3, 4}, let sEi be a section of the projection Ei → Ci such that s2Ei
= 0, and let fEi be

a fiber of this projection. Then −Ei |Ei = sEi − fEi , so that −K Xi |Ei ∼ sEi + 3 fEi .
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Hence,we see that Zi ∼ Z ′
i ∼ sEi + 3 fEi , which immediately implies that both curve

Zi and Z ′
i are irreducible, because Ci does not have G-orbits of lengths 1, 2 and 3.

For each i ∈ {1, 2, 3, 4}, the conic bundle ηi gives a double cover Ei → P
2, whose

branching curve is C3. Indeed, one has F3,i ∼ π∗
i (2H) − 2Ei , and F3,i has a cusp at

general point of the conicCi . Since F3,i |Ei ∼ 2sEi + 2 fEi , we have F3,i |Ei = 2Ci
i for

some irreducible curve Ci
i ∈ |sEi + fEi |. Since the double cover Ei → P

2 is given
by a linear subsystem in |sEi + fEi |, we conclude that ηi (Ci

i ) is the branching curve
of this double cover. But ηi (Ci

i ) = C3, since F3,i is the preimage of the curve C3 via
ηi .

For every i and j in {1, 2, 3, 4} such that j �= i , denote by Ci
j the strict transform

of the conic C j on the threefold Xi . Then −K Xi · Ci
1 = −K Xi · Ci

2 = −K Xi · Ci
3 =

−K Xi · Ci
4 = 4 and −K Xi · Zi = −K Xi · Z ′

i = 6. Observe also that Ci
1, Ci

2, Ci
3, Ci

4,
Zi , Z ′

i are smooth rational curves. Moreover, we have the following result:

Lemma 3.5 Let C be an irreducible G-invariant curve in Xi such that C ∼= P
1 and

−K Xi · C < 8. Then C is one of the curves Ci
1, Ci

2, Ci
3, Ci

4, Zi , Z ′
i .

Proof The proof is the same for every i ∈ {1, 2, 3, 4}. Thus, for simplicity of nota-
tions, we assume that i = 1. Suppose that C is not one of the curves C1

1 , C1
2 , C1

3 , C1
4 ,

Z1, Z ′
1. Let us seek for a contradiction.

First, we suppose that C ⊂ E1. Then C ∼ asE1 + b fE1 for some non-negative
integers a and b. Since −K X1 |E1 ∼ sE1 + 3 fE1 , we see that 3a + b = −K Xi · C <

8. Moreover, since C1
1 · C = a + b, we conclude that a + b � 4 and a + b �= 5,

because C1
1 does not have G-orbits of lengths 1, 2, 3 and 5. Thus, since C is irre-

ducible, we conclude that a = 1 and b = 3.
Let us describe the action of G on the surface E1

∼= P
1 × P

1. Since G acts faith-
fully on C1

∼= P
1, this action is given by the unique (unimodular) irreducible two-

dimensional representation of the central extension 2.G ∼= SL2(F3) of the group G,
which we denote byW3. Since |sE1 + fE1 | contains a G-invariant curve, and the pro-
jection E1 → C1 is G-equivariant, and we deduce that the action of G on the surface
E1 is given by the identification E1 = P(W2) × P(W2). Thus, theG-invariant curves
in |sE1 + 3 fE1 | corresponds to one-dimensional subrepresentations of the group 2.G
inW2 ⊗ Sym3(W2). Using the following GAP script, we conclude that there are two
such subrepresentations:

G:=Group("SL(2,3)");

R:=IrreducibleModules(G,CyclotomicField(3));

M:=TensorProduct(R[4],SymmetricPower(R[4],3));

IndecomposableSummands(M);

These subrepresentations corresponds to the curves Z1 and Z ′
1, so that C must be

one of them, which is impossible by assumption.
Thus, we see that C is not contained in E1. Let C = π1(C). Then π∗

1 (H) · C =
H · C � 2. Moreover, if H · C = 2, then C is one of the conics C1, C2, C3 or C4,
because these are the only G-invariant conics in V4. Since C �⊂ E1 and C is not one
of the curves C1

2 , C1
3 , C1

4 , we see that H · C �= 2, so that π∗
1 (H) · C � 3.
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Note also that η1(C) is a curve, because G does not have fixed points in P
2.

Similarly, we see that η1(C) is not a line. Hence, we conclude that (π∗
1 (H) − E1) ·

C � deg(η1(C)) � 2. One the other hand, we have E1 · C must be even sinceC does
not have G-orbits of odd length. Moreover, we have

7 � −K X1 · C = (
π∗
1 (2H) − E1

) · C = π∗
1 (H) · C + (

π∗
1 (H) − E1

) · C � 5,

so that −K X1 · C = 6, π∗
1 (H) · C = 3 and (π∗

1 (H) − E1) · C = 3, which gives E1 ·
C = 0. Hence, we see thatC is a smooth rational cubic curve, and η1(C) is a singular
cubic curve. This is impossible, since G does not have fixed points in P

2. �

Lemma 3.6 Let S be a G-invariant surface such that −K Xi ∼Q aS + � for a ratio-
nal number a and an effective G-invariant Q-divisor � on Xi . Then a � 1.

Proof If S = Ei , then 2 = −K Xi · C = aS · C + � · C � aEi · C = 2a for a gen-
eral fiber C of the conic bundle νi . Therefore, we may assume that S �= Ei . Then
πi (S) is a surface, and 2H ∼Q aπi (S) + πi (�). So, if a > 1, thenπi (S) ∼ H , which
is impossible, because we know that P

5 does not contain G-invariant hyperplanes.�

Now we are ready to state the main technical result of this section:

Lemma 3.7 Let a andλbe positive rational numbers such that a � 1andλ < 3
4 , and

let D be an effective G-invariant Q-divisor on Xi such that D ∼Q π∗
i (2H) − aEi .

Then Ei , Ci
i , Zi and Z ′

i are not log canonical centers of the log pair (Xi , λD).

Let us use this result to prove

Proposition 3.8 One has αG(X1) = αG(X2) = αG(X3) = αG(X4) = 3
4 .

Proof Suppose αG(Xi ) < 3
4 . Let us seek for a contradiction. Since Xi has no G-

fixed points, it follows from [1, Lemma A.4.8] and Lemma3.6 that there is a G-
invariant effective Q-divisor D on the threefold Xi such that D ∼Q −K Xi , the log
pair (Xi , λD) is strictly log canonical for some positive rational number λ < 3

4 ,
and the only center of log canonical singularities of this log pair is an irreducible G-
invariant smooth irreducible rational curve Z ⊂ Xi . Moreover, applying [1, Theorem
1.4.11(3.1)], we get −K Xi · Z < 8. Then it must be one of the curves Ci

1, Ci
2, Ci

3,
Ci
4, Zi , Z ′

i by Lemma3.5. On the other hand, it follows from Lemma3.7 that Z is
not one of the curves Ci

i , Zi , Z ′
i , so that Z = Ci

j for some j ∈ {1, 2, 3, 4} such that
j �= i .

Let ν : V → Xi be the blow up of the curve Z , let F be the ν-exceptional surface,
let D̃ be strict transform of the divisor D via ν, and let m = multZ (D). Then m � 1

λ

and
KV + λD̃ + (

λm − 1
)
F ∼Q ν∗(K Xi + λD

)
.

Thus, either λm − 1 � 1 or the surface F contains an irreducible G-invariant smooth
rational curve Z̃ such that ν(Z̃) = Z , the curve Z̃ is a section of the projection F →
Z , and Z̃ is a center of log canonical singularities the log pair (V, λD̃ + (λm − 1)F).
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Let υ : V → X j be the birational contraction of the strict transform of the surface
Ei , and let D = υ(D̃). Then υ(F) = E j and D ∼Q π j (2H) − m E j , so that

D +
(

m − 1

λ

)
E j ∼Q π j (2H) − 1

λ
E j .

Then the surface E j and the curves C j
j , Z j and Z ′

j are not log canonical centers of

the log pair (X j , λD + (λm − 1)E j ) by Lemma3.7. In particular, we see that λm −
1 < 1, so that the surface E j contains an irreducible G-invariant smooth rational
curve Z such thatπ j (Z) = Z , the curve Z is a section of the projection E j → C j , and
Z is a center of log canonical singularities of the log pair (X j , λD + (λm − 1)E j ).
Let us repeat that the curve Z is not one of the curves C j

j , Z j and Z ′
j by Lemma3.7.

Recall that E j
∼= P

1 × P
1.Write D|E j = δZ + ϒ . where δ is a non-negative ratio-

nal number, and ϒ is an effective Q-divisor on E j such that its support does not
contain the curve Z . Then δ � 1

λ
> 4

3 by [5, Theorem 5.50]. But

D
∣∣

E j
∼Q

(
π j (2H) − m E j

)∣∣
E j

∼Q 4 fE j + m(sE j − fE j ) = msE j + (4 − m) fE j ,

and Z ∼ sE j + k fE j for some non-negative integer k. This gives

ϒ ∼Q msE j + (4 − m) fE j − δ
(
sE j + k fE j

) = (m − δ)sE j + (4 − m − δk) fE j .

Since m � 1
λ

> 4
3 and δ > 4

3 , we get k = 0 or k = 1, so that Z = C j
j by Lemma3.5,

which is impossible by Lemma3.7. �
By Proposition3.8 and Theorem1.3, the smooth Fano threefolds X1

∼= X2 and
X3

∼= X4 are K-polystable. However, to complete the proof of Proposition3.8, we
have to prove technical Lemma3.7. Note that it is enough to prove this lemma for
X1 and X3, so that we will assume in the following that either i = 1 or i = 3.

Fix rational numbers a and λ such that a � 1 and 0 < λ < 3
4 . Let D be a G-

invariant effective Q-divisor on the threefold Xi such that D ∼Q π∗
i (2H) − aEi .

Then we must show that Ei , Ci
i , Zi and Z ′

i are also not log canonical centers of
the pair (Xi , λD). Replacing D by D + (a − 1)Ei , we may assume that a = 1, so
that D ∼Q −K Xi .Write D = εEi + �, where ε ∈ Q�0, and� is effectiveQ-divisor
on Xi whose support does not contain Ei . Then ε � 1 by Lemma3.6, so that Ei is
not a log canonical center of the log pair (Xi , λD).

Lemma 3.9 Neither Zi nor Z ′
i is a log canonical center of the pair (Xi , λD).

Proof Denote by Z one of the curves Zi or Z ′
i . Let m� = multZ (�) and m =

multZ (D). Then m = m� + ε. Let us bound m. To do this, write �
∣∣

Ei
= δZ + ϒ ,

where δ is a rational number such that δ � m�, and ϒ is an effective Q-divisor on
the surface Ei

∼= P
1 × P

1 such that its support does not contain Z . Observe that

�
∣∣
Ei

∼Q

(
πi (2H) − (1 + ε)Ei

)∣∣
Ei

∼Q 4 fEi + (1 + ε)(sEi − fEi ) = (1 + ε)sEi + (3 − ε) fEi
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and Z ∼ sEi + 3 fEi . This gives ϒ ∼Q (1 + ε − δ)sEi + (3 − ε − 3δ) fEi , which
gives δ � 1 − ε

3 . In particular, we get m = m� + ε � δ + ε � 1 + 2ε
3 � 5

3 .
Let ν : V → Xi be the blow up of the curve Z , and let F be the ν-exceptional

surface. Then the action of the group G lifts to the threefold V , since Z isG-invariant.
Recall that Z is cut out on Ei by a G-invariant surface in | − K Xi |. Since

Z ∼= P
1, this givesNZ/Xi

∼= OP1(6) ⊕ OP1(−2), because−K Xi · Z = 6, and Z2 = 6
on the surface Ei . Thus, we have F ∼= F8. Moreover, since F3 = −4, we deduce
that −F

∣∣
F ∼ sF + 2 fF , where sF is a section of the projection F → Z such that

s2F = −8, and fF is a fiber of this projection. Let Ẽi and D̃ be the proper trans-
forms of the divisors Ei and D on the threefold V , respectively. Then Ẽi |F ∼
(ν∗(Ei ) − F)|F ∼ sF , since E · Z = −2. Thus, we see that Ẽi |F = sF . Similarly,
we get D̃

∣∣
F

∼Q msF + (2m + 6) fF .
Now we suppose that Z is a log canonical center of the pair (Xi , λD). Let us seek

for a contradiction. Since λm − 1 < 1 and KV + λD̃ + (λm − 1)F ∼Q ν∗(K Xi +
λD), the surface F contains an irreducible G-invariant smooth rational curve Z̃ such
that ν(Z̃) = Z , the curve Z̃ is a section of the projection F → Z , and Z̃ is a center of
log canonical singularities the log pair (V, λD̃ + (λm − 1)F). Write D̃|F = θ Z̃ +
�, where θ is a non-negative rational number, and � is an effective Q-divisor on F
such that its support does not contain the curve Z̃ . Then using [5, Theorem 5.50], we
get θ � 1

λ
> 4

3 . On the other hand, we have Z̃ ∼ sF + k fF for some non-negative
integer k such that either k = 0 or k � 8. Thus, we have � ∼Q (m − θ)sF + (2m +
6 − θk) fF . Hence, if k �= 0, then 0 � 2m + 6 − θk � 2m + 6 − 8θ < 2m + 6 −
32
3 = 6m−14

3 , so that m > 7
3 , which is impossible, since m � 5

3 . Then k = 0, so that
Z̃ = sF = Ẽi ∩ F .

Recall that D = εEi + �, where ε is a non-negative rational number such that
ε � 1, and � is an effective Q-divisor on the threefold Xi whose support does not
contain Ei . Denote by �̃ the proper transform of this divisor on the threefold V . Then
Z̃ is a center of log canonical singularities the log pair (V, λε Ẽi + λ�̃ + (λm� +
λε − 1)F), where m� = multZ (�). Using [5, Theorem 5.50] again, we see that Z̃
is a center of log canonical singularities of the log pair (Ẽi , λ�̃|Ẽi

+ (λm� + λε −
1)F |Ẽi

), where F |Ẽi
= Z̃ . This simply means that λ�̃|Ẽi

+ (λm� + λε − 1)F |Ẽi
=

cZ̃ + � for some rational number c � 1, where � is an effective Q-divisor on Ẽi

whose support does not contain the curve Z̃ .
Now, let us compute the numerical class of the restriction �̃

∣∣
Ẽi
. Observe that

Ẽi
∼= Ei . Denote by sẼi

and f Ẽi
the strict transforms on Ẽi of the curves sEi and fEi ,

respectively. Then �̃|Ẽi
∼Q (1 + ε)sẼi

+ (3 − ε) f Ẽi
− m� Z̃ = (1 + ε − m�)sẼi

+
(3 − ε − 3m�) f Ẽi

. Thus, we see that

c
(
sẼi

+ 3 f Ẽi

) + � ∼Q λ�̃
∣∣
Ẽi

+ (
λm� + λε − 1

)
F

∣∣
Ẽi

∼Q

∼Q λ(1 + ε − m�)sẼi
+ λ(3 − ε − 3m�) f Ẽi

+(
λm� + λε − 1

)
Z̃ ∼Q

∼Q (λ + 2λε − 1)sẼi
+ (3λ + 2λε − 3) f Ẽi

,
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so that � ∼Q (λ + 2λε − 1 − c)sẼi
+ (3λ + 2λε − 3 − 3c) f Ẽi

, which gives 3λ +
2λε − 3 − 3c � 0. Since c � 1 and λ < 3

4 , we deduce that ε � 3
λ

− 3
2 > 4 − 3

2 = 5
2 .

But ε � 1. The obtained contradiction completes the proof of the lemma. �

To complete the proof of Lemma3.7, we must show that Ci
i is not a log canonical

center of the log pair (Xi , λD). Let Z = Ci
i . Suppose that Z is a log canonical center

of the pair (Xi , λD). Let us seek for a contradiction. Observe that multZ
(
D

)
� 1

λ
>

4
3 . Observe also that Z is not a log canonical center of the log pair (Xi , λ(F3,i + Ei ))

and D ∼Q F3,i + Ei . Thus, replacing D by a divisor (1 + μ)D − μ(F3,i + Ei ) for
an appropriate non-negative rational numberμ, wemay assume that either the surface
F3,i or the surface Ei is not contained in the support of the Q-divisor D. Then we
conclude that F3,i is not contained in the support of the Q-divisor D, because

Lemma 3.10 The surface Ei is contained in the support of the Q-divisor D.

Proof Let C be a general fiber of the projection Ei → Z . If the surface Ei

is contained in the support of the Q-divisor D, then 1 = −K Xi · C = D · C �
multZ (D) � 1

λ
> 4

3 , which is absurd. �

Let ν : V → Xi be the blow up of the curve Z , let F be the ν-exceptional
surface, and let Ẽi be the strict transform of the surface F via ν. Then F ∼= Fn

for some integer n � 0, and F |F ∼ −sF + a fF for some integer a, where sF

is a section of the projection F → Z such that s2F = −n, and fF is a fiber of
this projection. Since −K Xi · Z = 4, we conclude that F3 = −2. Thus, we have
−2 = F3 = (−sF + a fF )2 = −n − 2a, so that a = 2−n

2 . On the other hand, we
have Ẽi

∣∣
F ∼ sF + n−2

2 fF , since Ei · Z = (−sEi + fEi ) · (sEi + fEi ) = 0. But Ẽi

∣∣
F

is an irreducible curve, which implies that n = 2, since n−2
2 < n. Thus, we see that

F ∼= F2 and −F |F ∼ Ẽi |F = sF . Observe also that the action of the group G lifts to
the threefold V , since Z is G-invariant.

Remark 3.11 The divisor−KV is nef and big. Indeed, the linear system |π∗
i (2H) −

2Ei | is base point free. LetM be its strict transform on V . ThenM + Ẽi is a linear
subsystem of the linear system | − KV |, so that the base locus of the linear system
| − KV | is contained in Ẽi . But Ẽi

∼= Ei and −KV |Ẽi
∼ 2 f Ẽi

, where f Ẽi
is a strict

transform of the curve fEi on the surface Ẽi . Then −KV |Ẽi
is nef, so that −KV is

also nef. Since −K 3
V = 12, we see that −KV is big.

Let m = multZ (D), and let D̃ be the proper transform of the divisor D via ν.
Then

D̃
∣∣

F ∼Q

(
ν∗(−K Xi ) − m F

)∣∣
F ∼Q msF + 4 fF .

Let C be a sufficiently general fiber of the conic bundle νi that is contained in F3,i ,
and let C̃ be its strict transform on the threefold V . Then C is an irreducible curve
that is not contained in the support of the divisor D, because we assumed that F3,i �⊂
Supp(D). Moreover, the curveC intersects the curve Z , because F3,i |Ei = 2Z . Thus,
we have
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2 − m = 2 − m F · C̃ = (
ν∗(−K Xi ) − m F

) · C̃ = D̃ · C̃ � 0,

so that m � 2. Since λm − 1 < 1 and KV + λD̃ + (λm − 1)F ∼Q ν∗(K Xi + λD),
the surface F contains an irreducible G-invariant smooth curve Z̃ such that ν(Z̃) =
Z , the curve Z̃ is a section of the projection F → Z , and Z̃ is a center of log canonical
singularities the log pair (V, λD̃ + (λm − 1)F). Let m̃ = mult Z̃ (D̃). Then

m + m̃ � 2

λ
>

8

3
, (3.1)

because the multiplicity of the divisor λD̃ + (λm − 1)F at the curve Z̃ must be at
least 1.

Lemma 3.12 Either Z̃ = sF or Z̃ ∼ sF + 2 fF .

Proof Write D̃|F = θ Z̃ + �, where θ is a non-negative rational number, and �

is an effective Q-divisor on F such that its support does not contain Z̃ . Using [5,
Theorem 5.50], we get θ � 1

λ
> 4

3 . But Z̃ ∼ sF + k fF for k ∈ Z such that k = 0 or
k � 2. Thus, we have

� ∼Q msF + 4 fF − θ Z̃ ∼Q (m − θ)sF + (4 − θk) fF .

Hence, if k �= 0, then 0 � 4 − θk < 4 − 4
3k, so that k = 2. Then Z̃ = sF or Z̃ ∼

sF + 2 fF . �

Let F̃3,i be the proper transform on V of the surface F3,i . If Z̃ = sF , then Z̃ =
Ẽi ∩ F̃3,i , because F3,i is tangent to Ei along the curve Z and Ẽi |F = Z̃ . Using this,
we get

Lemma 3.13 One has Z̃ �= sF .

Proof If Z̃ = sF , then C̃ intersects the curve Z̃ , so that 2 − m � 2 − m F · C̃ =
D̃ · C̃ � m̃, which contradicts (3.1). �

Thus, we see that Z̃ ∼ sF + 2 fF .

Remark 3.14 The curve Z̃ is unique G-invariant curve in the linear system |sF +
2 fF |, because (sF + 2 fF ) · Z̃ = 2, and Z̃ does not have G-orbits of length less
than 4.

Let ρ : Y → V be the blow up of the curve Z̃ , and let R be the ρ-exceptional
surface. Then −K 3

Y = 2.

Lemma 3.15 The divisor −KY is nef.

Proof Let F̂3,i , Êi , F̂ be the strict transforms of the surfaces F3,i , Ei , F , respectively.
Then | − KY | contains the divisor F̂3,i + Êi + F̂ . Therefore, to prove the required
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assertion, it is enough to prove that the restrictions −KY |F̂3,i
, −KY |Êi

and −KY |F̂
are nef.

The nefness of the restriction −KY |Êi
follows from the nefness of the restric-

tion −KV |Ẽi
, because Z̃ is disjoint from the surface Ẽi . To check the nefness of

the restriction −KY |F̂ , note that Z̃ ∼ sF + 2 fF and −KV |F ∼ sF + 4 fF , so that
−KY |F̂ is rationally equivalent to the sum of two fibers of the projection F̂ → P

1.
Hence, the restriction −KY |F̂ is nef.

Thus, we must prove that −KY |F̂3,i
is nef. To do this, recall that F3,i is a preimage

via the conic bundle ηi of a G-invariant conic in P
2, which we denoted earlier by C3.

Using explicit equation of the surface F3,i , one can check that this conic intersects
the discriminant curve �i by four points that form a G-orbit of length 4, so that C3
has simple tangency with�i at every intersection point. Denote the points in C3 ∩ �i

by P1, P2, P3 and P4. For each k ∈ {1, 2, 3, 4}, we have η−1
i (Pk) = �k + �′

k , where
�k and �′

k are smooth rational curve that intersect transversally at one point. Thus, in
total we obtain eight smooth rational curves �1, �′

1, �2, �
′
2, �3, �

′
3, �4, �

′
4. Denote their

images in V4 by �1, �
′
1, �2, �

′
2, �3, �

′
3, �4, �

′
4, respectively. Then these eight curves are

lines, which we will describe later. Similarly, denote their strict transforms on V by
�̃1, �̃′

1, �̃2, �̃
′
2, �̃3, �̃

′
3, �̃4, �̃

′
4, respectively. Then, by construction, we have

−KV · �̃1 = −KV · �̃′
1 = −KV · �̃2 = −KV · �̃′

2 = −KV · �̃3 = −KV · �̃′
3 = −KV · �̃4 = −KV · �̃′

4 = 0.

Finally, let us denote the strict transforms on Y of these eight curves by �̂1, �̂′
1, �̂2, �̂

′
2,

�̂3, �̂′
3, �̂4, �̂′

4, respectively. For every k ∈ {1, 2, 3, 4}, we have −KY · �̂k = −R · �̂k

and−KY · �̂′
k = −R · �̂′

k . Therefore, if Z̃ intersects a curve �̂k or �̂′
k , then−KY is not

nef, because in these case we have −KY · �̂k < 0 or −KY · �̂′
k < 0, respectively.

First, let us show that the curves �̂1, �̂′
1, �̂2, �̂

′
2, �̂3, �̂

′
3, �̂4, �̂

′
4 are the only curves in

F̂3,i that a priori may have negative intersections with the divisor −KY . After this,
we will explicitly check that Z̃ does not intersects any of the curves �̃1, �̃′

1, �̃2, �̃
′
2, �̃3,

�̃′
3, �̃4, �̃

′
4, which would imply that −KY is indeed nef.

By construction, the curves �1, �′
1, �2, �′

2, �3, �′
3, �4, �′

4 form two G-irreducible
curves (G-invariant curves such that the group G acts transitively on the set of their
irreducible components) each consisting of four irreducible components. Without
loss of generality, we may assume that �1 + �2 + �3 + �4 is one of these curves, and
�′
1 + �′

2 + �′
3 + �′

4 is another curve.
Observe that F̃3,i |F ∼ sF + 4 fF and the intersection F̃3,i ∩ F contains the curve

sF . This implies that F̃3,i |F = sF + e1 + e2 + e3 + e4, where ek is a fiber of the pro-
jection F → Z such that ν(ek) = �k ∩ �′

k . Since F̃3,i |Ẽi
= sF , we see that F̃3,i is

smooth. Moreover, we have (sF · sF )F̃3,i
= −2, because Ẽ2

i · F̃3,i = −2. Now, using
this and F2 · F̃3,i = −2, we conclude that (e1 · e1)F̃3,i

= (e2 · e2)F̃3,i
= (e3 · e3)F̃3,i

=
(e4 · e4)F̃3,i

= −2. Thus, we conclude that F3,i has an ordinary double point at each
point �k ∩ �′

k , and the birational morphism ν induces the minimal resolution of sin-
gularities F̃3,i → F3,i , which contracts the curve ek to the point �k ∩ �′

k .
The composition ηi ◦ ν induces a conic bundle F̃3,i → C3. The curve sF is its

section, and its (scheme) fibers over the points P1, P2, P3, P4 are e1 + �̃1 + �̃′
1, e2 +
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�̃1 + �̃′
2, e3 + �̃1 + �̃′

3, e4 + �̃1 + �̃′
4, respectively. Thus, for every k ∈ {1, 2, 3, 4},

the curves �̃k and �̃′
k are disjoint (−1)-curves on the surface F̃3,i , which both do not

intersect the section sF , because sF intersects the (−2)-curve ek . Moreover, we have

−KV

∣∣
F̃3,i

∼ sF +
4∑

k=1

(
ek + �̃k + �̃′

k

)
,

because −KV ∼ ν∗(F3,i ) + Ẽi and Ẽi |F̃3,i
= sF .

The curve Z̃ intersects the surface F̃3,i transversally by a G-orbit of length 4,
because it intersects the (reducible) curve sF + e1 + e2 + e3 + e4 transversally by
the points Z̃ ∩ e1, Z̃ ∩ e2, Z̃ ∩ e3, Z̃ ∩ e4, which form one G-orbit. Thus, the mor-
phism ρ induces a birational morphism � : F̂3,i → F̃3,i that is a a blow up of this
G-orbit. Using this, we see that

−KY

∣∣
F̂3,i

∼ �∗
(

sF +
4∑

k=1

(
ek + �̃k + �̃′

k

)) − r1 − r2 − r3 − r4

where rk is the exceptional curve of � that is contracted to the point Z̃ ∩ ek . Observe
that these four points Z̃ ∩ e1, Z̃ ∩ e2, Z̃ ∩ e3, Z̃ ∩ e4 are not contained in the curve
sF , because the curves Z̃ and sF are disjoint. Moreover, we have three mutually
excluding options:

(1) the G-orbit Z̃ ∩ F̃3,i is contained in the curve �̃1 + �̃2 + �̃3 + �̃4;
(2) the G-orbit Z̃ ∩ F̃3,i is contained in the curve �̃′

1 + �̃′
2 + �̃′

3 + �̃′
4;

(3) the G-orbit Z̃ ∩ F̃3,i is contained in the curves �̃1 + �̃2 + �̃3 + �̃4 and �̃′
1 + �̃′

2 +
�̃′
3 + �̃′

4.

Aswe alreadymentioned, the divisor−KY is not nef in the first two cases. In the third
case, we have

−KY

∣∣
F̂3,i

∼ ŝF +
4∑

k=1

(̂
ek + �̂k + �̂′

k

)
,

where ŝF and êk are strict transforms of the curves sF and ek on the surface F̂3,i .More-
over, in this case, we have ŝF · ŝF = −2, ŝF · êk = 1, �̂k · �̂k = −1, �̂′

k · �̂′
k = −1,

êk · êk = −3, êk · �̂k = 1, êk · �̂′
k = 1 on the surface F̂3,i , and all other intersections

are zero. This implies that the divisor −KY

∣∣
F̂3,i

is nef in the third case, so that −KY

is also nef.
Therefore, we proved that the divisor −KY is nef if and only if the curve Z̃ does

not intersect the curves �̃1 + �̃2 + �̃3 + �̃4, and �̃1 + �̃2 + �̃3 + �̃4. Observe that these
curves intersects the ν-exceptional surface F by two (distinct) G-orbits of length 4,
respectively. Denote these G-orbits by � and �′, respectively. Hence, to complete
the proof, it is enough to check that neither � nor �′ is contained in the curve Z̃ .

We have h0(OV (−KV )) = 9 by the Riemann–Roch formula and the Kawamata–
Viehweg vanishing, since −KV is big and nef by Remark3.11. Moreover, we have
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−KV |F ∼ sF + 4 fF and h0(OF (sF + 4 fF )) = 8. Furthermore, we have h0(OV (−
KV − F)) = 1, since the linear system | − KV − F | contains unique effective divi-
sor: F̃3,i + Ẽi . This gives the following exact sequence of G-representations:

0 −→ H0
(
OV

(
F̃3,i + Ẽi

)) −→ H0
(
OV

( − KV
)) −→ H0

(
OF

(
sF + 4 fF

)) −→ 0.

(3.2)
Here, the kernel of the third map is the one-dimensional G-representation generated
by the section vanishing on the divisor F̃3,i + Ẽi + F .

Note that sF
∼= P

1 and (sF + 4 fF ) · sF = 2. Thus, the Riemann–Roch formula
and the Kawamata–Viehweg vanishing give the following exact sequence of G-
representations:

0 −→ H 0(OF (4 fF )
) −→ H 0(OF (sF + 4 fF )

) −→ H 0(OP1(2)
) −→ 0.

Since sF does not have G-orbits of length 2, we have H 0(OP1(2)) ∼= U3, where U3

is the unique irreducible three-dimensional representation of the group G. Similarly,
since Z has exactly two G-orbits of length 4, we have H 0(OF (4 fF )) ∼= U1 ⊕ U

′
1 ⊕

U3, where U1 and U
′
1 are different one-dimensional representations of the group G.

Thus, one has
H 0

(
OF

(
sF + 4 fF

)) ∼= U1 ⊕ U
′
1 ⊕ U3 ⊕ U3.

We may assume that U1 is generated by a section that vanishes at sF + e1 + e2 +
e3 + e4.

Let V and V
′ be sub-representations in H 0(OF (sF + 4 fF )) that consist of all

sections vanishing at theG-orbits� and�′, respectively. Then dim(V) = dim(V′) =
4, so that

V ∼= V
′ ∼= U1 ⊕ U3,

since both G-orbits � and �′ are contained in sF + e1 + e2 + e3 + e4 by construc-
tion. Let Ṽ and Ṽ

′ be the the preimages in H 0(OV (−KV )) via the restriction map in
(3.2) of the sub-representations V and V

′, respectively. Then, as G-representations,
we have

Ṽ ∼= Ṽ
′ ∼= U1 ⊕ U

′′
1 ⊕ U3,

where U
′′
1 is a one-dimensional representation of the group G. Since Ṽ and Ṽ

′ con-
tain unique three-dimensional subrepresentation of the group G, these (two) three-
dimensional subrepresentations define two G-invariant linear subsystems MV and
M′

V of the linear system | − KV |, respectively. They can be characterized as (unique)
three-dimensional G-invariant linear subsystems in | − KV | that contains G-orbits
� and �′, respectively. Then MV |F and M′

V |F are (unique) three-dimensional G-
invariant linear subsystems of the linear system |sF + 4 fF | that contain � and �′,
respectively. Thus, if � ⊂ Z̃ , then

MV

∣∣
F = Z̃ + |2 fF |,
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so that Z̃ ⊆ Bs(MV ). Similarly, if �′ ⊂ Z̃ , then M′
V |F = Z̃ + |2 fF |, so that Z̃ ⊆

Bs(M′
V ).

Let M and M′ be strict transforms on V4 of the linear systems MV and M′
V ,

respectively. ThenM andM′ are linear subsystems in |2H |, so that they do not have
fixed components, because |H | does not have G-invariant divisors. Let M1 and M2

be two distinct surfaces in M. If � ⊂ Z̃ , then

(
M1 · M2

)
Ci

� 3, (3.3)

where (M1 · M2)Ci is the intersection multiplicity of the surfaces M1 and M2 at
general point of the curve Ci . Similarly, if �′ ⊂ Z̃ , then

(
M ′

1 · M ′
2

)
Ci

� 3, (3.4)

where M ′
1 and M ′

2 are two surfaces in M′. Both conditions (3.3) and (3.4) are easy
to check provided that we know generators of the linear system M and M′.

Observe that the curve �̃1 + �̃2 + �̃3 + �̃4 is contained in the base locus of
the linear system MV . Indeed, one has MV ⊂ | − KV | and −KV · �̃i = 0 for
every i ∈ {1, 2, 3, 4}, while � ⊆ Bs(MV ) by construction, and � is contained in
�̃1 + �̃2 + �̃3 + �̃4 by definition. Likewise, we see that �̃′

1 + �̃′
2 + �̃′

3 + �̃′
4 is con-

tained in the base locus of the linear system M′
V . Hence, the G-irreducible curves

�1 + �2 + �3 + �4 and �
′
1 + �

′
2 + �

′
3 + �

′
4 are contained in the base loci of the linear

systems M and M′, respectively. Moreover, the base loci of these linear systems
also contain the conic Ci . Using these linear conditions, we can find the generators
of these linear systems, and check the conditions (3.3) and (3.4).

Since X1
∼= X2 and X3

∼= X4, it is enough to consider only the cases i = 1 and
i = 3. First, we deal with the case i = 1. In this case, the curves �1 + �2 + �3 + �4
and �

′
1 + �

′
2 + �

′
3 + �

′
4 can be described as follows: up to a swap and a reshuffle, we

may assume that

• �1 is the line [λ : ωλ : −(ω + 1)λ : μ − (ω + 2)λ : μ : μ + (ω − 1)λ],
• �2 is the line [λ : −ωλ : −(ω + 1)λ : −μ − (ω + 2)λ : μ : −μ + (ω − 1)λ],
• �3 is the line [λ : ωλ : (ω + 1)λ : μ − (ω + 2)λ : μ : −μ + (−ω + 1)λ],
• �4 is the line [λ : −ωλ : (ω + 1)λ : −μ − (ω + 2)λ : μ : μ + (−ω + 1)λ],
and

• �
′
1 is the line [λ : ωλ : −(ω + 1)λ : μ + (2ω + 1)λ : μ : μ + (ω + 2)λ],

• �
′
2 is the line [λ : −ωλ : −(ω + 1)λ : −μ + (2ω + 1)λ : μ : −μ + (ω + 2)λ],

• �
′
3 is the line [λ : ωλ : (ω + 1)λ : μ + (2ω + 1)λ : μ : −μ − (ω + 2)λ],

• �
′
4 is the line [λ : −ωλ : (ω + 1)λ : −μ + (2ω + 1)λ : μ : μ − (ω + 2)λ],

where [λ : μ] ∈ P
1. Therefore, the linear subsystem in |2H | that consists of all sur-

faces containing the conic C1 and the curve �1 + �2 + �3 + �4 is five-dimensional.
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Moreover, it is generated by the G-invariant surfaces F1,1, F3,1, F2,3, and the G-
invariant two-dimensional linear subsystem (net) that is cut out on V4 by

λ
(
(1 − ω)x0x5 − (2ω + 1)x2x3 + 3x0x2

)
+

+μ
(
(ω + 1)x1x3 + (2ω+1)x0x1 + x4x0

)
+

+γ
(
(ω + 2)x1x2 − ωx1x5 + x2x4

)
= 0,

(3.5)

where [λ : μ : γ ] ∈ P
2. Therefore, we conclude that (3.5) defines the linear sys-

tem M. It follows from (3.5) that the base locus of this linear system consists of
the conic C1, the curve �1 + �2 + �3 + �4, and the conic C3. Similarly, we see that
M′ is given by

λ
(
(2ω + 1)x0x5 + (ω + 2)x2x3 + 3x0x2

)
+

+ μ
(
(ω + 1)x1x3 + (1 − ω)x0x1 + x4x0

)
+

+ γ
(
(2ω + 1)x1x2 + ωx1x5 − x2x4

)
= 0,

where [λ : μ : γ ] ∈ P
2. We also see that the base locus of the linear system M′

consists of the conic C1, the curve �
′
1 + �

′
2 + �

′
3 + �

′
4, and the conic C4. Now one can

check that neither (3.3) nor (3.4) holds. Thus, if i = 1 or i = 2, then −KY is nef.
Finally, we consider the case i = 3. Now, up to a swap, the linear system M is

again given by (3.5), and the linear system M′ is given by

λ
(
(ω + 1)x1x5 + x4x2 − (ω − 1)x4x5

)
+

+ μ
(
ωx0x5 − x3x2 + (2ω + 1)x3x5

)
+

+ γ
(
ωx0x5 − x3x2 + (2ω + 1)x3x5

)
= 0,

where [λ : μ : γ ] ∈ P
2.Note that the base locus of the netM′ consists of the conicC3,

the curve �
′
1 + �

′
2 + �

′
3 + �

′
4, and the conic C2. As above, one can check that neither

(3.3) nor (3.4) holds. Thus, the divisor −KY is nef. �

Let D̂ be the proper transform of the divisor D on the threefold Y . Then

D̂ ∼Q (πi ◦ ν ◦ ρ)∗(2H) − (ν ◦ ρ)∗(Ei ) − mρ∗(F) − m̃ R.

Since −KY is nef, we see that −K 2
Y · D̂ � 0. To compute −K 2

Y · D̂, observe that
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H3 = 4, π∗
i (H) · E2 = −2, (πi ◦ ν)∗(H) · F2 = −2,

(πi ◦ ν ◦ ρ)∗(H) · R2 = −2, E3 = −2, F3 = −2, R3 = −2,

and other intersections involved in the computation −K 2
Y · D̂ are all zero. This gives

0 � −K 2
Y · D̂ =

(
(πi ◦ ν ◦ ρ)∗(2H) − (ν ◦ ρ)∗(Ei ) − ρ∗(F) − R

)2 · D̂ = 14 − 6(m + m̃),

so that m + m̃ � 7
3 , which is impossible by (3.1). The obtained contradiction com-

pletes the proof of Lemma3.7, which completes the proof of Proposition3.8. Thus,
we see that the threefolds X1, X2, X3 and X4 are K-polystable.
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A Note on Families of K-Semistable
Log-Fano Pairs

Giulio Codogni and Zsolt Patakfalvi

Abstract In this short note, we give an alternative proof of the semipositivity of
the Chow–Mumford line bundle for families of K-semistable log-Fano pairs, and of
the nefness threeshold for the log-anti-canonical line bundle on families of K-stable
log Fano pairs. We also prove a bound on the multiplicity of fibers for families of
K-semistable log Fano varieties, which to the best of our knowledge is new.

Keywords K-stability · Log-Fano varieties

1 Introduction

K-polystability is an algebraic stability notion for log-Fano pairs, which, over the
complex numbers, is equivalent to the existence of a Kähler–Einstein metric. Over
an algebraically closed field of characteristic zero, K-polystable log-Fano pairs have
a good projective moduli space. The Chow–Mumford (CM) line bundle is an ample
line bundle on this moduli space. We refer to the introductions of [2, 11], to the
survey [10] and to the recent groundbreaking paper [7] for an exhaustive discussion
of these notions and a comprehensive bibliography.

We now recall the definition of the CM line bundle for families of log-Fano pairs
over a curve, and in doing so we also establish some notations which will be used
through all this article.

Notation 1.1 Let T be a smooth projective curve, and let (X,�) be an irreducible,
normal pair of dimension n + 1, both defined over an algebraically closed field k
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of characteristic zero. Let f : X → T be a flat morphism such that f∗OX = OT .
Assume that the relative log-canonical divisor −K X/T − � is Q-Cartier and f -
ample; in other words, f is a family of log-Fano pairs. The Chow–Mumford line
bundle is defined as

λC M = − f∗(−K X/T − �)n+1

We refer to [2, Sect. 3] for the basic properties of λC M and its connection with
the other definitions in the literature. Our first result is

Theorem 1.2 In the situation of Notation1.1, if there exists a t in T such that
(Xt ,�t ) is K-semistable, then λC M is nef.

This result was already proved in [2, Theorem 1.8] and [11, Corollary 4.7]. That is,
we give the third proof of Theorem1.2. Our main contribution is that the present
proof is particularly short and it uses very little of the theory of filtrations. In fact, all
the above proofs use theHarder–Narasimhan filtration of f∗OX (−q K X/T ). However,
our proof uses it in a quite minimalistic manner.

As shown in [2, Sect. 10], Theorem1.2 implies that the Chow–Mumford line
bundle gives a nef line bundle on the moduli space of K-polystable log-Fano pairs.

As explained in [8, Appendix], the anti-log-canonical bundle is not nef on X
unless the family is locally isotrivial.With our methods we can also bound its nefness
threeshold as follows:

Theorem 1.3 In the situation of Notation1.1, if there exists a t in T such that
(Xt ,�t ) is K-stable, then

−K X/T − � + δ f ∗λC M

(δ − 1) dim(X)v
F

is nef, where δ is the stability threshold of (Xt ,�t ), see Sect.2, F is the class of a
fiber, and v = (−K Xt − �t

)n
.

The above result was proven in [2, Theorem 1.20], and in [11, Corollary 4.10], but
here we give a different proof. The novelty of this new proof is similar as for the
proof of Theorem1.2, which was explained after the statement of Theorem1.2. We
also note that Theorem1.3 is used to prove the positivity of the Chow–Mumford line
bundle under convenient assumptions, see [2, 9, 11]. Theorems1.2 and 1.3 have also
been recently used in [3] to prove slope inequalities for families of K-stable Fano
varieties.

Additionally, we prove the following result, which gives a bound on the number of
non-reduced fibers of a family of K-semistable Fano varieties, under a semipositivity
assumption on the top self-intersection of the anti-canonical bundle of the total space.

Proposition 1.4 In the situation of Notation1.1, assume that (−K X − �)n+1 ≥ 0
and that T ∼= P1 (both of these are satisfied if (X,�) is log-Fano). Additionally
assume that there exists a t in T such that (Xt ,�t ) is K-semistable. Then, denoting
by di the multiplicity of the non-reduced irreducible fibers, we have



A Note on Families of K-Semistable Log-Fano Pairs 197

∑

i

(
1 − 1

di

)
≤ 2 .

In particular, there are at most 4 non-reduced irreducible fibers.

Example6.1 shows that the above result is sharp. Proposition1.4 should be com-
pared with [2, Corollary 1.17], where, under similar assumptions, it is given an upper
bound for the volume of (X,�).

2 Basis Type Divisors, Delta Invariants and K-Stability

For the whole article we work over a fixed algebraically closed field k of character-
istic zero. Following [5], we introduce the notion of basis type divisor and stability
threshold (formerly known as the delta invariant). Let (Z , �) be a normal projective
pair, that is, Z is a normal projective variety and � is an effectiveQ-divisor on X . Let
H be a Q-divisor on Z . Let q be a positive integer such that q H is Cartier. A q-basis
type divisor for (Z , �; H) is aQ-Cartier divisor D on Z such that there exists a basis
s1, . . . , sNq of H 0(Z , q H) with

D = 1

q Nq

Nq∑

i=1

{si = 0} .

We define the qth stability threshold of the pair (Z , �; H) as

δq(Z , �; H) := inf
{
lct(Z , �; D)

∣∣ D is a q-basis type divisor
}
,

We then define the stability threshold, also known as the delta invariant, as

δ(Z , �; H) = lim
q→∞ δq(Z , �; H) ,

where the above limit does exist by [1]. If (Z , �) is a log-Fano pair, we let

δ(Z , �) := δ(Z , �;−K Z − �) .

We can now give the key definitions

Definition 2.1 A log-Fano pair (Z , �) is K-semistable if δ(Z , �) ≥ 1, it is K-stable
if δ(Z , �) > 1.

Both K-semistability and K-stability are open conditions in families. For fami-
lies of log-Fano pairs, the stability threshold of the fiber is a lower-semicontinuous
function on the base. If the base field is uncountable, it attains its maximum on the
very general geometric fiber. In particular, if the base field is uncountable, one can
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minimize the coefficient of F in Theorem1.3 by taking t a very general point in T .
If the base field is countable, one can make a field extension and then take a very
general point defined over this bigger field.

3 Harder–Narasimhan Filtration and Lift of Basis Type
Divisors

In the situation ofNotation1.1, for the values ofq such that−q(K X/T + �) is Cartier,
we can look at the following vector bundles on T

Eq := f∗OX
( − q(K X/T + �)

)
. (3.1)

Let
0 = Fq

0 � Fq
1 � · · · � Fq

cq
= Eq

be the Harder–Narashiman filtration of Eq ; denote its graded objects Fq
i /Fq

i−1 by G
q
i

and their slopes by μ
q
i . Recall that μ

q
i > μ

q
i+1.

Lemma 3.1 In the situation of Notation1.1, fix a closed point t in T such that the
fiber Xt over t is a normal variety. For every q divisible enough and for every rational
number ε > 0 (the divisibility condition on q does not depend on ε), there exists an
effective Q-Cartier divisor D(q)

ε on X such that

• D(q)
ε is Q-linearly equivalent to

Mq,ε = −K X/T − � −
(
deg Eq

q Nq
+ ε

)
Xt

where Nq = h0
(
Xt ,−q(K Xt + �t )

)
.

• the restriction of D(q)
ε to the fiber Xt is a q-basis type divisor.

Proof Choose q divisible enough so that f∗OX
( − q(K X/T + �)

)
satisfies coho-

mology and base-change. This is possible by the relative ampleness assumption on
−K X/T − �.

Fix an index i , and let ai be a strictly positive integer such that aiμ
q
i is an integer.

Let g be the genus of T . All the slopes of the Harder–Narasimhan filtration of the
vector bunde

(
Fq

i

)⊗ai ⊗ OT
( − (aiμ

q
i − 2g)t

)
are greater or equal to 2g (see the

proof of [2, Proposition 5.9]), hence by [2, Proposition 5.7] the above vector bundle
is globally generated.

Take an element s in the fiber

Fq
i ⊗ k(t) ↪→ Eq ⊗ k(t) ∼= H 0

(
T,−q(K Xt , + �t )

)
, (3.2)
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which by (3.2) corresponds to a divisor {s = 0} ∼ −q(K Xt , + �t ). By the above
global generation statement, there exists a global section s̃ of E⊗ai

q ⊗ OT
( − (aiμ

q
i −

2g)t
)
which over t equals s⊗ai (remark thatOT (t) ⊗ k(t) ∼= k(t) canonically, so this

makes sense). Let [s̃] be the image of s̃ in Eqai ⊗ OT
( − (aiμ

q
i − 2g)t

)
, via the

homomorphism induced by the multiplication map E⊗ai
q → Eqai .

Using (3.1) and the projection formula we obtain the isomorphism

H0
(

T,Eqai ⊗ OT
( − (aiμ

q
i − 2g)t

)) ∼= H0(X, −qai (K X/T + �) − (aiμ
q
i − 2g)Xt

)
.

Hence, we can consider the Q-Cartier divisor Ds = 1
ai

{[s̃] = 0} on X ; its restriction
to Xt equals the Cartier divisor {s = 0}, and by (3.2) on X we have

Ds ∼Q −q(K X/T + �) −
(

μ
q
i − 2g

ai

)
Xt . (3.3)

For each integer 1 ≤ i ≤ cq , fix elements sq
i, j for j = 1 . . . , rk(Gq

i ) inFq
i ⊗ t whose

image in Gq
i ⊗ t give a basis. For each of them we perform the above construction,

obtaining Q-divisors D(q)

i, j on X . Let

D(q)
pre := 1

q Nq

∑

i, j

D(q)

i, j .

By construction, the above sum run over a set of Nq indexes (i, j); in other words,
the number of divisors D(q)

i, j is equal to the rank of f∗ØX (−q(K X/T + �)).
By (3.3) and by the fact that there are Nq appearances of the pairs of indices (i, j),

we have

D(q)
pre ∼Q

1

q Nq

∑

i, j

(
−q(K X/T + �) −

(
μ

q
i − 2g

ai

)
Xt

)

= −K X/T − � −
∑

i

(
μ

q
i rk(G

q
i )

q Nq
− 2g rk(Gq

i )

q Nqai

)
Xt

= −K X/T − � −
(
deg Eq

q Nq
−

∑

i

2g rk(Gq
i )

q Nqai

)

Xt .

Apart from the ai ’s, everything in
∑

i
2g rk(Gq

i )

q Nq ai
is fixed, including the set of indices

over which we do the sum. Hence, by choosing ai big enough we may assume that
∑

i
2g rk(Gq

i )

q Nq ai
≤ ε. Then we may choose

D(q)
ε = D(q)

pre +
(

ε −
∑

i

2g rk(Gq
i )

q Nqai

)

Xt ′
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where t 
= t ′ ∈ T is another closed point. To show that this is a good choice, we
have to show that D(q)

ε

∣
∣

Xt
is a basis type divisor. Indeed, the restriction of each D(q)

i, j
to Xt gives an element of a basis of the linear system | − q(K Xt + �t )|, hence the
restriction of D(q)

ε gives a q-basis type divisor. �

4 Nefness Threshold

The following lemma is a consequence of [4, Theorem 1.13]

Lemma 4.1 In the situation of Notation1.1, let � be an effective Q-Cartier Q-
divisor on X such that the pair (Xt ,�t + �t ) is klt for some closed point t ∈ T and
K X/T + � + � is f -ample, then K X/T + � + � is nef.

Proof By [4, Theorem 1.13], the vector bundle f∗OX (q(K X/T + � + �)) is nef for
all q big and divisible enough. The evaluation map f ∗ f∗OX (q(K X/T + � + �)) →
OX (q(K X/T + � + �)) is surjective for all q divisible enough, as K X/T + � + � is
f -ample. We conclude that q(K X/T + � + �) and hence K X/T + � + � is nef. �

Proof of Theorem 1.3 We keep the notation of Lemma3.1. Applying this lemma
and using the definition of K-stability yields that for all rational number ε′ ∈ (0, δ −
1), there exists an integer q(ε′) such that for all positive integers q(ε′)

∣∣q the pair(
Xt , (1 + ε′)D(q)

t + �t

)
is klt. Fix such integer q(ε′). By Lemma4.1, the Q-Cartier

divisor

Nε′ = K X/T + � + (1 + ε′)D(q(ε′))
ε ∼Q −ε′(K X/T + �) − (1 + ε′)

(
degEq(ε′)

q(ε′)Nq(ε′)
+ ε

)
Xt

is nef on X . Hence, also Nε′
ε′ is nef. Since, this is true for everyQ � ε > 0, by limiting

with ε to 0 we obtain that

− (K X/T + �) − (1 + ε′) deg Eq(ε′)

ε′q(ε′)Nq(ε′)
Xt (4.1)

is nef. Next we note that if we limit with ε′ to δ − 1, then we may choose that at the
same time q(ε′) limits to ∞. Indeed, this is possible, since q(ε′) can be replaced by
each of its multiples. Additionally, limq→∞

degEq

q Nq
= − deg(λC M )

dim(X)v
, see [2, Sect. 3]. So,

by limiting ε′ in (4.1) to δ − 1 we obtain that

−(K X/T + �) − δ deg(λC M)

(δ − 1) dim(X)v
Xt

is nef. �
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5 Semipositivity

Proof of Theorem 1.2 Assume by contradiction that deg(λC M) < 0. We keep the
notation of Lemma3.1.

Let a be a positive integer such that E = −K X/T − � + aXt is ample on X . Let
c, ε > 0 be rational numbers such that for all q divisible enough we have

(1 − c)

(
deg(λC M)

dim(X)v
+ ε

)
+ ca < 0 .

The K-semistability assumption implies that δ(Xt ,�t ) ≥ 1, so for all q divisible
enough we have δq(Xt ,�|Xt ) > 1 − c. By the definition of δq in terms of log canon-
ical threshold of q-basis type divisors, we have that

(
Xt , (1 − c)

(
D(q)

ε

)
t + �|Xt

)
is

klt for all q divisible enough. This yields a contradiction with [2, Proposition 7.2] as
we can write

(1 − c)D(q)
ε + cE ∼Q −K X/T − � +

(
(1 − c)

(
deg(λC M)

dim(X)v
+ ε

)
+ ca

)
Xt .

�

6 Bound on the Multiplicity of the Fibers

Proof of Proposition 1.4 Let di Fi be the non-reduced fibers of f , and d a common
multiple of the di . Let τ : S → T be the degree d cover of T totally ramified at the
points corresponding to the non-reduced fibers. Denote by Y the normalization of
base change X S , and byσ : Y → X and g : Y → S the inducedmaps. Let�Y := σ∗�
(for the pull-back of a Weil divisor via a finite map between normal varieties see [6,
Proof of Proposition 5.20]). We have

−KY/S − �Y −
∑

i

d

di
(di − 1)Fi = −σ∗(K X/T + �) .

As di Fi ∼ f 0, we have Fi ∼ f,Q 0, and hence, −KY/S − �Y is g-ample and g is a
family of log-Fano varieties. As the generic fiber of g is isomorphic to the generic
fiber of f , it is K-semistable, hence the Chow–Mumford line bundle of g is nef, in
other words (−KY/S − �Y )n+1 ≤ 0.

We now make the following direct computation.

−(n + 1)
(−KYt − (�Y )t

)n ·
∑

i

(
d − d

di

)

≥ (−KY/S − �Y )n+1 − (n + 1)
(−KYt − (�Y )t

)n ·
∑

i

(
d − d

di

)
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=
(

−KY/S − �Y −
∑

i

d

di
(di − 1)Fi

)n+1

= (−σ∗ (
K X/T + �

))n+1

= d(−K X/T − �)n+1

= d(−K X − � + f ∗KT )n+1

= d(−K X − �)n+1 − 2d(n + 1)
(−K Xt − �t

)n

≥ −2d(n + 1)
(−K Xt − �t

)n
.

As (Xt ,�t ) and (Yt , (�Y )t ) are isomorphic for generic t , we conclude that

∑

i

(
1 − 1

di

)
≤ 2 .

�

Example 6.1 This example shows that Proposition1.4 is sharp, and the condition
(−K X )n+1 ≥ 0 is necessary. Let C be a genus g hyperelliptic curve, and ι the
hyperelliplict involution. Let X be the quotient of P1 × C by G = Z/2Z, which
acts on C by ι and on P1 as the standard involution. Consider the morphism
f : X → C/ι ∼= P1 =: T . This map is a P1-bundle, so that the generic fiber is K-
semistable, and it has 2g + 2 non-reduced fibers of multiplicity 2. The condition
(−K X )2 ≥ 0 is fulfilled if and only if g ≤ 1.
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The Yau–Tian–Donaldson Conjecture for
Cohomogeneity One Manifolds

Thibaut Delcroix

Abstract We prove the Yau–Tian–Donaldson conjecture for cohomogeneity one
manifolds, that is, for projective manifolds equipped with a holomorphic action of
a compact Lie group with at least one real hypersurface orbit. Contrary to what
seems to be a popular belief, such manifolds do not admit extremal Kähler metrics
in all Kähler classes in general. More generally, we prove that for rank one polarized
spherical varieties, G-uniform K-stability is equivalent to K-stability with respect to
special G-equivariant test configurations. This is furthermore encoded by a single
combinatorial condition, checkable in practice.We illustrate on examples and answer
along the way a question of Kanemitsu.

Keywords K-stability · Cohomogeneity one manifolds

1 Introduction

A compact complex manifold X equipped with a holomorphic action of a real com-
pact Lie group K such that there is at least one real hypersurface orbit K · x in X is
called a (compact) cohomogeneity one manifold. Such manifolds have played a key
role in complex geometry, especially in Kähler geometry, for being the easiest non-
homogeneousmanifolds to study. Indeed, under the previous assumption, the generic
orbit of K is a real hypersurface as well, so that any K -equivariant condition on the
manifold must reduce to a one-variable condition. It is the underlying reason why
Calabi’s construction [7] of extremal Kähler metrics on Hirzebruch surfaces works,
a construction which gave birth to the Calabi ansatz which applies in many more
situations. It was also the method Koiso and Sakane [22] used to produce the first
examples of non-homogeneous compact Kähler–Einstein manifolds with positive
curvature.
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Though these initial examples are a bit old, very recent works highlight how these
manifolds are still very useful in complex geometry. Let us simply illustrate this
with one example, where cohomogeneity one manifolds appear under the guise of
two-orbits manifolds (under a complex Lie group). A well studied and long-standing
conjecture attributed to Iskovskikh stated that Picard rank one projective manifolds
should have a semistable tangent bundle (in the sense ofMumford–Takemoto). Kane-
mitsu [19] disproved this conjecture by studying the Picard rank one, two-orbits
manifolds whose classification was obtained by Pasquier [26]. It was actually not
the first appearance of these manifolds in Kähler geometry to disprove a conjecture
since the author proved in [10] that they provided infinitely many counterexamples
to a shorter-lived conjecture of Odaka and Okada [25] stating that all Picard rank
one Fano manifolds should be K-semistable. We must inform the reader here that
the conjecture of Odaka and Okada was disproved as well by Fujita [14] with two
counterexamples.

In the present note, we will not disprove any conjecture but confirm the Yau–
Tian–Donaldson conjecture for projective cohomogeneity one manifolds.

Theorem 1.1 On a projective cohomogeneity one manifold, a Kähler class admits
a constant scalar curvature Kähler metric if and only if it is K-stable with respect to
special equivariant test configurations. The latter amounts to a single combinatorial
condition checkable in practice.

The content of the note is as follows. In Sect. 2 we explain how projective coho-
mogeneity one manifolds coincide with (non-singular) rank one spherical varieties,
briefly recall their classification, then recall some of the results in [12] for the special
case of rank one spherical varieties. Section3 is devoted to the proof of our main
theorem, and of the corresponding K-stability statement which holds for singular
varieties as well. In the remaining section, we illustrate the result on some examples.
It appears that, due to various different hypotheses in papers dealing with cohomo-
geneity one manifolds, a common belief is that they admit extremal Kähler metrics
in all Kähler classes (see e.g. [8, 18]). We thus exhibit an example of cohomogeneity
one projective manifold which admits both Kähler classes with cscK metrics and
Kähler classes with no extremal Kähler metrics. We then answer a question of Kane-
mitsu on the existence of Kähler–Einstein metrics on non-horospherical Picard rank
one manifolds, then study two related Picard rank two cohomogeneity one manifolds
and show that they are strong Calabi dream manifolds in the sense of [24].

2 Recollections

2.1 Cohomogeneity One Manifolds and Spherical Varieties

Let X be a projective complexmanifold, equippedwith a holomorphic action of a real
connected compact Lie group K . The manifold X is of cohomogeneity one if there
exists at least one orbit of K of real codimension one. It then follows from [17, Sect. 2]
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that the manifold is almost-homogeneous under the action of the complexification
G := KC, that is, G acts with an open orbit G · x for some x ∈ X . We denote by H
the stabilizer of such a point, and identify G/H with G · x ⊂ X . Furthermore, the
complement X \ G/H consists of one or two orbits, on which K acts transitively.

If there are two orbits in the complement, they are disconnected and the manifold
is G-equivariantly birational to a G-homogeneous P1-bundle over a generalized flag
manifold for G [17, Proposition 3.1]. Such manifolds are, from a different point
of view, called rank one horospherical varieties. They belong to the large class of
spherical varieties, well-studied from the algebraic point of view. In fact, in the case
where there is only one orbit in the complement, the manifold is a rank one spherical
manifold as well [9, Corollary 2.4]. We now turn to rank one spherical varieties in
general.

2.2 On Rank One Spherical Varieties

Let G denote a connected complex reductive group, and fix a Borel subgroup B of
G and a maximal torus T in B. We let X(T ) denote the lattice of characters of T .
We denote by R+ the set of positive roots of G and by 2� = ∑

α∈R+ α the sum of
its positive roots.

A spherical subgroup of G is a subgroup H such that B H is open in G. The
homogeneous space G/H is then called spherical. The rank of a spherical homo-
geneous space is the rank of its weight lattice M , defined as the set of weights of
B-semi-invariant rational functions on G/H .

Spherical homogeneous spaces of rank one are completely classified up to
parabolic induction, by the work of Akhiezer [1]. More precisely, there is a finite list
of families of primitive cases (G, H) (we only list the groups G and H up to isogeny,
there can be one or two corresponding homogeneous spaces G/H depending on the
couple (G, H)):

• the reductive symmetric spaces of rank one

– (SOm+1, S(O1 ×Om)) for m ≥ 1,
– (SLm+1, S(GL1 ×GLm)) for m ≥ 2,
– (Sp2m,Sp2 ×Sp2n−2) for n ≥ 3,
– (F4,SO9),

• four other affine homogeneous spaces corresponding to the couples (G2,SL3),
(SO7, G2),

• and three non affine families described precisely in [1, p. 68, Examples].

An arbitrary spherical homogeneous space of rank one G/H is then obtained from
the primitive cases as follows. There exists a parabolic subgroup P of G, and a
reductive quotient G̃ of P such that G/H is the quotient of G × G̃/H̃ where P acts
diagonally and G̃/H̃ is in the list of primitive spherical homogeneous spaces of rank
one.
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As already highlighted in the discussion of cohomogeneity one manifolds, there
are two very different types of rank one spherical homogeneous spaces, according to
whether G̃ = C

∗ or G̃ is semisimple. In the case when G̃ = C
∗, the resulting homo-

geneous space G/H is called a rank one horospherical homogeneous space. Then
the group of G-equivariant automorphisms of G/H is of dimension one. Otherwise,
the group of G-equivariant automorphisms of G/H is finite.

Spherical varieties of rank one are the normal G-equivariant embeddings of rank
one spherical homogeneous spaces G/H . They are classified by colored fans [21]
in N ⊗ R, where N = Hom(M,Z). For primitive rank one spherical homogeneous
spaces, there is a unique G-equivariant projective embedding, described in details
as well (for most cases) in [1]. The corresponding fan is without colors and consists
either of the toric fan of P1 (if G = C

∗), or consists of a single one-dimensional
cone and its zero dimensional face {0}. If X is a projective horospherical rank one
spherical variety, its colored fan consists again of the toric fan of P1, but now each of
the two one-dimensional cones can carry colors (and if they do, the corresponding
added G-orbits are not of codimension one). If X is a projective non-horospherical
rank one spherical variety, the colored fan again consists of {0} and a single one-
dimensional cone, which can now be colored (again, in this case, the added G-orbit
is not of codimension one). If X is a non-horospherical projective rank one spherical
variety, the generator of M which evaluates negatively on the colored cone is called
the spherical root of G/H .

2.3 On Uniform K-Stability

Our references for this section are [4, 15]. We recall the main notions for the reader’s
convenience. Let G be a complex reductive group, and let (X, L) be a G-polarized
variety. A (normal, ample) G-equivariant test configuration for (X, L) consists of
the data of a normal (G × C

∗)-variety X̂ , a (G × C
∗)-linearized ample line bundle

L̂ on X̂ , and a C∗-equivariant flat morphism π : X̂ → C whose fiber (X1, L1) over
1 is G-equivariantly isomorphic to (X, Lr ) for some r ∈ Z>0.

For k ∈ N, let dk denote the dimension dim H 0(X0, Lk
0), let λ1,k, . . . ,λdk ,k denote

the weights of theC∗-action on H 0(X0, Lk
0) induced by the action ofC

∗ on X̂ , which
stabilizes the central fiber X0. Let wk denote the sum of the λi,k . The quotient

wk
kdk

admits an expansion in powers of k at infinity:

wk

kdk
= F0 + F1k−1 + o(k−1).

The non-Archimedean J-functional of a test configuration (X̂ , L̂) is

J N A(X̂ , L̂) := sup{λi,k/k | k ∈ Z>0, 1 ≤ i ≤ dk} − F0

and the non-Archimedean Mabuchi functional is defined by
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M N A(X̂ , L̂) := −F1

on test configurationswith a reduced central fiber, and vary linearlywith base changes
of the form z 	→ zm .

The G-polarized variety (X, L) is K-stable with respect to G-equivariant special
test configurations if M N A(X̂ , L̂) ≥ 0 for all test configurationswith a normal central
fiber X0, with equality if and only if X̂ is G-equivariantly isomorphic to X × C.

A G-equivariant test configuration (X̂ , L̂) may be twisted by a one-parameter
subgroup μ : C∗ → AutG(X) of the group of automorphisms of X commuting with
the action ofG. This amounts to keeping the same total space, but changing the action
of C∗ using the one-parameter subgroup μ. More explicitly, over C∗, X̂ is G × C

∗-
equivariantly isomorphic to X × C

∗, and one may consider the action of C∗ given
by t · (x, s) = (μ(t) · x, s). This action turns out to extend to X̂ , and the resulting
data of X̂ , L̂ equipped with this new action of C∗ defines a new test configuration
for (X, L). One can also make sense of twists by rational multiples of one-parameter
subgroups via base change. The G-polarized variety X, L) is G-uniformly K-stable
if there exists an ε > 0 such that M N A(X̂ , L̂) ≥ ε inf{J N A(twist of (X̂ , L̂))} for all
test configurations.

2.4 On K-Stability of Spherical Varieties

Let X be a rank one G-spherical variety, with spherical lattice M . Let N =
Hom(M,Z). If it is not horospherical, denote by σ its spherical root, and let σ∗ ∈ N
be the dual element. If it is horospherical, choose any generator σ of M , and let again
σ∗ ∈ N be the dual element.

Let L be an ample line bundle on X , with moment polytope �+. Recall that the
moment polytope is the closure of the set of all λ/k ∈ X(T ) ⊗ R, where λ run over
the weights of B-stable lines in H 0(X, L⊗k). It lies in an affine line in X(T ) ⊗ R,
with direction M ⊗ R. Choose an element χ of �+, then there exists s− < s+ ∈ Q

such that
�+ = {χ + tσ | t ∈ [s−, s+]}.

Let R+
X denote the set of positive roots of G which do not vanish identically on �+.

Set for t ∈ R,

P(t) :=
∏

α∈R+
X

〈α,χ + tσ〉
〈α,�〉 , Q(t) :=

⎛

⎝
∑

α∈R+
X

〈α,�〉
〈α,χ + tσ〉

⎞

⎠ P(t).

Finally, for any continuous function g on [s−, s+], set

L(g) = g(s−)P(s−) + g(s+)P(s+) −
∫ s+

s−
2g(t)(a P(t) − Q(t)) dt
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where a is such that L(1) = 0, and

J (g) =
∫ s+

s−
(g(t) − inf g)P(t) dt .

The constant a may be explicitly computed as

a = P(s−) + P(s+) + 2
∫ s+

s− Q(t)dt

2
∫ s+

s− P(t)dt

Note that the moment polytope lies in the positive Weyl chamber of G, that is, all
positive roots evaluate non-negatively on elements of �+. As a consequence, P and
Q are positive on ]s−, s+[, and J (g) = 0 if and only if g ≡ 0.

The following criteria for K-stability of (X, L) follow from [12]. Note that we
switch here from concave to convex functions to simplify notations.

Theorem 2.1

1. A polarized rank one horospherical variety (X, L) is G-uniformly K-stable if and
only if there exists ε > 0 such that

L(g) ≥ ε inf
l∈R∗ J (g + l)

for all rational piecewise linear convex functions g : [s−, s+] → R.
2. A polarized rank one spherical variety (X, L) which is not horospherical is G-

uniformly K-stable if and only if there exists ε > 0 such that

L(g) ≥ εJ (g)

for all non-decreasing rational piecewise linear convex functions g : [s−, s+] →
R.

3. A polarized rank one horospherical variety (X, L) is K-stable with respect to
G-equivariant special test configurations if

L(g) = 0

for all affine functions g on [s−, s+].
4. A polarized rank one spherical variety (X, L) which is not horospherical is K-

stable with respect to G-equivariant special test configurations if

L(g) > 0

for all affine strictly increasing functions g on [s−, s+].



The Yau–Tian–Donaldson Conjecture for Cohomogeneity One Manifolds 211

Remark 2.2 The proof of the above theorem is detailed in several steps in [12]. It
relies on translating all the data of test configurations and non-Archimedean func-
tionals into combinatorial data, thanks to the general theory of spherical varieties.

More precisely, test configurations are classified by piecewise linear functions on
the moment polytope of the spherical variety (X, L) (with some conditions on the
slopes related to spherical roots), with affine functions corresponding to test config-
urations with a normal central fiber up to base change. This classification is obtained
by seeing the moment polytope of the (compactified) test configuration (X̂ , L̂) as cut
out from the cylinder over the moment polytope of (X, L), an image originally used
byDonaldson for toric varieties. The expression of the non-Archimedean functionals
are then obtained through the relation between the representations given by spaces
of sections of a line bundles over a spherical variety and the moment polytope.

Remark 2.3 Observe thatL is linear andL(1) = 0.As a consequence, since [s−, s+]
is one-dimensional, if L(id) = 0 for the identity function id : [s−, s+] → R, s 	→ s,
thenL(g) = 0 for all affine functions on [s−, s+]. Similarly, ifL(id) > 0, thenL(g) >

0 for all affine strictly increasing functions on [s−, s+]. Hence there is actually only
one condition to check in order to check K-stability with respect to G-equivariant
test configurations for a polarized rank one spherical variety. Furthermore, to avoid
computing the contant a independently, one can note that

(

2
∫ s+

s−
P(t)dt

)

L(id) =
(

2
∫ s+

s−
P(t)dt

)(

s− P(s−) + s+ P(s+) + 2
∫ s+

s−
t Q(t)dt

)

−
(

2
∫ s+

s−
2t P(t)dt

)(

P(s−) + P(s+) + 2
∫ s+

s−
Q(t)dt

)

where the multiplicative constant 2
∫ s+

s− P(t)dt is positive, so it is enough to check
vanishing or positivity of the above quantity in order to checkK-stability with respect
to G-equivariant special test configurations.

3 Uniform K-Stability of Rank One Spherical Varieties

In this section we will prove Theorem1.1 as a consequence of the following K-
stability result applying to singular varieties as well.

Theorem 3.1 A polarized rank 1 G-spherical variety is G-uniformly K-stable if and
only if it is K-stable with respect to G-equivariant special test configurations.

Let us first show how it proves the Yau–Tian–Donaldson conjecture for cohomo-
geneity one manifolds.

Proof of Theorem 1.1 It suffices to work on rational Kähler classes since the
extremal cone is open in the Kähler cone [23], and the Kähler cone coincides with
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the cone of ample real line bundles on spherical manifolds since these manifolds are
Mori dream spaces [5, 16], hence rationalKähler classes are dense in theKähler cone.
One of the direction is known: existence of cscK metrics implies K-(poly)stability
[3], hence in particular K-stability with respect to special equivariant test configura-
tions. For the other direction, it suffices to apply Theorem3.1 together with Odaka’s
appendix to [12], which shows that for spherical manifolds, G-uniform K-stability
implies the existence of cscK metrics. �

The result is of course more precise in view of Theorem2.1. It shows first that
for rank one G-horospherical varieties, G-uniform K-stability is equivalent to the
vanishing of the Futaki invariant on the (at most one-dimensional) center of the group
of automorphism. Second, if the variety is not horospherical, it admits a unique G-
equivariant special test configuration, and it suffices to check that its Donaldson–
Futaki invariant is positive.

In the course of the proof, we will use the following remarkable properties for the
sign of a P − Q. Recall first that by definition of amoment polytope, the polynomials
P and Q are positive on ]s−, s+[.
Lemma 3.2 Assume that P(s±) = 0, then (a P − Q)(t) is negative for t ∈ [s−, s+]
close to s±.

Proof Let V± ⊂ R+
X be the subset of rootsα ∈ R+

X such that 〈α,χ + s±σ〉 = 0. If V±
is not empty, then the polynomial a P vanishes to the order exactly Card(V±) at s±,
while the polynomial Q vanishes to the order exactly Card(V±) − 1 at s±. It follows
that in the same situation, since P and Q are positive on ]s−, s+[, (a P − Q)(t) is
negative when t ∈]s−, s+[ is close enough to s±. �

Lemma 3.3 The locus where a P − Q is non-negative on � is [t−, t+] for some
t± ∈ [s−, s+].
Proof Since P is positive on [s−, s+], a P − Q is of the same sign as

a −
∑

α∈R+
X

〈α,�〉
〈α,χ + tσ〉

on [s−, s+]. Since the reciprocal of an affine function on R is convex on the locus
where this affine function is positive, the above function is concave on [s−, s+]. It
follows that its non-negative locus is a segment in [s−, s+]. �

Proof of Theorem 3.1 In order to show the main result by contradiction, we assume
that (X, L) is a polarized rank one G-spherical variety which is K-stable with respect
to G-equivariant special test configurations but not G-uniformly K-stable. For a con-
vex function g : [s−, s+] → R, let us denote by ‖g‖ the quantity inf l∈R∗ I(g + l) if
X is horospherical, and I(g) if not. By Theorem2.1, since (X, L) is not G-uniformly
K-stable, one can find a sequence ( fn) of rational piecewise linear convex functions
from [s−, s+] to R such that for all n, ‖ fn‖ = 1 and the sequence (L( fn)) converges
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to a limit l ≤ 0. Note that if the limit can be taken to be strictly negative, then the
sequence can be assumed constant. Further note that, if X is not horospherical, the
fn can and are assumed to be non decreasing.
Let us first modify the sequence a bit. Since both L and ‖·‖ are invariant under

addition of a constant, we may assume that all the functions in the sequence satisfy
inf fn = 0. Fix some s0 in ]t−, t+[, where t− and t+ are provided by Lemma3.3. If
X is horospherical, we can further assume that 0 = inf fn = fn(s0), by adding to
fn one of its subdifferential at s0. This does not change ‖ fn‖ by definition, and it
does not change L( fn) by the assumption that (X, L) is K-stable with respect to
G-equivariant special test configurations. If X is not horospherical, then since the fn

are non decreasing, the infimum is attained at s−.
Under these modifications, the sequence (

∫
fn P) is bounded in R. If X is not

horospherical, this is immediate since
∫

fn P = ‖ fn‖ = 1. If X is horospherical, we
prove it by contradiction. Assume that there is a subsequence of ( fn) (still denoted
by ( fn) for simplicity) such that

∫
fn P → +∞. Consider the functions gn = fn∫

fn P .

Then ‖gn‖ → 0 while
∫

gn P = 1. By the pre-compactness result in [12, Proposi-
tion 7.2], the sequence (gn) converges (up to subsequence again) to a function g∞ on
]s−, s+[, and the convergence is uniform on all compact subsets. The latter ensures
that ‖gn‖ converges to ‖g∞‖, which is thus equal to zero. This is possible only if g∞
is affine. Finally, since 0 = inf gn = gn(s0), this implies that g∞ is the zero function.
This is in contradiction with the convergence lim

∫
gn P = 1.1

Nowwecan apply the pre-compactness result [12, Proposition 7.2] to the sequence
( fn) itself. Replacing ( fn) by a subsequence, we can and do assume that ( fn) con-
verges to a convex function f∞ on ]s−, s+[ and the convergence is uniformoncompact
subsets.

We want to show that, L( f∞) is well-defined and less than the limit l of L( fn).
Let us first isolate the negative contribution in L( f ) for an arbitrary non-negative
function f : [s−, s+] → R ∪ {+∞}which takes finite values where P is positive and
which is integrable with respect to (a P(t) − Q(t)) dt . By Lemma3.3, there exists
t− < t+ in [s−, s+] such that a P − Q is non-negative exactly on [t−, t+]. It follows
that

∫ t+
t− 2 f (t)(a P(t) − Q(t)) dt and L( f ) + ∫ t+

t− 2 f (t)(a P(t) − Q(t)) dt are both
non-negative, for any non-negative function f . We claim that the first expression
above is well defined and finite for f = f∞. If P is positive on [t−, t+], then since∫

f∞ P = 1, the claim holds. Lemma3.2 shows that, if P(s−) = 0 then s− < t− and
if P(s+) = 0, then t+ < s+. As a consequence, it is actually always the case that P
is strictly positive on [t−, t+] since P is positive on ]s−, s+[.

Since we assumed limL( fn) ≤ 0, and the negative contribution in the decom-
position of L( fn) above converges to − ∫ t+

t− 2 f∞(t)(a P(t) − Q(t)) dt , the positive
contribution of L( fn) must converge as well. Since the positive contribution is the
sum of positive terms

fn(s−)P(s−) + fn(s+)P(s+) −
∫ t−

s−
2 fn(t)(a P(t) − Q(t)) dt −

∫ s+

t+
2 fn(t)(a P(t) − Q(t)) dt

1 This shortcut is actually incorrect, but may be completed into a full argument, see [12].
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each of these terms must be bounded. This implies that f∞ is integrable with respect
to (a P(t) − Q(t)) dt and that limt→s± f∞(t) is finite when P(s±) is non-zero. By
a slight abuse of notations, we let f∞ : [s−, s+] → R ∪ {+∞} be the unique lower
semi-continuous extension of f∞. The last part of the penultimate sentence shows
that f∞(s±) is finite whenever P(s±) is, so L( f∞) is well defined and L( f∞) ≤ l.

Consider the affine function

h(t) = f∞(t−) + t − t−
t+ − t−

( f∞(t+) − f∞(t−)).

Note that the values f∞(t±) are finite by the discussion above. Convexity of f∞
implies h ≤ f∞ on [s−, t−] ∪ [t+, s+] and h ≥ f∞ on [t−, t+]. Thus both the positive
and negative contribution in L(h) are lower than that in L( f∞), hence

0 ≤ L(h) ≤ L( f∞) ≤ l ≤ 0.

In particular, we have shown that K-stability with respect to G-equivariant special
test configurations implies G-equivariant K-semistability.

To conclude the proof it remains to obtain a contradictionwith the initial definition
of the sequence ( fn). This final argument depends on the nature of X . If X is not
horospherical then all the functions fn are non decreasing, hence f∞ and h as well.
If the slope of h is strictly positive, then L(h) > 0 by assumption which provides
the contradiction. Else h is constant. Since f∞ is non decreasing, f∞ is constant on
[s−, t+]. All fn satisfy inf fn = fn(s−) = 0, so f∞(s−) = 0. But then either f∞ ≡ 0,
which contradicts ‖ f∞‖ = 1, or L( f∞) > 0, which is another contradiction.

We now conclude the horospherical case. Assume first that f∞ is affine. All the
functions fn satisfy fn(s0) = inf fn = 0, hence f∞ as well. Since s− < s0 < s+, this
shows that f∞ is the zero function, a contradiction with

∫
f∞ P = 1. Assume now

that f∞ is not affine, hence that f∞ �= h. Since a P − Q is a non-zero polynomial,
by considering the positive and negative contribution in L as before, we see that
L( f∞) > L(h) = 0. This is the final contradiction. �

4 Examples

4.1 An Example of Kähler Class with No Extremal Kähler
Metrics

We will here consider an example initially encountered in [2]. There, we considered
as an ingredient of the proof the existence of Kähler–Einstein metrics on some blow-
down of the G2-stable divisors in the wonderful compactification of G2/SO4. Such
varieties are rank one spherical (horosymmetric) varieties, Fano with Picard rank
one, and one of these does not admit (singular) Kähler–Einstein metrics. If we go
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back to the corresponding G2-stable divisor in the wonderful compactification of
G2/SO4, which is smooth, this should provide an example of cohomogeneity one
manifold and Kähler classes on it with no extremal Kähler metrics. We verify this in
the following paragraphs.

4.1.1 Recollection on the Group G2

We consider the exceptional group G2 with a fixed choice of Borel subgroup B and
maximal torus T , and an ordering of simple roots as in Bourbaki’s numbering, so
that α1 is the short root and α2 is the long root.

Up to scaling, theWeyl group invariant scalar product onX(T ) satisfies 〈α1,α1〉 =
2, 〈α1,α2〉 = −3 and 〈α2,α2〉 = 6. The fundamental weight for α1 is 2α1 + α2 and
the fundamental weight for α2 is 3α1 + 2α2. The positive roots and their scalar
product with an arbitrary element x1α1 + x2α2 read

〈α1, x1α1 + x2α2〉 = 2x1 − 3x2
〈α2, x1α1 + x2α2〉 = 3(−x1 + 2x2)

〈α1 + α2, x1α1 + x2α2〉 = −x1 + 3x2
〈2α1 + α2, x1α1 + x2α2〉 = x1
〈3α1 + α2, x1α1 + x2α2〉 = 3(x1 − x2)

〈3α1 + 2α2, x1α1 + x2α2〉 = 3x2

The half-sum of positive roots is � = 5α1 + 3α2.

4.1.2 The Facet of the Wonderful Compactification of G2/SO4 and Its
Kähler Classes

Let P1 be the parabolic subgroup of G2 containing B such that −α1 is not a root of
P1. Its Levi factor has adjoint form PSL2. From any P1-variety Y , one may build a
G2 variety X which is a homogeneous bundle over G2/P1 with fiber Y , simply by
considering the quotient of Y × G2 by the P1-action p · (y, g) = (p · y, g p−1). Such
a construction is sometimes (and in the following) referred to as parabolic induction
and it is particularly relevant for the geometry of horosymmetric varieties [11]. Let X
be the (non-singular) horosymmetric variety obtained by parabolic induction from
the P1-variety P

2, considered as the projectivization of the space of equations of
quadrics in P

1 on which P1 acts via the natural action of PSL2 on P
1. Its open orbit

G2/H is the corresponding parabolic induction from PSL2 /PSO2. Note that X is
the wonderful compactification of G2/H and that since it is a parabolic induction,
Aut0(X) = G2 [27, Proposition 3.4.1].

The variety X is a Picard rank two horosymmetric variety. Its spherical root is
σ = 2α2, and its spherical lattice M is the lattice generated by σ. We can describe its
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Kähler cone by using [6], recalled for the special case of horosymmetric varieties in
[11, 13].AnyKähler class on a projective spherical variety is the class of a real divisor.
The vector space of classes of real divisor is generated by the classes of all prime B-
stable divisors modulo the relations imposed by B-semi-invariant rational functions.
Here the prime B-stable divisors are the closure E of the unique codimension oneG2-
orbit (obtained by parabolic induction from the space of degenerate quadrics in P

1,
that is, double points), and the closures of the two colors D1 and D2 in G/H , where
D1 is the only codimension one B-orbit not stable under P1 (the codimension one
P2-orbit obtained by moving the unique color in P2), and D2 is the only codimension
one B-orbit not stable under P2. Note that D1 is also the pull-back of the ample
generator of the Picard group of G/P1. Since the spherical rank of G/H is one, there
is a single relation to consider, which amounts to 2D2 − E − 6D1 = 0, since the
image of D1 by the color map is the restriction −6σ∗ of the coroot α∨

1 to M ⊗ R,
and the image by the color map of D2 is the restriction 2σ∗ of the positive restricted
coroot α∨

2
2 (the image of E is the primitive generator of the valuation cone −σ∗).

In view of the above presentation, we can write a real divisor as s E + s1D1. Since
K-stability is invariant under scaling of the Kähler class, we may as well assume
s1 = 6. Brion’s ampleness criterion for the real line bundle s E + 6D1 translates
simply to the condition 0 < s < 1, and the moment polytope is then

�+(s) = 6(2α1 + α2) + {2tα2 | 0 ≤ t ≤ s}.

4.1.3 K-Stability Condition

We have

P(t) = 288

5
t (1 − t2)(9 − t2)

and

Q(t) =
(

1

6(1 − t)
+ 1

4t
+ 2

3(1 + t)
+ 5

12
+ 1

3 − t
+ 3

2(3 + t)

)

P(t)

= 24

5
(5t5 + 15t4 − 150t3 − 90t2 + 225t + 27).

In view of Remark2.3, we want to know when

(

s P(s) + 2
∫ s

0
t Q(t) dt

) ∫ s

0
P(t) dt −

(

P(s) + 2
∫ s

0
Q(t) dt

)∫ s

0
t P(t) dt > 0

(1)
The left hand side above is the polynomial

R(s) := 1152

175
s4(11s8 + 20s7 − 348s6 − 240s5 + 3123s4 + 1260s3 − 9072s2 + 5103).
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One can plug in specific values to check that

R

(
1

2

)

= 7315083

5600
> 0

and

R

(
98

100

)

= −12097691278181901659043

47683715820312500000
< 0.

In other words, there are Kähler classes on X with cscK metrics and Kähler classes
with no cscK metrics. Since Aut0(X) = G2 is semisimple, a Kähler class with no
cscK metrics does not admit any extremal Kähler metric either. Using numerical
approximation, one can be more precise: the Kähler class s E + 6D1 contains a cscK
metric if and only if s < s0, where s0 � 0.97202.

4.2 Strong Calabi Dream Manifolds of Cohomogeneity One,
and an Answer to a Question of Kanemitsu

Wewill now provide examples of cohomogeneity one manifolds which are not horo-
spherical and are strong Calabi Dreammanifolds in the sense of [24].We take a small
detour and choose slightly complicated manifolds to answer along the way a ques-
tion of Kanemitsu [19, Remark 4.1]: when does there exist a Kähler–Einstein metric
on cohomogeneity one manifolds with Picard rank one? The answer was already
known for most of such manifolds, namely for homogeneous ones (which admit
Kähler–Einsteinmetrics) and for horospherical, non-homogeneous ones (which have
non-reductive automorphism group [26] hence no Kähler–Einstein metrics by Mat-
sushima’s obstruction).

By Pasquier’s classification [26], there are two Picard rank one, non-horospherical
cohomogeneity one manifolds, one acted upon by PSL2 ×G2, that we will denote by
X1, and one acted upon by F4, that we will denote byX2. Both are two orbit varieties
with semisimple automorphism group. More precisely, Aut0(X1) = PSL2 ×G2 and
Aut0(X2) = F4. We will first prove:

Theorem 4.1 There exist Kähler–Einstein metrics on X1 and X2.

This provides the missing cases in Kanemitsu’s question. Note that, after this
preprint appeared, Kanemitsu also answered his own question in [20]. As a corollary,
we also recover a result of [19].

Corollary 4.2 The tangent bundles of X1 and X2 are Mumford–Takemoto stable.

These manifolds Xi each admit a unique discoloration X̃i which is a smooth
projective Picard rank two cohomogeneity onemanifold which surjects equivariantly
to Xi and where the complement of the open orbit is of codimension one. We will
apply Theorem1.1 to obtain:
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Theorem 4.3 The manifolds X̃1 and X̃2 admits a cscK metric in all Kähler classes.
In other words, they are Calabi dream manifolds in the terminology of [8], and more
precisely strong Calabi dream manifolds in the terminology of [24].

We will in the paragraphs to follow provide the combinatorial data associated
to the manifolds under study. It is rather easy since these are horosymmetric. For
the discolorations, we will then determine the Kähler classes and compute the K-
stability condition as in the previous example. For the Kähler–Einstein metrics, it is
a bit faster to use directly the criterion in [10] since one needs only the polynomial
P up to scalar, and the polynomial Q is not needed.

4.2.1 Kähler–Einstein Metrics on X1

Let G denote the group PSL2 ×G2. We fix a choice of Borel subgroup B and of
maximal torus T ⊂ B. Let α0 denote the positive root of SL2 and let α1 and α2

denote the simple roots of G2, numbered so that α1 is the short root (in accordance
with Bourbaki’s standard numbering and with the previous example). We can choose
a Weyl group invariant scalar product on X(T ) satisfying 〈α0,α0〉 = 1 and the same
scaling as in the previous example for the restriction to G2. Of course, the root α0 is
orthogonal to α1 and α2.

It follows from the description of the variety X1 in [26] that its open orbit
G/H is obtained by parabolic induction from the rank one symmetric space
PSL2 ×PSL2 /PSL2, where the parabolic subgroup of G is the parabolic P2 asso-
ciated to the long root α2, whose Levi factor has adjoint form PSL2 ×PSL2. The
spherical lattice M for X1 is thus the lattice generated by α0 + α1.

Furthermore, the varietyX1 is the unique fully colored compactification of G/H .
It follows that the moment polytope �+ corresponding to the anticanonical line
bundle is the intersection with the positive Weyl chamber of the affine line with
direction R(α0 + α1) passing through the sum of positive roots α0 + 10α1 + 6α2.
If we write the moment polytope as

�+ = {(1 + t)α0 + (10 + t)α1) + 6α2 | u ≤ t ≤ v}

then we can determine u and v as the extreme values of t such that 〈αi , (1 + t)α0 +
(10 + t)α1) + 6α2〉 ≥ 0 for i ∈ {0, 1, 2}, that is, u = −1 and v = 2.

We may finally compute the K-stability condition, which is

∫ 2

−1
t (1 + t)2(2 − t)(8 − t)(10 + t)(4 + t) dt > 0.

By direct computation, the integral is equal to 120285
56 hence the condition is satisfied.
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4.2.2 CscK Metrics on the Discoloration ˜X1

The discoloration X̃1 of X1 is obtained by the following parabolic induction proce-
dure. Take the quotient of P3 × G by the diagonal action of the parabolic P2, where
the action on G is obvious and the action on P

3 is induced by the action of the Levi
factor of P2 and the obvious structure of two-orbit PGL2 ×PGL2-variety on P3 seen
as the projectivization of 2 by 2 matrices. It is a homogeneous P3-bundle over the
generalized flag manifold G/P2.

It is a rank one horosymmetric variety with Picard rank two. We can describe its
Kähler cone by using [6], recalled for the special case of horosymmetric varieties in
[11, 13].AnyKähler class on a projective spherical variety is the class of a real divisor.
The vector space of classes of real divisor is generated by the classes of all prime B-
stable divisors modulo the relations imposed by B-semi-invariant rational functions.
Here the prime B-stable divisors are the (G-stable) exceptional divisor E , and the
closures of the two colors D01 and D2 in G/H , where D01 is the only codimension
one B-orbit not stable under P0 and P1, and D2 is the only codimension one B-orbit
not stable under P2. Note that D2 is also the pull-back of the ample generator of
the Picard group of G/P2. Since the spherical rank of G/H is one, there is a single
relation to consider, which amounts to E + D2 − 2D1 = 0, since the image of D2

by the color map is the restriction of the coroot α∨
2 to M ⊗ R which coincides with

the generator of the colorless ray corresponding to E , and the image by the color
map of D01 is the only positive restricted coroot, the restriction of 1

2 (α
∨
0 + α∨

1 ) to
M ⊗ R.

The class of any real divisor is thus represented by a sE E + s2D2 for sE and s2
two real numbers. By Brion’s ampleness criterion, it is a Kähler class if and only if
0 < sE < s2, and the moment polytope is then

�+(sE , s2) := s2(3α1 + 2α2) + {t (α0 + α1) | 0 ≤ t ≤ sE },

where 3α1 + 2α2 is to be though of as the fundamental weight of α2 here.
Wemay now compute the unique condition for K-stability given by an equivariant

special test configuration for these polarizations. Since a Kähler class is K-stable if
and only if one of its positive multiple is, we can assume s2 = 1 and write s := sE

in the following, to simplify notations. The moment polytope is illustrated in Fig. 1.
Let P and Q denote the polynomials

P(t) = t2

15

(
t4 − 10t2 + 9

)

Q(t) = t

30

(
3t5 + 6t4 − 90t3 − 40t2 + 135t + 18

)

The Kähler class s E + D2 is G-uniformly K-stable if and only if s satisfies the
condition (1). By computing the polynomial on the left hand side, the condition is
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Fig. 1 Moment polytope
�+(s, 1)

s6

132300
(9s8 + 42s7 − 266s6 − 378s5 + 2135s4 + 1764s3 − 5292s2 + 2646) > 0,

and one can check that this condition is satisfied for all s ∈]0, 1[.

4.2.3 Kähler–Einstein Metrics on the F4-Variety X2

Let αi denote the simple roots of F4, ordered in accordance with Bourbaki’s num-
bering. Up to scaling, the Weyl group invariant scalar product is such that the matrix
of 〈αi ,α j 〉 is given by ⎛

⎜
⎜
⎝

2 −1 0 0
−1 2 −1 0
0 −1 1 − 1

2
0 0 − 1

2 1

⎞

⎟
⎟
⎠

It follows from the description of the varietyX2 in [26] that its open orbit F4/H is
obtained by parabolic induction from the rank one symmetric space Sp6 /Sp2 ×Sp4,
where the parabolic subgroup of F4 is the parabolic P1 associated to the root α1.
The spherical lattice M for X2 is the lattice generated by the restricted root of the
symmetric space, β := α2 + 2α3 + α4.

Furthermore, the varietyX2 is the unique fully colored compactification of F4/H .
It follows that the moment polytope corresponding to the anticanonical line bundle
is the intersection with the positive Weyl chamber of the affine line with direction
Rβ passing through 16α1 + 29α2 + 42α3 + 21α4, the sum of positive roots minus
the sum of positive roots of Sp6 fixed by the involution defining the symmetric space.
More explicitly, the moment polytope is

�+ = {tβ + 8ω1 | 0 ≤ t ≤ 8}

where ω1 = 2α1 + 3α2 + 4α3 + 2α4 is the fundamental weight for α1.
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The K-stability condition for the anticanonical line bundle thus reads

∫ 8

0
(t − 5)t7(256 − t2)2(64 − t2)2 dt > 0.

This condition is satisfied since the left hand side is equal to

3672386428957884416

153153
.

4.2.4 CscK Metrics on the Discoloration ˜X2

The discoloration X̃2 of X2 is obtained by the following parabolic induction proce-
dure. Take the quotient of Grass(2, 6) × F4 by the diagonal action of the minimal
parabolic P1, where the action on F4 is obvious and the action on Grass(2, 6) is
induced by the action of the Levi factor of P1 and the structure of two-orbit Sp6-
variety on Grass(2, 6) (this is the wonderful compactification of the symmetric space
Sp6 /Sp2 ×Sp4).

It is a rank one horosymmetric variety with Picard rank two. Again, its Kähler
cone is determined from combinatorial data using [6, 11, 13]. Here, the vector space
of real divisors is the quotient of the three dimensional vector space generated by
the exceptional divisor E and the closure of two colors D1 and D3, where Di is the
closure of the only codimension one B-orbit not stable under the minimal parabolic
Pi where i ∈ {1, 3}, by the relation D1 + E − 2D3 = 0. The relation follows from
the fact that the image of D1 under the color map is the restriction of the coroot
α∨
1 to M ⊗ R, which coincides with the primitive generator of the colorless ray

corresponding to the F4-orbit E , and the image by the color map of D3 is the only
positive restricted coroot, equal to (the restriction to M ⊗ R of) (α2 + 2α3 + α4)

∨,
which coincides with the double of the opposite of the generator of E . Note that D1

is the pull-back of the ample generator of the Picard group of F4/P1.
The class of any real divisor is thus represented, up tomultiple, by some s E + D1.

By Brion’s ampleness criterion, it is a Kähler class if and only if 0<s<1, and the
moment polytope is then

�+ = {tβ + ω1 | 0 ≤ t ≤ s}.

The Kähler class s E + D1 is F4-uniformly K-stable if and only if s satisfies the
condition (1) where, here, the polynomials P and Q are given by

P(t) = 1

27
t7(4 − t2)2(1 − t2)2

Q(t) = 1

28
t6(4 − t2)(1 − t2)(13t5 + 22t4 − 105t3 − 110t2 + 116t + 88).
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It is a tedious but workable task to verify that the polynomial on the left hand side
of condition (1) is positive for s ∈]0, 1[.
Acknowledgements The author thanks the referees for helpful remarks in improving the readability
of the article. This research received partial funding from ANR Project FIBALGA ANR-18-CE40-
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Fibrations by Affine Lines on Rational
Affine Surfaces with Irreducible
Boundaries

Adrien Dubouloz

Abstract We consider fibrations by affine lines on smooth affine surfaces obtained
as complements of smooth rational curves B in smooth projective surfaces X defined
over an algebraically closed field of characteristic zero. We observe that except for
two exceptions, these surfaces X \ B admit infinitely many families of A

1-fibrations
over the projective line with irreducible fibers and a unique singular fiber of arbi-
trarily large multiplicity. For A

1-fibrations over the affine line, we give a new and
essentially self-contained proof that the set of equivalence classes of such fibrations
up to composition by automorphisms at the source and target is finite if and only if
the self-intersection number B2 of B in X is less than or equal to 6.

Keywords Affine surfaces · Cylinders
2000 Mathematics Subject Classification 14R25 · 14E05 · 14R05

1 Introduction

Affine surfaces whose automorphism groups act with a dense orbit with finite com-
plement were studied by M. H. Gizatullin and V. I. Danilov in a series of seminal
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tinct and isomorphic to A
1, see [1, 10, 21]. Many of these surfaces actually admit

infinitely many such A
1-fibrations with pairwise different general fibers up to the

equivalence relation given by composition by automorphisms on the source and the
target. This richness of A

1-fibrations contributes in a central way to the complexity
of their automorphism groups, see e.g. [2, 3, 13, 19, 23, 24].

In this article, we consider A
1-fibrations on the subclass consisting of affine sur-

faces S defined over an algebraically closed field k of characteristic zero and which
admit smooth projective completions X with boundary B = X \ S isomorphic to the
projective lineP

1. A surface of this type is isomorphic either to the affine planeA
2, or

to the complement of a smooth conic in P
2 or to the complement of an ample section

of a P
1-bundle πn : Fn = P(OP1 ⊕ OP1(−n)) → P

1 for some n ≥ 0. Furthermore,
the famous Danilov–Gizatullin isomorphism theorem asserts that the isomorphism
class of an affine surface of the form Fn \ B depends only on the self-intersection
B2 of the boundary B.

While A
2 and the complements of smooth conics in P

2 only admit A
1-fibrations

over A
1, a surface Fn \ B admits an A

1-fibration π : Fn \ B → P
1 given by the

restriction of the P
1-bundle πn : Fn → P

1. These fibrations are actually locally triv-
ial A

1-bundles, and one can check that their equivalence classes are in one-to-one
correspondence with the orbits of the natural action of the group PGL2(k) on the
space P(H 1(P1,OP1(−B2)) (see Remark5). In particular, for B2 ≥ 3, these surfaces
admit infinitelymany equivalence classes ofA

1-fibrations overP
1. The geometry and

equivalence classes of other families of A
1-fibrations over P

1 on surfaces Fn \ B has
been much less studied than those of A

1-fibrations over A
1. Our first result, inspired

by a construction due to Blanc-van Santen [4] of infinite families of pairwise non-
equivalent closed embedding of the affine line in the complement of the diagonal in
P
1 × P

1, reads as follows:

Theorem 1 Let (Fn, B) be a pair consisting of a Hirzebruch surface πn : Fn → P
1

and an ample section B of πn. Then for every m ≥ 4, there exist infinite families of
equivalence classes of A

1-fibrations π : Fn \ B → P
1 with a unique singular fiber,

irreducible and of multiplicity m.

The proof of Theorem1 given in Sect. 3 actually provides a natural bijection
between a set of equivalence classes ofA

1-fibrations π : Fn \ B → P
1 with a unique

singular fiber, irreducible and of multiplicity m, and the elements of the set-theoretic
quotient of the set of closed points of a certain Zariski dense open subset of P

m−1

by the algebraic action of a linear algebraic group whose general orbits are at most
2-dimensional. This construction strongly suggests that by replacing the considera-
tion of set-theoretic quotients by, for instance, that of GIT quotients of suitable open
subsets, one should be able to strengthen Theorem1 in a form asserting the existence
of algebraic families ofA

1-fibrations s π : Fn \ B → P
1 with a unique singular fiber,

irreducible and of multiplicity m parametrized by the closed points of an algebraic
variety of dimension m − 3. Tackling the necessary additional constructions which
are needed to give a rigorous and accurate formulation of this coarse moduli view-
point falls beyond the scope of the present article.
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In a second step,we consider equivalence classes ofA1-fibrations overA1 on affine
surfaces X \ B. It is a well-known result of Danilov–Gizatullin [6, 7] that every such
surface other than the complement of a smooth conic in P

2 has a unique equivalence
class of smooth A

1-fibration over A
1. As already observed by Danilov–Gizatullin

again, for every d = 1, . . . , 5, the finiteness of the number of equivalences classes
of A

1-fibrations over A
1 on surfaces X \ B with B2 = d is then a consequence of

the finiteness of isomorphism types of pairs (X, B) with B2 = d. Over the field of
complex numbers, equivalence classes of non-smoothA

1-fibrations overA
1, equiva-

lently A
1-fibrations having non-reduced components in their degenerate fibers, have

been extensively studied in [19] in a broader context, see especially Corollary 6.3.19
and Corollary 6.3.20 in loc. cit.. The techniques there consist in first constructing
a finite-to-one correspondence between equivalence classes of such A

1-fibrations
and collections of points in a configuration space. The latter encodes the standard
construction of a completion of an A

1-fibered smooth affine surface π : S → A
1

into a P
1-fibered smooth projective surface π̄ : S̄ → P

1 obtained by performing a
suitable sequence of blow-ups of closed points starting from a Hirzerbruch surface
πn : Fn → P

1. The second step consists in describing the possible configurations and
determining their respective numbers of moduli. A consequence of this extensive
description is that for every B2 ≥ 7, the surface X \ B admits families of pairwise
non-equivalent A

1-fibrations X \ B → A
1 parametrized by a space whose dimen-

sion is an increasing function of B2 (see [19, Example 6.3.2]). Our second result
consists of an alternative direct proof of the following theorem, based on the use of
a different point of view.

Theorem 2 Let (X, B) be a pair consisting of a smooth projective surface X and
an ample smooth rational curve B on X. Then the following alternative holds:

(a) If B2 ≤ 6 then X \ B admits at most seven equivalence classes of A
1-fibrations

over A
1,

(b) If B2 ≥ 7 then the set of equivalence classes of A
1-fibrations X \ B → A

1 is
infinite, of cardinality larger than or equal to that of the field k.

For B2 ≤ 6, the different equivalence classes are derived by an explicit case by
case study. For B2 ≥ 7, our argument is based on the study of the equivalence classes
of a subclass of A

1-fibrations Fn \ B → A
1 which have an irreducible component

of multiplicity two inside their degenerate fiber. We show that for every B2 ≥ 7,
the set of equivalence classes of A

1-fibration of this type is infinite. More precisely,
we actually construct explicit families of equivalences classes of A

1-fibered smooth
affine surfaces S → A

1 with a unique degenerate fiber, irreducible and ofmultiplicity
two, depending algebraically on a parameter varying in an affine space of dimension⌊

B2−5
2

⌋
(see Example33) and which are all realized as restrictions of A

1-fibrations

Fn \ B → A
1 on suitable Zariski open subsets. This indicates in an indirect fashion

that the “number of moduli” ofA
1-fibrations overA

1 on surfaces X \ B with B2 = d
is bounded from below by

⌊
d−5
2

⌋
.
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The article is organized as follows. In section one, after setting some notations,
we review basic properties of smooth affine surfaces completable by smooth rational
curves. We then proceed in section two to the proof of Theorem1. The third section
is devoted to the proof of Theorem2, which combines several known facts together
with new results on equivalence classes of A

1-fibrations π : Fn \ B → A
1 having an

irreducible component of multiplicity two inside their unique degenerate fiber.

2 Preliminaries

All varieties and schemes considered are defined over a fixed algebraically closed
field k of characteristic zero.

2.1 Notations and Basic Definitions

We briefly recall basic definitions on SNC divisors and standard properties of A
1-

fibrations and P
1-fibrations which we use throughout the paper, see e.g [25, Chap.

3] for the details.

2.1.1 SNC Divisors and Rationals Trees on Smooth Surfaces

(i) Let X be a smooth projective surface. An SNC divisor on X is a curve B ⊂ X with
smooth irreducible components and ordinary double points only as singularities. We
say that B is SNC-minimal if its image by any strictly birational proper morphism
τ : X → X ′ onto a smooth projective surface X ′ with exceptional locus contained in
B is not an SNC divisor. A rational tree on X is an SNC divisor whose irreducible
components are isomorphic to P

1 and whose incidence graph is a tree. A rational
chain is a rational tree whose incidence graph is a chain. We use the notation B =
B0 � B1 � · · · � Br to indicate a rational chain whose irreducible components Bi are
ordered in such a way that for 0 ≤ i < j ≤ r , one has Bi · B j = 1 if j = i + 1 and 0
otherwise. The sequence of self-intersections [B2

0 , . . . , B2
r ] is referred to as the type

of the oriented rational chain B.
(ii) An SNC completion of a smooth quasi-projective surface V is a pair (X, B)

consisting of a smooth projective surface X and an SNC divisor B ⊂ V such that
X \ B 	 V . The completion is said to be SNC-minimal if B is SNC-minimal and to
be smooth if B is smooth.
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2.1.2 Recollection on A
1-Fibrations and P

1-Fibrations on Smooth
Surfaces

(i) A P
1-fibration on a smooth projective surface X is a morphism ρ : X → C onto

a smooth projective curve C whose generic fiber is isomorphic to the projective
line over the function field of C . Every P

1-fibration ρ : X → C is obtained from a
Zariski locally trivial P

1-bundle over C by performing a finite sequence of blow-
ups of points. In particular, every P

1-fibration has a section and its singular fibers
are supported by rational trees on X . If X is rational, then for every smooth proper
rational curve F with self-intersection 0, the complete linear system |F | of effective
divisors on X linearly equivalent to F defines a P

1-fibration ρ |F | : X → P
1
k having

F as a smooth fiber.
(ii) An A

1-fibration on a smooth quasi-projective surface V is a surjective mor-
phism ρ : V → A onto a smooth curve A whose generic fiber is isomorphic to the
affine line over the function field of A. Every A

1-fibration is the restriction of a P
1-

fibration ρ : X → C over the smooth projective model C of A, defined on an SNC
completion (X, B) of Vwith boundary B = ⋃

c∈C\A Fc ∪ H ∪ ⋃
a∈A Ga where,

Fc = ρ−1(c) 	 P
1 for every c ∈ C \ A, H is a section of ρ, and for every a ∈ A,

Ga is a union of SNC-minimal rational subtrees of the rational tree (ρ−1(a))red. The
pair (X, B) is called a relatively minimal P

1-fibered completion of ρ : V → A. If
ρ : V → A is affine, every nonempty Ga is connected and has an irreducible compo-
nent intersecting H , and the closure in X of every irreducible component of ρ−1(a)

intersects Ga transversely in a unique point. In particular, every irreducible com-
ponent of ρ−1(a) is isomorphic to A

1 when equipped with its reduced structure. A
scheme-theoretic closed fiber of ρ : V → A which is not isomorphic to A

1 is called
degenerate.

(iii) A smooth A
1-fibered surface is a pair (V, π) consisting of a smooth quasi-

projective surface V and an A
1-fibration π : V → A onto a smooth curve A. The

A
1-fibrationπ is said to be of affine type if A is affine and of complete type otherwise.

Two A
1-fibered surfaces (V, π : V → A) and (V ′, π ′ : V ′ → A′) are said to be

equivalent if there exist an isomorphism� : V → V ′ and an isomorphismψ : A →
A′ such that π ′ ◦ � = ψ ◦ π .

2.2 Models of Smooth Affine Surfaces with Irreducible
Rational Boundaries

We review known basic properties of smooth affine surfaces admitting smooth com-
pletions (X, B) with boundaries B ∼= P

1. Recall [22, Theorem 2] that for such a pair
(X, B), the affineness of X \ B implies that B is the support of an ample effective
divisor on X .
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Lemma 3 ([20, Proposition 1]) A pair (X, B) consisting of a smooth projective
surface X and a divisor B ∼= P

1such that X \ B is affine is isomorphic to one of the
following:

(a) (P2, B) where B is either a line L or a smooth conic Q,
(b) (Fn, B) where πn : Fn = P(OP1 ⊕ OP1(−n)) → P

1, n ≥ 0, is a P
1-bundle and

B is an ample section of πn.

Proof The log-canonical divisor K X + B is not nef since (K X + B) · B = −2 by
adjunction formula. Given a K X + B extremal smooth rational curve R on X , the
conditions B · R > 0 and (K X + B) · R < 0 imply that R2 ≥ 0. If R2 > 0 then X is
a smooth log del Pezzo surface of Picard rank 1, hence is isomorphic to P

2, and B is
either a line or a smooth conic. If R2 = 0, then the associated extremal contraction
is a Zariski locally trivial P

1-bundle h : X → C over a smooth projective curve C
and B is a section of h. Thus, C ∼= B ∼= P

1 and (X, h) ∼= (Fn, πn) for some n ≥ 0.

For a pair (Fn, B) as in Lemma3 (b), we denote byC0 ⊂ Fn a section of πn with self-
intersection C2

0 = −n and by F a closed fiber of πn . Recall [8, Corollary V.2.18] that
for m ≥ 1, the complete linear system |C0 + m F | contains prime divisors if and only
if m ≥ n. Since B is a section of πn , we have B ∼ C0 + 1

2 (B2 + n)F , where B2 ≥
n + 2 because B is ample. For a fixed d ≥ 2, the Hirzebruch surfaces Fn containing
an ample section B with B2 = d are those of the form Fd−2i , i = 1, . . . ,

⌊
d
2

⌋
, with

B belonging to the complete linear system |C0 + (d − i)F |.
Since the divisor class group of Fn is freely generated by the classes of F and of

a section of πn , the divisor class group of Fn \ B is freely generated by the class of
F |Fn\B . A canonical divisor KFn ofFn being linearly equivalent to−2C0 − (n + 2)F ,
wehave KFn ∼ −2B + (B2 − 2)F andhence KFn\B ∼ (B2 − 2)F |Fn\B .A result due
to Danilov–Gizatullin asserts conversely that the integers B2 are a complete invariant
of the isomorphism classes of surfaces Fn \ B, namely:

Theorem 4 ([7, Theorem 5.8.1] (see also [5, Corollary 4.8], [12, §3.1], [18] and [19,
Corollary 6.2.4])) The isomorphism class of the complement of an ample section B
in a Hirzebruch surface Fn depends only on the self-intersection B2 of B.

Remark 5 For a pair (Fn, B) as in Lemma3 (b) with B2 = d, the closed immer-
sion B ↪→ Fn is determined by a surjection OP1 ⊕ OP1(−n) → L onto an invert-
ible sheaf L on P

1, with kernel K isomorphic to OP1(− 1
2 (d + n)). The locally

trivial A
1-bundle ν = πn|Fn\B : Fn \ B → P

1 thus carries the additional structure
of a non-trivial torsor under the line bundle associated to the invertible sheaf
L ∨ ⊗ K ∼= OP1(−d). Isomorphism classes of such A

1-bundles are in one-to-
one correspondence with the elements of the projective space P(Ext1(L ,K )) ∼=
P(H 1(P1,OP1(−d))) ∼= P

d−2. By [7, Remark 4.8.6] (see also [12, Sect. 3.1] and
[11, Proposition 2]), every non-trivialOP1(−d)-torsor arises as a restriction πn|Fn\B :
Fn \ B → P

1 for some pair (Fn, B) as in Lemma 3 (b) with B2 = d.
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Example 6 The pairs (X, B) of Lemma3 (a) are unique up to isomorphism. In
particular every affine surface isomorphic to the complement of a smooth conic in P

2

is isomorphic to the complement of the conic Q0 = {xz + y2 = 0} inP
2
[xy:z]. Amodel

of an affine surface Fn \ B with B2 = d is given for d = 2e ≥ 2 by the complement
in F0 = P

1
[u0:u1] × P

1
[v0:v1] of the section 	e = {ue

1v0 − ue
0v1 = 0} of π0 = pr1, and

for d = 2e + 1 ≥ 3 by the complement in π1 : F1 → P
1 viewed as the blow-up of

P
2
[x :y:z] at the point p = [0 : 1 : 0] of the proper transform of the rational cuspidal

curve Ce = {yze + xe+1 = 0}.
The next examples illustrate some other representatives of isomorphism classes

of affine surfaces Fn \ B.

Example 7 ([12]) For every d ≥ 2 and every pair of integers p, q ≥ 1 such that p +
q = d, the geometric quotient Sd of the smooth affine threefold X p,q =
{x pv − yqu = 1} in A

4 by the free Gm-action defined by λ · (x, y, u, v) =
(λx, λy, λ−qu, λ−pv) is a representative of the isomorphism class of surfaces of
the form Fn \ B such that B2 = d. Indeed, Sd is isomorphic to the complement in
the geometric quotient

π|p−q| : F|p−q| ∼= P(OP1(p) ⊕ OP1(q)) → P
1 = Proj(k[x, y])

of (A2 \ {0}) × (A2 \ {0}) by the G
2
m-action (λ, μ) · (x, y, u, v) = (λx, λy,

λ−pμu, λ−qμv) of the ample section B of π|p−q| with self-intersection d determined
by the vanishing of the polynomial x pv − yqu of bi-homogeneous degree (0, 1).

Example 8 ([11]) For every d ≥ 2, the surface Wd in A
4 = Spec(k[x1, x2, x2, x4])

defined by the equations

x1x3 − x2(x2 + 1) = 0, xd−2
2 x4 − xd−1

3 = 0, xd−2
1 x4 − (x2 + 1)d−2x3 = 0

is a representative of the isomorphism class of surfaces of the form Fn \ B such
that B2 = d. Indeed, themorphism ν : Wd → P

1, (x1, x2, x3, x4) �→ [x1 : x2 + 1] =
[x2 : x3] is a locally trivial A

1-bundle with local trivializations

ν−1(P1 \ [0 : 1]) ∼= Spec(k[w][x4]) and ν−1(P1 \ [1 : 0]) ∼= Spec(k[w′][x1])

and gluing isomorphism (w, x4) �→ (w′, x1) = (w−1, wd x4 − wd−1), hence is a tor-
sor under the line bundle associated to OP1(−d). By Remark5, the surface Wd iso-
morphic to Fn \ B for some pair (Fn, B) as in Lemma3 (b) with B2 = d.

The surface W2 is isomorphic to the surface in A
3 = Spec(k[x, y, z]) given by

the equation xy = z(z + 1). For d ≥ 3, the morphism Wd → A
3, (x1, x2, x3, x4) �→

(x1, x4, x2) has image equal to the non-normal surface Vd given by the equation
xd−1y = z(z + 1)d−1 and the induced morphism νd : Wd → Vd is finite and bira-
tional, expressing Wd as the normalization of Vd . This recovers the other description
of representative of surfaces Fn \ B such that B2 = d as normalizations of surfaces
of the form Vd given in [19, Sect. 1.0.8].
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3 Families of A
1-Fibrations of Complete Type

Since they have torsion class groups, the affine plane A
2 = P

2 \ L and the comple-
ments of smooth conics in P

2 do not admit A
1-fibrations over complete curves. In

contrast, a surface Fn \ B admits a smooth A
1-fibration πn|Fn\B : Fn \ B → P

1. In
this section, we are interested in the properties of certain A

1-fibrations Fn \ B → P
1

with multiple fibers.

Lemma 9 Let (Fn, B) be a pair as in Lemma3 (b), let q be a point of B and let
m ≥ 1. Then the linear subsystem Zq(m) of the complete linear system |B + m F |
consisting of divisors intersecting B with multiplicity B2 + m at q has dimension
m. Furthermore, the open subset Uq(m) of Zq(m) consisting of prime divisors is
Zariski dense.

Proof Put d = B2 and Fq = π−1
n (πn(q)). LetIB

∼= OFn (−B) denote the ideal sheaf
of B and consider the long exact sequence of cohomology associated to the short
exact sequence of coherent sheaves

0 → IB ⊗ OFn (B + m F) ∼= OFn (m F) → OFn (B + m F) → OFn (B + m F)|B

∼= OB(d + m) → 0

Since H 1(Fn,OFn (m F)) = 0, the map H 0(Fn,OFn (B + m F)) → H 0(B,OB(d +
m)) is surjective, with kernel of dimension dim H 0(Fn,OFn (m F)) = m + 1. It fol-
lows that Zq(m) ∼= P

m . A singular element of Zq(m) decomposes as the sum of a
prime member Bm ′ of the complete linear system |B + m ′F |, 0 ≤ m ′ < m, intersect-
ing B with multiplicity d + m ′ at q and of (m − m ′)Fq . By the same computation
as above, these elements form a closed linear subspaceZq(m ′) ∼= P

m ′
ofZq(m) and

so, Uq(m) = Zq(m) \ ⋃m−1
m ′=0 Zq(m ′) is a dense open subset of Zq(m).

Example 10 Let F0 = P
1
[u0:u1] × P

1
[v0:v1], 	 = {u1v0 − u0v1 = 0} and let q = ([0 :

1], [0 : 1]). For everym ≥ 1, denote byVm ⊂ k[t] them-dimensional vector space of
monic polynomials of degree m. Writing P(u, v) = p( v

u )um for the homogenization
of a polynomial p(t) ∈ k[t], the map which associates to p ∈ Vm the section

Bm,p = {u0P(u0, u1)v1 − (um+1
0 + u1P(u0, u1))v0 = 0}

ofπ0 = pr1 defines an open immersionVm → Uq(m) ⊂ Zq(m) ∼= P
m . These curves

Bm,p were considered by Blanc-van Santen [4, Sect. 3] for the fact that their restric-
tions Bm,p ∩ (F0 \ 	) ∼= A

1 provide examples of non-equivalent closed embeddings
of the affine line into the smooth affine quadric surface F0 \ 	.

Let (Fn, B) be a pair as in Lemma3 (b), let m ≥ 2 and let Bm be a section
of πn corresponding to a closed point of the scheme Uq(m) for some q ∈ B. Let
Lq,Bm ⊂ |B + m F | be the pencil generated by the divisors Bm and B + m Fq .

Lemma 11 Every member ofLq,Bm other than B + m Fq is a smooth rational curve.
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Proof Every divisor in the complete linear system |B + m F | has self-intersection
B2 + 2m. The minimal resolution τ : F̃n → Fn of the rational map γ : Fn ��� P

1

defined by Lq,Bm is obtained by performing B2 + 2m successive blow-ups with
center at q on the successive proper transforms of Bm , with exceptional divisors
E1, . . . , EB2+2m . Letting τ−1∗ Bm be the proper transform of Bm , the composition γ̃ =
γ ◦ τ : F̃n → P

1 is the P
1-fibration defined by the complete linear system |τ−1∗ Bm |.

The total transform of Bm is a rational chain E1 � · · · � EB2+2m � τ−1∗ Bm , where
EB2+2m is a section of γ̃ . Since every singular member of Lq,Bm is the sum of a
prime member B ′ of the linear system |B + m ′F | for some 0 ≤ m ′ < m and of
(m − m ′)Fq , every fiber of γ̃ other than that containing the proper transform of
B ∪ Fq is smooth. This implies that every member ofLq,Bm other than B + m Fq is
a smooth rational curve.

For every q ∈ B, the space of pencils Lq,Bm identifies with a dense open subset
Sq(m) of the projective space P

m−1 of lines passing through the point of Zq(m) \
Uq(m) corresponding to the reducible divisor B + m Fq and a point of Uq(m). The
linear action on H 0(Fn,OFn (B + m F)) of the algebraic subgroup Aut(Fn, B ∪ Fq)

of automorphisms of Fn preserving B ∪ Fq induces an action of Aut(Fn, B ∪ Fq)

on Sq(m). On the other hand, the rational map γq,Bm : Fn ��� P
1 associated to a

pencil Lq,Bm restricts to a surjective A
1-fibration δq,Bm : Fn \ B → P

1 having Fq ∩
(Fn \ B) ∼= A

1 as a unique degenerate fiber, of multiplicitym. We have the following
characterization:

Lemma 12 Let (Fn, B) be a pair as in Lemma3 (b), let m ≥ 3 and let Bm and B ′
m be

sections of πn : Fn → P
1 corresponding to points of the scheme Uq(m) for some q ∈

B. Then the A
1-fibered surfaces (Fn \ B, δq,Bm ) and (Fn \ B, δq,B ′

m
) are equivalent if

and only if the pencils Lq,Bm and Lq,B ′
m

belong to the same Aut(Fn, B ∪ Fq)-orbit.

Proof Let � : (Fn \ B, δq,Bm ) → (Fn \ B, δq,B ′
m
) be an equivalence of A

1-fibered

surfaces, let �̄ be its extension to a birational automorphism of Fn and let Fn
σ←

Y
σ ′→ Fn be the minimal resolution of �̄. If σ ′ is not an isomorphism, then σ is not

an isomorphism and � contracts B onto a point. By the minimality assumption,
the proper transform σ−1∗ (B) of B is the only σ ′-exceptional (−1)-curve contained
in σ−1(B). It follows that σ has B2 + 1 proper or infinitely near base points on B
and hence, since B · Bm = B2 + m, that σ−1∗ Bm · σ−1∗ (B) ≥ m − 1 ≥ 2. But then,
σ ′(σ−1∗ Bm) is an irreducible singular member of Lq,B ′

m
, which is impossible by

Lemma 11. Thus, σ ′ is an isomorphism and �̄ is an automorphism of Fn , which
preserves B and the closure Fq of the unique common degenerate fiber Fq ∩ (Fn \ B)

of δ and δ′. Furthermore, �̄ maps Bm onto a certain smooth member ofLq,B ′
m
, hence

maps Lq,Bm onto Lq,B ′
m
. The converse implication is clear.

Remark 13 For every m ≥ 2 and every point q ∈ B, one can find distinct points Bm

and B ′
m in the scheme Uq(m) such that the pencils Lq,Bm and Lq,B ′

m
have distinct

general members. The associated A
1-fibrations δq,Bm and δq,B ′

m
have distinct general

fibers but share Fq ∩ (Fn \ B) as a degenerate fiber. This contrasts withA
1-fibrations
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of affine type for which no curve can be contained simultaneously in fibers of two
A

1-fibrations with distinct general fibers, see [10, Corollary 2.22].

Proposition 14 Let (Fn, B) be a pair as in Lemma3 (b). Then for every m ≥ 4,
there exist infinitely many equivalence classes of A

1-fibrations π : Fn \ B → P
1

with a unique degenerate fiber of multiplicity m.

Proof By Theorem4, it suffices to construct such families from the two pairs
(Fn, B) = (F0,	e) and (F1, σ

−1∗ Ce) of Example6. If B2 = 2e ≥ 2, let q = ([1 :
0], [0 : 1]) ∈ 	e = {ue

1v0 − ue
0v1 = 0} ⊂ F0. The group Aut(F0,	e ∪ Fq) is iso-

morphic to the affine group Gm � Ga acting by

(λ, t) · ([u0 : u1], [v0 : v1]) = ([λu0 + tu1 : u1], [v0 + λ−1tv1 : λ−1v1])

if e = 1 and for every e ≥ 2 to the group Gm acting by λ · ([u0 : u1], [v0 : v1]) =
([λu0 : u1], [v0 : λ−ev1]). If B2 = 2e + 1 ≥ 3, viewing F1 as the blow-up σ : F1 →
P
2
[x :y:z] of the point p = [0 : 1 : 0]with exceptional divisorC0, letq be the intersection

point of σ−1∗ Ce with the proper transform of the tangent line L = {z = 0} to Ce =
{yze + xe+1 = 0} at p. The group Aut(F0, σ

−1∗ Ce ∪ Fq) is then isomorphic to the
group Aut(P2, Ce ∪ L). The latter is isomorphic to Gm � Ga acting by (λ, t) · [x :
y : z] = [λx + t z : λ2y − 2λt x − t2z : z] if e = 1 and for every e ≥ 2 to Gm acting
by λ · [x : y : z] = [λx : λe+1y : z].

In both cases, the Aut(Fn, B ∪ Fq)-orbit of a point of the open subset Sq(m) ⊂
P

m−1 is at most 2-dimensional. Since m − 1 ≥ 3, the set-theoretic orbit space
Sq(m)/Aut(Fn, B ∪ Fq) is infinite and the assertion follows from Lemma12.

4 Equivalence Classes of A
1-Fibrations of Affine Type

4.1 Special Pencils of Rational Curves and Associated
A
1-Fibrations of Affine Type

Let (X, B) be a pair as in Lemma3. For every point q ∈ B, denote byPq the linear
subsystem of the complete linear system |B| on X consisting of curves with local
intersection number with B at q equal to B2. If (X, B) ∼= (P2, L) where L is a
line, then Pq is simply the pencil of lines through q. More generally, if B2 ≥ 2
then the same type of computation as in the proof of Lemma11 implies thatPq is a
pencil. Theminimal resolutionσ : X̃ → X of the rationalmapρq : X ��� P

1 defined
by Pq is obtained by performing B2 successive blow-ups with center at q on the
successive proper transforms of B, with respective exceptional divisor E1, . . . , EB2 .
The total transform of B in X̃ is a rational chain σ−1∗ B � EB2 � EB2−1 � · · · E1 of type
[0,−1,−2, . . . ,−2] and the morphism ρ̃q = ρq ◦ σ : X̃ → P

1 is the P
1-fibration

defined by the complete linear system |σ−1∗ B|.
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Example 15 For every point q on a smooth conic Q ⊂ P
2, Pq is the pencil of

conics intersecting Q with multiplicity 4 at q, generated by Q and twice its tangent
line Tq Q at q. The total transform of Q ∪ Tq Q by σ is the rational tree

(σ−1∗ Q, 0)� (E4,−1) � (E3,−2) � (E2,−2) (σ−1∗ Tq Q,−1)

(E1,−2),

where the displayed numbers in the parenthesis are the self-intersection numbers
of the corresponding irreducible components. The P

1-fibration ρ̃q : P̃
2 → P

1 has
ρ̃−1

q (ρq(Tq Q)) = ⋃3
i=1 Ei ∪ σ−1∗ Tq Q as a unique singular fiber.

For pairs (Fn, B) as in Lemma3 (b), we have the following description (see also
[13, Sect. 4]):

Lemma 16 Let (Fn, B) be a pair as in Lemma3 (b). Then for every point q ∈ B,
the following hold:

(a) The pencilPq has a unique singular member consisting of a divisor of the form
C + mq Fq, where C is a section of πn, Fq = π−1

n (πn(q)) and mq ∈ {1, . . . , B2 − 1}.
(b) The P

1-fibration ρ̃q : F̃n → P
1 has ρ̃−1

q (ρq(C ∪ Fq)) = ⋃B2−1
i=1 Ei ∪ σ−1∗ (C ∪

Fq) as a unique singular fiber.
(c) For a general point q ∈ B, the unique singular member of Pq is reduced.

Proof With the notation of Sect. 2.2, put d = B2 ≥ 2 and B ∼ C0 + �F with � =
1
2 (d + n) ≤ d − 1. Since d ≥ 2 and E2

d−1 = −2, ρ̃−1
q (ρ̃q(Ed−1)) is a singular fiber

of ρ̃q and its image by σ is a singular member of Pq . Since a singular member of
Pq decomposes as the union of a section C ∼ C0 + �′F of πn for some 0 ≤ �′ <

� ≤ d − 1 intersecting B with multiplicity d − (� − �′) at q and of (� − �′)Fq , it
follows that σ(ρ̃−1

q (ρ̃q(Ed−1))) = C + (� − �′)Fq is the unique singular member of
Pq . This proves a) and b). For assertion c), see [7, Proposition 4.8.11] or [12, Lemma
3.2].

For a pencil Pq on a pair (X, B) as in Lemma3, the rational map ρq : Fn ��� P
1

defined by Pq restricts to an A
1-fibration πq : X \ B → A

1 = P
1 \ ρq(B). In the

case where (X, B) = (P2, L) for some line L , πq is a trivial A
1-bundle on A

2 =
P
2 \ L , and in the case where (X, B) = (P2, Q), πq has a unique degenerate fiber

consisting of Tq Q ∩ (P2 \ Q) ∼= A
1 occurring with multiplicity 2 (see Example15).

For pairs (Fn, B), it follows from Lemma16 a) that πq : Fn \ B → A
1 has unique

degenerate fiber which is reducible, consisting of the disjoint union of C ∩ (Fn \
B) ∼= A

1 occurring with multiplicity 1 and of Fq ∩ (Fn \ B) ∼= A
1 occurring with a

certain multiplicity mq ∈ {1, . . . , B2 − 1}. The following lemma shows conversely
that for a pair (X, B) as above, every A

1-fibration π : X \ B → A
1 is induced by a

pencil Pq on a suitable smooth completion (X ′, B ′) of X \ B.

Lemma 17 Let (X, B) be a pair as in Lemma 3 and let π : X \ B → A
1 be an

A
1-fibration. Then there exists a smooth completion (X ′, B ′) of X \ B by some pair
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as in Lemma3, an isomorphism � : X \ B → X ′ \ B ′ and a point q ′ ∈ B ′ such that
π = πq ′ ◦ �.

Proof Note that X \ B admits an SNC completion by a rational chain of type [0,−1]
if (X, B) ∼= (P2, L) and of type [0,−1,−2, . . . ,−2] with B2 − 1 ≥ 1 curves of
self-intersection number −2 otherwise. Now let (Y, D) be a relatively minimal SNC
completion of π : X \ B → A

1 into a P
1-fibration π̄ : Y → P

1 as in Sect. 2.1.2 (ii).
By [10, Proposition 2.15], D is a rational chain F∞ � H � E , where F∞ ∼= P

1 is the
fiber of π̄ over the point P1 \ A

1, H is a section of π̄ and E is either the empty divisor
or a rational chain E1 � · · · � Ed−1 consisting of curves with self-intersection number
≤ −2 contained in a fiber of π̄ . By making elementary transformations consisting
of the blow-up of a point of F∞ followed by the contraction of the proper transform
of F∞, we can further assume from the beginning that H 2 = −1. By [6, Corollary
2] (see also [16, Corollary 3.32] or [2, Corollary 3.2.3]), the number of irreducible
components of E and their self-intersection numbers are independent on (Y, D).
Thus, D is a chain of one of the types listed above and so, letting τ : Y → X ′ be
the contraction of the subchain H � E onto a smooth point q ′ ∈ B ′ = τ(F∞) ∼= P

1,
we obtain a smooth completion (X ′, B ′) of X \ B and an isomorphism � = τ |Y\D :
X \ B ∼= Y \ D → X ′ \ B ′ such that π = πq ′ ◦ �.

Corollary 18 The affine plane A
2, the complement P2 \ Q of a smooth conic Q ⊂ P

2

and the affine quadric surface P
1 × P

1 \ 	 all have a unique equivalence class of
A

1-fibrations over A
1.

Proof In each case, given an A
1-fibration π : X \ B → A

1, Lemma17 provides a
smooth completion (X ′, B ′) of X \ B such that π = πq ′ ◦ � for some isomorphism
� : X \ B → X ′ \ B ′ and some point q ′ ∈ B ′. If (X, B) = (P2, L) or (P2, Q) then
X ′ = P

2 and B ′ is respectively a line L ′ or a smooth conic Q′. If (X, B) = (P1 ×
P
1,	) then X ′ = P

1 × P
1 and B ′ is a prime divisor of type (1, 1). The assertion

then follows from the fact that in each case, the automophism group of the surface
X ′ = X acts transitively on the set of pairs (B ′, q ′).

Corollary 19 Every A
1-fibration π : Fn \ B → A

1 on an affine surface Fn \ B has
a unique degenerate fiber which consists of the disjoint union of a reduced irreducible
component and an irreducible component of multiplicity m ∈ {1, . . . , B2 − 1}.

In contrast to Corollary18, the following lemma, whose proof reproduces that of
[9, Theorem 16.2.1] (in french), implies that every affine surface Fn \ B with B2 ≥ 3
admits more than one equivalence class of A

1-fibrations over A
1.

Lemma 20 Let (Fn, B) be a pair as in Lemma3 (b). Then for every integer m ∈
{1, . . . , B2 − 1}, there exists an A

1-fibration πm : Fn \ B → A
1 whose degenerate

fiber has a reduced component and a component of multiplicity m.1

1 In particular, there exist at least B2 − 1 equivalence classes of A
1-fibrations over A

1 on Fn \ B.

The lower bound
⌊

B2−1
2

⌋
was discovered earlier by Peter Russell (unpublished) and was proven

by Flenner–Kaliman–Zaidenberg [17, Corollary 5.16 a)] using a closely related construction.
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Proof We use the notation introduced in Sect. 2.2 and put d = B2 ≥ 2. Let n′ =
d − 2i for some i = 1, . . .

⌊
d
2

⌋
, let Cn′ be a prime member of the complete linear

system |C0 + n′F | and let q0 ∈ C0 and qn′ ∈ Cn′ be a pair of closed points contained
in two different fibers Fq0 and Fqn′ of πn′ : Fn′ → P

1. Note that B ′ · C0 = i and
B ′ · Cn′ = d − i for every member B ′ of |C0 + (d − i)F |. Applying a sequence of
i elementary transformations with center at q0 followed by a sequence of d − i ele-
mentary transformations with center at qn′ yields a birational map β : Fn′ ��� F0 =
P
1 × P

1 such that πn′ = pr1 ◦ β. The composition pr2 ◦ β : Fn′ ��� P
1 is given by a

pencil L ⊂ |C0 + (d − i)F | whose general members are sections B ′ of πn′ which
satisfy B ′ ∩ C0 = q0 and B ′ ∩ Cn′ = qn′ . Since (B ′)2 = 2(d − i) − (d − 2i) = d,

Fn′ \ B ′ is isomorphic to Fn \ B by Theorem4. On other hand, the pencil Pq0 has
a unique singular member equal to C0 + (d − i)Fq0 whereas the pencil Pqn′ has a
unique singular member equal to Cn′ + i Fqn′ . The degenerate fibers of the associated
A

1-fibrations πq0 : Fn′ \ B ′ → A
1 and πqn′ : Fn′ \ B ′ → A

1 have Fq0 ∩ (Fn′ \ B ′)
and Fqn′ ∩ (Fn′ \ B ′) as irreducible components of multiplicity d − i and i respec-
tively. Since i ranges from 1 to

⌊
d
2

⌋
, the assertion follows.

4.2 Some Classes of A
1-Fibrations of Affine Type on

Surfaces Fn \ B

By Corollary19 and Lemma20, the classification of equivalence classes of A
1-

fibrations π : Fn \ B → A
1 is divided into that of each type according to the multi-

plicity m ∈ {1, . . . , B2 − 1} of the possibly non-reduced irreducible component of
their unique degenerate fiber. Hereafter, we first recall known results on the two
extremal cases: A

1-fibrations with a component of maximal multiplicity B2 − 1 on
the one hand, and smooth A

1-fibrations on the other hand. We then proceed to the
study of equivalence classes of A

1-fibrations with a component of multiplicity two
in their unique degenerate fiber.

4.2.1 Equivalence Classes of A
1-Fibrations with Maximal Multiplicity

Proposition 21 For every pair (Fn, B) as in Lemma3 (b), the affine surface Fn \ B
has a unique equivalence class of A

1-fibration π : Fn \ B → A
1 with a degenerate

fiber containing an irreducible component of multiplicity B2 − 1.

Proof A pair (Fn, B)with B2 = d + 2 ≥ 2 such that B contains a point q for which
the singular member of the pencil Pq has the form C + (d + 1)Fq for some irre-
ducible curveC is necessarily equal to (Fd , B) for some section B ∼ C0 + (d + 1)F
of πd intersecting C0 transversely at the point q, the curve C being then equal to
C0. Then the assertion follows from the fact that the group Aut(Fd) acts transitively
on the set of sections B ∼ C0 + (d + 1)F of πd . Let us recall the argument. Since
the restriction homomorphism Aut(Fd , C0) → Aut(C0) is surjective, it suffices to
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show that for some chosen fiber F0 of πd , the action of Aut(Fd , C0 ∪ F0) on the set
of sections B0 ∼ C0 + (d + 1)F intersecting C0 at the point F0 ∩ C0 is transitive.
Identifying Fd \ (C0 ∪ F0) to A

2 = Spec(k[x, y]) in such a way that πd |A2 = prx
and that the closures in Fd of the level sets of y are sections of πd linearly equivalent
to C0 + d F , these sections B0 are the closures in Fd of curves �p ⊂ A

2 defined
by equations of the form y = p(x) where p(x) ∈ k[x] is a polynomial of degree
d + 1. Since every automorphism of A

2 of the form (x, y) �→ (λx + μ, νy + r(x)),
where r(x) ∈ k[x] is a polynomial of degree at most d, extends to an element of
Aut(Fd , C0 ∪ F0), it follows that every section B0 belongs to the Aut(Fd , C0 ∪ F0)-
orbit of the closure of the curve �xd+1 = {y = xd+1}.

4.2.2 Equivalence Classes of Smooth A
1-Fibrations

The following lemma is a reformulation of [7, Lemma 5.5.5], which appeared, stated
in a different language, in the Appendix of [12].

Lemma 22 Let (Fn, B) be a pair as in Lemma3 (b) and let q ∈ B be a point such
that the singular member of the pencil Pq is reduced. Then the isomorphism type of
the A

1-fibered surface πq : Fn \ B → A
1 depends only on the integer B2.

Proof Put d = B2 and S = Fn \ B. The singularmember ofPq has the formC + Fq

where C is a prime member of the complete linear system |B − Fq |. Without loss of
generality, we can fix an isomorphism A = P

1 \ ρq(B) ∼= Spec(k[x]) so that ρq(C ∪
Fq) = {0} ∈ A. With the notation of Sect. 4.1, the total transform of B ∪ C ∪ Fq in
the minimal resolution σ : F̃n → Fn of the rational map map ρq : Fn ��� P

1 defined
byPq is a rational tree of the form

(σ−1∗ B, 0) � (Ed , −1) � (Ed−1, −2) � (Ed−2, −2)� · · · · · · � (E1, −2) (σ−1∗ Fq , −1)

(σ−1∗ C, −1).

Furthermore, the singular fiber ρ̃−1
q (ρq(C ∪ Fq)) = ⋃d−1

i=1 E1 ∪ σ−1∗ C ∪ σ−1∗ Fq of

the P
1-fibration ρ̃q = ρq ◦ σ : F̃n → P

1 is reduced. By contracting successively
σ−1∗ Fq , E1, . . . , Ed−2 and σ−1∗ C , we get a birational morphism τ : F̃n → F1 of P

1-
fibered surfaces over P

1. The later restricts to a morphism

τ : S ∼= F̃n \ σ−1(B) −→ F1 \ τ̄ (σ−1
∗ (B) ∪ Ed) 	 A × A

1

of schemes over A, inducing an isomorphism S \ (C ∪ Fq)
∼→ A \ {0} × A

1 and
contracting C ∩ S and Fq ∩ S to a pair of distinct points supported on {0} × A

1.
One can choose a coordinate on the second factor of A × A

1 and a pair of isomor-
phisms of A-schemes S \ Fq 	 A × Spec(k[u]) and S \ C 	 A × Spec([u′]) so that
the restrictions of τ to S \ Fq and S \ C coincide respectively with the morphisms
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S \ Fq → A × A
1, (x, u) �→ (x, xu + 1) and S \ C → A × A

1,
(
x, u′) �→ (x, xd−1u′).

Thus, πq : S → A is A-isomorphic to the surface Wd obtained by gluing two
copies U± = Spec(k[x][v±]) of A × A

1 along the open subset (A \ {0}) × A
1 by

the isomorphismU+ � (x, v+) �→ (x, x2−dv+ + x1−d) ∈ U−, endowedwith theA
1-

fibration ξ d : Wd → A induced by the first projections on each of the open sub-
sets U±.

Corollary 23 For every pair (Fn, B) as in Lemma3 (b), the affine surface Fn \ B
has a unique equivalence class of smooth A

1-fibration π : Fn \ B → A
1.

Remark 24 The proofs of Lemma16 and Lemma22 do not depend on the Danilov–
Gizatullin isomorphism theorem, and,when combined together, they actually provide
a proof of Theorem4. Indeed, Lemma16 c) asserts in particular that for every pair
(Fn, B) there exists a point q ∈ B such that theA

1-fibration πq : Fn \ B → A
1 asso-

ciated to the pencilPq is a smooth morphism. On the other hand, Lemma22 implies
that the isomorphism type of πq : Fn \ B → A

1 as an A
1-fibered surface over A

1,
hence in particular as an abstract affine surface, depends only on the integer B2.

4.2.3 Equivalence Classes A
1-Fibrations with An Irreducible

Component of Multiplicity Two

Given a pair (Fn, B) as in Lemma3 (b), denote by A2(B2) the set of equivalence
classes ofA

1-fibrations π : Fn \ B → A
1 whose unique degenerate fiber has an irre-

ducible component of multiplicity two. By Corollary19 and Lemma20, A2(2) = ∅
and A2(d) �= ∅ for every d ≥ 3. The aim of this subsection is to establish the fol-
lowing more precise description of the sets A2(d) for d ≥ 3.

Proposition 25 With the notation above, the following hold:
(a) The sets A2(3) and A2(4) both consist of a single element,
(b) The sets A2(5) and A2(6) both consist of two elements,
(c) For every d ≥ 7, A2(d) has cardinality larger than or equal to that of the

field k.

The proof follows from a combination of several intermediate results established
below. By Lemma17, for a surface S = Fn \ B every element of A2(B2) is repre-
sented by an A

1-fibration πq : S → A
1 associated to a pencil Pq on some smooth

completion (Fn′ , B ′) of S whose unique singular member is a divisor of the form
C + 2Fq for some prime element C of the complete linear system |B ′ − 2F |. The
unique degenerate fiber of πq then consists of the disjoint union of C ∩ S with mul-
tiplicity one and of Fq ∩ S with multiplicity two.

Lemma 26 Let (Fn, B) be pair as in Lemma3 (b) with d = B2 ≥ 3 and such that
there exists a point q ∈ B for which the singular member of the pencil Pq is a
divisor of the form C + 2Fq for some prime element C of the complete linear system
|B − 2F |. Then the total transform σ−1∗ B ∪ Dq ∪ σ−1∗ (C) ∪ σ−1∗ (Fq) of B ∪ C ∪ Fq
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in the minimal resolution σ : F̃n → Fn of the rational map ρq : Fn ��� P
1 defined

by Pq is a rational tree of the form

(σ−1∗ B, 0) � (Ed , −1) � (Ed−1, −2) � (Ed−2, −2)� · · · · · · � (E1, −2) (σ−1∗ Fq , −1)

(σ−1∗ C, −2).

Proof The assertion is straightforward to verify from the description of σ : F̃n → Fn

given in Sect. 4.1.

Notation 27 Let (Fn, B) be a pair as in Lemma3 (b) with d = B2 ≥ 3 and such
that there exists a point q ∈ B for which the singular member of Pq is a divi-
sor of the form C + 2Fq . We denote by Ŝq the affine open subset Fn \ (B ∪ C) of
S = Fn \ B and we denote by π̂q : Ŝq → A

1 the A
1-fibration with degenerate fiber

Fq ∩ Ŝq ofmultiplicity two induced byπq : S → A
1.With the notation of Lemma26,

the P
1-fibered surface ρ̃q = ρq ◦ σ : F̃n → P

1 is a relatively minimal SNC comple-
tionof π̂q : Ŝq → A

1 with boundarydivisor D̂q = σ−1∗ (B) ∪ Dq ∪ σ−1∗ C = σ−1∗ B ∪⋃d
i=1 Ei ∪ σ−1∗ C .

Let (Fn, B) and (Fn′ , B ′) with B2 = (B ′)2 = d ≥ 3 be smooth completions of an
affine surface S such that for some points q ∈ B and q ′ ∈ B ′, the pencils Pq and
P ′

q have a singular member of the form C + 2Fq and C ′ + 2F ′
q ′ respectively. Let

πq : S → A
1, π̂q : Ŝq = S \ C → A

1, πq ′ : S → A
1 and π̂q ′ : Ŝq ′ = S \ C ′ → A

1

be the associated A
1-fibrations. The next lemma reduces the study of equivalence

classes of A
1-fibered surfaces (S, πq) to those of the simpler ones (Ŝq , π̂q).

Lemma 28 The A
1-fibered surfaces (S, πq) and (S, πq ′) are equivalent if and only

if (Ŝq , π̂q) and (Ŝq ′ , π̂q ′) are equivalent.

Proof Since C ∩ S (resp. C ′ ∩ S) is a reduced fiber of πq (resp. πq ′ ) whereas Fq ∩ S
(resp. Fq ′ ∩ S) is a fiber of multiplicity two of it, every equivalence ofA

1-fibered sur-
face� : (S, πq) → (S, πq ′)mapsC ∩ S ontoC ′ ∩ S and Fq ∩ S onto Fq ′ ∩ S, hence
restricts to equivalence between �̂ : (Ŝq , π̂q) → (Ŝq ′ , π̂q ′). Now assume conversely
that there exists an equivalence of A

1-fibered surfaces �̂ : (Ŝq , π̂q) → (Ŝq ′ , π̂q ′).
With the notation of Lemma26, let

(F̃n, D̂q = σ−1
∗ B ∪ Dq ∪ σ−1

∗ C) and (F̃n′ , D̂′
q ′ = σ ′−1

∗ B ′ ∪ D′
q ′ ∪ σ ′−1

∗ C ′)

be the relatively minimal SNC completions of π̂q and π̂q ′ respectively. The isomor-
phism �̂ induces a birational map of P

1-fibered surfaces �̂ : (F̃n, ρ̃q) ��� (F̃n′ , ρ̃q ′).
In particular, �̂ maps the section Ed of ρ̃q isomorphically onto the section E ′

d of ρ̃q ′ ,
which implies that any proper base point of �̂ is supported either on Dq ∪ σ−1∗ C
or on σ−1∗ B. Assume that �̂ has a proper base point supported on Dq ∪ σ−1∗ C

and let F̃n
η← Z

η′→ F̃n′ be the minimal resolution of �̂. Since �̂ maps Ed iso-
morphically onto E ′

d and Fq onto Fq ′ , it follows that η′ contracts η−1(Dq ∪ σ−1∗ C)
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onto D′
q ′ ∪ σ ′−1

∗ C ′. Since Dq ∪ σ−1∗ C and D′
q ′ ∪ σ ′−1

∗ C ′ are SNC divisors with the
same number of irreducible components, the minimality assumption implies that
the proper transform in Z of Dq ∪ σ−1∗ C contains an η′-exceptional (−1)-curve.
But this is impossible since all these curves have self-intersection ≤ −2 in Z . For
the same reason, �̂−1 has no proper base point on D′

q ′ ∪ σ ′−1
∗ C ′. So, �̂ is well-

defined on an open neighborhood U of D̂q \ σ−1∗ B in F̃n and �̂|U is an isomorphism
onto an open neighborhood U ′ of D̂q ′ \ σ ′−1

∗ B ′ in F̃n′ . The geometry of the divisors
D̂q \ σ−1∗ B and D̂q ′ \ σ ′−1

∗ B ′ and the fact that �̂ maps σ−1∗ Fq onto σ ′−1
∗ F ′

q ′ imply

that �̂(σ−1∗ C) = σ ′−1
∗ C ′ and hence, that �̂ induces an equivalence of A

1-fibered
surfaces � : (S, πq) → (S, πq ′).

To study equivalence classes of A
1-fibered surfaces (Ŝq , π̂q), we now introduce two

auxiliary families of surfaces.

Notation 29 For every integer � ≥ 1 and every polynomial s ∈ k[x2] ⊂ k[x] of
degree < � with s(0) = 1, denote by S̃�,s the surface in A

3 = Spec(k[x, y, z]) with
equation x�z = y2 − s2(x). The morphism π̃�,s = prx : S̃�,s → A

1 is a smooth A
1-

fibration with unique degenerate fiber π̃−1
�,s (0) consisting of two irreducible com-

ponents {x = y ± 1 = 0}. The morphism π̃�,s is equivariant for the actions of the
group μ2 = {±1} given by (−x,−y, (−1)�z) on S̃�,s and by x �→ −x on A

1. As a

scheme over A
1, S̃�,s isμ2-equivariantly isomorphic to the surface W (−1)1−�

2x�s(x)
obtained

by gluing two copies

U± = S̃�,s \ {x = y ∓ s(x) = 0} = Spec(k[x][u±]), where u± = x−�(y − s(x)) = (y + s(x))−1z

of A
1 × A

1 over (A1 \ {0}) × A
1 by the isomorphism U+ � (x, u+) �→ (x, u+ +

2x−�s(x)) ∈ U−, endowed with theμ2-actionU+ � (x, u+) �→ (−x, (−1)1−�u+) ∈
U− andwith theA

1-fibration θ2x�s(x) : W (−1)1−�

2x�s(x)
→ A

1 induced by the first projections
on each of the open subsets U±.

Notation 30 The categorical quotient S�,s = S̃�,s//μ2 in the category of affine
schemes of the fixed point free μ2-action on S̃�,s is a geometric quotient and the
quotient morphism ��,s : S̃�,s → S�,s is a nontrivial μ2-torsor, in particular, S�,s is a
smooth affine surface. The A

1-fibration π̃�,s : S̃�,s → A
1 descends to an A

1-fibration
π�,s : S�,s → A

1//μ2 = Spec(k[x2]) with π−1
�,s (0) as a unique degenerate fiber and

we have a commutative diagram

S̃�,s
��,s

π̃�,s

S�,s = S̃�,s//μ2

π�,s

A
1 = Spec(k[x]) φ

A
1 = Spec(k[x2]),

where φ : A
1 → A

1//μ2 is the quotient morphism induced by the inclusion k[x2] ⊂
k[x]. Since�−1

�,s (π
−1
�,s (0)) = π̃−1

�,s (0) consists of two component which are exchanged
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by the μ2-action and since � is étale whereas φ is totally ramified of ramification
index 2 over 0, it follows that π−1

�,s (0) is irreducible, of multiplicity 2. The Picard
group Pic(S�,s) is isomorphic to Z2, generated by the class of the ideal sheaf of the
curve F�,s = (π−1

�,s (0))red of S�,s .

Lemma 31 Every smooth affine surface S endowed with an A
1-fibration π : S →

A
1 whose unique degenerate fiber is irreducible and of multiplicity two is equivalent

to an A
1-fibered surface π�,s : S�,s → A

1 for some � ≥ 1.

Proof We can assume that A
1 = Spec(k[t]) and that π−1(0) is the degenerate fiber

of π . Let φ : A = Spec(k[x]) → A
1 be the ramified μ2-cover x �→ t = x2 and let

ν : S̃ → S ×π,A1,φ A be the normalization of S ×π,A1,φ A, endowed with the μ2-
action lifting that on the second factor. By [15, Example 1.6 and Theorem 1.7],
π̃ = pr1 ◦ ν : S̃ → A is μ2-equivariantly isomorphic as an A-scheme to an affine
surface W ε

f obtained by gluing two copies U± = Spec(k[x][u±]) of A × A
1 over

(A \ {0}) × A
1 by an isomorphism of the form U+ � (x, u+) �→ (x, u+ + f (x)) ∈

U− for some f ∈ k[x−1] \ k, endowedwith aμ2-action of the formU+ � (x, u+) �→
(−x, εu+) ∈ U−, where ε = 1 or−1, viewed as a scheme over A via theA

1-fibration
θ f : W ε

f → A induced by the first projections on each of the open subsets U±. If
ε = 1, we have f (−x) = − f (x), which implies that the pole order � = −ord0 f of
f at 0 is odd. The polynomial σ = 1

2 x� f (x) ∈ k[x2] \ x2k[x2] can be written in the
form σ = λ(s(x) + x�r(x)) for some s ∈ k[x2] of degree < � with s(0) = 1 and
λ ∈ k∗ and the local isomorphisms

U± = Spec(k[x][u±]) → U ′
± = Spec(k[x][u′

±]), (x, u±) → (x, λ−1(u± ± r(x)))

glue to a μ2-equivariant isomorphism W 1
f → W 1

2x−�s(x)
∼= S̃�,s of A-schemes. The

latter induces in turn an isomorphism S = S̃//μ2 = W 1
f

∼= S̃�,s//μ2 = S�,s of A
1-

fibered surfaces over A
1. If ε = −1, then f (−x) = f (x), � = −ord0 f is even and

the same argument shows that π : S → A
1 is isomorphic as a scheme over A

1 to
π�,s : S�,s = W −1

2x−�s(x)
//μ2 → A

1 where s is the unique polynomial of degree < �

with s(0) = 1 such that 1
2 x� f (x) = λ(s(x) + x�r(x)) ∈ k[x2] \ x2k[x2].

Lemma 32 Let (S�i ,si , π�i ,si ), i = 1, 2 be A
1-fibered affine surfaces as in Nota-

tion30. Then the following are equivalent:
(a) The A

1-fibered surfaces (S�1,s1 , π�1,s1) and (S�2,s2 , π�2,s2) are equivalent,
(b) The surfaces S�1,s1 and S�2,s2 are isomorphic,
(c) There exists λ ∈ k∗ such that s2(λx) = s1(x).

Proof The implication (a)⇒(b) is clear. Now put S1 = S�1,s1 , S2 = S�2,s2 and assume
that there exists an isomorphism � : S1 → S2. Since Pic(S2) ∼= H 1

ét(S2,O∗
S2

) ∼= Z2

and H 0(S2,O∗
S2

) = k∗, the long exact sequence of étale cohomology associated to
the short exact sequence of sheaves of abelian groups

1 → μ2 → O∗
S2

f �→ f 2−→ O∗
S2 → 1
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implies that H 1
ét(S2, μ2) = Z2, generated by the class of theμ2-torsor��,s : S̃�2,s2 →

S2. Since� ◦ ��1,s1 : S̃�1,s1 → S2 is a nontrivialμ2-torsor, it follows that there exists
a unique μ2-equivariant isomorphism �̃ : S̃�1,s1 → S̃�2,s2 such that �̃ ◦ ��1,s1 =
��2,s2 ◦ �. We deduce from [14, Proposition 3.6] that �1 = �2 and that there exists
a pair (λ, μ) ∈ k∗ × k∗ such that s22 (λx) = μ2s21 (x). Since s1(0) = s2(0) = 1, the
only possibility is that μ = ±1 and the implication b)⇒c) follows. The last implica-
tion c)⇒a) follows from the observation that for �1 = �2 = � and s2(λx) = s1(x), the
morphism �̃ : S̃�,s1 → S̃�,s2 defined by (x, y, z) �→ (λx, y, λ−�z) is aμ2-equivariant
equivalence between the A

1-fibered surfaces (S̃�,s1 , π̃�,s1) and (S̃�,s2 , π̃�,s2) which
descends to an equivalence between (S�,s1 , π�,s1) and (S�,s2 , π�,s2).

Example 33 For every � ≥ 5, put m = ⌊
�−3
2

⌋
, R = k[a1, . . . am] and s(x) = 1 +

x2 + ∑m
i=2 ai x2i ∈ R[x2]. Let V = Spec(R) ∼= A

m and let S� be the quotient of
the closed subscheme S̃� ⊂ V × A

3 with equation x�z = y2 − s2(x) by the μ2,V -
action (x, y, z) �→ (−x,−y, (−1)�z). By Lemma32, the closed fibers of the smooth
morphism � : S� → V induced by the μ2-invariant projection pr1 : S̃� → V are
pairwise non-isomorphic surfaces of the form S�,s .

We now relate the family of surfaces π̂q : Ŝq → A
1 of Notation27 to those π�,s :

S�,s → A
1 of Notation30.

Lemma 34 An A
1-fibered affine surface π�,s : S�,s → A

1 admits a relatively mini-
mal SNC completion (Y�,s, D�,s) into a P

1-fibered surface π̄�,s : Y�,s → P
1 such that

the union of D�,s and of the closure F�,s of F�,s is a rational tree of the form

(F∞, 0) � (H,−1) � (G0, −2) � (G2, −2) � · · · · · · · · · � (G�+1, −2) (F̄�,s , −1)

(G1, −2),

where F∞ is the fiber of π̄�,s over P
1 \ A

1, H is a section of π̄�,s and π̄−1
�,s (0) =

F�,s ∪ ⋃�+1
i=0 Gi .

Proof For every � ≥ 2 and every polynomial s� ∈ k[x2] of degree< �with s(0) = 1,
write s� = s�−1 + ax�−1 where s�−1 ∈ k[x2] is a polynomial of degree < � − 1 and
a ∈ k. The endomorphism (x, y, z) �→ (x, y, xz + 2as�−1 + a2x�−1) of A

3 induces
a μ2-equivariant birational morphism σ̃ : S̃�,s�

→ S̃�−1,s�−1 of A
1-fibered surfaces.

It descends to a birational morphism σ : S�,s�
→ S�−1,s�−1 of A

1-fibered surfaces
restricting to an isomorphism over A

1 \ {0} and contracting F�,s�
onto a point

x�,s�
of F�−1,s�−1 . This morphism σ expresses S�,s�

as the surface obtained from
S�−1,s�−1 by blowing-up the point x�,s�

and then removing the proper transform
of F�,s�

. Assume that (Y�−1,s�−1 , D�−1,s�−1) is a relatively minimal SNC comple-
tion of π�−1,s�

: S�−1,s�−1 → A
1 into a P

1-fibered surface π�−1,s�−1 : Y�−1,s�−1 → P
1

which satisfies the claimed properties. Then the pair (Y�,s�
, D�,s�

), where τ : Y�,s�
→

Y�−1,s�−1 is the blow-up of the point x�,s�
∈ F�−1,s�−1 and D�,s is the proper trans-

form of D�−1,s�−1 ∪ F�−1,s�−1 , endowed the P
1-fibration π̄�,s�

= π�−1,s�−1 ◦ τ is a rela-
tivelyminimal SNC completion ofπ�,s�

: S�,s�
→ A

1 which also satisfies the claimed
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properties. Now the assertion follows by induction from Example15 and the fact
that π1,1 : S1,1 = {xz = y2 − 1}//μ2 → A

1 is isomorphic to the complement of the
smooth conic Q = {−xz + y2 = 0} in P

2
[x :y,z], endowed with the A

1-fibration asso-
ciated to the pencil P[0:0:1].

By combining Lemmas26, 31 and 34, we obtain that every A
1-fibered surface

π̂q : Ŝq → A
1 as in Notation27 is equivalent to some surface of the form πd−2,s :

Sd−2,s → A
1 of Notation30, and, conversely, that every equivalence class of A

1-
fibered surface πd−2,s : Sd−2,s → A

1 is realized by an A
1-fibration π̂q : Ŝq → A

1

induced by restriction of an A
1-fibration on an affine surface S = Fn \ B with

B2 = d. Combining in turn this result with Lemma28, we obtain the following:

Corollary 35 Let (Fn, B) be a pair as in Lemma3 (b) with d = B2 ≥ 3. Then equiv-
alence classes of A

1-fibered surfaces ((Fn \ B)q , πq) where q ranges through the set
of closed points of the boundaries B ′ of smooth completions (Fn′ , B ′) of Fn \ B such
that Pq has a singular member of the form C + 2Fq are in one-to-one correspon-
dence with equivalence classes of A

1-fibered surfaces (Sd−2,s, πd−2,s) of Notation30.

Proposition25 is now a straightforward consequence of Corollary35 and of the
description of equivalence classes of A

1-fibered surfaces (Sd−2,s, πd−2,s) given in
Lemma32. Namely, for d = 3, 4, the unique equivalences classes are those of
(S1,1, π1,1) and (S2,1, π2,1) respectively. For d = 5, the two equivalence classes are
those of the surfaces (S3,1, π3,1) and (S3,x2+1, π3,x2+1). The case d = 6 is simi-
lar. Finally, if d ≥ 7, then Example33 provides a family pairwise non-equivalent
A

1-fibered surfaces (Sd−2,s, πd−2,s) parametrized by the elements of km , where
m = ⌊

d−5
2

⌋ ≥ 1, showing in particular that the cardinality ofA2(d) is at least equal
to that of k.

Remark 36 The “number of moduli” m = ⌊
d−5
2

⌋ ≥ 1 for equivalence classes of
A

1-fibered surfaces (Sd−2,s, πd−2,s) with a unique singular fiber of multiplicity two
deduced from the explicit family in Example33 is the same as that computed by
different techniques in [19], as can be seen by taking k = 2 in Corollary 6.3.20 of
loc. cit.. The results in [19] apply more generally, in particular, to any smooth affine
A

1-fibered surface S → A
1 having a unique singular fiber, irreducible of arbitrary

multiplicity e ≥ 2. On the other hand, it follows from [15] that similarly as in the case
e = 2 described above, every such surface can be realized as a quotient of smooth
affine surface S̃ endowed with a smooth A

1-fibration π̃ : S̃ → A
1 by a suitable free

action of a cyclic group μe of eth roots of unity. This suggests the possibility to
construct for every e ≥ 2 explicit families as in Example33 over a base scheme V
whose dimension equals the number of moduli computed in [19, Corollary 6.3.20].
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4.3 Proof of Theorem2

In this subsection, we finish the proof of Theorem2. Let S = Fn \ B for some pair
(Fn, B) as in Lemma3 (b) with d = B2 ≥ 2. If d ≥ 7, then, by Proposition25, S has
infinitely many equivalence classes of A

1-fibrations π : S → A
1. It remains to show

that for every d ≤ 6, the number of equivalence classes is finite. For every d ≥ 2
and every m ∈ 1, . . . , d − 1, denote by Am(d) the set of equivalence classes of A

1-
fibrations π : S → A

1 whose unique degenerate fiber has an irreducible component
of multiplicity m. The following table summarizes the properties of the sets Am(d)

(Table1):

Table 1 Numbers of equivalence classes of A
1-fibrations

�A1(d) �A2(d) �A3(d) �A4(d) �A5(d)
∑

�Ai (d)

d = 2 1 0 0 0 0 1

d = 3 1 1 0 0 0 2

d = 4 1 1 1 0 0 3

d = 5 1 2 1 1 0 5

d = 6 1 2 2 1 1 7

Indeed, we have Am(d) = ∅ if m ≥ d by Corollary 19. On the other hand, the
cardinal �Am(d) of Am(d) is larger than or equal to 1 for every 1 ≤ m ≤ d − 1
by Lemma20. The sets Ad−1(d) and A1(d) both consist of a single element by
Proposition21 andCorollary23 respectively.ByProposition25,wehave �A2(d) = 1
for d = 3, 4 and �A2(d) = 2 for d = 5, 6. These observations settle the cases d = 2,
3 and 4. In the next paragraphs, we determine the remaining numbers of equivalence
classes of A

1-fibrations displayed in the table. We refer the reader to [13, Sect. 4] for
the details of the reductions to the chosen particular models of pairs which are used
in the argument.

4.3.1 The Case d = 5

The A
1-fibrations on S representing elements of A3(5) can only arise form pencils

Pq on pairs (F1, B) for which B ∼ C0 + 3F intersects C0 with multiplicity two at
a single point q. Up to isomorphism, there is a unique such pair, which is given,
under the identification of F1 with the blow-up σ : F1 → P

2 of P
2 with homoge-

neous coordinates [x : y : z] at the point p = [0 : 1 : 0] with exceptional divisor C0,
by taking for B the proper transform of the cuspidal cubicC = {x3 − z2y = 0} inP

2.
The section B = σ−1∗ C ∼ C0 + 3F intersects C0 with multiplicity two at the inter-
section point q of C0 with the proper transform of the tangent line TpC = {z = 0}
to C at p and the pencil Pq is the proper transform of the pencil generated by C
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and 3TpC . The associated A
1-fibration πq : S → A

1 has Fq ∩ S as a component of
multiplicity three in its degenerate fiber. We conclude that �A3(5) = 1.

4.3.2 The Case d = 6

The numbers to be computed are �A3(6) and �A4(6). The possible smooth comple-
tions (Fn, B) of S are either of the form (F0, B) where B ∼ C0 + 3F is a section
of π0, or of the form (F2, B) where B ∼ C0 + 4F is a section of π2, or the form
(F4, B) where B ∼ C0 + 5F is a section of π4.

The A
1-fibrations on S representing elements of A4(6) can arise only from pairs

(F2, B) for which B ∼ C0 + 4F intersectsC0 with multiplicity two in a single point.
Up to isomorphism, there exists a unique such pair which is given, after fixing a fiber
F∞ of π2 and an identification F2 \ (C0 ∪ F∞) ∼= A

2 = Spec(k[x, y]) in such way
that π2|A2 = prx and that the closures in F2 of the level sets of y are sections of
π2 linearly equivalent to C0 + 2F , by taking for B the closure of the curve �x4 =
{y = x4} ⊂ A

2. For the point q = B ∩ C0 = B ∩ F∞, the singular member of the
pencil Pq is equal to C0 + 4F∞. The unique degenerate fiber of the corresponding
A

1-fibration πq4 : S → A
1 has F∞ ∩ S as a component of multiplicity four and we

conclude that �A4(6) = 1.
The A

1-fibrations representing elements of A3(6) can arise only from pairs
(F0, B) on π0 = pr1 : F0 = P

1 × P
1 → P

1 for which B ∼ C0 + 3F intersects a
fiber of the second projection with multiplicity three at some point q. Up to iso-
morphisms, there are exactly two such pairs (F0, B1) and (F0, B2) which, using
bi-homogeneous coordinates ([u0 : u1], [v0 : v1]) on P

1 × P
1, are given by the

curves B1 = {u3
1v0 + u2

0(u0 + u1)v1 = 0} and B2 = {u3
1v0 + u3

0v1 = 0}. The only
fiber of pr2 which intersects B1 in a single point is the curve C[1:0] = {v1 = 0}
with q = C[1,0] ∩ B1 = ([1 : 0], [1 : 0]). This yields an A

1-fibration πq : S → A
1

which has Fq1 ∩ S as component of multiplicity three in its degenerate fiber. In con-
trast, there are two fibers of pr2 which intersects B2 in a single point: the curve
C[0:1] = {v0 = 0} at the point q0 = ([0 : 1], [0 : 1]) and the curve C[1:0] at the point
q∞ = ([1 : 0], [1 : 0]). The A

1-fibrations πq0 : S → A
1 and πq∞ : S → A

1 associ-
ated to the pencils Pq0 and Pq∞ have Fq0 ∩ S and Fq∞ ∩ S as components of mul-
tiplicity three of their respective degenerate fibers, and since the points q0 and q∞
belongs to the same orbit of the action of the group Aut(F0, B2) ∼= Gm × Z2, these
A

1-fibrations represents a same element ofA3(6). The next lemma shows thatA3(6)
consists of two elements and completes the proof.

Lemma 37 The A
1-fibration πq : S → A

1 is not equivalent to πq0 : S → A
1 (hence

not equivalent to πq∞ : S → A
1).

Proof The curveC[1:0] ∩ S ∼= A
1 is a 3-section of πq0 : S → A

1 which intersects the
multiple irreducible component Fq0 ∩ S of the degenerate fiber of πq0 transversely
in a single point. To verify that πq : S → A

1 is not equivalent to πq0 : S → A
1, it

suffices to show that there is no 3-section of πq : S → A
1 isomorphic to A

1 and
intersecting Fq transversely in a single point. Suppose on the contrary that such a
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3-section D exists. Let σ : F̃0 → F0 be the minimal resolution of the rational map
ρq : F0 ��� P

1 defined by Pq . The closure D̄ of D in F̃0 is a rational 3-section of
the P

1-fibration ρ̃q = ρq ◦ σ which intersects the proper transform σ−1∗ B1 of B1 with
multiplicity 3 in a single point p. The total transform of B1 ∪ Fq ∪ C[1:0] in F̃0 being
rational tree of the form

(σ−1∗ B, 0) � (E6, −1) � (E5,−2) � (E4,−2) � (E3,−2) � (E2,−2) � (E1,−2) (σ−1∗ Fq ,−1)

(σ−1∗ C[1:0],−3),

there exists a unique birational morphism of P
1-fibered surface τ : F̃0 → F1 which

contracts σ−1∗ Fq ∪ σ−1∗ C[1:0] ∪ ⋃4
i=1 Ei onto a point s ∈ τ(E5) \ τ(E6). The curve

τ(D̄) is a 3-section of π1 : F1 → P
1 which has a cusp of multiplicity 2 at s and

intersects τ(E5)withmultiplicity 3 at s. LetC be the imageof τ(D̄)by the contraction
α : F1 → P

2 of τ(E6) to a point p′. Assume that m = τ(D̄) · τ(E6) ≥ 1. Then C
is a curve of degree m + 3 which intersects the line α(τ(σ−1∗ B1)) with multiplicity
m + 3 at p′ and the line α(τ(E5)) with multiplicity m at p′ and multiplicity 3 at
α(s). Choosing homogeneous coordinates [x : y : z] on P

2 so that α(τ(σ−1∗ B1)) =
{z = 0}, α(τ(E5)) = {x = 0} and α(s) = [0 : 0 : 1], the curve C is thus given by an
equation of the form λxm+3 − μy3zm = 0 for some λ,μ ∈ k∗. But this is impossible
since on the other handC = α(τ(D̄)) hasmultiplicity 2 at α(s). Som = 0 and hence,
C is a cubic with a cusp at α(s) and intersecting τ(σ−1∗ B) with multiplicity 3 at a
point other than p′. It follows that σ(D̄) is a smooth rational curve which intersects
Fq transversely at unique point of Fq \ {q} and B1 at a unique point of B1 \ {q}, with
multiplicity 3. Thus, σ(D̄) is a fiber of pr2 : P

1 × P
1 → P

1 which intersects B1 with
multiplicity 3 at a point other than q, which is impossible.
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On Fano Threefolds of Degree 22 After
Cheltsov and Shramov

Kento Fujita

Abstract It has been known that nonsingular Fano threefolds of Picard rank onewith
the anti-canonical degree 22 admitting faithful actions of the multiplicative group
form a one-dimensional family. Cheltsov and Shramov showed that all but two of
them admit Kähler–Einstein metrics. In this paper, we show that the remaining Fano
threefolds also admit Kähler–Einstein metrics.
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1 Introduction

Let X be a nonsingular Fano threefold over the complex number field with Pic(X) =
Z[−K X ]. Such X with large automorphism groups have been studied by many
authors. For example, Mukai and Umemura systematically studied in [24] the Fano
threefold V MU with the anti-canonical degree 22, so-called the Mukai-Umemura
threefold, which is obtained by the unique SL(2, C)-equivariant nonsingular projec-
tive compactification of SL(2, C)/Ih with the Picard rank one, where Ih ⊂ SL(2, C)

is the icosahedral group. The automorphism group of V MU is equal to PGL(2, C).
On the other hand, Prokhorov showed in [25] that, if Aut(X) is not finite, then the
anti-canonical degree of X must be equal to 22. Moreover, he determined all of such
X . For example, there is a unique Fano threefold V a such that Aut0(V a) is equal to
the additive group C

+.
Nowadays, the structures of such X are well-understood thanks to the works of

Kuznetsov, Prokhorov, Shramov [19], and Kuznetzov, Prokhorov [18]. The family
of nonsingular Fano threefolds X with Pic(X) = Z[−K X ], (−K X )·3 = 22, X �� V a
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and Aut(X) infinite are parametrized by C \ {0, 1}. Let us denote the family by
{Vu}u∈C\{0,1}. Then V−1/4 is isomorphic to V MU, and the automorphism group of Vu

is equal to G := C
∗

� (Z/2Z) unless u = −1/4. Moreover, any Vu can be obtained
by the two-ray game from the blowup of some 3-dimensional quadric hypersurface
along a certain nonsingular sextic rational curve.

In [4], Cheltsov and Shramov considered the problem for the existence of Kähler–
Einstein metrics for the above Vu . If u = −1/4, then the Fano threefold is theMukai-
Umemura threefold V MU. In this case, Donaldson already showed in [7] the existence
of Kähler–Einstein metrics on V MU by showing that the PGL(2, C)-invariant α-
invariant αPGL(2,C)(V MU) (see Sect. 2) of V MU is equal to 5/6. In fact, Tian showed in
[27] that, for a Fano manifold X and a reductive subgroup � ⊂ Aut(X), if α�(X) >

dim X/(dim X + 1) holds, then X admits Kähler–Einstein metrics. Cheltsov and
Shramov considered the remaining cases by evaluating the G-invariant α-invariant
of Vu . More precisely, they showed the following:

Theorem 1.1 (Theorem 1.5, [4]) We have

αG(Vu) =

⎧
⎪⎨

⎪⎩

4/5 if u �= 3/4 and u �= 2,

3/4 if u = 3/4,

2/3 if u = 2.

Thus, together with Tian’s result, if u �= 3/4 and u �= 2, then Vu admits Kähler–
Einsteinmetrics.However, ifu = 3/4oru = 2, then the existence ofKähler–Einstein
metrics of Vu was not known at that time. The purpose of this paper is to show the
existence ofKähler–Einsteinmetrics forV3/4 andV2. Themain result is the following:

Theorem 1.2 Both V3/4 and V2 admit Kähler–Einstein metrics.

Thus, together with Matsushima’s obstruction [23], we gave a complete answer
for the existence of Kähler–Einstein metrics of nonsingular Fano threefolds X with
Pic(X) = Z[−K X ] and Aut(X) infinite; such X admits Kähler–Einstein metrics if
and only if X �� V a.

It would be interesting to know what happen for u = 0, 1, ∞. When u = 1,
then V1 is a terminal Gorenstein Fano threefold with one ordinary double point,
Pic(V1) = Z[−KV1 ] and Cl(V1) � Z

2 (see [18, Proposition 5.4] and [4, Remark
2.12]). The author does not know whether the V1 admits (weak) Kähler–Einstein
metrics or not.

The main technique to prove Theorem1.2 is the “G-valuative criterion” (see
Sect. 2, [1, 29]), which is a G-equivariant version of [22, Theorem 3.7] and [13,
Theorem 1.6]. Moreover, we need deep analyses [4] of G-invariant curves on Vu

which might be possible destabilizing centers of G-invariant prime divisors over Vu .
Technically, the theory of quasi-log schemes [10] and the careful analysis of the
volume functions (see Sect. 3) play important roles in order to show Theorem1.2.
Especially, we use a subadjunction-type result for projective qlc strata on quasi-log
schemes [11] (see Theorem4.2). We expect that these techniques will be applied for
many other Fano varieties (cf. [1]).
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2 Log Fano Pairs

In this section, we recall the definition of α-invariant for log Fano pairs and see the
relationship between α-invariant and the existence of Kähler–Einstein metrics. For
the minimal model program, we refer the readers to [17].

Definition 2.1 A log Fano pair (X,�) is a pair of a complex normal projective
variety X and an effective Q-Weil divisor� on X such that the pair (X,�) is klt and
−(K X + �) is an ample Q-divisor. If X is nonsingular and � = 0, then X is said to
be a Fano manifold.

Definition 2.2 (α-invariant (see [5] for example)) Let (X,�) be a log Fano pair and
let � ⊂ Aut(X,�) be an algebraic subgroup.

(1) The �-invariant α-invariant α�(X,�) of (X,�) is defined as the supremum
of α ∈ Q>0 such that the pair

(
X,� + α

mD
)
is lc for any m ∈ Z>0 with

−m(K X + �) Cartier and for any nonempty �-invariant sub-linear system
D ⊂ | − m(K X + �)|.

(2) For any scheme-theoretic point η ∈ X , we define α�,η(X,�) as the supremum
of α ∈ Q>0 such that the pair

(
X,� + α

mD
)
is lc at η for any m ∈ Z>0 with

−m(K X + �) Cartier and for any nonempty �-invariant sub-linear systemD ⊂
| − m(K X + �)|.

(3) If � = 0, then we simply write α�(X) and α�,η(X) in place of α�(X, 0) and
α�,η(X, 0), respectively.

Lemma 2.3 Let (X,�) be a log Fano pair, � ⊂ Aut(X,�) be an algebraic sub-
group, and η ∈ X be a scheme-theoretic point. Assume that the identity component
�0 of � is solvable.

(1) The value α�(X,�) is equal to the supremum of α ∈ Q>0 such that the pair
(X,� + αD) is lc for any effective �-invariant Q-divisor D ∼Q −(K X + �).

(2) The value α�,η(X,�) is equal to the supremum of α ∈ Q>0 such that the pair
(X,� + αD) is lc at η for any effective �-invariant Q-divisor D ∼Q −(K X +
�).

Proof We only prove (2). By [3, Lemme 5.11], there is a finite algebraic subgroup
�1 ⊂ � such that �1 meets every connected component of �. Set d := #�1. Fix
α ∈ Q>0.

Assume that
(
X,� + α

mD
)
is lc at η for any m and D ⊂ | − m(K X + �)|.

Then, for any effective �-invariant Q-divisor D ∼Q −(K X + �), since {m D} ⊂
| − m(K X + �)| is a �-invariant sub-linear system for m sufficiently divisible, we
know that the pair

(
X,� + α

m {m D}) is lc at η, i.e., the pair (X,� + αD) is lc at η.
Conversely, assume that (X,� + αD) is lc at η for any effective �-invariant

Q-divisor D ∼Q −(K X + �). Take any �-invariant sub-linear system D ⊂ | −
m(K X + �)|. Since �0 is connected and solvable, there exists a �0-invariant divisor
D0 ∈ D by the Borel fixed point theorem [16, Sect. 21.2]. Let us set
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D̃ :=
∑

h∈�1

h(D0) ∈ dD.

Since h(D0) ∈ D is �0-invariant for any h ∈ �1, the divisor D̃ ∈ dD is �-invariant.
Set D := 1

md D̃ ∼Q −(K X + �). Since (X,� + αD) is lc at η, the pair
(
X,� + α

md (dD)
)
is also lc at η. This is equivalent to the pair

(
X,� + α

mD
)
being

lc at η. �
We recall the notion of K-stability for log Fano pairs. The original notion of K-

stability was introduced by Tian [28] and Donaldson [6] by using the languages of
test configurations. In this paper, we only treat its simplification due to Li [22] and
the author [13].

Definition 2.4 Let (X,�) be an n-dimensional log Fano pair and let F be a prime
divisor over X obtained by a log resolution π : X̃ → X of (X,�) (that is, F is a
prime divisor on X̃ ).

(1) Let AX,�(F) be the log discrepancy of (X,�) along F , that is, 1 plus the
coefficient of K X̃ − π∗(K X + �) along F .

(2) For any effective Q-Cartier Q-divisor D, let ordF D ∈ Q≥0 be the coefficient of
π∗ D along F . For anym ∈ Z≥0 with−m(K X + �)Cartier and for any j ∈ R≥0,
let

H 0(X,−m(K X + �) − j F) ⊂ H 0(X,−m(K X + �))

be the sub-vector space corresponds to the sub-linear system | − m(K X + �) −
j F | ⊂ | − m(K X + �)| consisting all D ∈ | − m(K X + �)| with ordF D ≥ j .

(3) For any x ∈ R≥0, let us set

vol(−(K X + �) − x F) := lim
m→∞

dim H 0(X,−m(K X + �) − mx F)

mn/n! ,

where m runs through all positive integers with −m(K X + �) Cartier (the limit
exists by [20, 21]). Obviously, vol(−(K X + �) − 0 · F) = (−(K X + �))·n
holds. It follows from the definition that

vol(−(K X + �) − x F) = volX̃ (−π∗(K X + �) − x F).

In particular, by [20, 21], the functionvol(−(K X + �) − x F) is a non-increasing
and continuous function over x ∈ [0,∞).Moreover, if x � 0, then vol(−(K X +
�) − x F) = 0 holds. Let us set

τX,�(F) := sup{τ ∈ R>0 | vol(−(K X + �) − τ F) > 0}.

(4) Let us set

SX,�(F) := 1

(−(K X + �))·n

∫ ∞

0
vol(−(K X + �) − x F)dx .
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The above definitions do not depend on the choice of π . We often write A(F), τ(F),
S(F) in place of AX,�(F), τX,�(F), SX,�(F), just for simplicity.

The following lemma is well-known:

Lemma 2.5 Let (X,�) be a log Fano pair, let � ⊂ Aut(X,�) be an algebraic
subgroup, and let η ∈ X be a scheme-theoretic point. For any �-invariant prime
divisor F over X with η ∈ cX (F), we have

A(F)

τ (F)
≥ α�,η(X,�),

where cX (F) is the center of F on X.

Proof Take any τ = j
m ∈ (0, τ (F)) ∩ Q. Then the sub-linear system

| − m(K X + �) − j F | ⊂ | − m(K X + �)|

is nonempty, �-invariant, and vanishes along F at least j times. Thus we have

α�,η(X,�) ≤ lctη

(

X,�; 1

m
| − m(K X + �) − j F |

)

≤ AX,�(F)

ordF
(
1
m | − m(K X + �) − j F |) ≤ AX,�(F)

τ
,

where lctη is the log canonical threshold at η. �

We see a G-invariant version of [13, 15, 22]. See also [29] for more general
frameworks.

Proposition 2.6 (see [1]) Let X be an n-dimensional Fano manifold and let � ⊂
Aut(X) be a reductive subgroup.

(1) (see also [29, Corollary 4.13]) Assume that A(F) > S(F) holds for any �-
invariant prime divisor over X with the C-algebra

⊕

m, j∈Z≥0

H 0(X,−mK X − j F)

finitely generated. Then X admits Kähler–Einstein metrics.
(2) (see also [27] and [15, Theorem 1.3]) If α�(X) ≥ n

n+1 , then X admits Kähler–
Einstein metrics.

For the complete proof, see [1]. We only give a sketch of the idea. For (1), for
any �-equivariant special degeneration of X in the sense of [8], the corresponding
prime divisor F over X in [13, Theorem 5.1] obviously satisfies the assumptions in
(1). By [13, Theorem 5.1], the signs of the Donaldson–Futaki invariant of the special
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degeneration and A(F) − S(F) are same. Thus we can apply [8, Theorem 1]. For
(2), we may assume that there exists a �-invariant prime divisor F over X with
A(F) ≤ S(F) such that the C-algebra in (1) is finitely generated. By Lemma2.5 and
[15, Theorem 4.1], X is isomorphic to P

n and then we complete the proof.

3 On the Volume Functions

In this section, we generalize [14, Proposition 2.1] in order to show that V2 admits
Kähler–Einstein metrics.

Proposition 3.1 Let (X,�) be an n-dimensional log Fano pair, let F be a prime
divisor over X, and let 0 < a < b be positive real numbers. Assume that

vol(−(K X + �) − x F) =
(

b − x

b − a

)n

vol(−(K X + �) − aF)

for any x ∈ [a, b]. Then we have

S(F) ≤ (n − 1)a + b

n + 1
.

Proof The proof looks similar to the argument in the proof of [26, Theorem 1.2].
From the assumption, we have τ(F) = b. Set V := (−(K X + �))·n . By [2, Theorem
A], the function vol(−(K X + �) − x F) is C1 over x ∈ [0, b). Let us set

f (x) := −1

n

d

dx
vol(−(K X + �) − x F)

as in [14, Proof of Proposition 2.1]. (We note that f (x) is a restricted volume function
in the sense of [9].) Then, for any x ∈ [a, b), we have

f (x) =
(

b − x

b − a

)n−1

f (a).

As in [14, Proof of Proposition 2.1], we have

V = n
∫ b

0
f (x)dx,

S(F) = 1

V
· n

∫ b

0
x f (x)dx,

f (x) ≥
( x

a

)n−1
f (a) for any x ∈ [0, a].
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In particular, we get

V ≥ n

(∫ a

0

( x

a

)n−1
f (a)dx +

∫ b

a

(
b − x

b − a

)n−1

f (a)dx

)

= b · f (a).

Set

g(x) :=
{(

x
a

)n−1 · V
b for x ∈ [0, a],

(
b−x
b−a

)n−1 · V
b for x ∈ [a, b].

Then we have

V = n
∫ b

0
g(x)dx,

g(x) ≥ f (x) for any x ∈ [a, b].

Moreover, the function

f (x)
1

n−1 − g(x)
1

n−1 = f (x)
1

n−1 − x

a
·
(

V

b

) 1
n−1

is C0 and concave over x ∈ [0, a] (by [9, TheoremA]).Moreover, we have f (0)
1

n−1 −
g(0)

1
n−1 ≥ 0 and f (a)

1
n−1 − g(a)

1
n−1 ≤ 0. Thus there exists c ∈ [0, a] such that

f (x) ≥ g(x) for any x ∈ [0, c],
g(x) ≥ f (x) for any x ∈ [c, a].

Thus we get

n
∫ b

0
x f (x)dx − cV = n

∫ b

0
(x − c) f (x)dx

≤ n
∫ b

0
(x − c)g(x)dx = n

∫ b

0
xg(x)dx − cV .

Since

n
∫ b

0
xg(x)dx = (n − 1)a + b

n + 1
V,

we get the assertion. �
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Proposition 3.2 Let (X,�) be an n-dimensional log Fano pair, let η ∈ X be a
scheme-theoretic point, and let 0 < t ≤ s be positive real numbers. Assume that
there exists a prime divisor T on X with T ∼Q −k(K X + �) for some k ∈ Q>0 such
that

• the pair (X,� + t
k T ) is lc at η, and

• for any effective Q-divisor D′ ∼Q −(K X + �) with T �⊂ Supp D′, the pair
(X,� + s D′) is lc at η.

Then, for any prime divisor F over X with η ∈ cX (F), we have the following:

(1) If s−1A(F) ≤ 1
k ordF T , then we have

vol(−(K X + �) − x F)

=
(

1
k ordF T − x

1
k ordF T − s−1A(F)

)n

vol
(−(K X + �) − s−1A(F)F

)

for any x ∈ [s−1A(F), 1
k ordF T ].

(2) We have

S(F) ≤ A(F)

n + 1

(
(n − 1)s−1 + t−1

)
.

Proof (1) Let us fix a log resolution π : X̃ → X of (X,�) with F ⊂ X̃ . Take any
effective Q-divisor D ∼Q −(K X + �). Then there uniquely exists e ∈ [0, 1] ∩ Q

such that we can write D = e
k T + (1 − e)D′ with D′ ∼Q −(K X + �) effective and

T �⊂ Supp D′. Since (X,� + s D′) is lc at η, we have ordF D′ ≤ s−1A(F). Assume
that x ∈ (s−1A(F), 1

k ordF T ] ∩ Q satisfies that ordF D ≥ x . (In other words, m D ∈
| − m(K X + �) − mx F | holds for a sufficiently divisible m ∈ Z>0.) Then we have

e ≥ x − s−1A(F)
1
k ordF T − s−1A(F)

,

since

x ≤ ordF D ≤ e · 1
k
ordF T + (1 − e)s−1 A(F).

This implies that the linear system | − m(K X + �) − mx F | has a fixed divisor

m · x − s−1A(F)
1
k ordF T − s−1A(F)

· 1
k

T

for m ∈ Z>0 sufficiently divisible. Thus we get
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vol(−(K X + �) − x F)

= vol X̃

(

−π∗(K X + �) − x F − x − s−1A(F)
1
k ordF T − s−1A(F)

1

k
(π∗T − (ordF T )F)

)

=
(

1
k ordF T − x

1
k ordF T − s−1A(F)

)n

vol
(−(K X + �) − s−1A(F)F

)
.

(2) Since the pair (X,� + t
k T ) is lc at η, we have 1

k ordF T ≤ t−1A(F). If
1
k ordF T ≤ s−1A(F), then we have ordF D ≤ s−1A(F) for any effective Q-divisor
D ∼Q −(K X + �). Thus we get the inequality s ≤ A(F)

τ (F)
. By [14, Proposition 2.1],

we get

S(F) ≤ n

n + 1
τ(F) ≤ n

n + 1
s−1A(F)

≤ A(F)

n + 1

(
(n − 1)s−1 + t−1

)
.

Thus we may assume that 1
k ordF T > s−1A(F). In this case, we can apply (1). We

have

S(F) ≤ 1

n + 1

(

(n − 1)s−1 A(F) + 1

k
ordF T

)

≤ A(F)

n + 1

(
(n − 1)s−1 + t−1)

by Proposition3.1. �

4 On Quasi-Log Schemes

In order to prove Theorem1.2, we must consider log pairs such that their singu-
larities are possibly worse than log canonical. The theory of quasi-log schemes is
very powerful in order to overcome the difficulty. In this section, we see a kind of
subadjunction theorem for projective qlc strata on quasi-log schemes, which is a
direct consequence of the recent work [11]. We briefly recall the notion of quasi-log
schemes. See [10] for detail.

Definition 4.1 ([10, Definition 6.1.1]) A quasi-log scheme consists of a scheme X
which is separated and of finite type overC, anR-line bundleω on X , a proper closed
subscheme X−∞ called the non-qlc locus, and a finite set {C} of closed subvarieties
on X called the set of qlc strata such that there exists a globally embedded simple
normal crossing pair (Y, BY ) (see [10, Sect. 5.2]) and a proper morphism f : Y → X
which satisfies the following:
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(1) f ∗ω ∼R KY + BY .
(2) The natural homomorphism OX → f∗OY

(�−(B<1
Y )�) gives an isomorphism

IX−∞ � f∗OY
(�−(B<1

Y )� − �B>1
Y �), where IX−∞ ⊂ OX is the ideal sheaf with

respects to the closed subscheme X−∞ ⊂ X .
(3) The set {C} is equal to the set of the images of (Y, BY )-strata (see [10, Sect. 5.2])

whose image do not map into X∞.

The above quasi-log scheme is often denoted by [X, ω] for simplicity.

Now we see a kind of subadjunction theorem for quasi-log schemes. An R-Weil
divisor D on a normal projective variety is said to be pseudo-effective in this paper if
D + A is big (i.e., there exists an effective R-Weil divisor E such that D + A − E
is an ample R-divisor) for any ample R-divisor A.

Theorem 4.2 (see [11, Lemma 4.17, Theorems 1.9 and 7.1]) Let [X, ω] be a quasi-
log scheme, let C ⊂ X be a qlc stratum of [X, ω], and let ν : C̄ → C be the nor-
malization of C. Assume that C is a projective variety. Then ν∗(ω|C) − KC̄ is a
pseudo-effective R-Weil divisor on C̄.

Proof By [11, Lemma 4.19], we may assume that X = C . Moreover, by [11, Theo-
rem 1.9], we may further assume that X = C is normal. By [11, Theorem 7.1], there
exists a projective birational morphism p : X ′ → X from a smooth projective variety
X ′ such that we can write

K X ′ + BX ′ + MX ′ = p∗ω,

where BX ′ is an effective R-Weil divisor on X ′ with B<0
X ′ p-exceptional, and MX ′ is

a nef R-divisor on X ′. This immediately implies that

ω − K X = p∗ (BX ′ + MX ′)

is a pseudo-effective R-Weil divisor on X . �

As a corollary, we get the following result, which is important for the proof of
Theorem1.2.

Corollary 4.3 Let (X,�) be a log Fano pair, let D ∼Q −(K X + �) be an effective
Q-divisor, and let α ∈ (0, 1) ∩ Q. Assume that the pair (X,� + αD) is not klt. Let
Nklt(X,� + αD) be the locus of non-klt points of (X,� + αD).

(1) The locus Nklt(X,� + αD) is connected.
(2) Take any 1-dimensional irreducible component B ⊂ Nklt(X,� + αD) with its

reduced scheme structure. Then B is a rational curve with

(−(K X + �) · B) ≤ 2

1 − α
.
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Moreover, if any irreducible component of Nklt(X,� + αD) is of dimension
≤ 1, then B � P

1 and the restriction homomorphism

H 0(X, L) → H 0(B, L|B)

is surjective for any nef line bundle L on X.

Proof By [10, 6.4.1], the pair (X,� + αD) admits a quasi-log structure [X, ω]with
ω = K X + � + αD, and N := Nklt(X,� + αD) has a natural scheme structure
with

N =
⋃

C

C ∪ X−∞,

where C are the lc centers of (X,� + αD) and X−∞ is the non-qlc locus of (X,� +
αD).

For any nef line bundle L on X , since

L − (K X + � + αD) ∼Q L + (1 − α)(−K X − �)

is ample, we have
Hi (X, L ⊗ IN ) = 0

for any i > 0 by [10, Theorem 6.3.5 (ii)], where IN ⊂ OX is the defining ideal sheaf
of N ⊂ X .

(1) For L := OX , we get the surjection

H 0(X,OX ) � H 0(N ,ON ).

Thus N is connected.
(2) After replacing α with the log canonical threshold of (X,�; D) at the generic

point of B, we may assume that B is an lc center of (X,� + αD). Take the normal-
ization ν : B̄ → B. By Theorem4.2, the Q-divisor

ν∗ ((K X + � + αD)|B) − K B̄

is pseudo-effective. This implies that B̄ � P
1 and

0 ≤ degB̄

(
ν∗ ((K X + � + αD)|B) − K B̄

)

= −(1 − α) (−(K X + �) · B) + 2.

Now we assume that dim N ≤ 1. Since H 1(X,OX ) = H 2(X, IN ) = 0, we get
H 1(N ,ON ) = 0. From the assumption dim N ≤ 1, we get H 1(B,OB) = 0, i.e.,
B � P

1.Moreover, by [17, Lemma 4.13 and the proof of Lemma 4.50], the restriction
homomorphism

H 0(N , L|N ) → H 0(B, L|B)
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is surjective for any nef line bundle L on X . Since H 1(X, L ⊗ IN ) = 0,

H 0(X, L) → H 0(B, L|B)

is also surjective. Thus we get the assertions. �

5 Proof of Theorem1.2

By Theorem1.1 and Proposition2.6 (2), we may assume that u = 2. Set X := V2.
Take any G-invariant prime divisor F over X . (Recall that G := C

∗
� (Z/2Z).)

By Proposition2.6 (1), it is enough to show the inequality A(F) > S(F). Set C :=
cX (F) and let η ∈ X be the generic point of C . By Lemma2.5 and [14, Proposition
2.1], we may assume that αG,η(X) ≤ 3

4 . Note that C is a G-invariant subvariety on
X . ThusC is not a closed point by [4, Lemma 2.23]. Moreover, if F is a prime divisor
on X , then A(F) > S(F) holds by [12, Corollary 9.3]. Thus we may assume that C
is a G-invariant curve. By Lemma2.3, there exists a G-invariant effective Q-divisor
D ∼Q −K X and there exists α ∈ [αG,η(X), 4/5) ∩ Q such that the pair (X, αD) is
lc but not klt at η. We note that the non-klt locus of the pair (X, αD) is of dimension
≤ 1 since Pic(X) = Z[−K X ] and α < 1.

By Corollary4.3, C is a smooth rational curve with

(−K X · C) ≤ 2

1 − α
< 10.

Moreover, for any m ∈ Z≥0, the restriction homomorphism

H 0(X,OX (−mK X )) → H 0(C,OX (−mK X )|C)

is surjective. ThusC ⊂ X ⊂ P
13 = P

∗ H 0(X,−K X ) is a G-invariant rational normal
curve in P

13 with degC < 10.
By [4, Proposition 4.12, Lemma 7.7 and Corollary 7.10] and the assumption

αG,η(X) ≤ 3
4 , we may assume that C = C4, where C4 ⊂ X is the unique G-invariant

rational normal curve of anti-canonical degree 4 in X (see [4] for the definition of
the curve C4). By [4, Lemma 5.2 and the proof of Lemma 7.14], there exists a prime
divisor T ′

15 ∼ −K X on X such that

• the pair (X, 2
3T ′

15) is lc at η, and• the pair (X, D′) is lc at η for any effective Q-divisor D′ ∼Q −K X with T ′
15 �⊂

Supp D′.

By Proposition3.2 (2), we get

S(F) ≤ A(F)

4

(

2 · 1−1 +
(
2

3

)−1
)

= 7

8
A(F).
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Thus we get the desired inequality A(F) > S(F) and we complete the proof of
Theorem1.2.
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Lagrangian Skeleta, Collars and Duality

E. Ballico, E. Gasparim, F. Rubilar, and B. Suzuki

Abstract We present a geometric realization of the duality between skeleta in T ∗Pn

and collars of local surfaces. Such duality is predicted by combining two auxiliary
types of duality: on one side, symplectic duality between T ∗Pn and a crepant res-
olution of the An singularity; on the other side, toric duality between two types of
isolated quotient singularities. We give a correspondence between Lagrangian sub-
manifolds of a cotangent bundle and vector bundles on a collar, and describe those
birational transformations within the skeleton which are dual to deformations of
vector bundles.

Keywords Crepant resolution · Vector bundles · Lagrangian submanifolds ·
Quotient singularities

1 Skeleton to Collar Duality

The simplest example of symplectic duality is the one between the cotangent bundle
of projective space T ∗Pn−1 and the crepant resolution ˜Yn of the An−1 singularity
obtained as a quotient Yn = C2/Zn [4, 5]. There exists also a duality between ˜Yn and
the surface Zn = TotOP1(−n), in the sense that they are both minimal resolutions of
quotient singularities, but their respective singularities have dual toric fans. In fact,
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the singular surface Xn obtained from Zn by contracting the zero section is also a
quotient of C2 by the cyclic group of n elements, but the singularity ofXn is of type
1
n (1, 1) whereas the singularity of Yn is of type 1

n (1, n − 1). Motivated by these two
dualities we discuss some features of the resulting duality between T ∗Pn−1 and Zn .
On one side, we consider T ∗Pn−1 together with a complex potential, thus forming a
Landau–Ginzburgmodel, andwe study the Lagrangian skeleton of the corresponding
Hamiltonian flow; on the other side, we describe the behaviour of vector bundles on
the surfaces Zn considered as algebraic varieties.

In both cases we will focus our attention on building blocks used for those types
of gluing procedures which may be viewed as surgery operations. We will see that
vector bundles on what we call the collar of Zn (see Sect. 6) behave similarly to
components of the Lagrangian skeleton of T ∗Pn−1.

Denoting by bir a birational transformation applied to a compactified Lagrangian
and def a deformation of the complex structure of a vector bundle (without describing
a categorial equivalence) we give a geometric description of a 1-1 correspondence
between objects and some essential morphisms. Such a duality is described by the
diagram in the following theorem.

Theorem 1.1 The following diagram commutes:

L j ⊂ T ∗Pn−1 OZ◦
n
( j) ⊕ OZ◦

n
(− j)

L j+1 ⊂ T ∗Pn−1 OZ◦
n
( j + 1) ⊕ OZ◦

n
(− j − 1).

bir

dual

dual

def (1.2)

Duality between Lagrangians and vector bundles.

The surfaces Zn have rich moduli spaces of vector bundles, but it is mainly the
restriction of a vector bundle to the collar of Z◦

n (see (6.4)) that plays a role in this
duality. The cotangent bundle is taken with the canonical symplectic structure and
Lagrangian skeleta are described in Sect. 2. Vector bundles on the local surfaces Zn

are building blocks for vector bundles on compact surfaces. In fact, a new gluing
procedure called grafting introduced in [10] explores the local contribution of these
building blocks to the top Chern class. This grafting procedure was successful in
explaining the physics mechanism underlying the phenomenon of instanton decay
around a complex line with negative self-intersection, showing that instantons may
decay by inflicting curvature to the complex surface that holds them [10, Sect. 7]. For
a line with self-intersection −n, grafting is done via cutting and gluing over a collar
Z◦

n . The set of isomorphisms classes of rank 2 vector vector bundles over such a collar
Z◦

n presents a behaviour similar to that of the Lagrangian skeleton of the cotangent
bundle T ∗Pn−1. Therefore our construction here offers a geometric interpretation of
this particular instance of duality by exploring building blocks of surgery operations
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on both sides. When considered in families, one Lagrangian in the skeleton is taken
to the next via a birational transformation (Sect. 4) whereas a bundle on the collar is
taken to another via deformation of the complex structure (Sect. 7). In this sense we
may say that when considering objects of this duality, birational transformations on
Lagrangian skeleta occur as dual to deformations of vector bundles.

2 Lagrangian Skeleton of T∗Pn

In this section we will calculate skeleta of certain Landau–Ginzburg models. By
a Landau–Ginzburg model we mean a complex manifold together with a complex
valued function.

Let (M, ω) be a symplectic manifold together with a potential h. We assume that
h is aMorse function. In the case when h is a real valued function, the stablemanifold
of a critical point p consists of all the points in M that are taken to p by the gradient
flow of h. However, when h is a complex valued function, even though the stable
manifold of a point p is still formed by points that flow to p, the natural choice is to
use the Hamiltonian flow of h (which can be thought of as the symplectic gradient).
Furthermore, in the cases considered here, the Hamiltonian flow is given by a torus
action (as described in Sect. 3) and the critical points of h are the fixed points of such
action.

Let L be the union of the stable manifolds of the Hamiltonian flow of h with
respect to the Kähler metric. Then L is the isotropic skeleton of (M, ω). When L is
of middle dimension, it is called the Lagrangian skeleton of (M, ω). In the case of
exact symplectic manifolds, the Lagrangian skeleton of M is the complement of the
locus escaping to infinity under the natural Liouville flow, see [11, 12].

To describe the Lagrangian skeleton of T ∗Pn , we will use the Hamiltonian torus
action. We start out with Pn described by homogeneous coordinates [x0, x1, . . . , xn],
covered by the usual open charts Ui = {xi �= 0}. We then write trivializations of
the cotangent bundle T ∗Pn taking products Vi = Ui × Cn and over the V0 chart we
write coordinates as V0 = {[1, x1, . . . , xn], (y1, . . . , yn)} . In this chart, we write the
Hamiltonian action of the torus T:=C \ {0} on T ∗Pn as

T · V0 = {[1, t−1x1, . . . , t−n xn], (t y1, . . . , tn yn)
}

. (2.1)

Note that the same action can be written as

T · V0 = {[tn, tn−1x1, . . . , xn], (t y1, . . . , tn yn)
}

.

We will now describe the Lagrangian skeleton corresponding to this Hamiltonian
action. We start by showing an example, i.e. the case of T ∗P3 and then we present
the general procedure.
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Example: skeleton of T ∗P3. We take P3 with homogeneous coordinates [x0, x1, x2,
x3], and cover it by open setsUi = {xi �= 0} and charts ϕi : Ui → C3 given by ϕi ([x0,
x1, x2, x3]) =

(

x0
xi

, . . . , x̂i , . . . ,
x3
xi

)

. The transitionmatrices for the cotangent bundle

Ti j : ϕi (Ui ∩ U j ) → Aut(C3) are

T01 =
⎛

⎝

−x21 −x1x2 −x1x3
0 x1 0
0 0 x1

⎞

⎠ T02 =
⎛

⎝

−x1x2 −x22 −x2x3
x2 0 0
0 0 x2

⎞

⎠ T03 =
⎛

⎝

−x1x3 −x2x3 −x23
x3 0 0
0 x3 0

⎞

⎠ .

Consequently, we can write down a cover for the cotangent bundle as Vi = Ui ×
C3, and in coordinates

V0 = {[x0, x1, x2, x3], (y1, y2, y3)} ,

V1 = {[x−1
1 , 1, x−1

1 x2, x−1
1 x3], (−x2

1 y1 − x1x2y2 − x1x3y3, x1y2, x1y3)
}

,

V2 = {[x−1
2 , x−1

2 x1, 1, x−1
2 x3], (−x1x2y1 − x2

2 y2 − x2x3y3, x2y1, x2y3)
}

,

V3 = {[x−1
3 , x−1

3 x1, x−1
3 x2, 1], (−x1x3y1 − x2x3y2 − x2

3 y3, x3y1, x3y2)
}

.

Now we take the Hamiltonian action of the torus T on T ∗P3 given by

T · V0 = {[1, t−1x1, t−2x2, t−3x3], (t y1, t2y2, t3y3)
} = {[t3, t2x1, t x2, x3], (t y1, t2y2, t3y3)

}

,

and compatibility on the intersections implies that

T · V1 =
{

[t x−1
1 , 1, t−1x−1

1 x2, t−2x−1
1 x3], (−t−1(x21 y1 + x1x2y2 + x1x3y3), t x1y2, t2x1y3)

}

,

T · V2 =
{

[t2x−1
2 , t x−1

2 x1, 1, t−1x−1
2 x3], (−t−2(x1x2y1 + x22 y2 + x2x3y3), t−1x2y1, t x2y3)

}

,

T · V3 =
{

[t3x−1
3 , t2x−1

3 x1, t x−1
3 x2, 1], (−t−3(x1x3y1 + x2x3y2 + x23 y3), t−2x3y1, t−1x3y2)

}

.

Using these, we calculate the Lagrangians.

Stable manifold of e0 - on V0 we find the points satisfying

lim
t→0

[1, t−1x1, t−2x2, t−3x3], (t y1, t2y2, t3y3)

= [1, 0, 0, 0], (0, 0, 0)

this requires x1 = x2 = x3 = 0 and we obtain the fibre over the point [1, 0, 0, 0],
that is,

L0 = T ∗
[1,0,0,0]P

3 ∼ C3.

Stable manifold of e1- on V1 we look for the points satisfying
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lim
t→0

[t x−1
1 , 1, t−1x−1

1 x2, t−2x−1
1 x3], (−t−1(x2

1 y1 + x1x2y2 + x1x3y3), t x1y2, t2x1y3)

= [0, 1, 0, 0], (0, 0, 0).

This requires x−1
1 x2 = x−1

1 x3 = 0 = x2
1 y1 + x1x2y2 + x1x3y3, but since x1 �= 0 in

this chart, we get x2 = x3 = 0 = y1. So, we are left with points having coordinates
[1, x1, 0, 0], (0, y2, y3) on V0 which on V1 become [x−1

1 , 1, 0, 0], (0, x1y2, x1y3). We
obtain (after taking the closure, that is, by adding the point [1, 0, 0, 0], (0, 0, 0)) the
set of points {[1, x1, 0, 0], (0, y2, y3) 
→ [x−1

1 , 1, 0, 0], (0, x1y2, x1y3)} so that

L1 = OP1(−1) ⊕ OP1(−1).

Stable manifold of e2 - on V2 we look for the points satisfying

lim
t→0

[t2x−1
2 , t x−1

2 x1, 1, t−1x−1
2 x3], (−t−2(x1x2y1 + x2

2 y2 + x2x3y3), t−1x2y1, t x2y3)

= [0, 0, 1, 0], (0, 0, 0).

This requires x−1
2 x3 = 0 = x1x2y1 + x2

2 y2 + x2x3y3 = x2y1 but since x2 �= 0 in
this chart, we get x3 = 0 and x1x2y1 + x2

2 y2 = 0 = x2y1 and since on this chart
x2 �= 0 it follows that y1 = y2 = 0.

We obtain (after taking the closure) the set of points {[1, x1, x2, 0], (0, 0, y3) 
→
[x−1

2 , x−1
2 x1, 1, 0], (0, 0, x2y3)}, so

L2 = OP2(−1).

Stable manifold of e3 - on V3 we find the points satisfying

lim
t→0

[t3x−1
3 , t2x−1

3 x1, t x−1
3 x2, 1], (−t−3(x1x3y1 + x2x3y2 + x23 y3), t−2x3y1, t−1x3y2)

= [0, 0, 0, 1], (0, 0).

This requires x1x3y1 + x2x3y2 + x2
3 y3 = x3y1 = x3y2 = 0 and since x3 �= 0 in

this chart, we get that y1 = y2 = y3 = 0.We obtain the set of points {[x0, x1, x2, x3],
(0, 0, 0)}, so

L3 = P3.

The generalization of this procedure to higher dimensions now becomes evident,
giving:

General case: the skeleton of T ∗Pn . We take Pn with homogeneous coordinates
[x0, x1, x2, . . . , xn], and cover it by standard open sets Ui = {xi �= 0} and charts
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ϕi : Ui → Cn given by ϕi ([x0, x1, x2, . . . , xn]) =
(

x0
xi

, . . . , x̂i , . . . ,
xn
xi

)

. The transi-

tion matrices for the cotangent bundle Ti j : ϕi (Ui ∩ U j ) → Aut(Cn) are

T01 =

⎛

⎜

⎜

⎜

⎝

−x2
1 −x1x2 · · · −x1xn

0 x1 · · · 0
...

...
. . .

...

0 0 · · · x1

⎞

⎟

⎟

⎟

⎠

, T0n =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−x1xn −x2xn · · · −x2xn −x2
n

xn 0 · · · 0 0
0 xn · · · 0 0
...

...
. . . 0 0

0 0 · · · xn 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

T0 j =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−x j x1 −x j x2 · · · −x2
j · · · −x j xn−1 −x j xn

x j 0 · · · 0 · · · 0 0
0 x j · · · 0 · · · 0 0
...

. . .
...

0
...

. . .
...

0 0 · · · 0 · · · x j 0
0 0 · · · 0 · · · 0 x j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Consequently, we can write down a cover for the cotangent bundle as Vi = Ui ×
Cn , and in coordinates

V0 = {[x0, . . . , xn], (y1, . . . , yn)} ,

V1 =
{

[x−1
1 , 1, x−1

1 x2, . . . , x−1
1 xn−1, x−1

1 xn], (−x21 y1 − x1x2y2 − x1x3y3, x1y2, . . . , x1yn)
}

,

.

.

.

Vj =
{

[x−1
j , x−1

j x1, . . . 1, . . . , x−1
j xn], (−x j x1y1 − . . . − x j xn yn, x j y2, . . . , x j yn)

}

,

.

.

.

Vn = {[x−1
n , x−1

n x1, . . . , x−1
n xn−1, 1], (−xn x1y1 − . . . − x2n yn, xn y2, . . . , xn yn)

}

.

Now we take the Hamiltonian action of the torus T on T ∗Pn given by

T · V0 = {[1, t−1x1, t−2x2, . . . , t−n xn], (t y1, t2y2, . . . , tn yn)
}

= {[tn, tn−1x1, tn−2x2, . . . , xn], (t y1, t2y2, . . . , tn yn)
}

,

and compatibility on the intersections implies that
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T · V1 =
{

[t x−1
1 , 1, t−1x−1

1 x2, . . . , tn−1x−1
1 xn ], (−t−1(x21 y1 + . . . + x1xn yn), t x1y2, . . . , tn−1x1yn)

}

,

.

.

.

T · Vn =
{

[tn x−1
n , tn−1x−1

n x1, . . . , t x−1
n xn−1, 1], (−t−n(x1xn y1 + . . . ,+x2n yn), t−(n−1)xn y1, . . . , t−1xn yn)

}

.

Using these, we calculate the Lagrangians.

Stable manifold of e0 - on V0 we find the points satisfying

lim
t→0

[1, t−1x1, . . . , t−n xn], (t y1, t2y2, . . . , tn yn) = [1, 0, . . . , 0], (0, . . . , 0)

this requires x1 = x2 = · · · = xn = 0 andweobtain the fibre over the point [1, 0, . . . ,
0], that is,

L0 = T ∗
[1,0,...,0]P

n ∼ Cn.

Stable manifold of e1 - on V1 we find the points satisfying

lim
t→0

[t x−1
1 , 1, t−1x−1

1 x2, . . . , t−(n−1)x−1
1 xn ], (−t−1(x21 y1 + . . . + x1xn yn), t x1y2, . . . , tn−1x1yn)

= [0, 1, 0 . . . , 0], (0, . . . , 0).

This requires x−1
1 x2 = · · · = x−1

1 xn = 0 = x2
1 y1 + . . . + x1xn yn , but since x1 �=

0 in this chart, we get x2 = · · · = x3 = 0 = y1. So, we are left with points hav-
ing coordinates [1, x1, 0, . . . , 0], (0, y2, . . . , yn) on V0 which on V1 become [x−1

1 ,

1, 0 . . . , 0], (0, x1y2, . . . , x1yn). We obtain (after taking the closure, that is adding
the point [1, 0, . . . , 0], (0, . . . , 0))

L1 = {[1, x1, 0, . . . , 0], (0, y2, . . . , yn) 
→ [x−1
1 , 1, 0, . . . , 0], (0, x1y2, . . . , x1yn)}

∼ OP1 (−1) ⊕ · · · ⊕ OP1 (−1).

(n − 1 summands).

Other stable manifolds
Using similar computations, we have that the Lagrangian L j corresponding to the

fixed point e j is

L j =

⎧

⎪

⎨

⎪

⎩

Cn if j = 0,

⊕n− j
i=1OP j (−1) if 0 < j < n,

Pn if j = n.

(2.2)
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3 Potentials on the Cotangent Bundle

In this section we consider the question: What choices of potential h for a Landau–
Ginzburg model (T ∗Pn, h) are compatible with the Hamiltonian action considered
in the previous sections, and hence gives rise to the same skeleta? We obtain the
following result.

Proposition 3.1 Consider (T ∗Pn, hc)with coordinates [1, x1, . . . , xn], (y1, . . . , yn).
Each potential

hc([1, x1, . . . , xn], (y1, . . . , yn)) =
n

∑

i=1

−2i xi yi + c,

has a corresponding Hamiltonian flow that coincides with the flow obtained by the
torus action given in (2.1), that is

T · V0 = {[1, t−1x1, . . . , t−n xn], (t y1, . . . , tn yn)
}

.

To prove this, first consider the vector field on T ∗Pn corresponding to the Hamil-
tonian action given in coordinates by

T · V0 = {[1, t−1x1, . . . , t−n xn], (t y1, . . . , tn yn)
}

.

On the image of the V0 chart, the right hand side becomes

α(t) = (t−1x1, . . . , t−n xn, t y1, . . . , tn yn)

so that the derivative gives

α′(t) = (−t−2x1, . . . ,−nt−n−1xn, y1, . . . , ntn−1yn)

and evaluating at 1 we get

α′(1) = (−x1, . . . ,−nxn, y1, . . . , nyn).

From the action of this 1-parameter subgroup, we have obtained the flow α′(1).
Now we wish to calculate a potential h corresponding to the vector field X = α′(1).

Letω be the canonical symplectic form on T ∗Pn , then h must satisfy, for all vector
fields Z ∈ X(M)

dh(Z) = ω(X, Z).

In coordinates this gives
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(

∂h

∂x
∂h

∂y

)(

a
b

)

=
n

∑

i=1

dxi ∧ dyi ((−x1, . . . ,−nxn, y1, . . . , nyn), (a1, . . . , an, b1, . . . , bn))

= −2
∑

i xi bi + iyi ai .

where x=(x1, . . . , xn), y = (y1, . . . , yn), a = (a1, . . . , an),b = (b1, . . . , bn).Com-
paring the terms multiplying ak and bk on each side of the equation, for i = 1, . . . , n
we obtain the differential equations

∂h

∂xi
= −2iyi ,

∂h

∂yi
= −2i xi .

For c ∈ C, the solutions are:

hc = −2x1y1 − . . . − 2nxn yn + c =
n

∑

i=1

−2i xi yi + c. (3.2)

We thus conclude that any Landau–Ginzburg model of the form (T ∗Pn, hc) will
give rise to the same skeleta described above. This concludes the description of
our Landau–Ginzburg models and their skeleta on T ∗Pn and in the next section we
discuss birational maps within each skeleton.

4 Birational Maps within the Skeleton

In this section we present the birational transformations between components of
the skeleton that justify the vertical downarrow appearing on the left hand side of
diagram (1.2). As we saw in (2.2), the component L j of the skeleton of T ∗Pn has
the form

OP j (−1) ⊕ OP j (−1) ⊕ · · · ⊕ OP j (−1)

with n − j factors. Projectivizingwe obtainP j × Pn− j−1. Thus, the component L j+1

has the form
OP j+1(−1) ⊕ OP j+1(−1) ⊕ · · · ⊕ OP j+1(−1)

with n − j − 1 factors. Projectivizing we obtain P j+1 × Pn− j−2. The projectiviza-
tions are birationally equivalent, as we describe next, and up to tensoring byO(+1),
we may choose a birational map taking L j to L j+1.

The birational maps Pn × Pm ��� Pn+m we need here are well known, but
we recall one construction for completeness. We take homogeneous coordinates
y0, . . . , yn onPn and z0, . . . , zm onPm . Set r := (n + 1)(m + 1) − 1 and take homo-
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geneous coordinates ui j , 0 ≤ i ≤ n, 0 ≤ j ≤ m, ofPr . Let ν : Pn × Pm → Pr be the
Segre embedding of Pn × Pm into Pr given by the equations ui j = yi z j . The bira-
tional map (not a morphism, since there is no birational morphism between these
two varieties) is induced by a linear projection �M : Pr \ M → Pn+m , where M is
an (r − n − m − 1)-dimensional linear subspace whose equations are coordinates
ui j = 0 for some i, j and the n + m + 1 homogeneous coordinates of Pn+m+1 are
the ones used to describe M . Recall that linear projections in suitable coordinates
are just rational maps which forget some of the coordinates.

We start by considering the simplest example, that is, n = m = 1 and hence r = 3.
Therefore M is a point, say ([0 : 1], [0 : 1]). Take for P3 homogeneous coordinates

x0 = y0z0, x1 = y1z0, x2 = y0z1, x3 = y1z1

with M = [0 : 0 : 0 : 1] and use x0, x1, x2 for coordinates of P2.
The next step is to consider n = 2, m = 1 and hence r = 5. Take P5 with homo-

geneous coordinates

x0 = y0z0, x1 = y0z1, x2 = y1z0, x3 = y1z1, x4 = y2z0, x5 = y2z1.

Then M is a line contained in the first ruling of P2 × P1 so it has the form L × {p}
where L ⊂ P2 is a line, and p ∈ P1 is a point. If we take L = {y0 = 0} and p = [0 :
1] we get the equations x0 = x1 = x2 = x4 = 0 and the coordinates of P3 should
be x0, x1, x2, x4. We blow-up L × {p} ⊂ P2 × P1 and then we contract the strict
transform of P2 × {p} and L × P1. So, the birational map is clear.

Now, to take one Lagrangian to the next one, we argue in generality. Suppose we
have 2 quasi-projective varieties X , X ′, with Zariski open subsets U ⊆ X , V ⊆ X ′,
U �= ∅, such that there exists an isomorphism

s : U → V .

If for a fixed quasi-projective variety Y , we need two proper birational morphisms

u1 : Y → X and u2 : Y → X ′

compatible with s, then we have a single choice: take first the graph

W := {(x, s(x)}x∈U ⊂ U ∪ V,

then take the closure T of W in X × X ′. Then T has the two morphisms

v1 : T → X and v2 : T → X ′

and any other (Y, u1, u2)must be obtained by composing (T, v1, v2)with amorphism
f : Y → T , in such a way that we obtain
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u1 := f ◦ v1 and u2 := f ◦ v2.

The argument in this section shows that we have a birational transformation taking
L j to L j+1, thus justifying the vertical downarrow bir appearing in Theorem1.1 we
nowproceed to discuss the other side of the duality in focus here, namely singularities
and vector bundles on their resolutions.

5 Duality for Multiplicity n Singularities

We describe a duality between vector bundles on 2 distinct minimal resolutions of
toric singularities of multiplicity n, which are both quotients of C2 by the cyclic
group of n elements Z/nZ, and whose toric cones are dual, they are:

Xn:=1

n
(1, 1) and X ∨

n :=1

n
(1, n − 1).

These singularities are obtained by the following actions:

(

ρ 0
0 ρ

)

for Xn and

(

ρ 0
0 ρ−1

)

forX ∨
n ,

where ρ is a primitive n-th root of unity, that is, ρ = e
2π i

n . In general the singularity
1
n (1, a) is obtained from the action (x, y) 
→ (ρx, ρa y).

A resolution of singularities ˜X → X is calledminimal if ˜X → X ′ → X with X ′
smooth imply ˜X � X ′. Let Zn and ˜Yn denote the minimal toric resolutions of Xn

and X ∨
n , respectively, depicted in Figs. 1 and 2. We observe that, in particular we

have Z2 � ˜Y2, but Zn �� ˜Yn for n �= 2.
The surface Zn = TotOP1(−n) contains a single rational curve with self-

intersection −n, whereas X ∨
n contains an isolated An−1-singularity and ˜Yn con-

tains a chain of n − 1 curves Ei � P1 for 1 ≤ i ≤ n − 1 whose intersection matrix
(Ei · E j ) coincides with the negative of the Cartan matrix of the simple Lie algebra
sln(C) of type An−1.

Note that the Dynkin diagram · · · of type An−1 is precisely the graph
dual to the system of curves Ei in the resolution of ˜Yn .

The surfacesXn andX ∨
n are toric varieties having fans formed by a single cone,

calling σX n and σX ∨
n
their respective fans, we have that σX n is dual to σX ∨

n
. In

particular, for the case of n = 2 we also have that σZ2 � σ
˜Y2
is self-dual.

We now describe the coordinate rings of the singularities. We haveXn = SpecA,
where

A = H 0(Zn,O) � C[x0, . . . , xn]/(xi x j+1 − xi+1x j )0≤i< j<n . (5.1)



274 E. Ballico et al.

Fig. 1 Zn as toric resolution
of Xn

Fig. 2 ˜Yn as toric resolution
of X ∨

n = Yn

Given thatXn � C2/�, where� is the group generated by
(

ρ 0
0 ρ

)

for ρ a primitive

n-th root of unity, we have � � Z/nZ, with j ∈ Z/nZ corresponding to
(

ρ j 0
0 ρ j

)

.

Functions on the quotient C2/� are given by those functions on C2 which are
invariant under �.

The algebra of functions onC2 isC[a, b] and� acts bymultiplication by ρ on both
a and b. We thus have that ai b j = (ρa)i (ρb) j = ρi+ j ai b j if and only if ρi+ j = 1,
i.e. if and only if i + j is a multiple of n. One sees that C[a, b]� (functions on C2

invariant under �) are generated by

an, an−1b, . . . , abn−1, bn .

Now one can check that the invariants are

C[a, b]� = C[an, an−1b, . . . , abn−1, bn] � A

with the resolution mapping

ai bn−i 
→ xi for 0 ≤ i ≤ n,

so that C2/� � Xn . This map looks quite similar to the Veronese embedding. In
fact, Xn is the so-called affine cone over the Veronese curve (or rational normal
curve) of degree n, i.e.Xn � C2/� is the affine cone over the image of the Veronese
embedding P1 → Pn given by [a : b] 
→ [an : an−1b : · · · : abn−1 : bn].

The duality between Xn and X ∨
n is made clear by their toric fans. Just observe

that each fan consists of a single cone, and the vectors forming the fan of Xn are
perpendicular to those of the fan ofX ∨

n as depicted in Figs. 1 and 2.
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6 Vector Bundles on Local Surfaces

We now describe vector bundles on Zn , the resolution of the isolated singularityXn .
The surface Zn is the local model of the neighborhood of a rational line � with self-
intersection −n in a complex surface X . Thus, vector bundles on Zn model vector
bundles around such a line � in X . The case n = 1 occurs when blowing-up a smooth
point, and was explored in [6].

Recently, a new complex surgery operation on vector bundles over Zn , named
grafting, was introduced in the context ofmathematical physics (see [10]). It provided
an original explanation for the phenomenon of instanton decay in terms of curvature
of the underlying space. Here we explore the geometric features of this grafting
procedure. When considered from the point of view of grafting, bundles on Zn occur
as building blocks of vector bundles on surfaces, in a sense somewhat analogue (and
dual) to the use of the Lagrangian skeleton for building a symplectic manifold.

Let E be a vector bundle on a compact complex surface X which contains a
−n line. Let F = E |N be the restriction of E to an open neighborhood N of � in
the analytic topology. Grafting is obtained by replacing F by another vector bundle
F ′, which is then glued to E |X\N . Note that after grafting the top Chern class of
E will in general change, but not the first one. Therefore, this surgery procedure
is not obtained by an elementary transformation. The gluing itself is done over
N \ � which is identified with the complement of the zero section in Zn called the
collar defined below; such a gluing is possible because vector bundles on Zn are
completely determined by their restriction to a finite formal neighborhood of �, see
[2]. We now describe explicit local data on Zn used to classify vector bundles on
them. These vector bundles restricted to the collars will give rise to the dual objects
to the components of the skeleta described above.

For each integer n, we have the surface Zn = Tot(OP1(−n)). The complex man-
ifold structure can be described by gluing the open sets

U = C[z, u] and V = C[ξ, v]

by the relation
(ξ, v) = (z−1, znu) (6.1)

whenever z and ξ are not equal to 0. We call (6.1) the canonical coordinates for Zn .
Using canonical coordinates, the contraction Zn:=TotOP1(−n) → Xn sends

zi u 
→ xi , where xi are the coordinates ofXn as described in (5.1).
Let E be a rank r holomorphic vector bundle on Zn . The restriction of E to the

zero section � � P1 is a rank r bundle on P1, which by Grothendieck’s lemma splits
as a direct sum of line bundles. Thus, E |� � OP1( j1) ⊕ · · · ⊕ OP1( jr ). Following
[1], we call ( j1, . . . , jr ) the splitting type of E . When E is a rank 2 bundle with first
Chern class 0, then the splitting type is ( j,− j) for some j ≥ 0 and we say for short
that E has splitting type j .
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There aremany rank 2 vector bundles on Zn . For each fixed splitting type, they can
be obtained as a quotient of Ext1(O( j),O(− j)). Considering isomorphism classes
of vector bundles modulo holomorphic equivalence, moduli spaces were obtained as
follows.

Proposition 6.2 ([2, Theorem 4.11]) The moduli space of irreducible SU(2) instan-
tons on Zn with charge (and splitting type) j is a quasi-projective variety of dimension
2 j − n − 2.

An equivalent formulation in terms of vector bundles is:

Corollary 6.3 The moduli space of (stable) rank 2 bundles on Zn with vanishing
first Chern class and local second Chern class j is a quasi-projective variety of
dimension 2 j − n − 2.

Even though vector bundles on Zn are many, their restrictions to the collars have
very simple behaviour, as we now shall demonstrate.

We denote by � the P1 contained in Zn corresponding to the zero section of the
corresponding vector bundles, and we set

Zo
n :=Zn \ �. (6.4)

We call Zo
n the collar of � in Zn . Using the canonical coordinates for Zn we obtain

canonical coordinates for the collar by setting

Zo
n = U o ∪ V o,

with the complex manifold structure obtained by gluing the open sets

U o = C × C − {0} � C[z, u, u−1] and V o = C × C − {0} � C[ξ, v, v−1]

by the relation
(ξ, v) = (z−1, znu).

Lemma 6.5 The homotopy type of Zo
n is that of an S1-bundle over S2, and π1(Zo

n) =
Z/nZ.

Proof Let D = {z, |z| ≤ 1} be the unit disc in C, denoted D+ when oriented pos-
itively, and D− when oriented negatively. The homotopy type of Zo

n is then that
of

U o ∼ U+ = D+ × S1 = [z, u = eiθ ] and V o ∼ U− = D− × S1 = [ξ, v = eiφ]

with identification in U+ ∩ V − given by

(ξ = eiα, v = eiφ) = (z−1 = e−iα, v = znu = ei(θ+nα)).
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The result of the identification is an S1-bundle over S2 = D+ ∪ D−, with the S1

fibers identified via the gluing map zn which has degree n ∈ π1(SO(2)) = Z since
SO(2) � S1. �

Let ι : Zo
n → Zn denote the inclusion, and set

Ln( j):=ι∗OZn ( j).

Proposition 6.6 For each n, the group of all isomorphism classes of line bundles
{Ln( j), j ∈ Z} is cyclic of order n, hence Z/nZ.

Proof Note that Pic(Zn) = Z. Each line bundle over Zn with first Chern class j is
isomorphic to OZn ( j) and therefore can be represented by a transition matrix (z− j ).
Since in canonical coordinates we have that u−1 �= 0 and v �= 0 on the collar Zo

n , we
may change coordinates as follows

(z− j ) � (v)(z− j )(u−1) = (znu · z− j · u−1) = (z− j+n),

i.e., over Zo
n , the bundles Ln( j) and Ln( j − n) (defined by (z− j ) and (z− j+n) respec-

tively) are isomorphic. Moreover, if j1 ≡ j2 mod n, then Ln( j1) and Ln( j2) are
isomorphic. The proof that the cases 1, 2, ..., n − 1 are not pairwise isomorphic is
included in the proof of Proposition6.7. �

The following is a slightly rephrased version of [7, Proposition4.1].

Proposition 6.7 Let E1 and E2 be rank 2 bundles over Zn with vanishing first
Chern classes and splitting types j1 and j2, respectively. There exists an isomorphism
E1|Zo

n
� E2|Zo

n
if and only if j1 ≡ j2 mod n. In particular, E1 is trivial over Zn if and

only if j1 ≡ 0mod n.

Proof We first claim that the bundle O�(−n) is trivial on Zo
n . In fact, if u = 0 is the

equation of �, then s(z, u) = u determines a section of O�(−n) that does not vanish
on Zo

n .
If a bundle E over Zn has splitting type j , then by definition, E |� ∼= O�(− j) ⊕

O�( j). So there is a surjection ρ : E |� → O�( j), and a corresponding elementary
transformation, resulting in a vector bundle E ′ = ElmO�( j)(E)which splits over � as
O�(−n) ⊕ O�( j + n), see [2, Sect. 3]. Thereforewe can use the surjectionρ : E ′|� →
O�( j + n) to perform a second elementary transformation, and we obtain the bundle
E ′′ = ElmO�( j+n)(E ′), which splits over � as O�(− j) ⊕ O�( j + 2n) and has first
Chern class 2n. Tensoring by O�(−n) we get back to a sl2(C)-bundle with splitting
type j + n. Hence, the transformation

�(E) = ⊗O(−n) ◦ ElmO�( j+n) ◦ ElmO�( j)(E)

increases the splitting type by n while keeping the isomorphism type of E over Zo
n .

So we need only to analyze bundles with splitting type j < n.
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If j = 0, the bundle is globally trivial on Zn . If j �= 0, then E |Zo
n
induces a non-

zero element on the fundamental group π1(Zo
n) = Z/nZ.

By Lemma6.5 the collar Zo
n has the homotopy type of an S1-bundle over

S2 and π1(Zo
n) = Z/nZ. Therefore H1(Zo

n,Z) = Z/nZ and by Poincaré duality
H 2(Zo

n,Z) = Z/nZ. The exponential sheaf sequence

0 → Z → O → O∗ → 0

induces the first Chern class map

H 1(Zo
n,O

∗) → H 2(Zo
n,Z) = Z/nZ,

and
Ln( j) 
→ j mod n.

�

In this sectionwehavedescribedvector bundles on Zn , theirmoduli, andbehaviour
on collars. We will see next that each splitting type is connected to the lower ones
by deformations.

7 Deformations

In this section we justify the vertical upwards arrow appearing in diagram (1.2). We
start with a vector bundle E with splitting type ( j,− j) on Zn , so that E may be
written as an extension

0 → O(− j) → E → O( j) → 0. (7.1)

Alternatively, wemay also choose towrite E as an extension ofO( j + s) byO(− j −
s) for any s > 0. To see this, just observe that there exist inclusions

H1(O(−2 j)) = Ext1(O( j),O(− j))
ι

↪→ Ext1(O( j + s),O(− j − s)) = H1(O(−2 j − 2s)).

Let p be the extension class corresponding to representing the bundle E by the
exact sequence (7.1). Next, fixing an injection ι, consider the family t · ι(p) of
extensions of O( j + 1) by O(− j − 1). For such a family, when t = 0 we obtain
O( j + 1) ⊕ O(− j − 1) but when t = 1 we obtain E .

Now, using induction on j , we conclude that every bundle on Zn occurs as a
deformation of another bundle with splitting type as high as desired. In particular,
such behaviour of lowering the splitting type via deformations is also observed over
the collars, justifying the vertical uparrow def appearing in Theorem1.1. We now
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combine this vertical uparrow with the vertical downarrow bir described in Sect. 4.
There is a 1-1 correspondence between elements of the skeleton and splitting types
on the collar. Given that this correspondence is obtained via a combination of 2
dualities, we call it a duality transformation. We denote it by a horizontal double
arrow:

L j ⇐⇒ OZ◦
n
( j) ⊕ OZ◦

n
(− j).

Collecting horizontal and vertical arrows together, we obtain the commutative
diagram claimed in Theorem1.1.

In conclusion,wehavegiven an explicit geometric descriptionof a duality between
Lagrangians in the skeleta of cotangent bundles and vector bundles on collars. The
symplectic side of the duality studies the components of the Lagrangian skeleta of
cotangent bundles over n-dimensional projective spaces. The complex algebraic side
considers only 2-dimensional complex varieties. These 2 are rather different types
of objects. So, a priori this duality was not at all evident, but was abstractly predicted
by a combination of 2 other types of duality.

In future work, we intend to pursue a generalization of this type of duality to
the realm of Calabi–Yau threefolds, investigating what symplectic manifolds and
Lagrangians are dual to vector bundles on local Calabi–Yau varieties and what oper-
ations occur as dual to deformations of vector bundles, see [8, 9]. The latter promises
to be a challenging question, given the existence of infinite dimensional families of
deformations in the case of 3-dimensional varieties, see [3].
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Quot-Scheme Limit of Fubini–Study
Metrics and Its Applications to Balanced
Metrics

Yoshinori Hashimoto and Julien Keller

Abstract We present some results that complement our prequels [27, 28] on holo-
morphic vector bundles. We apply the method of the Quot-scheme limit of Fubini–
Study metrics developed therein to provide a generalisation to the singular case of
the result originally obtained by X. W. Wang for the smooth case, which states that
the existence of balanced metrics is equivalent to the Gieseker stability of the vector
bundle. We also prove that the Bergman 1-parameter subgroups form subgeodesics
in the space of Hermitian metrics. This paper also contains a review of techniques
developed in [27, 28] and how they correspond to their counterparts developed in
the study of the Yau–Tian–Donaldson conjecture.

Keywords Fubini-Study metrics · Balanced metrics

1 Introduction

The theorem due to Donaldson [13–15] and Uhlenbeck–Yau [52] states that a holo-
morphic vector bundle over a smooth complex projective variety admits aHermitian–
Einstein metric if the bundle is slope stable. Together with the theorem by Kobayashi
[32] and Lübke [36], it follows that the vector bundle admits a Hermitian–Einstein
metric if and only if it is slope stable. This is an important theorem in complex
geometry that provides an important link between differential and algebraic geome-
try, which was proved by using deep analytic results in [13–15, 52].

Y. Hashimoto
Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku,
Tokyo 152-8551, Japan
e-mail: hashimoto@math.titech.ac.jp

J. Keller (B)
Département de Mathématiques, Université du Québec à Montréal (UQÀM), C.P. 8888, Succ.
Centre-Ville, Montréal, QC H3C 3P8, Canada
e-mail: julien.keller@math.cnrs.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Cheltsov et al. (eds.), Birational Geometry, Kähler–Einstein Metrics
and Degenerations, Springer Proceedings in Mathematics & Statistics 409,
https://doi.org/10.1007/978-3-031-17859-7_14

281

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17859-7_14&domain=pdf
mailto:hashimoto@math.titech.ac.jp
mailto:julien.keller@math.cnrs.fr
https://doi.org/10.1007/978-3-031-17859-7_14


282 Y. Hashimoto and J. Keller

In the papers [27, 28] we discussed attempts at establishing a more direct link
between the Hermitian–Einstein metrics and slope stability, from the point of view of
computing the asymptotic slope of the appropriate energy functional that arises in the
variational formulation of the problem. Following these works, the purpose of this
paper is twofold: one is to prove some results (Corollary4.5 and Theorem5.8) that
complement the prequels [27, 28], and the other is to provide a summary (Sect. 2) of
what is developed in [27, 28] and compare it with the analogous ideas in the study
of Yau–Tian–Donaldson conjecture, i.e. the case of varieties (Sect. 3). More detailed
content of this paper is summarised below.

Organisation of the paper. In Sect. 2, we survey the methods developed in [28] and
the results proved in [27, 28]. We then present how these methods can be regarded as
a vector bundle version of the ideas proposed in the study of constant scalar curvature
Kähler and Kähler–Einstein metrics in Sect. 3; we also give brief comments on the
Deligne pairing in Sect. 3.2, which plays an important role in the previous work
by Boucksom–Hisamoto–Jonsson [8] and Phong–Ross–Sturm [42] for the case of
varieties but not in our papers [27, 28], by discussing its relationship to the Bott–
Chern class. After showing that theBergman 1-parameter subgroups do indeed define
subgeodesics inCorollary4.5, Sect. 4, as expected from the case of varieties,we prove
in Sect. 5 that the method of the Quot-scheme limit of Fubini–Study metrics provides
a variational characterisation of theGieseker stability (Theorem5.8), generalising the
results originally proved by X.W. Wang [54] and later by Phong–Sturm [43] to the
case of torsion-free sheaves over a Q-Gorenstein log terminal projective variety.
Finally in Sect. 6, we provide some effective results and numerical aspects of the
Donaldson functional.

Notation. Throughout in this paper (except for Remarks2.5, 4.6, and Sect. 5), X
stands for a smooth complex projective variety, and E stands for a holomorphic
vector bundle of rank r over X , and we write E(k) for E ⊗ OX (k) with a very
ample line bundle OX (1); we shall write OX (k) for OX (1)⊗k (k ∈ Z). We assume,
just in order to simplify the exposition, that E does not split into a direct sum of
holomorphic subbundles (i.e. E is irreducible), noting that the reducible case can be
treated similarly by considering each irreducible component.

We fix a Kähler metric ω on X once and for all, in the Kähler class c1(L) where
L = OX (1). We shall also write VolL for the volume

∫
X ωn/n! of X with respect

to ω.
In Sect. 5, we treat the case when X is a singular variety, and its singular locus is

denoted by Sing(X). Likewise, the singular locus of a coherent sheaf E is denoted
by Sing(E). In this paper, the regular locus X reg ⊂ X denotes a further subset of
X \ (Sing(X) ∪ Sing(E)) as given in Definition2.2. We may also write Sing(X, E)

for Sing(X) ∪ Sing(E).
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2 Summary of the Methods Developed in [27, 28]

2.1 Fubini–Study Metrics

We start by recalling the classical Fubini–Study metrics for vector bundles. The
reference is [54] or [38, Chap. 5].

Since OX (1) is very ample, the vector bundle E(k) is globally generated for all
large enough k, so that the sheaf map

ρ : H 0(X, E(k)) ⊗ OX (−k) → E, (2.1)

defined by evaluation at each point, is surjective. In what follows, to streamline the
exposition, we shall further assume k > reg(E), where reg(E) is an integer called the
Castelnuovo–Mumford regularity defined by

reg(E) := inf
k∈Z

{E is k-regular.}

where we recall that E is k-regular if Hi (X, E(k − i)) = 0 for all i > 0 (the existence
of the regularity number is justified by Serre vanishing theorem).

The sheaf surjection (2.1) implies that we have a holomorphic map

� : X → Gr(r, H 0(X, E(k))∨) (2.2)

to the Grassmannian of r -planes in H 0(X, E(k))∨, such that the universal bundle U
over the Grassmannian (i.e. the dual of the tautological bundle) is pulled back by �

to E(k).
A positive definite Hermitian form H on the vector space H 0(X, E(k))∨ naturally

defines a Hermitian metric hF S,H on the universal bundle U over the Grassmannian.
Pulling this backby�weget aHermitianmetric onE(k); fixing a referenceHermitian
metric onOX (1), this means that we get a Hermitian metric that we shall still denote
�∗hF S,H on E . Themetric thus constructed is called the kth Fubini–Study metric on
E defined by the Hermitian form H ; note that this precisely agrees with the classical
Fubini–Study metrics induced by the embedding to the projective space when E is a
line bundle.

The construction above can also bedescribed as follows.Notefirst that anypositive
definite Hermitian form H 0(X, E(k))∨ can be written, up to an overall constant
multiple which does not play an important role in this paper, as σ ∗σ for some σ ∈
SL(H 0(X, E(k))∨). Then, as pointed out by Wang [54, Remark 3.5] (see also [38,
Theorem 5.1.16] and [28, Sect. 2.3]), there exists a C∞-map

Q : E → H 0(X, E(k)) ⊗ C∞
X (−k), (2.3)
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where C∞
X (−k) is the sheaf of smooth sections ofOX (−k), such that the kth Fubini–

Study metric hσ = �∗hF S,σ ∗σ defined by σ ∗σ can be written explicitly as

hσ = Q∗σ ∗σ Q, (2.4)

where Q∗ is the formal adjoint of Q with respect to some fixed reference Hermitian
metrics.

We write Hk for the set of kth Fubini–Study metrics. Noting that the map
SL(H 0(X, E(k))∨) 
 σ �→ hσ = Q∗σ ∗σ Q ∈ Hk factors through
SL(H 0(X, E(k))∨)/SU (Nk) where Nk = dim H 0(X, E(k)), we find that Hk is
parametrised by the homogeneous manifold SL(H 0(X, E(k))∨)/SU (Nk).

Finally, we point out that the above construction works for the singular case that
we treat in Sect. 5, by means of a pointwise argument over the regular locus. Note
that this is not completely obvious from [54, Remark 3.5] as the construction in fact
relies on fixing an L2-inner product on H 0(X, E(k)) which may be divergent in the
singular case. But the pointwise equalities [38, (5.1.41), (5.1.44), (5.1.45) in the proof
of Theorem 5.1.16] easily generalise to the case when the basis under consideration
is not L2-orthonormal, which is all that we need in this paper.

2.2 Quot-Scheme Limit of Fubini–Study Metrics

We recall some key concepts from [28] that we need in what follows, which the
reader is referred to for more details on this section.

Recalling the description of the Fubini–Study metric hσ as in (2.4) by using the
map Q as defined in (2.3), we naturally get a family {hσt }t≥0 of Fubini–Study metrics
defined by a 1-parameter subgroup (1-PS) {σt }t≥0 ⊂ SL(H 0(X, E(k))∨) as

hσt := Q∗σ ∗
t σt Q.

Assuming as we may that σt is generated by a Hermitian element
ζ ∈ sl(H 0(X, E(k))∨) as σt = eζ t , we call the above {hσt }t≥0 the Bergman 1-PS
generated by ζ ∈ sl(H 0(X, E(k))∨); further, when ζ has rational eigenvalues, it is
called the rational Bergman 1-PS.

The main technique developed in [28] is to evaluate the limit of hσt as t → +∞
for ζ ∈ sl(H 0(X, E(k))∨) with rational eigenvalues, in terms of the Quot-scheme
limit. We give a quick summary of it below.

Suppose that ζ ∈ sl(H 0(X, E(k))∨) has eigenvalues w1, . . . , wν ∈ Q, with the
ordering

w1 > · · · > wν. (2.5)

We consider the action of ζ on H 0(X, E(k)) which is not the natural dual action, but
the one that is natural with respect to certain metric duals (see [28, (3.6)] and the dis-
cussion that follows). In any case, such an action gives us the weight decomposition
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H 0(X, E(k)) =
ν⊕

i=1

V−wi ,k

where ζ acts on V−wi ,k via the C∗-action T : C∗ � V−wi ,k defined by T �→ T −wi

(cf. [28, Sect. 3.1]); here we introduced an auxiliary variable T by T := e−t , so that
the limit t → +∞ corresponds to T → 0. The above decomposition naturally leads
to the filtration

V≤−wi ,k :=
i⊕

j=1

V−w j ,k, (2.6)

of H 0(X, E(k)) by its vector subspaces.
Recalling the sheaf surjection (2.1), the filtration (2.6) also gives rise to the one

0 �= E≤−w1 ⊂ · · · ⊂ E≤−wν
= E (2.7)

of E by subsheaves, where E≤−wi is a coherent subsheaf of E defined by the quotient
map

ρ≤−wi : V≤−wi ,k ⊗ OX (−k) → E≤−wi

induced from ρ as defined in (2.1). As in [28, Lemma 3.6], we can modify this
filtration on a Zariski closed subset of X , to get a filtration

0 �= E ′
≤−w1

⊂ · · · ⊂ E ′
≤−wν

= E (2.8)

of E by saturated subsheaves. We say that a filtration is trivial if it is equal to 0 � E .

Remark 2.1 When the eigenvalues w1, . . . , wν of ζ are only real, as opposed to
rational, exactly the same argument applies so as to get the filtration (2.8), with the
only difference being that the grading of the filtration is given by real numbers.

In describing the limit of the Bergman 1-PS {hσt }t≥0, only a certain subset of the
subsheaves in (2.8) matters, in the sense that we only need to consider the subsheaves
in (2.8) such that the associated graded sheaf has a nontrivial rank. More precisely,
following [28, Definition 3.3], we can pick a certain subset

{wα}ν̂
α=1̂

⊂ {wi }νi=1 (2.9)

with {1̂, . . . , ν̂} ⊂ {1, . . . , ν}, bymeans of theQuot-scheme limit as explained below;
what (2.9) precisely means is that the subscript α runs over a subset {1̂, . . . , ν̂} of
{1, . . . , ν}, with the ordering given by 1̂ < 2̂ < · · · < ν̂.

We recall the quotient map (2.1)

ρ : H 0(X, E(k)) ⊗ OX (−k) → E
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for E , and note that its C∗-orbit defined by ζ ∈ sl(H 0(X, E(k))∨) can be written as

ρT := ρ ◦ T ζ : H 0(X, E(k)) ⊗ OX (−k) → E .

If we set
E−wi := E≤−wi /E≤−wi−1 , (2.10)

we can consider the coherent sheaf
⊕ν

i=1 E−wi that comes with the map

ρ̂ : H 0(X, E(k)) ⊗ OX (−k) =
ν⊕

i=1

V−wi ,k ⊗ OX (−k) →
ν⊕

i=1

E−wi ,

defined by the direct sum of sheaf maps V−w j ,k ⊗ OX (−k) → E≤−wi → E−wi . It is
well-known that ρ̂ defined as above is equal to limit of ρT in the Quot-scheme under
the C∗-action T ζ [29, Lemma 4.4.3]. The subset {1̂, . . . , ν̂} in (2.9) consists of the
indices i such that rk(E−wi ) > 0 (see also [28, Definition 3.3]). It turns out that 1̂ = 1
(see [28, Remark 3.4]), and the reader is referred to [28, Sect. 3] for more details.

We shall often argue over a certain Zariski open subset of X as defined below.

Definition 2.2 Wedefine X reg be theZariski open subset of X overwhich the sheaves
E≤−wi in (2.7) and E/E≤−wi are all locally free [28, Definition 3.5], and such that
each E≤−wi agrees with the saturated subsheaf E ′≤−wi

in (2.8).

For each α ∈ {1̂, . . . , ν̂} in (2.9), the quotient sheaf E−wα
= E≤−wα

/E≤−wα−1 is
locally free over X reg (and agrees as a C∞-vector bundle with the quotient vector
bundle of E≤−wα

by E≤−wα−1 ; see [28, discussion following Definition 3.5]).
The definition (2.10) of E−wi , combined with the above definition of X reg, we get

a C∞-isomorphism

E ∼→
ν̂⊕

α=1̂

E−wα
(2.11)

of smooth complex vector bundles over X reg [28, (3.8)]. Moreover, we have a gauge
transformation on

⊕ν̂

α=1̂ E−wα
over X reg by the constant endomorphism

ewt := diag(ew1̂t , · · · , ewν̂ t ), (2.12)

with ewα t acting on the factor E−wα
.

An important observation is that the map Q∗, defined as the formal adjoint of Q
(2.3) as

Q∗ : H 0(X, E(k))∨ ⊗ C∞
X (−k)∨ → E∨,

can be regarded as a C∞-version of the quotient map ρ (2.1), up to taking the metric
dual in the domain and the range [28, Lemma 2.22]. This seems to suggest that the
limit of the Bergman 1-PS {hσt }t≥0 as t → +∞ can be related to the Quot-scheme
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limit
⊕ν̂

α=1̂ E−wα
, up to the metric duality isomorphism E ∼→E∨ (as a C∞-vector

bundle), and indeed it is the main technical result that was established in [28]. More
precisely, we define a Hermitian metric on E |X reg by

ĥσt := e−wt hσt e
−wt , (2.13)

with (2.11) understood, which we call the renormalised Bergman 1-PS associated
to σt [28, Definition 3.10]. An important fact is that this 1-PS is convergent in C∞

loc
over X reg [28, Proposition 3.9], and we call the limit

ĥ := lim
t→+∞ e−wt hσt e

−wt (2.14)

the renormalised Quot-scheme limit of hσt [28, Definition 3.10], which is positive
definite over X reg [28, Lemma 3.12].

Proposition 2.3 (see [28, Proposition 3.9 and Lemma 3.12]) The renormalised
Bergman 1-PS converges in C∞

loc over X reg as t → +∞, and its limit defines a well-
defined Hermitian metric on E via (2.11) over X reg.

The above limit (2.14) is only defined on a Zariski open subset X reg of X , and
may well be degenerate on X \ X reg. In spite of this drawback, we can evaluate the
degeneracy of ĥ by comparing Q∗ with ρ and by using the resolution of singularities.
The argument is technical, but can be carried out by using the methods in Jacob [30]
and Sibley [46], which occupies a large portion of the technical argument in [28,
Sect. 4].

Remark 2.4 Throughout in what follows, we shall assume that the operator norm
(i.e. the modulus of the maximum eigenvalue) of ζ is at most 1, as pointed out in
[28, Remark 3.2].

Remark 2.5 Inspection of [28] reveals that almost all the arguments so far carry
over word-by-word to the case when X is a (not necessarily smooth) projective
variety and when E is a torsion-free sheaf, by considering Hermitian metrics on
X \ (Sing(X) ∪ Sing(E)) instead of X ; the only exception is that the map � in
(2.2) needs to be replaced by a rational map that is well-defined on X \ Sing(E).
This means that X reg as in Definition2.2 should be replaced by the Zariski open
subset in X excluding all the singular sets of sheaves E≤−wi and E/E≤−wi and that
of the background data, i.e. Sing(X) ∪ Sing(E). In the arguments later (except for
Remark4.6 and Sect. 5), however, it will be important that X is smooth.

2.3 The Non-Archimedean Donaldson Functional

We recall an important functional defined by Donaldson [14]. Let H∞ be the set of
all smooth Hermitian metrics on E .
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Definition 2.6 Given two Hermitian metrics h0 and h1 on E , the Donaldson func-
tional MDon : H∞ × H∞ → R is defined as

MDon(h1, h0) := MDon
1 (h1, h0) − μ(E)MDon

2 (h1, h0),

where

MDon
1 (h1, h0) :=

∫ 1

0

∫

X
tr

(
h−1

t ∂t ht · Ft
) ωn−1

(n − 1)!dt

and

MDon
2 (h1, h0) := 1

VolL

∫

X
log det(h−1

0 h1)
ωn

n! ,

with

μ(E) :=
∫

X c1(E) ∧ ωn−1/(n − 1)!
rk(E)

.

In the above, {ht }0≤t≤1 ⊂ H∞ is a smooth path of Hermitian metrics between h0

to h1 and Ft denotes (
√−1/2π ) times the Chern curvature of ht , with respect to the

holomorphic structure of E .
Remark 2.7 Throughout in what follows, we shall fix the second argument of the
Donaldson functional as a reference metric. Thus MDon(h, h0) is regarded as a
function of h with a fixed reference metric h0.

The critical point of the Donaldson functional is the Hermitian–Einstein metric.
An important property of theDonaldson functional is that it is convex along geodesics
inH∞, with an appropriate notion of geodesics inH∞; see [14, 33] for more details.
Thus, the existence of the critical point of the Donaldson functional can be, at least
conceptually, characterised by the positivity of its asymptotic slope. The main result
of [28] is the explicit description of the asymptotic slope of the Donaldson functional
along the rational Bergman 1-PS by means of the algebro-geometric data. While the
Bergman 1-PS is not a geodesic in H∞, it turns out that it is a subgeodesic in H∞
(Corollary4.5).

We now recall the non-Archimedean Donaldson functional from [28], defined
for a rational Bergman 1-PS generated by ζ ∈ sl(H 0(X, E(k))) which is Hermitian
(with respect to a fixed Hermitian form as described in [28, Sect. 3.1]). Writing
w1, . . . , wν ∈ Q for the weights of ζ as in (2.5), we choose j (ζ, k) ∈ N to be the
minimum integer so that

j (ζ, k)wi ∈ Z (2.15)

for all i = 1, . . . , ν. Writing w̄i := j (ζ, k)wi , we may replace the filtration (2.8) by

0 �= E ′
≤−w̄1

⊂ · · · ⊂ E ′
≤−w̄ν

= E (2.16)

which is graded by integers. With this understood, the following was defined in [28,
Definition 5.3].
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Definition 2.8 The non-Archimedean Donaldson functional MNA(ζ, k) is a
rational number defined for ζ ∈ sl(H 0(X, E(k))) Hermitian with rational eigenval-
ues as

MNA(ζ, k) := 2

j (ζ, k)

∑

q∈Z
rk(E ′

≤q)
(
μ(E) − μ(E ′

≤q)
)
.

We recall, in the above, that the slope of a (necessarily torsion-free) subsheaf
F ⊂ E on X is defined by

μ(F) := deg(F)

rk(F)
,

where, by noting that detF :=
(∧rk(F) F

)∨∨
is a holomorphic line bundle on X [33,

Proposition 5.6.10], the degree is given bydeg(F) := ∫
X c1(detF) ∧ c1(OX (1))n−1/

(n − 1)!.
We can also define [27, Definition 4.1] a rational number JNA(ζ, k) for ζ ∈

sl(H 0(X, E(k))) with rational eigenvalues by

JNA(ζ, k) := max
α,β∈{1̂,...,ν̂}

|wα − wβ | (2.17)

where we recall (2.9) for the definition of 1̂, . . . , ν̂. We can easily show [27, Remark
4.2] that JNA(ζ, k) = 0 if and only if the corresponding filtration (2.8) is trivial,
i.e. equals 0 � E .

An elementary yet important fact is that the positivity ofMNA(ζ, k) is equivalent
to the slope stability of E , as stated in the following.

Proposition 2.9 (see [28, Proposition 7.4]) The non-Archimedean Donaldson func-
tional MNA(ζ, k) is positive (resp. nonnegative) for all k ∈ N such that E(k) is glob-
ally generated and all ζ ∈ sl(H 0(X, E(k))∨), with rational eigenvalues, whose asso-
ciated filtration (2.8) is nontrivial, if and only if E is slope stable (resp. semistable),
i.e. for any subsheaf F of E with 0 < rk(F) < rk(E) we have

μ(E) > μ(F), (resp. μ(E) ≥ μ(F)).

This can be proved by an argument similar to the proof of Proposition6.1 which
is presented later (see also [28, Sect. 6]).

Remark 2.10 When E splits into a direct sum of holomorphic vector subbundles,
the right notion to consider is the slope polystability: E = ⊕

1≤l≤m El is said to be
slope polystable if each direct summand El is slope stable and μ(El1) = μ(El2) for
all 1 ≤ l1, l2 ≤ m.
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2.4 Summary of Results in [27, 28]

We now recall the main results of [28] as follows.

Theorem 2.11 (see [28, Theorems 7.2, 7.3, and Corollary 7.5]) There exists a
constant ck > 0 that depends only on the reference metric href ∈ H∞ and k ∈ N

such that
MDon(hσt , href) ≥ MNA(ζ, k)t − ck (2.18)

holds for all t ≥ 0 and all Hermitian ζ ∈ sl(H 0(E(k))∨) with rational eigenvalues.
We can further show that

MDon(hσt , href) = MNA(ζ, k)t + O(1), (2.19)

where O(1) stands for the term that remains bounded as t → +∞, i.e MDon has
log norm singularities along any rational Bergman 1-PS. In particular, we have

lim
t→+∞

MDon(hσt , href)

t
= MNA(ζ, k),

which shows that MNA(ζ, k) is the term that controls the asymptotic behaviour of
MDon(hσt , href).

Another way of stating the property (2.18) is to say that MDon is coercive
(resp. bounded from below) along rational Bergman 1-PS if E is slope stable
(resp. slope semistable), see [28, Sect. 7].

The corollary of the above result is that we can show that the existence of the
Hermitian–Einstein metrics implies E is slope stable [28, Sect. 7]. It may also be
worth noting that the analysis used to prove the above results is elementary, cf. [28,
Sect. 4].

The reverse direction of the correspondence was discussed in [27]. Writing Hk

for the set of kth Fubini–Study metrics, we have a natural inclusion Hk ⊂ H∞ for
each k. While Hk is a “small” subset of H∞ parametrised by a finite dimensional
homogeneous manifold SL(H 0(X, E(k))∨)/SU (Nk), it turns out that the union of
Hk’s is dense inH∞ with respect to the C p-topology (for any fixed p ∈ N), i.e.

H∞ =
⋃

k∈N
Hk . (2.20)

This fact follows from a foundational result in Kähler geometry, called the asymp-
totic expansion of the Bergman kernel, which is also called the Tian–Yau–Zelditch
expansion, and is essentially a theorem in analysis. We do not give a detailed account
of this result, and refer the reader to [9, 55]; note that several proofs have beenwritten
especially when E has rank one (see e.g. the book [38] and references therein). An
elementary proof can be found in [1].
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Themain result of [27] is that, if weassume that a uniformversionofTheorem2.11
holds, we can prove that the slope stability implies Hermitian–Einstein metrics by
only using elementary analysis except for the asymptotic expansion of the Bergman
kernel. The precise statement is as follows.

Theorem 2.12 (see [27, Theorem1]) Suppose that the estimate in the theorem above
holds uniformly in k, i.e.

MDon(hσt , href) ≥ MNA(ζ, k)t − cref

for a constant cref > 0 that depends only on the reference metric. Then we can prove
that the stability implies the existence of the Hermitian–Einstein metric by using
only elementary analytic methods except for H∞ = ⋃

k∈N Hk in (2.20) which is a
consequence of the asymptotic expansion of the Bergman kernel.

The hypothesis of the above theorem will be satisfied if the constant ck in Theo-
rem2.11 can be bounded uniformly in k, but we do not discuss this point further as
it seems to be a difficult problem; see also [27, Sect. 5.1].

3 Comparison to the Case of the Yau–Tian–Donaldson
Conjecture

3.1 Dictionary Between Vector Bundles and Manifolds

The methods and results summarised above are motivated by the recent progress on
the Yau–Tian–Donaldson conjecture, surveyed e.g. in [5, 11, 21, 49], and it seems
reasonable to have a table of correspondence between the vector bundles case and
the varieties case. Indeed, our approach in [28] can be regarded as a vector bundle
version of the results concerning the Yau–Tian–Donaldson conjecture as established
e.g. in [4, 5, 7, 8, 41, 42]. For example, one of our main results Theorem2.11
(or rather its consequence (2.19)) can be regarded as a vector bundle version of a
result by Boucksom–Hisamoto–Jonsson [8], Paul [41], and Phong–Ross–Sturm [42]
(amongst many other related results).

It is well-known that the role played by theMabuchi energy in the case of varieties
is almost exactly the same as that of the Donaldson functional in the case of vector
bundles; the critical point of these functionals are precisely the canonical metrics,
and both of them are convex along geodesics in the space of metrics (although the
convexity for the Mabuchi energy is a much more subtle issue due to the weaker
regularity of the geodesics in the space of Kähler potentials [3, 10]). It is also well-
known that the maximally destabilising subsheaf for vector bundles corresponds to
the optimal destabilising test configuration. We list below (Table1) how the objects
reviewed in Sect. 2.2 correspond to the ones in the case of varieties, i.e. study of
constant scalar curvature Kähler and Kähler–Einstein metrics.
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Table 1 Dictionary

Vector bundles Manifolds

Filtration E ′≤−w1
⊂ · · · ⊂ E ′≤−wν

(2.8) of E Test configuration [17, 50]

The graded object
⊕ν̂

α=1̂
E−wα of the filtration Central fibre of a test configuration

k ≥ reg(E) in H0(X, E(k)) Exponent of a test configuration

Non-Archimedean Donaldson functional
(Definition2.8)

Non-Archimedean Mabuchi functional ([41],
[8, Sect. 5])

JNA(ζ, k) in (2.17) Non-Archimedean J -functional or the
minimum norm [7, 12]

It is well-known in the case of varieties that a test configuration defines a sub-
geodesic in the space of Kähler metrics (see e.g. [2, 8]). In Sect. 4 we provide a vector
bundle version of this result in Corollary4.5.

Another important topic in the study of constant scalar curvature Kähler and
Kähler–Einstein metrics is what is known as Donaldson’s quantisation, which can be
regarded as a finite dimensional approximation of the canonical metric by a sequence
of balanced metrics [16]. The vector bundle version of this result was established by
Wang [55]. He also proved that the existence of the balanced metrics is equivalent
to the Gieseker stability of the vector bundle [54], where we note that the analogous
result for the varieties case is due to Luo [37] and Zhang [57].

In Sect. 5, we apply the method of the Quot-scheme limit of Fubini–Study metrics
that we reviewed in Sect. 2 to give a generalisation of this result. The dictionary also
extends to the balancing flow for manifolds defined in [16, 23] and for the bundle
version in [31]. The first one provides a quantisation of the Calabi flow while the
second one provides a quantisation of the Yang–Mills flow.

On a Fano manifold (without nontrivial holomorphic vector field), the behaviour
of Mabuchi energy restricted to Fubini–Study metrics of level k0 (for a certain k0
sufficiently large) is sufficient to test K -stability. Actually, building on the partial
C0 estimate from Székelyhidi [47] solving a conjecture of Tian and the work Paul
[41] about CM-stability, Boucksom–Hisamoto–Jonsson [8] get that coercivity of the
Mabuchi energy on the space of positive metrics implies uniform K -stability and
thus the existence of a Kähler–Einstein metric by Chen–Donaldson–Sun. Moreover,
as explained in the discussion after [40, Theorem 2.9] or [35, page 3], in order to test
K -stability it is sufficient to work with 1-PS degenerations in a fixed projective space
(induced by the space of holomorphic section of a fixed power of the anticanonical
bundle). This is actually a consequence of Chen–Donaldson–Sun too. Then the fact
that it is sufficient to consider a fixed k0 is a consequence of [8, Theorem C] (more
precisely (i) ⇒ (i i) which can be obtained from Theorem A and the equivalence
(i i) ⇔ (i i i)). Eventually, Sect. 6 is addressing the counterpart of this result for the
Mabuchi energy to the bundle case for the Donaldson functional.



Quot-Scheme Limit of Fubini–Study Metrics and Its Applications … 293

Remark 3.1 We have not yet found an appropriate analogue of the J -functional for
vector bundles, while the quantity JNA(ζ, k) defined in (2.17) does seem to play a
role analogous to the non-Archimedean J -functional.

3.2 Comments on the Deligne Pairing

While our results can be regarded as a vector bundle version of the results by
Boucksom–Hisamoto–Jonsson [8], Paul [41], or Phong–Ross–Sturm [42], the proof
is not a naive transplantation of the methods used therein. Our method relies on the
materials reviewed in Sect. 2.2, whereas the Deligne pairing (resp. the Bott–Chern
class) plays a crucially important role in [8, 42] (resp. [41]).

The method of the Deligne pairing was not used extensively in establishing the
results in [27, 28], unlike in [8, 42]. We look at the Donaldson functional from the
point of view of the Deligne pairing in this section, but the result we get is not as
clear-cut as [8, Sect. 1.5]; the difficulty seems to arise from the fact that there is no
explicit formula for the second Bott–Chern class yet (which seems to indicate the
difficulty in naively transplanting Paul’s argument [41] to vector bundles).

In this paper we do not give detailed definitions concerning the Deligne pairing,
since we only focus on the very special case; the reader is referred for its proper
treatment e.g. to [8, Sect. 1.2], [20, 39], or [42, Sect. 2] and the references cited
therein. The only Deligne pairing that we use in this paper is for the (trivial) flat
projective morphism π : X → pt which maps X to a point. For holomorphic line
bundles L1, . . . , Ln+1 we can define theDeligne pairing line bundle 〈L1, . . . , Ln+1〉X

over the point (i.e. a C-vector space). Given Hermitian metrics φ1, . . . , φn+1 on
L1, . . . , Ln+1 we can furthermore define a continuous metric 〈φ1, . . . , φn+1〉X on
〈L1, . . . , Ln+1〉X .Moreover, the construction is “functorial” in the sense as explained
in the references cited above. When we give another Hermitian metric φ1 on L1, we
have the change of metric formula (see e.g. [8, (1.5)] or [42, (2.5)])

〈φ1 − φ′
1, . . . , φn+1〉X =

∫

X
(φ1 − φ′

1)ηφ2 ∧ · · · ∧ ηφn+1

where ηφi is the curvature form of φi (i = 2, . . . , n + 1), and the additive notation
is used to denote the tensor product of Hermitian metrics. In what follows, we shall
consider the Deligne pairing for the case L2 = · · · = Ln+1 = L . It is well-known
that many important functionals that appear in the study of constant scalar curvature
Kähler or Kähler–Einstein metrics can be written as a change of metric formula of
an appropriate Deligne pairing line bundle (cf. [8, Sect. 1.5]). An analogous result
holds for the vector bundle case, as stated below.

Proposition 3.2 There exists a Q-line bundle L on X such that c1(L) = �ch2(E),
where � is the adjoint Lefschetz operator on H∗(X, C), such that the Donaldson
functional MDon can be written as a change of metric formula
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〈ψ1 − ψ0, φ, . . . , φ〉X − μ(E)

VolL
〈det h1 − det h0, φ, . . . , φ〉X

for the Deligne pairing

〈L, L , . . . , L〉X − μ(E)

VolL
〈det E, L , . . . , L〉X ,

which is a Q-line bundle over a point, where we wrote φ for the Hermitian metric
on L whose associated Kähler form is ω, and ψ1 (resp. ψ0) is a certain Hermitian
metric on L which depends on h1 (resp. h0).

In terms of the Fubini–Study metrics that we discussed earlier, the right family to
look at should be Y := X × SL(H 0(X, E(k))∨) with the flat projective morphism
π : Y → SL(H 0(X, E(k))∨) defined by the second projection, as opposed to the
trivial π : X → pt, but we get an analogous result for this case by the functoriality
of the Deligne pairing.

Proof It is well-known [14, Sect. 1.2] that the Donaldson functional

MDon(h1, h0) = MDon
1 (h1, h0) − μ(E)MDon

2 (h1, h0)

can be written in terms of the Bott–Chern characteristic forms, with

MDon
1 (h1, h0) =

∫

X
BC2(E, h1, h0) ∧ ωn−1

(n − 1)! ,

and

MDon
2 (h1, h0) =

∫

X
BC1(E, h1, h0) ∧ ωn

n! ,

where the Bott–Chern characteristic forms BCi (E, h1, h0) (i = 1, . . . , n) are a col-
lection of certain secondary characteristic forms, defined modulo ∂- and ∂̄-exact
forms, such that

−√−1∂∂̄BCi (E, h1, h0) = chi (E, h1) − chi (E, h0),

where chi (E, h) stands for the i th term of the Chern character form

ch(E, h) =
n∑

i=1

chi (E, h) = tr (exp (Fh))

where Fh is
√−1/2π times the curvature form of h. While it is easy to see

BC1(E, h1, h0) = log det h1h−1
0 , an explicit formula for BC2(E, h1, h0) does not

seem to be known yet. See [14, 48, 51] for more details on the above.
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We now write � for the adjoint Lefschetz operator ∗−1(ω ∧ ·)∗ on differential
forms on X , defined with respect to ω, where ∗ is the Hodge star operator with
respect to ω. Note also that the adjoint Lefschetz operator on 2-forms equals the
metric contraction by ω. We find

MDon
1 (h1, h0) =

∫

X
�BC2(E, h1, h0)

ωn

n! .

Recalling the well-known Kähler identities [53, Proposition 6.5]

(1) [�, ∂̄] = −√−1∂∗,
(2) [�, ∂] = √−1∂̄∗,

we find, modulo ∂- and ∂̄-exact forms, that

√−1∂∂̄�BC2(E, h1, h0)

= √−1
(
�∂∂̄ − √−1∂̄∗∂̄ + √−1∂∂∗

)
BC2(E, h1, h0)

= �(tr(F2
h1

) − tr(F2
h0

)) + �∂̄BC2(E, h1, h0) mod im∂ + im∂̄ .

Note that the second term involving the Laplacian, as well as the ∂- and ∂̄-exact
forms, vanish under the integration.

Now, as in [8], we would like to regard MDon(h1, h0) as a change-of-metric
formula for the Deligne pairing. It is easier to deal with MDon

2 , since it can be
written manifestly as a change of metric formula

1

VolL
〈det h1 − det h0, φ, . . . , φ〉X

on the line bundle 1
VolL

〈det E, L , . . . , L〉X over the point.

We considerMDon
1 (h1, h0). Let L be a holomorphic line bundle on X defined as

follows. Recalling that � induces an operator on the cohomology ring
H∗(X, Z)/torsion, since [ω] = c1(L) is an integral cohomology class, we find that
�ch2(E) defines a closed real rational (1, 1)-form on X , which in turn can be realised
as the first Chern class of a holomorphic Q-line bundle L by the Lefschetz (1, 1)-
theorem (see e.g. [53, Theorem 7.2]). This is the line bundle that we are after, which
is well-defined up to an element of the Picard variety of X .

Let hL be a reference Hermitian metric on L. We then define a Hermitian met-
ric e−ψ1hL so that its curvature form is equal to �ch2(E, h1) = �tr(F2

h1
), mod-

ulo im(∂) + im(∂̄) + im(�∂̄). We can always find such ψ1 by solving Laplace’s
equation, which depends on h1, since �tr(F2

h1
) is a de Rham representative of

c1(L) = �ch2(E). Likewise we define ψ0 so that the curvature form of e−ψ0hL
is equal to �ch2(E, h0) = �tr(F2

h0
), modulo im(∂) + im(∂̄) + im(�∂̄). �
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As we can see in the proof above, the dependence of ψi on hi (i = 1, 2) is not
straightforward; it seems this is partially because no explicit formula is known for
the second Bott–Chern class BC2(E, h1, h0).

Remark 3.3 While it is difficult to explicitly write down L in terms of E as pointed
out in the above, we can be slightly more specific about it by recalling the Lefschetz
decomposition of H∗(X, C) [53, Theorem 6.4]. This implies that ch2(E) can be
written uniquely as

ch2(E) = aL2
ω · 1 + Lω · η1 + η2

where a ∈ Q, Lω is the operator defined by [ω] ∧ ·, and η1, η2 are primitive forms,
i.e.�ηi = 0 for i = 1, 2. Awell-known result in Kähler geometry [53, Lemma 6.19]
says [Lω,�] = (k − n)id on real k-forms. Applying this, we have

�L2
ω · 1 = (Lω(Lω� − n) − (2 − n)Lω) · 1 = −2Lω · 1

�Lω · η1 = −(2 − n)η1

and hence
�ch2(E) = −2a[ω] − (2 − n)η1,

which implies
c1(L) = −2a[ω] − (2 − n)η1.

4 Bergman 1-Parameter Subgroups as Subgeodesics

In the above dictionary (Table1) we saw that a 1-PS in the Quot-scheme can be
regarded as a test configuration for vector bundles. In the case of varieties, it is
well-known that test configurations define subgeodesics (see e.g. [2, Sect. 2.4] or
[8, Sect. 3.1]). In this section we prove that an analogous result holds for the vector
bundle case. We start by recalling [33, Sect. 6.2] that the geodesic (with respect to
the natural L2-metric onH∞) is a piecewise C1-family {ht }t≥0 of smooth Hermitian
metrics satisfying

∂t (h
−1
t ∂t ht ) = 0.

Thus, we aim to prove that we have

∂t (h
−1
σt

∂t hσt ) ≥ 0

for a Bergman 1-PS {σt }t≥0. A more precise statement can be found in Proposi-
tion4.3. The proof is given by re-writing ∂t (h−1

σt
∂t hσt ) in an appropriate manner,

which occupies most of what follows.
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Let σt = eζ t for a trace-free Hermitian matrix ζ , and write u := ζ ∗ + ζ = 2ζ .
Recalling the notation (2.3) and (2.4), we compute ∂t (h−1

σt
∂t hσt ) as

∂t ((Q∗σ∗
t σt Q)−1(∂t Q∗σ∗

t σt Q)) = ∂t ((Q∗σ∗
t σt Q)−1Q∗σ∗

t uσt Q) (4.1)

= (Q∗σ∗
t σt Q)−1Q∗σ∗

t u2σt Q − (Q∗σ∗
t σt Q)−1Q∗σ∗

t uσt Q(Q∗σ∗
t σt Q)−1Q∗σ∗

t uσt Q.

Our aim is to simplify this expression. We start with the following lemma.

Lemma 4.1 Any two of Q∗σ ∗
t σt Q, Q∗σ ∗

t uσt Q, Q∗σ ∗
t u2σt Q pairwise commute.

In the above statement, Q∗σ ∗
t σt Q, Q∗σ ∗

t uσt Q, Q∗σ ∗
t u2σt Q are regarded as Her-

mitian endomorphisms on E by fixing a Q∗Q-orthonormal frame for E . In what
follows, we shall also write href for Q∗ Q.

Proof We may fix a point x ∈ X once and for all, and work on the fibre Ex over
x . Choosing an orthonormal frame of Ex with respect to the reference Hermitian
metric href = Q∗ Q, we may assume Q∗Q = Ir , where Ir is the r × r identity
matrix. Further, by choosing an appropriate basis for H 0(E(k)), we may assume

that we can write Q∗ = (
Ir 0

)
and Q =

(
Ir

0

)

with respect to a certain decomposi-

tion H 0(E(k)) = Vr ⊕ VN−r .
Suppose that we have two Hermitian matrices P1 and P2, which can be written as

P1 =
(

A1 B1

C1 D1

)

and P2 =
(

A2 B2

C2 D2

)

with respect to the above block decomposition.

Then

Q∗
(

A1 B1

C1 D1

)

Q Q∗
(

A2 B2

C2 D2

)

Q = Q∗
(

A1 B1

C1 D1

)(
Ir 0
0 0

) (
A2 B2

C2 D2

)

Q

= (
Ir 0

)
(

A1A2 A1B2

C1A2 C1B2

) (
Ir

0

)

= A1A2.

Thus, to prove commutativity of Q∗ P1Q and Q∗ P2Q, it suffices to show A1A2 =
A2 A1, which is in turn equivalent to showing that U ∗

r A1Ur commutes with U ∗
r A2Ur

for some r × r unitary matrix Ur .
Recalling that ζ = ζ ∗ andσt = eζ t , we find thatσ ∗

t σt ,σ ∗
t uσt ,σ ∗

t u2σt are all simul-
taneously diagonalisable, and hence they commute. For the choice of the subspace
Vr ≤ H 0(E(k)) as above, we have Hermitian forms on Vr defined by restriction of
σ ∗

t σt ,σ ∗
t uσt , andσ ∗

t u2σt ; these are thematrices denoted by At , A′
t , A′′

t in the formulae
below:

σ ∗
t σt =

(
At Bt

Ct Dt

)

, σ ∗
t uσt =

(
A′

t B ′
t

C ′
t D′

t

)

, σ ∗
t u2σt =

(
A′′

t B ′′
t

C ′′
t D′′

t

)

,

where the block decomposition is in terms of H 0(E(k)) = Vr ⊕ VN−r . By writing
down a basis for Vr in terms of the diagonalising basis for ζ , we find that all the three
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Hermitian forms (or, more precisely, the associated Hermitian endomorphisms) At ,
A′

t , A′′
t on Vr thus defined pairwise commute; note that such a basis for Vr can be

given by a one that is unitarily equivalent to the one we started with. Thus, combined
with the general argument above, for each fixed x ∈ X , we find that all of Q∗σ ∗

t σt Q,
Q∗σ ∗

t uσt Q, Q∗σ ∗
t u2σt Q pairwise commute at Ex . Since this holds for all x ∈ X

and Q∗σ ∗
t σt Q, Q∗σ ∗

t uσt Q, Q∗σ ∗
t u2σt Q are tensorial, we conclude the required

commutativity among them. �
The following definition, artificial as it may seem, plays an important role.

Definition 4.2 For a kth Fubini–Study metric hσt we define F(hσt ) ∈
HomC∞

X
(E, H 0(E(k)) ⊗ C∞

X ) as

F(hσt ) =
(

dσt

dt
Q − σ Q

(
h−1

σt
∂t hσt

)
)

h−1/2
σt

,

where h−1/2
σt (regarded as a Hermitian endomorphism on E) is defined fibrewise with

respect to the href -orthonormal frame.

Note that F(hσt ), a fibrewise N × r matrix varying smoothly in x , is a tensorial
quantity since h−1/2

σt is tensorial.

Proposition 4.3 For F(hσt ) defined as above, we have

∂t (h
−1
σt

∂t hσt ) = F(hσt )
∗F(hσt ) ≥ 0,

where F(hσt )
∗ is the (fibrewise) conjugate transpose of F(hσt ) with respect to href ,

and the inequality is that of the fibrewise Hermitian form.

Remark 4.4 The weak form of the above proposition tr(∂t (h−1
σt

∂t hσt )) ≥ 0 is due
to Phong–Sturm [43, Lemma 2.2] and this was used to prove the convexity of the
balancing energy (see Wang [54, Lemma 3.5] and also Lemma5.7).

The proposition above immediately implies the following result.

Corollary 4.5 The Bergman 1-PS define a subgeodesic in the space of Hermitian
metrics.

Proof of Proposition 4.3 Fixing an href -orthonormal frame to identify Hermitian
forms and endomorphisms, we compute

(
Q∗σ ∗

t u − (Q∗σ ∗
t σt Q)−1(Q∗σ ∗

t uσt Q Q∗σ ∗
t )

)

× (
uσt Q − (σt Q Q∗σ ∗

t uσt Q)(Q∗σ ∗
t σt Q)−1

)

= Q∗σ ∗
t u2σt Q

− (Q∗σ ∗
t uσt Q)2(Q∗σ ∗

t σt Q)−1 − (Q∗σ ∗
t σt Q)−1(Q∗σ ∗

t uσt Q)2

+ (Q∗σ ∗
t σt Q)−1(Q∗σ ∗

t uσt Q)(Q∗σ ∗
t σt Q)(Q∗σ ∗

t uσt Q)(Q∗σ ∗
t σt Q)−1

= Q∗σ ∗
t u2σt Q − (Q∗σ ∗

t uσt Q)(Q∗σ ∗
t σt Q)−1(Q∗σ ∗

t uσt Q),
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where we used Lemma4.1 in the last equality. We recall the Eq. (4.1) and apply
(Q∗σ ∗

t σt Q)−1 from the left to get the claimed result

∂t (h
−1
σt

∂t hσt )

= (Q∗σ∗
t σt Q)−1Q∗σ∗

t u2σt Q − (Q∗σ∗
t σt Q)−1Q∗σ∗

t uσt Q(Q∗σ∗
t σt Q)−1Q∗σ∗

t uσt Q

= (Q∗σ∗
t σt Q)−1/2

(
Q∗σ∗

t u − (Q∗σ∗
t σt Q)−1(Q∗σ∗

t uσt Q Q∗σ∗
t )

)

×
(

uσt Q − (σt Q Q∗σ∗
t uσt Q)(Q∗σ∗

t σt Q)−1
)

(Q∗σ∗
t σt Q)−1/2,

where in the last line we used the fact that (Q∗σ ∗
t σt Q)−1 is positive definite

Hermitian, and hence (Q∗σ ∗
t σt Q)−1/2, defined with respect to the fixed href -

orthonormal frame, commutes with Q∗σ ∗
t σt Q, Q∗σ ∗

t uσt Q, and Q∗σ ∗
t u2σt Q, again

by Lemma4.1. �

An interesting question is to consider when we have F(hσt ) = 0, for which
∂t (h−1

σt
∂t hσt ) = 0. Note that F(hσt ) = 0 is equivalent to

ζ Q = Q
(
h−1

σt
∂t hσt

)

since σt commuteswith ζ . By taking the fibrewiseHermitian conjugate, this is further
equivalent to

Q∗ζ = (
h−1

σt
∂t hσt

)
Q∗

by noting that ζ and hσt are both Hermitian. This means that the operatorF captures
the failure of commutativity of the following diagrams:

E

Q

h−1
σt

∂t hσt E

Q

H 0(E(k))
ζ

H 0(E(k)),

E
h−1

σt
∂t hσt E

H 0(E(k))

Q∗

ζ
H 0(E(k)).

Q∗

An example of when it happens is when E splits in a direct sum of holomorphic
vector bundles E = ⊕

i Ei and ζ acts as a constant scalar multiplication on each
H 0(Ei (k)). Whether this is the only case when the above diagrams commute may be
an interesting problem, but we do not touch on it in this paper.

Remark 4.6 The argument above being local, the same result holds over the non-
singular locus X \ (Sing(X) ∪ Sing(E)) of X even when X is a singular variety and
E is a torsion-free sheaf.
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5 Gieseker Stability and Balanced Metrics

In this section, we apply themethod of the Quot-scheme limit as surveyed in Sect. 2.2
to provide a variational characterisation of the Gieseker stability of a torsion-free
sheaf on a Q-Gorenstein log terminal projective variety (Theorem5.8); this gener-
alises the result first proved by Wang [54] for holomorphic vector bundles over a
smooth projective variety (with an alternative proof given by Phong–Sturm [43]).
While this can be seen as an application of materials in Sect. 2.2 to the singular case,
as pointed out in Remark2.5, the method of our proof is new even for the regular case
considered by [43, 54], in that it does not use the Chow-type norm of the Gieseker
point, which was an essential ingredient of the proofs in [43, 54]. Instead, in our
proof presented below, the inequality for the Gieseker stability appears explicitly
as the positivity of the asymptotic slope of the appropriate energy functional (see
Proposition5.9).

Remark 5.1 It is perhaps worth pointing out that a related argument was carried out
in the papers by García-Fernandez–Keller–Ross [24] and García-Fernandez–Ross
[25], for the special case when the filtration is a two-step filtration defined by a
saturated subsheaf of E .

5.1 Variational Formulation of the Problem

We start by recalling the Gieseker stability.

Definition 5.2 (Gieseker stability) A torsion-free sheaf E is said to be Gieseker
stable if the following inequality

PE(k)

rk(E)
>

PF (k)

rk(F)
for k � 0,

holds for all coherent subsheavesF ⊂ E with 0 < rk(F) < rk(E), where the Hilbert
polynomial PG(k) for a coherent sheaf G on X is defined by PG(k) :=∑n

i=0 hi (X,G(k)). Gieseker semistability (resp. polystability) can be defined analo-
gously to the slope semistable (resp. polystable) case asmentioned in Proposition2.9.

The energy functional that we need to consider in this section is the following,
which appeared in [43, 54]; we first present the version for a holomorphic vector
bundle on a smooth variety.

Definition 5.3 Let X be a smooth projective variety and E be a holomorphic vector
bundle on X . The functional

MDon
2 : SL(H 0(X, E(k))∨)/SU (Nk) → R
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is defined by

MDon
2 (σ ) = 1

VolL

∫

X
log det(hσ h−1

ref )
ωn

n! ,

where hσ = Q∗σ ∗σ Q is the Fubini–Study metric defined (as in (2.4)) by the Hermi-
tian form σ ∗σ on H 0(X, E(k)) by σ ∈ SL(H 0(X, E(k))∨), andwe take the reference
metric href to be Q∗ Q.

In the above definition and in what follows, we identify an element
σ ∈ SL(H 0(X, E(k))∨) with its coset class in SL(H 0(X, E(k))∨)/SU (Nk), noting
that MDon

2 (σ ) depends only on σ ∗σ .

Remark 5.4 Note thatMDon
2 (σt ) as defined above is clearly equal to the functional

MDon
2 (hσ , href) in Definition2.6. We use the above notation in what follows since

we only consider the Fubini–Study metrics defined by an element of the coset space
SL(H 0(X, E(k))∨)/SU (Nk).

Remark 5.5 The method of Quot-scheme limits as discussed in Sect. 2.2 involves
an implicit identification between E and its dual E∨ (see [28, Remark 4.5]), which is
assumed in what follows, but this does not affect the formulae that appear below as
they do not contain the curvature term.

Suppose now that X is singular and that E is a torsion-free sheaf on X . Instead of
the embedding (2.2), we have a rational map

� : X ��� Gr(rk(E), H 0(X, E(k))∨), (5.1)

birational onto its image, by taking k > reg(E), which is defined on a Zariski open
set X \ Sing(X, E), where we defined

Sing(X, E) := Sing(X) ∪ Sing(E).

With this understood and writing hσt for the pullback of the Fubini–Study metric
by �|X\Sing(X,E), we can define the functional MDon

2 for the singular case as stated
more precisely below.

Definition 5.6 Let X be a normal Q-Gorenstein projective variety with log terminal
singularities and that E is a torsion-free sheaf on X . We define the functionalMDon

2 :
SL(H 0(X, E(k))∨)/SU (Nk) → R by

MDon
2 (σ ) = 1

Vol

∫

X\Sing(X,E)

log det(hσ h−1
ref )dVX ,

where dVX is a volume form on X \ Sing(X) defined by the sections of the pluri-
canonical bundle K ⊗m

X , m ∈ N (see e.g. [6, (4.35)] or [22, Sect. 6.2]), which has
locally finite mass near Sing(X) since X is log terminal; this in turn means that
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Vol :=
∫

X\Sing(X,E)

dVX =
∫

X\Sing(X)

dVX < ∞

is well-defined.

We note that the above is indeed a well-defined integral since X is log terminal
and � in (5.1) is a rational map. More precisely, first note that by taking a resolution
π : X̃ → X we may write

MDon
2 (σ ) = 1

Vol

∫

X̃\π−1(Sing(X,E))

logπ∗ det(hσ h−1
ref )π

∗(dVX ).

We may assume that π−1(Sing(X)) = ∑
j E j is a simple normal crossing divisor

and that locally in a neighbourhood U ⊂ X̃ , we have E j = {z j = 0} and

π∗(dVX )
∣
∣
U\π−1(Sing(X))

=
∏

j

|z j |2a j dVU

with a j > −1 for all j (as X is log terminal) and some smooth volume form dVU

on U [6, Lemma 4.6.5]. By composing π with further blowups, we may assume that
π−1(Sing(E)) = ∑

l Fl is also a simple normal crossing divisor. Writing Fl = {yl =
0} locally in a neighbourhood U ⊂ X̃ and noting that π∗ det(hσ h−1

ref ) has at most
poles and zeros of finite order as � is rational, we find that

logπ∗ det(hσ h−1
ref )π

∗(dVX )
∣
∣
U\π−1(Sing(X,E))

=
(

∑

l

ml log |yl | + O(1)

)
∏

j

|z j |2a j dVU

with some integers ml and terms denoted by O(1) that stay bounded over U . This is
integrable, since a j > −1 for all j .

Note also that Definition5.6 is consistent with the one for the smooth varieties
(Definition5.3), since by Yau’s theorem [56] we can always find a smooth Kähler
metric ωφ ∈ c1(L) such that ωn

φ = dVX , up to rescaling dVX by a constant. Thus,
from now on, without ambiguity we shall adopt Definition5.6 for the definition of
MDon

2 .
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A straightforward computation yields that, given a (smooth) path {σt }t≥0 ⊂
SL(H 0(X, E(k))∨), we have

d2

dt2
MDon

2 (σt ) = 1

Vol

∫

X\Sing(X,E)

tr(∂t (h
−1
σt

∂t hσt ))dVX .

Note that this integral makes sense. As the integrand is invariant under the unitary
change of frames of E (over X \ Sing(X, E)), we may simultaneously diagonalise
hσt and ∂t hσt by Lemma4.1 (regarded as Hermitian endomorphisms on E). Since ∂t

does not introduce further poles and does not decrease the order of zeros, we find
that h−1

σt
∂t hσt (and hence ∂t (h−1

σt
∂t hσt )) is bounded on X \ Sing(X, E) as poles and

zeros cancel each other.
The following lemma was first proved for smooth X and locally free E by Wang

[54, Lemma 3.5], and also by Phong–Sturm [43, Lemma 2.2], but we observe that
it can be obtained as an immediate consequence of Proposition4.3 and the above
formula.

Lemma 5.7 MDon
2 : SL(H 0(X, E(k))∨)/SU (Nk) → R is convex along Bergman

1-PS’s.

The above lemma implies that any critical point ofMDon
2 is necessarily the global

minimum.
The critical point σ ∈ SL(H 0(X, E(k))∨)/SU (Nk), or the associated Fubini–

Study metric hσ , of MDon
2 is called the balanced metric. We can characterise the

balanced metric as the one whose Bergman kernel is a constant multiple of the
identity, or the one whose associated centre of mass is a constant multiple of the
identity, and they can be regarded as providing a finite dimensional approximation
of the Hermitian–Einstein metric; we will not discuss these topics here and the reader
is referred to [43, 54, 55] for the details. Note however that these results make sense,
at least naively, only when X is smooth and E is locally free.

5.2 Main Result and Proof

The main theorem of this section, stated below, is a generalisation of the result of
Wang [54] (and also Phong–Sturm [43]).

Theorem 5.8 Let X be a normal Q-Gorenstein projective variety with log terminal
singularities and that E is a torsion-free sheaf on X. MDon

2 : SL(H 0(X, E(k))∨)/

SU (Nk) → R admits a critical point for all large enough k if and only if E is Gieseker
stable.

A novel point of our proof is the following formula for the asymptotic slope of
MDon

2 in terms of the invariant that defines the Gieseker stability, which relies on
the Quot-scheme limit of Fubini–Study metrics as reviewed in Sect. 2.
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Proposition 5.9 Let {hσt }t≥0 be the Bergman 1-PS generated by ζ ∈ sl(H 0(E(k))∨)

that has rational eigenvalues. Then we have

lim
t→+∞

MDon
2 (σt )

t
= 2

j (ζ, k)

rk(E)

h0(X, E(k))

∑

q∈Z
rk(E≤q)

(
h0(X, E(k))

rk(E)
− dim V≤q

rk(E≤q)

)

.

The rest of this section is devoted to the proof of Theorem5.8. We first prove
Proposition5.9, which is a key ingredient in the proof of Theorem5.8, which in
turn follows from Lemmas5.10 and 5.11 presented below: Lemma5.10 is where we
critically make use of the renormalised Quot-scheme limit surveyed in Sect. 2.2, but
Lemma5.11 ismostly a repetitionofwhat iswell-known to the experts [29]. Theproof
of Theorem5.8 is presented after proving these lemmas. It comes down to proving
that the asymptotic slope ofMDon

2 is positive if and only if E is Gieseker stable, but
the hypothesis on rational eigenvalues in Proposition5.9 presents subtleties that need
to be taken care of. This issue is addressed by a slight modification of the argument
in [26].

Lemma 5.10 Let {hσt }t≥0 be the Bergman 1-PS generated by a Hermitian matrix
ζ ∈ sl(H 0(X, E(k))∨), which need not have rational eigenvalues. Then

lim
t→+∞

MDon
2 (σt )

t
= 2

ν̂∑

α=1̂

wαrk(E ′
−wα

),

where the sheaves {E ′−wα
}ν̂
α=1̂

are defined by (2.8); see also Remark2.1.

Proof By using the renormalised metric (2.13), we write

hσt = ewt ĥσt e
wt .

Then, we write

∫

X\Sing(X,E)

log det(hσt h
−1
ref )dVX

=
∫

X reg
log det(e2wt ) det(ĥσt h

−1
ref )dVX

= 2t · Vol
ν̂∑

α=1

wαrk(E ′
−wα

) +
∫

X reg
log det(ĥσt h

−1
ref )dVX .

Note first that the integral
∫

X reg log det(ĥσt h
−1
ref )dVX is well-defined, by recalling the

comments after Definition5.6 and the definition (2.13) for ĥσt .
Thus it suffices to prove that the integral

∫
X reg log det(ĥσt h

−1
ref )dVX remains

bounded as t → +∞. The argument is similar to the proof of [28, Lemma 4.13],
except for that the case under consideration here is much easier. The key ingredient
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is that ĥ degenerates only on a Zariski closed subset X \ X reg, and that ĥ has at worst
zeros and poles of finite order by [28, Lemma 2.22] which follows from the fact that
the quotient map ρ in [28, (2.1)] is algebraic and that � in (5.1) is rational. Since ĥ
is well-defined as a Hermitian metric over X reg [28, Lemmas 3.12 and 3.13], we find
that the integral on the right hand side remains bounded as t → +∞, which gives
the claimed result. �

Lemma 5.11 (cf. [29, Sect. 4.A]) Suppose that we have ζ ∈ sl(H 0(X, E(k))∨) that
gives rise to the filtrations (2.6), (2.7), and (2.8) by taking the saturation. Then

ν̂∑

α=1

wαrk(E ′
−wα

) = 2

j (ζ, k)

rk(E)

h0(X, E(k))

∑

q∈Z
rk(E≤q)

(
h0(X, E(k))

rk(E)
− dim V≤q

rk(E≤q)

)

.

Proof Recall the definition (2.15) and that we have an integrally graded filtration
(2.16) of E by subsheaves. We then observe

ν̂∑

α=1̂

wαrk(E ′
−wα

) = 1

j (ζ, k)

ν̂∑

α=1̂

w̄αrk(E ′
−w̄α

) = 1

j (ζ, k)

ν∑

i=1

w̄i rk(E ′
−w̄i

).

by recalling the definition (2.9) of 1̂, . . . , ν̂, which implies rk(E ′−wi
) = 0 if and only

if i /∈ {1̂, . . . , ν̂}. Note further that
ν∑

i=1

w̄i rk(E ′
−w̄i

) = −
∑

q∈Z
q · rk(E ′

q).

We now perform the calculation that is identical to the one carried out in [29, Sect.
4.A]: since ζ ∈ sl(H 0(X, E(k))∨), we have

dim V
∑

q∈Z
q · rk(E ′

q) =
∑

q∈Z
q · (

rk(E ′
q) · dim V − rk(E) · dim Vq

)

= −
∑

q∈Z

(
rk(E ′

≤q) · dim V − rk(E) · dim V≤q
)
.

Combining these equalities we get

ν̂∑

α=1

wαrk(E ′
−wα

) = 1

j (ζ, k)

1

dim V

∑

q∈Z

(
rk(E ′

≤q) · dim V − rk(E) · dim V≤q
)
.

By substituting in dim V = h0(X, E(k)) and tidying up the terms, we get the desired
result. �
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Proof of Proposition 5.8 We first recall [29, Theorem 4.4.1] which is credited to Le
Potier in [29], where we note that the multiplicity of a sheaf is just the rank since X
is a projective variety [29, page 11]. It states that for all sufficiently large integers k,
E being Gieseker stable is equivalent to

h0(X,F(k))

rk(F)
<

PE(k)

rk(E)
= h0(X, E(k))

rk(E)

for all subsheavesF ⊂ E of rank 0 < rk(F) < rk(E). This proves that E is Gieseker
stable if and only if for all sufficiently large k and all ζ ∈ sl(H 0(X, E(k))∨) with
rational eigenvalues we have, for the 1-PS {σt }t≥0 defined by σt = eζ t ,

lim
t→+∞

MDon
2 (σt )

t
> 0.

On the other hand, the convexity of MDon
2 along Bergman 1-PS (Lemma5.7)

implies that MDon
2 has a critical point if and only if the above inequality holds

for all ζ ∈ sl(H 0(X, E(k))∨) that is Hermitian but not necessarily having rational
eigenvalues. We follow the argument in [26, Lemmas 3.15 and 3.17] to prove that
the Gieseker stability in fact implies this seemingly stronger condition. First note
that by continuity and Lemma5.10 we have

lim
t→+∞

MDon
2 (σt )

t
= 2

ν̂∑

α=1

wαrk(E ′
−wα

) ≥ 0 (5.2)

for all ζ ∈ sl(H 0(E(k))∨), not necessarily having rational eigenvalues, by recalling
that E−wi is well-defined even when wi is not rational (Remark2.1); in the above we
wrotew1, · · · , wν ∈ R for the eigenvalues of ζ . Now, we choose a Hermitian matrix
ζ̃ with rational eigenvalues, say w̃1, . . . , w̃ν ∈ Q, so that

1. V−wi = V−w̃i for all i = 1, . . . , ν,
2. w̃1 > w̃2 > · · · > w̃ν ,
3. w1 − w̃1 > w2 − w̃2 > · · · > wν − w̃ν ,

which is possible since Q is dense in R. Note also that the first item above implies
that we have E−wi = E−w̃i for all i = 1, . . . , ν. We can then re-write (5.2) as

lim
t→+∞

MDon
2 (σt )

t
= 2

ν̂∑

α=1

w̃αrk(E ′
−w̃α

) + 2
ν̂∑

α=1

(wα − w̃α)rk(E ′
−wα

).

The first term on the right hand side is strictly positive since ζ̃ has rational eigen-
values, and we claim that the second term is nonnegative. This is a consequence
of the inequality (5.2) and the following observation: the second term is equal
to the asymptotic slope limt→+∞ MDon

2 (ηt )/t , where {ηt }t≥0 is the 1-PS defined
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by ηt = exp((ζ − ζ̃ )t) in SL(H 0(X, E(k))∨), by observing V−(wi −w̃i ) = V−w̃i and
E−(wi −w̃i ) = E−w̃i for all i = 1, . . . , ν. Thus, the sum of these two terms is strictly
positive, finally implying

lim
t→+∞

MDon
2 (σt )

t
> 0

for all Hermitian ζ ∈ sl(H 0(E(k))∨), as required.
Thus, identifying t > 0 with the radial direction in sl(H 0(X, E(k))∨) by recalling

‖ζ‖op ≤ 1 (Remark2.4), and also noting that we have

sl(H 0(X, E(k))∨) = su(Nk) ⊕ √−1su(Nk)

and that
√−1su(Nk) is the set of Hermitian matrices, the geodesic convexity of

MDon
2 (σt ) (Lemma5.7) implies that the map

SL(H 0(X, E(k))∨)/U (Nk)
∼→√−1su(Nk) 
 ζ t �→ MDon

2 (σt ) ∈ R

is bounded below and proper, where the first arrow is the diffeomorphism given
by the global Cartan decomposition. Hence we finally conclude that there exists
σ̃ ∈ SL(H 0(X, E(k))∨)/U (Nk) that attains the global minimum of MDon

2 . �

6 Towards Effective Results and an Algorithm for
Computing Hermitian–Einstein Metrics

One can notice that in Proposition2.9, in order to prove slope stability of the bundle, it
is sufficient to checkMNA(ζ, k0) > 0 for ζ ∈ sl(H 0(X, E(k0))∨) with some k0 ∈ N

satisfying
k0 ≥ max{reg(E), reg(Fmax)},

whereFmax ⊂ E is themaximally destabilising subsheaf; recall that given a holomor-
phic vector bundle E , there exists a unique maximal destabilising saturated subsheaf
Fmax for E which satisfies

• if F ⊂ E is a proper subsheaf of E , then μ(F) ≤ μ(Fmax);
• if μ(F) = μ(Fmax), then rk(F) ≤ rk(Fmax).

For the existence and uniqueness of the maximal destabilising subsheaf the reader
is referred to [29, Lemma 1.3.5] and [33, Sect. V.7, Lemma 7.17]. Note that Fmax is
slope semistable. With above notations, we have the following proposition.

Proposition 6.1 Let E a holomorphic vector bundle over a polarized manifold. Set

k0 = max(reg(E), reg(Fmax )).
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The following assertions are equivalent:

(1) E is slope stable,
(2) The Donaldson functional MDon is coercive along rational Bergman 1-PS at

level k0,
(3) The Donaldson functional MDon is coercive along rational Bergman 1-PS at

level k for any k ≥ k0.

The following assertions are equivalent:

(1’) E is slope semistable,
(2’) The Donaldson functional MDon along rational Bergman 1-PS at level k0 is

bounded from below,
(3’) The Donaldson functional MDon along rational Bergman 1-PS at level k is

bounded from below for any k ≥ k0.

Proof If E is slope stable (resp. slope semistable), then one can apply Theorem2.11
since E is k-regular for any k ≥ reg(E), see [29, Lemma 1.7.2]. This gives (1) ⇒ (3)
and obviously (3) ⇒ (2) (resp. (1′) ⇒ (3′) ⇒ (2′)).

A special case of our study is given when one is considering a 2-step filtration
associated to a regular saturated subsheaf F ⊂ E as described in [28, Proposition
6.2]. For ζF ∈ sl(H 0(E(k))∨) the element defining this filtration, with weights well
chosen (cf. [28, Sect. 6]), one can consider the Bergman 1-PS {hσt }t≥0 emanating
from hk and induced by ζF as above. Then we proved the existence of a constant
ck = c(hk, k) > 0 such that

MDon(hσt , hk) ≥ rk(F)(μ(E) − μ(F)) · 2t − ck (6.1)

for all t ≥ 0, and a constant c′
k = c(hk, ζF , k) > 0 such that

MDon(hσt , hk) ≤ rk(F)(μ(E) − μ(F)) · 2t + c′
k (6.2)

holds for all sufficiently large t > 0. Ifwe have coercivity at level k0, we apply (6.2) to
Fmax . SinceMDon along {hσt } grows to +∞ when t → +∞, this provides μ(E) >

μ(Fmax ) and by definition of Fmax , E is actually slope stable. Thus (2) ⇒ (1). If
we have boundedness from below, we apply both (6.2) and (6.1) when t → +∞ to
conclude that μ(E) = μ(Fmax ). This shows (2′) ⇒ (1′). �

Remark 6.2 The proof shows that the slope stability actually implies coercivity of
the Donaldson function on the Bergman space at the minimum level k for which E(k)

is globally generated and of course k ≤ k0. We don’t expect the converse to be true.

The regularity of coherent sheaves has been studied since decades and bounds
on the regularity have been made more or less explicit. Let’s provide some details.
If ι : X → CPN is a holomorphic embedding and F a coherent sheaf on X then
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by the projection formula reg(F) = reg(ι∗F). Using this argument, one can obtain
information on the regularity of sheaves by restricting to the projective case. From
the fundamental work of Mumford, it is known that for any coherent sheaf F on
CPN , which is isomorphic to a subsheaf of

⊕N0
j=1 OCP

N , with Hilbert polynomial

χ(F(k)) =
N∑

i=0

ai

(
k

i

)

(ai ∈ Z), one has the k0-regularity ofF for k0 = F(a0, .., aN )where F is a universal
polynomial in N + 1 variables that depends on (N , N0) that can bemade explicit. For
instance, the case of semistable bundles over CP2 is studied in [34, Corollary 5.5],
see also [19]. The interest of making effective the Castelnuovo–Mumford regularity
k0 in Proposition6.1 becomes clear when one is considering numerical applications.
In [45] it is presented an algorithm based on ideas of S. Donaldson [18] to com-
pute balanced metrics (cf. Sect. 5) in the set of kth Fubini–Study metrics Bk on a
stable bundle E that approximate the Hermitian–Einstein metric living on the bun-
dle when k → +∞. Nevertheless, with the notion of balanced metrics, it remains
unclear which minimal k can be chosen to run the algorithm, see for instance [44].
If E is a stable bundle, Proposition6.1 ensures that the Donaldson functional is coer-
cive on the Bergman space Bk0 which has finite dimension, and thus it attains a
minimum, say at the metric hmin

k . If one denotes hH E the Hermitian–Einstein met-
ric on E , h �→ MDon(h, hH E ) reaches its minimum at h = hH E where it vanishes.
Technically, in order to find hmin

k , one can apply Levenberg–Marquardt algorithm to
h �→ |MDon(h, hH E )| restricted to Bk0 . By density of the Bergman spaces (cf. [27,
Corollary 1.9]),

MDon(hmin
k , hH E ) ≤ CH E

k
,

where CH E is a constant that depends only on the Hermitian–Einstein metric and
its covariant derivatives. Moreover, once the minimum is achieved, it is possible to
estimate how far is hmin

k from hH E using [27, Theorem B.5]. Actually, in this view,
one can introduce

δ := inf
x∈X

λmin

λmax

where λmax, λmin are themaximum andminimum eigenvalues of hmin
k h−1

H E := ev . The
problems turns out to measure 1 − δ when this quantity is small. But the proof of
[27, Theorem B.5] shows that we have the inequality

MDon(hmin
k , hH E ) ≥ δ − 1 − log(δ)

log(δ)2
C−1

∇∗ ∂̄‖v − v̄‖2L2 ,

where v̄ = 1
rVolL

∫
X tr(v)ωn

n! · IdE is the average of v, and C∇∗ ∂̄ can be interpreted as

the first non zero eigenvalue of the operator
√−1�∂̄∂ acting on endomorphisms of E
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and that depends on the metric hH E . Denoting r the rank of E , one has ‖v − v̄‖2L2 =
‖v‖2L2 − ‖v̄‖2L2 ≥ 1

r (log δ)2 and consequently,

MDon(hmin
k , hH E ) ≥ 1

r
(δ − 1 − log(δ))C−1

∇∗ ∂̄ ∼ C−1
∇∗ ∂̄

(1 − δ)2

2r
.
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Abstract We prove that a Kawamata log terminal pair has the canonical model.
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1 Introduction

We work over an algebraically closed field of characteristic zero.
Our main result is the existence of canonical models for Kawamata log terminal

pairs.

Theorem 1.1 Let (X/Z , B) be a Kawamata log terminal pair with the Kodaira
dimension κι(X/Z , K X + B) ≥ 0. Then, (X/Z , B) has the canonical model.

If B is aQ-divisor, then Theorem1.1 is [5, Corollary 1.1.2]. In this paper, we prove
it for the general case. The idea of proof is to reduce Theorem 1.1 to [5, Theorem
1.2], by a canonical bundle formula of Fujino-Mori type for R-divisors (cf. [9]).

Theorem 1.2 Let f : X → Y be a contraction of normal varieties and (X, B) be a
klt pair such that κι(X/Y, K X + B) = 0. Then, there exists a commutative diagram
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(1) K X ′ + B ′ = π∗(K X + B) + E where E is exceptional/X and B ′, E ≥ 0 have
no common components.

(2) K X ′ + B ′ ∼R f ′∗(KY ′ + BY ′ + MY ′) + R where R ≥ 0 and (Y ′, BY ′ + MY ′) is
a g-klt generalised pair with the moduli b-divisor M.

(3) κ(X ′/Y ′, Rh) = 0 and Rv is very exceptional/Y ′, where Rh (resp. Rv) denotes
the horizontal (resp. vertical) part over Y ′.

One can easily generalise the above theorem to log canonical pairs. See
Remark 3.3.

2 Preliminaries

In this section we collect definitions and some important results. Throughout this
paper all varieties are quasi-projective over a fixed algebraically closed field of char-
acteristic zero and a divisor refers to an R-Weil divisor unless stated otherwise.

2.1 Notations and Definitions

We collect some notations and definitions. We use standard definitions of Kawamata
log terminal (klt, for short) pair and sub-klt pair (for example, see [11, Sect. 2.1]).

Contractions. In this paper a contraction refers to a proper morphism f : X → Y
of varieties such that f∗OX = OY . In particular, f has connected fibres. Moreover,
if X is normal, then Y is also normal. A birational map π : X ��� Y is a birational
contraction if the inverse ofπ does not contract divisors.Note thatπ is not necessarily
a morphism unless stated otherwise.

Very exceptional divisors. Let f : X → Y be a dominant morphism from a normal
variety to a variety, D a divisor on X , and Z ⊂ X a closed subset. We say Z is
horizontal over Y if f (Z) dominates Y , and we say Z is vertical over Y if f (Z) is
a proper subset of Y .

Suppose f is a contraction of normal varieties. Recall that a divisor D is very
exceptional/Y if D is vertical/Y and for any prime divisor P on Y there is a prime
divisor Q on X which is not a component of D but f (Q) = P , i.e. over the generic
point of P we have Supp f ∗ P � SuppD.

If codim f (D) ≥ 2, then D is very exceptional. In this case we say D is f -
exceptional.

Generalised pairs. For the basic theory of generalised polarised pairs (generalised
pairs for short) we refer to [6, Sect. 4]. Below we recall some of the main notions
and discuss some basic properties.

A generalised sub-pair consists of
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• a normal variety X equipped with a proper morphism X → Z ,
• an R-divisor B on X , and
• a b-R-Cartier b-divisor over X represented by someprojective birationalmorphism

X
φ→ X and an R-Cartier divisor M on X such that M is nef/Z and K X + B + M

is R-Cartier, where M := φ∗M .

A generalised sub-pair is a generalised pair if B is effective. We usually refer to the
sub-pair by saying (X/Z , B + M) is a generalised sub-pair with data M or with the
moduli b-divisor M, whereM is represented by M . We will use standard definitions
of b-divisors, generalised singularities and log minimal models (for example, see
[11, Sect. 2.1]).

2.2 Iitaka Dimension and Iitaka Fibration

In this subsection we introduce the notion of invariant Iitaka dimension and invariant
Iitaka fibration.

Recall the following definitions of Iitaka dimension, which is a birational invariant
integer given by the growth of the quantity of sections.

Definition 2.1 (Invariant Iitaka dimension) Let X be a normal projective variety,
and D be an R-Cartier divisor D on X . We define the invariant Iitaka dimension
of D, denoted by κι(X, D), as follows (see also [8, Definition 2.5.5]): If there is an
R-divisor E ≥ 0 such that D ∼R E , set κι(X, D) = κ(X, E). Here, the right hand
side is the usual Iitaka dimension of E . Otherwise, we set κι(X, D) = −∞. We can
check that κι(X, D) is well-defined, i.e., when there is E ≥ 0 such that D ∼R E ,
the invariant Iitaka dimension κι(X, D) does not depend on the choice of E . By
definition, we have κι(X, D) ≥ 0 if and only if D is R-linearly equivalent to an
effective R-divisor.

Let X → Z be a projective morphism from a normal variety to a variety, and let
D be an R-Cartier divisor on X . Then the relative invariant Iitaka dimension of D,
denoted by κι(X/Z , D), is defined by κι(X/Z , D) = κι(X, D|F ), where F is a very
general fibre (i.e. the fibre over a very general point) of the Stein factorisation of
X → Z . Note that the value κι(X, D|F ) does not depend on the choice of F (see
[10, Lemma 2.10]).

For basic properties of the invariant Iitaka dimension, we refer to
[10, Remark 2.8].

Definition 2.2 (Invariant Iitaka fibration) Let X be a normal variety, f : X → Z be
a proper morphism, and D be an R-Cartier divisor on X with κι(X/Z , D) ≥ 0. Pick
an R-Cartier divisor E ≥ 0 such that D ∼R E/Z . Then there exists a contraction
φ : X ′ → Y of smooth varieties such that for all sufficiently large integersm > 0, the
rational maps φm : X ��� Ym given by f ∗ f∗OX (	m E
) are birationally equivalent
to φ, that is, there exists a commutative diagram
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X

φm

���
�
� X ′

φ

��

π��

Ym Y
ϕm

��� � �

of rationalmapsφm, ϕm and a contractionπ , where the horizontalmaps are birational,
dim Y = κι(X/Z , D) + dim Z , and κ(X ′/Y, π∗E) = 0. Such a fibration is called an
Iitaka fibration of D. It is unique up to birational equivalence.

Lemma 2.3 The definition above is well-defined and independent of the choice
of E.

Proof By compactification, we may assume Z is projective, and hence X, Y pro-
jective. The definition is well-defined by [12, II,3.14]. Let φ′ : X ′ → Y ′ be a rel-
ative Iitaka fibration over Z associated to an R-Cartier divisor E ′ ≥ 0 such that
D ∼R E ′/Z . Pick a very general closed point y′ ∈ Y ′. By [8, Proof of Lemma 2.5.6],
for any sufficiently large positive integer m, there is an injection

H0(φ′−1(y′),OX (
⌊

mπ∗ E |φ′−1(y′)
⌋
)) ↪→ H0(φ′−1(y′),OX (

⌊
(m + 1)π∗ E ′|φ′−1(y′)

⌋
)) � k

where k is the ground field. We infer that the image of φ′−1(y′) under φm is a
point. Therefore, by the rigidity lemma [12, II,1.12], φ′ induces a birational map
ψm : Y ′ ��� Ym such that φm ◦ π = ψm ◦ φ′, which completes the proof. �

Canonical models. Recall that, given a proper morphism h : X → Z from a normal
variety to a variety, an R-Cartier divisor D is semi-ample over Z if there exist a
proper surjective morphism g : X → Y over Z and an ample/Z divisor DY of Y
such that D ∼R g∗ DY .

Remark 2.4 ([11]) Notation as above, let D be an R-Cartier divisor.

(1) D is semi-ample if and only if D is a convex combination of semi-ample Q-
divisors.

(2) Let D′ be anotherR-Cartier divisor. If D, D′ are semi-ample, then so is D + D′.
(3) Let f : W → X be a proper surjective morphism. Then, D is semi-ample if and

only if f ∗ D is semi-ample.

Given an R-linear system |D/Z |R, we say a divisor E ≥ 0 is contained in the
fixed part of |D/Z |R if, for every B ∈ |p∗ D/Z |R, then B ≥ E .

Definition 2.5 ([5, Definitions 3.6.5 and 3.6.7]) Let h : X → Z be a projective mor-
phism of normal quasi-projective varieties and let D be an R-Cartier divisor on X .

(1) We say that a birational contraction f : X ��� X ′ over Z is a semi-ample model
of D over Z , if f is D-non-positive, X ′ is normal and projective over Z and
D′ = f∗ D is semi-ample over Z .
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(2) We say that g : X ��� Y is the ample model of D over Z , if g is a rational map
over Z , Y is normal and projective over Z and there is an ample divisor H over
Z on Y such that if p : W → X and q : W → Y resolve g then q is a contraction
morphism and we may write p∗ D ∼R q∗ H + E/Z , where E ≥ 0 is contained
in the fixed part of |p∗ D/Z |R. By [5, Lemma 3.6.6], the ample model is unique
up to isomorphism.

(3) (Canonical model.) If (X, B) is a klt pair and D = K X + B, then we say Y in
(2) is the canonical model of (X, B) over Z .

2.3 Klt-trivial Fibrations

Recall that the discrepancy b-divisor A = A(X, B) of a pair (X, B) is the b-divisor
of X with the trace AY defined by the formula

KY = f ∗(K X + B) + AY ,

where f : Y → X is a proper birational morphism of normal varieties. By the def-
inition, we have OX (�A(X, B)�) = OX when (X, B) is klt (see [7, Lemma 3.19]).

Definition 2.6 ([11, Definition 2.21]) Let K = Q or R. A K-klt-trivial fibration
f : (X, B) → Y consists of a contraction f : X → Y of normal varieties and a sub-
pair (X, B) satisfying the following properties:

(1) (X, B) is sub-klt over the generic point of Y;
(2) rank f∗OX (�A(X, B)�) = 1;
(3) There exists an R-Cartier divisor D on Y such that

K X + B ∼K f ∗ D.
Notation as above, we set

bP = max
{
t ∈ R|(X, B + t f ∗ P) is sub-lc over the generic point of P

}

and set
BY =

∑

P

(1 − bP)P,

where P runs over prime divisors on Y . Then it is easy to see that BY is well
defined since bP = 1 for all but a finite number of prime divisors and it is called the
discriminant divisor. Furthermore, we set

MY = D − KY − BY

and call MY the moduli divisor.
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Let φ : Y ′ → Y be a birational contraction from a normal variety Y ′. Let X ′ be
a resolution of the main component of X ×Y Y ′ which dominates Y ′. The induced
morphism π : X ′ → X is birational, and K X ′ + B ′ = π∗(K X + B). Let BY ′ be the
discriminant of K X ′ + B ′ on Y ′. Since the definition of the discriminant is divisorial
and φ is an isomorphism over codimension one points of Y , we have BY = φ∗(BY ′).
Thismeans that there exists a unique b-divisorB ofY such thatBY ′ is the discriminant
on Y ′ of the induced fibre space f ′ : (X ′, B ′) → Y ′, for every birational model Y ′
of Y . We call B the discriminant b-divisor. We define the moduli b-divisor M in a
similar way.

Note that if K = Q, thanks to the important result [3][Theorem 2.5] obtained by
the theory of variations of Hodge structure, the moduli b-divisorM of a Q-klt-trivial
fibration is Q-b-Cartier and b-nef. Hence K + B is R-b-Cartier.

The arguments for next lemma are taken from [11].

Lemma 2.7 ([11, Lemma 2.22]) Let f : (X, B) → Y be an R-klt-trivial fibration.
Then, B is a convex combination of Q-divisors Bi such that f : (X, Bi ) → Y is Q-
klt-trivial. Moreover, if (X, B) is sub-klt, then we can choose Bi so that (X, Bi ) is
sub-klt for each i .

Proof Replacing X we may assume it is smooth. Let f : (X, B) → Y be an R-klt-
trivial fibration, ϕ = ∏k

i=1 ϕ
αi
i be an R-rational function so that K X + B + (ϕ) =

f ∗ D. Let V ⊂ CDivR(Y ) be a finite dimensional rational linear subspace containing
D, L ⊂ CDivR(X) be a rational polytope containing B such that, for every 
 ∈ L,
we have (X,
) is a sub-pair which is sub-klt over the generic point of Y . Now we
consider the rational polytope

P :=
{


 ∈ L|
 +
k∑

i=1

R(ϕi ) intersects f ∗V
}

.

For every 
 ∈ P , we have further K X + 
 ∼R 0/Y . It is obvious that B ∈ P .
It suffices to show that, there exists a convex combination B = ∑

j r j B j of Q-
divisors B j ∈ P with rank f∗OX (�A(X, B j )�) = 1. To this end, pick a log resolution
π : X → X of (X,

∑
j � j ) where every element of P is supported by

∑
j � j . Note

that the proofs of [7, Lemmas 3.19 and 3.20] are still valid for R-sub-boundaries.
Hence, by shrinking Y , we may assume (X,
) is sub-klt for every 
 ∈ P , and we
have

f∗OX (�A(X,
)�) = f∗π∗OX (
∑

�ai�Ai )

where K X = π∗(K X + 
) + ∑
ai Ai . Consider the rational sub-polytope

Q = {
 ∈ P|�A(X,
)X� ≤ �A(X, B)X�}.

Then, for any B j ∈ Q, we have rank f∗OX (�A(X, B j )�) = 1 which completes the
first assertion. The last statement is obvious. �
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Lemma 2.8 Let f : (X, B) → Y be an R-klt-trivial fibration from a sub-klt pair,
BY be the discriminant divisor and MY be the moduli divisor. Then, there exists a
b-divisor M satisfying:

(1) The trace MY = MY .
(2) (Y, BY + MY ) is a g-sub-klt generalised pair with the moduli b-divisor M.

Proof Replacing X , we may assume it is smooth. By Lemma 2.7, there exists a
convex combination of B = ∑

i ri Bi of Q-divisors such that f : (X, Bi ) → Y is Q-
klt-trivial. LetP ⊂ CDivR(X) be the polytope defined by Bi ’s. For any prime divisor
P on Y , we set the function bP on P:

bP(
) = max{t ∈ R|(X,
 + t f ∗ P) is sub-lc over the generic point of P}.

We note that the bP is piecewisely affine and gives a rational polyhedral decomposi-
tion ofP . Also note that there are only finitely many P such that bP is not identically
one on P . Therefore, there exists a rational sub-polytope Q containing B such that
bP is affine on Q, for any prime divisor P . In particular, replacing Bi ’s and ri ’s, we
have BY = ∑

i ri BY,i and MY = ∑
i ri MY,i , where BY , BY,i are discriminant divisors

and MY , MY,i aremoduli divisors of f : (X, B) → Y, f : (X, Bi ) → Y respectively.
LettingM = ∑

i riMi , whereMi is themoduli b-divisor of f : (X, Bi ) → Y for each
i , we conclude the lemma by [3, Theorem 2.5]. �

Remark 2.9 If the rational polytope Q in the above argument is sufficiently small,
thenM is precisely themoduli b-divisor of theR-klt-trivial fibration f : (X, B) → Y .
For a detailed proof, see [11, Theorem 1.1].

Lemma 2.10 Let f : (X, B) → Y be a contraction of normal varieties from a klt
pair (X, B). Suppose K X + B ∼R R/Y where R ≥ 0, and κ(X/Y, R) = 0, then

rank f∗OX (�A(X, B − R)�) = 1.

Proof Let π : X ′ → X be a log resolution of (X, B) and write 
 = B − R and
K X ′ = π∗(K X + 
) + ∑

i ai Ai . By [7, Proof of Lemmas 3.19 and 3.20], we have
f∗OX (�A(X,
)�) = ( f ◦ π)∗OX ′′(

∑
i�ai�Ai ). Because we have

Supp
∑

i

�ai�Ai ⊆ Suppπ∗ R
⋃

Ex(π),

we deduce κ(X ′/Y,
∑

i�ai�Ai ) = 0 and hence the lemma. �
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3 Existence of Canonical Models

Lemma 3.1 Let f : X → Y be a contraction of normal varieties over Z, D be an
R-Cartier divisor on X and DY be an R-Cartier divisor on Y . We suppose that:

• D ∼R f ∗ DY + E/Z for some divisor E ≥ 0, such that κ(X/Y, Eh) = 0 and Ev

is very exceptional/Y , where Eh (resp. Ev) denotes the horizontal (resp. vertical)
part over Y .

• There is a semi-ample model of DY /Z.

Then, there exists the ample model of D/Z.

Proof We first reduce the lemma to the case DY is semi-ample/Z . Let ϕ : Y ��� Y ′
be the birational contraction to a semi-ample model of DY /Z , and p : Y → Y and
q : Y → Y ′ which resolve ϕ. We write DY ′ for the birational transform of DY and
p∗ DY = q∗ DY ′ + F where F ≥ 0 is exceptional/Y ′. Pick a resolution π : X → X
such that the induced map f : X ��� Y is a morphism. We write D = π∗ D, E =
π∗E + f

∗
F , and D ∼R (q ◦ f )∗ DY ′ + E . If we denote by E

h
and E

v
the horizontal

and vertical part over Y ′, then one can easily verify that κ(X/Y ′, E
h
) = 0, and

E
v = π∗Ev + f

∗
F is very exceptional/Y ′. Replacing X, Y with X , Y ′ and the other

data accordingly, we may assume DY is semi-ample/Z .
It remains to check that E is contained in the fixed part of |D/Z |R. To this end,

pick any D′ ∼R D/Z . Since D′|F ∼R D|F where F is a general fbre of f , we have
Eh is contained in the fixed part of |D/Z |R. Replacing D with D − Eh , we may
assume E is vertical and very exceptional/Y . Hence, the lemma follows from the
Negativity lemma [4, Lemma 3.3]. �

Remark 3.2 The lemma above also holds when f is a proper surjective morphism
instead of a contraction.

Proof (Proof of Theorem 1.2) Since κι(X/Y, K X + B) = 0, by [10, Lemma 2.10],
there exists an R-Cartier divisor D ≥ 0 such that K X + B ∼R D/Y . Applying [2,
Theorem 2.1, Proposition 4.4], there exist birational models π : (X ′,
′) → X , φ :
(Y ′,
Y ′) → Y such that the inducedmorphism f ′ : (X ′,
′) → (Y ′,
Y ′) is toroidal
and equidimensional to a log smooth pair. Moreover, writing K X ′ + B ′ = π∗(K X +
B) + E as in (1), by [1, Theorem 1.1], we have B ′ ≤ 
′ and SuppD′ ⊆ 
′ where
D′ = π∗ D + E . Hence, there exists an R-Cartier divisor G ≥ 0, supported by 
Y ′ ,
such that D′v − f ′∗G is very exceptional/Y ′, where D′v denotes the vertical/Y ′ part.
Set R = D′ − f ′∗G. We see R satisfies (3).

Finally, by Lemma 2.10, f ′ : (X ′,�) → Y ′ is an R-klt-trivial fibration, where
� := B ′ − R. Hence, by Lemma 2.8, we apply a canonical bundle formula to obtain
K X ′ + � ∼R f ′∗(KY ′ + BY ′ + MY ′), such that (Y ′, BY ′ + MY ′) is a g-sub-klt gener-
alised pair with the moduli b-divisor M. It remains to check that (Y ′, BY ′ + MY ′) is
g-klt. Indeed, the effectiveness of BY ′ follows from the construction of discriminant
divisor. �
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Remark 3.3 Since the arguments for Lemmas 2.7, 2.8 and 2.10 are still valid for
lc-trivial fibrations and lc pairs, one can easily generalise Theorem 1.2 to lc pairs
with the above argument. Note that, in this case, with notation from Theorem 1.2,
(Y ′, BY ′ + MY ′) is a g-lc generalised pair, and it is g-klt if all lc centres of (X, B)

are horizontal/Y .

Proof (Proof of Theorem 1.1) Take a relative Iitaka fibration f : X → Y over Z .
Replacing (X, B), we may assume X = X . By definition, we have κι(X/Y, K X +
B) = 0. So, by a canonical bundle formula, there exists a commutative diagram

(X ′, B ′)

f ′

��

π   (X, B)

f

��
Y ′ φ   Y

which consists of birational models π : X ′ → X , φ : Y ′ → Y , satisfying the condi-
tions listed in Theorem 1.2. Replacing (X, B), Y with (X ′, B ′), Y ′, we have K X +
B ∼R f ∗(KY + BY + MY ) + R. Since (Y, BY + MY ) is g-klt and KY + BY + MY

is big/Z , KY + BY + MY has a semi-amplemodel/Z by [6, Lemma 4.4(2)]. Because
R ≥ 0, κ(X/Y, Rh) = 0 and Rv is very exceptional/Y , where Rh (resp. Rv) denotes
the horizontal (resp. vertical) part over Y , by Lemma 3.1, we deduce that (X/Z , B)

has the canonical model. �
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Generalized Thomas–Yau Uniqueness
Theorems

Yohsuke Imagi

Abstract We generalize Thomas–Yau’s uniqueness theorem [17,Theorem 4.3] in
twoways.Weprove a stronger statement for special Lagranigans and includeminimal
Lagrangians inKähler–Einsteinmanifolds ormore generally J -minimal Lagrangians
introduced by Lotay and Pacini [13,14]. In every case the heart of the proof is tomake
certain Hamiltonian perturbations. For this we use the method by Imagi, Joyce and
Oliveira dos Santos [8,Theorem 4.7].

Keywords Fukaya category · Special Lagrangians · Kähler–Einstein manifolds

1 Introduction

In this paper we improve and generalize Thomas–Yau’s theorem [17, Theorem 4.3].
Our first main result is the following. For the more complete statement see Corol-
lary 6.3 (ii).

Theorem 1.1 Let X be a Kähler manifold equipped with a holomorphic volume
form. Let the cohomology Fukaya category HF(X) have two isomorphic objects
supported near two closed irreducibly-immersed special Lagrangians L1, L2 respec-
tively. Then L1 = L2 ⊆ X.

Remark 1.2 (i) Thomas and Yau prove their uniqueness theorem for closed special
Lagrangians L1, L2 in the same Hamiltonian isotopy class. But their proof works
under the weaker hypothesis as above; that is, we need only that L1, L2 have the
same isomorphism class in HF(X). This HF(X) is a (usual) associative category
obtained from the A∞ category F(X) by taking the (m1) cohomology groups of the
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hom spaces in it. The key fact is that if L1, L2 are Hamiltonian isotopic then L1, L2

will define isomorphic objects in HF(X) (after given the additional data including
bounding cochains).

It is clear that we need only the weaker hypothesis because Thomas and Yau
use in their proof only the Floer cohomology group H F∗(L1, L2), the hom space
in HF(X). But when Thomas and Yan wrote their paper, the theory of Fukaya
categories was much less developed at that time, so the statement was presumably
better-soundingwithHamiltonian isotopies. In this paper we improve Thomas–Yau’s
theorem by using the more developed theory of Fukaya categories as follows.

(ii) Theorem 1.1 is stronger than the original theorem in the respect that L1, L2

need not have (even after shift) the same phase. This would also follow from the
following statement: two Lagrangians underlying the same isomorphism class of
objects in HF(X) should have the same homology class in X; although we shall
not discuss this in the present paper. The fact that L1, L2 have the same shift up to
shift will be proved in Corollary 4.5 (before giving the full proof of the theorem), for
which we shall use some simple fact about Maslov indices and some nonvanishing
results for Floer cohomology groups (which we recall in Sect. 4).

Also we do not suppose that either L1 or L2 itself underlies an object of HF(X)

nor do we suppose even that it is cleanly immersed as Fukaya [3] does. But we do
suppose that we can perturb L1, L2 both to generically immersed Lagrangians which
underlie objects of HF(X). This is how we deal with badly immersed Lagrangians
in the Floer-theory context in this paper.

(iii) The idea of the proof of Theorem 1.1 is the same as that of Thomas and Yau.
Butwe include themodification by Imagi, Joyce andOliveira dosSantos [8][Theorem
4.7] because we can unfortunately not justify the original Morse-theory argument
[17, Theorem 4.3].

Another natural generalization is tominimalLagrangians inKähler–Einsteinman-
ifolds or more generally to J -minimal Lagrangians introduced by Lotay and Pacini
[13, 14]. At the moment we state the result only in the Kähler–Einstein case. For the
more complete statement see Corollary 6.3 (i).

Theorem 1.3 Let X be a Zk-graded Kähler–Einstein manifold of complex dimen-
sion n ≤ k; and L1, L2 ⊆ X two closed irreducibly-immersed Zk-graded minimal
Lagrangians with the same grading on L1 ∩ L2. Let b1, b2 ∈ HF(X) be two objects
supported respectively near L1, L2 and such that:

either b1
∼= b2 or k ≥ 2n − 1 and b1

∼= b2 up to shift; and (1)

H Fi (b1, b1) ∼= H Fi (b2, b2) 
= 0 for i = 0, n. (2)

Then L1 = L2 ⊆ X.

Remark 1.4 The more precise meaning of L1, L2 having the same grading on L1 ∩
L2 is given in Definition 2.1 below.Wemake amore geometric definition of gradings
than Seidel [16] does.
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In the circumstances of Theorem 1.3, if c1(X) > 0 there may be many automor-
phisms of X and many zero objects of HF(X) especially in the toric case as Fukaya,
Oh, Ohta and Ono [5] study. So we can hardly expect a general uniqueness statement
to hold. But for instance, to the Clifford torus

T n := {[z0, . . . , zn] ∈ CPn : |z0| = · · · = |zn|} (3)

we can apply Theorem 1.3 with the latter alternative of (1). We can in fact take
k = 2n + 2 as we show in Example 1 below. Also according to Fukaya, Oh, Ohta and
Ono [5] there are (n + 1) objects b ∈ HF(X) supported on T n with H F∗(b, b) ∼=
H∗(T n). So (2) holds and we have:

Corollary 1.5 Let L ⊆ CPn be a closed irreducibly-immersed Z2n+2-graded mini-
mal Lagrangian such that L , T n have the same grading on L ∩ T n. Let HF(X) have
an object which is supported near L and isomorphic to one of the (n + 1) objects
b’s above (all supported on T n). Then L = T n.

On the other hand, if c1(X) ≤ 0 the nonzero condition (2) holds automatically in
certain circumstances. For instance, if either L1 or L2 is embedded then (2) holds
automatically by Fukaya, Oh, Ohta andOno’s theorem [4][TheoremE]. If c1(X) = 0
there is a stronger version of it which we use for Theorem 1.1.

If c1(X) < 0 Theorem 1.2 extends to J -minimal Lagrangians. They are locally
unique, so the result is interesting only in the global context.

For the proofs we follow in outline that by Thomas and Yau [17, Theorem 4.3].
In every case the heart of the proof is to make certain Hamiltonian perturbations
of the two Lagrangians. The Floer-theory condition implies that the two perturbed
Lagrangians have at least one intersection point of index 0 or n at which we do by
analysis a sort of unique continuation.

But for the Hamiltonian perturbation process we use the method by Imagi, Joyce
and Oliveira dos Santos [8][Theorem 4.7] as mentioned above. The modified method
works only in the real analytic category. This causes no problem in the Kähler–
Einstein case because in that case everything is automatically analytic by elliptic
regularity. On the other hand, in Theorem 1.1 and in the J -minimal version of The-
orem 1.3 we work in the C∞ category and the real analyticity condition is achieved
by another Hamiltonian-perturbation process.

We begin in Sect. 2 with our geometric treatment of graded Lagrangians. In Sect. 3
we recall the relevant facts about Maslov forms in Lotay–Pacini’s sense. In Sect. 4
we give a minimum account of Floer theory which we use in this paper. In Sect. 5
we carry out the key step of making Hamiltonian perturbations. In Sect. 6 we state
and prove all our results. They are essentially at the chain level because Sect. 5 is
independent of Floer theory.

Finally we remark that Thomas–Yau’s uniqueness theorem is just a bit of their
whole proposal [17] which is now improved by Joyce [10].
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2 Geometric Gradings

We make a geometric definition of graded Lagrangians:

Definition 2.1 Let (X, ω) a symplectic manifold, J an ω-compatible almost-
complex structure on X and K X the canonical bundle over (X, J ). Let k be either
a positive integer or infinity, write Zk := Z/kZ for k finite and write Z∞ := Z. By
a Zk-grading of (X, ω, J ) we mean for k < ∞ the pair of a complex line bundle
K 2/k

X and a bundle isomorphism (K 2/k
X )k ∼= K 2

X , and for k = ∞ a nowhere vanishing
section � of K 2

X . Suppose given such a Zk-grading of X and a Hermitian metric g
on (X, J ). Then for every x ∈ X and for every Lagrangian plane � ⊆ Tx X there
is a g-orthogonal decomposition Tx X = � ⊕ J� and accordingly a canonical g-unit
section of K 2

X which we denote by �2
�; that is, if e1, . . . , en ∈ � are a g-orthonormal

basis then
�2

� := ±e1 ∧ · · · ∧ en ∧ Je1 ∧ · · · ∧ Jen .

There is also a canonical k-fold cover Lagk T X of the Lagrangian Grassmannian
Lag T X defined for k < ∞ by

Lagk T X := {(�, α) ∈ Lag T X ×X K 2/k
X : �2

� = αk}

and for k = ∞ by Lag∞ T X := {(�, φ) ∈ Lag T X ×X R : �2
� = eiφ�}. By a Zk-

grading of an immersed Lagrangian L ⊆ (X, ω) we mean a lift to Lagk T X of the
tangent-space map L → Lag T X, that is, for k < ∞ a section α : L → K 2/k

X with
αk = �2

L and for k = ∞ a section φ : L → S1 with eiφ� = �2
L . It is unique up to

Zk-shifts, where the shift [1] is defined for k < ∞ by (L , α)[1] := (L , e2π i/kα) and
for k = ∞ by (L , φ)[1] := (L , φ + 2π).

Remark 2.1 The advantage of this definition is that given two Lagrangians Li (i =
1, 2) graded by αi or φi as above, we can compare the two gradings αi or φi . In
particular, it makes sense to say that they are equal or not.

We make another definition in the circumstances of Definition 2.1:

Definition 2.2 For i = 1, 2 let Li ⊆ (X, ω) be a Lagrangian with a Zk-grading αi :
L → K 2/k

X , k < ∞. Suppose L1, L2 intersect transversely at a point x ∈ L1 ∩ L2.

We define the Maslov index μL1,L2(x) ∈ Zk . Define eiτ ∈ S1 by α2 = eiτ α1 ∈ K 2/k
X

over x . Take an isomorphism (Tx X, J |x , g|x ) ∼= C
n which maps Tx L1 to R

n ⊆ C
n

and Tx L2 to {(eiθ1 x1, . . . , eiθn xn) ∈ C
n : x1, . . . , xn ∈ R}. for some θ1, . . . , θn ∈

(0, π). These θ1, . . . , θn are unique up to order and we have �2
L2

=
± e−2i(θ1+···+θn)�2

L1
. So we can define

μL1,L2(x) := 1

2π
(2θ1 + · · · + 2θn + kτ) ∈ Z modulo kZ. (4)

If k = ∞ and if for i = 1, 2 the Li is Z-graded by φi : Li → R then
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μL1,L2(x) := 1

2π
(2θ1 + · · · + 2θn − φ1(x) + φ2(x)) ∈ Z. (5)

We recall now the notion of special Lagrangians:

Definition 2.3 Let (X, ω) a symplectic manifold, J an ω-compatible almost-
complex structure on X and � a Z-grading of (X, ω, J ). We say that an immersed
Lagrangian in (X, ω, J, �) is special if it is Z-graded by a constant.

Remark 2.2 In the symplectic context including this definition and Sect. 4we do not
need J to be integrable. But in the more geometric context we suppose J integrable
and Harvey–Lawson’s theorem applies as in Theorem 3.1.

We prove a lemma which we use in Corollary 4.5:

Lemma 1 Let (X, ω, J, �) be such as in Definition 2.3 and L1, L2 ⊆ X two
mutually-transverse special Lagrangian submanifolds which have not even after
shifts the same grading. Then there exists i ∈ Z such that the Maslov indices of
L1, L2 all belong to [i, i + n − 1]. This will still hold under Lagrangian perturba-
tions of L1, L2.

Proof Let φ1, φ2 ∈ R be gradings of L1, L2. Then φ − φ′ /∈ Z and this condition
is preserved under Lagrangian perturbations of L1, L2. Let x ∈ L1 ∩ L2 and let
θ1, . . . , θn ∈ (0, π) be as in (4). Then by (5) we have μL1,L2(x) ∈ [i, i + n − 1] for
some i ∈ Z. This i is independent of x which completes the proof. �

We prove another lemma which we use in Sect. 6:

Lemma 2 Let (X, ω) be a symplectic manifold of real dimension 2n, Zk-graded
with k ≥ n, equipped with a compatible almost complex-structure J and equipped
with a Hermitian metric g. Let L1, L2 ⊆ X be two closed immersed Zk-graded
Lagrangians with the same grading on L1 ∩ L2. Denote by S ⊆ L1 ∩ L2 the set of
points at which L1, L2 have at least one common tangent space. Then for every
open neighbourhood U ⊆ X of S there exists ε > 0 such that every Hamiltonian
ε-perturbation of L2 that intersects L1 generically (that is, only at transverse double
points) has no intersection point with L1 ∩ U of index 0 or n modulo kZ.

Proof If this fails there are an open neighbourhood U ⊆ X of S, a sequence of
Hamiltonian perturbations Li

2 of L2 all transverse to L1 and tending smoothly to
L2, and a sequence of intersection points xi ∈ L1 ∩ Li

2 − U of index 0 or n. By
hypothesis L1 ∩ Li

2 U is compact, so there is a subsequence of xi tending to some
point x ∈ L1 ∩ L2 U . Suppose now that k < ∞; the other case k = ∞ may be
treated in the same manner. Give Li

2 a grading αi by the obvious homotopy, and
write αi = exp(

√−1τ i )α over xi . By hypothesis L1, L2 have the same grading at
xi so we may suppose that for each i we have |τ i | < 2π/k and the sequence τ i

tends to 0 as i → ∞. Denote by θ i
1, . . . , θ

i
n ∈ (0, π) the n angles between the two

tangent spaces at xi . Then 2θ i
1 + · · · + 2θ i

n + kτ i = 0 or nπ modulo 2kπZ. In fact,
since k ≥ n it follows that this holds without modulo 2kπZ. So the limits of the n
angles sum up to 0 or nπ; that is, at the limit point x there is a common tangent space
to L1, L2. But this contradicts the definition of S. �
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3 Maslov Forms

Following Lotay and Pacini [14] we make:

Definition 3.1 Let (X, ω, J ) be a Kähler manifold of complex dimension n and K X

the canonical bundle over (X, J ). Let L ⊆ (X, ω) be a Lagrangian submanifold, and
g a Hermitian metric on (X, J )which need not be the Kähler metric of (X, ω, J ) nor
even Kähler. As in Definition2.1 take the canonical g-unit section �2

L of K 2
X over

L . Denote by ∇ the Chern connection on (X, J, g) and by A the real 1-form on K 2
X

over L defined by ∇�2
L = 2i A ⊗ �2

L . We call A the Maslov form on L relative to g
and say that L is g-Maslov-zero if A ≡ 0.

Here it is not essential that J is integrable. Many results by Lotay and Pacini [13,
14] hold with J an ω-compatible almost-complex structure and with ∇ a connection
such that ∇ J = ∇g = 0. But it is convenient for us to suppose J integrable. We can
then take the Chern connection; in Sect. 5 we can use the underlying real analytic
structure of (X, J ) which will be convenient for us to state our results; and there
are as in Theorem 3.3 nice deformation theory results for special Lagrangians and
J -minimal Lagrangians which we use in Corollary 6.2.

As Lotay and Pacini [13, Theorem 2.4] prove, if g is Kähler the g-Maslov-zero
condition and the J -minimal condition are equivalent. If also L is g-Lagrangian—
that is, g(Jv, v′) = 0 for any v, v′ ∈ T L—then L is J -minimal if and only if L is
g-minimal in the ordinary sense.

We work with g-Maslov-zero Lagrangians rather than with J -minimal
Lagrangians because for special Lagrangians we can take g to be merely conformally
Kähler as we recall now. Let (X, ω, J ) a Kähler manifold and � a J -holomorphic
volume form on X. Joyce [9] and other authors call (X, ω, J, �) an almost Calabi–
Yau manifold but this does not mean that J is merely an almost complex structure;
J is integrable. It means that ω is Andnot necessarily Ricci-flat. Denote by g the
conformally Kähler metric on (X, J ) associated with ψ2ω where ψ : X → R

+ is
defined by

ψ2nωn/n! = (−1)n(n−1)/2(i/2)n� ∧ �. (6)

Then for every Lagrangian submanifold L ⊆ X the canonical g-unit section ω2
L is

of the form α�2|L where α : L → S1 is a smooth function. This L has zero Maslov
1-form if and only if α is constant, that is, if and only if L is special. In these
circumstances Harvey–Lawson’s theorem [7] may be stated as follows:

Theorem 3.1 If L is special then L is orientable and calibrated by
√

α� in Harvey–
Lawson’s sense where the choice of

√
α corresponds to the orientation of L . Fur-

thermore, L is area-minimizing with respect to g and J-minimal in (X, J, g).

Lotay and Pacini [14, Proposition 4.5] prove a formula for the Maslov 1-form A
and the J -mean-curvature vector HJ :

− J A = (HJ + TJ )�g (7)
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where TJ comes from the torsion of the Chern connection ∇. If L is special then by
definition we have A = 0 and HJ is the ordinary mean curvature which is also zero.
So by (7) we have TJ = 0 too. Conversely, if L is merely J -minimal then TJ may
be nonzero. This justifies us working with g-Maslov-zero Lagrangians rather than
J -minimal Lagrangians.

We compute now the relative first Chern class 2c1(X, L) ∈ H 2(X, L;Z) for g-
Maslov-zero Lagrangians L ⊆ X. We recall therefore:

Lemma 3 Let (X, ω) be a symplectic manifold, J an ω-compatible complex struc-
ture, K X the canonical bundle over (X, J ) and L ⊆ (X, ω) a Lagrangian submani-
fold. Then the relative de-Rham class 2c1(X, L) ∈ H 2(X, L;R), which is integral,
may be represented by the curvature 2-form of any connection on K 2

X that is flat
over L .

So by Definition 3.1 we have:

Corollary 3.2 Let (X, ω, J ) be a Kähler manifold, g a Hermitian metric on (X, J ),

and L ⊆ (X, ω) a g-Maslov-zero Lagrangian submanifold. Then 2c1(X, L) may be
represented by the curvature (1, 1)-form of K 2

X relative to the Chern connection on
(X, J, g).

Example 1 Let X = CPn, ω the Fubini–Study form and g the Fubini–Studymetric.
This is Kähler–Einstein and the curvature (1, 1)-form of K X relative to g is −(n +
1)ω. The Clifford torus T n ⊆ CPn defined by (3) is a minimal Lagrangian. It is
J -minimal and g-Maslov-zero so we can apply to it Corollary 3.2.

We prove that CPn and T n may both be Z2n+2-graded. Since H1(CPn,Z) = 0
it follows according to Seidel [16, Lemma 2.6] that CPn may be Z2n+2-graded
because 2c1(CPn) = −2(n + 1)[ω]. Also T n may be Zk-graded if and only if
2c1(CPn, T n) is divisible by k. By Corollary 3.2 we have c1(CPn, T n) = −(n +
1)[ω] ∈ H 2(CPn, T n;R).Computation shows that H2(CPn, T n;Z) is generated by
the image of H2(CPn,Z) and the n discs Da ⊆ CPn, a ∈ {1, . . . , n}, defined by
|za| ≤ 1 and zb = 1 for every b 
= a. We have

ω|Da = ni

2π

dza ∧ dz̄a

(n + |za|2)2 and
∫

Da

ω = 1.

So [ω] ∈ H 2(CPn, T n;R) is integral, q.e.d.

We turn now to the deformation theory for g-Maslov-zero Lagrangians. We recall
Lotay–Pacini’s lemma [13, Lemma 4.1] which we use in Sect. 5:

Lemma 4 Let (X, ω, J ) be a Kähler manifold and g a Hermitian metric on (X, J ).

Let L ⊆ (X, ω, J ) be a closed immersed g-Maslov-zero Lagrangian and N L the
g-normal bundle to L ⊆ X. For every sufficiently small v ∈ C∞(N L) denote by Av

the g-Maslov 1-form on the graph of v embedded in X by the g-exponential map, and
denote by A′ the linearization of A at 0 ∈ C∞(N L). Then for every v ∈ C∞(N L)

we have
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A′v = dd∗v̂ +
n∑

i=1

g(T∇(v, ei ), ei ) + v�F∇ (8)

where v̂ := −Jv�g, {e1, . . . , en} is a g-orthonormal frame on T L , ∇ the Chern
connection of (X, J, g), T∇ its torsion tensor and F∇ its curvature (1, 1)-form for
K X .

Proof This is a version of Lotay–Pacini’s lemma [13, Lemma4.1]. They suppose that
(X, J, g) is almost Kähler but again this is not essential; the result applies to every
almost Hermitian manifold (X, J, g) with connection ∇ such that ∇ J = ∇g = 0.
Our formula (8) is simpler than Lotay–Pacini’s in two respects. One is that their
J -volume function ρJ : L → R

+ is identically equal to 1 and the other is that their
projection operator πL is g-orthogonal. These both hold because L is g-Lagrangian,
which completes the proof. �

We remark that we can compute the torsion term in the conformallyKähler case. If
g is a conformallyKählermetric on (X, J ) associatedwithψ2ω then∇ − ∂ logψ2 ⊗
id is the Levi-Civita connection for ω. Hence by computation we see that for any
vector fields u, v on X we have

T∇(u, v) = d logψ�(u ⊗ v + Ju ⊗ Jv − v ⊗ u − Jv ⊗ Ju).

So the torsion term on (8) is equal to (n − 1)d logψ and

A′v = d(ψn−1d∗ψ1−n v̂) + v�F∇ . (9)

This has application to deformation theory; that is, by (9)we can applyLotay–Pacini’s
result [13, Proposition 4.5] with ψn−1 in place of ρJ . So Lotay–Pacini’s uniqueness
and persistence theorem [13, Theorem 5.2] extends to g-Maslov-zero Lagrangians
with g conformally Kähler. But the corresponding perturbations are just Lagrangian
and not necessarily Hamiltonian as we want in the Floer theory context.

On the other hand, we can make (domain) Hamiltonian perturbations of special
Lagrangians and J -minimal Lagangians. The result for special Lagrangians goes
back to McLean’s theorem [15] and that for J -minimal Lagrangians is proved by
Lotay–Pacini [13, Theorem 5.6].

Theorem 3.3 (i) Let (X, ω, J ) be a Kähler manifold, � a J-holomorphic volume
form on X and L ⊆ X a closed immersed special Lagrangian relative to (J, �).

Then for every sufficiently small perturbation (J ′, � ′) of (J, �) as ω-compatible
complex structures and holomorphic volume forms relative to them, there exists a
domain Hamiltonian perturbation of L which is special with respect to (J ′, � ′).
(ii) Let (X, ω, J ) be a Kähler manifold such that −ω is the Ricci (1, 1)-form of
another Kähler metric g on (X, J ), and L ⊆ X a closed immersed J -minimal
Lagrangian. Then for every sufficiently small perturbation (J ′, g′) of (J, g) as ω-
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compatible complex structures and Kähler metrics relative to them whose Ricci
(1, 1)-forms are all equal to −ω, there exists a domain Hamiltonian perturbation of
L which is J -minimal with respect to (J ′, g′).

4 HF∗ Nonvanishing Theorems

Following Fukaya, Oh, Ohta and Ono [4] given a unital commutative ring R we
define the Novikov ring

� =
{ ∞∑

i=0

ai T
λi : ai ∈ R[e, e−1], λi ∈ R for each i and lim

i→∞ λi = +∞
}

(10)

where T, e are two formal variables. They are related respectively to the areas and
Maslov numbers of pseudoholomorphic curves. We denote by �0 ⊆ � the subring
defined by the same formula (10) as� but with λi ≥ 0 in place of λi ∈ R.We denote
by �+ ⊆ �0 the ideal defined by (10) with λi > 0 in place of λi ∈ R. We write ≈
for = modulo �+.

Fukaya categories are defined over �. If the ambient symplectic manifold is
spherically nonnegative we can take R = Z as Fukaya, Oh, Ohta and Ono [6] do.
But in general we have to do the pseudoholomorphic-curve counts over Q and we
shall therefore suppose that R contains Q. Otherwise, in our applications we need
no condition on R; that is, we work under the following:
Hypothesis 1 Let (X, ω) be aZk-graded symplectic manifold of real dimension 2n,

either compact or ω-convex at infinity. Let R be a unital commutative ring such that
if X is not spherically nonnegative thenQ ⊆ R. If 2 
= 0 in R, we shall suppose that
X is given a background bundle for relative spin structures on Lagrangians in X, and
that the Lagrangians concerned are all given relative spin structures.

Under this hypothesis there is a Fukaya categoryF(X) and its cohomology category
HF(X). In this paper, followingAkaho and Joyce [1]we suppose that every object of
F(X) consists of a closed generically-immersedLagrangian L ⊆ X and its additional
structures such as bounding cochains.More precisely, we shouldwrite the immersion
map to L , say L̂ → L , and ‘closed’means L̂ being a closedmanifold.We can include
also a suitable class of local systems on L and the results in this paper will hold for
them but we shall omit this in our formal treatment. We recall now the notion of
bounding cochains now.

We recall first the homologically perturbed version of Floer complexes. Given
a closed manifold L̂ and a generic Lagrangian immersion L̂ → L ⊆ X we write
L ∩ L := L̂ ×X L̂. This is the disjoint union of the diagonal L̂ and self-intersection
pairs. It depends upon the choice of L̂ → X but is unique up to automorphisms of L̂ .
We write C∗

L := H ∗(L ∩ L , R)[−μL ,L ] where the diagonal has no degree shift and
every self-intersection pair has degree equal to its Maslov index. If L is embedded,
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this C∗
L is Z-graded and supported in degrees 0, . . . , n. If L is Zk-graded, so is C∗

L .

If also L has on its every self-intersection pair two gradings nearly equal, then C∗
L is

supported in degrees 0, . . . , n modulo kZ.

We use the following version of A∞ algebra structure constructions. There are
on C0

L a unit and the intersection pairing so we can speak of unitality and cyclic
symmetry as Fukaya [2] does.

Theorem 4.1 There is on C∗
L ⊗ �0 a cohomologically-unital cyclic curved A∞ alge-

bra structure (mi )∞i=0 with m1 ≈ 0 and m2 ≈ ±∧ where ∧ is the cup-product map.
If also L is embedded, we can make this strictly unital.

Remark 4.2 The embedded case is proved by Fukaya [2]. This will extend to the
immersed case if we give up having the strict unit and satisfy ourselves with a
cohomological unit. To have the strict unit we ought to perturb in a certain manner
the relevant pseudoholomorphic-curvemoduli spaces. But in the immersed case there
would be moduli spaces of constant maps to self-intersection points. If we perturbed
these, the cyclic symmetry would fail.

The cyclic symmetry is used in Lemma 5 below. But also we give it another proof
in which we use the open-closed map.

By a bounding cochain on (C∗
L ⊗ �0;m0,m1,m2, · · · ) we mean an element

b ∈ C1
L ⊗ �+ with

∑∞
i=0 m

i (b, . . . , b) = 0. Given such a b there is a natural way
of giving C∗

L ⊗ �0 a cohomologically-unital cyclic ordinary A∞ algebra structure
(mi

b)
∞
i=0 with m

1
b ≈ 0 and m2

b ≈ ± ∧ .

We denote by 1 ∈ C0
L the unit, which is the cohomological unit in Theorem (4.1).

We denote by ∗1 ∈ Cn
L the volume form supported on the diagonal, which is if

2 
= 0 in R the Poincaré dual to a point. We denote also symbolically by (x, y) :=
± ∫

L∩L x ∧ y the intersection pairing on C∗
L . The sign does not matter to us. We

prove now:

Lemma 5 For every bounding cochain b ∈ C1
L ⊗ �+ we have:

(i) if L is embedded, we have ∗1 /∈ imm1
b; and

(ii) if m1
b ∗ 1 = 0 then [∗1] 
= 0 in H n(C∗

L ⊗ �0,m1
b).

Proof Suppose contrary to (i) that ∗1 = m1
bx for some x ∈ C∗

L ⊗ �. Then using the
strict unit we find

0 = (m1
b1, x) = ±(1,m1

bx) = ±(1, ∗1) ≈ ±
∫

L∩L
m2

b(1, ∗1) ≈ ±
∫

L∩L
∗1 = 1.

(11)
This is impossible which proves (i).

We give (ii) two proofs. Firstly, if ∗1 = m1
bx for some x ∈ C∗

L ⊗ � then as in (11)
we have

0 ≈ ±
∫

L∩L
m2

b(1, ∗1) (12)

but m2
b(1, ∗1) need not be ∗1. However 1 is a cohomological unit and ∗1 an m1

b-
cocycle, so
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m2
b(1, ∗1) = ∗1 + m1

b y ≈ ∗1 ≈ ∗1. (13)

Now by (12) and (13) we have 0 ≈ ± ∫
L∩L ∗1 ≈ ±1 ∈ R {0}. This is impossible and

so completes the first proof.
In the other proof of (ii) we use neither the cyclic symmetry nor the unitality

but the open-closed map constructed by Fukaya, Oh, Ohta and Ono [4, Sect. 3.8].
This extends to generically immersed Lagrangians. We use in particular the map pb :
H n(C∗

L ⊗ �0,m1
b) → H 2n(X, R) ⊗ �0. Denote by ∗X1 the volume form on X and

to distinguish it from that on L write ∗L1 := ∗1 ∈ Cn
L . Then by the extended version

of Fukaya, Oh, Ohta and Ono’s lemma [4, Lemma 6.4.2] we have pb[∗L1] ≈ [∗X1].
So [∗L1] 
= 0. �

We prove now our version of Fukaya, Oh, Ohta and Ono’s theorem [4, Theorem
E]. We recall therefore that the A∞ structure of Theorem 4.1 is gapped; that is, if
we take on X an ω-compatible almost-complex structure J we can write m1

b as the
sum of m1

b,β of degree 1 − [β] · 2c1(X, L) where β ∈ H2(X, L;Z) is a genus-zero
stable J -holomorphic curve class. Also, given a bounding cochain b ∈ C1

L ⊗ �+ we
define H F∗(b, b) := H∗(C∗

L ⊗ �,m1
b) ⊗ �.

Theorem 4.3 Let Hypothesis 1 hold and let L ⊆ X be a closed generically-
immersed Lagrangian. Suppose also that:

(i) L is embedded and there is on X an ω-compatible almost-complex structure
J such that for every J -holomorphic curve class β ∈ H2(X, L;Z) we have
β · 2c1(X, L) ≤ 0; or

(ii) k ≥ n + 2 and L has on its every self-intersection pair the two gradings nearly
equal.

Then for i = 0, n and for every object b ∈ HF(X) supported on L we have
H Fi (b, b) 
= 0.

Proof The case (i) is due to Fukaya, Oh, Ohta and Ono [4, Theorem E] but we
recall the proof. Since L is embedded it follows that C∗

L is Z-graded and supported
in degrees 0, . . . , n.Also, since β · 2c1(X, L) ≤ 0 it follows thatm1

b has degree≥ 1.
So under m1

b nothing goes to 1 and ∗1 goes to zero. Since the cohomological unit
is by definition an m1

b-cycle it follows now that [1] 
= 0 in H 0(C∗
L ⊗ �0,m1

b) and
accordingly in H F0(b, b). On the other hand, we have proved that ∗1 is also anm1

b-
cycle. So by Lemma 5 (i) we have [∗1] 
= 0 in H n(C∗

L ⊗ �0,m1
b) and accordingly

in H Fn(b, b).

In the case (ii) we haveC∗
L merelyZk-graded. But k ≥ n + 2 soC−1

L = Cn+1
L = 0.

Now db has degree 1 modulo kZ so again under m1
b nothing goes to 1 and ∗1 goes

to zero. So [1] 
= 0 in H F0(b, b) and now by Lemma 5 (ii) we have [∗1] 
= 0 in
H Fn(b, b). This completes the proof. �

We apply Theorem 4.3 to g-Maslov-zero Lagrangians. We say that a closed
immersed Lagrangian L ⊆ X nearly underlies F(X) if there is an arbitrarily-small
Hamiltonian deformation of L which underlies an object of HF(X). Such an object
is said to be supported near L .
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Corollary 4.4 Let Hypothesis 1 hold with X given an ω-compatible almost-complex
structure J. Let g be another Hermitian metric on (X, J ) and L ⊆ (X, ω, J, g) a
close Zk-graded immersed g-Maslov-zero Lagrangian. Suppose that either: (i) L is
embedded; or (ii) k ≥ n + 2 and L has on its every self-intersection pair the two
gradings nearly equal. Then for i = 0, n and for every object b ∈ HF(X) supported
near L we have H Fi (b, b) 
= 0.

Proof In the case (i) it follows from Corollary 3.2 that the condition (i) of Theorem
4.3 holds. This concerns only integral homology and cohomology classes and so is
preserved under perturbations of L . Taking one of them which underlies b we see
from Theorem 4.3 that H Fi (b, b) 
= 0 as we want. Also in the case (ii) the condition
(ii) of Theorem 4.3 is preserved under perturbations of L so the conclusion follows
in the same way. �

For special Lagrangians we can say more:

Corollary 4.5 Let Hypothesis 1 hold with X given an ω-compatible almost-complex
structure J and a J-holomorphic volume form. Then we have:

(i) For i = 0, n and for every object b ∈ HF(X) supported near a closed immersed
special Lagrangian, we have H Fi (b, b) 
= 0.

(ii) Let L1, L2 ⊆ X be two closed immersed special Lagrangians and let HF(X)

have two isomorphic objects b1, b2 supported respectively near L1, L2. Then
L1, L2 have up to shift the same grading.

Proof The part (i) follows immediately from Corollary 4.4 with k = ∞. If (ii) fails
then by Lemma 1 we have H F∗(b1, b2) supported in degrees i, . . . , i + n − 1 for
some i ∈ Z. So either H F0(b1, b2) = 0 or H Fn(b1, b2) = 0. But b1

∼= b2 so either
H F0(b1, b1) = 0 or H Fn(b1, b1) = 0. This however contradicts (i). �

5 Hamiltonian Perturbation Theorem

In this section we prove the following theorem.We work in the real analytic category
and for our applications in Sect. 6 we can take the underlying real analytic structure
of a complex manifold (X, J ). In fact any other real analytic structure will do if it
makes everything analytic but the statement will then be too long.

Theorem 5.1 (i) Let (X, ω, J ) be a real analytic Kähler manifold of complex dimen-
sion n and g a real analytic Hermitian metric on (X, J ). Let L1, L2 ⊆ X be two
distinct closed irreducibly-immersed g-Maslov-zero Lagrangians and let S be as
in Lemma 2. Then there exists a neighbourhood U of S ⊆ X and arbitrarily-small
Hamiltonian deformations L ′

1, L ′
2 of L1, L2 respectively which intersect generically

each other with no intersection point in U of index 0 or n. This will still hold if L1, L2

are g-Maslov-zero only near L1 ∩ L2. If also Hypothesis 1 holds and L1, L2 nearly
underlie HF(X) we can make L ′

1, L ′
2 underlie HF(X).
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(ii) The assertion will hold even if ω, g are not analytic but if there are ω-
compatible complex structures Jt , Jt -Hermitian metrics gt and gt -Maslov-zero
Hamiltonian perturbations L1t , L2t of L1, L2 all parametrized smoothly by t ∈ R

with (J0, g0, L10, L20) = (J, g, L1, L2) and such that for t 
= 0 the ω, gt are Jt -
analytic.

Remark 5.2 (i) The theorem is of local nature so in fact we need the g-Maslov-zero
condition and the real analyticity condition only near L1 ∩ L2.

(ii) The index in U may be defined without grading L ′
1, L ′

2; that is, near S we write
L ′
2 over L ′

1 as the graph of an exact 1-form d f and we take the Morse indices of f.
This definition agrees with that in Sect. 2 if L1, L2 are graded with the same grading
on L1 ∩ L2 and if L ′

1, L ′
2 are graded by the obvious homotopies.

There are a few key estimates which we use for the proof of Theorem 5.1. Firstly,
according to Łojasiewicz [12] for every function f : Rn → R with f (0) = 0 and
analytic near 0 ∈ R

n there exist two constants c > 0 and p ∈ (0, 1) such that near
0 ∈ R

n we have | f |p ≤ c|d f |. This implies readily that we have:

Lemma 6 In the circumstances of Theorem 5.1 (i) take a Weinstein neighbourhood
of L2 ⊆ (X, ω) and write L1 near S as the graph over L2 of a closed 1-form u. Then
near S we have |u| � |∇u| � 1; that is, for every ε > 0 there exists a neighbourhood
of S ⊆ L2 on which |u| ≤ ε|∇u| ≤ ε2. Here | • |,∇ are both computed with respect
to the induced metric on L2.

We show next that theMaslov 1-form operator may be well approximated by dd∗:

Lemma 7 Let (X, ω, J ) be a Kähler manifold and let g be a Hermitian metric on
(X, J ). Let L ⊆ X be a closed immersed g-Maslov-zero Lagrangian and let N L
be the g-normal bundle to L ⊆ X. Then there exists a constant c > 0 such that
for every sufficiently C1-small v ∈ C∞(N L) whose graph (embedded in X by the
g-exponential map) is g-Maslov-zero, we have at every point of L

|dd∗v̂| ≤ c|v|C1(1 + |v|C2) (14)

where v̂ is the same as in Lemma 4, |v|C1 := |v| + |∇v| and |v|C2 := |v| + |∇v| +
|∇2v|; the latter two are computed pointwise on L with respect to g.

Proof Let v ∈ C∞(N L) be sufficiently C1-small and Av ∈ C∞(T ∗L) the Maslov
1-form of the graph of v. The tangent space to the graph of v involves the first
derivative ∇v so the canonical section of K 2

X over the graph of v is of the form
B(v,∇v) where B : N L ⊕ (T ∗L ⊗ N L) → N L is a smooth function. Then Av

involves the differentiation of B(v,∇v) so

Av = A1(v,∇v) + A2(v,∇v) · ∇2v (15)
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where A1 : N L ⊕ (T ∗L ⊗ N L) → N L and A2 : N L ⊕ (T ∗L ⊗ N L) → N L ⊗
T L ⊗ T L are some smooth functions. Denote by A′ the linearization of A at
0 ∈ C∞(N L). Then by (15) there is a v-independent constant c1 > 0 such that

|(A − A′)v| ≤ c1[|v|2 + |∇v|2 + |∇2v|(|v| + |∇v|)] ≤ c1|v|C1 |v|C2 (16)

where the same constant c1 will do for both the inequalities. Now by Lemma 4 A′
is, up to lower-order terms, equal to dd∗v̂; that is, there is a v-independent constant
c2 > 0 such that

|A′v − dd∗v̂| ≤ c2|v|C1 .

So by (16) we have |(A − A′)v| ≤ max{c1, c2}|v|C1(1 + |v|C2). This implies indeed
that if Av = 0 then (14) holds. �

We give a corollary to the lemma above:

Corollary 5.3 In the circumstances of Lemma 7 take a Weinstein neighbourhood of
L ⊆ X. Then there exists a constant c > 0 such that for every sufficiently C1-small
1-form u ∈ C∞(T ∗L) whose graph is also minimal, we have at every point of L

|dd∗u| ≤ c|u|C1(1 + |u|C2). (17)

Proof The two embeddings, one given by the exponential map and the other given by
the Weinstein neighbourhood, are mutually related by a diffeomorphism F between
neighbourhoods of the zero sections of T ∗L , N L respectively which induces the
identity on the zero section L , and over every point of L , a diffeomorphism of the
two fibres. So there is a smooth function F1 : T ∗L → N L ⊗ T L such that for every
sufficiently C1-small u ∈ C∞(T ∗L) we have Fu = F1u · u. In particular there is a
u-independent constant c > 0 such that

|Fu|C1 ≤ |u|C1 and |Fu|C2 ≤ c|u|C2 . (18)

The function Gu := −J Fu�g is also of the same form; that is, there is a smooth
function G1 : T ∗L → T ∗L ⊗ T L such that Gu = G1u · u. This implies in turn that
we have, making c large enough,

|dd∗Gu| ≤ c|dd∗u| + c|u|C1(1 + |u|C2) (19)

Now by (14) we have, making c large enough,

|dd∗Gu| ≤ c|Fu|C1(1 + |Fu|C2).

So by (19) we have (17) with c large enough. �

Now we prove Theorem 5.1 in three steps:
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Proof (Step 1: proof of the first part of (i)) In this case we take L ′
1 = L1 and perturb

only L2. We take a Weinstein neighbourhood of L2 ⊆ (X, ω) and define L ′
2 as the

graph of a certain exact 1-form d f on L2 with f : L2 → R taken as follows. Since
L1, L2 are both connected and analytic with L1 
= L2 as subsets of X it follows that
L2 L1 is dense in L2. So there is a Morse function f : L2 → R with d f 
= 0 on
L1 ∩ L2. Since S ⊆ L1 ∩ L2 it follows then that there is a constant c > 0 such that
we have near S

| f |C2 < c|d f |. (20)

This condition is preserved under rescalings and smooth perturbations of f so we
can make L ′

2 arbitrarily C∞ close to L2 and transverse to L1.

Near S take a local component of L1 if need be (in the strictly immersed case)
and write it as the graph over L2 of some closed 1-form u. This is possible by the
definition of S and in fact we have also u = ∇u = 0 on S. So by Lemma 6 we have
near S

|u| � |∇u| � 1. (21)

On the other hand, by Corollary 5.3 with L2 in place of L , there is a constant c′ > 0,
which depends upon |u|C2 , such that we have near S

|dd∗u| ≤ c′(|u| + |∇u|) ≤ 2c′|∇u| � 1 (22)

where the second inequality follows from (21). Applying to d∗u the Łojasiewicz
estimate, we find a constant ε > 0 such that we have near S

|d∗u| ≤ |dd∗u|1+ε ≤ (2c′|∇u|)1+ε � |∇u| (23)

where the second inequality follows from (22).
We show now that we have on L1 ∩ L ′

2 near S

|d∗(u − d f )| ≤ n−1/2|∇(u − d f )|. (24)

On L1 ∩ L ′
2 near S we have u = d f and so by (20)

|∇(u − d f )| ≥ |∇u| − |∇d f | ≥ |∇u| − c|d f | = |∇u| − c|u| ≥ 1

2
|∇u| (25)

where the last inequality follows from (21). On the other hand by (23) we have on
L1 ∩ L ′

2 near S

|d∗(u − d f )| ≤ |d∗u| + c|d f | ≤ 1

4
n−1/2|∇u| + c|u| ≤ 1

2
n−1/2|∇u| (26)

where the last inequality follows again from (21). By (25) and (26) we have (24) as
we want.
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Finally we take a point x ∈ L1 ∩ L ′
2 near S and compute its index, which is the

index of the nondegenerate symmetric bilinear form ∇(u − d f ) on Tx L2. Diagonal-
ize it by an orthonormal basis of Tx L2 and denote by λ1, . . . , λn the diagonal entries.
Then by (24) we have

|λ1 + · · · + λn| ≤ n−1/2(λ2
1 + · · · + λ2

n)
1/2 ≤ max{|λ1|, . . . , |λn|}.

But λ1, . . . , λn are all nonzero so they have not all the same sign; that is, the index
is neither 0 nor n as we want. �

Proof (Step 2: proof of the latter part of (i)) We make first a generic Hamiltonian
perturbation of L2 which underlies an object of HF(X) and we define L ′

2 as a further
Hamiltonian perturbation of it. As in step 1 we take a Weinstein neighbourhood of
L2 and define L ′

2 as the graph of some exact 1-form dh2 over L2 with h2 
= 0 on S.

Also as in step 1 write L1 near S as the graph of some real analytic closed 1-form
u on L2 near S. Take a generic Hamiltonian perturbation L ′

1 of L1 which underlies
HF(X) and is close enough to L1 to be written near S as the graph of u + dh1 over
L2 with

|h1|C2 � |h2|C2 . (27)

Since dh2 
= 0 on S it follows that there is a constant c > 0 such that near S we have
|h2|C2 < c

4 |dh2|. And then putting f := h2 − h1 we have

|h2|C2 <
c

4
(|d f | + |dh1|) ≤ c

4
|d f | + 1

2
|h2|C2 (28)

where the last inequality follows from (27). Thewhole estimate (28) implies |h2|C2 <
c
2 |d f |. Hence using again (27) we find

| f |C2 ≤ |h2|C2 + |h1|C2 <
c

2
|d f | + |h2|C2 < c|d f |;

that is, the estimate (20) holds as in step 1. Following the subsequent estimates we
see also that (24) holds now on L ′

1 ∩ L ′
2 near S. This implies again that L ′

1, L ′
2 have

near S no intersection point of index 0 or n. �

Proof (Step 3: proof of Theorem 5.1 (ii)) As in step 2 we make Hamiltonian per-
turbations L ′

1, L ′
2 of L1, L2 both underlying HF(X). The L ′

2 is the graph of dh2

over L2 and the L ′
1 near S is the graph of u + dh1 over L2 near S. The difference

f := h2 − h1 satisfies (20) as in step 1. We extend these to smooth families. By The-
orem 3.3 there are gt -Maslov-zero Hamiltonian perturbations L1t , L2t of L1, L2.

Extend the Weinstein neighbourhood of L2 to those of L2t and write L ′
2 as the graph

of some dh2t over L2t . Denote by St ⊆ L1t ∩ L2t the set of intersection points at
which L1t , L2t have at least one common tangent space. Write L1t near St as the
graph of a real analytic closed 1-form ut over L2t near St and write L ′

1 near St as
the graph of ut + dh1t over L2t near St . Then with t small enough the estimate (20)
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holds for ft := h2t − h1t in place of f and we can follow the subsequent estimates
in step 1. We can do this in a t-independent neighbourhood U of S ⊆ X because St

tends to S. So L ′
1, L ′

2 have in U no intersection point of index 0 or n. �

6 Conclusions

From Lemma 2 and Theorem 5.1 we deduce:

Theorem 6.1 Let (X, ω, J )be a real analytic Kähler manifold of complex dimension
n, Zk-graded with k ≥ n and given another real analytic Hermitian metric g. Let
L1, L2 ⊆ X two distinct closed irreducibly-immersed g-Maslov-zero Lagrangians
with the same grading on L1 ∩ L2. Then there exist arbitrarily-small Hamiltonian
deformations L ′

1, L ′
2 of L1, L2 which intersect generically each other with no inter-

section point of index 0 or n. If also Hypothesis 1 holds and L1, L2 nearly underlie
objects of HF(X) then we can make L ′

1, L ′
2 underly objects of HF(X).

Proof Let U be as in Theorem 5.1 and corresponding to this U let ε be as in Lemma
2. Then corresponding to this ε let L ′

i (i = 1, 2) be such ε-perturbations of Li as in
Theorem 5.1. Applying Lemma 2 to the intersection points outside U and Theorem
5.1 to those in U we see that L ′

1, L ′
2 are such as we want. �

We make now the C∞ version of Theorem 6.1:

Theorem 6.2 Let (X, ω, J ) be a Kähler manifold of complex dimension n which
is either: Z-graded by a J -holomorphic volume form � and given the conformally
Kähler metric g as in §2 by using (6); or Zk-graded with k ≥ n and given another
Kähler metric g whose the Ricci (1, 1)-form is −ω. Let L1, L2 ⊆ (X, ω, J, g) be
two distinct closed irreducibly-immersed g-Maslov-zero Lagrangians with the same
grading on L1 ∩ L2. Suppose that one of the following three conditions holds: (i) X
is compact; (ii) X is ω-convex, ω is exact and J is Stein; or (iii) either L1 or L2 is
generically immersed. Then the same conclusion holds as in Theorem 6.1 (both the
two sentences in it).

Proof We reduce the problem to the real analytic case by a further perturbation
process. In the case (i) we use the fact that for every compact Kähler manifold
(X, ω, J ) there exists on (X, J ) a smooth family (ωt )t∈R of Kähler forms with
ω0 = ω and ωt , t 
= 0, analytic. This seems well known but for clarity we give it
a proof. Denote by gω the Kähler metric of (X, ω, J ) and take on (X, J ) a smooth
family of Riemannian metrics g′

t with g′
0 = gω and g′

t , t 
= 0, analytic. Then gt :=
1
2 (g

′
t + J ∗g′

t) defines on (X, J ) a smooth family of Hermitian metrics with g0 = gω

and gt , t 
= 0, analytic. Denote by ∂∗
t , ∂̄∗

t the respective formal gt -adjoints of ∂, ∂̄ and
following Kodaira and Spencer [11, Sect. 6] introduce the smooth family of elliptic
operators

Et := ∂∂̄∂̄∗
t ∂∗

t + ∂̄∗
t ∂∗

t ∂∂̄ + ∂̄∗
t ∂∂∗

t ∂̄ + ∂∗
t ∂̄ ∂̄∗

t ∂ + ∂∗
t ∂ + ∂̄∗

t ∂̄ .
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Since g0 is Kähler it follows readily that E0 is apart from the last two terms just the
squared Laplacian. The last two terms are so added that the kernel of Et consists of
closed forms. Denote by ω′

t the projection of ω onto the kernel of Et in the space of
(1, 1)-forms. Then by Kodaira–Spencer’s result [11, Proposition 8] the kernel of Et

has dimension independent of t. So by another result of them [11, Theorem 5] ω′
t

is smooth with respect to t. Putting ωt := 1
2 (ω

′
t + ω′

t ) we see that ωt is such as we
want.

In the case (ii) we write ω = d Jdp for some p : X → R and perturb p to a real
analytic function. In the case (iii) we take a Stein open set in (X, J ) on which ω

is exact and which contains the generically immersed Lagrangian, say L1. This is
possible because every self-intersection point of L1 is a transverse double point; the
Stein structure near it is given by taking the product of squared distances from the two
components of the generically immersed Lagrangian, which is a plurisubharmonic
function.

In every case there are Kähler perturbations ωt of ω and by Moser’s theorem
diffeomorphisms �t : X → X with ω = �∗

t ωt . Then ω is analytic with respect to
Jt := �∗

t J and for i = 1, 2 the Lagrangian �∗
t Li ⊆ (X, ω) is a nearly-zero Maslov-

form relative to gt := �∗
t g.So byTheorem3.3 there is a gt -Maslov-zeroHamiltonian

perturbation Lit of �∗
t Li to which we can apply Theorem 5.1 (ii). Combining it with

Lemma 2 as in the proof of Theorem 6.1 we see that Theorem 6.2 holds. �

Finally using the results of Sect. 4 we get:

Corollary 6.3 (i) Let (X, ω, J, g, L1, L2) be such as in Theorem 6.1 or Theorem 6.2
except that L1, L2 ⊆ X may be equal. Let Hypothesis 1 hold and let b1, b2 ∈ HF(X)

be two objects supported respectively near L1, L2 such that:

eitherb1
∼= b2ork ≥ 2n − 1andb1

∼= b2up to shift. (29)

Suppose also that

H Fi (b1, b1) ∼= H Fi (b2, b2) 
= 0 for i = 0, n. (30)

More generally, suppose as in Corollary4.4 that either: c1(X) ≤ 0 and one of L1, L2

is embedded; or k ≥ n + 2 and one of L1, L2 has on its every self-intersection pair
the two gradings nearly equal. Then L1 = L2 ⊆ X.

(ii) Let (X, ω, J ) be a Kähler manifold equipped with a holomorphic volume form;
and L1, L2 ⊆ X two closed irreducibly-immersed special Lagrangians. Suppose that
either ω is J -analytic or one of (i)–(iii) of Theorem 6.2 holds. Let Hypothesis 1 hold
and let HF(X) have two isomorphic objects supported respectively near L1, L2.

Then L1 = L2 ⊆ X.
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Proof Suppose contrary to the assertion that L1 
= L2. Then perturbing L1, L2 as
in Theorem 6.1 or Theorem 6.2 we see that H F∗(b1, b2) is supported in degrees
1, . . . , n − 1 modulo kZ. But by hypothesis we have k ≥ n so H F0(b1, b2) =
H Fn(b1, b2) = 0. If also b1

∼= b2 then H F0(b1, b1) = H Fn(b1, b1) = 0 which
however contradicts (30) or Corollary 4.4. This is the first case of (29).

In the second case we have k ≥ 2n − 1 but b1
∼= b2 only up to shift. Then from

Theorem 6.1 we see only that H F∗(b1, b1) is supported in degrees i, . . . , i + n −
2 for some i ∈ Z. But again we have H F0(b1, b1) 
= 0 and H Fn(b1, b1) 
= 0 so
after translating [i, i + n − 2] by kZ we may suppose 0 ∈ [i, i + n − 2] and n ∈
[i + j, i + j + n − 2] for some j ∈ kZ.Then i ∈ [2 − n, 0] ∩ [2 − j, n − j] so 0 ≥
2 − j and 2 − n ≤ n − j; that is, j ∈ [2, 2n − 2]. So 0 < j < 2n − 1 ≤ k which
however contradicts j ∈ kZ. This proves Corollary 6.3 (i).

For Corollary 6.3 (ii) we use Corollary 4.5 (ii) to see that L1, L2 have up to shifts
the same grading. We can then apply Corollary 6.3 (i) with k = ∞ which completes
the proof. �
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Birationally Rigid Complete
Intersections of Codimension Three

Kobina Brandon Jamieson

Abstract We prove that the complement to the set of birationally superrigid Fano
complete intersections of index 1 and codimension 3 in P

M+3 is at least

1

2
(M − 10)(M − 11) − 2

for M ≥ 30.

Keywords Rationality · Fano varieties · Birational rigidity

1 Statement of the Main Result

Let M ≥ 30 be an integer and P = P
M+3 the complex projective space. For any

integral triple d = (d1, d2, d3), such that

2 ≤ d1 ≤ d2 ≤ d3,

and
|d| = d1 + d2 + d3 = M + 3,

let

P(d) =
3∏

i=1
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be the space of triples ( f1, f2, f3) of homogenous polynomials of degree d1, d2, d3,
respectively, in the homogeneous coordinates (x0 : x1 : · · · : xM+3) on the projective
space P.

For a triple f = ( f1, f2, f3), the scheme of common zeros, defined by the poly-
nomials f1, f2, f3, is denoted by V ( f ). The following claim is the main result of
this paper.

Theorem 1 There exists a Zariski open subset Preg(d) ⊂ P(d) such that:

(i) for every triple f ∈ Preg(d), the scheme V ( f ) is an irreducible reduced facto-
rial complete intersection of codimension 3with at most terminal singularities,
and a Fano variety of dimension M and index 1,

(ii) the Fano variety V ( f ) is birationally superrigid, for f ∈ Preg(d),

(iii) the estimate

codim

((
P(d)\Preg(d)

)
⊂ P(d)

)
≥ (M − 10)(M − 11)

2
− 2

holds.

We call the claim above the effective birational superrigidity, because it includes
an effective estimate of the codimension of the complement to the set of birationally
superrigid varieties. Effective birational superrigiditywas shown for hypersurfaces in
[1], for complete intersections of codimension 2 in [2], and for complete intersections
of codimension≥20 in [3]. Thus far, there have been no effective results (in the sense
above) for complete intersections of codimension 3, 4, . . . , 19. This paper treats the
case of codimension 3.

Birational superrigidity of a Zariski general complete intersection of index one
without an estimate for the codimension of the set of non-rigid varieties was shown
for the overwhelming majority of families in [4–6]. In [15], birational supperigidity
and K -stability were shown for singular Fano complete intersections of index one.
Later on in [16], it was shown that every smooth Fano complete intersection of index
one and codimension r in Pn+r is birationally supperigid and K -stable for n ≥ 10r.

Obtaining a strong explicit estimate requires a study of singularities of complete
intersections. We use this approach in the present work.

2 Multi-quadratic Singularities

Take an arbitrary point o ∈ P and assume that f1, f2, and f3 vanish there. We fix a
system of affine coordinates z∗ = (z1, . . . , zM+3) on an affine chart CM+3 ⊂ P with
the origin at o, and write the corresponding dehomogenized polynomials f1, f2, f3
(for simplicity of notation, we use the same symbols we used for the original poly-
nomials to denote their dehomogenizations):
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f1 = q1,1 + q1,2 + · · · + q1,d1
f2 = q2,1 + q2,2 + · · · + q1,d2
f3 = q3,1 + q3,2 + · · · + q3,d3 , (1)

where qi, j is a homogeneous polynomial of degree j in z∗. If the linear forms

qi,1, i = 1, 2, 3,

are linearly independent, then the scheme of zeros V ( f ) near the point o is a non-
singular (irreducible and reduced) complete intersection of codimension 3.

Assume that
dim〈q1,1, . . . , q3,1〉 = 3 − l,

where l ∈ {1, 2, 3}. As described in [3], we say that o ∈ V ( f ) is a correct multi-
quadratic singularity of type 2l , if one (and only one) of the conditions below is
satisfied:

(1) l = 1 (quadratic singularities):

dim〈q1,1, q2,1, q3,1〉 = 2,

say, for certainty, q1,1 and q2,1 are linearly independent and

q3,1 = λ3,1q1,1 + λ3,2q2,1;

the rank of the quadratic form

(
q3,2 − λ3,1q1,2 − λ3,2q2,2

)∣∣∣{q1,1 = q2,1 = 0}

is at least 7.
(2) l = 2 (bi-quadratic singularities):

dim〈q1,1, q2,1, q3,1〉 = 1,

say, for certainty, q1,1 	= 0,

q2,1 = λ2,1q1,1
q3,1 = λ3,1q1,1

for some λ2,1, λ3,1 ∈ C; the system of quadratic equations

(q2,2 − λ2,1q1,2)
∣∣∣{q1,1=0}

= (q3,2 − λ3,1q1,2)
∣∣∣{q1,1=0}

= 0
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defines in P({q1,1 = 0}) = P
M+1, an irreducible reduced complete intersection

of two quadrics, the singular locus of which is of codimension at least 12 in
P
M+1.

(3) l = 3 (multi-quadratic singularities): all forms qi,1 = 0, i = 1, 2, 3, and the
three quadratic equations

q1,2 = q2,2 = q3,2 = 0

define in P
M+2 an irreducible reduced complete intersection of three quadrics,

the singular locus of which is of codimension at least 14 in PM+2.

We treat the case when the three linear forms are linearly independent, that is the
non-singular case, as the multi-quadratic singularity of type 20. Also, by Pmq(d),

we denote the set of all triples f ∈ P(d) such that every point o where f1, f2 and f3
vanish is amulti-quadratic singularity of type 2l . It is obvious that for f ∈ Pmq(d), the
scheme of zeros V ( f ) is an irreducible reduced complete intersection of codimension
3 in P. By [7], the variety V ( f ) is factorial, and by [3], its singularities are terminal.

The following fact is a particular case of Theorem 0.2 in [3].

Theorem 2 The following estimate holds

codim

((
P(d)\Pmq(d)

)
⊂ P(d)

)
≥ (M − 10)(M − 11)

2
− 2.

Now for a triple f ∈ Pmq(d), the claim (i) of Theorem 1 is satisfied. We will
construct insidePmq(d), a smaller open subset, by removing subsets, the codimension
of which is at least

(M − 10)(M − 11)

2
− 2.

For triples in that smaller subset, the claim (ii) of Theorem 1 will be satisfied, which
will complete the proof of our main result.

3 The Regularity Conditions

To prove birational superrigidity, we impose some conditions of general position,
called the regularity conditions, on the triples in P(d).

Consider a triple f = ( f1, f2, f3) ∈ Pmq(d) and let o ∈ V ( f ) be a point. Set

� = {q1,1 = q2,1 = q3,1 = 0} ⊂ C
M+3

in terms of the presentation (1). For i ∈ {1, 2, 3}, and j > 2,we arrange the forms qi, j
in the lexicographic order for the pairs (i, j). That is, that (i1, j1) precedes (i2, j2),
if
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j1 < j2 or

j1 = j2 and i1 < i2.

What results is the sequence

q1,2|�, q2,2|�, q3,2|�, . . . , q3,d3 |�. (2)

We say that the triple f is regular at the point o, if the sequence above, with the
last 3 polynomials removed, is regular in O�,o. Furthermore, we say that the triple
f is regular if it is regular at every point in V ( f ). Denote the set of regular triples
f ∈ Pmq(d) by the symbol Preg(d). By construction, Preg(d) ⊂ Pmq(d) is a Zariski
open subset.

Theorem 3 For every triple f ∈ Preg(d), the Fano variety V ( f ) is birationally
superrigid.

What remains for the completion of the proof of Theorem 1, is to prove
Theorem 3, and the inequality in part (iii) of Theorem 1.

4 Birational Superrigidity

For a regular triple f , we prove the birational superrigidity of the variety V = V ( f )
in almost exactly the same way as in Sect. 1 of [3]. That is, we first assume that V is
not birationally superrigid. Then there is a mobile linear system � ⊂ |nH | (where
H is the class of a hyperplane section of V ⊂ P), and an exceptional divisor E over
V, satisfying the Noether-Fano inequality

ordE � > na(E).

Furthermore, let B ⊂ V be the centre of E on V . Then we note that by [3, Sect. 1,
Lemma 1.1],

codim(B ⊂ V ) ≥ 3.

Assume first that B 	⊂ Sing V, and take a general point o ∈ B,which is non-singular
on V .Arguing in word for word the same way as in [3, Sect. 1.3], we construct, using
the technique of hypertangent divisors, a sequence of irreducible subvarieties

Y2,Y3, . . . ,YM−3

of V, where Y2 is a component of the self-intersection Z = (D1 ◦ D2) of the mobile
system � (where D1 and D2 are general divisors in �) with the maximal value of
the ratio multo / deg, and where codim(Yi ⊂ V ) = i. For the last subvariety YM−3

in this sequence, we get the estimate
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multo YM−3

dego YM−3
>

4

3β
,

where β is the product of the slopes of the last 3 omitted hypertangent divisors (see
proof of Proposition 1.3 in [3]). The only part of the proof given in [3, Sect. 1.3] that
needs to be modified is Lemma 1.3, and this takes the form of Lemma 4 below.

In the case considered in the present paper, we observe that β has the highest
value when one of the following three options takes place:

(0) d1 = d2 = d3 and M ≡ 0mod 3,
(1) d1 = d2 = d3 − 1 and M ≡ 1mod 3,
(2) d1 + 1 = d2 = d3 and M ≡ 2mod 3,

as in these cases the slopes βM−2, βM−1, βM of the 3 omitted hypertangent divisors,
(see the proof of Proposition 1.3 in [3]) take the highest values.

Lemma 4 The inequality 4 ≥ 3β holds.

Proof Supposing the scenario (0) takes place, we have

βM−2 = βM−1 = βM =
M
3 + 1

M
3

,

so that

β = (M + 3)3

M3
,

and the inequality 4 ≥ 3β takes the form

M3 − 27M2 − 81M − 81 ≥ 0.

The highest root of the polynomial on the left hand side is 29.80850, so (because
M ≡ 0mod 3) the inequality is satisfied for M ≥ 30.

If scenario (1) occurs, then 4 ≥ 3β for M ≥ 31, and in the case of the option (2),
the lemma holds for M ≥ 32. Since M ≥ 30 by our general assumption, the proof
of Lemma 4 is complete. Therefore

multo YM−3 > deg YM−3,

which is impossible. This contradiction excludes the case B 	⊂ Sing V .

If B ⊂ Sing V, then a general point o ∈ B is either a quadratic, bi-quadratic, or
multi-quadratic singularity of V . Then we argue as in [3, Sect. 1.4], while using the
4n2-inequality for complete intersection singularities shown in [8]. In each of these
singular settings, the computations involving the slopes of hypertangent divisors are
similar to those in the non-singular case and lead to a contradiction in exactly the
same way. Therefore, we have shown that the mobile linear system � cannot have a
maximal singularity. This completes the proof of Theorem 3. �
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5 Codimension of the Complement

The final major task is to prove the claim (iii) of Theorem 1. We will show that
for M large enough, the codimension of the complement P(d)\Preg(d) is given by
the same quadratic polynomial in M. We use the projection method explained, for
instance in Chap.3 of [9] to estimate the codimension of triples ( f1, f2, f3) such that
V ( f ) does not satisfy the regularity condition. This is the most difficult part of the
work, because while the arguments of [3, Sect. 3] produce a similar estimate, they
use a somewhat different approach from the one we use here.

First fix a point o ∈ V . We start in (word for word) the same way as in [3, Sect.
3.1]: the sequence (2) (see p. 4) with the last 3 polynomials removed, consists of

(d1 − 1) + (d2 − 1) + (d3 − 1) − 3 = M − 3

homogeneous polynomials on � = C
M+l . Let us consider these as polynomials on

P(�) ∼= P
M+l−1, and denote them by

g1, . . . , gM−3.

Set mi = deg gi , so that
m1 = m2 = m3 = 2,

and the degrees mi are non-decreasing. Following [3, Sect. 3.1], we define the space
of all such sequences

G(d, l) =
M−3∏

i=1

Pmi ,M+l

and the closed set
Y = Y(d, l) ⊂ G(d, l)

of non-regular sequences.

Theorem 5 For M ≥ 30 the inequality

codim
(
Y ⊂ G(d, l)

)
≥ (M − 10)(M − 11)

2
− 2 + M,

holds.

Proof Let

P = (M − 10)(M − 11)

2
− 2 + M.

Now, analogously to what was described in the paragraph after the statement of
Theorem 3.1 in [3, Sect. 3.1], Theorem 5 implies (iii) of Theorem 1. Now, arguing
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as in that subsection, we see that in order to show Theorem 5, it is sufficient to
demonstrate that each of the following M + 3 integers

(
M + l − e + me

M + l − e

)

is not smaller than the right hand side of Theorem 5 (see also [9, Chap. 3] for the
details of the projection method). As in [3, Sect. 3.2], we use a number of reductions
to simplify the task: first, [3, Sect. 3.1] allows us to consider only the options (0),(1),
and (2), introduced above. Then [3, Proposition 3.3] tells us that we can only consider
the non-singular case l = 0.The final reduction, explained at the end of [3, Sect. 3.2],
shows that the minimum of the integers

(
M − e + me

M − e

)

is attained for e either divisible by 3, or the very last one e = M − 3. It is from here
that our arguments cease to be identical to those of [3, Sect. 3].

We alwayswrite the binomial coefficients in the form
(A
B

)
with B ≤ [A/2] (replac-

ing, if necessary, B by A − B), so we get a sequence of integers, the first part of
which is (

M − 1

2

)
,

(
M − 3

3

)
,

(
M − 5

4

)
,

(
M − 7

5

)
, . . . .

Each upper number is decreasing at every step, and each lower one increasing by
1 (recall that we are in one of the options (0),(1) or (2), so the degrees d1, d2, d3 are
equal or “almost equal”), until the bottom number gets to the half of the top one.
More precisely, for

j ≤ M − 5

4
, j = 0, 1, 2, . . . ,

we have the integers (
M − 2 j − 1

j + 2

)
.

The second part of our sequence of binomial coefficients takes the form

(
M − 2 j − 1

M − 3 j − 3

)

for j > M−5
4 until the last term, which in the case of the option (0), is equal to

(M
3 + 3

3

)
, (2)
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in the case of option (1) is equal to

(M+2
3 + 3

3

)
, (3)

and in the case of option (2) is equal to

(M+1
3 + 2

3

)
, (4)

when we remove 3 hypertangent divisors.
Nowwe use the obvious property of a binomial coefficient

(A
B

)
, that it is increasing

when A is increasing, andwhen B is increasingwhile B ≤ [A/2], to easily check that
the minimum of our sequence of integers is attained at one of the endpoints. Since(M−1

2

)
is obviously higher than the right hand side of the inequality of Theorem 5,

we only need to check that the integers (2)–(4) are not smaller than P for certain
values of M.

We go on to identify, for M ≡ 0, 1, and 2 modulo 3, the final elements of the
sequences of binomial coefficients which occur whenwe remove 3, 4 and 5 hypertan-
gent divisors, and we compare the polynomials which we obtain from each sequence
against P. This is done by directly observing where the graph of each polynomial
lies with with respect to the others over various ranges of values of M. For instance,
when the degrees are equal and we remove 4 hypertangent divisors, the polynomials

(
M − 1

2

)
,

(
M − 3

3

)
,

(M
3 + 4

4

)

are greater than P for M ≥ 9.
In the end we find that when M is congruent to 0, 1, and 2:

(i) if we remove the last 3 hypertangent divisors,

codim

((
P(d)\Preg(d)

)
⊂ P(d)

)
≥ P

for M not less than 9, 10, and 8 respectively.
(ii) when we remove 4 divisors, then

codim

((
P(d)\Preg(d)

)
⊂ P(d)

)
≥ P

for M not less than 9, 13 and 11 respectively.
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(iii) when a = 5,

codim

((
P(d)\Preg(d)

)
⊂ P(d)

)
≥ P

for M not less than 18, 19 and 17 respectively.

Consequently, the proof of Theorem 5, and thus of Theorem 1, is complete. �

6 Concluding Remarks

Besides the papers cited above, the problem of birational superrigidity for singular
Fano varieties was considered in many papers, see (for instance [10–12], or [13]).
However, no estimates for the codimension of the set of non-rigid varieties were
given there. While such estimates are interesting by themselves, they are especially
important in birational geometry because they help to prove birational rigidity of
Fano-Mori fibre spaces (see for instance [14]), since they show the existence of fibre
spaces over a higher-dimensional base, every fibre ofwhich is birationally superrigid.

Acknowledgements (i) The author thanks Aleksandr Pukhlikov for setting up the problem and
for many useful, and helpful discussions. (ii) The author’s work was partially supported by the
Leverhulme Trust, research project grant RPG-2016-279.
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Characterizing Terminal Fano
Threefolds with the Smallest
Anti-canonical Volume

Chen Jiang

Abstract It was proved by Chen and Chen that a terminal Fano 3-fold X satis-
fies (−K X )3 ≥ 1

330 . We show that a non-rational Q-factorial terminal Fano 3-fold
X with ρ(X) = 1 and (−K X )3 = 1

330 is a weighted hypersurface of degree 66 in
P(1, 5, 6, 22, 33).

Keywords Fano threefolds · Anti-canonical volumes
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1 Introduction

Throughout this paper, we work over the field of complex numbers C.
A normal projective variety X is called a Fano variety (or Q-Fano variety in

some literature) if the anti-canonical divisor −K X is ample. A normal projective
variety X is called a weak Fano variety if the anti-canonical divisor −K X is nef and
big. A terminal (weak) Fano variety is a (weak) Fano variety with at worst terminal
singularities.

According to the minimal model program, Fano varieties form a fundamental
class among research objects of birational geometry. Motivated by the classification
theory of 3-dimensional algebraic varieties, we are interested in the study of explicit
geometry of terminal Fano 3-folds.

Given a terminal weak Fano 3-fold X , it was proved in [4, Theorem 1.1] that
(−K X )3 ≥ 1

330 . This lower bound is optimal, as it is attained when X = X66 ⊂
P(1, 5, 6, 22, 33) is a general weighted hypersurface of degree 66. Moreover, [4,
Theorem 1.1] showed that when (−K X )3 = 1

330 , then X has exactly the same virtual
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orbifold singularities and the same Hilbert series as X66 (see Proposition 2.1). So it
is interesting to ask the following question:

Question 1.1 Let X be a terminal (weak) Fano 3-fold with (−K X )3 = 1
330 . Is X (a

Q-Gorenstein deformation of) a quasi-smooth weighted hypersurface of degree 66
in P(1, 5, 6, 22, 33)?

Every quasi-smooth weighted hypersurface of degree 66 in P(1, 5, 6, 22, 33) is a
Q-factorial terminal Fano 3-fold with ρ = 1 by [8, 9] and is birationally rigid (and
in particular, non-rational) by [3, 6]. So the main goal of this note is to give a partial
answer to Question 1.1 in the category of non-rational Q-factorial terminal Fano
3-folds with ρ = 1.

Theorem 1.2 Let X be a terminal Fano 3-fold and (−K X )3 = 1
330 . Assume further

that

(1) X is Q-factorial with ρ(X) = 1; and
(2) X is non-rational, that is, X is not birational to P

3.

Then X is a weighted hypersurface of degree 66 in P(1, 5, 6, 22, 33) defined by a
weighted homogeneous polynomial F of degree 66, where

F(x, y, z, w, t) = t2 + F0(x, y, z, w)

in suitable homogeneous coordinates [x : y : z : w : t] of P(1, 5, 6, 22, 33).

Remark 1.3 Theorem 1.2 shows that X is a Q-Gorenstein deformation of general
weighted hypersurfaces of degree 66 inP(1, 5, 6, 22, 33) (here theQ-Gorensteinness
follows from [7, Theorem B.1]). It is natural to ask whether X itself is quasi-smooth
or not. In fact, by [2, P. 463], X is quasi-smooth if and only if X has only cyclic
quotient singularities. From the basket BX in Proposition 2.1, we know that all non-
Gorenstein singularities of X are cyclic quotient singularities, but in general X might
have Gorenstein terminal singularities (which are not cyclic quotient singularities).

The idea of the proof is as the following: as X � Proj R(X,−K X ) where
R(X,−K X ) is the section ring of −K X , it suffices to show that R(X,−K X ) �
R(Y,OY (1)) for Y a weighted hypersurface of degree 66 in P(1, 5, 6, 22, 33). By
[4, Theorem 1.1] (see Proposition 2.1), these two graded C-algebras have the same
dimension on homogeneous parts of each degree, but this is not sufficient to con-
clude that they are isomorphic as C-algebras. The goal is to determine generators of
R(X,−K X ) and their relations.

The key ingredient is the special geometry of anti-pluri-canonical systems of
Q-factorial terminal Fano 3-fold with ρ = 1 proved in [5] (see Lemma 3.1) which
was first observed by Alexeev [1] for anti-canonical systems, where the assumption
that X is Q-factorial with ρ(X) = 1 is essentially used. Also we note that the “non-
rational” assumption in Theorem 1.2 is essential in our proof. In order to drop these
assumptions, it is natural to ask the following question.
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Question 1.4 Let X be a terminal weak Fano 3-fold with (−K X )3 = 1
330 .

(1) Is | − 6K X | not composed with a pencil of surfaces?
(2) Is X non-rational?

If we have an affirmative answer to Question 1.4(1), then we can remove assumption
(1) in Theorem 1.2, see Remark 3.2 for more details. If we have an affirmative answer
to Question 1.4(2), then we can remove assumption (2) in Theorem 1.2.

Remark 1.5 The method in this note can be used to characterize other terminal
Fano 3-folds. In fact, by the same method, it can be shown that, if X is a non-rational
Q-factorial terminal Fano 3-fold with ρ(X) = 1 such that there exists a general
weighted hypersurface

X6d ⊂ P(1, a, b, 2d, 3d)

of degree 6d as in [9, List 16.6, Table5, No. 14, No. 34, No. 53, No. 70, No. 72,
No. 82, No. 88–90, No. 92, No. 94] with (−K X )3 = (−K X6d )

3 and BX = BX6d (see
Sect. 2), then X is a weighted hypersurface of degree 6d in P(1, a, b, 2d, 3d). We
hope that similar characterization could also be done for some other examples in
[9, List 16.6, Table5] or possibly even for weighted complete intersections of lower
codimensions, but more details should be checked.

Lastly we remark that the situation for upper bound of (−K )3 of terminal weak
Fano 3-folds is more complicated, see [11] for recent progress. It is worth to mention
that by [12, 13], for a Q-factorial terminal Fano 3-fold with ρ(X) = 1, it is known
that (−K X )3 ≤ 64 and the equality holds if and only if X � P

3; if moreover X is
non-Gorenstein, then (−K X )3 ≤ 125/2 and the equality holds if and only if X �
P(1, 1, 1, 2).

2 Reid’s Riemann–Roch Formula

A basket B is a collection of pairs of integers (permitting weights), say {(bi , ri ) |
i = 1, . . . , s; bi is coprime to ri }.

Let X be a terminal weak Fano 3-fold. According to Reid [14], there is a basket
of orbifold points (called Reid basket)

BX =
{
(bi , ri ) | i = 1, · · · , s; 0 < bi ≤ ri

2
; bi is coprime to ri

}

associated to X , where a pair (bi , ri ) corresponds to a (virtual) orbifold point Qi of
type 1

ri
(1,−1, bi ).

Recall that for a Weil divisor D on X ,

H 0(X, D) = { f ∈ C(X)× | div( f ) + D ≥ 0} ∪ {0}.
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By Reid’s Riemann–Roch formula and the Kawamata–Viehweg vanishing theorem,
for any positive integer m,

h0(X,−mK X ) = χ(X,OX (−mK X ))

= 1

12
m(m + 1)(2m + 1)(−K X )3 + (2m + 1) − l(m + 1)

where l(m + 1) = ∑
i

∑m
j=1

jbi (ri − jbi )

2ri
and the first sum runs over all orbifold points

inReid basket ([5, 2.2]).Here jbi means the smallest non-negative residueof jbi mod
ri .

Proposition 2.1 Let X be a terminal weak Fano 3-fold with (−K X )3 = 1
330 . Then

BX = {(1, 2), (2, 5), (1, 3), (2, 11)}. Moreover,

∑
m≥0

h0(X,−mK X )qm = H̃66(q).

Here

H̃66(q) = 1 − q66

(1 − q)(1 − q5)(1 − q6)(1 − q22)(1 − q33)
.

Proof The characterization of BX is given in [4, Theorem 1.1(iii)]. For a general
weighted hypersurface

X66 ⊂ P(1, 5, 6, 22, 33)

of degree 66, (−K X )3 = (−K X66)
3 = 1

330 and BX = BX66 ([9, List 16.6, Table5,
No. 95]). By Reid’s Riemann–Roch formula, h0(X,−mK X ) depends only on
(−K X )3 and BX . Note that OX66(−K X66) = O(1)|X66 . So

∑
m≥0

h0(X,−mK X )qm =
∑
m≥0

h0(X66,−mK X66)q
m = H̃66(q)

by [8, Theorem 3.4.4]. �

3 Proofs

We recall the following lemma as a special case proved in [5, Theorem 1.4]. We refer
to [5] for basic definitions. Here we should remind that in [5], aQ-factorial terminal
Fano 3-fold with ρ = 1 is called a Q-Fano 3-fold.

Lemma 3.1 Let X be a Q-factorial terminal Fano 3-fold with ρ(X) = 1 and
(−K X )3 = 1

330 . Then for

(1) h0(X,−K X ) = 1 and the unique divisor in | − K X | is prime;
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(2) | − 5K X | is composed with an irreducible pencil of surfaces;
(3) | − 6K X | is not composed with a pencil of surfaces.

Proof By Proposition 2.1,

h0(X,−mK X ) =

⎧⎪⎨
⎪⎩
1 if 1 ≤ m ≤ 4;
2 if m = 5;
3 if m = 6.

(1) is a direct consequence of [5, Theorem 3.2] for m = 1 (or [1, Theorem 2.18]),
(2) is a direct consequence of the fact that h0(X,−5K X ) = 2, and (3) is a direct
consequence of [5, Theorem 3.4]. �
Remark 3.2 We do not know whether Lemma 3.1(3) remains true or not if we
only assume that X is a terminal weak Fano 3-fold. The current proof uses the fact
that Lemma 3.1(3) is implied by Lemma 3.1(1) (by [5, Theorem 3.4]), meanwhile
Lemma 3.1(1) essentially relies on the assumption that X isQ-factorial with ρ(X) =
1 as in [5, Theorem 3.2] or [1, Theorem 2.18]. If one can drop these conditions in
Lemma 3.1(3), then one can drop these conditions in Theorem 1.2 as suggested by
Theorem 3.3.

The following theorem is a slightly more general version of Theorem 1.2.

Theorem 3.3 Let X be a terminal Fano 3-fold and (−K X )3 = 1
330 . Assume further

that

(1) | − 6K X | is not composed with a pencil of surfaces; and
(2) X is non-rational.

Then X is a weighted hypersurface of degree 66 in P(1, 5, 6, 22, 33) defined by a
weighted homogeneous polynomial F of degree 66, where

F(x, y, z, w, t) = t2 + F0(x, y, z, w)

in suitable homogeneous coordinates [x : y : z : w : t] of P(1, 5, 6, 22, 33).

Proof Recall that for a Weil divisor D on X , H 0(X, D) can be viewed as a C-
linear subspace of the function field C(X). For m ∈ {1, 5, 6, 22, 33}, take fm ∈
H 0(X,−mK X ) \ {0} to be a general element. We can define 3 rational maps by
these functions:

�6 : X ��� P(1, 5, 6);
P �→ [ f1(P) : f5(P) : f6(P)];

�22 : X ��� P(1, 5, 6, 22);
P �→ [ f1(P) : f5(P) : f6(P) : f22(P)];

�33 : X ��� P(1, 5, 6, 22, 33);
P �→ [ f1(P) : f5(P) : f6(P) : f22(P) : f33(P)].



360 C. Jiang

We claim that they have the following geometric properties. �

Proposition 3.4 Keep the above settings.

(1) �6 is dominant;
(2) �22 is dominant and generically finite of degree 2;
(3) �33 is birational onto its image;
(4) let Y be the closure of �33(X) in P(1, 5, 6, 22, 33), then Y is defined by a

weighted homogeneous polynomial F of degree 66, where

F(x, y, z, w, t) = t2 + F0(x, y, z, w)

in suitable homogeneous coordinates [x : y : z : w : t] of P(1, 5, 6, 22, 33).

Proof (1) As h0(X,−5K X ) = 2, | − 5K X | is composedwith an irreducible pencil of
surfaces. By assumption, | − 6K X | is not composed with a pencil of surfaces. Recall
that h0(X,−6K X ) = 3, so H 0(X,−6K X ) is spanned by { f 61 , f1 f5, f6}. Hence �6

is birational to the rational map X ��� P
2 defined by | − 6K X |, which is obviously

dominant.

(2) By [10, Theorem 4.4.11] (taking m0 = μ0 = 5 and m1 = 6), we conclude that
| − 22K X | defines a generically finite map onto its image. Hence a general f22 is not
constant along general fibers of�6. Therefore�22 is generically finite onto its image.
In particular, �22 is dominant by dimension reason. To compute the degree of �22,
take a resolution π : W → X such that for m ∈ {5, 6, 22}, π∗(−mK X ) = Mm + Fm

where Mm is free and Fm is the fixed part. Then

deg�22 = (M5 · M6 · M22) ≤ (π∗(−5K X ) · π∗(−6K X ) · π∗(−22K X )) = 2.

As X is non-rational, we conclude that deg�22 = 2.

(3) By [5, Theorem 5.11] (taking m0 = μ0 = 5 and m1 = 6), we conclude that
| − 33K X | defines a birational map onto its image. As f33 is general, it can separate
two points in general fibers of �22, so �33 is birational onto its image.

(4) Note that h0(X,−66K X ) = 172 by Proposition 2.1. On the other hand, the
equation

n1 + 5n2 + 6n3 + 22n4 + 33n5 = 66

has exactly 173 solutions inZ5≥0. So there exists aweighted homogeneous polynomial
F(x, y, z, w, t) of degree 66 with wt(x, y, z, w, t) = (1, 5, 6, 22, 33) such that

F( f1, f5, f6, f22, f33) = 0.

So Y is contained in (F = 0) ⊂ P(1, 5, 6, 22, 33).
We claim that Y = (F = 0) and t2 has non-zero coefficient in F . Otherwise, Y is

defined by a weighted homogeneous polynomial F̃ of degree ≤ 66 of the form
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F̃(x, y, z, w, t) = t F̃1(x, y, z, w) + F̃2(x, y, z, w).

Here note that F̃1 �= 0, otherwise the image of �22 is contained in (F̃2 = 0) ⊂
P(1, 5, 6, 22), which contradicts the fact that �22 is dominant. Then Y is birational
to P(1, 5, 6, 22) under the rational projection map

P(1, 5, 6, 22, 33) ��� P(1, 5, 6, 22);
[x : y : z : w : t] �→ [x : y : z : w].

This contradicts the assumption that X is non-rational. So Y = (F = 0) and t2 has
non-zero coefficient in F . After a suitable coordinate change we may assume that
F = t2 + F0(x, y, z, w).

This finishes the proof of the proposition. �

Proof Now go back to the proof of Theorem 3.3. By the above proposition, F is the
only relation on f1, f5, f6, f22, f33. Denote R to be the graded sub-C-algebra of

R(X,−K X ) =
⊕
m≥0

H 0(X,−mK X )

generated by { f1, f5, f6, f22, f33}. Then we have a natural isomorphism between
graded C-algebras

R � C[x, y, z, w, t]/(t2 + F0)

by sending f1 �→ x , f5 �→ y, f6 �→ z, f22 �→ w, f33 �→ t and the right hand side
is exactly the weighted homogeneous coordinate ring of Y . Write R = ⊕

m≥0 Rm

where Rm is the homogeneous part of degree m. Then by [8, 3.4.2],

∑
m≥0

dimC Rm · qm = H̃66(q).

So by Proposition 2.1,Rm = H 0(X,−mK X ) for any m ∈ Z≥0, and hence the inclu-
sion R ⊂ R(X,−K X ) is an isomorphism. This implies that

X � Proj R(X,−K X ) � ProjR � Y.

This finishes the proof. �

Proof (Proof of Theorem 1.2) It follows directly from Lemma 3.1 and
Theorem 3.3. �
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Rationality of Quotients by Finite
Heisenberg Groups

Stanislav Grishin, Ilya Karzhemanov, and Ming-chang Kang

Abstract Weprove rationality of the quotientCn/Hn for the finiteHeisenberg group
Hn , any n ≥ 1, acting on Cn via its irreducible representation.

Keywords Heisenberg group · Quotient · Log pair · Toric variety
MS 2020 classification 14E08, 14M25, 14E30, 14J81

1 Introduction

1.1. In the present paper, we study rationality of the quotient Cn/G (Noether’s
problem) for the affine spaceCn , n ≥ 1, equipped with a linear action of an algebraic
group G. Recall that for finite G variety C

n/G can be non-rational (e.g. this is the
case for certain p-groups in [24]). At the same time, for connected G the quotient
C

n/G is typically stably rational, that is the product Ck × (Cn/G) is rational for
some k (see [3, Theorem 2.1]).

Note that variety Cn/G is rational when G is Abelian (see [7]). Some rationality
constructions for Cn/G with non-Abelian G can be found in [21] (see also [14]). In
the present paper, we consider a particular case of the Heisenberg group G := Hn

generated by two elements ξ, η, which act on C
n as follows (Schrödinger represen-

tation):

ξ : xi �→ ω−i xi , η : xi �→ xi+1 (i ∈ Z/n, ω := e
2π

√−1
n ),
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where x1, . . . , xn form a basis in C
n (up to a choice of ω this is the only irreducible

linear representation of Hn).
When studying rationality problem for Cn/Hn it is reasonable to pass to the

projectivization and consider the quotient X := P
n−1/Hn (cf. [21, Proposition1.2]).

Here is our main result:

Theorem 1.2 Variety X is rational for every n.

The group Hn is a central extension of Z/n ⊕ Z/n by Z/n � [ξ, η] and so the
action of Hn on P

n−1 factors through that of Z/n ⊕ Z/n. Thus Theorem 1.2 is a
natural generalization of linear Abelian case mentioned above. Let us also point out
that the case of central extensions of cyclic groups has been treated in [25].

Our result confirms in addition (a stronger version of) Conjecture 15 in [5]. Actu-
ally, stable rationality of X can be proved via a direct argument by considering
diagonal action of Hn on V × V , with linear action of Z/n ⊕ Z/n on the second
factor. Note also that Theorem 1.2 is evident when n ≤ 3 and the case n = 4 has
been treated in [21, Theorem 5.2] (compare with [3, Lemma 3.1]).

1.3 Let us outline our approach towards the proof of Theorem 1.2. One may
observe that the quotient Cn/G is a toric variety for Abelian group G. In our case
of G = Hn , its action on P

n−1 is also Abelian, and so it is reasonable to expect that
X is toric as well. This turns out to be (almost) so.

Namely, one employs an instance of the toric conjecture after Shokurov, char-
acterizing toric varieties in terms of the log pairs (see e.g. [22]): we construct a
Q-divisor D on X satisfying the assumptions of Proposition 2.1 below and reduce
rationality problem for X to that for a cyclic quotient of Pn−1 (the latter is rational
by the discussion in 1.1). In turn, the explicit action of Hn on Pn−1 allows one to find
appropriate invariant divisors descending to the components of D, which is done in
2.3.

Our point was, more generally, to develop a geometric approach to the Noether’s
problem for central extensions of Abelian groups (cf. 3.1 below). Thus the case of
C

n/Hn is a special corollary of this approach. On the other hand, after our paper
appeared online, Professor Ming-chang Kang has kindly communicated to us an
algebraic proof of Theorem 1.2 (see Appendix after Sect. 3).

Remark 1.3 We show in Proposition 2.1 that X is actually a cyclic quotient of
P

n−1/˜G for a linearized Abelian group ˜G. Thus X resembles the so-called fake
weighted projective space (see [15]). Note however that X need not be toric. Let us
consider the first non-trivial case n = 3. Here the group H3 acts on P

2 preserving
the Hesse pencil

{

Et : x3 + y3 + z3 + t xyz = 0 | t ∈ P
1
}

and on the smooth cubic
Et the H3-action coincides with the one of the group of 3-torsion points Et [3] (see
[1]). The quotient surface X = P

2/H3 has 4 singular points of type A2 and so can
not be toric because X has Picard number 1 (cf. [8, Sect. 3.4]). One may also observe
that the algebra of invariants of H3 in C[x, y, z] is generated by polynomials xyz,
x3 + y3 + z3, x3y3 + y3z3 + z3x3 and x3y6 + y3z6 + z3x6 (cf. [1, Sect. 6]).
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2 Proof of Theorem 1.2

We will be using freely standard notions and facts about the singularities of pairs
(see e.g. [17, Chap.5]). All varieties are assumed to be normal, projective, over C,
and all divisors are Q-Cartier with rational coefficients.

Our proof of Theorem 1.2 is based on the following:

Proposition 2.1 (cf. [12, 16, 22]) Let V be a d-dimensional variety with a boundary

divisor D =
d+1
∑

i=1

di Di , where Di are prime Weil divisors, such that the following

holds:

• the Picard number of V is 1,
• the log pair (V, D) is log canonical,
• KV + D ∼Q 0,
• di Di ∼Q d j D j for all 1 ≤ i, j ≤ d + 1,
• there exists a finite, étale in codimension 1 cyclic cover p : V ′ −→ V such that

p∗(di Di ) ∼Q Wi , 1 ≤ i ≤ d + 1, where Wi are distinct Weil divisors on V ′.

Then V ′ is a toric quotient Pd/˜G for a finite Abelian group ˜G with linearized
action on P

d . In particular, if �  Z/mZ is the Galois group of p, then V = V ′/�

is birational to P
d/� (hence V is rational).

Proof We follow the proof of Lemma 3.1 in [22]. Namely, after repeated finite,

étale in codimension 1 cyclic covers V
p

←− V ′←− . . . ←− ˜V we obtain a new log
pair (˜V , ˜D = ϕ∗(D)), where ϕ : ˜V −→ V ′ is the resulting morphism, such that all
ϕ∗ p∗(Wi ) are Cartier. Furthermore, we have

K
˜V + ˜D ∼Q ϕ∗ p∗(KV + D) ∼Q 0

and (˜V , ˜D) is log canonical, i.e. ˜V is a log Fano (note that ϕ∗ p∗(D) is ample).
The Fano index of ˜V is ≥ d + 1, since −K

˜V ∼Q
˜D and ϕ∗ p∗(di Di ) ∼Q ϕ∗ p∗

(d j D j ) for all 1 ≤ i, j ≤ d + 1. This implies that ˜V = P
d (see e.g. [11, Theorem

3.1.14]) and ϕ coincides with the quotient morphism by some finite group ˜G (the
Galois group of the field extension C(˜V )/ϕ∗

C(V ′)). Also, by construction ˜G leaves
invariant d + 1 hyperplanes ϕ∗ p∗(Wi ) in Pd , whence it is Abelian.

Further, variety V ′ is toric by construction, so let us a fix an open torus T :=
(C∗)d ⊂ V ′ with coordinates z1, . . . , zd . Let also ˜Wi ⊂ V ′ be the Zariski closure
of the zero-locus (zi = 0), 1 ≤ i ≤ d, and ˜Wd+1 ⊂ V ′ be the closure of (zd+1 :=
(z1 . . . zd)

−1 = 0). Then, since each p∗(di Di ) generates the Q-Weil group of V ′,

we get that V ′ \ T =
d+1
⋃

i=1

˜Wi , with ˜Wi corresponding to the rays of the fan of V ′

(cf. [8, Sect. 3.4]). The induced action of � on the fan either preserves all these
rays or permutes them cyclicly. In particular, the same applies to the divisors ˜Wi ,
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1 ≤ i ≤ d + 1, and to their defining functions zi . Hence, compactifying the torus T
by Pd , we obtain that T/� is birational to the rational variety P

d/�. �

2.3Wenow turn to the variety X = P
n−1/Hn fromTheorem1.2. Letπ : Pn−1 −→

X be the quotient morphism.

Lemma 2.2 π is étale in codimension 1 and KPn−1 ∼Q π∗(K X ).

Proof The first assertion follows from the fact that every �= 1 element in Hn has non-
multiple spectrum (see 1.1). Then the equivalence KPn−1 ∼Q π∗(K X ) is the usual
Hurwitz formula. �

Identify x0, . . . , xn−1 from 1.1 with projective coordinates on P
n−1. Put fk :=

∑

i∈Z/n

xk
i xn−k

i+1 for 1 ≤ k ≤ n. We have ξ∗ fk = ωk fk and η∗ fk = fk . Hence polynomi-

als f n
k are Hn-invariant.

Lemma 2.3 The linear system L ⊂ |OPn−1(n2)| spanned by f n
1 , . . . , f n

n and (x0 . . .

xn−1)
n is basepoint-free.

Proof It suffices to show that f1, . . . , fn and x0 . . . xn−1 span a basepoint-free linear
system. Fix an arbitrary m ≥ n and consider the polynomials f (m)

k :=
∑

i∈Z/n

xk
i xm−k

i+1

for various 1 ≤ k ≤ m. Let L(m) be the linear system spanned by f (m)
1 , . . . , f (m)

m
and x0 . . . xm−n+1

n−1 . Then we claim that L(m) is basepoint-free (note that m = n cor-
responds to our case). Indeed, for n = 2 this is trivially true, whereas for n > 2 we
restrict to the hyperplanes (xi = 0) and argue by induction. �

Let B1, . . . , Bn be generic elements in the linear system L from Lemma 2.3. We

may assume the pair (Pn−1,

n
∑

i=1

Bi ) is log canonical.

Further, put Di := π(Bi ), 1 ≤ i ≤ n, so that Bi = π∗(Di ),

KPn−1 +
n

∑

i=1

Bi ∼Q π∗
(

K X +
n

∑

i=1

Di

)

(1)

(cf. Lemma 2.2) and the pair (X,

n
∑

i=1

Di ) is also log canonical.

Lemma 2.4 π factorizes as P
n−1 q−→ X ′ p−→ X, where q, p are both degree n,

étale in codimension 1 cyclic covers, p∗(di Di ) ∼Q Wi , 1 ≤ i ≤ n, for di := 1/n2

and some distinct Weil divisors Wi .

Proof Note that the field extension C(Pn−1)/π∗
C(X) is Galois with the group

S := Z/n ⊕ Z/n. Restricting to the field of ξ-invariants yields an intermediate
field π∗

C(X) ⊂ F ⊂ C(Pn−1). Note that extension C(Pn−1)/F corresponds to the
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quotient morphism q : Pn−1 −→ X ′ for X ′ = P
n−1/〈ξ〉 > and the cyclic subgroup

〈ξ〉 ⊂ S. Finally, F/C(X) is also Galois, corresponding to the quotient morphism
p : X ′ −→ X = X ′/〈η〉.

Further, consider the divisors B0 := ((x0 . . . xn−1)
n = 0) and Hi := (xi = 0), 0 ≤

i ≤ n − 1, so that B0 = n
n−1
∑

i=0

Hi . We have
1

n2
B0 ∼Q Hi for all i and hence

q∗
(

1

n2
B0

)

∼Q q∗(Hi ) ∼Q nq(Hi )

because q∗(Hi ) = nq(Hi ) for Hi being ξ-invariant hyperplanes. This implies that

p∗
(

1

n2
Di

)

= 1

n2
q(Bi ) = 1

n3
q∗(Bi ) ∼Q q∗

(

1

n3
B0

)

∼Q q(Hi−1) =: Wi

for all 1 ≤ i ≤ n. �

Put D := 1

n2

n
∑

i=1

Di . Then it follows immediately from (1) and Lemma 2.4 that

the log pair (X, D) satisfies all the assumptions in Proposition 2.1 (for V := X ).
Thus X is rational and the proof of Theorem 1.2 is complete.

3 Miscellany

3.1 It would be interesting to extend the technique presented in Sect. 2 to the case of
quotients Pn−1/G by other finite central extensions of Abelian groups. This requires,
however, analogs of technical lemmas from 2.3, where we have crucially used that
G = Hn . So we plan to consider this matter elsewhere.

More generally, it would be interesting to give a characterization of those finite
groups G, for which P

n−1/G is a cyclic quotient of toric variety (cf. Remark 1.3).
Observe at this point that the singularities of X = P

n−1/Hn are non-exceptional (cf.
[20, Proposition 3.4]), and onemight try to look for a similar property of singularities,
distinguishing (cyclic quotients of) toric Pn−1/G.

3.2 Initially, our interest was in constructing a mirror dual Y + for Calabi–Yau
threefolds Y , studied in [9]. Recall that Y is a small resolution of a nodal Calabi–Yau
V ⊂ P

n−1, invariant under Hn , such that there is a pencil of (1, n)-polarized Abelian
surfaces A ⊂ V . The action of Hn extends to a free one on Y and it is expected that
Y + = Y/Hn . Indeed, when n = 8 the derived equivalence between Y and Y/Hn was
established in [23], which on the level of Abelian surfaces is the Mukai equivalence
between A and Pic0(A) = A/Hn (note that Hn acts on A via shifts by n-torsion
points).
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In particular, when n = 5 and V is the Horrocks–Mumford quintic (see [9,
Sect. 3]), V/H5 is a Calabi–Yau hypersurface in (almost) toric variety P

4/H5. This
brings in a possibility for applying Batyrev’s construction of mirror pairs (see [2]) as
well as other explicit methods: matrix factorizations, period integrals, etc. (see e.g.
[10, 19]). We plan to return to this subject elsewhere.

3.3 As a complement to 3.1, one may try to attack (stable) rationality problem
for various quotients Pn−1/G by considering their classes [Pn−1/G] in K0(Var), the
Grothendieck ring of complex algebraic varieties, and applying [18, Corollary 2.6]
to them. It is thus important to compute [Pn−1/G] explicitly (compare with [13]).

For instance, we have [Pn−1/Hn] = [Pn−1] modulo L := [A1] by [18, Proposi-
tion 2.7] (cf. Theorem 1.2), and it would be interesting to obtain a similar mod
L-relation in general. Perhaps the fact that any such variety is stably birationally
infinitely transitive (see [4, Corollary 3.2]) might be of some use here.

Acknowledgements It is our pleasure to thank A. Belavin, F. Bogomolov, and Ilya Zhdanovskiy
for valuable comments.We are also grateful to anonymous referees for their remarks and corrections
that have improved the exposition of our paper.

Appendix by Ming-chang Kang

The algebraic proof of Theorem 1.2 follows the same lines as in [6]. Namely, put
λ := [ξ, η] and y0 := xn

0 , yi := xi/xi−1, 1 ≤ i ≤ n − 1 (see 1.1). Then we have
C(x0, . . . , xn−1)

〈λ〉 = C(y0, . . . , yn−1). By [6, Theorem4.1] it suffices to prove ratio-
nality ofC(y1, . . . , yn−1)

〈ξ,η〉. Note that the action of ξ on yi , 1 ≤ i ≤ n − 1, is given
by ξ : yi �→ ωyi .

Define z1 := yn
1 , zi := yi/yi−1, 2 ≤ i ≤ n − 1. Then we have C(y1, . . . , yn−1)

〈ξ〉
= C(z1, . . . , zn−1). Note that the action of η on zi is the same as the action of τ in
[6, p. 686] (by replacing p with n everywhere).

Now define w1 := z2, wi := ηi−1(z2), 2 ≤ i ≤ n − 1. Then we have C(z1, . . . ,
zn−1) = C(w1, . . . , wn−1) and the action of η is as follows:

η : w1 �→ w2 �→ w3 �→ . . . �→ wn−1 �→ 1

w1, . . . wn−1
.

The latter action can be linearized exactly as in the middle of [6, p. 687]. Hence we
can apply Fischer’s Theorem (see [7]).



Rationality of Quotients by Finite Heisenberg Groups 369

References

1. Artebani, M., Dolgachev, I.: The Hesse pencil of plane cubic curves. Enseign. Math. (2) 55(3–
4), 235–273 (2009)

2. Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric
varieties. J. Algebraic Geom. 3(3), 493–535 (1994)

3. Bogomolov, F.A.: The stable rationality of quotient spaces for simply connected groups, Math.
USSR - Sb. 58(1), 1–14 (1987). Translated fromMat. Sb. (N.S.) 130(172)(1), 3–17, 128 (1986)

4. Bogomolov, F., Karzhemanov, I., Kuyumzhiyan, K.: Unirationality and existence of infinitely
transitive models. In: Birational Geometry, Rational Curves, and Arithmetic, pp. 77–92.
Springer, New York (2013)

5. Bogomolov, F., Tschinkel, Y.: Noether’s problem and descent. In: Proceedings of the Seventh
International Congress of Chinese Mathematicians, Vol. I. Advanced Lectures in Mathematics
(ALM), vol. 43, pp. 3–15. International Press, Somerville, MA

6. Chu, H., Kang, M.: Rationality of p - group actions. J. Algebra 237(2), 673–690 (2001)
7. Fischer, E.: Zur Theorie der endlichen Abelschen Gruppen. Math. Ann. 77(1), 81–88 (1915)
8. Fulton, W.: Introduction to Toric Varieties, Annals of Mathematics Studies, vol. 131. Princeton

University Press, Princeton, NJ (1993) 131 131. Princeton University Press, Princeton, NJ
(1993)

9. Gross, M., Popescu, S.: Calabi–Yau threefolds and moduli of abelian surfaces I. Compositio
Math. 127(2), 169–228 (2001)

10. He,W., Polishchuk, A., Shen, Y., Vaintrob, A.: A Landau –Ginzburgmirror theorem via matrix
factorizations. arXiv:2001.00536

11. Iskovskikh, V.A. (RS-AOS), Prokhorov, Yu.G. (RS-MOSC): Fano Varieties. Algebraic Geom-
etry, V. Encyclopaedia of Mathematical Sciences, vol. 47, pp. 1 – 247. Springer, Berlin (1999)

12. Karzhemanov, I.: On characterization of toric varieties. arXiv:1306.4131
13. Karzhemanov, I.: On the cut-and-paste property of algebraic varieties. Bull. Sci. Math. 166, 8

pp (2021), Paper No. 102920
14. Karzhemanov, I.: On the quotient of C4 by a finite primitive group of type (I). Math. Res. Lett.

21(1), 133–139 (2014)
15. Kasprzyk, A.M.: Bounds on fake weighted projective space. Kodai Math. J. 32(2), 197–208

(2009)
16. Kollár, J. et al.: Flips and abundance for algebraic threefolds. A summer seminar at the Uni-

versity of Utah, Salt Lake City, 1991. Ast’erisque. 211 (1992)
17. Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties, Translated from the 1998

Japanese Original. Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press,
Cambridge (1998)

18. Larsen, M., Lunts, V.A.: Motivic measures and stable birational geometry. Mosc. Math. J. 3(1),
85–95, 259 (2003)

19. Lee, T.-J., Lian, B.H., Yau, S.-T.: On Calabi–Yau fractional complete intersections.
arXiv:2008.04039

20. Markushevich, D., Prokhorov, Yu.G.: Exceptional quotient singularities. Am. J. Math. 121(6),
1179–1189 (1999)

21. Prokhorov, Y.G.: Fields of invariants of finite linear groups. In: Cohomological and Geomet-
ric Approaches to Rationality Problems. Progress in Mathematics, vol. 282, pp. 245–273.
Birkhäuser Boston, Boston, MA

22. Prokhorov, Yu.G.: On a conjecture of Shokurov: characterization of toric varieties. Tohoku
Math. J. (2) 53(4), 581–592 (2001)

23. Schnell, C.: The fundamental group is not a derived invariant. In: Derived Categories in Alge-
braic Geometry, EMS Ser. Congr. Rep, Eur. Math. Soc., pp. 279–285. Zürich

24. Shafarevich, I.R.: The Lüroth problem. Trudy Mat. Inst. Steklov. 183, 199–204, 229 (1990)
25. Swan, R.G.: Noether’s problem in Galois theory. In: Emmy Noether in Bryn Mawr (Bryn

Mawr, Pa., pp. 21–40. Springer, New York (1982)

http://arxiv.org/abs/2001.00536
http://arxiv.org/abs/1306.4131
http://arxiv.org/abs/2008.04039


Interpretations of Spectra

L. Katzarkov, K. S. Lee, J. Svoboda, and A. Petkov

Abstract The studies of homological mirror symmetry as correspondence of Lef-
shetz pencils was initiated as part of the general theory of categorical linear systems.
In this paper, we look at the monodromy of these linear systems via a new notion of
noncommutative spectrum.

Keywords Mirror symmetry · Landau-Ginzburg models · Spectra

1 Introduction

The studies of homological mirror symmetry (HMS) as correspondence of Lefshetz
pencils was initiated in [31] as part of the general theory of categorical linear systems.
In this paper, we look at the monodromy of these linear systems. We utilise these
monodromies by introducing a new notion of noncommutative spectrum. We will
use the setup and the notations from [31]. We start with a pencil where the fibers are
CY varieties and the global pencils constitute mirrors of Fano manifolds. We have
the following category diagram:

L. Katzarkov (B) · K. S. Lee · J. Svoboda
University of Miami, Miami, FL, USA
e-mail: lkatzarkov@gmail.com

L. Katzarkov
HSE Moscow, Moscow, Russia

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str.
bl. 8, 1113 Sofia, Bulgaria

A. Petkov
FMI, Sofia, Bulgaria

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Cheltsov et al. (eds.), Birational Geometry, Kähler–Einstein Metrics
and Degenerations, Springer Proceedings in Mathematics & Statistics 409,
https://doi.org/10.1007/978-3-031-17859-7_20

371

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17859-7_20&domain=pdf
mailto:lkatzarkov@gmail.com
https://doi.org/10.1007/978-3-031-17859-7_20


372 L. Katzarkov et al.

CY Fano

F(CY ) → F(Fano)

Here F(CY ), F(Fano) are the corresponding Fukaya–Seidel categories. Im
�(F(CY )) = A is a localization category F(CY )/ ∼. (Using HMS we can use
Db(X)—the category of coherent sheaves on algebraic varieties X .)

This localization category has a filtration:

A ⊃ Fλ1 ⊃ · · · ⊃ Fλn

where:

• λi are the asymptotics of limiting stability conditions.
• Z = zλi (· · · )
• Fλi = {F s.t. Z(F) = zλi (· · · )}
• λi are also the asymptotics of the PDE

(
∂

∂u
+ u−2K + u−1G

)

The above filtration can also be seen as the monodromy of the perverse sheaf of
categories over the skeleton. Following [31] we think of the category as a perverse
sheaf of categories over lagrangian skeleton. In the diagram bellow we describe our
findings in [31].

←→
• •

• •
Homotopy
of Skeleta

dim of CAT

Monodromy
of Perverse
Sheaves

Asymptotics
of Stab

Conditions

Orlov Spectra

The main idea in current paper is to give an interpretation of the above λi filtration
as a noncommutative spectrum and a spectrum of Landau-Ginzburg (LG) models.
We use the theory of LG models as generalized theory of singularity.

The above considerations lead to birational invariants, which will appear in more
details in [29, 34]. (For definitions and general theory of LG models and HMS we
refer to [30].)
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We will base our birational considerations on the following major notions and
ideas:

(1) Quantum spectrum. The quantum spectrum is defined in [29]. Let K · be the
quantum multiplication by canonical class. It defines the following splitting of
cohomology:

H = ⊕λi Hλi .

Here λi are the eigenvalues of K ·. We call these eigenvalues quantum spectrum.
The main theorem proven in [29] is:

Main theorem: The splitting H = ⊕λi Hλi is a birational invariant.

(2) Noncommutative spectrum. The noncommutative spectrum is defined in [29].
In the current paper we extend these ideas and give some examples.

(A) We build analogues with low dimensional topology and give several new
directions for research.

(B) We extend the definition of a noncommutative spectrum to multispectra.
Possible applications are discussed.
Our considerations are only the tip of the iceberg. We propose a corre-
spondence between nonrationality over algebraically nonclosed fields and
complexity of the discriminant loci of the moduli space of LG models. We
will consider some arithmetics applications in Sect. 3. In fact one can define
several different spectra.
In addition to the quantum spectrum mentioned above, one can define
several other spectra:

• Noncommutative spectrum;
defined by the asymptotics of the quantum equation.

• Givental spectrum;
defined by the solutions of the Givental’s equation.

• Spectrum of LG model—multiplier ideal sheaf;
defined as the Steenbrink spectrum of a new singularity theory of the LG
model.

• Asymptotics of stability conditions—stability spectrum;
defined as asymptotics of limiting stability conditions.

• Serre dimension of the Kuznetsov’s component;
defined as a categorical dimension.

• Arnold-Varchenko-Steenbrink spectrum of the affine cone.
defined as the classical spectrum of the affine cone singularity over X .

• R-charges—the assymptotics of RG flow—the same as asymptotics of
Kähler-Ricci flow—see Sect. 6.
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We will discuss relations among some of them. Understanding the complete
scope of relations is an intriguing problem. We initiate the study of these
connections in this paper. We will develop this connections in upcoming
papers [27, 32].

(C) We also propose a parallel between the existence of Kähler-Einstein metrics
and the top number of the noncommutative spectra. Recall that

lct (X, G) = sup {λ ∈ Q | the log pair (X, λD) l.c.s. ∀G inv. D}
We note the following parallel:

nonrationality
of(X, G)

orbifold

∃of K.E.
metric on
(X, G)

δ > dim X − 2
X is not rational
δislctfor sing

lct (X, G)

>
dim X

dim X + 1

In the above table lct is the log canonical threshold.
We take this parallel further:

(D) We connect the noncommutative spectra with elliptic genus and conformal
field theory. We connect orbifoldization of elliptic genus with spectra of sin-
gular varieties. This leads to a categorical interpretation of Birkar’s bound-
ness theorem.Wepropose the idea of categorical resolution and “boundness”
of conformal field theories—the central charges correspond to the noncom-
mutative spectra.
As a consequence we propose a parallel between Zamolodchikov’s c-
theorem and uppersemicontinuity condition of noncommutative spectra.
We will call the monotonicity of the highest number of the spectrum
uppersemicontinuity. In other words, the highest number of the spectrum
is decreasing monotonically when moving from the boundary of Frobenius
manifold to its general point.

The paper is organized as follows. We explain the general theory in Sect. 2.
The Fano applications are considered in Sect. 2. The arithmetics applications are
considered in Sect. 3. The parallel with 3-dimensional topology are discussed in
Sect. 4. The extension to multispectra is discussed in Sect. 5. In Sect. 6, we consider
the connection of spectra with elliptic genus.Wemake a connection betweenBirkar’s
theory and the conformal field theories.
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2 Noncommutative Spectra

In this section we introduce the idea of noncommutative spectra—an idea which
belongs to M. Kontsevich. We describe new birational invariants and describe some
easy applications.

2.1 Definitions of Quantum and Nc Spectra

Let X be a projective algebraic variety over C, with a given ample line bundle.
The Gromov-Witten invariants in genus zero define a potential F0: formal series on
H •(X) with coefficients in Q[[T ]]—see e.g. [30]. We briefly recall two conjectures
(see e.g. [29]).

1. First we have:

Conjecture 2.1 F0 is convergent for a point γ ∈ H •(X) and for T ∈ C, both close
to 0.

2. Assuming �-conjecture (see e.g. [30]) we get that nc Hodge structures are
parametrized by a domain

M ⊂ H •(X,C)/H 2(X, 2π iZ),

which is a meromorphic connection on the trivial bundle over u-plane Cu with fiber
H •(X):

∇ d
du

= d

du
+ 1

u2
K + 1

u
G

(Recall that the �-conjecture gives a lattice, hypothetically compatible with Stokes
filtrations along rays at u → 0. For more details see [30].)

We define the operator K = K (γ ) as the quantum product with c1(TX ) +∑
i �=2(2 − i)γi . It depends on the point γ = (γi ∈ Hi (X))i=0,...,2 dimC X in Frobe-

nius manifold M. We also define the operator G as a constant operator given by
G |Hi (X) = i−dimC X

2 · idHi (X).
We use the example bellow to introduce and demonstrate two important def-

initions. Let X be a smooth 3-dimensional cubic in P
4. Operators K , G on 4-

dimensional space H even(X) = ⊕3
i=0H 2i (X) with the basis being powers of the

hyperplane section, at point γ = 0 ∈ M, are:

K = 2 ·

⎛
⎜⎜⎝
0 6 0 36
1 0 15 0
0 1 0 6
0 0 1 0

⎞
⎟⎟⎠ , G =

⎛
⎜⎜⎝

− 3
2 0 0 0
0 − 1

2 0 0
0 0 1

2 0
0 0 0 3

2

⎞
⎟⎟⎠

Solutions of the quantum equation
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Fig. 1 Gabrielov paths (Red
dots correspond to
eigenvalues of quantum
multiplication)

(
d

du
+ 1

u2
K + 1

u
G

)
ψ(u) = 0 (1)

grow at u → 0 as
∼ u− 5

6 ,∼ u− 1
6 .

Definition 2.2 Quantum spectrum is the spectrum of K , a finite subset {za} =
SpecX ⊂ C (depends on the point γ inM).

Definition 2.3 Noncommutative spectrum: The asymptotics of the
sub-exponential growth solutions of the Eq.1 above form the noncommutative
spectrum or nc spectrum.

In what follows we will denote by δ minus two times the lowest number of
noncommutative spectrum. In the above example

δ = 5

3
.

Consider a purely even affine submanifold Malg ⊂ M, given by deforma-
tions of quantum product by linear combinations of algebraic classes H alg

Q
(X) ⊂

H even(X,Q).

Conjecture 2.4 For anypoint inMalg and a choice of disjoint paths from∞ to points
of the corresponding quantum spectrum (see Fig. 1), we obtain a semi-orthogonal
decomposition Db(Coh(X)) = 〈C1, . . . , Cr 〉 where r is the number of elements of
the spectrum.

All categories C1, . . . , Cr are saturated (i.e. smooth and proper), equal to local
Fukaya-Seidel categories for the mirror LG dual (Y, W : Y → C), if it exists.

Example 1 (1) X = P
n , the quantum spectrum is μn+1 = {z ∈ C | zn+1 = 1}

(for some point inM)
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This gives Db(Coh X) = 〈O, . . . ,O(n)〉.
(2) Conjectural blow-up formula: If X̃ = BlY (X) where Y ⊂ X is a smooth closed

subvariety of codimension m ≥ 2, then the quantum spectrum SpecX̃ looks
like with (m − 1) shifted copies of SpecY around one copy of SpecX . (Here the
blue dots correspond to eigenvalues of quantum multiplication added after blow
ups.)

(3) If X is a Calabi-Yau manifold or a manifold of general type the quantum spec-
trum is just a point.

(4) The above considerations lead to the following theorem proven in [29]: MAIN
THEOREM: The splittingH = ⊕λi Hλi is a birational invariant.

2.2 Dimension Theory

In this section,we introduceSerre dimensionwhich (with someexceptions) is equal to
the number δ from the noncommutative spectrum.We see that sometimes elementary
pieces Ca = Cza , za ∈ SpecX (could be combined as some points of the spectrum
collide), are themselves equivalent to derived categories of coherent sheaves on some
varieties, of certain dimensions ≤ dim X .

In general, for a saturated category C one can define its Serre dimension [49]

dimSerre C := lim|k|→+∞

{
i

k
| Exti (I dC, Sk

C) �= 0

}
⊂ R.

Here SC : C → C is the Serre functor [48]:

HomC(E, F)
 = HomC(F, SC E), ∀E, F ∈ Ob(C).

In general, Serre dimension could be an empty set, or an interval.
For categories Db(Coh(X)), it is exactly the dimension dim X ∈ Z≥0. For a frac-

tional Calabi-Yau category Sk
C ∼ [n], the Serre dimension is equal to Calabi-Yau

dimension n
k , hence fractional.
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Example 2 Fukaya-Seidel category of Y = Cx , W = xd , d ≥ 2: dimSerre = 1 − 2
d .

Let us assume that (H,∇) is a connection with second order pole and regular
singularity (i.e. all solutions have polynomial growth). Then the order of growth
defines a filtration by subbundles, preserved by connection ∇, the indices form the
subexponential growth spectrum = nc spectrum.

Essential Example
Consider the hypersurface X ⊂ P

n of Calabi-Yau/general type. The connection on
the image of H •(Pn) in H •(X) under restriction map, i.e. the span of powers of
c1(O(1)) ∈ H 2(X) :

∇ d
du

= d

du
+ 1

u2
K + 1

u
G, K = classical product with c1(TX )

The nc spectrum is

(− dim X/2,− dim X/2, . . .)

for X a manifold of general type and so

δ = dim X.

For X a Calabi-Yau manifold nc spectrum is

(− dim X/2, 1 − dim X/2, . . . ,+ dim X/2)

and δ = dim X . Similar behavior happens for Calabi-Yau when we replace the
multiplication by c1(TX ) = 0, by the multiplication by an inhomogeneous class
c1(TX ) + ∑

i �=2(2 − i)γi , γi ∈ Hi (X), i ∈ 2Z.

2.2.1 More General Example

Let us consider a weighted projective space Pω0,...,ωn and generic complete intersec-
tion X of hypersurfaces of degrees d1, . . . , dm . In what follows we investigate the
connection between nc spectrum, Givental spectrum and Steenbrink spectrum
in this example.

Recall that such a complete intersection is called well-formed iff (here unions
are understood with multiplicities)

⋃
i

{
1

ωi
, . . . ,

ωi − 1

ωi

}
⊂
⋃

j

{
1

d j
, . . . ,

d j − 1

d j

}



We call the numbers from 
 Givental spectrum.
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Well formed X is smooth, and does not meet singularities of Pω0,...,ωn . Let us
assume that X is a Fano variety, i.e.

∑
i ωi >

∑
j d j .

We define the Givental’s hypergeometric operator:

∏
i

ω
ωi
i · ∂dim X −

∏
j

d
d j
j · q ·

∏
j (∂ + 1

d j
) · · · (∂ + d j −1

d j
)∏

i (∂ + 1
ωi

) · · · (∂ + ωi −1
ωi

)
, ∂ := q

d

dq
, u = c · q

− 1∑
i ωi −

∑
j d j

The nc spectrum of the Laplace operator of the Givental’s hypergeometric oper-
ator is:

− dim X
2 + {complement in (
)} ·(∑i ωi − ∑

j d j ) → numbers s0 ≤ s1 ≤ · · · .
The adjusted Steenbrink spectrum is:
(s0, s1 + 1, s2 + 2, . . .).
The adjusted Steenbrink spectrum is symmetric with center at 0.

Example 3 Let use consider complete intersection of two hypersurfaces of degree
d1 = 2, d2 = 4 in P6 = P

6(1, 1, 1, 1, 1, 1, 1).
The growth spectrum is

(
−7

4
,−6

4
,−6

4
,−5

4

)

In other words the solutions of the quantum equation grow as

u− 7
4 , log(u)u− 6

4 , u− 6
4 , u− 5

4

.
Adding (0, 1, 2, 3) to nc spectrum we obtain adjusted Steenbrink spectrum:

(
−7

4
,−1

2
,+1

2
,+7

4

)

.

2.3 Some Computational Tools

We briefly discuss some methods for calculations. We start with:

Theorem 2.5 (Saito’s Theorem) ([46]) Pf (t) = Sp f (t).

Here Pf (t) = ∑
α

(dim Jα)tα is the Poincare series and Sp f (t) = ∑
i
(ni .t i )—is the

spectrum polynomial and ni—are the multiplicity of spectral number.
Recall that for f (λw1 x1, . . . , λwn xn) = λ f (x1, . . . , xn) we define weight
wt.(xa1

1 , . . . , xan
n ) = ∑n

i=1(1 + ai )wi .
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Example 4 Let us look at the example of three dimensional cubic from a new point
of view:

f (x1, . . . , x5) = x3
1 + · · · + x3

5

Pf (t) = t
5
3 + 5t2 + 10t

7
3 + 5t3 + t

10
3

δ = 10
3 − 5

3 = 5
3 .

Let us denote by Cone(X) the cone over a hypersurface X and C is the Fukaya-
Seidel category associated with the most singular fiber of the LG model of X . By
Orlov’s theorem we have Db(Cone(X/G)) = C .

Denote by Sl the lowest number of the Steenbrink spectrum and by Sh the highest
number of the Steenbrink spectrum for Cone(X/G). An A-side conjectural version
of Orlov’s theorem suggests:

Conjecture 2.6 The Steenbrink spectra of Cone(X) determines noncommutative
spectrum associated with X . The following identity holds

δ = Sh − Sl .

Let C be a Calabi-Yau category s.t. Serre functor satisfies Sa = [b].
H H•(C) = ⊕H Hi (C)[δ]

Definition 2.7 The homomorphism

ε : (Q × Z2) → Aut (C)

defines a categorical covering. The covering structure is recorded by multiplication
in the A∞.

In the example 2.8 we get t
10
3 , t

5
3 define 10

3 − 5
3 , which produces degree of a

covering.

Example 5 x4
1 + · · · + x4

5 . We consider this hypersurface as an affine cone. We
compute the Poincare polynomial and obtain:

Pf = t
5
4 + · · · + t

15
4 ⇒ δ = 15

4 − 5
4 .

Example 6 x3
1 + · · · + x3

5 . We consider this hypersurface as an affine cone. Here
we can compute the Bernstein polynomial

b f (t) = (t + 1)(t + 2)(t + 3)(t + 5
3 )(t + 7

3 )(t + 8
3 )(t + 10

3 )

and obtain:
δ = 10

3 − 5
3 .

2.4 New Nonrationality Results

In this section we record the results of our method and compare them with already
known results. We use the simplest of invariants—δ. We hope that other numbers of
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the noncommutative spectrum can be used as well. In fact it seems that these numbers
mirror classical theory of multiplier ideal sheaves and characterize the stratification
of the base loci of the anticanonical system for Fano’s.

We have defined

δ = dim(X) − 2(N − d)/d

As an immediate consequence we get in [29].

Theorem 2.8 (1) Let X be a Fano smooth hypersurface of degree d in P
5−1 such

that
d > 5/2.

Then X is not rational.
(2) Let X be a Fano smooth hypersurface of degree d in P

6−1 such that

d ≥ 6/2

and H 2,2(X,Z) = Z. Then X is not rational.
(3) Let us assume uppersemicontinuity condition. Let X be a Fano smooth hyper-

surface of odd dimension and of degree d in P
N−1 such that

d > N/2

Then X is not rational.
(4) Let X be a Fano smooth hypersurface of even dimension k = (N − 2)/2 and of

degree d such that
d > N/2

and H k,k(X,Z) = Z. Then X is not rational.

We briefly describe the idea of the proof.

Proof The above formulae is equivalent to δ > dim(X) − 2.

(1) dim(X) = 3 Assume that X is rational so it is obtained via sequence of blow
ups and blow downs with centers curves.
According to the ESSENTIAL EXAMPLE the maximal asymptotics we get
under blow ups are integers less or equal to 1.
Our MAIN THEOREM ensures that these integers do not interact. So the max-
imum δ we can get by blow up is

dim(X) − 2 = 1.

- a contradiction.
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(2) dim(X) = 4. Assume δ > 2. The fact that H 2,2(X,Z) = Z ensures that δ > 2
stays unchanged under deformations. Assume that X is rational so it is obtained
via sequence of blow ups and blow downs with centers points, surfaces, curves.
According to the ESSENTIAL EXAMPLE the maximal asymptotics we get
under blow ups are integers less or equal to 2.
The MAIN THEOREM ensures that these integers do not interact. So the max-
imum δ we can get by blow up is

dim(X) − 2 = 2.

- a contradiction.
The case d = 3, H 2,2(X,Z) = Z will be treated in [29]. Let us briefly mention
the idea. We have a splitting

H = ⊕λi Hλi .

With the exception of one all of these Hλi are one dimensional. The high dimen-
sional one has a symmetric noncommutative Hodge structure. With 20 dimen-
sional space of deformation this noncommutative Hodge structure cannot come
from a commutative surface.

(3) dim(X) = N − 2, N − 2 is odd. In this case δ > dim(X) − 2.
Assume that X is rational so it is obtained via sequence of blow ups and blow
downs.
According to the ESSENTIAL EXAMPLE the maximal asymptotics we
get under blow ups are integers less or equal to dim(X) − 2. According to
uppersemicontinuity these asymptotics can only go down. The MAIN THEO-
REM ensures that these integers do not interact. So the maximum δ we can get
by blow up is

dim(X) − 2.

- a contradiction.
(4) dim(X) = N − 2 = 2k, N − 2 is even H k,k(X,Z) = Z . In this case δ >

dim(X) − 2. The fact that H k,k(X,Z) = Z ensures that δ > dim(X) − 2 does
not go down.
Assume that X is rational so it is obtained via sequence of blow ups and blow
downs.
According to the ESSENTIAL EXAMPLE the maximal asymptotics we
get under blow ups are integers less or equal to dim(X) − 2. According to
uppersemicontinuity these asymptotics can go only down. The MAIN THEO-
REM ensures that these integers do not interact. So the maximum δ we can get
by blow up is

dim(X) − 2.
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- a contradiction.

Similarly we have [29].

Theorem 2.9 Let X be a smooth Fano complete intersection of hypersurfaces of
degrees d1, . . . , dm in P

N . Denote by dt the sum d1 + · · · + dn and by dm the minimal
degree.

In this case the Arnold number (the largest number of the noncommutative spec-
trum) is equal to:

δ = dim(X) − 2((dt − dm)/dm)

.

1. Let X be 3 dimensional and δ > 1. Then X is not rational.
2. Let X be 4 dimensional, H 2,2(X,Z) = Z and δ > 2. Then X is not rational.

Let us assume uppersemicontinuity condition.

3. Let X be of odd dimension and δ > dim(X) − 2. Then X is not rational.
4. Let X be of even dimension 2k, H k,k(X,Z) = Z and δ > dim(X) − 2. Then X

is not rational.

The same result works for well formed complete intersection in weighted projec-
tive spaces. The formulae for δ is similar:

δ = dim X − 2
ωsum − dsum

dmax
, ωsum :=

∑
j

ω j for P
ω0,...,ωn

3 Application to Arithmetics

The GW invariants can be defined over algebraically nonclosed fields L . Therefore
the techniques of noncommutative spectrum can be used to investigate nonrationality
over algebraically nonclosed fields L . Of course changing the fields does not change
the GW invariants but it changes algebraic cycles. Changing algebraic cycles affects
deformations of LG models and as a result the spectrum of quantum multiplication
by the canonical class. In this case we do not need an uppersemicontinuity—the
restriction on deformation comes from algebraic cycles.

Recall the example from the introduction—the two dimensional cubic: X : X3
0 +

· · · + X3
3 = 0. Consider X over algebraically nonclosed field L s.t. Pic X L = 1. After

analyzing the Sarkisov links we conclude that X is not rational.
We will look at this example from the point of view of the spectrum. We begin

with:
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Theorem 3.1 Let X be a Fano stack of dimension at most 4 over a field L such that
image of C H(X) in

∑
i H i (X,Z) is generated by powers of anticanonical class.

Assume that Arnold constant ( the highest number in the spectrum) is bigger than
dim(X) − 2. Then X is not rational.

The same theorem works in the case when dimension of X is greater than four
but with the assumption of uppersemicontinuity condition.

Proof We give a proof under assumption of an isomorphism between the quantum
cohomologies and Jacobian ring proven in many cases. The quantum multiplication
by the canonical class K corresponds to multiplication of the class of W .

QH(Hr) ∼= Jac (W )
multi K mult by W

QH ∼= Jac (W )
∪ ∪

subring subring
generated by K generated by W

2 def of K P polynomial ofW
W + P (W )

all deformations
have the same critical values

as W

It follows that the spectrum of the most singular fiber of W does not go down
since this most singular fiber does not split further under deformations. So we have
δ > dim X L − 2 = 2.

From another point the main assumption and the fact that we blow up points,
curves and surfaces implies that δ = 2—a contradiction. In the case of dimension
higher than 4 the proof is the same.

We return to the case of cubic surface. We assume existence of a point in X L over
L . Its Landau–Ginzburg models is:

w = (x + y + 1)3

xy
for cubic
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If the PicX L = Z then W have only two singular fibers.
We compute:

δ = 2 − 2
4 − 3

3
= 4

3

⇒ X is not rational

Since the Pic X L = Z the deformation of W is restricted so we cannot morsify
and δ does not go down to 0. So X L is not rational. We move to considering a cubic
with Pic X L = Z + Z:

(1) In the case Pic X L = Z + Z ⇒ we get a conic bundle with 5 singular fibers. By
Noether formulae:

8 − S = k2 = 3,

so we have 5 singular fibers. (The classical Iskovskikh criteria |2KP1 + S| =
| − 4p + 5p| �= ∅ gives nonrationality.)
We will use spectrum in order to compute nonrationality. We compute the Bern-
stein polynomial for a cubic as an affine cone with a singularity at zero.
We have 8 − C = 3. C = 5 pts.
|2K + C | = | − 4 + 5| = OP1(1) �= ∅
f = a5x2 + b5y2 + c5z2

f = (s + 1)2(s + 2)2(s + 3
2 )

2 · · · (s + 3
10 )

So δ = 3
2 − 3

10 �= 0 and X L is nonrational.

5

P
1

|2KP1 + S| = | − 4p + 5p| �= ∅
existence of schg

• •

non-splitting

|2K + S| �= ∅ δ > 0

nonrationality

⇐⇒
⇒ ⇐

(2) We consider del Pezzo surface X L = of degree 4 in P3(1, 1, 1, 2) with Pic X L =
Z + Z It is a conic bundlewith 6 singular fibers. (The classical Iskovskikh criteria
|2KP1 + S| = | − 4p + 6p| �= ∅ gives nonrationality.)
As before we use the Bernstein polynomial to show that δ > 0 and X L are not
rational.
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8 − S = K2 = 2

6
|2K + S| �= ∅

2 points

δ = 2 − 25−4
4

no splitting

(3) Consider del Pezzo surface X L of degree 6 in P(1, 1, 2, 3).

8 − S = K2 = 1

S = 7

· · ·

7
|2K + 7| �= ∅

δ = 2 − 27−6
6

no splitting

As before we use the Bernstein polynomial to show that δ > 0 and X L are not
rational.

The above observations suggest the following conjecture.

Conjecture 3.2 Let X L be a conic bundle over P2 (or another rational surface).
Assume that the following holds:

|2K + S| �= ∅ nonsplitting

δ > dim(X/L) − 2

Then X L is not rational.

Let us consider a stack X/G. In this case the GW invariant of X are different from
the ones of X/G. From another point the new contributions to cohomologies do form
as twisted sectors which do not interact with the quantum span of the anticanonical
divisor.

We denote the cohomologies associated to twisted sectors by Hγ1 , ... + · · · , Hγk .
We have the following splitting of quantum cohomologies.

Q H(X)G = H + Hγ1 + · · · Hγk

It leads to the following conjecture.
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Conjecture 3.3 Let X/G be a stack defined over a field L such that the image of
C H(X) in

∑
i H i (X,Z) is generated by powers of anticanonical class.

Assume that δ > dim(X/G) − 2. Then X/G is not rational.

The proof is very similar to the proof of the previous theorem. As before we have:
QH = H + Hγ1 + · · ·Hγk −→ Jac (Wm) + Jγ1 + · · ·Jγk

< 1, K(1)1 > deformed ∼= < Wm > +P (Wm)
= no new eigenvalues

Here we denote by Wm the potential modified by the contributions of the age fac-
tors. As before we do not have further splitting of the cohomology and the inequality
δ > dim(X/G) − 2 implies nonrationality.

We will look at some examples of del Pezzo stacks.
Using this theorem we consider several examples of del Pezzo stacks—all hyper-

surfaces in weighted projective P
3. Consider the case of weights: 3, 3, 5, 5 and a

hypersurface of degree 15. In this case δ = 2 − 2(16 − 15)/15 = 28/15 > 0 so we
have nonrationality. We can compute the spectrum applying theorem 5.5. Using Sin-
gular we compute the Steenbrink spectrum of Cone(X)-(0, 1), . . . , (28/15, 1). So
δ = 48/15. We obtain nonrationality.

Remark 3.4 Observe that choice of the field L and the condition I m(C H → H) =
〈1, K (1), K 2(1), · · · 〉 are essential. Without these assumptions the most singular
fiber of Wm splits to singularities A4, A2, A2 and further which makes δ = 0.

Similarly consider the weights: 3, 5, 7, 11 and a hypersurface of degree 25. The
Steenbrink spectrum ofCone(X) is (0, 1), . . . , (48/25, 1). So δ = 48/25.We obtain
nonrationality.

This methods work in all Johnson-Kollár examples as well as in higher
dimension—for more see [35].

4 Low Dimensional Topology Invariants

We explain a parallel between quantum spectrum and classical 3-dim, 4-dim invari-
ants. First we recall the classical theory. We start with theory of knots and Alexander
polynomials. Consider the singular curve:

f (z, w) = z p + wq , (z, w) ∈ C
2

Sε = {|z|2 + |w|2 = ε2} ⊂ C
2, 0 < ε << 1

K p,q = f −1(0) ∩ Sε a knot
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Alexander polynomial of this torus knot is:

�p,q = t− (p−1)(q−1)
2 · (t − 1)(t pq − 1)

(t p − 1)(tq − 1)

We define Sp( f ) := ∑
α∈Q n f,αtα the Steenbrink spectrum

Steen = {α1, α2, . . . , αμ}, μ = (p − 1)(q − 1)

Fact �K p,q = t− μ

2
∏μ

i=1 �αi (t), �αi (t) = (t − e2π iαi )

Example 7 ((p, q) = (2, 3))

�K2,3 = t− μ

2
(t6 − 1)(t − 1)

(t2 − 1)(t3 − 1)
= t− μ

2 (t − e2π i 5
6 )(t − e2π i 7

6 )

Steen = { 56 , 7
6 }. Also using Thom-Sebastiani theorem we get:

Steen = {Steen(z2)} + {Steen(w3)} =
{
1

2

}
+
{
1

3
,
2

3

}
=
{
5

6
,
7

6

}

Example 8 ((p, q) = (2, 5))

�K2,5 = t− μ

2
(t10 − 1)(t − 1)

(t2 − 1)(t5 − 1)

Steen = { 1
10 ,

3
10 ,

7
10 ,

9
10 }. Using Thom-Sebastiani we get:

Steen(z2 + w5) = {Steen(z2)} + {Steen(w5)} =
{
1

2

}
+
{
1

5
,
2

5
,
3

5
,
4

5

}

We move 1 dimension higher. Consider an elliptic surface E(n): an elliptic
fibration.

1212

E(2) = K3

12 singular fibers

E(1) = P
2
p1,...,p9

We describe fibered knot surgery and its connections with Seiberg Witten invari-
ants SW.
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S2

S1×

S1 × (
∑

g ×S1) into E(n)

Under surgery:

SWEK (n) =
∑
K∈Z

SW (K [F])t K = SWE(n)(t)�K (t), SWE(n) = (t − t−1)n−2

where F is the fiber of EK (n).

Theorem 4.1 (Gr=SW) Coefficients of �K count holomorphic curves g = 1 in the
class K [F] in EK (n).

We explore the connection with spectra. Recall that:
∑

g → S3 − K

S1

� the monodromy of the surgery (char polynomial of �k(t)) produces an endo-
functor on Fuk(

∑
g) and Fuk(Symk

∑
g) (or F S(

∑
g)?).

Conjecture 4.2 � defines filtration on H H(Fuk(
∑

g))which corresponds to Steen.

Conjecture 4.3 Db
sing( f ) has a filtration

Db
sing( f ) ⊃ Fα1 ⊃ Fα2 · · ·

given by the spectra.

Let F be mirror of Db
sing( f ). Consider the quantum differential Eq.1

{asymptotics of 2.1} ↔ {Spectrum of f }

Conjecture 4.4 Entropy of �: η(�) is the first coefficient of �K (t).
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These simple observations suggest the following questions:

Question 4.5 Does the spectrum define canonical filtration on Floer homology?

Question 4.6 What is the symplectic meaning of this filtration? We expect it is
connected with the structures of the Lagrangian skeleta.

We discuss further applications. We define modular spectrum of a link M - link
of singularity X f ← Y1,q as the Steenbrink Steen(Y1,q). We give a brief example to
fix notations.

Example 9 M = �(2, 3, 5)
Y1,q − E8

W RT (M) ↔ (1, 7, 11, 13, 17, 19, 23, 29)

Here W RT (M) is the Witten-Reshetikhin-Turaev (WRT) invariant of the 3-
manifold M .

We pose the following:

Question 4.7 Is there a categorical meaning of WRT?

We will discuss some of these questions in the next section.

4.1 Spectra and WRT

Let M be a smooth 3-manifoldwhich is a link of an isolated normal surface singularity
in C

3. In the following sections, we study topological invariants of M and their
relation to spectra. GPPV invariants1 Ẑb(q) [37, 38] are q-series that refine theWRT
invariants.

Series Zb(q) canbe expressed as a linear combination of false theta functions in the
case of Seifert manifolds with 3 singular fibres. Corresponding theta functions can be
conjecturally written as components of a vector-valuedmodular form, which is know
for someexamples, including links of ADE singularities [37]. Induced representation
of SL(2,Z) is a subrepresentation of 2m-dimensional Weil representation for some
integerm and θ functions are labelled by residue classesmodulo2m.Weare interested
in these residue classes for all components of the modular form, not just those that
correspond to Ẑb. We call this set Modular spectrum for convenience. A precise
definition depends on the conjectural existence of a natural vector-valued modular
form. It was posed as a question in [37] what is a deeper meaning of these residue
classes.

1 also called BPS q-series or homological blocks.
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Example 10 The relation with the spectrum started with an observation about
E8 singularity, defined by the equation x2 + y3 + z5 = 0. Its link is a Poincar-
ÃƒÆ’Ã‚Â©homology sphere, Seifertmanifold M(−2, 1/2, 2/3, 4/5).WRT invari-
ants of this manifold have been studied in [40]. Lawrence and Zagier defined two
functions holomorphic inside the unit circle:

θ+(τ ) = q1/120(1 + 11q + 19q3 + 29q7 − 31q8 − 41q14 − . . .

θ−(τ ) = q49/120(7 + 13q + 17q2 + 23q4 − 37q11 − 43q15 − . . .

The first function gives WRT as the radial limits at the roots of unity. Both functions
together form a vector-valued modular form for SL(2,Z).

Those functions can be written as a linear combination of theta functions assigned
to residue classes modulo 60 (see Sect. 2):

θ+(τ ) = θ1
30,1(τ ) + θ1

30,11(τ ) + θ1
30,19(τ ) + θ1

30,29(τ ) + . . .

θ−(τ ) = θ1
30,7(τ ) + θ1

30,13(τ ) + θ1
30,17(τ ) + θ1

30,23(τ ) + . . .

The spectrum of E8 singularity is

{1/30, 7/30, 11/30, 13/30, 17/30, 19/30, 23/30, 29/30}

and we can see that the numerators of the elements of spectrum correspond to residue
classes of the theta functions while the denominator corresponds to the modulus.

This example can be generalized in two ways. One is the class of Brieskorn
homology spheres x p1 + y p2 + z p3 = 0 for a0, a1, a2 pairwise coprime. An analog-
ical relation of theta functions and spectrum is true for them as described in Sect. 3.
It is remarkable since the spectrum contains negative numbers and this is reflected
in topology.

Theorem 4.8 Let M be a Brieskorn homology sphere, i.e. the link of the singularity
X given by the equation x p1 + y p2 + z p3 = 0 Then

Modular spectrum of M = Steenbrink spectrum of X.

Another generalization is the class of ADE singularities. Here we need to take a
spectrum of a different but related singularity—universal Abelian cover.

Theorem 4.9 Let M be a link of ADE singularity X and Y be the corresponding
maximal Abelian cover. Then

Modular spectrum of M = Steenbrink spectrum of Y.

This phenomenon can be certainly generalized to Seifert manifolds, where Ẑb

have been explicitly computed recently. For more general plumbed 3-manifolds, the
singularities to consider are splice-quotients and their universal covers, where the
spectrum is difficult to compute, however much can be said about the topology itself
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using ideas from singularity theory and simpler invariants than spectrum. For these
generalizations, see [32]. On the topology side, since the description of Ẑb using
false theta functions is limited to 3 singular fibres of Seifert fibration on M , we need
to replace theta function labels by something more general. The poles of Borel plane
[43] seem to be a good candidate.

4.1.1 Theta Functions

Wewill follow the notation in [37]. In particular we denote q = e2π iτ and y = e2π i z .

Definition 4.10 Let m be a positive integer and r a residue class mod 2m. We
define weight 1/2 theta function and weight 3/2 unary theta function as (respectively)

θm,r (τ, z) =
∑
�∈Z

�≡r (mod 2m)

q�2/4m y�; θ1
m,r (τ ) =

∑
�∈Z

�≡r (mod 2m)

� q�2/4m, (2)

Unary theta functions form a (rank 2m) vector-valued modular form of weight
3/2. Its matrices S and T define Weil representation of S̃L(2,Z), the double cover
of SL(2,Z).

Definition 4.11 False theta function (or Eichler integral) of θm,r is

�m,r (τ ) =
∑
�∈Z

�≡r (mod 2m)

sgn(�) q�2/4m . (3)

False theta functions keep a weaker modular property—quantummodularity [41].
Note also the obvious relations:

�m,r (τ ) = �m,−r (τ ) (4)

�m,r+2m(τ ) = �m,r (τ ) (5)

The basic idea is the correspondence r
m as an element of the spectrum of certain

singularity related to the 3-manifold and �m,r (τ ) as an Eichler integral of a certain
theta function assigned to a 3-manifold.

4.1.2 GPPV Invariants

A plumbed 3-manifold M admits GPPV invariants [38], which are q-series Ẑb(q)

defined using plumbing graph of M and labeled by elements of H1(M) or spinc

structures. These invariants can be computed by an explicit integral formula [37].
It is an intriguing question whether the series Zb can be written as components of
(quantum) modular forms.
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The vector-valuedmodular forms described in [37] have usuallymore components
than is the number of Zb(q) (as in the example E8 in the introduction). It is not clear
what is the meaning of these components for the 3-manifold and how to get an
intrinsic definition of them.

4.1.3 Example of Brieskorn Homology Sphere �(3, 4, 5)

Here we give an example of theorem 4.8. Homology sphere �(3, 4, 5) is the link
of x3 + y4 + z5 = 0. This case has been studied in [37], p. 67. They describe a
representation of S̃L(2,Z) given by theta functions θ1

m,r and corresponding false
theta functions �m,r . The number m is 3 · 4 · 5 = 60.

False theta functions:

�60,1 − �60,31 − �60,41 − �60,49

�60,2 + �60,22 + �60,38 + �60,58

�60,7 + �60,17 + �60,23 − �60,47

�60,11 + �60,19 + �60,29 − �60,59

�60,13 − �60,37 − �60,43 − �60,53

�60,14 + �60,26 + �60,34 − �60,46

If we use the relation �m,2m+r = �m,r and multiply first and fifth row by -1 (change
of the basis of the representation) we obtain

�60,−1 + �60,31 + �60,41 + �60,49

�60,2 + �60,22 + �60,38 + �60,58

�60,7 + �60,17 + �60,23 + �60,73

�60,11 + �60,19 + �60,29 + �60,61

�60,−13 + �60,37 + �60,43 + �60,53

�60,14 + �60,26 + �60,34 + �60,46

Now the labels r of �m,r are exactly the numerators of the elements of Steenbrink
spectrum of x3 + y4 + z5 = 0. The terms in each sum correspond to the orbits of a
natural action of Z2

2 on the spectrum. Note that since the theta functions only depend
on r (mod 2m) the relevant spectrum is spectrum modulo 2 (we cannot hope to
recover the full Hodge-theoretic information from topology).

The series Z0(q) is at the fifth row. It contains the term labelled by the smallest
number in the spectrum: −13/60.

Remark 4.12 As conjectured in [37], components of the representation should cor-
respond to non-abelian SL(2,C) connections (it is true for Brieskorn spheres). If
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Table 1 Labels of false theta functions for M , the link of singularity X, correspond to the spectrum
of the universal Ab. cover Y of X
Manifold M X Y False thetas of M Spectrum of Y

Lens space An C
2 No thetas Empty

M(−2; 1
2 , 1

2 , n−3
n−2 ) Dn An−3 �1,n−2, �2,n−2, . . . , �n−3,n−2 (1, 2, . . . , n − 3)/(n − 2)

M(−2; 1
2 , 2

3 , 2
3 ) E6 D4 �6,1 + �6,5, 2�6,3 (1, 3, 3, 5)/6

M(−1; 1
2 , 2

3 , 3
4 ) E7 E6 �12,1 + �12,7, �12,4+

�12,8, �12,5 + �12,11

(1, 4, 5, 7, 8, 11)/12

�(2, 3, 5) E8 E8 10, [40] (1, 7, 11, 13, 17, 19, 23, 29)/30

we use this identification and restrict it to real connections, we recover the classi-
cal relation of the signature of Milnor fiber of the Brieskorn singularity and Casson
invariant of M [44].

4.1.4 ADE Singularities

Beforeweget to the relation ofGPPVand the spectrum,weneed to recall the notion of
universal Abelian cover of an isolated singularity (see, for example, [42]). Recall that
a closed oriented 3-manifold M is aQ-homology sphere if H∗(M,Q) = H∗(S3,Q).

Definition 4.13 Let X be a germ of an isolated normal surface singularity whose
link M is a Q-homology sphere. The universal Abelian cover Y of X is a maximal
Abelian cover of the germ ramified at the singular point.2

Ẑb and modular forms of the links of ADE singularities were computed in [37],
see also [39]. Using their results, we obtain Theorem 4.9. All ADE singularities,
their Abelian covers and invariants are summarized in Table 1.

4.2 Topological Invariants of Plane Curve Singularity

We give some ideas of the categorical origin of these topological invariants. Let
C = { f (x, y) = 0} be a germ of a plane curve having an isolated singularity at the
origin p and LC,p be an algebraic link of the plane curve singularity. There have been
lots of works studying relations between algebraic geometry of C and topology of
LC,p. For example, the Alexander polynomial of LC,p can be computed via the ring
of functionsOC thanks to the works of Campillo-Delgado-Gusein-Zade (cf. [5]) and
the HOMFLY-PT polynomial of LC,p can be expressed in terms of Hilbert schemes
of the plane curve singularity thanks to the works of Oblomkov-Shende (cf. [45])
and Maulik (cf. [21]). On the other hand, there have been lots of interests in mirror

2 The covering group is then H1(M,Z).
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symmetry of hypersurface singularities these days (see [15] and references therein
for more details) and plane curve singularities again have provided natural testing
grounds for mirror symmetry conjecture. Takahashi conjectured that for an invert-
ible polynomial f, the category of graded matrix factorization HMSL f ( f ) will be
equivalent to the Fukaya-Seidel category Fuk→( f T ) of the Berglund-Hübsch mirror
polynomial f T and recently there have been lots of works in this direction and both
categories have been intensively studied. For example, it turns out that HMSL f ( f )

has a full exceptional collection and admits a Gepner type stability condition when
f is of ADE type. Here, we will discuss the relation between Hilbert schemes of
plane curve singularities, certain topological data of some algebraic links, andmatrix
factorizations.

To be more precise, we will consider the images of ideals which belong to certain
Hilbert scheme C [∗]

p in the category HMFL f ( f ) when f = x2 + y3. Then we can
check that the images have interesting properties. For example, a natural stratifica-
tion on (some parts of) the Hilbert scheme C [∗]

p corresponds to an indecomposable
object in HMSL f ( f ). We can also verify that the difference between the Alexander
polynomial and the HOMFLY-PT polynomial of LC,p can be expressed in terms of
HMFL f ( f ).

4.2.1 Hilbert Schemes

Let C = { f (x, y) = 0} be the germ of a plane curve with an isolated singularity at
the origin at p = (0, 0).

Definition 4.14 Let C [l]
p be the Hilbert scheme of length l zero dimensional sub-

schemes of C which are set-theoretically supported at p. And let C [∗]
p := ⋃

l C [l]
p .

The normalization induces an embeddingOC → C[[t]].And the natural valuation
induces a valuationOC → N. Let� = ν(O) be the semigroup. Let I ⊂ OC be a L f -

graded ideal. Then OC/I gives an element in D
L f
sg (R f ).

Proposition 4.15 Let f be a weighted homogeneous polynomial. Then there is a
C

∗-action on C [∗]
p . A C

∗-invariant ideal gives an Z-graded ideal.

Proof The obviousC∗-action on f induces an action on C [∗]
p and having aC∗-action

is equivalent to having a Z-grading.

The following remark tells us that not all ideals ofOC give nontrivial elements in
HMFL f ( f ).

Remark 4.16 Let g be a nonzero divisor in OC . Then O/(g) is a perfect complex.

Proof We have the following short exact sequence.

0 → OC → OC → OC/(g) → 0

Therefore O/(g) is a perfect complex.
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4.2.2 Example f = x2 + y3

We can compute L f as follows.

L f = Z
−→x ⊕ Z

−→y ⊕ Z
−→
f /(

−→
f − 2−→x − 3−→y ) ∼= Z

R f = OC = C[[x, y]]/(x2 + y3) = C[[t2, t3]]

There is a stratification on the Hilbert scheme as follows.

(1)

(t i + uti+1), i ≥ 2, u ∈ C

(t i , t i+1), i ≥ 2

The C∗-invariant parts of the Hilbert scheme are as follows.

(1)

(t i ), i ≥ 2

(t i , t i+1), i ≥ 2

The semigroup � is {0, 2, 3, 4, 5, 6, 7, · · · }.

The Koszul resolution of C[[x, y]]/(x, y) induces an L f -graded matrix factor-

ization F = (F0, F1, f0, f1) of f where P(
−→
f ) := S(−−→x ) ⊕ S(−−→y ) and

F0 := S ⊕ ∧2P(
−→
f ), F1 := P(

−→
f ).

Proposition 4.17 The matrix factorizations correspond to the ideal (t i , t i+1) is the

image of the above matrix factorization under the autoequivalence (
−→
l ) for some−→

l ∈ L f .

Proof Let M = C[[x, y]]/(x, y). Let M stab be the above matrix factorization. Note
that (t i , t i+1) is isomorphic to (t2, t3) as an R f -modules. The only difference between
them is grading and hence we obtain the desired conclusion.

Proposition 4.18 The ideal (t i , t i+1) is an exceptional object in HMFL f ( f ).

Proof Because C[[x, y]]/(x, y) is an exceptional object (cf. [16]), we see that
(t i , t i+1) is also exceptional.

Then we have the following.
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Corollary 4.19 The ideal (t i , t i+1) is an indecomposable object in HMFL f ( f ).

It is well-known that there are only finitely many indecomposable objects in
HMFL f ( f ) up to autoequivalences.

Theorem 4.20 The difference between the Alexander polynomial and the HOMFLY-
PT polynomial is a categorical invariant.

Proof Thedifference between theAlexander polynomial and theHOMFLY-PTpoly-
nomial of LC,p is the integration over ideals of type (t i , t i+1). And every element of
the form (t i , t i+1) can be obtained from (t2, t3) by applying translations. From the
above discussion, we see that these ideals give nontrivial elements in HMFL f ( f ).

Therefore, one can see that the difference can be written in terms of HMFL f ( f ).

5 Generalization of Spectra

We extend the connection of spectra with Alexander polynomial initiated in the
previous section. We extend the correspondence:

Multivariable Alexander Polynomials ←→ multispectra

Theorem of Libgober [26] says that we can associate to spectrum of f1, f2, . . . ↔
faces of quasiadjunction. We will give a categorical version of this process:

5.1 Splitting of a Potential

Consider a Landau–Ginzburg model with a potential W = W1 + W2 We consider
the associated Fukaya-Seidel categories F S(W1), F S(W2), F S(W ).

We start with the tower:

FS(W1 + W2) FS(W1)

FS(W1) FS(W1 ∩ W2)

Example 11 (X5
3 ⊂ P

6 5-dim cubic)

Db(X5
3)

∼= F S(W1 + W2)

Db(X4
6)

∼= F S(W1)

Db(X4
6)

∼= F S(W2)
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Conjecture 5.1 The NC spectra of X5
3 is a superposition of X4

6 and X4
6.

We have the P.D.E.

∇ d
du

= d

du
+ 1

u2
K + 1

u
G

Conjecture 5.2 The P.D.E. of X4
6 and P.D.E. of X4

6 produce the P.D.E. of X5
3 via

convolution.
P DE(X4

6) ∗A P DE(X4
6)

∼= P DE(X5
3)

We see that asymptotics are superposition of asymptotics.

Corollary 5.3 Let P̃N
X is a blow-up of PN along X. Then the faces of quasiadjuction

contain
(−(dim X)/2, . . . ,−(dim X)/2)

In general, we have
Spec({Ai }) � Spec({K })

Here the algebra {K } is the algebra generated by canonical bundle. {Ai } is the algebra
generated by algebraic cycles. The above epimorphism defines a deeper filtration.

Question 5.4 Is this new filtration a birational invariant?

Question 5.5 Does the algebra defined by splitting produce birational invariants?

We consider the example of 5-dim cubics.

Db(X5
3 )

Db(X4
3,2) Db(X4

3,2)

δ1(X5
3 ) =

7
3

δ1(X5
3,2) = 4 − 2

6 − 3 − 2
3

=
10
3

δ1(X5
3) = 7

3

δ1(X5
3,2) = 4 − 2

6 − 3 − 2

3
= 10

3

We compute the quasiadjunction of the above splitting.
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−10
3

−10
3

quasiadjunction faces

Observation
We notice that in the above spliting −(dim X)/2, . . . , (dim X)/2 do not belong to
quasiadjunction faces of the polygon. This suggest a different proof of the nonra-
tionality 3-dimensional cubic.

5.2 Category Filtrations

For a category C and A, B and a noncommutative Hodge structureH,∇, Herm > 0,
we define a sequence of stability conditionsJ1, . . . ,Jk corresponding to asymptotics
of stability spectrum.

We consider the asymptotics of integral
∫
�′(0) α(0) ∼ Asymptotics at z = 0. These

asymptotics define

stability spectrum.

Example 12 Consider the category An—1 dimensional Fukaya-Seidel categories.
So we have x j e

p
u dx is a stability condition. Here p is a polynomial of degree <

(n − 1).

Step 1 We have α = dx .
Step 2 We move to define Kähler metric on moduli space of stability conditions.

We begin with Ki j (u, ū) = ∫∫
C

xi x j e
p
u − p̄

ū dxd x̄

� : |u| ≤ 1 → GL(n + 1,C)

∀|u| = 1,�(u)�t (u) = Ki j

We define Hermitian form
H(u) = �(u)�t (u)

Asymptotics
∫

xi e
p
u dx

define asymptotics and the noncommutative spectrum.

As we saw the asymptotics of the integral lim
n→0

Zn = ∑
uαi define stability and nc

spectra. We move in to investigate the connection with analysis.
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We have the following:

Theorem 5.6 The stability conditions J1, . . . ,Jk define a filtration on C:

F≤i (C) = semistable Obj(E)

such that
ZJi (E) ≤ O(|J | j )

This theorem will be discussed in detail in [29]. We will make some use of this
filtration in what follows. We consider a Fano X and a splitting of a canonical divisor
K X = D1 + D2.

X − Fano

K X = D1 + D2

On the mirror side we have spitting of the potential W = W1 + W2.

FS(W1) FS(W )

Fuk(CY ) FS(W2)

Monodromy of W1 gives a filtration:

F S(W1) ⊃ Fλ1 ⊃ · · · ⊃ Fλn

Monodromy of W2 gives a filtration:

F S(W2) ⊃ Fμ1 ⊃ · · · ⊃ Fμn

giving a double filtration
F S(W ) ⊃ Fμ1,λ1 ⊃ · · ·

F S(W ) ⊃ Fν1 ⊃ · · ·

The behavior of λi , μ j is of Thom Sebastiani type generalized

νi
T homSebastiani= (λi , μi )

In fact, we have a correspondence:
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⎧⎨
⎩

Choices
of

W1, W2, ...

⎫⎬
⎭ →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

generali zed
T homSebastiani

λi μi νi
...

...
...

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Question 5.7 Can one produce out of λi , μi , νi new birational invariants?

We discuss briefly a couple of examples.

Example 13 (Polytope of quasiadjunction (x2 + y3)(x3 + y2))

2u + 3v = 1
2
3
2
5
2

3u + 2v = 1
2
3
2
5
2

(x2 + y3)(x3 + y2)

The Alexander polynomial is:

(t21 t32 + 1)(t31 t22 + 1)

Example 14 (3-dim cubic)
−K X = 2H

f = Q′
3Q′

3 two cubics

λ1 =
5
3

λ2 =
5
3

δ =
5
3

→

local Alexander
polynomials

⇓
5
3Q′

3

Q′
3

Mirror
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W = W1 + W2

| |
Q′′

3 Q′′
3

5
3

5
3

no deformations

KX = Q′
3 + Q′′

3

jumping local systems

λi

H i(Lλ �= 0)

W = W1 + W2

FS(W1) FS(W2)
∪ ∪

Fλ1 Fν1

∪ ∪
...

...

6 Spectrum, Orbifoldization and Conformal Field Theory

In this section we propose a new point of view of noncommutative spectra. Details
will appear elsewhere see e.g. [27, 32].

Our approach is based on the parallel between:

• Birkar’s proof [1] of boundness of Fano’s.
• Zamolodchikov’s [7] c-theorem.

We combine these two directions with categorical resolution of singularities.
The final outcome is creating theory of noncommutative spectra similar to Arnold-
Varchenko-Steenbrink spectrum.

We will describe a procedure of computing noncommutative spectrum as equiv-
ariant part of Steenbrink spectrum of the corresponding affine cone.

Steenbrink Spectrum
Elliptic−−−−−−−→

Equivariant
Noncommutative Spectrum.

We consider the following examples.
1. Let X be a hypersurface (Fermat) of degree d in PN

xd
0 + · · · xd

N

by Steenbrink (y
1
d + · · · + y

d−1
d )N+1.

This is the fixed part of the Elliptic genus when applied to 5-dim. cubic.
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Recall that
x3
0 + · · · x3

6 = 0

has Steenbrink Spectrum
(y

1
3 + y

2
3 )7

We orbitalize using action of Z3

1

3
y− 7

2

⎛
⎝ ∑

0≤a≤3

(
y

1
3 − yω−a

y
1
3 − ω−a

)7

+
∑(

y
6
3

)7⎞⎠

So after that, we get
−21(y− 7

2 + y
1
2 ) + y− 7

6 + y
7
6

⇒
(

−7

6
,
7

6

)
- noncommutative spectrum

2. Similarly for 2-dim. cubic y− 2
3 + 2 + y

2
3 .

For K3 (x4
0 + · · · + x4

3 = 0), we have 2y−1 + 20 + 2y.

Proposition 6.1 For CY, the procedure gives − dim X
2 , . . . , dim X

2 .

Proposition 6.2 For general type, the procedure gives − dim X
2 , . . . , dim X

2 .

Proposition 6.3 The uppersemicontinuity for Steenbrink spectrum brings upper-
semicontinuity for noncommutative spectrum.

We consider the Berglund-Hübsch Mirror Symmetry.

X∨ = C
n+1/�

f−→ C

where X∨ is the mirror of X ⊂ P
N . So we have:

Conjecture 6.4 Db
sing(X∨, f )eq = Fuk0(X).

Now we present a program which not only explains Conjecture 6.1 but suggests
a far going program of categorical resolutions. We begin by:

Conjecture 6.5 Let r : X → Xsing be a resolution of singularity. There exists a
category C0 which does not depend on r.

In the case of orbifold we can be more precise:

Conjecture 6.6 There exists a piece H0 ⊂ Hi (X) which does not depend on r .
Then H0

∼= I H(Xsing).
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We have:

HString(Xsing) = I H(Xsing) + TS1 + · · · TSw

Here I H are the intersection cohomologies of X . The noncommutative spectrum
is defined over I H(Xsing).We can combine above conjecturewith our orbifoldization
procedure. We observe that the twisted sectors we need to take are precisely the ones
on which the group acts with determinant equal to one. The above considerations
can be lifted to categorical level.

Conjecture 6.7 Consider a resolution S′ res←− S of terminal singularities. Assume
S − Ssing has a volume form. Then

(1) H0 is independent of r ;
(2) C0 is a CY-category, subcategory of Per f (X) is independent of r .

We would like to make a parallel between Birkar’s theory and category theory.

S − SsingSsing

Ht Ct

resolutions

H0 C0

In the above setting S − Ssing determinesH0 and Ssing the rest of semi-orthogonal
decomposition.

We have a correspondence between classical and categorical notions:

K X , B ←→ Ssing

B ′
complement ←→ S/Ssing

volumes ←→ Categorical Entropy h

Let Cd
E be a log Calabi-Yau category. (We fix the biggest number in the spectra and

d is the categorical dimension.)

Question 6.8 � is a functor of Cd
E . Are h(�) bounded?

Question 6.9 Is Aut(Cd
E) of Jordan type? (Here Aut(Cd

E) is the group of autoequiv-
alences).

Question 6.10 Is F(Cd
E) a bounding family? (Here F(Cd

E) is the family parametrizing
the categories with dimension d and bounded the biggest number of the spectra from
below. Proper definition will take effort.)
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Question 6.11 Consider the splitting

C =
λ(E,d)⋃

i≥0

Ci

H =
λ(E,d)⋃

i≥0

Hi

Show that λ(E, d) is finite.

Question 6.12 Are categorical dimensions of Cλi
E,d bounded?

The above considerations suggest the following parallels.

Fano Category CFT

Birkar’s Theory E, d Boundness σ, d Boundness of log CY theory Behavior of σ, d theory
Jordan Property of Birational Aut Jordan Property of Aut Db

uppersemicontinuity of Spectra Zamolodchikov Theorem

The Zamolodchikov’s c theorem suggests semicontinuity of the noncommutative
spectra—see [6, 8]. This correspondence will be discussed elsewhere.

Our findings in the previous sections suggest that in the case of X , an algebraic
surface, we have the following correspondence.

The above findings suggest that new (A, B) structures can be used to define new
invariants, A side invariants for the B side.

We have the following parallel:

Resolution of singularity Surgery
Creation of Spectra Creation of Spectra

Conjecture 6.13 Log transform (rational blow down) creates nontrivial δ > 0.

This suggests the following questions.

Question 6.14 Can we have symplectic 4-fold with the same basic classes but dif-
ferent spectra?

We have a connectionwith k-spectra of CFT. This observations lead to: symplectic
Poincare conjectures.
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– Find a 4-dim symplectic manifold s.t. X
homeo∼= P

2 and δ(X) > 0.

– Find a 4-dim symplectic manifold s.t. X
homeo∼= P

1 × P
1 and δ(X) > 0.

– Find a 2n-dim symplectic manifold s.t. X ∼= P
n and δ(X) > 0.

The parallel between RG flow and Kaehler Ricci flow suggests that the other
R-charges can also lead to birational invariants.

Renormalisation group flow and defects lines in the LGmodel could lead to higher
invariants. We investigate these phenomena further in [33].
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On Singular Del Pezzo Hypersurfaces
of Index 3

In-Kyun Kim, Nivedita Viswanathan, and Joonyeong Won

Abstract We determine the existence of Kähler-Einstein metrics on singular del
Pezzo surfaces with quotient singularities which are hypersurfaces of index 3 in
weighted projective spaces.

Keywords K-stability · Fano varieties · del Pezzo surfaces

1 Introduction

Let S be a quasismooth and well-formed hypersurface in P(a0, a1, a2, a3) of degree
d, where a0 ≤ a1 ≤ a2 ≤ a3. Then S is given by a quasihomogeneous polynomial

f (x, y, z, t) = 0 ⊂ P(a0, a1, a2, a3)

of degree d with weights wt(x) = a0, wt(y) = a1, wt(z) = a2 and wt(t) = a3. Since
S is quasismooth and well-formed it satisfies the adjunction formula

−KS ∼Q OS(a0 + a1 + a2 + a3 − d)

(see [14, Sect. 6.14]). We define the index of S to be I = a0 + a1 + a2 + a3 − d and
in this paper we only consider the case when I is positive, that is, when S is a singular
del Pezzo hypersurface with quotient singularities.
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The problem of determining the existence of Kähler-Einstein metrics on these
surfaces has been studied using Sasakian geometry in [3, 4, 25].

For I = 1, the existence of Kähler-Einstein metrics on S is completely solved. It
has been proven that S admits an orbifold Kähler-Einstein metric if I = 1. (See [1,
7–9, 15]).

In the case when I = 2 or I = 3, the existence of Kähler-Einstein metrics on the
surface S has been studied in [4, 8, 9] using α-invariant (SeeDefinition 2.1) under the
assumption that I < 3a0/2. This is because I ≥ 3a0/2 implies that α(S) ≤ 2/3 and
hence Tian’s criterion (see [11, 23, 28]) cannot be used to determine if the surface
S admits Kähler-Einstein metrics.

For instance, when

(a0, a1, a2, a3, d) = (2, 3, 4, 5, 12) and equation of S does not contain yzt

the δ-invariant has been used to prove that S is Kähler-Einstein [7].
When I = 2, it was conjectured in [7] that all such surfaces S admit orbifold

Kähler-Einstein metrics.
But this conjecture [7, Conjecture 1.10], was disproven in [16]. That is, if the

quintuple (a0, a1, a2, a3, d) is any one of the following

(1, 6, 9, 13, 27), (1, 9, 15, 22, 45),
(1, 3, 3n + 3, 3n + 4, 6n + 9),
(1, 1, n + 1, m + 1, n + m + 2),
(1, 3, 3n + 4, 3n + 5, 6n + 11)

where n andm are non-negative integerswith n < m, then S does not have an orbifold
Kähler-Einstein metric.

Later it was verified that these are all the cases when the index I = 2 and the
surface does not admit a Kähler-Einstein metric (see [17, 22]).

In this paper, we consider hypersurfaces S of index I = 3. That is, S is a qua-
sismooth member of family No.i where i ∈ {1, 1†, 2, . . . , 17} of Table 1 in Sect. 6.
When i ∈ {11, . . . , 17} then the existence of Kähler-Einstein metric is proven in
[8]. In this paper, we determine the existence of Kähler-Einstein metrics for all the
remaining del Pezzo hypersurfaces of index 3. That is, we only consider the case
when i ∈ {1, 1†, 2, . . . , 10}.

Surprisingly the problem of existence ofKähler-Einsteinmetrics on these surfaces
has a very simple answer.

Theorem 1.1 Suppose that S is quasismooth and has index I = 3. Then S admits
Kähler-Einstein metrics if and only if I < 3a0/2 or the quintuple (a0, a1, a2, a3, d)

is (1, 2, 2n + 3, 2n + 3, 4n + 6) where n is a nonnegative integer.

We therefore expect that there is no Kähler-Einstein del Pezzo hypersurface of
very high index if I ≥ 3a0/2.
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Conjecture 1.2 Let the index I of a singular del Pezzo hypersurface S be large
enough. If S has Kähler-Einstein metric then I < 3a0/2.

2 Preliminaries

The Kähler-Einstein K-stability correspondence for Fano varieties has been inten-
sively studied and was primarily motivated by the Chen-Tian-Donaldson conjecture.
This conjecture was first proven for Fano varieties with anti-canonical polarisation
in [10, 27] and for del Pezzo surfaces with quotient singularities in [20, 21].

In this section, we will introduce the various invariants that are used in this paper
to prove Theorem 1.1.

Notations: Throughout the paper we use the following notations:

• P(a0, a1, a2, a3) is the weighted projective space where a0, a1, a2 and a3 are pos-
itive integers such that a0 ≤ a1 ≤ a2 ≤ a3.

• x , y, z and t are the weighted homogeneous coordinates of P(a0, a1, a2, a3) with
weights wt(x) = a0, wt(y) = a1, wt(z) = a2 and wt(t) = a3.

• S ⊂ P(a0, a1, a2, a3) denotes a quasismooth hypersurface given by a quasihomo-
geneous polynomial of degree d.

• H∗ is the hyperplane that is cut out by the equation ∗ = 0 in S.
• px denotes the point on S given by y = z = t = 0. The points py , pz and pt are
given by x = z = t = 0, x = y = t = 0, x = y = z = 0.

• −KS denotes the anti-canonical divisor of S.

Let X be a Q-Fano variety, i.e. a normal projective Q-factorial variety with at
most terminal singularities such that −K X is ample.

2.1 α-Invariant of Tian

Definition 2.1 Let (X, D) be a pair, that is, D is an effective Q-divisor, and let
p ∈ X be a point. We define the log canonical threshold (LCT, for short) of (X, D)

and the log canonical threshold of (X, D) at p to be the numbers

lct(X, D) = sup{ c | (X, cD)is log canonical },
lctp(X, D) = sup{ c | (X, cD)is log canonical atp },

respectively. We define

lctp(X) = inf{ lctp(X, D) | D is an effective Q-divisor, D ≡ −K X },



412 I.-K. Kim et al.

and for a subset � ⊂ X , we define

lct�(X) = inf{ lctp(X) | p ∈ � }.

The number α(X) := lctX (X) is called the global log canonical threshold (GLCT,
for short) or the α-invariant of X .

2.2 δ-Invariant

The δ-invariant of a variety X (see [13] for the definition of the δ-invariant) is called
the stability threshold because of the following.

Theorem 2.2 ([5, Theorem B]) Let X be a Q-Fano variety.

• X is K -semistable if and only if δ(X) ≥ 1;
• X is uniformly K -stable if and only if δ(X) > 1.

By [5, Theorem A], we have the following:

(
dim(X) + 1

dim(X)

)
α(X) ≤ δ(X) ≤ (dim(X) + 1)α(X). (1)

Wewill use this inequality extensively to prove that the surface S is not K -polystable,
when S is a quasismooth, well-formed hypersurface of Index 3 that belongs to Family
No.i, when i ∈ {2, . . . , 10}.

2.3 β-Invariant

Let X be a n-dimensional Q-Fano variety. Let E be an arbitrary prime divisor over
X , that is, there exists a birational morphism σ : Y → X with a normal variety Y
and E ⊂ Y is a prime divisor in Y (not necessarily f -exceptional). Let

AX (E) = 1 + ordE
(
KY − f ∗ (K X )

)
, (2)

and we let

SX (E) = 1

(−K X )n

∫ τ

0
vol( f ∗(−K X ) − uE) du, (3)

where τ = τ(E) is the pseudo-effective threshold of E with respect to −K X , i.e. we
have

τ(E) = sup
{
u ∈ Q>0 | f ∗(−K X ) − uE is big

}
.
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Then,

β(E) = AX (E) − SX (E).

Then, we have the following.

Theorem 2.3 ([6, 12, 19]) The following assertions hold:

• X is K -stable ⇐⇒ β(E) > 0 for every prime divisor E over S;
• X is K -semistable ⇐⇒ β(E) � 0 for every prime divisor E over S.

Using the following criterion, we will establish the existence of Kähler-Einstein
metrics on a surface S belonging to Family No 1†.

Theorem 2.4 ([29, Corollary 4.14]) Let G be a reductive subgroup in Aut(X). Sup-
pose thatβ(E) > 0 for every G-invariant dreamy prime divisor E (see [12, Definition
1.3] for the definition) over X. Then X is K -polystable.

In order to compute β(E) for divisors E over the surface S, we will first describe
the properties of the volume function.

Let S be a surface with quotient singularities. And let D be an effectiveQ-divisor.
If D is Cartier then its volume is the number

volS(D) = lim sup
k∈N

h0(OS(k D))

k2/2! . (4)

When D is a Q-divisor one can define the volume volS(D) of D as in (4) taking the
lim sup over those k for which k D is integral. Moreover we can define its volume
using the identity

volS(D) = 1

λ2
volS(λD)

for an appropriate positive rational number λ. The volume of D depends only upon
its numerical equivalence class (see [18, Proposition 2.2.41] for details).

If D is not pseudoeffective, then volS(D) = 0. If D is pseudoeffective, its volume
can be computed using its Zariski decomposition [2, 26]. Namely, if D is pseudoef-
fective, then there exists a nef R-divisor P on the surface S such that

D ∼R P +
n∑

i=1

ai Ci

where each Ci is an irreducible curve on S with P · Ci = 0, each ai is a non-negative
real number, and the intersection form of the curves C1, . . . , Cn is negative definite.
Such decomposition is unique, and it follows from [2, Corollary 3.2] that

volS(D) = volS(P) = P2.
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Next, to find a prime divisor E over S satisfying β(E) < 0 we consider the
following birational morphism. This is used in proving that the surface S which is
a quasismooth, well-formed hypersurface of index 3 belonging to Family No. 1, is
not K -semistable.

From our assumption, S has a cyclic quotient singularity of type 1
m (a1, a2) at the

point p. Let the weighted coordinates around this point p be x and y. Let φ : S̃ → S
be the weighted blow-up at p of S with weights wt(x) = a1 and wt(y) = a2 and let
E be the exceptional divisor. Then we have the following:

KS̃ ∼Q φ∗(KS) +
(
−1 + a1

m
+ a2

m

)
E

where E is the exceptional divisor of φ and

E2 = − m

a1a2
.

Let Hx be a curve on S that is locally given by x = 0 near p. Then we have

H̃x ∼Q φ∗(Hx ) − a1

m
E

where H̃x is the strict transform of Hx .

3 Small α-Invariants

Throughout this section every family is contained in Table 1 of Sect. 6. Denote Iα =
{2, 3, 4, 5, 6, 7, 8, 9, 10}. In this section we estimate the α-invariants of quasismooth
members of families No. i with i ∈ Iα .

Proposition 3.1 Let S be a quasismooth member of family No. i with i ∈ Iα . Then S
is not K -semistable.

Let S be a quasismooth member of family No. 2. By a suitable coordinate change
S is given by a quasihomogeneous polynomial

t x +
n+2∑
i=0

ξi z
i y2n+4−2i = 0

in P(1, 1, 2, 2n + 3) where n is a nonnegative integer and ξi are constants. Let Hx

denote the curve in S cut out by x = 0. Then Hx is isomorphic to the curve given by
a quasihomogeneous polynomial

n+2∑
i=0

ξi z
i y2n+4−2i = 0
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in P(1, 2, 2n + 3) = Proj(C[y, z, t]). From this equation we have lct(S, Hx ) =
3/(2n + 4). Similarly, we can obtain the following.

Let S be a quasismooth member of family No. i with i ∈ Iα . Let Hx denote the
curve in S cut out by x = 0. Then Hx is isomorphic to the following curve:

• No. 2 : zn+2 + zn y2 + · · · + y2n+4 = 0 in P(1, 2, 2n + 3);
• No. 3 : z2y + zy2n+2 + y4n+3 = 0 in P(5, 10n + 5, 10n + 7);
• No. 4 : t y2n+2 + z2y = 0 in P(5, 10n + 7, 10n + 9);
• No. 5 : t y2 + z3 = 0 in P(7, 9, 13);
• No. 6 : t2 + t y2 + y4 = 0 in P(7, 9, 14);
• No. 7 : t2 + zy3 = 0 in P(9, 13, 20);
• No. 8 : t2 + z3 = 0 in P(13, 22, 33);
• No. 9 : t2 + y5 = 0 in P(14, 23, 35);
• No. 10 : z3 + y5 = 0 in P(15, 25, 37)

where n is a nonnegative integer. Then we have the following:

• No. 2: lct(S, Hx ) = 3/(2n + 4);
• No. 3: lct(S, Hx ) = (2n + 2)/(4n + 3);
• No. 4: lct(S, Hx ) = (2n + 3)/(4n + 4);
• No. 5: lct(S, Hx ) = 5/6;
• No. 6: lct(S, Hx ) = 3/4;
• No. 7: lct(S, Hx ) = 5/6;
• No. 8: lct(S, Hx ) = 5/6;
• No. 9: lct(S, Hx ) = 7/10;
• No. 10: lct(S, Hx ) = 8/15

where n is a nonnegative integer. Therefore we obtain the following proof.
Proof of Proposition3.1 Using the above computations and the inequalities in (1) we
have,

δ(S) ≤ 3α(S) ≤ 3 lct(S, 3Hx ) = lct(S, Hx ) < 1.

By Theorem 2.2 S is not K -semistable.

4 K -stable Singular del Pezzo Hypersurfaces

Let S be a quasismooth member of family No. 1†. By a suitable coordinate change
S ⊂ P(1, 2, 2n + 3, 2n + 3) is given by a quasihomogeneous polynomial

t z +
2n+3∏
i=1

(ai x
2 + bi y) = 0
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where n is a nonnegative integer and [ai : bi ] with i ∈ {1, . . . , 2n + 3} are distinct
points in P

1. The points pz and pt are singular points of type 1
2n+3 (1, 2).

Proposition 4.1 S is K -polystable.

Proof Let G be the subgroup of the Aut(S) that is generated by ψ and φξ , where
ξ ∈ C

∗, whose actions on S are as described below,

ψ : [x : y : z : t] �−→ [x : y : t : z]
φξ : [x : y : z : t] �−→ [x : y : ξ z : ξ−1t].

Let P = OS(2) be the pencil of G-invariant curves on S. That is, any G-invariant
curve on S is given by ax2 + by = 0 for some [a : b] ∈ P

1.
In order to prove Proposition 4.1, wewill computeβ(E) for anyG-invariant prime

divisor E in the surface S and all the G-invariant prime divisors over the surface S.

Lemma 4.2 Let E be a G-invariant prime divisor in S. Then β(E) > 0.

Proof Consider the divisor −KS − uE ≡ ( 32 − u)E . Then, we have that τ(E) = 3
2 .

Therefore,

β(E) = AS(E) − 1

−K 2
S

∫ 3
2

0
volS(−KS − uE) du

= 1 −
∫ 3

2

0

(
1 − 2

3
u

)2

du = 1

2
> 0.

Next, we consider a G-invariant prime divisor E over S. This divisor is mapped
to G-invariant points on S and are given by z = t = 0 in S. Thus the points pi , given
by ai x2 + bi y = z = t = 0 in P(1, 2, 2n + 3, 2n + 3), are all the points on S fixed
by G. Without loss of generality, let P be one such point. Therefore using Theorem
2.4 we consider the blow-ups at P .

Lemma 4.3 Let π : S̃ → S be the blow-up at P with exceptional divisor E. Then
β(E) > 0.

Proof We consider the curve Ci ∈ P given by ai x2 + bi y = 0 in S, containing P .
It can be written as

Ci = Cz + Ct (5)

where Cz and Ct are given by ai x2 + bi y = z = 0 and ai x2 + bi y = t = 0 in
P(1, 2, 2n + 3, 2n + 3), respectively. Then Cz ∩ Ct = P .

We have the following intersection numbers:

C̃z · C̃t = 0, C̃2
z = C̃2

t = −4n + 4

2n + 3
, C̃z · E = C̃t · E = 1
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where C̃z and C̃t are the strict transforms of Cz and Ct , respectively. To find β(E)

we have to calculate volS(−KS − uE). Consider the divisor

π∗(−KS) − uE ≡ 3

2

(
C̃z + C̃t

) + (3 − u)E .

Since the intersection form of C̃z and C̃t are negative definite we have τ(E) = 3,
that is, volS(−KS − uE) = 0 for u > 3.

Since
(
3

2

(
C̃z + C̃t

) + (3 − u)E

)
· C̃z = 3

2n + 3
− u,

(
3

2

(
C̃z + C̃t

) + (3 − u)E

)
· C̃t = 3

2n + 3
− u,

the divisor π∗(−KS) − uE is nef for 0 ≤ u ≤ 3
2n+3 . When u ∈ [ 3

2n+3 , 3], the Zariski
decomposition of the divisor π∗(−KS) − uE is given by

π∗(−KS) − uE = (3 − u)

(
2n + 3

4n + 4

(
C̃z + C̃t

) + E

)

+
((

6(n + 1) + (2n + 3)(u − 3)

4(n + 1)

)
(C̃z + C̃t )

)
.

This implies that

volS(−KS − uE) =
{

9
2n+3 − u2 for 0 ≤ u ≤ 3

2n+3 ,
1

2n+2 (3 − u)2 for 3
2n+3 ≤ u ≤ 3.

and therefore,

SS(E) = 1

(−KS)2

∫ 3

0
volS(−KS − uE) du

= 2n + 3

9

(∫ 3
2n+3

0

9

2n + 3
− u2 du +

∫ 3

3
2n+3

1

2n + 2
(3 − u)2 du

)

= 2n + 4

2n + 3
.

Then

β(E) = AS(E) − SS(E) = 2 − 2n + 4

2n + 3
= 2n + 2

2n + 3
> 0.

Therefore by Theorem 2.4, the surface S is K -polystable, thus completing the
proof of Proposition 4.1.
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5 Non K -semistable Singular del Pezzo Hypersurfaces

In this section we prove that there are prime divisors E over the following singular
del Pezzo hypersurfaces such that β(E) < 0, that is, they are not K -semistable.

Lemma 5.1 Let S be a quasismooth member of family No. 1. Then S is not K -
semistable.

Proof By a suitable coordinate change we can assume that S ⊂ P(1, 2, 2n +
3, 2m + 3), where n and m are nonnegative integers, is given by a quasihomoge-
neous polynomial

t z +
n+m+3∏

i=1

(ai x
2 + bi y) = 0

where [ai : bi ] are distinct points in P
1.

S is singular at the point pz and pt of type 1
2n+3 (1, 2) and

1
2m+3 (1, 2). In a neigh-

borhood of pt , we may regard that x and y are local coordinates.
Letπ : S̃ → S be theweighted blow-up atpt withweightswt(x) = 1 andwt(y) =

2. Then we have

KS̃ ∼Q π∗(KS) − 2m

2m + 3
E,

where E is the exceptional divisor of π .
Consider the hyperplane Hz given by z = 0 in S. Then

Hz =
n+m+3∑

i=1

Li

where Li with i ∈ {1, 2, . . . , n + m + 3} is the curve given by z = ai x2 + bi y = 0
in P(1, 2, 2n + 3, 2m + 3). Since

L̃ i ∼Q π∗(Li ) − 2

2m + 3
E,

where L̃ i is the strict transform of Li on S̃, we have

π∗(Hz) ∼Q

n+m+3∑
i=1

L̃ i + 2(n + m + 3)

2m + 3
E .

Also the various intersection numbers are

L̃2
i = −1, L̃ i · L̃ j = 0, L̃ i · E = 1

where i �= j .
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Since −KS ≡ 3
2n+3 Hz , we consider the divisor

π∗(−KS) − uE ≡ 3

2n + 3

n+m+3∑
i=1

L̃ i +
(

6(n + m + 3)

(2n + 3)(2m + 3)
− u

)
E .

Since the intersection form of the curves L1, L2, . . . , Ln+m+3 is negative definite we
have τ(E) = 6(n+m+3)

(2n+3)(2m+3) , that is, volS(π
∗(−KS) − uE) = 0 when u > τ(E).

Meanwhile for every i ∈ {1, 2, . . . , n + m + 3}, we determine the nefness of the
divisor π∗(−KS) − uE , by intersecting the divisor with the curves Li as below.

(π∗(−KS) − uE) · Li = − 3

2n + 3
+

(
6(n + m + 3)

(2n + 3)(2m + 3)
− u

)
= 3

2m + 3
− u.

Therefore, if u ∈ [0, 3
2m+3 ], π∗(−KS) − uE is nef. When u ∈ [ 3

2m+3 ,
6(n+m+3)

(2n+3)(2m+3) ],
the Zariski decomposition of the divisor is as below.

π∗(−KS) − uE =
(

6(n + m + 3)

(2n + 3)(2m + 3)
− u

) (
n+m+3∑

i=1

L̃ i + E

)

+
(

u − 3

2n + 3

) n+m+3∑
i=1

L̃ i .

Thus

volS(−KS − uE) =
⎧⎨
⎩

9(n+m+3)
(2n+3)(2m+3) − 2m+3

2 u2 for u ∈ [0, 3
2m+3 ],(

6(n+m+3)
(2n+3)(2m+3) − u

)2 (
2n+3
2

)
for u ∈ [ 3

2m+3 ,
6(n+m+3)

(2n+3)(2m+3) ].

From these we have

SS(E) = 1

−K 2
S

∫ τ(E)

0
volS(−KS − uE) du

= (2n + 3)(2m + 3)

9(n + m + 3)

[ ∫ 3
2m+3

0

9(n + m + 3)

(2n + 3)(2m + 3)
− 2m + 3

2
u2 du

+
∫ τ(E)

3
2m+3

(
6(n + m + 3)

(2n + 3)(2m + 3)
− u

)2 (
2n + 3

2

)
du

]

= 3

2m + 3
− 2n + 3

2(2m + 3)(n + m + 3)
+ 2m + 3

2(2n + 3)(n + m + 3)
.

Since AS(E) = 3
2m+3 , we have that,
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β(E) = AS(E) − SS(E) = 2n + 3

2(2m + 3)(n + m + 3)
− 2m + 3

2(2n + 3)(n + m + 3)
< 0.

By Theorem 2.3 S is not K -semistable.

6 Table

In [24] there is the list of the quasismooth del Pezzo hypersurfaces with index 3. For
the quintuple (1, 2, 2n + 3, 2m + 3, 2(n + m) + 6), where n and m are nonnegative
integers, we split it into the two families No. 1 and No. 1†.

Each row in Table 1 is the family of quasismooth hypersurfaces in the weighted
projective space. Each quadruple of theweights column is theweights of theweighted
projective space. And each number of the degree column is the degree of defining
equations of quasismooth del Pezzo hypersurfaces. Finally, KE means the existence
of orbifold Kähler-Einstein metrics.
where n and m are nonnegative integers with n < m.

Table 1 Index 3

No. Weights Degree KE

1 (1, 2, 2n + 3, 2m + 3) 2(n + m) + 6 No

1† (1, 2, 2n + 3, 2n + 3) 4n + 6 Yes

2 (1, 1, 2, 2n + 3) 2n + 4 No

3 (1, 5, 10n + 5, 10n + 7) 20n + 15 No

4 (1, 5, 10n + 7, 10n + 9) 20n + 19 No

5 (1, 7, 9, 13) 27 No

6 (1, 7, 9, 14) 28 No

7 (1, 9, 13, 20) 40 No

8 (1, 13, 22, 33) 66 No

9 (1, 14, 23, 35) 70 No

10 (1, 15, 25, 37) 75 No

11 (5, 7, 11, 13) 33 Yes

12 (5, 7, 11, 20) 40 Yes

13 (11, 21, 29, 37) 95 Yes

14 (11, 37, 53, 98) 196 Yes

15 (13, 17, 27, 41) 95 Yes

16 (13, 27, 61, 98) 196 Yes

17 (15, 19, 43, 74) 148 Yes
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Blow-ups of Three-dimensional Toric
Singularities

S. A. Kudryavtsev

Abstract The purely log terminal blow-ups of three-dimensional terminal toric sin-
gularities are described. The three-dimensional divisorial contractions f : (Y, E) →
(X � P) are described provided that Exc f = E is an irreducible divisor, (X � P)

is a toric terminal singularity, f (E) is a toric subvariety and Y has canonical singu-
larities.

Keywords Toric singularities · Threefolds · Extremal contractions

Introduction

Let (X � P)be a log canonical singularity and let f : Y → X be its blow-up. Suppose
that the exceptional locus of f consists of only one irreducible divisor: Exc f = E .
Then f : (Y, E) → (X � P) is called a purely log terminal blow-up, canonical blow-
up or terminal blow-up, if (1), (2) or (3) are satisfied respectively: (1) KY + E is plt
and−E is f -ample; (2)−KY is f -ample and Y has canonical singularities; (3)−KY

is f -ample and Y has terminal singularities.
The definition of plt blow-up implicitly requires that the divisor E be Q-Cartier.

Hence Y is a Q-gorenstein variety. By the inversion of adjunction (see [11, Theorem
17.6]) KE + DiffE (0) = (KY + E)|E is klt.

The importance of study of purely log terminal blow-ups is that: some very impor-
tant questions of birational geometry for n-dimensional varieties, contractions can
be reduced to the smaller dimension n − 1, using purely log terminal blow-ups
(for instance, see the papers [20–22, 26]). In dimension two, purely log terminal
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blow-ups are completely classified and the classification of two-dimensional non-
divisorial log terminal extremal contractions of local type is obtained using them
[22]. For three-dimensional varieties the first similar problem is to get the same
explicit geometric classification of three-dimensional Mori contraction of local type
as in two-dimensional case. The next problem is the first difficulty to realize this
approach.

Problem. Describe the class of all log del Pezzo surfaces, generic P1-fibrations
which can be the exceptional divisors of some purely log terminal blow-ups of three-
dimensional terminal singularities.

Suppose that f (E) = P is a point. Then we solve this problem in the case of
terminal toric singularities (Theorem 6.2). Moreover we obtain the description of plt
blow-ups of Q-factorial three-dimensional toric singularities (Theorem 6.4). Purely
log terminal and canonical blow-ups are divided into toric and non-toric blow-ups
up to analytic isomorphism. The study of non-toric plt blow-ups is reduced to the
description of plt triples (S, D, �) in dimension two (Definition 4.9).

Also we obtain the description of canonical blow-ups of three-dimensional termi-
nal toric singularities (Theorem 6.5). The study of non-toric canonical blow-ups is
reduced to the description of the following two interrelated objects: (a) toric canonical
blow-ups of (X � P) and (b) some triples (S, D, �) in dimension two.

Immediate corollary of Theorem 6.5 is that the terminal blow-ups of three-
dimensional terminal toric singularities are toric up to analytic isomorphism. This
corollary was proved in the papers [2, 6, 8] by another methods.

Suppose that f (E) is a one-dimensional toric subvariety (curve) of the toric
singularity (X � P). Then the description of plt and canonical blow-ups is given in
Theorems 3.7, 3.8, 3.9 and in Corollary 3.10.

I am grateful to Professors Yu.G. Prokhorov and I.A. Cheltsov for valuable
advices.

1 Preliminary Results and Facts

All varieties are algebraic and are assumed to be defined overC, the complex number
field. The main definitions, notations and notions used in the paper are given in [9,
11, 22]. See [1, Sect. 3.10] on minimal model program with scaling. The definition
of Diff and its main properties are given in the papers [25, Sect. 3], [11, Chap. 16].
By (X � P) denote the algebraic germ of the variety X at the point P .

A smooth point is a special case of singularity by our definition. For example, Du
Val singularity of type A0 is a smooth point.

Let f : Y ��� X be a birational map and let D be a divisor on the variety X . By
DY denote the proper transform of D on the variety Y . If Y = ˜X , Y = X ′ or Y = X ,
then for notational convenience we use the notation ˜D = D

˜X , D′ = DX ′ or D = DX
respectively. The similar notation is used for subvarieties of X .
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The contraction f : Y → X is a projective morphism of the normal variety such
that f∗OY = OX . A blow-up is a birational divisorial contraction. A Q-factoriality
means analytical Q-factoriality in this paper.

The proper irreducible subvariety � of X is said to be a center of canonical singu-
larities of (X, D), if there exist the birational morphism f : Y → X and the excep-
tional divisor E ⊂ Y such that � = f (E) and a(E, D) ≤ 0. The set of canonical
singularity centers of (X, D) and X is denoted by CS(X, D) and CS(X) respec-
tively.

By our definition the toric varieties, toric morphisms are considered up to ana-
lytic isomorphism (analytical identification), if they are not explicitly defined by
fans. Shokurov’s (hypothetical) criterion on the characterization of toric varieties is
formulated in [26, Chap. 6]. By definition of weighted blow-up, its center is a point
always, that is, its every weight is positive.

Wewrite all singularities of surface in brackets. For example, the notation S(A1 +
1
5 (1, 2)) means that the surface S has two singular points of types A1 and 1

5 (1, 2)
exactly.

We actively use a structure of the local toric conic bundle f : S → (C � P),
where dim S = 2 and ρ(S/C) = 1. By [22, Lemma 7.1.11] the surface S has two
singularities of types 1

r (1, q) and 1
r (1,−q) over the point P only, where r ≥ 1.

Proposition 1.1 ([11, Lemma 6.2]) Let fi : Yi → X be two divisorial contractions
of normal varieties, where Exc fi = Ei are irreducible divisors and −Ei are fi -
ample divisors. If E1 and E2 define the same discrete valuation of the function field
K(X), then the contractions f1 and f2 are isomorphic.

Proposition 1.2 Let fi : Yi → (X � P) be two divisorial contractions to a point P,
where Exc fi = Ei are irreducible divisors. Suppose that the varieties Yi , X have log
terminal singularities, E1 and E2 define the same discrete valuation of the function
field K(X), the divisor −E1 is f1-ample, the divisor −E2 is not f2-ample. Then there
exists the small flopping contraction (with respect to KY2) g : Y2 → Y1 such that f2
and f1 ◦ g are isomorphic.

Proof Let KY2 = f ∗
2 K X + aE2. If a > 0, then we put L = −KY2 . If a ≤ 0, then

we put L = −(KY2 + (−a + ε)E2), where ε is a sufficiently small positive ratio-
nal number. Since −E2 is a f2-nef divisor, then the linear system |nL| is free
over X for n 
 0 and gives a contraction g : Y2 → Y ′

2 over X by the base point
free theorem [9, Remark 3.1.2]. A curve C is exceptional for g if and only if
L · C = E2 · C = KY2 · C = 0. Therefore g is a flopping contraction and Y ′

2
∼= Y1 by

Proposition 1.1. �

The next example shows the idea of Proposition 1.2.

Example 1.3 Let (X � P) ∼= ({x1x2 + x2
3 + x4

4=0} ⊂ (C4
x1x2x3x4 , 0)). Consider the

divisorial contraction f1 : Y1 → (X � P) induced by the blow-up of the maximal
ideal of the point (C4 � 0). Then Exc f1 ∼= P(1, 1, 2), the variety Y1 has only one sin-
gular point denoted by Q, and (Y1 � Q) ∼= ({y1y2 + y23 + y24 = 0} ⊂ (C4

y1 y2 y3 y4 , 0)).
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This singularity is notQ-factorial and let g : Y2 → (Y1 � P) be itsQ-factorialization.
We obtain the divisorial contraction f2 : Y2 → (X � P), whereY2 is a smooth 3-fold,
Exc f2 ∼= F2, and −KY2 is not a f2-ample divisor.

Definition 1.4 Let (X � P) be a log canonical singularity and let f : Y → X be its
blow-up. Suppose that the exceptional locus of f consists of only one irreducible
divisor: Exc f = E . Then f : (Y, E) → (X � P) is called a canonical blow-up if
−KY is f -ample and Y has canonical singularities. Note that the definition of canon-
ical blow-up implies that (X � P) is a canonical singularity. The canonical blow-up
is said to be a terminal blow-up if Y has terminal singularities.

Remark 1.5 Using the notation of Definition 1.4, we have the following properties
of canonical blow-ups.

(1) The definition of canonical (resp. terminal) blow-up implies easily that (X � P)

is a canonical (resp. terminal) singularity.
(2) The divisor −E is f -ample and a(E, 0) > 0.
(3) Let fi : (Yi , Ei ) → (X � P) be two canonical blow-ups. If E1 and E2 define the

same discrete valuation of the function field K(X) then the blow-ups f1 and f2
are isomorphic by Proposition 1.1.

(4) Let (X � P) be a Q-factorial singularity. Then Y is a Q-factorial variety also,
ρ(Y/X) = 1 and ρ(E) = 1 [4, Sect. 5].

Theorem 1.6 Let (X � P) be a canonical singularity and (X � P, D) be a pair
with canonical singularities, where D is a boundary. Assume that a(E, D) = 0
and a(E, 0) > 0 for some irreducible exceptional divisor E. Then there exists a
canonical blow-up such that its exceptional divisor and E define the same discrete
valuation of the function field K(X). Moreover, if E is a unique exceptional divisor
with a(E, D) = 0 then its canonical blow-up is a terminal blow-up.

Proof By Proposition 21.6.1 of the paper [11] we consider the birational contraction
˜f : (˜Y , ˜E) → (X � P) with the following three properties:

(1) ˜E is a unique irreducible exceptional divisor of Exc ˜f ;
(2) ˜E and E define the same discrete valuation of the function field K(X);
(3) if (X � P) is Q-factorial then ρ(˜Y/X) = 1 and Exc ˜f = ˜E .
The proof of Proposition 21.6.1 of [11] holds in any dimension since we can

apply MMP with scaling to prove it. Let ˜f be not the required canonical blow-up.
If Exc ˜f = ˜E then by Proposition 1.2 we have ˜f ∼= f ◦ g, where f is the required
blow-up. Consider the remaining case when Exc ˜f = ˜E ∪ �, where � = ∅ and
codim

˜Y � ≥ 2. Let H be a general Cartier divisor containing the set ˜f (Exc ˜f ).
Then K

˜Y + D
˜Y + εH

˜Y ≡ −εa ˜E over X , where a > 0. For 0 < ε � 1 we apply
K

˜Y + D
˜Y—MMP with scaling of H

˜Y . We obtain a birational map ϕ : ˜Y ��� Y ′,
which is a composition of log flips, and we also obtain a divisorial contraction
f ′ : Y ′ → X such that Exc f ′ = E ′, where E ′ is an irreducible divisor. Therefore,
by Proposition 1.2 we have the required canonical blow-up. �
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Definition 1.7 Let (X � P) be a log canonical singularity and let f : Y → X be its
blow-up. Suppose that the exceptional locus of f consists of only one irreducible
divisor: Exc f = E . Then f : (Y, E) → (X � P) is called a purely log terminal
blow-up if the divisor KY + E is purely log terminal and −E is f -ample.

Remark 1.8 Definition1.7 implicitly requires that the divisor E beQ-Cartier.Hence
Y is aQ-gorenstein variety. By the inversion of adjunction KE + DiffE (0) = (KY +
E)|E is klt.

Remark 1.9 Using the notation of Definition 1.7 we have the following properties
of purely log terminal blow-ups.

(1) The variety f (E) is normal [19, Corollary 2.11].
(2) If (X � P) is a log terminal singularity then−(KY + E) is a f -ample divisor. A

purely log terminal blow-up of log terminal singularity always exists byTheorem
1.5 of [13] since we can apply MMP with scaling to prove it (see also Theorem
1.10).

(3) If (X � P) is a strictly log canonical singularity then a(E, 0) = −1. A purely
log terminal blow-up of strictly log canonical singularity exists if and only if
there is only one exceptional divisor with discrepancy −1 [13, Theorem 1.9],
since we can apply MMP with scaling to prove Theorem 1.9 of [13].

(4) If (X � P) is a Q-factorial singularity then Y is a Q-factorial variety also,
ρ(Y/X) = 1 and ρ(E) = 1 [19, Remark 2.2], [4, Sect. 5]. Hence, forQ-factorial
singularity we can omit the requirement that −E be f -ample in Definition 1.7
because it holds automatically.

(5) Let fi : (Yi , Ei ) → (X � P) be two purely log terminal blow-ups. If E1 and E2

define the same discrete valuation of the function field K(X) then the blow-ups
f1 and f2 are isomorphic by Proposition 1.1.

(6) Let −E be not a f -ample divisor in Definition 1.7. Then such blow-up can
differ from some plt blow-up by a small flopping contraction only (with respect
to the canonical divisor KY ) [13, Corollary 1.13]. This statement is similar to
Proposition 1.2.

(7) Let f : (Y, E) → (X � P) be a toric blow-up of a toricQ-gorenstein singularity.
Assume that Y is aQ-gorenstein variety and Exc f = E is an irreducible divisor.
It is obvious that KY + E is a plt divisor. Therefore, if (X � P) is Q-factorial
singularity then f is a plt blow-up.

Theorem 1.10 ([13, Theorem 1.5], [19, Proposition 2.9]) Let X be a kawamata log
terminal variety and let D = 0 be a boundary on X such that (X, D) is log canonical,
but not purely log terminal. Then there exists an inductive blow-up f : Y → X such
that:

(1) the exceptional locus of f contains only one irreducible divisor E (Exc( f ) =
E);

(2) KY + E + DY = f ∗(K X + D) is log canonical;



428 S. A. Kudryavtsev

(3) KY + E + (1 − ε)DY is purely log terminal and anti-ample over X for any
ε > 0;

(4) if X is Q-factorial then Y is also Q-factorial and ρ(Y/X) = 1.

Proof The proofs of [13, Theorem 1.5], [19, Proposition 2.9] hold in any dimension
since we can apply MMP with scaling to prove them. �

Remark 1.11 Inductive blow-up is a plt blow-up. Conversely, for any plt blow-up
f : (Y, E) → (X � P) there exists a pair (X, D) such that f is its inductive blow-
up. Indeed, put D = f ( 1n DY ), where DY ∈ | − n(KY + E)| is a general element for
n 
 0.

Definition 1.12 Let (X/Z , D) be a contraction of varieties, where D is a subbound-
ary. Then aQ-complement of K X + D is an effectiveQ-divisor D′ such that D′ ≥ D,
K X + D′ is log canonical and K X + D′ ∼Q 0/Z for some n ∈ N.

Definition 1.13 Let (X/Z , D) be a contraction of varieties. Let D = S + B be a
subboundary on X such that B and S have no common components, S is an effective
integral divisor and �B� ≤ 0. Then we say that K X + D is n-complementary if there
is a Q-divisor D+ (called an n-complement) such that

(1) n(K X + D+) ∼ 0/Z (in particular, nD+ is an integral divisor);
(2) the divisor K X + D+ is log canonical;
(3) nD+ ≥ nS + �(n + 1)B�.
The divisor K X + D+ is also called an n-complement.

Definition 1.14 For n ∈ N put

Pn = {a | 0 ≤ a ≤ 1, �(n + 1)a� ≥ na}.

Proposition 1.15 ([25, Lemma 5.4]) Let f : X → Y be a birational contraction and
let D be a subboundary on X. Assume that K X + D is n-complementary for some
n ∈ N. Then KY + f (D) is also n-complementary.

Proposition 1.16 ([26, Lemma 4.4]) Let f : X → Z be a birational contraction of
varieties and let D be a subboundary on X. Assume that

(1) the divisor K X + D is f -nef;
(2) the coefficient of every non-exceptional component of D meeting Exc f belongs

to Pn;
(3) the divisor K Z + f (D) is n-complementary.

Then the divisor K X + D is also n-complementary.

Proposition 1.17 ([22, Proposition 4.4.1]) Let f : X → (Z � P) be a contraction
and D be a boundary on X. Put S = �D� and B = {D}. Assume that
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(1) the divisor K X + D is purely log terminal;
(2) the divisor −(K X + D) is f -nef and f -big;
(3) S = 0 near f −1(P);
(4) every coefficient of D belongs to Pn.

Further, assume that near f −1(P) ∩ S there exists an n-complement KS + Diff S(B)+
of KS + Diff S(B). Then near f −1(P) there exists an n-complement K X + S + B+
of K X + S + B such that Diff S(B)+ = Diff S(B+).

2 Toric Blow-ups

We refer the reader to [18] for the basics of toric geometry.

Definition 2.1 Let N be the lattice Zn in the vector linear space NR = N ⊗Z R and
M be its dual lattice HomZ(N , Z) in the vector linear space MR = M ⊗Z R. We
have a canonical pairing 〈 , 〉 : NR × MR → R.

For a fan � in N the corresponding toric variety is denoted by TN (�). For a
k-dimensional cone σ ∈ � the closure of corresponding orbit is denoted by V (σ).
This is a closed subvariety of codimension k in TN (�).

Example 2.2 (1) Let the vectors e1, . . . , en be aZ-basis of N , wheren ≥ 2.Consider
the cone

σ = R≥0e1 + . . . + R≥0en−1 + R≥0(a1e1 + . . . + an−1en−1 + ren).

Let the fan� consists of the cone σ and its faces. Then the affine toric variety TN (�)

is the quotient space (Cn � 0)/Zr with the action 1
r (−a1, . . . ,−an−1, 1).

(2) Let

σ = 〈e1, e2, e3, e4〉 = 〈(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1,−1)〉

for the lattice N ∼= Z3. Let the fan � consists of the cone σ and its faces. The affine
toric variety (X � P) = TN (�) is a three-dimensional non-degenerate quadratic
cone in C4. Let

�1 = {〈e1, e2, e3〉, 〈e1, e2, e4〉, their faces}

and
�2 = {〈e1, e3, e4〉, 〈e2, e3, e4〉, their faces}.

Then the birational contractions ψi : TN (�i ) → TN (�) are small resolutions for i =
1, 2, and Excψ1 = V (〈e1, e2〉), Excψ2 = V (〈e3, e4〉). The birational map
TN (�1) ��� TN (�2) is a flop.

Let f : (Y, E) → (X � P) be a toric blow-up, where Y isQ-gorenstein, Exc f =
E is an irreducible divisor. Then f is a plt blow-up. Let us prove it. The divisor
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KY + E is plt. Let a = (a1, a2, a3) be a primitive vector defining f . Consider any
three-dimensional cone σ′ giving non-Q-factorial singularity of subdivision of the
cone σ by a. Then the cone σ′ gives non-Q-gorenstein singularity by Proposition 4.3
(i) [24], since there is no any vector m ∈ MQ such that 〈m, ei 〉 = 1 for every i and
〈m, a〉 = 1. Hence −E is a f -ample divisor. This completes the proof.

Let f (E) = P . Then Y = TN (˜�) and

˜� = {〈e1, e3, a〉, 〈e1, e4, a〉, 〈e2, e3, a〉, 〈e2, e4, a〉, their faces},

where a = (a1, a2, a3), gcd(a1, a2, a3) = 1, a1 > 0, a2 > 0, a1 + a3 > 0 and a2 +
a3 > 0.

Obviously, the converse is also true. Any such vector a defines a plt blow-up.
Let f (E) = C and dim C = 1. Then, up to a permutation of the faces of the cone

σ we have C = 〈e2, e3〉, Y = TN (̂�) and

̂� = {〈e2, e4, a〉, 〈e1, e3, a〉, 〈e1, e4, a〉, their faces},

where a = (0, a2, a3), gcd(a2, a3) = 1, a2 > 0, a3 > 0.
Obviously, the converse is also true. Any such vector a defines a plt blow-up.
The variety Y has the singularities 1

a3
(0,−a2, 1), 1

a2
(0, 1,−a3), 1

a2+a3
(−a3,

−a2, 1). The surface E is a toric conic bundle, ρ(E/C) = 2, the single singu-
lar point of E (with a center of the third singularity of Y ) has type Aa2+a3−1 and
DiffE (0) = a2−1

a2
E1 + a3−1

a3
E2, where E1, E2 are corresponding sections.

We will calculate a structure of f by the following way (for convenience). Let us
consider (X � P) ⊂ (C4, 0) as the embedding {x1x2 + x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0).
The weighted blow-up of (C4, 0) with weights w = (w1, w2, w3, w4) provided that
w1 + w2 = w3 + w4 induces a toric blow-up f ′ : (Y ′, E ′) → (X � P), where

Exc f ′ = E ′ ∼= {x1x2 + x3x4 ⊂ Px1x2x3x4(w1, w2, w3, w4)}−

is an irreducible divisor. If put w1 = a1 + a3, w2 = a2, w3 = a2 + a3 and w4 = a1,
then we can easily compare the natural affine covers of Y and Y ′ and prove that
f and f ′ are isomorphic blow-ups. Note that C = {x1 = x2 = x3 = 0} in the case
C = f ′(E ′).

Proposition 2.3 ([18, pages 36–37]) The following statements are satisfied:

(1) (X � P) is a three-dimensional Q–factorial toric terminal singularity if and
only if (X � P) ∼= (C3 � 0)/Zr (q,−1, 1), where gcd(r, q) = 1;

(2) (X � P) is a three-dimensional non-Q–factorial toric terminal singularity if
and only if (X � P) ∼= ({x1x2 + x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0)).

Theorem 2.4 ([17]) Let (X � P) be a three-dimensional cyclic singularity of type
1
r (a1, a2, a3). Then (X � P) is a canonical singularity if and only if one of the
following holds:
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(1) a1 + a2 + a3 ≡ 0(mod r);
(2) ai + a j ≡ 0(mod r) for some i = j;
(3) (X � P) has type 1

9 (1, 4, 7) or type 1
14 (1, 9, 11).

Proposition 2.5 Let f : (Y, E) → (X � P) be a toric canonical blow-up of three-
dimensional toric terminal singularity, f (E) = C and dim C = 1. Then we have the
following statements.

(1) Let (X � P) be a Q-factorial singularity, that is, it is (C3
x1x2x3 � 0)/Zr (−1,

−q, 1), where gcd(r, q) = 1, 0 < q ≤ r − 1 and r ≥ 1. Determine the numbers u, v
by the equality uq + vr = 1, where 0 ≤ u ≤ r − 1 and u, v ∈ Z. Consider the cone
σ defining (X � P) (see example 2.2 (1)). Let (w1, w2, w3) be a primitive vector
defining f .

Then we have one of the two following cases up to permutation of coordi-
nates: either 2A) C = {x1 = x2 = 0}/Zr , (w1, w2, w3) = (1, w2, 0), or 2B) C =
{x2 = x3 = 0}/Zr , (w1, w2, w3) = (0, w2, 1). The variety Y has the singularities
1
r (−1, w2 − q, 1), 1

rw2
(−1 + uw2,−uw2, 1) in Case 2A) and 1

r (−1,−w2 − q, 1),
1

rw2
(uw2,−uw2 − 1, 1) in Case 2B).
Converse is also true: every such numbers (w1, w2, w3) define a canonical blow-

up.
A general element of the linear system | − KY | has Du Val singularities.
Let Q be a central point of second singularity in each of the two cases. Then

Q ∈ CS(Y ) if and only if r ≥ 2. Therefore f is a terminal blow-up if and only if it
is the blow-up of the ideal of the curve C [8].

(2) Let (X � P) be a non-Q-factorial singularity, that is, (X � P) ∼= ({x1x2 +
x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0)). Then C = {x1 = x2 = x3 = 0} up to permutation of
coordinates, f is induced by the blow-up of (C4, 0) with weights (w1, w2, w1 +
w2, 0), where w1 = 1, w2 > 0 or w1 > 0, w2 = 1. Converse is also true: every such
numbers induce a canonical blow-up. A general element of the linear system | − KY |
has Du Val singularities.

The morphism f is a terminal blow-up if and only if (w1, w2, w3, w4)=(1, 1, 2, 0).

Proof Let us prove (1). Put e′
1 = e1, e′

2 = e2 and e′
3 = e1 + qe2 + re3 (see Example

2.2 (1)). Then w = wi e′
i + w j e′

j for some i < j and wi , w j ∈ Z≥1. We have Y =
TN (�) and

� = {〈e′
k, e′

i , w〉, 〈e′
k, e′

j , w〉, their faces},

where k is a third index other than the indices i and j . Consider an induced blow-up
of general hyperplane section passing through the general point of C . Then w1 = 1
orw2 = 1. Now the statement is proved by a simple enumeration of the indices i and
j . As an example, consider i = 1, j = 2. There are the two possibilities of weights:
(w1, 1, 0) and (1, w2, 0). Let (w1, 1, 0). The variety Y is covered by two affine
charts with singularities of types 1

r (−q, qw1 − 1, 1) and 1
rw1

(−w1, qw1 − 1, 1). By
Theorem 2.4 applied to the second singularity it follows that either q = 1, orw1 = 1,
or r = 1. All these variants are realized, it is Case (2A). The possibility (1, w2, 0) is
considered similarly.



432 S. A. Kudryavtsev

The proper transform of {x2 = 0}/Zr (−1,−q, 1) is Du Val element of | − KY |.
The statement Q ∈ CS(Y ) is obvious if we consider a blow-up with the weights

(−1 + uw2, (r − u)w2, 1) in Case (2A) and (uw2, (r − u)w2 − 1, 1) in Case (2B)

provided that r ≥ 2.
Statement (2) obviously follows from Example 2.2 (2). The proper transform

of {xw2
1 + x2 = 0}|X ({x1 + xw1

2 = 0}|X ) is Du Val element of | − KY | for the first
(second) possibility. �

Proposition 2.6 Let f : (Y, E) → (X � P) be a toric canonical blow-up of three-
dimensional toric terminal point, where f (E) = P. Then we have the following
statements.

(1) Let (X � P) be a smooth point. Then f is a weighted blow-up with weights
(w1, w2, 1), (l, l − 1, 2), (15, 10, 6), (12, 8, 5), (10, 7, 4), (9, 6, 4), (8, 5, 3),
(7, 5, 3), (6, 4, 3), (5, 3, 2) or (9, 5, 2) in some coordinate system, where l ≥ 3.
Converse is also true: every such weights define a canonical blow-up. In all cases,
except case (9, 5, 2), a general element of the linear system | − KY | has Du Val
singularities. In case (9, 5, 2) we have

min{m|∃D ∈ | − mKY | such that (Y, (1/m)D)has canonical singularities} = 3.

The morphism f is a terminal blow-up if and only if it is a weighted blow-up with
weights (w1, w2, 1) in some coordinate system, where gcd(w1, w2) = 1.

(2) Let (X � P) be a Q-factorial singularity of an index ≥ 2, that is, it is of
type 1

r (−1,−q, 1), where gcd(r, q) = 1, 0 < q ≤ r − 1 and r ≥ 2. Let us consider
the cone σ defining the singularity (X � P) (see Example 2.2 (1)). Determine the
numbers u, v by the equality uq + vr = 1, where 0 ≤ u ≤ r − 1 and u, v ∈ Z. Let
(w1, w2, w3) be a primitive vector defining f .

Then we have one of the two following cases: either 2A) (w1, w2,

w3) = (1, w2, w3), w3 ≤ min(r − 1, rw2−1
q ) up to permutation of the numbers w1

and w2 provided that q = 1, or 2B) (w1, w2, w3) = (w1, w2, w1 + w2 − 1), w1 ≥ 2,
w2 ≥ 2, 0 ≤ w1(r − 1) − w2 ≤ r − 2, q = r − 1. Converse is also true: every such
numbers (w1, w2, w3) define a canonical blow-up. A general element of the linear
system | − KY | has Du Val singularities.

The morphism f is a terminal blow-up if and only if it is a weighted blow-up with
weights (u, 1, r − u) [8].

(3) Let (X � P) be a non-Q-factorial singularity, that is, (X � P) ∼= ({x1x2 +
x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0)). Then f is induced by the weighted blow-up of (C4, 0)
with weights (w1, w2, w3, w4) up to analytical isomorphism of (C4, 0), where 1 +
w2 = w3 + w4, w1 = 1. Converse is also true: every such weights induce a canonical
blow-up. A general element of the linear system | − KY | has Du Val singularities.

The morphism f is a terminal blow-up if and only if (w1, w2, w3, w4) = (1, 1, 1, 1)
[2].

Proof Let us prove (1). Now we classify canonical blow-ups. To be definite, assume
that w1 ≥ w2 ≥ w3, where (w1, w2, w3) are primitive weights of f . By P1, P2
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and P3 denote the zero-dimensional orbits (points) of Y . These points have types
1
w1

(w2, w3, w1 − 1), 1
w2

(w1, w3, w2 − 1) and 1
w3

(w1, w2, w3 − 1) respectively.
Assume that Cases (1) and (1) of Theorem 2.4 are satisfied at the points P1 and

P2 respectively. Then w1 = w2 + w3 − 1 and w2|(2w3 − 2). Thus we obtain the
weights (l, l, 1), where l ≥ 1 and (3w3 − 3, 2w3 − 2, w3), where w3 ≥ 2. For the
second possibility, the singularity is of type 1

w3
(3, 2, 1) at the point P3, therefore

w3 ≤ 6, and it is easy to prove that every value w3 = 2, . . . , 6 is realized.
Assume that Cases (1) and (2) of Theorem 2.4 are satisfied at the points P1

and P2 respectively. As above we obtain w1 = w2 + w3 − 1 and have one of the
following possibilities: (i1) w3 = 1, w3 = 2 or (i2) 2w3 − 1 = w2, w2 = 1, . . . , 4.
These possibilities are realized.

Assume that Cases (1) and (3) of Theorem 2.4 are satisfied at the points P1 and
P2 respectively. Thenw1 = w2 + w3 − 1. Let the singularity be of type 1

9 (1, 4, 7) =
1
9 (5, 2, 8) at the point P2, in particular, w2 = 9. Hence w3 = 2 or w3 = 5. It fol-
lows easily that these possibilities are not realized. Let the singularity be of type
1
14 (1, 9, 11) = 1

14 (5, 3, 13) at the point P2, in particular, w2 = 14. Hence w3 = 3 or
w3 = 5. It follows easily that these possibilities are not realized.

Assume that Cases (2) and (1) of Theorem 2.4 are satisfied at the points P1 and P2

respectively. Thenwe obtain the two possibilities: (i)w1 = w2 + w3,w2 = 2w3 − 1,
w3 = 2, 3 or (ii) w3 = 1. These possibilities are realized.

Assume that Cases (2) and (2) of Theorem 2.4 are satisfied at the points P1 and
P2 respectively. As above it is easy to prove that new weights do not appear.

Assume that Cases (2) and (3) of Theorem 2.4 are satisfied at the points P1 and
P2 respectively. As above it is easy to prove that this case is not realized.

Assume that Cases (3) of Theorem 2.4 are satisfied at the point P1. Then
(w1, w2, w3) = (9, 5, 2) or (14, 5, 3). It is obvious that only the first possibility is
realized.

For any weights obtained, except case (9, 5, 2), we can easily find a surface
S ⊂ X with Du Val singularity at the point P such that a(S, E) = 0. For example,
the surface S is given (locally at the point P) by the equations x1x2 + xw1+w2

3 = 0
and x2

1 + x3
2 + x2x3

3 = 0 for cases (w1, w2, 1) and (5, 3, 2) respectively. Therefore
SY ∈ | − KY | has Du Val singularities.

In case (9, 5, 2) the variety Y has the two non-terminal isolated singularities at
the points P1 and P2 (CS(Y ) = {P1, P2}). Let C ⊂ E = P(9, 5, 2) be a curve not
passing through the points P1 and P2. Then a (quasihomogeneous) degree of C is at
least 45 since it must be divided by 9 and 5. Hence m ≥ 3, and the required element
D is the proper transform of x5

1 + x9
2 + x23

3 = 0. The other statements of (1) are
obvious.

Let us prove (2). Now we classify canonical blow-ups. The variety Y is covered
by three affine charts with singularities of types 1

w3
(−w1,−w2, 1), 1

rw2−qw3
(−w1 +

uw2 + vw3,−uw2 − vw3, 1) and 1
rw1−w3

(−w1, qw1 − w2, 1) respectively. The cor-
responding zero-dimensional orbits of Y are denoted by P1, P2 and P3. Note that
rw1 − w3, rw2 − qw3 ∈ Z≥1. Obviously, a(S, 0) = 1

r (w3 + rw2 − qw3 + rw1 −
w3) − 1. The minimal discrepancy of (X � P) is equal to 1

r . If a(S, 0) = 1
r , that
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it is easy to calculate that f is a terminal blow-up, that is, a weighted blow-up with
weights (u, 1, r − u) [8]. Therefore we suppose that a(S, 0) > 1

r .
Since Y has canonical singularities, then for some j ∈ {1, 2, 3} we have the

inequality 1
r ≥ a(S, 0)/N j and one of the two following requirements: either Pj ∈

CS(Z), or the singularity at the point Pj is of type 1
N j

(1,−1, 0), where N j ≥ 2,
N1 = w3, N2 = rw1 − w3, N3 = rw2 − qw3. This is called Property R j . Note if
j = 3 then w1 = 1. Therefore we suppose that j ≤ 2.

Let w1 = max{w1, w2, w3}. Assume that Case (1) of Theorem 2.4 is satisfied
at the point P2. Then q = 1 and w2 = 1. Assume that Case (2) of Theorem 2.4
is satisfied at the point P2. Then, either w1 = w2 = w3 = 1, or q = 2, w1 = w2,
w1 ≥ 2, r ≥ 3. Since the inequality of Property R2 holds then the second possibility
is not realized. It is not hard to prove that Case (3) of Theorem 2.4 is not realized at
the point P2.

Let w2 = max{w1, w2, w3}. Property R1 is not realized. Therefore Property R2

holds. Then w2 = w3, and we have w1 = 1 by Theorem 2.4 for the point P1.
Let us consider the last case w3 > max{w1, w2}. The possibility w1 = 1 holds.

Therefore we suppose that w1 ≥ 2. If w2 = 1 then Theorem 2.4 for the point P2

implies q = 1. Therefore we suppose that w2 ≥ 2.
Assume that Case (1) of Theorem 2.4 is satisfied at the point P1. Thenw1 + w2 −

1 = w3. If the inequality of Property R1 holds then q = r − 1. Therefore we suppose
that Property R2 holds and N2 > w3. It is not hard to prove that Case (3) of Theorem
2.4 is not realized at the point P2. If Case (1) of Theorem 2.4 is satisfied at the
point P2 then the inequality of Property R2 implies that (q − 1)w1 − w2 + 1 = 0,
but this equality contradicts the same inequality. Therefore the singularity is of type
1

N2
(1,−1, 0) at the point P2. Therefore w1 = 1. We obtain the contradiction.
Assume that Case (2) of Theorem 2.4 is satisfied at the point P1. Thenw1 + w2 =

w3 and Property R2 holds. Let Case (3) of Theorem 2.4 be satisfied at the point P2.
Then it is not hard to prove that (w1, w2, w3, r) = (2, 2q + 5, 2q + 7, q + 8). We
obtain a contradictionwith Theorem2.4 for the point P3 since 0 < uw2 + vw3 ≤ N3.
Let Case (1) of Theorem 2.4 be satisfied at the point P2. The inequality of Property R2

implies that (q − 1)w1 − w2 + 1 = 0, but this equality contradicts the same inequal-
ity. Therefore the singularity is of type 1

N2
(1,−1, 0) at the point P2. Considering two

possibilities: N2 ≤ w1 and N2 > w1, it is easy to obtain a contradiction.
Now, applying the blow-up classification obtained, we can prove that the proper

transform of the divisor

Sk = {xk = 0}/Zr ⊂ (C3
x1x2x3 , 0)/Zr (−1,−q, 1)

is Du Val element of | − KY | for some k. The other statements of 2) are obvious.
Let us prove (3). Consider Example 2.2 (2). Now we classify canonical blow-

ups. Obviously, a(S, 0) = w1 + w2 − 1 = w3 + w4 − 1. The variety Y is covered
by three affine charts with singularities of types 1

w1
(w3, w4,−1), 1

w2
(w3, w4,−1),

1
w3

(w1, w2,−1) and 1
w4

(w1, w2,−1) respectively. The minimal discrepancy of (X �
P) is equal to 1. If a(S, 0) = 1 then it is easy to calculate that f is a terminal blow-up
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induced by the weighted blow-up with weights (1, 1, 1, 1) [2]. Therefore we sup-
pose that a(S, 0) > 1. Since Y has canonical singularities then 1 ≥ a(S, 0)/w j for
some j . Hence wi = 1 for some i = j such thatwi + w j − 1 = a(S, 0). The proper
transform of {x

w j

i + x j = 0}|X is Du Val element of | − KY |. The other statements
of (3) are obvious. �

Definition 2.7 Let (X � P) be an n-dimensional Q-factorial toric singularity. Then
(X � P) ∼= (Cn � 0)/G, whereG is an abelian group acting freely in codimension 1.
The singularity (Cn � 0)/G is given by the simplicial cone σG in the lattice N = Zn .

Let a power series (polynomial) ϕ = ∑

m am xm ∈ C[[x1, x2, . . . , xn]] be G-
semiinvariant.

The Newton polyhedron �+(ϕ) in Rn is the convex hull of the set

⋃

xm∈ϕ

(m + σ∨
G), where σ∨

G is a dual cone in MR.

For any face γ of �+(ϕ) we define

ϕγ =
∑

m∈γ

am xm .

The function ϕ is said to be non-degenerate if, for any compact face γ of the
Newton polyhedron, the polynomial equation ϕγ = 0 defines a smooth hypersurface
in the complement of the set x1x2 . . . xn = 0. The effective Weil divisor D on X is
said to be non-degenerate if the G-semiinvariant polynomial ϕ defining D in Cn is
non-degenerate.

For any effective Weil divisor D there exists the fan � depending on Newton
polyhedron �+(ϕ) such that TN (�) is a smooth variety and a toric birational mor-
phismψ : TN (�) → Cn is a resolution of non-degenerate singularities of D. So,ψ is
said a partial resolution of (X, D). In particular, if D is a non-degenerate boundary
thenψ is a toric log resolution of the pair (X, D). If (X � P) is a smooth variety then
this statement was proved in the paper [27]. Note that the proof from the paper [27]
is rewritten immediately in our case if we will use our Newton polyhedron instead
of standard Newton polyhedron.

The next Theorems 2.8 and 2.9 are criteria of the characterization of toric plt and
canonical blow-up respectively. They explicitly show a nature of non-toric contrac-
tions.

Theorem 2.8 Let f : (Y, E) → (X � P) be a plt blow-up of Q-factorial toric sin-
gularity, and let f (E) be a toric subvariety. Then f is a toric morphism (under a
suitable identification) if and only if there exists an effective non-degenerate Weil
divisor D on (X � P) and a number d > 0 with the following properties:

(1) a(E, d D) = −1;
(2) E is a unique exceptional divisor of (X, d D) with discrepancy ≤ −1 and

�d D� = 0.
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Proof First let us prove the necessary condition. Let DY ∈ | − n(KY + E)| be a
general element for n 
 0. Put D = f (DY ) and d = 1

n . Then KY + E + d DY =
f ∗(K X + d D) is a plt divisor. Since DY is a general divisor by construction, then D
is an irreducible reduced non-degenerate divisor.

Finally let us prove the sufficient condition. Consider the toric log resolution
ψ : Z → X of (X, d D). Write

K Z + d DZ +
∑

ai Ei = ψ∗
(

K X + d D
)

.

By theorem assertion (Z , d DZ + ∑

ai Ei ) is a plt pair. Therefore E ⊂ Excψ.
Considering corresponding fans (see [24]) we have the composition of toric

log flips Z ��� Z ′ over (X � P) such that the (induced) toric divisorial contrac-
tion ψ′ : Z ′ → (X � P) is isomorphic to ψ′

1 ◦ ψ′
2, where ψ′

1, ψ′
2 are toric diviso-

rial contractions and E = Excψ′
1. Therefore f and ψ′

1 are isomorphic by Remark
1.9 (5). �
Theorem 2.9 Let f : (Y, E) → (X � P) be a canonical blow-up of Q-factorial
toric singularity, and let f (E) be a toric subvariety. Then f is a toric morphism
(under a suitable identification) if and only if there exists an effective non-degenerate
Weil divisor D on (X � P) and a number d > 0 with the following properties:

(1) a(E, d D) = 0;
(2) (X, d D) has canonical singularities and �2d D� = 0.

Proof First let us prove the necessary condition. Let DY ∈ | − nKY | be a general
element for n 
 0. Put D = f (DY ) and d = 1

n . Then the divisor KY + d DY =
f ∗(K X + d D) has canonical singularities. Since DY is a general divisor by con-
struction, then D is an irreducible reduced non-degenerate divisor.

Finally let us prove the sufficient condition. Consider the toric log resolution
ψ : Z → X of (X, d D). Write

K Z + d DZ +
∑

ai Ei = ψ∗
(

K X + d D
)

.

By theorem assertion (Z , d DZ + ∑

ai Ei ) is a terminal pair. Therefore E ⊂ Excψ.
Considering corresponding fans (see [24]) we have the composition of toric log flips
Z ��� Z ′ over (X � P) such that the (induced) toric divisorial contractionψ′ : Z ′ →
(X � P) is isomorphic to ψ′

1 ◦ ψ′
2, where ψ′

1, ψ
′
2 are toric divisorial contractions and

E = Excψ′
1. Therefore f and ψ′

1 are isomorphic by Proposition 1.1. �
Definition 2.10 The subvariety Y is said to be a non-toric subvariety of the toric
pair (X, D), if there is not any toric structure of X such that (X, D) is a toric pair
and Y is a toric subvariety.

Example 2.11 Consider the toric variety X = Px1x2x3(1, 2, 3).
(1) Let D = 0. The point P is a non-toric subvariety of (X, D) if and only if P =

(0 : 1 : a), where a = 0. The irreducible curve C is a non-toric subvariety of (X, D)

if and only ifC = {x1 = 0},C = {x2 + ax2
1 = 0} andC = {x3 + ax2x1 + bx3

1 = 0}.
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(2) Let D = {x1 = 0} + {x2 = 0}. The point P is a non-toric subvariety of (X, D)

if and only if P = (0 : 1 : a), where a = 0. The irreducible curve C is a non-toric
subvariety of (X, D) if and only if C = {x1 = 0}, C = {x2 = 0} and C = {x3 +
ax2x1 + bx3

1 = 0}.
(3) Let D = {x1 = 0} + {x2 = 0} + {x3 = 0}. The point P is a non-toric subvari-

ety of (X, D) if and only if P = (1 : 0 : 0), P = (0 : 1 : 0) and P = (0 : 0 : 1). The
irreducible curve C is a non-toric subvariety of (X, D) if and only if C = {x1 = 0},
C = {x2 = 0} and C = {x3 = 0}.

Next Theorems 2.12 and 2.13 are two-dimensional analogs of main theorems.
Their proofs clearly describe the main method used in this paper.

Theorem 2.12 ([22]) Let f : (Y, E) → (X � P) be a plt blow-up of two-dimen-
sional toric singularity. Then f is a toric morphism (under a suitable identification).

Proof A two-dimensional toric singularity is always Q-factorial. Let f be a non-
toric morphism (up to identification). Let DY ∈ | − n(KY + E)| is a general element
of n 
 0. Put DX = f (DY ) and d = 1

n . Then (X, d DX ) is a log canonical pair,
a(E, d DX ) = −1 and E is a unique exceptional divisor with discrepancy −1.

By Criterion 2.8 there exists a toric divisorial contraction g : Z → X with the
following properties.

(A) The exceptional set Exc g = S is an irreducible divisor (S ∼= P1), the divisors
S and E define the different discrete valuations of the function field K(X).

(B) By � denote the center of E on S. Then the point � is a non-toric subvariety
of Z for any toric structure of (X � P). In the other words, � is a non-toric
subvariety of the toric pair (S,Diff S(0)).

Condition (B) implies that the surface Z has the two singular points P1 and P2, which
lie on the curve S. Also � is a non-toric point of (S,Diff S(0)) ∼= (P1, n1−1

n1
P1 +

n2−1
n2

P2), where n1 ≥ 2, n2 ≥ 2. Write

K Z + d DZ + aS = g∗(K X + d DX
)

,

where a < 1. Hence

a
(

E, S + d DZ
)

< a
(

E, aS + d DZ
) = −1.

Therefore K Z + S + d DZ is not a log canonical divisor at the point � and is an
anti-ample over X divisor. Hence, by the inversion of adjunction, KS + Diff S(d DZ )

is not a log canonical divisor at the point � and is an anti-ample divisor. We obtain
the contradiction

0 > deg
(

KS + Diff S(d DZ )
)

> −2 + n1 − 1

n1
+ n2 − 1

n2
+ 1 ≥ 0.

�
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Theorem 2.13 [16] Let f : (Y, E) → (X � P) be a canonical blow-up of two-
dimensional toric singularity. Then (X � P) is a smooth point, and f is a weighted
blow-up with weights (1,α) (under a suitable identification).

Proof Theorem assertion implies that (X � P) is a terminal point, therefore it is
smooth.

Assume that f is a toric morphism then f is a weighted blow-up of the smooth
point with weights (β,α). Since Y is Du Val surface then α = 1 or β = 1.

Let f be a non-toric morphism (up to identification). Let DY ∈ | − nKY | be a
general element for n 
 0. Put DX = f (DY ) and d = 1

n . The pair (X, d DX ) has
canonical singularities and a(E, d DX ) = 0.

By Criterion 2.9 there exists a toric divisorial contraction g : Z → X with the
following properties.

(A) The exceptional set Exc g = S is an irreducible divisor (S ∼= P1), the divisors
S and E define the different discrete valuations of the function field K(X).

(B) By � denote the center of E on S. Then the point � is a non-toric subvariety
of Z for any toric structure of (X � P). In the other words, � is a non-toric
subvariety of the toric pair (S,Diff S(0)).

Condition (B) implies that the surface Z has the two singular points P1 and P2,
which lie on the curve S. Also� is a non-toric point of (S,Diff S(0)) ∼= (P1, n1−1

n1
P1 +

n2−1
n2

P2), where n1 ≥ 2, n2 ≥ 2. Write

K Z + d DZ + S = g∗(K X + d DX
) + (a(S, d DX ) + 1)S,

where a(S, d DX ) ≥ 0. Since S is (locally) Cartier divisor at the point �, then

a
(

E, S + d DZ
) ≤ a

(

E, d DX
) − 1 = −1.

Therefore K Z + S + d DZ is not a plt divisor at the point � and is an anti-ample
divisor over X . Hence, by the inversion of adjunction KS + Diff S(d DZ ) is not a klt
divisor at the point � and is an anti-ample divisor. We obtain the contradiction

0 > deg
(

KS + Diff S(d DZ )
) ≥ −2 + n1 − 1

n1
+ n2 − 1

n2
+ 1 ≥ 0.

�

Example 2.14 Theorems 2.12 and 2.13 cannot be generalized in dimension at least
three for divisorial contraction to a point. Consider the blow-up g : Z → (X � P)

with the weights (1, . . . , 1), where (X � P) ∼= (Cn
x1...xn

� 0) and consider the divi-
sors D = {x2

1 + · · · + x2
n = 0}, T i = {xi = 0}, where i = 1, . . . , n and n ≥ 3. The

exceptional set Exc g = S is isomorphic to Pn−1, Q = S ∩ DZ is a smooth quadric.
Let g̃ : ˜Z → Z be the standard blow-up of the ideal IQ . By the base point free theorem
[9] the linear system |m D

˜Z |gives a divisorial contractionϕ : ˜Z → Y ,which contracts
the divisor S

˜Z
∼= Pn−1 form 
 0. Since the divisor K

˜Z + S
˜Z + ∑n

i=1 T i
˜Z

∼ 0/Y has
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log canonical singularities, then by Shokurov’s criterion on the characterization of
toric varieties for divisorial contractions to a Q-factorial singularity [11, Theorem
18.22], the morphism ϕ is toric. Hence Y has only one singularity and its type is
1
r (1, . . . , 1). Let l be a straight line in a general position in S

˜Z . Considering ϕ we
have S

˜Z · l = −r , and considering g ◦ g̃ we have S
˜Z · l = −3, hence r = 3.

We obtain a non-toric divisorial contraction f : Y → (X � P). The variety Y has
only one singularity and its type is 1

3 (1, . . . , 1). Thus, if n ≥ 4, then Y is a terminal
variety, and if n = 3, then Y is a canonical non-terminal variety (cf. [6]). The blow-up
f is plt since the exceptional set Exc f is a cone over a smooth (n − 2)-dimensional
quadric.

We will apply the following special case of Shokurov’s criterion on the charac-
terization of toric varieties.

Proposition 2.15 Let f : (X, D) → (Z � P) be a small contraction of the Q-
factorial threefold X. Assume that D = ∑r

i=1 Di , where Di is a prime divisor for
each i . Assume that K X + D is a log canonical divisor, −(K X + D) is a f -nef divi-
sor and Exc f = C is an irreducible curve (ρ(X/Z) = 1). Then r ≤ 4. Moreover,
the equality holds if and only if the pair (X/Z � P, D) is analytically isomorphic to
a toric pair, in particular, K X + D ∼ 0/Z.

Proof If the pair (X/Z � P, D) is analytically isomorphic to a toric pair then all
statements immediately follow from the description of toric log flips [24]. Let r ≥ 4.
Let the divisor K X + D′ be a Q-complement of K X + D. It exists, since we can add
to the divisor D the necessary number of general hyperplane sections of X . So, by
abundance theorem [11, Theorem 8.4] the Q-complement D′ required is constructed
for our contraction (X/Z � P, D).

Put D′ = ∑

di D′
i . We will prove that D′ = D. For any Q-Weil divisor B =

∑

bi Bi we define ||B|| = ∑

bi . Put

Dhor =
∑

i : D′
i ·C>0

di D′
i and Dvert =

∑

i : D′
i ·C≤0

di D′
i .

Let f + : X+ → Z be a log flip of f and Exc f + = C+. �

Lemma 2.16 ([23, Lemma2.10])We have ||Dhor|| = ||Dvert|| = 2. Hence, D = D′.
Moreover, C ⊂ Supp Dhor, C+ ⊂ Supp(Dvert)+ and D′

i · C = 0 for all i .

Proof Since K X + D is a log canonical divisor then ||Dvert|| ≤ 2. Since K X+ + D+
is a log canonical divisor then ||Dhor|| ≤ 2. The statements remained are obvious.�

Let S be an irreducible component of the divisor Dvert and let F = D − S.
The divisorial log contraction (S,Diff S(F)) → ( f (S) � P) is toric by the two-
dimensional Shokurov’s criterion on the characterization of toric varieties [26, Theo-
rem6.4]. In particular, it is a toric blow-up of cyclic singularity. Thus, the singularities
of X are toric by three-dimensional Shokurov’s criterion on the characterization of
toric varieties for Q-factorial singularities [11, Theorem 18.22]. Replacing X by X+
it can be assumed that −(K X + S) is a f -ample divisor and S · C < 0.
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In order to prove the proposition we will apply somemodification, which is a toric
one by its nature. After it we will get some small contraction, which is analytically
isomorphic to a small toric contraction of Example 2.2 (2). Therefore the initial
contraction is a toric up to analytical isomorphism.

Now, taking toric blow-ups of X (every timewe take an one blow-upwith a unique
exceptional divisor that has a minimal discrepancy of a singularity considered and
consider two extremal rays on a variety obtained), it can be assumed that S is a
smooth surface, and X is a smooth variety outside the curves C . The condition that
−(K X + S) is f -ample holds is preserved, since the discrepancies of exceptional
divisors of (X, S) are less than and equal to 0. In some analytical neighborhood of
every point of C the variety X is analytically isomorphic to 1

k (q, 1) × C1, where
(k, q) = 1.

Assume that k ≥ 2. Consider a natural cyclic cover ψ : X → X of degree k. Put
C = ψ−1(C) and let Z be the normalization of Z in the function field of X . Let
f : X → (Z � P) be the induced small contraction of the curve C . Thus we can
assume that k = 1, that is, X is a smooth variety.

Since−KS is a f -ample divisor then f : S → f (S) is the contraction of the (−1)
curve C and (K X + S) · C = −1. We have S · C = −m, K X · C = m − 1 for some
m ∈ Z≥1.

Letm ≥ 2. Using the natural section ofOX (S)we can construct a degreem-cyclic
cover ϕ : ˜X → X ramified along S (cf. [11, Theorem 5.4]). Let ˜C = ϕ−1(C) and let
˜Z be the normalization of Z in the function field of ˜X . Let ˜f : ˜X → (˜Z � ˜P) be the
induced small contraction of the curve ˜C . By the ramification formula

K
˜X · ˜C = ϕ∗

(

K X + m − 1

m
S
)

· ˜C = K X · C + m − 1

m
S · C = 0.

Thus we can assume that f is a small flopping contraction with respect to K X

(K X · C = 0), that is, we can assume that m = 1.
Since the minimal discrepancy of three-dimensional terminal non-cDV singu-

larity is strict less than 1 then (Z � P) ∼= (g = 0 ⊂ (C4, 0)) is an isolated cDV
(terminal) singularity. Note that (D1 + D2) · C = (D3 + D4) · C = 0 up to per-
mutation of components of D. Hence L1 and L2 are Cartier divisors, where
L1 = f (D1) + f (D2) and L2 = f (D3) + f (D4). By Bertini theorem [12, Theorem
4.8] the pair (Z � P, H + Li ) is log canonical for any i = 1, 2, where H is a gen-
eral hyperplane section passing through the point P . By the inversion of adjunction
(H � P, Li |H ) is a log canonical pair. Thus, the classification of two-dimensional
log canonical pairs [11] implies that (H � P) is a cyclic singularity at the point P ,
that is, it has type Ak . By the paper [5] or the paper [7] the singularity (H � P) is of
type A1. Thus

(Z � P) ∼= (xy + z2 + t2l = 0 ⊂ (C4, 0))

and f (D) = {x = 0}|Z + {y = 0}|Z . Since (Z � P, f (D)) is a log canonical pair
then we can take the weighted blow-up of (C4, 0) with the weights (l, l, l, 1) and
obtain l = 1. This completes the proof.
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Remark 2.17 Let ρ(P) be a rank of local analytic group of Weil divisors at the
point P . Then the Proposition 2.15 implies easily Shokurov’s criterion on the
characterization of toric varieties for three-dimensional singularities (Z � P) if
ρ(P) = 1, and hence the same criterion for three-dimensional divisorial contrac-
tions f : X → (Z � P) if ρ(P) = 1.

3 Three-dimensional Blow-ups. Case of Curve

Example 3.1 Now we construct the examples of three-dimensional non-toric plt
blow-ups f : (Y, E) → (X ⊃ C � P) provided that (X � P) is aQ-gorenstein toric
singularity, dim f (E) = 1 and the curve C = f (E) is a toric (smooth) subvariety.
Depending on a type of (X � P) we consider two Cases A1) and A2).

(A1) Let (X � P) be a Q-factorial toric singularity, that is, (X � P) ∼= (C3 �
0)/G, where G is an abelian group acting freely in codimension 1.

All plt blow-ups are constructed by the procedure illustrated on the next diagram
(Fig. 1) and defined below.

First step. Let g0 : (Z0, S0) → (X ⊃ C � P) be a toric blow-up, where Exc g0 =
S0 is an irreducible divisor and g0(S0) = C . Recall that g0 is a plt blow-up, the sur-

face S0 is a toric conic bundle, ρ(S0/C) = 1 and Diff S0(0) = w1
0−1
w1

0
E1
0 + w2

0−1
w2

0
E2
0 +

d0−1
d0

F0, where E1
0 , E2

0 are some sections of conic bundle, F0 is a fiber over P and
w1

0, w
2
0, d0 ∈ Z≥1. Let us remark that the numbers w1

0, w
2
0 determine g0. Moreover,

d0 = 1 if (X � P) is a smooth point.
Assume that there exists a curve �0 ⊂ S0 with the following two properties:

(1) KS0 + Diff S0(0) + �0 is a plt and g0-anti-ample divisor; (2) �0 is a non-toric
subvariety in any analytical neighborhood of the fiber F0 on the toric variety Z0

for any toric structure of (X � P), that is, the curve �0 is a non-toric subvariety of
(S0,Diff S0(0)) in any analytical neighborhood of F0 on S0.

By considering the general fiber over a general point of C we obtain wi
0 = 1

for some i = 1, 2. To be definite, put w1
0 = 1 and let Q0 = E2

0 ∩ F0. Applying the
adjunction formula it is easy to prove that�0 ∩ F0 = Q0,w2

0 ≥ 2, d0 = 1, (S0 � Q0)

is of type 1
r0

(1, 1) (r0 ≥ 1) and �0 · F0 = � · E2
0 = 1

r0
.

Fig. 1 Case of Curve.
Construction in Q-factorial
case
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Remark 3.2 Let (X � P) be a terminal singularity, that is, (X � P) ∼= (C3
x1,x2,x3 �

0)/Zr (−1,−q, 1). Then r = r0 and one of the following cases holds by simple
calculation.

(1)C = {x1 = x2=0}, g0 is a blow-upwithweights (w2
0, 1, 0), r0|w2

0 or (1, w
2
0, 0),

r0|(w2
0 − q + 1).

(2) C = {x1 = x3 = 0}, g0 is a blow-up with weights (w2
0, 0, 1), r0|(w2

0 + 1 + q)

or (1, 0, w2
0), r0|(w2

0 − q + 1).
(3) C = {x2 = x3 = 0}, g0 is a blow-up with weights (0, w2

0, 1), r0|(w2
0 + 1 + q)

or (0, 1, w2
0), r0|w2

0.

Consider an arbitrary toric structure of Z0 in any neighborhood of the point Q0

such that�0 is also a toric subvariety of Z0. Let h0 : (Y0, (S1)Y0) → (Z0 ⊃ �0 � Q0)

be an arbitrary toric blow-up of the curve �0 with an unique exceptional divisor
(Exc h0 = (S1)Y0 ). The structures of h0 and g0 are similar, in particular, h0 is deter-
mined by some numbers w1

1 and w2
1, (S0)Y0

∼= S0.
The set of all possible blow-ups h0 for any toric structure of (Z0 � Q0, �0) is

denoted by H0.
Let (D0)Z0 be a toric Weil divisor of (Z0 � Q0) such that (D0)Z0 |S0 = �0 and

a((S1)Y0 , (D0)Z0 + S0) = −1. Let T be a toric Weil divisor of (X � P) such that
TZ0 ∩ S0 = E2

0 . Then KY0 + (S1)Y0 + (S0)Y0 + (D0)Y0 + TY0 ∼ 0 is lc by Inversion
of Adjunction. The ray R+[(F0)Y0 ] gives the divisorial contraction of (S0)Y0 onto a
curve, denoted by h′

0 in our diagram. We obtain a non-toric blow-up g1 : (Z1, S1) →
(X ⊃ C � P), where S1 = Exc g1, g1(S1) = C and (S1)Y0

∼= S1. Since g1 be a toric
blow-up (under identification) in some neighborhood of any point other than P , then

Diff S1(0) = w3
1−1
w3

1
E2
1 + w

j
1−1

w
j
1

E1
1 + d1−1

d1
(F1)Z0 , j ∈ {1, 2}, E2

1 = h′
0((S0)Y0) and E1

1

are some sections, F1 is a fiber over P , w3
1 ∈ Z≥3 and d1 ∈ Z≥1. Hence g1 is a plt

blow-up.
Second step. Assume that there exists a curve �1 ⊂ (S1)Y0 with the following

two properties: (1) K(S1)Y0
+ Diff (S1)Y0

(0) + �1 is a plt and h0-anti-ample divisor,
h0 : �1 → �0 is a surjective morphism and (2) �1 is not a center of any blow-up of
H0, that is, �1 is a non-toric subvariety of ((S1)Y0 ,Diff (S1)Y0

(0)) in any analytical
neighborhood of the fiber (F1)Y0 over P .

The triples ((S1)Y0 ,Diff (S1)Y0
(0), �1) and (S0,Diff S0(0), �0) have the same struc-

tures and (with similar notation) w1
1 = 1, Q1 = (E2

1)Y0 ∩ (F1)Y0 , �1 ∩ (F1)Y0 = Q1,
w2

1 ≥ 1, d1 = 1, ((S1)Y0 � Q1) is of type 1
r1

(1, 1) (r1 ≥ 1) and �1 · (F1)Y0 = �1 ·
(E2

1)Y0 = 1
r1
.

Consider an arbitrary toric structure of Y0 in any neighborhood of the point Q1

such that �1 is also a toric subvariety of Y0. Let h1 : (Y1, (S2)Y1) → (Y0 ⊃ �1 � Q1)

be an arbitrary toric blow-up of the curve �1 with an unique exceptional divisor
(Exc h1 = (S2)Y1 ), (S1)Y1

∼= (S1)Y0 .
The set of all possible blow-ups h1 for any toric structure of (Y0 � Q1, �1) is

denoted by H1.
Let (D1)Y0 be a toric Weil divisor of (Y0 � Q1) such that (D1)Y0 |S1 = �1 and

a((S2)Y1 , (D1)Y0 + (S0)Y0 + (S1)Y0) = −1. We have 1-complement KY1 + (S2)Y1 +
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(S1)Y1 + (S0)Y1 + (D1)Y1 ∼ 0/X by Inversion of Adjunction applied to the surfaces
(Si )Y1 . By the cone theorem we have:

(1) there exists a divisorial contraction h′
1,1 : Y1 → Y1,1 of (S1)Y1 onto a curve,

(S2)Y1
∼= (S2)Y1,1 ;

(2) there exists a small contractionϕ1,1 of an extremal raygeneratedby (F0)Y1,1 . Let
ϕ+
1,1 be a log flip of ϕ1,1, Excϕ+

1,1 = (F+
0 )Y1,2 , h′

1,2 : Y1,1 ��� Y1,2 be a corresponding
birational map;

(3) there exists a divisorial contraction h′
1,3 : Y1,2 → Z2 of (S0)Y1,2 onto a curve.

Thus we obtain a birational map h′
1 = h′

1,3 ◦ h′
1,2 ◦ h′

1,1 : Y1 ��� Z2. Put S2 =
(S2)Z2 . Since (E2

0)Y1,1 ∩ (F0)Y1,1 = (Q0)Y1,1 then (D1)Y1,1 · (F0)Y1,1 > 0 and the divi-
sor (D1)Z2 contains the fiber (F+

0 )Z2 and two sections of the local conic bundle
S2 → C , ρ(S2/C) = 1, K Z2 + S2 + (D1)Z2 ∼ 0/X is lc. By Shokurov’s criterion
on the characterization of toric varieties (S2,Diff S2(0)) → C is a toric conic bundle
[26]. We obtain a non-toric plt blow-up g2 : (Z2, S2) → (X ⊃ C � P).

We prove the following proposition.

Proposition 3.3 The pair (Si ,Diff Si (0)) is klt and local toric conic bundle (1-
complementary), ρ(Si/C) = 1, gi is a non-toric plt blow-up for i = 1, 2.

Third step. Assume that there exists a curve �2 ⊂ (S2)Y1 with the following
two properties: (1) K(S2)Y1

+ Diff (S2)Y1
(0) + �2 is a plt and h1-anti-ample divisor,

h1 : �2 → �1 is a surjective morphism and (2) �2 is not a center of any blow-up of
H1, that is, �2 is a non-toric subvariety of ((S2)Y1 ,Diff (S2)Y1

(0)) in any analytical
neighborhood of the central fiber F2 of (S2)Y1 over P .

The triple ((S2)Y1 ,Diff (S2)Y1
(0), �2) has the same structures as the previous ones.

In particular (with similar notation), w1
2 = 1 and w2

2 ≥ 1.

Proposition 3.4 There is no any blow-up h2 : (Y2, (S3)Y2) → (Y1 ⊃ �2) of the curve
�2 with unique exceptional divisor such that (S3)Y2 is realized by some plt blow-up
g3 : (Z3, (S3)Z3) → (X ⊃ C � P).

Proof Assume the converse. Consider a general point of C . Let F3 be a fiber of
(S3)Y2 over P . Put � = Diff (S3)Z3

(0) for simplicity. Since w2
0 + w2

1 + w2
2 + 1 ≥ 5

then � has some component (a section of conic bundle) with a coefficient ≥ 4/5.
We claim that K(S3)Z3

+ � is 1 or 2-complementary. Assume that K(S3)Z3
+ � is

not 1-complementary. Then the divisor K(S3)Z3
+ αF3 + � is lc, but not plt for some

α ≤ 1, and consider its inductive blow-up σ : ˜X → (S3)Z3 with exceptional divisor
˜E . The curve (F3)˜X can be contracted in the appropriate MMP over C . Denote this
contraction by ˜X → X . The divisor K X + E + �X is plt.

Let K
˜X + ˜E + �

˜X be nonnegative on (F3)˜X .We can extend complement of KE +
DiffE (�X ) on X , pull back on ˜X and push-down them on (S3)Z3 . There are only
two cases: (1) DiffE (�X ) = 1/2P1 + 1/2P2 + (1 − 1/m)P3 and 2) DiffE (�X ) =
1/2P1 + 2/3P2 + 4/5P3, where {Pi } are some points, m ≥ 5. We obtain 2- or 6-
complement.

Let K
˜X + ˜E + �

˜X be negative on (F3)˜X . The divisor−(K
˜X + ˜E + �

˜X ) is ample
over C . Similarly 2- or 6-complement of K

˜E + Diff
˜E (�

˜X ) can be extended on ˜X
and we have 2- or 6-complement D+ of K X with a((S3)Y2 , D+) = −1.
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Fig. 2 Case of Curve.
Construction in
non-Q-factorial case

Consider the case of 6-complement. Since a((S3)Y2 , D+) = −1 then there is one
possibility a((S0)Y2 , D+) = −1/2, D+|S0 = (7/6)�0 + . . . and a((S1)Y2 , D+) ≤
−2/3. Since F3 ⊂ (Si )Y2 for i = 0, 1 then KY2 + a((S0)Y2 , D+)(S0)Y2 + a((S1)Y2 ,

D+)(S1)Y2 + (S3)Y2 is not lc, the contradiction.
Thus we have 1- or 2-complement. Therefore the coefficients of D+ are equal 1

or 1/2 and a((S0)Y2 , D+) ≤ −1/2. We have the same contradiction as above. �

(A2) Let (X � P) be a non-Q-factorial terminal toric three-dimensional singu-
larity, that is, (X � P) ∼= ({x1x2 + x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0)) by Proposition 2.3.
Let f : (Y, E) → (X ⊃ C � P) be some plt blow-up. Let ϕi : Xi → (X � P) be

any of two Q-factorializations, Excϕi = Ci (i = 1, 2). Let ψi : (Yi , Ei ) → (Xi ⊃
CXi � PXi ) be a plt blow-up of CXi such that Ei and E define the same discrete
valuation of the function fieldK(X), ρ(Ei/C) = 1. The blow-up ψi was constructed
in the previous case of Q-factorial singularities. Let Yi ��� Y be a log flip for the
curve (Ci )Yi . Thus f has constructed and ρ(E/C) = 2.

We give another construction and prove that (E,Diff E (0)) → C is a toric conic
bundle by the procedure illustrated on the next diagram (Fig. 2) and defined below.

First step. Let g0 : (Z0, S0) → (X ⊃ C � P) be any toric plt blow-up, where
g0(S0) = C . Its description is given in example 2.2 2), whose notation is used. Let
F0 = F1

0 + F2
0 be a fiber over the point P . Put Q0 = F1

0 ∩ F2
0 .

Second step. Assume that there exists a curve �0 ⊂ S0 with the following two
properties: (1) KS0 + Diff S0(0) + �0 is a plt and g0-anti-ample divisor; 2) �0 is a
non-toric subvariety in any analytical neighborhood of the fiber F0 on the toric
variety Z0 for any toric structure of (X � P), that is, the curve �0 is a non-toric
subvariety of (S0,Diff S0(0)) in any analytical neighborhood of F0 on S0.

Considering a fiber over a general point of C we have a2 = 1 or a3 = 1. To be
definite, puta2 = 1 and F2

0 ∩ E2 = ∅. By simple calculations�0 ∩ (F1
0 ∪ F2

0 ) = Q0,
F1
0 · �0 = a3

a3+1 and F2
0 · �0 = 1

a3+1 .
Consider an arbitrary toric structure of Z0 in any neighborhood of the point Q0

such that�0 is a toric subvariety of Z0 also. Let h0 : (Y0, (S1)Y0) → (Z0 ⊃ �0 � Q0)

be an arbitrary toric blow-up of the curve �0 with an unique exceptional divisor
(Exc h0 = (S1)Y0 ), (S0)Y0

∼= S0.
The set of all possible blow-ups h0 for any toric structure of (Z0 � Q0, �0) is

denoted by H0.
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Let (D0)Z0 be a toric Weil divisor of (Z0 � Q0) such that (D0)Z0 |S0 = �0 and
a((S1)Y0 , (D0)Z0 + S0) = −1. Let T1 and T2 be toric Weil divisors of (X � P) such
that

KS0 + Diff S0((T1 + T2)Z0 + (D0)Z0) = KS0 + F2
0 + E2 + �0 ∼ 0.

Thepairs (X � P, T1 + T2 + (D0)X ) and ((S1)Y0 ,Diff (S1)Y0
((T1 + T2)Y0 + (D0)Y0

+ (S0)Y0)) are lc. Since T1 + T2 is Cartier divisor then (D0)X is Cartier divisor. The
curves (F1

0 )Y0 and (F2
0 )Y0 generate extremal rays of NE(Y0/X) that give small con-

tractions. Let h′
0,1 : Y0 ��� Y0,1 be any of two log flips. Since our pairs are lc then

ρ((S0)Y0,1/C) = 1. Let h′
0,2 : Y0,1 → Z1 be a divisorial contraction of (S0)Y0,1 onto a

curve.
Thus we obtain a birational map h′

0 = h′
0,2 ◦ h′

0,1 : Y0 ��� Z1 and a non-toric
blow-up g1 : (Z1, S1) → (X ⊃ C � P), ρ(S1/C) = 2. It can be proved by direct
computation that −S1 is g1-ample divisor, but if we consider the construction of g1
through two Q-factorializations of (X � P) as done above, then it is obvious that the
divisor −S1 is g1-ample. The divisor Diff S1((T1 + T2)Z1 + (D0)Z1) consists of four
curves and gives 1-complement of KS1 + Diff S1(0). By Shokurov’s criterion on the
characterization of toric varieties (S1,Diff S1((T1 + T2)Z1 + (D0)Z1) → C is a toric
conic bundle [26]. Thus g1 is a plt blow-up.

Third step. Assume that there exists a curve �1 ⊂ (S1)Y0 with the following
two properties: (1) K(S1)Y0

+ Diff (S1)Y0
(0) + �1 is plt and h0-anti-ample divisor,

h0 : �1 → (�0)Z0 is a surjective morphism and (2) �1 is not a center of any blow-up
ofH0, that is, �1 is a non-toric subvariety of ((S1)Y0 ,Diff (S1)Y0

(0)) in any analytical
neighborhood of the central fiber F1 of (S1)Y0 over P .

The triple ((S1)Y0 ,Diff (S1)Y0
(0), �1) has the same structures as in the previous

case of Q-factorial singularities, and we use its notation.
Consider an arbitrary toric structure of Y0 in any neighborhood of the point Q1

such that �1 is also a toric subvariety of Y0. Let h1 : (Y1, (S2)Y1) → (Y0 ⊃ �1 � Q1)

be an arbitrary toric blow-up of the curve �1 with an unique exceptional divisor
(Exc h1 = (S2)Y1 ), (S1)Y1

∼= (S1)Y0 .
Let (D1)Y0 be a toric Weil divisor of (Y0 � Q1) such that (D1)Y0 |S1 = �1 and

a((S2)Y1 , (D1)Y0 + (S0)Y0 + (S1)Y0) = −1. Considering the case of Q-factorial sin-
gularities and construction of g0 ◦ h0 through Q-factorializations of (X � P) we
have (E2)Y0 ⊂ (D1)Y0 and hence F2

0 ⊂ (D1)Y0 . Thus we have 1-complement KY1 +
(S2)Y1 + (S1)Y1 + (S0)Y1 + (D1)Y1 ∼ 0/X by Inversion of Adjunction applied to the
surfaces (Si )Y1 . By the cone theorem we have:

(1) there exists a divisorial contraction h′
1,1 : Y1 → Y1,1 of (S1)Y1 onto a curve,

(S2)Y1
∼= (S2)Y1,1 ;

(2) there exists a small contraction of (F1
0 )Y1,1 , h′

1,2 : Y1,1 ��� Y1,2 is a correspond-
ing log flip;

(3) there exists a small contraction of (F2
0 )Y1,2 , h′

1,3 : Y1,2 ��� Y1,3 is a correspond-
ing log flip;

(4) there exists an divisorial contraction h′
1,4 : Y1,3 → Z2 of (S0)Y1,3 onto a curve.

Thus we obtain a birational map h′
1 = h′

1,4 ◦ h′
1,3 ◦ h′

1,2 ◦ h′
1,1 : Y1 ��� Z2, the

local conic bundle (S2)Z2 → C , ρ((S2)Z2/C) = 2 and K Z2 + (S2)Z2 + (D1)Z2 ∼
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0/X is lc. Let F2 = F1
2 + F2

2 be a fiber over P and the curves F1
2 , F2

2 appear due to
log flips h′

1,2, h′
1,3 respectively. By the construction the divisor (D1)Z2 contains two

sections of (S2)Z2 and F1
2 .

If we consider this construction through two Q-factorializations of (X � P)

then (S2)Z2 is anti-ample over C and (F1
0 )Y1,1 ∩ (F2

0 )Y1,1 = (Q0)Y1,1 . Since (F2
0 )Y1,2 ·

(F2
0 )Y1,2 = 0, KY1,2 + (S0)Y1,2 + (S2)Y1,2 + (D1)Y1,2 ∼ 0 then for some e > 0 we have

(D1)Y1,2 · (F2
0 )Y1,2 = e(E2)Y1,2 · (F2

0 )Y1,2 > 0 and (D1)Z2 contains F2
2 .

ByShokurov’s criterion on the characterization of toric varieties ((S2)Z2 ,Diff (S2)Z2

(0)) → C is a toric conic bundle [26].We obtain a non-toric plt blow-up g2 : (Z2, S2)
→ (X ⊃ C � P), where S2 = (S2)Z2 .

We prove the following proposition.

Proposition 3.5 The pair (Si ,Diff Si (0)) is klt and local toric conic bundle (1-
complementary), ρ(Si/C) = 1, gi is a non-toric plt blow-up for i = 1, 2.

Example 3.6 Let us describe the non-toric canonical blow-ups (they will be non-
terminal blow-ups always) g : (Y, E) → (X ⊃ C � P) provided that (X � P) is a
toric terminal singularity, C = g(E) is a toric (smooth) subvariety and dim C = 1.
Depending on a type of (X � P) we consider two Cases (B1) and (B2).

(B1) Let (X � P) be a Q-factorial terminal singularity. Let g : (Z , S) → (X ⊃
C � P) be any toric canonical blow-up (see Proposition 2.5).

Assume that there exists a curve � ⊂ S with the following two properties: (1)
KS + Diff S(0) + � is g-anti-ample divisor, and � does not contain any center of
canonical singularities of Z ; (2) � is a non-toric subvariety in any analytical neigh-
borhood of the fiber F (over P) on the toric variety Z for any toric structure of
(X � P), that is, the curve � is a non-toric subvariety of (S,Diff S(0)) in any ana-
lytical neighborhood of F on S.

Thus (X � P) is a smooth point, S is a smooth surface, Diff S(0) = k−1
k E , where

k ≥ 2 and E is some section by Proposition 2.5. By adjunction formula � is smooth,
Q = � ∩ F ∩ E , � · F = 1.

Let (X � P, D) be any pair with canonical singularities such that D is a boundary,
� ∈ CS(Z , DZ − a(S, D)S). Obviously, DZ |S = � + aF and a(S, D) = 0, where
a ≥ 0.

Considering the blow-up (C3
x1x2x3 � 0) ∼= (X ⊃ C � P) with weights (k, 1, 0),

C = {x1 = x2 = 0} and the divisor given by the equation x2
1 + x1x2 + x1xm

3 + bxk
2 =

0, then clearly, there is a divisor D for any such curve �.
By Theorem 1.6 there exists a divisorial contraction h : (˜Y , ˜E) → (Z ⊃ �) such

that a(˜E, D) = 0, Exc h = ˜E is an irreducible divisor and h(˜E) = �. Applly K
˜Y +

D
˜Y + ε˜S–MMP. Since ρ(˜Y/X) = 2 and K

˜Y + D
˜Y + ε˜S ≡ ε˜S over X , then after

log flips ˜Y ��� Y (perhaps their lack) we obtain a divisorial contraction h′ : Y → Y ,
which contracts S onto a curve CY .

Thus we obtain a non-toric canonical blow-up f . Since CY ∈ CS(Y ) by the con-
struction then f is not a terminal blow-up.

(B2) Let (X � P) be a non-Q-factorial terminal toric three-dimensional sin-
gularity, that is, (X � P) ∼= ({x1x2 + x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0)). Consider a Q-
factorialization g : ˜X → X , ˜T = Exc g and ˜P = ˜T ∩ ˜C . We apply the construction
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from (B1) for the curve ˜C ⊂ (˜X � ˜P) such that the divisor D from the construction
has the form g∗ DX , where DX is aQ-Cartier divisor. We obtain a non-toric canonical
blow-up f : Y + → ˜X . Let Y + ��� Y be a log flip for the curve TY + . Thus we obtain
a required non-toric canonical blow-up f (anti-amplness of E is proved as in case
(A2)).

Let us describe the curves �. Let g : (Z , S) → (˜X � ˜P) be a toric canonical
blow-up obtained in the first step of the construction. Let ψ : Z ��� Z+ be a toric
log flip for the curve TZ . So g+ : (Z+, S+) → (X � P) is a toric canonical blow-
up. The structure of the curve �S+ is completely identical to the structure of the
curve � considered in case (A2). To prove that any such curve �S+ is realizable, it
suffices to consider a divisor of the form xi1 + bxk

i2
= 0 on (X � P) for some b, k,

{i1, i2} = {1, 2} or {3, 4}.
Theorem 3.7 Let f : (Y, E) → (X ⊃ C � P)be a plt blow-up of three-dimensional
toric terminal singularity, where dim f (E) = 1. Assume that the curve C = f (E)

is a toric subvariety of (X � P). Then, either f is a toric morphism (see Example
2.2), or f is a non-toric morphism described in Example 3.1.

Proof By Example 3.1 we must only consider the case when (X � P) is a Q–
factorial singularity. Let f be a non-toric morphism (up to analytic isomorphism).
Let DY ∈ | − n(KY + E)| be a general element for n 
 0. Put DX = f (DY ) and
d = 1

n . The pair (X, d DX ) is log canonical, a(E, d DX ) = −1, and E is a unique
exceptional divisor with discrepancy −1.

By the construction of partial resolution of (X, d DX ) (see Definition 2.7 and the
paper [27]) and by Criterion 2.8, there exists a toric divisorial contraction g : Z → X
dominated by partial resolution of (X, d DX ) (up to toric log flips) and the following
properties are fulfilled.

(A) The exceptional set Exc g = S is an irreducible divisor, the divisors S and E
define the different discrete valuations of the function fieldK(X), and g(S) = C .

(B) By � denote the center of E on the surface S. Then the curve � is a non-toric
subvariety of Z . In the other words, � is a non-toric subvariety of (S,Diff S(0)).

Obviously, a(S0, d DX ) < 0. By Example 3.1 (in its notation) we must prove
only that the anti-ample over X divisor KS0 + Diff S0(0) + �0 is plt in some analyt-
ical neighborhood of the fiber F0 ⊂ S0. We can choose the divisor d DX such that
Supp(d DX |S0) ⊂ �0 ∪ F ∪ �′

0 ∪ E2
0 , where �′

0 is a general divisor on S0.
Assume that KS0 + Diff S0(0) + �0 is not a plt divisor. By the adjunction formula

the curve �0 is smooth. By connectedness lemma KS0 + Diff S0(0) + �0 is not a
plt divisor at unique point, and denote this point by G0. The point G0 is a non-toric
subvariety of (S0,Diff S0(0)). Moreover, the curve�0 is locally a non-toric subvariety
at the pointG0 only.By the constructionof partial resolution [27] (in a small analytical
neighborhood of the pointG0) there exists a divisorial toric contraction ĝ0 : ̂Z0 → Z0

such that Exc ĝ0 = S′′
0 is an irreducible divisor, ĝ(S′′

0 ) = G0 and the two following
conditions are satisfied.

(1) Put S′
0 = (S0)̂Z0

and C0 = S′
0 ∩ S′′

0 . Let c(�0) be the log canonical threshold
of �0 for the pair (S0,Diff S0(0)). Then ĝ0|S′

0
: S′

0 → S0 is the toric inductive blow-up
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of KS0 + Diff S0(0) + c(�0)�0 (see Theorems 1.10 and 2.12), and the point ̂G0 =
C0 ∩ (�0)S′

0
is a non-toric subvariety of (S′′

0 ,Diff S′′
0
(0)).

(2) The divisor Diff S′′
0
(d D

̂Z0
+ a(S0, d DX )S′

0) is a boundary in some small ana-
lytical neighborhood of the point ̂G0.

Let H be a general hyperplane section of sufficiently large degree passing
through the point P such that it does not contain the curve C . Then there exists
a number h > 0 such that a(S′′

0 , d DX + h H) > −1, and the point ̂G0 is a center
of (S′′

0 ,Diff S′′
0
(d D

̂Z0
+ a(S0, d DX )S′

0 + h H
̂Z0

)). Therefore we obtain a contradic-
tion for the pair (S′′

0 ,Diff S′′
0
(d D

̂Z0
+ a(S0, d DX )S′

0 + h H
̂Z0

)) and the point ̂G0 by
Theorem 4.2. �

We have proved the next theorem too.

Theorem 3.8 Let f : (Y, E) → (X ⊃ C � P)be a plt blow-up of three-dimensional
toric Q-factorial singularity, where dim f (E) = 1. Assume that the curve C = f (E)

is a toric subvariety of (X � P). Then, either f is a toric morphism (see Example
2.2), or f is a non-toric morphism described in Example 3.1.

Theorem 3.9 Let f : (Y, E) → (X ⊃ C � P) be a canonical blow-up of three-
dimensional toric terminal singularity, where dim f (E) = 1. Assume that the curve
C = f (E) is a toric subvariety of (X � P). Then, either f is a toric morphism (see
Proposition 2.5), or f is a non-toric morphism and described in Example 3.6.

Proof Let f be a non-toric morphism (up to analytic isomorphism). Let DY ∈
| − nKY | be a general element for n 
 0. Put DX = f (DY ) and d = 1

n . The pair
(X, d DX ) has canonical singularities and a(E, d DX ) = 0. Now the arguments of
the proof of Theorem 3.7 can be obviously applied, and we have a(S, d DX ) = 0,
this completes the proof. �

Corollary 3.10 Under the same assumption as in Theorem 3.9 the two following
statements are satisfied:

(1) [8] if f is a terminal blow-up then the (toric) morphism f is isomorphic to the
blow-up of the ideal of the curve C and an index of (X � P) is equal to 1, that is, either
(X � P) is a smooth point or (X � P) ∼= ({x1x2 + x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0));
(2) if f is a non-toric morphism then an index of (X � P) is equal to 1.

4 Toric Log Surfaces

Definition 4.1 Let P(w) = Px1x2x3x4(w1, w2, w3, w4), where w1 + w2 = w3 + w4

and gcd(w1, w2, w3, w4)=1. Put (w1, w2, w3, w4) = (a1d23d24, a2d13d14, a3d14d24,
a4d13d23), where di j = gcd(wk, wl) and i, j, k, l are mutually distinct indices from
1 to 4. The toric pair

(

S, D
) = (

x1x2 + x3x4 ⊂ P(w),Diff S/P(w)(0)
)
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Fig. 3 ODP surface

is called an ODP pair, ρ(S) = 2. By Proposition 1.6 of [14]we have D = ∑

i< j,1≤i≤2
di j −1

di j
Ci j , where Ci j = {xi = x j = 0} ∩ S.

Let f : (Y, E) → (X � P) be a toric plt blow-up of three-dimensional ordinary
double point. Then (E,Diff E (0)) is an ODP pair by Example 2.2. Converse is also
true: every ODP pair is realized by some toric plt blow-up of three-dimensional
ordinary double point.

To be definite, assume thatw1 ≤ w2,w3 ≤ w4,w2 ≤ w4, P1 = (1 : 0 : 0 : 0), . . .,
P4 = (0 : 0 : 0 : 1). The surface S has a cyclic singularity at the point Pi for every
i = 1, 2, 3, 4 (see Fig. 3).

Since OP(w)(wi )|S = {xi = 0}|S = 1
dik

Cik + 1
dil

Cil for the corresponding differ-

ent indices k and l, then it is easy to calculate that C2
13 = d2

13(w3 − w2)/(w2w4) ≤
0, C2

23 = d2
23(w2 − w4)/(w1w4) ≤ 0, C2

14 = d2
14(w4 − w2)/(w2w3) ≥ 0 and C2

24 =
d2
24(w2 − w3)/(w1w3) ≥ 0. In particular, Mori cone NE(S) is generated by the two
rays R+[C13], R+[C23].

Now we prove a two-dimensional non-toric point theorem. An one-dimensional
analog (dim S = 1) of Theorem 4.2 (1) is obvious (see the proofs of Theorems 2.12
and 2.13 also).

Theorem 4.2 Let (S, D) be a toric pair, where S is a normal projective surface.
Assume that D = ∑r

i=1 di Di , where Di is a prime divisor and 1
2 ≤ di ≤ 1 for each

i . Assume that there exists the boundary T such that T ≥ D and −(KS + T ) is an
ample divisor. Assume that some point � is a center of LCS(S, T ), and there exists
the analytical neighborhood U of � such that KS + T is a log canonical divisor in
the punctured neighborhood U\�. Then the point � is a toric subvariety of (S, D)

if one of the two following conditions is satisfied:
(1) ρ(S) = 1;
(2) ρ(S) = 2, two different extremal rays of NE(S) give two toric conic bundles;
(3) (S, D) is ODP pair.

Proof Let the point � be a non-toric subvariety of (S, D). We will obtain a contra-
diction.
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Consider Condition (1). It is clear that this theorem is sufficient to prove in the
case di = 1

2 for all i .
Since −(KS + T ) is an ample divisor, then replacing T by some divisor we

can assume that LCS(S, T ) ∩ U = �. Hence, connectedness lemma implies that
LCS(S, T ) = �.

The toric projective surface S (with Picard number ρ(S) = 1) is determined by
the fan � in the lattice N ∼= Z2, where

� = {〈n1, n2〉, 〈n2, n3〉, 〈n1, n3〉, their faces
}

.

Thus surface S has at most three singular points. If the number of singularities is
less than or equal to two, then there exists an isomorphism of the lattice N such that
n1 = (1, 0), n2 = (0, 1), and therefore S ∼= Px1x2x3(a1, a2, 1).

Suppose that the point � is a non-toric subvariety of (S, D′), where D′ = D −
1
2 D j = ∑

i = j
1
2 Di . Then the divisor D can be replaced by the other divisor D′ < D.

Therefore we have the four possibilities for the pair (S, D) and the point �.
(A) S has three singular points and D = 0. In this possibility � /∈ Supp(Sing S).
(B) � /∈ Di1 ∪ Di2 , where i1 = i2. To be definite, let Di1 − Di2 be a nef divisor.
(C) S has two singular points, that is, S ∼= P(a1, a2, 1), where a1 ≥ 3, a2 ≥ 2 and

� = (b : 1 : 0), where b = 0.
(D) S ∼= P(a1, a2, 1), D = 1

2 {x1 = 0} + 1
2 {x2 = 0}, a1 ≥ 2, a2 ≥ 1 and � = (1 :

0 : b), where b = 0.
Possibility (B) is impossible since LCS(S, T − 1

2 Di1 + 1
2 Di2) = � ∪ Di2 , that is,

we have the contradiction with connectedness lemma. Possibility (D) is impossible
since LCS(S, T − 1

2 {x1 = 0} + {x3 = 0}) = � ∪ {x3 = 0}, that is, we have the con-
tradiction with connectedness lemma. Consider possibility (C). Write T = a{x3 =
0} + T ′, where {x3 = 0} ⊂ Supp(T ′) and 0 ≤ a < 1. The divisor KS + {x3 = 0} +
T ′ is not log canonical at the point �, therefore by the inversion of adjunction we
have

({x3 = 0} · T ′)
�

> 1. We obtain the contradiction

1 <
({x3 = 0} · T ′)

�
< {x3 = 0} · (−KS) = a1 + a2 + 1

a1a2
≤ 1.

Consider possibility (A). Let f : (Y, E) → (S � �) be an inductive blow-up of
(S, T ) (see Theorem 1.10). By Theorem 2.12 the morphism f is a weighted blow-up
of smooth point with weights (α1,α2). Write KY + E + TY = f ∗(KS + T ). �

Lemma 4.3 The divisor KS has a 1-complement B+ such that � is a center of
LCS(S, B+).

Proof The divisor KY + E + (1 − δ)TY is plt and anti-ample for 0 < δ � 1. Since
ρ(Y ) = 2 then the cone NE(Y ) is degenerated by two extremal rays. By R1 and R2

denote these two rays. To be definite, let R1 gives the contraction f . If −(KY + E)

is a nef divisor then a 1–complement of KE + DiffE (0) = KE + α1−1
α1

P1 + α2−1
α2

P2

is extended to a 1–complement of KY + E by Proposition 1.17, therefore we obtain
the required 1–complement of KS by Proposition 1.15.
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Consider the last possibility: (KY + E) · R2 > 0, TY · R2 < 0. Let L(δ) ∈ | −
n(KY + E + (1 − δ)TY )| be a general element for n 
 0 and let M = (1 − δ)TY +
1
n L(δ), where δ > 0 is a sufficiently small fixed rational number. By construction,
KY + E + (1 + ε)M ≡ εM , KY + E + (1 + ε)M is a plt divisor. Therefore, apply-
ing (KY + E + (1 + ε)M)–MMP is a contraction of the ray R2 for 0 < ε � 1. The
corresponding divisorial contraction is denoted by h : Y → S, and the image of E
on the surface S is denoted by E , put Exc h = CY and CS = f (CY ). The divisor
KS + E is plt and anti-ample. Therefore, if 1–complement of KE + Diff E (0) exists
then we consistently apply Theorems 1.17, 1.16 and 1.15 and obtain the required
1–complement of KS .

Suppose that there does not exist any 1–complement of KE + DiffE (0). It is
possible if and only if there are three singular points of S lying on the curve E .
It implies that α1 ≥ 2, α2 ≥ 2, the curve CY is contracted to a cyclic singularity,
and the curve CS passes through at most one singularity of S (see [11, Chap. 3]).
Let us apply Corollary 9.2 of the paper [10] for KS + E . We obtain that S has the
two singularities of type A1, which do not lie on the curve CS . Let V (〈n1〉) be the
closure of one-dimensional orbit passing through the two singular points of type A1.
Then there exists an isomorphism of the lattice N such that n1 = (1, 0), n2 = (1, 2),
and therefore n3 = (−2n + 1,−2), where n ≥ 2. By considering the cone 〈n2, n3〉
we obtain that the third singularity of S is of type 1

4n−4 (2n − 1, 1), its minimal
resolution graph consists of three exceptional curve chain with the self-intersection
indices −2, −n and −2 respectively. The following two cases are possible: (i) � ∈
V (〈n2〉) ∪ V (〈n3〉) and (ii) � /∈ V (〈n2〉) ∪ V (〈n3〉).

Consider formerCase (i). To be definite, let� ∈ V (〈n2〉), then V (〈n2〉) · (−KS) =
n

2n−2 ≤ 1, and therefore we obtain a contradiction for the same reason as in Case (C).
Consider latter Case (ii). Let g : Smin → S be aminimal resolution. Let us contract

all curves of Exc g, except the exceptional curve of the singularity 1
4n−4 (2n − 1, 1)

with the self-intersection index −n. We obtain the divisorial contractions Smin → ˜S
and ˜S → S. Note that ρ(˜S) = 2 and ˜S = TN (˜�), where the fan ˜� is given by �

with the help of subdivision of the cone 〈n2, n3〉 into the two cones 〈n2, n4〉, 〈n4, n3〉,
where n4 = (−1, 0). The surface ˜S is a conic bundle with irreducible fibers, and
its two fibers are non-reduced. These two fibers are the curves V (〈n2〉), V (〈n3〉),
and every such curve contains the two singularities of type A1. By ˜� denote the
transform of � on the surface ˜S. We have K

˜S + ˜B+
1 + ˜B+

2 + V (〈n4〉) ∼ 0, where
˜B+
1 ∼ V (〈n2〉) + V (〈n3〉) is the fiber passing through the point˜�, and ˜B+

2 ∼ V (〈n1〉)
is the section passing through the point˜�. By Proposition 1.15 we obtain the required
1–complement of KS . �

Assume that B+ = B+
1 + B+′

, where the irreducible curve B+
1 has an ordinary

double point singularity at the point �. By the inversion of adjunction we have
B+′ = 0, B+

1 ∩ Supp(Sing S) = ∅ and KS + B+
1 ∼ 0, therefore KS is Cartier divisor.

Classification of Del Pezzo surfaces with Du Val singularities (in our case Du Val
singularities are cyclic), with Picard number 1 and with three singular points implies
K 2

S ≤ 4 [3]. Write T = aB+
1 + T ′, where B+

1 ⊂ Supp(T ′) and 0 ≤ a < 1. Since

0 ∼ KY + E + ˜B+
1 = f ∗(KS + B+

1 ) then we obtain the contradiction
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0 >(KY + E + TY ) · ˜B+
1 ≥ (−1 + a)

(

˜B+
1

)2 =

= (−1 + a)
(

K 2
S − (α1 + α2)

2

α1α2

)

≥ 0.

Consider the last case B+ = B+
1 + B+

2 + B+′
, where the irreducible curves B+

1
and B+

2 have a simple normal crossing at the point �. We have (B+
1 ∪ B+

2 ) ⊃
Supp(Sing S) according to Corollary 9.2 of the paper [10] applied for KS + B+

1 +
B+
2 . To be definite, let the curve B+

1 contains two singular points of S. By the inversion
of adjunction, degDiff B+

1
(0) ≤ 1, and therefore the curve B+

1 passes through two sin-
gular points only, and they are of type A1. Such surfaces were classified in the proof
of Lemma 4.3, and therefore it can be assumed that the third singularity of S is of type

1
4n−4 (2n − 1, 1), B+′ = 0, B+

1 ∩ B+
2 = �, (B+

1 )2 = n − 1 and (B+
2 )2 = 1

n−1 , where

n ≥ 2. To be definite, assume that f ∗(B+
1 ) = ˜B+

1 + α1E and f ∗(B+
2 ) = ˜B+

2 + α2E .

Thus (˜B+
1 )2 = n − 1 − α1/α2, (˜B+

2 )2 = 1
n−1 − α2/α1, and therefore (˜B+

k )2 ≤ 0 for
either k = 1 or k = 2. Write T = a1B+

1 + a2B+
2 + T ′, where B+

1 , B+
2 ⊂ Supp(T ′),

0 ≤ a1 < 1, 0 ≤ a2 < 1. Since 0 ∼ KY + E + ˜B+
1 + ˜B+

2 = f ∗(KS + B+
1 + B+

2 ),
then we obtain the contradiction

0 >(KY + E + TY ) · ˜B+
k = (−1 + ak)

(

˜B+
k

)2 + T ′
Y · ˜B+

k ≥

≥ (−1 + ak)
(

˜B+
k

)2 ≥ 0.

Consider Condition (2). Such toric surface is determined by the fan� in the lattice
N ∼= Z2, where

� = {〈m1, m2〉, 〈m2, m3〉, 〈m3, m4, 〉, 〈m4, m1〉, their faces
}

,

m1 = (1, 0),m2 = (q, r),m3 = (−1, 0),m4=(−q,−r), q ≥ 1, r ≥ 1 and gcd(q, r)

= 1. Therefore S has four singularities of types 1
r (1,−q), 1

r (1, q), 1
r (1,−q) and

1
r (1, q) respectively.

Two different fibers passing through the point � are denoted by F1 and F2. Since
T · Fi ≥ 1 by Lemma 4.4 for i = 1, 2, then T − F1 − F2 is nef.

Lemma 4.4 Let O be a smooth point of the surface M. Assume (M, N ) is not a log
canonical pair at the point O, where N = d I + � ≥ 0, I ⊂ Supp�, d ≤ 1, I is an
irreducible curve which is a smooth at the point O. Then (� · I )O > 1.

Proof The proof follows by the inversion of adjunction, see, for example,
[12, Theorem 7.5]. �

Consider the index j such that Fj is non-toric subvariety of (S, D). Let F ′ and F ′′
be the closures of one-dimensional toric orbits provided that F ′ ∼Q F ′′ ∼Q

1
r Fj . We

obtain the contradiction (KS + T ) · Fi ≥ (−F ′ − F ′′ + D + Fj ) · Fi ≥ 0, where
the index i ∈ {1, 2} satisfies the condition i = j .
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Consider Condition (3). Assume that either � ∈ C13, or � ∈ C23. Let us consider
the first possibility. The second possibility is considered similarly. If � is a non-toric
point of (C13,DiffC13(D)) thenwe have a contradiction with one-dimensional analog
of this theorem since C2

13 < 0. Therefore, a4 = 1 and d23 = 1. The case C2
23 = 0 is

impossible also (in this case the surface S is a toric conic bundle, and we use its
structure). Thus C2

23 < 0 and consider the contraction ψ : S → S′ of C23. If ψ(�) is
a non-toric point of (S′,ψ(D)) then we have a contradiction with this theorem under
Condition (1). Therefore the curve C23 is contracted to a smooth point and d24 = 1.
We obtain the contradiction a2d13d14 = w2 > w4 = d13.

Assume that � ∈ C13 ∪ C23. Let C2
23 = 0. Then (w3, w4) = (w1, w2), (S, D) ∼=

(

Fw1−w2 ,
w2−1
w2

C13 + w1−1
w1

C24
)

and 2 ≤ w1 < w2. By Fj denote a fiber of S passing
through �. Then T ′ · Fj ≥ 1 by Lemma 4.4, where T = T ′ + αFj , Fj ⊂ Supp(T ′),
and we have the contradiction 0 > (KS + T ) · Fj ≥ (KS + Fj + T ′) · Fj ≥ 0.

Therefore C2
23 < 0, C2

13 < 0. Considering case by case the contractions of the
curves C13 and C23, we obtain that these curves are contracted to smooth points and
d13 = d23 = d24 = d14 = 1. Since C2

13 = − 1
a2a4

, C2
23 = − 1

a1a4
then (w1, w2, w3, w4)

= (a2, a2, a2 − 1, a2 + 1), a2 ≥ 3. It is easy to find a birational map

S ��� S′
(

1

a2 − 1
(1,−1) + 1

a2 − 1
(1, 1) + 1

a2 − 1
(1,−1) + 1

a2 − 1
(1, 1)

)

,

where ρ(S′) = 2, and in result of thismapwe obtain a contradictionwith this theorem
under Condition (2). To find this map it is enough to consider two (required) toric
blow-ups at the points P2, P4 and a contraction of proper transforms of C13 and
C23. �

Remark 4.5 Theorem 4.2 (1) can not be generalized to the case ρ(S) ≥ 2. Con-
sider the toric pair(S, D) = (F1,

1
2 E0) and the divisor T = 1

2 E0 + E ′
0 + F + δE∞

provided that F ∩ E ′
0 /∈ E0 ∪ E∞, where E0, E ′

0 are two different zero sections, E∞
is the infinity section, F is a fiber and 0 < δ < 1

2 . Put � = F ∩ E ′
0. Then � is a

non-toric point of (S, D), T ≥ D, KS + T is anti-ample log canonical divisor and
� ∈ LCS(S, T ).

Nevertheless, it is expected that Theorem 4.2 can be generalized to every dimen-
sion and every Picard number ρ(S), if we require the following condition, instead of
Conditions (1), (2) and (3): (S, D) = (E,Diff E (0)), where f : (Y, E) → (X � P)

is a toric plt blow-up of some toric singularity.

Definition 4.6 Let (�, D�) ∼= (P1,
∑r

i=1
mi −1

mi
Pi ). Assume that −(K� + D�) is an

ample divisor. Then, for set (m1, . . . , mr ) we have one of the following cases up
to permutations: (m1, m2), it is of type A; (2, 2, m), m ≥ 2, it is of type Dm+2;
(2, 3, 3), it is of type E6; (2, 3, 4), it is of type E7; (2, 3, 5), it is of type E8. In
Propositions 4.7 and 4.8 the classification according to types corresponds to the
types of (�, D�) = (�,Diff�(D)).

Proposition 4.7 Let (S, D) be a toric pair, where S is a normal projective surface
with ρ(S) = 1, and let D be a divisor with standard coefficients. Assume that there
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exists a curve � such that −(KS + D + �) is an ample divisor and (S, D + �) is a
plt non-toric pair. Let us denote a hypersurface of degree d in a weighted projective
space by Xd. Then one of the following cases is satisfied.

(1) (S, D, �) ∼= (P2
x1x2x3 ,

d1−1
d1

{x1 = 0}, X2) and d1 ≥ 1. It is of type A.

(2) (S, D, �) ∼= (P2
x1x2x3 ,

∑3
i=1

di −1
di

{xi = 0}, X1), the integer number triple (d1,
d2, d3) is either (2, 2, k), (2, 3, 3), (2, 3, 4) or (2, 3, 5), where k ≥ 2. They are of
types Dk+2, E6, E7 and E8 respectively.

(3) (S, D, �) ∼= (Px1x2x3(a1, 1, 1),
∑2

i=1
di −1

di
{xi = 0}, Xa1), the integer number

triple (a1, d1, d2) is either (2, 2, k1), (2, 3, k2), (2, k3, 1) or (3, 2, 1), where k1 ≥ 1,
1 ≤ k2 ≤ 2, k3 ≥ 4. In the first possibility, if k1 ≥ 2 then it is of type Dk1+2. In the
second possibility, if k2 = 2 then it is of type E6. The other possibilities are of type
A always.

(4) (S, D, �) ∼= (Px1x2x3(a1, 1, 1),
d1−1

d1
{x2 = 0}, Xa1+1), a1 ≥ 2 and d1 ≥ 1. It is

of type A.
(5) (S, D, �) ∼= (Px1x2x3(a2 + 1, a2, 1),

∑2
i=1

di −1
di

{xi = 0}, Xa2+1), the integer
number triple (a2, d1, d2) is either (2, 2, k1), (k2, 2, k3) or (k4, k5, 1), where k1 ≤ 3,
k2 ≥ 3, k3 ≤ 2, k4 ≥ 2 and k5 ≥ 3. In the first possibility, if k1 = 2 then it is of type
D6, and, if k1 = 3 then it is of type E7. In the second possibility, if k3 = 2 then it is
of type D2k2+2. The other possibilities are of type A always.

(6) (S, D, �) ∼= (Px1x2x3(2a2 + 1, a2, 1), 1
2 {x1 = 0}, X2a2+1), a2 ≥ 2. It is of type

D2a2+2.
(7) (S, D, �) ∼= (Px1x2x3(la2 − 1, a2, 1),

∑2
i=1

di −1
di

{xi = 0}, Xla2), a2 ≥ 2, the
integer number triple (l, d1, d2) is either (2, 2, 1) or (k1, 1, k2), where k1 ≥ 2 and
k2 ≥ 1. They are of types D2a2+1 and A respectively.

(8) (S, D, �) ∼= (Px1x2x3(a1, a2, 1),
d1−1

d1
{x3 = 0}, Xa1+a2), a1 > a2 ≥ 2 and d1 ≥

1. It is of type A.
(9) (S, D) ∼= (S( 1

r1
(1, 1) + 1

r2
(1, 1) + Ar1+r2−1),

d1−1
d1

D3), � ∼Q D3 is an irre-
ducible curve being different from D3, where D3 is the closure of one-dimensional
orbit passing through the first and second singular points, d1 ≥ 2 and r1, r2 ≥ 2. It
is of type A.

(10) (S, D) ∼= (S( 1
r1

(l, 1) + 1
r2

(l, 1) + A(r1+r2)/ l−1),
d1−1

d1
D3), the surface S has

three singular points, � ∼ D1 + D2, where Di is the closure of one-dimensional
orbit not passing through the i-th singular point of S, d1 ≥ 1, l ≥ 2 and l|(r1 + r2).
It is of type A.

Proof By the adjunction formula the curve � is smooth and irreducible. It follows
easily that, if P ∈ Supp D ∩ � then (S, D + �) is a toric pair in a sufficiently small
analytical neighborhood of P . If S is a smooth surface then S ∼= P2 and we have two
Cases (1) and (2).

Assume that S is a non-smooth surface having at most two singular points. Then
we have S ∼= Px1x2x3(a1, a2, 1) as before in the proof of Theorem 4.2. At first let
us consider the case of one singular point, that is, a1 ≥ 2 and a2 = 1. Then either
� ∼ OS(1),OS(a1) orOS(a1 + 1). The variant� ∼ OS(1) is impossible since KS +
D + � is not a plt divisor at the point (1 : 0 : 0). The other variants lead us to Cases
(3) and (4) respectively. At second let us consider the case of two singular points,
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that is, a1 > a2 ≥ 2. Put � = {ψ(x1, x2, x3) = 0}. Suppose that � � OS(a1 + a2),
OS(a1),OS(a2),OS(1) then ψ(x1, x2, x3) = bx1xl

3 + ϕ(x2, x3), and by considering
the point (1 : 0 : 0) we obtain b = 0, l = 1, � ∼ OS(a1 + 1) and xm

2 ∈ ϕ(x2, x3).
It leads us to Case (7). If � ∼ OS(a1) then by considering the point (0 : 1 : 0) we
obtain x1, xl

2x3 ∈ ψ(x1, x2, x3). It leads us to Cases (5) and 6). It is easy to prove
that cases � ∼ OS(a2) and � ∼ OS(1) are not realized. If � ∼ OS(a1 + a2) then
x1x2, xa1+a2

3 ∈ ψ(x1, x2, x3), and we have Case (8).
Assume that S is a surface having three singular points (it is the last possibility for

S). According to Corollary 9.2 of the paper [10] for the divisor KS + �, we obtain
that the curve � contains a singular point of S.

Suppose that the curve � contains only one singular point of S, then arguing
as above in the proof of Theorem 4.2, we obtain S = S(2A1 + 1

4n−4 (2n − 1, 1)),
where n ≥ 2, and � is locally a toric subvariety of (S � P), where (S � P) is of type

1
4n−4 (2n − 1, 1). By T1 and T2 denote the closures of one-dimensional orbits passing
through the singular point P . Since T1 ∼ T2 and (� · T1)P = (� · T2)P then � · Ti >

1. Therefore � − (4n − 4)T1 is an ample divisor, and we obtain the contradiction
with ampleness of −(KS + �) ∼ 2nT1 − �. Thus this possibility is not realized.

Suppose that the curve � passes through the two singular points P1 and P2

of S only. There exists a 1-complement of K� + Diff�(0), and we obtain the 1-
complement KS + � + T ∼ 0 of KS + � by Proposition 1.17. There are two Cases
(A) and (B).

(A) Let T is a reducible divisor. By the two-dimensional criterion on the char-
acterization of toric varieties [26, Theorem 6.4] we have T = T1 + T2, � ∼ T3,
D = d1−1

d1
T3, the singularities at the points Pj are of type 1

r j
(1, 1), where d1 ≥ 2,

r j ≥ 2 and Ti are the closures of one-dimensional orbits, and P1 ∈ T1. Let f : ˜S → S
be a minimal resolution at the points P1 and P2 only. By E1 denote the curve
such that f (E1) = P1. By the inversion of adjunction � · T3 = 1

r1
+ 1

r2
, hence

(�
˜S)

2 = �
˜S · (T3)˜S = 0, and the linear system |E1 + m�

˜S| gives the birational mor-
phism g : ˜S → Fr1 for m 
 0 [15, Proposition 1.10] such that the curve (T2)˜S is
contracted to a smooth point. The morphism g is toric and the third singularity of S
is of type Ar1+r2−1. We obtain Case (9).

(B) Let T is an irreducible divisor. To be definite, let Di be the closures of one-
dimensional orbits not passing through the i-th singular point of S = S( 1

r1
(a1, 1) +

1
r2

(a2, 1) + 1
r3

(a3, 1)). We have 1
r1

D1 ≡ 1
r2

D2 ≡ 1
r3

D3. To be definite, the curve �

passes through the first and second singular point of S. By the definition of 1–
complementwe obtain� · T = 1

r1
+ 1

r2
,� + T ∼ ∑3

i=1 Di . Hence, either� ∼ D1 +
D2, T ∼ D3 or � ∼ D3, T ∼ D1 + D2. Since 1–complement not passing through
the third singular point of S then it is of typeAr3−1. The case � ∼ D3 was considered
in Case (A). Since the curve � does not pass through the third singular point then we
have to consider the possibility remained: � ∼ D1 + D2 ∼ l D3, where l ≥ 2, l ∈ Z.
We obtain Case (10).

Suppose that the curve � passes through three singular points of S with the
indices r1, r2 and r3 respectively. By the inversion of adjunction the triple (r1, r2, r3)
is either (2, 2, k), (2, 3, 3), (2, 3, 4) or (2, 3, 5), where k ≥ 2. For the second and
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third variants there does not exist any surface S. For the first and fourth variants we
have S = S(2A1 + 1

4n−4 (2n − 1, 1)) and S ∼= P(2, 3, 5) respectively, where n ≥ 2.
These variants are considered as above mentioned case, when the curve � contains
only one singular point of S. �

Proposition 4.8 Let (S, D) be ODP pair. Assume that there exist a curve � and an
effective Q-divisor �′ such that KS + D + � + �′ is an anti-ample and plt divisor,
and (S, D + �) is a non-toric pair. Then d23 = d24 = 1, a1|a2 and � ∼ OP(w)(w2)|S

up to permutation of the coordinates. In particular, −(KS + D + �) is an ample
divisor and w1|w2. It is of type A.

Proof The sets � ∩ C13, � ∩ C23 consist of at most one point by the adjunction
formula. Moreover, we may assume that �′ = γ1C13 + γ2C23, where γ1 < 1 and
γ2 < 1. If C2

i3 = 0 then γi = 0, where i = 1, 2.
Let us prove that � · C13 > 0 and � · C23 > 0. Assuming the converse: � · C13 =

0, that is, � ∼ dC24. The possibility � · C23 = 0 is considered similarly. Since C23 ·
C24 = 1

a1
, a1(C23 · �) ∈ Z>0 then d ∈ Z>0. The divisor C24 − γC13 is nef for 0 ≤

γ ≤ 1
d13

, hence it is semiample by the base point free theorem [9]. Therefore, if
d ≥ 2 then we have a contradiction with connectedness lemma, since there exists
a Q–divisor �′′ such that ��′′� = 0 and D + � + �′ ∼Q C24 + C13 + �′′. Thus,
d = 1. Since the curve � is a non-toric subvariety of (S, D) then d24 ≥ 2, and we
have d13 = 1 by connectedness lemma again. We obtain the contradiction

0 > (KS + D + � + �′) · C23 ≥
≥

(d24 − 1

d24
C24 − C13 − C23 − C14 + �′

)

· C23 ≥

≥d24 − 1

d24
C24 · C23 − C13 · C23 = d23

(d24 − 1

w1
− 1

w4

)

≥ 0.

Thus, we proved that the sets � ∩ C13 and � ∩ C23 consist of one point only.
Suppose that P4 /∈ �. Then � ∼Q α1C14 + α2C24, α1 = a2(� · C13) ∈ Z>0 and

α2 = a1(� · C23) ∈ Z>0. By applying connectedness lemma we have α1 = α2 = 1.
Let us prove that d14 = d24 = 1. Assuming the converse: d14 ≥ 2. The possibility
d24 ≥ 2 is considered similarly. In order to apply connectedness lemma and obtain
a contradiction (for the disjoint curves C14, C23) we must only prove that D1 =
d14−1

d14
C14 + C24 + d24−1

d24
C24 − 1

d23
C23 is a semiample divisor. Since D1 · C23 > 0 and

D1 · C13 = d13(
d14−1

w2
− 1

w4
) ≥ 0 then D1 is a nef divisor and it is semiample by

the base point free theorem [9]. Finally, since KS + � + C13 + C23 ∼ 0 then KS is
Cartier divisor at the point P3, and the singularity at the point P3 is Du Val of type
1
w3

(w1, w2). Therefore w3 + w4 = w1 + w2 ≡ 0(modw3), w3|w4 and a3|a4.
Suppose that P4 ∈ �. Since the curve � is a (locally) toric orbit in some analytical

neighborhood of P4 then either � · C13 = 1
a4

or � · C23 = 1
a4
. Let us consider the

former case. The latter case is considered similarly. Write � ∼Q α1C23 + α2C24,
α1 = a4(� · C13) = 1 and α2 = a3(� · C14) ∈ Z>0. Arguing as above, we see that
α2 = 1, d24 = 1. If d23 = 1 then this proposition is proved. Let d23 ≥ 2. By the plt
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assumption of this proposition � · C23 = 1
a4

and d13 = 1. Considering � ∼Q C13 +
α′
2C14 we obtain α′

2 = 1, d14 = 1. This completes the proof. �

Definition 4.9 The triple (S, D, �) determined by the assertions of Propositions 4.7
or 4.8 is said to be a purely log terminal triple.

The following problem is important for the classification of plt blow-ups of three-
dimensional toric non-Q-factorial singularity (if we follow the method described in
this paper).

Problem. Let (S, D) = (E,Diff E (0)), where f : (Y, E) → (X � P) is a toric plt
blow-up of some toric three-dimensional (non-Q-factorial) singularity. Assume that
there exist a curve � and an effective Q-divisor �′ such that KS + D + � + �′ is an
anti-ample plt divisor, and � is a non-toric subvariety of (S, D). Classify the triples
(S, D, �).

5 Non-toric Three-dimensional Blow-ups. Case of Point

Example 5.1 Now we construct the examples of three-dimensional non-toric plt
blow-ups f : (Y, E) → (X � P) provided that (X � P) is a Q-gorenstein toric sin-
gularity and P = f (E). Depending on a type of (X � P) we consider two Cases
(A1) and (A2).

(A1). Let (X � P) be a Q-factorial toric singularity, that is, (X � P) ∼= (C3 �
0)/G, where G is an abelian group acting freely in codimension 1. All plt blow-ups
are constructed by the procedure illustrated on the next diagram (Fig. 4) and defined
below.

First step. Let g0 : (Z0, S0) → (X � P) be a toric blow-up, where Exc g0 = S0 is
an irreducible divisor and g0(S0) = P . Assume that there exists a curve�0 ⊂ S0 such
that (S0,Diff S0(0), �0) is a plt triple (see Definition 4.9). Such triples are classified
in Proposition 4.7 and are divided into the five types: A, Dl , E6, E7 and E8.

Remark 5.2 There exists an irreducible reduced Weil divisor � on X such that
�Z0 |S0 = �0. The surface� has a log terminal singularity at the point P . A singularity

Fig. 4 Case of Point.
Construction in Q-factorial
case



458 S. A. Kudryavtsev

type coincides with a type of the triple (S0,Diff S0(0), �0). In particular, if ψ is a G–
semi-invariant polynomial in C3 determining � then Du Val singularity {ψ = 0} ⊂
(C3 � 0) is of the same type.

The following lemma gives a restriction on the triple (S0,Diff S0(0), �0) in the
case of terminal singularities.

Lemma 5.3 Let (X � P) be a terminal singularity, that is, it is of type 1
r (−1,−q, 1),

where gcd(r, q) = 1 and 1 ≤ q ≤ r . Write Diff S0(0) = ∑3
i=1

di −1
di

Di , where Di are
the closures of corresponding one-dimensional orbits of the toric surface S0. Then
gcd(di , d j ) = 1 for i = j .

Proof It is sufficient to prove that the singularities of Z0 are cyclic. Consider the
cone σ determining the singularity (X � P) (see Example 2.2 (1)). By (w1, w2, w3)

denote the primitive vector defining the blow-up g0. Then Z0 is covered by three affine
charts with the singularities of types 1

w3
(−w1,−w2, 1), 1

rw2−qw3
(−w1 + uw2 +

vw3,−uw2 − vw3, 1) and 1
rw1−w3

(−w1, qw1 − w2, 1), where uq + vr = 1 and u,
v ∈ Z. �

According to Proposition 4.7 the curve �0 is locally a toric subvariety of Z0 in
every sufficiently small analytic neighborhood of each point of �0. Note also that Z0

is a smooth variety at a general point of �0.
Let h0 : (Y0,˜S1) → (Z0 ⊃ �0) be an arbitrary blow-up of the curve �0 with an

unique exceptional divisor (Exc h0 = ˜S1) for which the following three conditions
are satisfied.

(1) The morphism h0 is locally toric at every point of �0. In particular, ˜S0 ∼= S0,
ρ(˜S0) = 1.

(2) Let H0 be a general hyperplane section of Z0 passing through the general point
Q0 ∈ �0. Then the morphism h0 induces a weighted blow-up of the smooth point
(H0 � Q0) with weights (β1

0 ,β
2
0).

(3) h∗
0S0 = ˜S0 + β2

0
˜S1.

The set of all possible blow-ups h0 is denoted by H0. The morphism h′
0 gives

the divisorial contraction h′
0 : Y0 → Z1 which contracts the divisor ˜S0 to a point.

We obtain a non-toric blow-up g1 : (Z1, S1) → (X � P), where Exc g1 = S1 is an
irreducible divisor and g1(S1) = P .

Lemma 5.4 Let ˜�0 = ˜S0 ∩ ˜S1. Then

(˜�2
0)˜S1 = β1

0

(

KS0 + Diff S0(0)
) · �0

a(S0, 0) + 1
− β2

0(�
2
0)S0 .

Proof This formula follows from the following equalities

(˜�2
0)

˜S1
=β1

0
˜S0 · ˜�0 = β1

0 (S0 · �0 − β2
0
˜S1 · ˜�0) = β1

0 S0 · �0−
− β2

0 (˜�2
0)

˜S0
= β1

0 S0 · �0 − β2
0 (�2

0)S0 =
= β1

0 ((K Z0 + S0) · �0)/(a(S0, 0) + 1) − β2
0 (�2

0)S0 .

�
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Fig. 5 Type A

Fig. 6 Type Dl

In next Proposition 5.5 we will describe the pair (S1,Diff S1(0)). The surface ˜S1
is a conic bundle with ρ(˜S1) = 2, in particular, every geometric fiber is irreducible.
If we contract the section ˜�0 = ˜S0 ∩ ˜S1 of ˜S1 then we obtain the surface S1. The
curve �0 passes through a finite number of the singular points Q1, . . . , Qr of Z0

(r ≤ 3), and by ˜F1, . . . , ˜Fr denote the fibers of˜S1 over these points. In small analytic
neighborhoods of a general point of ˜�0 and a general point of some section ˜E0

the variety Y0 has the singularities of types C1 × 1
β1
0
(−β2

0 , 1) and C1 × 1
β2
0
(−β1

0 , 1)

respectively. By F1, . . . , Fr , E0 denote the transforms of ˜F1, . . . , ˜Fr , ˜E0 on the
surface S1 respectively. The empty circles are ˜F1, . . . , ˜Fr in the figures of Proposition
5.5. The singularities of˜S1 are into ovals. Note that the self-intersection index (˜�2

0)˜S1
was calculated in Lemma 5.4.

Proposition 5.5 Depending on a type of the triple (S0,Diff S0(0), �0) we have the
following structure of (S1,Diff S1(0)).
(1) Type A (Fig.5),

and

Diff S1(0) = k1 − 1

k1
F1 + k2 − 1

k2
F2 + β2

0 − 1

β2
0

E0.

The pair (S1,Diff S1(0)) is toric.
(2) Type Dl (l ≥ 4) (Fig.6),

and

Diff S1(0) = k1 − 1

k1
F1 + k2 − 1

k2
F2 + k2 − 1

k2
F3 + β2

0 − 1

β2
0

E0.

(3) Type E6 (Fig.7),
and

Diff S1(0) = k1 − 1

k1
F1 + k2 − 1

k2
F2 + k3 − 1

k3
F3 + β2

0 − 1

β2
0

E0.
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Fig. 7 Type E6

Fig. 8 Type E7

Fig. 9 Type E8

(4) Type E7, (Fig.8)
and

Diff S1(0) = k1 − 1

k1
F1 + k2 − 1

k2
F2 + k3 − 1

k3
F3 + β2

0 − 1

β2
0

E0.

(5) Type E8, (Fig.9)
and

Diff S1(0) = k1 − 1

k1
F1 + k2 − 1

k2
F2 + k3 − 1

k3
F3 + β2

0 − 1

β2
0

E0.

The pair (S1,Diff S1(0)) is klt, therefore g1 : (Z1, S1) → (X � P) is a non-toric
plt blow-up.

In cases A, Dl , E6, E7 and E8 we have a non-plt 1-, 2-, 3-, 4- and 6-complement
of (S1,Diff S1(0)) respectively.

Proof By the construction, themorphism h0|˜S1 : ˜S1 → �0 is locally toric. Therefore,
the surface ˜S1 has either no singularities in a fiber or only two singularities of types
1
r1

(1, b1) and 1
r1

(1,−b1). Let us show the local calculations. Consider the singularity
at the point Q1 of Z0 such that the curve �0 contains it. Let the cone 〈e1, e2, e3〉
determines locally the variety Z0 in some analytical neighborhood of Q1, �0 =
V (〈e2, e3〉) and S0 = V (〈e3〉). According to Proposition 4.7 we may assume e1 =
(1, 0, 0). We locally have Y0 = TN (�′), where
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�′ = {〈β, e1, e2〉, 〈β, e1, e3〉, their faces},

β = β1
0e2 + β2

0e3 and N ∼= Z3. Note that V (〈β〉) = ˜S1 and ˜F1 = V (〈β, e1〉) is the
fiber of ˜S1 over the point Q1. Write (Z0 � Q1) ∼= (C3 � 0)/G, (Y0 � Q′

1)
∼= (C3 �

0)/G1, (Y0 � Q′′
1)

∼= (C3 � 0)/G2, where Q′
1 = ˜F1 ∩ ˜E0, Q′′

1 = ˜F1 ∩ ˜S0, and G,
G1, G2 are the abelian groups acting freely in codimension 1. Hence, β2

0 |G| = |G1|
and β1

0 |G| = |G2|.
Finally, a corresponding complement of the pair (E0,Diff E0(Diff S1(0))) is

extended to a required complement of (S1,Diff S1(0)) by Proposition 1.17. �
Second step. Assume that there exists a curve �1 ⊂ S1 with the following two

properties: (1) KS1 + Diff S1(0) + �1 is an anti-ample divisor, h0 : (�1)˜S1 → �0 is a
surjective morphism and (2) �1 is not a center of any blow-up of H0, in particular,
if (S1,Diff S1(0)) is a toric pair then �1 is its non-toric subvariety. For convenience,
we put ˜�1 = (�1)˜S1 .

Lemma 5.6 The triples (S0,Diff S0(0), �0) and (S1,Diff S1(0), �1) are of type A.
Moreover,�1 ∼ E0 + Fj for some index j andβ2

0=1 (that is, E0 ⊂ Supp(Diff S1(0))).

Proof Let us remember that the pairs (S1,Diff S1(0)) were classified in Proposition
5.5, and we will use the same notation.

Put M = (K
˜S1 + Diff

˜S1(0) + ˜�1) · ˜E0. Note that M < 0. There are two possibil-
ities:

(1) ˜�1 ∼ ˜E0, ˜E0 ⊂ Supp(Diff
˜S1(0)) and ˜�1 = ˜E0;

(2) ˜�1 � ˜E0, ˜�1 ∼ a0˜E0 + ∑r
i=1 ai ˜Fi , where ai ∈ Z≥0 and a0 ≥ 1.

Suppose that the triple (S0,Diff S0(0), �0) does not have type A.Wewill prove that
it is impossible. Proposition 4.7 and Lemma 5.4 imply that (˜�2

0)˜S1 < −β2
0(�

2
0)S0 ≤

−β2
0 ≤ −1. Hence the proper transform of ˜�0 has the self-intersection index ≤

−2 on the minimal resolution of ˜S1. Consider possibility (1). Then M = −2 +
deg(Diff

˜E0
(0)) + 1

2
˜E2
0 = 1 − ∑3

i=1
1
ni

+ 1
2
˜E2
0 , where ni ≥ 2 for all i . Since the lin-

ear system |˜E0| is movable then ˜E2
0 = ˜E0 · ˜�1 ≥ 1

ni1
+ 1

ni2
(it is possible that i1 = i2),

and hence M ≥ 0. Consider possibility (2). If ai ≥ 1 for some i ≥ 1 then it is obvi-
ous that M ≥ 0. Therefore we have to consider the last case ˜�1 ∼ a0˜E0, where
a0 ≥ 2. Arguing as in possibility (1) and in its notation we have ˜E2

0 = 1
a0

˜E0 · ˜�1 ≥
2
a0

∑a0
k=1

1
nik

, where ik ∈ {1, 2, 3}, and hence M ≥ 0.

Suppose that the triple (S0,Diff S0(0), �0) is of type A. We will prove that possi-
bility (1) is not realized, and a0 = 1, r = 1, a1 = 1 in possibility (2).

Let mi = ri/ki be an index of the singularity at the point ˜Fi ∩ ˜E0 ∈ ˜S1, where
i = 1, 2. Lemma 5.4 implies that

(˜�2
0)˜S1 < −β2

0(�
2
0)S0 ≤ −β2

0

( 1

m1k1
+ 1

m2k2

)

. (1)

The morphism h′
0|˜S1 : ˜S1 → S1 contracts ˜�0 to a point of type 1

m3
(m1, m2) and h′

0|˜S1
is a toric blow-up corresponding to the weights (m1, m2). Hence
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(˜�2
0)˜S1 = − m3

m1m2
. (2)

Therefore m3 > β2
0(m1/k2 + m2/k1). The toric surface S1 is completely determined

by the triple (m1, m2, m3). For possibility (1) (recall that β2
0 ≥ 2) we obtain the

contradiction

M ≥ −2+ deg
(

Diff
˜E0

(k1 − 1

k1
˜F1 + k2 − 1

k2
˜F2

))

+ 1

2
˜E2
0 =

= − 1

m1k1
− 1

m2k2
+ m3

2m1m2
> 0.

The same calculations for possibility (2) imply a0 = 1, and since˜�1 is an irreducible
curve that the same calculations imply r = 1 and a1 = 1.

In order to prove the lemma we must prove only that the plt triple (S1,Diff S1(0),
�1) is of type A. Assuming the converse: its type differs from type A. For instance, let
us consider Case 6) of Proposition 4.7, the other cases are considered similarly. Thus
(S1,Diff S1(0), �1) = (Px1x2x3(2b2 + 1, b2, 1), 1

2 {x1 = 0},OS1(2b2 + 1)), where
b2 ≥ 2. Since ˜S1 → �0 is a toric conic bundle then there are one possibility only:
˜S1 → S1 is the weighted blow-up of singularity of type 1

b2
(1, 1) at the point

(0 : 1 : 0) with the weights (2b2 + 1, 1). Now (˜�2
0)˜S1 = − b2

2b2+1 by equality (2)

and (˜�2
0)˜S1 ≤ −( 12 + 1

2b2+1 ) by inequality (1). This contradiction concludes the
proof. �

Remark 5.7 A klt singularity is called weakly exceptional if there exists its unique
plt blow-up (see [13, 19]). A two-dimensional klt singularity is weakly exceptional
if and only if it is of type Dn , E6, E7 or E8. Lemma 5.6 shows the interesting
correspondence of the types.

Let h1 : (Y1, (S2)Y1) → (Y0 ⊃ ˜�1) be a blow-up of the curve ˜�1 with an unique
exceptional divisor (Exc h1 = (S2)Y1 ), (S1)Y1

∼= (S1)Y0 and the same structure as h0.
The set of all possible blow-ups h1 is denoted by H1.

By Proposition 4.7 there is 1-complement of KS1 + Diff S1(0) + ˜�1 that extends
to 1-complement of K Z1 + S1. Therefore we have 1-complement KY0 + ˜S1 + ˜S0 +
(D1)Y0 ∼ 0. Since (D1)X = (ψ = 0 ⊂ (C3 � 0))/G wecan slightly change the func-
tion ψ keeping all properties. Therefore there is at least a pencil of (D1)Y1 by proof
of Proposition 4.4.1 [22], and we can assume that a((S2)Y1 , (D1)X ) = −1.

If a(S0, (D1)X ) ≥ 0 then S0 · (D1)Z0 ≥ 2�0, hence KS0 + Diff S0((D1)Z0) is nef
by Proposition 4.7 and a(S0, (D1)X ) ≤ −1.

So we have 1-complement KY1 + (S2)Y1 + (S1)Y1 + (S0)Y1 + (D1)Y1 ∼ 0. By the
cone theorem we have:

(1) there exists an divisorial contraction h′
1,1 : Y1 → Y1,1 of (S1)Y1 onto a curve,

(S2)Y1
∼= (S2)Y1,1 ;
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(2) apply KY1,1 + (S0)Y1,1 + (S2)Y1,1 -MMP to contract small extremal rayby a small
contraction ϕ1,1. Put Excϕ1,1 = (F0)Y1,1 . Let ϕ+

1,1 be a log flip of ϕ1,1, Excϕ+
1,1 =

(F+
0 )Y1,2 , h′

1,2 : Y1,1 ��� Y1,2 be a corresponding birational map;
(3) there exists a divisorial contraction h′

1,3 : Y1,2 → Z2 of (S0)Y1,2 to a point.
Thuswe obtain a birationalmap h′

1=h′
1,3 ◦ h′

1,2 ◦ h′
1,1 : Y1 ��� Z2. Since (D1)Y1,1 ·

(F0)Y1,1 = −(KY1,1 + (S0)Y1,1 + (S2)Y1,1) · (F0)Y1,1 > 0, (D1)Y1,1 contains a some fiber
of (S2)Y1,1 and (D1)Y1,1 ⊃ (F0)Y1,1 by Proposition 4.7, then the divisor (D1)Z2 con-
tains the fiber (F+

0 )Z2 and ((S2)Z2 ,Diff (S2)Z2
(0)) is a toric pair by Shokurov’s cri-

terion on the characterization of toric varieties [26]. We obtain a non-toric blow-up
g2 : (Z2, S2) → (X � P).

We prove the following proposition.

Proposition 5.8 The pair (S2,Diff S2(0)) is toric (1-complementary) with the struc-
ture described in Proposition 5.5 (Type A), g2 is a non-toric plt blow-up.

Third step. Assume that there exists a curve �2 ⊂ S2 with the following two
properties: (1) KS2 + Diff S2(0) + �2 is an anti-ample divisor, h0 ◦ h1 : (�2)Y1 → �0

is a surjective morphism and (2)�2 is not a center of any blow-up ofH1, in particular,
�2 is a non-toric subvariety of (S2,Diff S2(0)).

Proposition 5.9 There is no any blow-up h2 : (Y2, (S3)Y2) → (Y1 ⊃ (�2)Y1) of the
curve (�2)Y1 with unique exceptional divisor such that (S3)Y2 is realized by some plt
blow-up g3 : Z3 → (X � P).

Proof Assume the converse. Repeat the procedure described in Diagram 4, but with
one change, replace the blow-up g0 : Z0 → X by the blow-up g1 : Z1 → X . There-
fore, returning to the main procedure, we can assume that there is 1-complement
KY2 + (S3)Y2 + (S2)Y2 + (S1)Y2 + (S0)Y2 + (D2)Y2 ∼ 0. Apply MMP to contract S1
and S2. Let Y2 ��� Y2,2 be a corresponding birational map. If (S0)Y2,2 contains one
fiber of (S3)Y2,2 then (S1)Y2 and (S0)Y2 contain a fiber of (S3)Y2 , a contradiction
with log canonicity. Therefore (S0)Y2,2 contains two fibers of (S3)Y2,2 . Then we obtain
the contradiction (K(S3)Y2,2

+ Diff (S3)Y2,2
((S0)Y2,2 + (D2)Y2,2)) · C > 0,whereC is any

section of the conic bundle (S3)Y2,2 . �

(A2). Let (X � P) be a non-Q-factorial terminal toric three-dimensional singu-
larity, that is, (X � P) ∼= ({x1x2 + x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0)).
Let f : (Y, E) → (X � P) be some non-toric plt blow-up. Let ϕi : Xi → (X �

P) be two Q-factorializations, Excϕi = Ci (i = 1, 2). Let ψi : (Yi , Ei ) → (Xi �
Qi ) be a plt blow-up for some i such that Ei and E define the same discrete valuation
of the function field K(X), Qi is a point. The blow-up ψi was constructed in the
previous case of Q-factorial singularities, ρ(Ei ) = 1.

Let Yi ��� Y i be a log flip for the curve (Ci )Yi . Considering another value of i we
see that −(Ei )Y i

is ample. Therefore Y i = Y and ρ(E) = 2.
We give another construction and prove that (E,Diff E (0)) is a toric pair by the

procedure illustrated on the next diagram (Fig. 10) and defined below.
First step. Let g0 : (Z0, S0) → (X � P) be a toric plt blow-up, where Exc g0 = S0

and g0(S0) = P (see Definition 4.1 and its notation). Assume that there exists a curve
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Fig. 10 Case of Point.
Construction in
non-Q-factorial case

�0 ⊂ S0 such that (S0,Diff S0(0), �0) is a plt triple (see Definition 4.9). Such triples
are classified in Proposition 4.8.

Remark 5.10 Note that there exists the divisor � = {x2 + γxw2/w1
1 + . . . = 0}|X

such that �Z |S = �0, and it has Du Val singularity of type Aw2/w1 , where γ = 0.

Let h0 : (Y0,˜S1) → (Z0 ⊃ �0) be an arbitrary blow-up of the curve �0 with an
unique exceptional divisor (Exc h0 = ˜S1) as in case (A1). The set of all possible
blow-ups h0 is denoted by H0.

There are two possibilities. The first possibility is as follows. There is a divi-
sorial contraction of ˜S0 to a curve: h′

0 : Y0 → Z1, and we obtain a non-toric plt
blow-up g1 : (Z1, S1) → (X � P), where Exc g1 = S1 and g1(S1) = P . The pair
(S1,Diff S1(0)) is toric as in Proposition 5.5 (1).

The second possibility is when the first possibility is not realized. The curves
(C13)Y0 and (C23)Y0 (see Definition 4.1) generate extremal rays of NE(Y0/X) that
give small contractions. Let us contract the second one and h′

0,1 : Y0 ��� Y0,1 be
a log flip. Let h′

0,2 : Y0,1 → Z1 be a divisorial contraction of (S0)Y0,1 to a point.
Thus we obtain a birational map h′

0 = h′
0,2 ◦ h′

0,1 : Y0 ��� Z1. As in case (A1) 1-
complement KS0 + C13 + C23 + �0 of KS0 + Diff S0(0) extends to 1-complement
K Z0 + S0 + (D0)Z0 such that a((S1)Y0 , (D0)Z0 + S0) = −1. Therefore the divisor
Diff S1((D0)Z1) consists of four curves and is 1-complement of KS1 + Diff S1(0). By
Shokurov’s criterion on the characterization of toric varieties (S1,Diff S1(0)) is a toric
pair. Thus g1 : Z1 → (X � P) is a non-toric plt blow-up.

Second step. Assume that there exists a curve �1 ⊂ S1 with the following two
properties: (1) KS1 + Diff S1(0) + �1 is an anti-ample divisor, h0 : (�1)˜S1 → �0 is a
surjective morphism and (2)�1 is not a center of any blow-up ofH0,�1 is a non-toric
subvariety of (S1,Diff S1(0)).

The self-intersection index �2
0 is calculated by Proposition 4.8. Lemmas 5.4 and

5.6 are also true in this case. So we have 1-complement KY1 + (S2)Y1 + (S1)Y1 +
(S0)Y1 + (D1)Y1 ∼ 0. By the cone theorem we have:

(1) there exists an divisorial contraction h′
1,1 : Y1 → Y1,1 of (S1)Y1 onto a curve,

(S2)Y1
∼= (S2)Y1,1 ;

(2) apply KY1,1 + (S0)Y1,1 + (S2)Y1,1 -MMP to contract small extremal ray, let
h′
1,2 : Y1,1 ��� Y1,2 be a corresponding log flip;
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(3) apply KY1,2 + (S0)Y1,2 + (S2)Y1,2 -MMP to contract either small extremal ray or
the divisor (S0)Y1,2 onto a curve; we obtain a birational map h′

1,3 : Y1,2 ��� Y1,3 or a
morphism h′

1,4 : Y1,3 → Z2 respectively;
(4) in the first case of (3) there exists a divisorial contraction h′

1,3 : Y1,3 → Z2 of
(S0)Y1,2 to a point.

Thus we obtain a birational map h′
1 : Y1 ��� Z2 and a non-toric blow-up g2 : (Z2,

S2) → (X � P). The pair (S2,Diff S2(0)) is toric by the same arguments as in case
(A1).

We prove the following proposition.

Proposition 5.11 The pair (Si ,Diff Si (0)) is klt and toric (1-complementary), ρ(Si )

= 2, gi is a non-toric plt blow-up for i = 1, 2.

Example 5.12 In this case we will construct examples of non-toric canonical blow-
ups and prove that they are not terminal blow-ups. Depending on a type of (X � P)

there are two Cases (B1) and (B2).
(B1).Let (X � P) ∼= (C3

x1x2x3 � 0). Let us consider a weighted blow-up g : (Z , S)

→ (X � P) with weights (w1, w2, w3) such that g(S) = P (that is, wi > 0 for
all i = 1, 2, 3), where gcd(w1, w2, w3) = 1. Write (w1, w2, w3) = (a1q2q3, a2q1q3,

a3q1q2), where qi = gcd(wk, wl) and i, k, l are mutually distinct indices from 1 to
3. Then

(

S,Diff S(0)
) ∼=

(

Px1x2x3

(

a1, a2, a3
)

,

3
∑

i=1

qi − 1

qi
{xi = 0}

)

.

Assume that g is a canonical blow-up.

Proposition 5.13 Let the curve � be a non-toric subvariety of (S,Diff S(0)). Assume
that � does not contain any center of canonical singularities of Z and −(KS +
Diff S(0) + �) is an ample divisor. Then we have one of the following possibilities
for weights (w1, w2, w3) up to permutation of coordinates.

Type (A). (w1, w2, w3) = (a1q3, a2q3, 1), � ∼ OS(a1 + a2).
Type (D). (w1, w2, w3)=(l, l − 1, 2), (l + 1, l, 1), (l, l, 1)and� ∼ OS(l),OS(2l),

OS(2) respectively, where l ≥ 2.
Type (E6). (w1, w2, w3) = (3, 2, 2), (6, 4, 3), (5, 3, 2), (4, 2, 1) and � ∼ OS(3),

OS(2), OS(9), OS(3) respectively.
Type (E7). (w1, w2, w3) = (3, 2, 2), (6, 4, 3), (9, 6, 4), (3, 3, 1), (5, 4, 2), (7, 5, 3),

(5, 3, 2) and � ∼ OS(3), OS(2), OS(3), OS(2), OS(5), OS(14), OS(6) respectively.
Type (E8). (w1, w2, w3) = (3, 2, 2), (6, 4, 3), (9, 6, 4), (12, 8, 5), (15, 10, 6),

(5, 4, 2), (10, 7, 4), (8, 5, 3) and � ∼ OS(3), OS(2), OS(3), OS(6), OS(1), OS(5),
OS(10), OS(15) respectively.

In all possibilities there is Du Val element �Z ∈ | − K Z | such that �Z |S =
� + ∑r

i=1 γi�i . Moreover, �Z |S = �, except the two possibilities: (l + 1, l, 1),
� ∼ OS(2l)(type D) and (5, 3, 2), � ∼ OS(6)(type E7). In these two possibilities
we have �Z |S = � + �1, where �1 ∼ OS(1) and OS(3) respectively.

Proof The proof follows from Proposition 2.6 by enumeration of cases. �
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Remark 5.14 Proposition 5.13 is similar to Proposition 4.7. Note that there is one-
to-one correspondence between the sets (w1, w2, w3, �) and the exceptional curves
of minimal resolution of Du Val singularity (� � P), where � = g(�Z ). Types in
Proposition 5.13 correspond to Du Val types of the singularity (� � P).

By Theorem 1.6 there exists a divisorial contraction h : (˜Y , ˜E) → (Z ⊃ �) for
any weights (β1, 1) such that

(1) Exc h = ˜E is an irreducible divisor and h(˜E) = �;
(2) the morphism h is locally toric for a general point of �;
(3) if H is a general hyperplane section passing through the general point Q ∈ �,

then h induces the weighted blow-up of the smooth point (H � Q) with weights
(β1, 1);

(4) h∗S = ˜S + ˜E and h∗�Z = �
˜Y + β1˜E .

Apply K
˜Y + �

˜Y + ε˜S–MMP. Since ρ(˜Y/X) = 2 and K
˜Y + �

˜Y + ε˜S ≡ ε˜S over
X , thenwe obtain a sequence of log flips˜Y ��� Y , and after it we obtain the divisorial
contraction h′ : Y → Y which contracts the proper transform S of ˜S.

Thus we obtain a required non-toric blow-up f : (Y, E) → (X � P), where
Exc f = E is an irreducible divisor and f (E) = P . Since KY + �Y = f ∗(K X + �)

then f is a canonical blow-up.
Finally let us prove that f is a non-terminal blow-up, that is, the singularities of

Y are non-terminal. We must prove only that the center of S on Y does not lie in �Y ,
since 0 = a(S,�). Let ˜Y = Y 1 ��� Y 2 ��� . . . ��� Y n = Y be a decomposition of
log flip sequence into elementary steps. If �Y i

is a nef divisor then by the base point
free theorem [9] the linear system |m�Y i

| gives the birational contraction h′ for
m 
 0. It contracts the proper transform of ˜S to a point, i = n, and this completes
the proof. Suppose that �Y i

is not a nef divisor. The cone NE(Y i/X) is generated
by two extremal rays. By Qi , Ri denote them, and to be definite, assume that the ray
Ri determines the next step of MMP. By construction, we have �Y i

· Qi > 0, and
hence −KY i

· Ri = �Y i
· Ri < 0. Since KY i

· Ri > 0 and the singularities of MMP
are canonical, then the ray Ri gives a log flip (that is, i < n), and after it we have
�Y i+1

· Qi+1 > 0. At the end we obtain that �Y j
is a nef divisor for some j . This

completes the proof.
(B2).Let (X � P) ∼= ({x1x2 + x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0)). Let us consider a toric
canonical blow-up g : (Z , S) → (X � P) (see Proposition 2.6 (3)).

Proposition 5.15 Let a curve � be a non-toric subvariety of (S,Diff S(0)). Assume
that � does not contain any center of canonical singularities of Z and −(KS +
Diff S(0) + � + �′) is an ample divisor, where �′ is some effective Q-divisor.
Then w1 = 1 and � ∼ OP(w1,w2,w3,w4)(w2)|S up to permutation of coordinates.
There exists Du Val element �Z ∈ | − K Z | such that �Z |S = �. In particular,
−(KS + Diff S(0) + �) is an ample divisor and (� � P) is Du Val singularity of
type Aw2 , where � = g(�Z ).

Proof The proof follows from Proposition 2.6 (3). �

Now we can apply the construction of Case (B1).
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Another construction of same non-toric canonical blow-ups is the following one.
Consider a Q-factorialization g : ˜X → X and ˜T = Exc g. By G denote the center of
E on ˜X .Applying (if necessary) aflop ˜X ��� ˜X+ wemayassume thatG is a point. Let
us apply the above mentioned construction in Case (B1) for singularity (˜X � G). We
obtain a non-toric canonical blow-up f : Y → ˜X . Let Y ��� Y + be a log flip for the
curve TY . Thuswe obtain a non-toric canonical blow-up f + : (Y +, E+) → (X � P),
where E+ = Exc f + and f +(E+) = P .

6 Main Theorems. Case of Point

Example 6.1 Let (X � P) ∼= (C3
x1x2x3 � 0). Let us consider the weighted blow-up

g : (Z , S) → (X � P) with the weights (15, 10, 6). Then

(

S,Diff S(0)
) ∼=

(

P2,
1

2
L1 + 2

3
L2 + 4

5
L3

)

,

where Li are the straight lines, and the divisor
∑

Li is a complement to open toric
orbit of S.

Let � = {x2
1 + x3

2 + x5
3 = 0} ⊂ (X � P) be a divisor with Du Val singularity of

type E8. Then L = �Z |S is a straight line. Put Pi = Li ∩ L . Then the points Pi are
non-toric subvarieties of (S,Diff S(0)).

The main difference of structure of non-toric canonical blow-ups from the struc-
ture of non-toric plt blow-ups is shown in the following statements.

(1) We have Pi ∈ CS(Z ,�Z ) for every i . Thus Pi are the centers of some non-
toric canonical blow-ups of (X � P), that is, there exists the canonical blow-up
(Y, Ei ) → (X � P) such that the center of Ei on Z is the point Pi for every i .

(2) The points Pi are not the centers of any non-toric plt blow-ups of (X � P).
The proof of this fact is given in Theorem 6.2.

The origin of this difference is that S is not (locally) Cartier divisor at the points
Pi (cf. Theorem 2.13).

The straight line L ∈ CS(Z ,�Z ) is a center of some non-toric canonical and plt
blow-ups of (X � P). As might appear at first sight the class of non-toric canonical
blow-ups is much wider than the class of non-toric plt blow-ups, but it is not true. To
construct the non-toric canonical blow-ups, some necessary conditions used implic-
itly in this examplemust be satisfied. Namely, g is a canonical blow-up, a(S,�) = 0,
the straight line L does not contain any center of canonical singularities of Z .

Theorem 6.2 Let f : (Y, E) → (X � P) be a plt blow-up of three-dimensional toric
terminal singularity, where f (E) = P. Then, either f is a toric morphism, or f is
a non-toric morphism described in Sect.5.

Proof Let f be a non-toric morphism (up to analytical isomorphism). Let DY ∈
| − n(KY + E)| be a general element for n 
 0. Put DX = f (DY ) and d = 1

n . The
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pair (X, d DX ) is log canonical, a(E, d DX ) = −1 and E is a unique exceptional
divisor with discrepancy −1.

Let (X � P) be a Q–factorial singularity. According to the construction of partial
resolution of (X, d DX ) (see Definition 2.7) and Criterion 2.8 there exists a toric
divisorial contraction g : Z → X such that it is dominated by partial resolution of
(X, d DX ) (up to toric log flips), and one of the following Cases I and II occurs.

Case I. The exceptional set Exc g = S is an irreducible divisor, the divisors S and
E define the different discrete valuations of the function field K(X), and g(S) = P .
By � denote the center of E on the surface S. Then the center � is a non-toric
subvariety of Z . In the other words � is a non-toric subvariety of (S,Diff S(0)). If
� is a point then we assume that it does not lie on any one-dimensional orbit of the
surface S (up to analytical isomorphism (X � P) of course).

Case II. The variety Z is Q-gorenstein, hence it is Q-factorial. The exceptional
set Exc g = S1 ∪ S2 is the union of two exceptional irreducible divisors, S1, S2 and E
define mutually distinct discrete valuations of the function field K(X) and g(S1) =
g(S2) = P . To be definite, let ρ(S1) = 1, ρ(S2) = 2, and C = S1 ∩ S2 is a closure
of one-dimensional orbit of Z . By � denote the center of E on Z . In this case �

is a point and a non-toric subvariety of (S1,Diff S1(0)), � ∈ C , and the curve C has
the coefficient 1 in the divisor Diff S1(S2 + d DZ ). Mori cone NE(Z/X) is generated
by two extremal rays, denote them by R1 and R2. To be definite, let R1 gives the
divisorial contraction which contracts the divisor S1 to some point P1. Considering
toric blow-ups of P1 we may assume that Diff S1(S2 + d DZ ) is a boundary in some
analytical neighborhood of the point �.

If R2 gives the divisorial contraction which contracts the divisor S2 (onto curve)
then it is Case IIa. If R2 gives a small flipping contraction then it is Case IIb.

Let us consider Case IIb in more detail. Let Z ��� Z+ be a toric log flip induced
by R2. The corresponding objects on Z+ are denoted by the index +. For the toric
divisorial contraction g+ : Z+ → X we have ρ(S+

1 ) = 2, ρ(S+
2 ) = 1. Note that the

point �+ ∈ C+ = S+
1 ∩ S+

2 of E on Z+ can be a toric subvariety of (S+
2 ,Diff S+

2
(0)).

The morphism g+ is dominated by partial resolution of (X, d DX ) (up to toric log
flips), and the curve C+ has the coefficient 1 in the divisor Diff S+

2
(S+

1 + d DZ+).
Note that the equality g(Exc g) = P is proved similarly to Theorem 2.12 in both

Cases I and II.
Now, according to Sect. 5 the following lemma implies the proof of theorem (for

Q–factorial singularities). �
Lemma 6.3 It is possible Case I only. Moreover, � is a curve and KS + Diff S(0) +
� is a plt divisor.

Proof Let us consider Case I. Write

K Z + d DZ + aS = g∗(K X + d DX
)

,

where a < 1. Hence

a
(

E, S + d DZ
)

< a
(

E, aS + d DZ
) = −1.
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Therefore � ⊂ LCS(S,Diff S(d DZ )) and −(KS + Diff S(d DZ )) is an ample divisor.
Assume that � is a (irreducible) curve. We must prove that KS + Diff S(0) + �

is a plt divisor. Assume the converse. By the adjunction formula, � is a smooth
curve, and by connectedness lemma the divisor KS + Diff S(0) + � is not a plt one
at unique point denoted by G. The point G is a toric subvariety of (S,Diff S(0)) by
Theorem 4.2. Moreover, the curve � is locally a non-toric subvariety at the point
G only. According to the construction of partial resolution [27] there exists the
divisorial toric contraction ĝ : ̂Z → Z such that Exc ĝ = S2 is an irreducible divisor,
ĝ(S2) = G and the following two conditions are satisfied.

(1). Put S1 = S
̂Z and C = S1 ∩ S2. Let c(�) be the log canonical threshold of

� for the pair (S,Diff S(0)). Then ĝ|S1 : S1 → S is the inductive toric blow-up of
KS + Diff S(0) + c(�)� (see Theorems 1.10 and 2.12), and the point ̂G = C ∩ �S1
is a non-toric subvariety of (S2,Diff S2(0)).

(2). The divisor Diff S2(d D
̂Z + S1) is a boundary at the point ̂G.

Let H be a general hyperplane section of large degree passing through the point
P . Then we have a(Si , d DX + h H) = −1 and a(Sj , d DX + h H) > −1 for some
h > 0, i = j . If i = 1 and j = 2 then we have the contradiction with Theorem 4.2
for the pair (S2,Diff S2(d D

̂Z + S1)). Hence, we may assume that i = 2 and j = 1.
Mori cone NE(̂Z/X) is generated by two rays, denote them by ̂R1 and ̂R2. To be
definite, let ̂R2 gives the contraction ĝ.

At first assume that ̂R1 gives the contraction g1 : ̂Z → Z1 which contracts S1
(onto a curve). The contraction g1 is an isomorphism for the surface S2, therefore we
denote g1(S2) by S2 again for convenience. If Diff S2(d DZ1) is a boundary then we
have the contradiction with Theorem 4.2 applied for the pair (S2,Diff S2(d DZ1)). If
it is not a boundary then we have the following contradiction

0 > (1 + a(S1, d DX + h H))S1 · C0 =
= (KS1 + Diff S1(d D

̂Z + S2 + h H
̂Z )) · C0 ≥

≥(KS1 + Diff S1(0)
′ + �S1 + C + C0) · C0 ≥ (−F1 − F2 + �S1) · C0 ≥ 0,

where C0 is the closure of one-dimensional orbit of S1, having zero-intersection with
C , and F1, F2 are the two toric fibers (the closures of corresponding one-dimensional
toric orbits) of the toric conic bundle S1 → g1(S1), and the divisor Diff S1(0)

′ is a
part of Diff S1(0) provided that we equate to zero the coefficients of C and C0 in
Diff S1(0).

At last assume that ̂R1 gives a flipping contraction. Let ̂Z ��� ̂Z+ be a cor-
responding toric log flip. The corresponding objects on ̂Z+ are denoted by the
index +. If the point ̂G+ is a non-toric subvariety of (S+

1 ,Diff S+
1
(0)) then we have

the contradiction with Theorem 4.2 applied for the pair (S+
1 ,Diff S+

1
(S+

2 ) + ̂�+).
Therefore we can assume that the point G+ is a toric subvariety. If the curve ̂�+
is a non-toric subvariety of (S+

1 ,Diff S+
1
(0)), then by the inversion of adjunction

the pair (S+
1 ,Diff S+

1
(S+

2 ) + ̂�+) is plt outside ̂G+, and we have the contradiction
with Proposition 4.7. Thus we have proved that ̂�+ and G+ are the toric subvari-
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eties of (S+
1 ,Diff S+

1
(0)). In particular, S+

1
∼= P(1, r1, r2), where gcd(r1, r2) = 1 and

(̂�+)2 = r1/r2. Considering the divisor D(δ) = (d − δ)D + h(δ)H for some δ ≥ 0
and h(δ) > 0 (h(0) = 1) instead of the divisor D(0) = d D, we may assume that the
whole construction is satisfied and a(E, D(δ)) = −1.

Let Diff S2(D(δ) − a(S1, D(δ))S1) ≥ 0 (for example, it holds if a(S1, D(δ)) <

0). Replacing the divisor H by other general divisor with ̂G ∈ Supp(H
̂Z ), we

may assume that the three following conditions are satisfied: (1) Diff S2(D(δ) −
a(S1, D(δ))S1) ≥ 0; (2) ̂G is a center of LCS(̂Z , D(δ)

̂Z − a(S1, D(δ))S1 − a(S2,
D(δ))S2); (3) a(S2, D(δ)) > −1. We obtain the contradiction with Theorem 4.2 for
the pair (S2,Diff S2(D(δ) − a(S1, D(δ))S1)).

Let Diff S2(D(δ) − a(S1, D(δ))S1) is not an effective divisor. The curve ̂�+ is
locally a toric subvariety in some analytical neighborhood of every point of ̂Z+,
therefore there exists a blow-up g : (Z ⊃ S3) → (̂Z+ ⊃ ̂�+), where Exc g = S3 is
an irreducible divisor such that g(S3) = ̂�+ and the following three conditions are
satisfied.
(A) The morphism g is locally a toric one at every point of̂�+, in particular, S1

∼= S1.
(B) Let H be a general hyperplane section of ̂Z+ passing through the general point
̂Q ∈ ̂�+. Then g induces a weighted blow-up of (H � ̂Q)with weights (β1,β2), and
g∗S+

1 = S1 + β2S3.
(C) Either the divisors S3 and E define the same discrete valuation of the function
fieldK(X) (Case C1), or the curve � ⊂ S3 being the center of E on Z is a non-toric
subvariety of (S3,Diff S3

(0)) (Case C2).
By C0 and F denote zero-section and a general fiber of S3 respectively.
Let us consider Case C1. Then D(δ)|S3

∼Q aC0 + bF by the generality of D,

where b ≥ 0 and a = 2 + a(S1, D(δ))/β1 − β2−1
β2

− β1−1
β1

≥ 1 + 1
β2
. We obtain the

contradiction (the calculations are similar to Lemma 5.4 and Proposition 5.5)

0 =(KS3
+ Diff S3

(D(δ) + S
+
2 − a(S1, D(δ))S

+
1 )) · C0 ≥

≥ −2 + 1 + r2 − 1

r2
+ C

2
0 > (r1 − 1)/r2 ≥ 0.

Let us consider Case C2. If a(S3, D(δ)) ≤ −1 then we require the condition
a(S3, D(δ)) = −1 to be satisfied instead of the condition a(E, D(δ)) = −1 in the
construction of D(δ), and we obtain similar contradiction as in Case C1. Therefore
we may assume that a(S3, D(δ)) > −1. Then � ∼ aC0 + bF , where either a ≥ 1,
b ≥ 1, or a ≥ 2, b ≥ 0, or a = 1, b = 0, � = C0, β2 ≥ 2. Continuing this line of
reasoning, we have the same contradictions for any possibility of �.

Now assume that � is a point. Theorem 4.2 implies that Diff S(d DZ ) is not a
boundary in any analytical neighborhood of �. Moreover, there is unique curve
passing through � with the coefficient ≥ 1 in the divisor Diff S(d DZ ). It is clear that
it is smooth at the point �, it is a non-toric subvariety of (S,Diff S(0)) and denote it
by T .

Let us prove that (S,Diff S(0) + T ) is a plt pair. Let H be a general hyper-
plane section of large degree passing through the point P such that � ∈ HZ .
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As above by Theorem 4.2, there exist some rational numbers 0 < δ < d, h > 0
and the divisor D′ = (d − δ)DX + h H such that (X, D′) is a log canonical pair,
LCS(Z , D′

Z − a(S, D′)S) = T and � is a center of (Z , D′
Z − a(S, D′)S). More-

over, we may assume that there are not another centers differing from � and T
by connectedness lemma. Now, according to the standard Kawamata’s perturbation
trick, there exists an effectiveQ-divisor D′′ on X such that the curve T is uniquemin-
imal center of (Z , D′′

Z − a(S, D′′)S). So, by the previous statement proved (when �

is a curve) (S,Diff S(0) + T ) is a plt pair.
Let us consider the blow-up g : (Z ⊃ S3) → (Z ⊃ T ) for the pair (X, D′) which

is similar to the blow-up g : (Z ⊃ S3) → (̂Z+ ⊃ ̂�+), where Exc g = S3. Let� ⊂ Z
be a center of E . There are two cases � = F , � is a point, where F is a fiber over the
point �. Applying Lemma 4.4 if � is a point, we obtain the contradiction in same
way as above

0 = (KS3
+ Diff S3

(D′ − a(S, D′)S)) · C0 > 0.

Let us prove that Case II is impossible. Let H be a general hyperplane section
of large degree passing through the point P . Then we have a(Si , d DX + h H) = −1
and a(Sj , d DX + h H) > −1 for some h > 0.

Let us introduce the following notation: let M = ∑

mi Mi be the divisor decompo-
sition on irreducible components, then we put Mb = ∑

i : mi >1 Mi + ∑

i : mi ≤1 mi Mi .
If i = 2 and j = 1 then we obtain the contradiction with Theorem 4.2 for the pair

(S1,Diff S1(d DZ + S2)b). Therefore i = 1 and j = 2.
Let us considerCase IIb. If�+ is a non-toric subvariety of (S+

2 ,Diff S+
2
(0)) thenwe

obtain the contradiction with Theorem 4.2 for the pair (S+
2 ,Diff S+

2
(d DZ+ + S+

1 )b).
Therefore we assume that �+ is a toric subvariety of (S+

2 ,Diff S+
2
(0)). The similar

(related) case have been considered, when � was a curve, therefore we do not repeat
its complete description. By construction, the curve C+ ⊂ S+

1 is exceptional and
contains at most one singularity of S+

1 . Since the pair (S+
1 ,Diff S+

1
(d DZ+ + h HZ+) is

not log canonical at the point�+, then (d DZ+ + h HZ+) · C+ = 1 + σ, where σ > 0.
Since the divisor −KS+

1
is a sum of four one-dimensional orbit closures, then

a(S+
2 , d DZ+ + h HZ+)S+

2 · C+ =
= (KS+

1
+ Diff S+

1
(d DZ+ + h HZ+)) · C+ ≥

≥ −(C+)2S+
1

− 1 − 1

r 1
+ 1 + σ ≥ σ > 0.

Since S+
2 · C+ < 0 then a(S+

2 , d DZ+ + h HZ+) < 0. Now, to obtain the contradic-
tionwithTheorem4.2 for the pair (S1,Diff S1(d DZ + h HZ − a(S2, d D + h H)S2)b),
it is sufficient to decrease the coefficient h slightly (then a(S1, d D + h H) > −1).

Let us consider Case IIa. Let g1 : Z → Z1 be a contraction of R2. The contraction
g1 is an isomorphism for the surface S1, therefore we denote g1(S1) by S1 again for
convenience. If the divisorDiff S1(d DZ1) is a boundary thenwe have the contradiction
with Theorem 4.2 for the pair (S1,Diff S1(d DZ1)), and if it is not a boundary then we
have the following contradiction
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0 > (1 + a(S2, d DX + h H))S2 · C0 =
= (KS2 + Diff S2(d DZ + S1 + h HZ )) · C0 ≥
≥ (KS2 + Diff S2(0)

′ + F + C + C0) · C0 ≥ 0,

where C0 is the closure of one-dimensional orbit of S2 having zero-intersection with
C , and F is a general fiber of the conic bundle S2 → g1(S2), and the divisor Diff S2(0)

′
is a part of Diff S2(0) provided that we equate to zero the coefficients of C and C0

in Diff S2(0). Note that the equality (DZ |S2 · C)� ≥ 1 have been applied here (see
Lemma 4.4); it is true since (S2, C + DZ |S2) is not a plt pair at the point � by the
construction. �

Let (X � P) be a non-Q–factorial singularity, that is, (X � P) ∼= ({x1x2 +
x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0)).We repeat the arguments given in Sect. 5. Let g : ˜X → X
be a Q-factorialization and let C = Exc g ∼= P1. Note that ˜X is a smooth variety. By
G denote the center of E on ˜X . If G is a point then it is a toric subvariety, and hence
the main theorem is reduced to the case of Q-factorial singularities. If G = C then
we consider the flop ˜X ��� ˜X+, and we may assume that G is a point by replacing
˜X by ˜X+.

Theorem 6.4 Let f : (Y, E) → (X � P) be a plt blow-up of three-dimensional toric
Q–factorial singularity, where f (E) = P. Then, either f is a toric morphism, or f
is a non-toric morphism described in Sect.5.

Proof We can repeat the proof of Theorem 6.2 without any changes in our case.
Lemma 5.3 gives some restrictions, when (X � P) is a terminal singularity, but it is
not used in what follows. �

Theorem 6.5 Let f : (Y, E) → (X � P) be a canonical blow-up of three-
dimensional toric terminal singularity, where f (E) = P. Then, either f is a toric
morphism (see Proposition 2.6), or f is a non-toric morphism described in Sect.5.

Proof Let f be a non-toric morphism (up to analytical isomorphism). Let DY ∈
| − nKY | be a general element for n 
 0. Put DX = f (DY ) and d = 1

n . The pair
(X, d DX ) has canonical singularities and a(E, d DX ) = 0.

Let (X � P) be a Q–factorial singularity. There is one of two Cases I and II
described in the proof of Theorem 6.2. We will use the notation from the proof of
Theorem 6.2. According to Sect. 5 the following proposition implies the proof of
theorem for Q–factorial singularities. �

Proposition 6.6 There exists a toric blow-up g such that we have Case I always, the
center � is a curve, a(S, d DX ) = 0 and (X � P) is a smooth point, in particular, g
is a canonical blow-up.

Proof Let us consider Case II. We may assume that C ⊂ Supp(Sing Z). Actually,
by taking toric blow-ups with the center C we obtain either the requirement, or Case
I (that is, there is some blow-up g such that the center of E is a curve and a non-toric
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subvariety of corresponding exceptional divisor). Therefore S1 and S2 are Cartier
divisors at the point �. Therefore we have

a(E, Si + d DZ ) ≤ a(E,−a(Si , d DX )Si + d DZ ) − 1 ≤ −1

for i = 1, 2
Let H be a general hyperplane section of large degree passing through the point P

and let � ∈ HZ . For any δ > 0 there exists a number h(δ) > 0 such that (X, D(δ) =
(d − δ)DX + h(δ)H) is a log canonical and not plt pair. Let DZ |S = ∑

di DS
i be a

decomposition on the irreducible components (S = S1 + S2). If it is necessary we
replace the divisor DX by D′

X in order to D′
Z |S = ∑

i : �∈DS
i

di DS
i . By the generality

of H and connectedness lemma, there exists δ > 0 with the following two properties.
(1) The pair (X, D(δ)) defines a plt blow-up (Y (δ), E(δ)) → (X � P).
(2) By T denote the center of E(δ) on Z . Then, either T = �, or T is a curve

provided that T ⊂ S2 and � ∈ T (note that case T ⊂ S1 is impossible, since it was
proved in Case I of Theorem 6.2).

Let T = �. Then we have Case II of Theorem 6.2, but it was proved that this case
is impossible.

Let T be a curve and let ψ : Z → Z ′ be a contraction of R1. The morphism ψ
contracts the divisor S1 to the point P1. By construction, KS′

2
+ Diff S′

2
(0) + TS′

2
is

not a plt divisor at the point P1, and it was proved in Case I of Theorem 6.2 that this
case is impossible.

Let us consider Case I. Write K Z + d DZ = g∗(K X + d DX ) + a(S, d DX )S,
where a(S, d DX ) ≥ 0. Since S is Cartier divisor at a general point of � then

a(E, S + d DZ ) ≤ a(E,−a(S, d DX )S + d DZ ) − 1 = −1.

Hence � ⊂ LCS(S,Diff S(d DZ )).
Let a(S, d DX ) = 0. Then Z has canonical singularities.
Assume that � is a curve. Then (X � P) is a smooth point by Lemma 6.7, which

is of independent interest. �

Lemma 6.7 Let g : (Z , S) → (X � P) be a toric canonical blow-up of three-
dimensional Q-factorial terminal toric singularity. Assume that there exists a curve
� ⊂ S such that it is a non-toric subvariety of (S,Diff S(0)), and it does not contain
any center of canonical singularities of Z. Let −(KS + Diff S(0) + �) be an ample
divisor. Assume that there exists a divisor D′

Z ∈ | − mK Z | for some m ∈ Z>0 such
that

(

Z , 1
m D′

Z

)

is a canonical pair and
(

1
m D′

Z

)|S = � + ∑

γi�i , where γi ≥ 0 for
all i . Then (X � P) is a smooth point.

Proof Assume the converse. We suppose that the reader knows the proof of Propo-
sition 2.6 (2), and we use its terminology. We have a(S, 0) = 1

r (w3 + rw2 − qw3 +
rw1 − w3) − 1. If a(S, 0) = 1

r then we have a contradiction obviously. There-
fore we suppose that a(S, 0) > 1

r . For some j ∈ {1, 2, 3} we have the inequality
1
r ≥ a(S, 0)/N j and one of the two following requirements: either Pj ∈ CS(Z), or
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the singularity at the point Pj is of type 1
N j

(1,−1, 0), where N j ≥ 2, N1 = w3,
N2 = rw1 − w3, N3 = rw2 − qw3.

The non-toric curve � is conveniently represented as � = DZ ∩ S, where D =
(ψ(x1, x2, x3) = 0)/Zr ⊂ (C3 � 0)/Zr (−1,−q, 1) and ψ is a quasihomogeneous
polynomial with respect to (N1, N2, N3).

Then Pj ∈ �, the singularity is of type 1
N j

(1,−1, 0) at the point Pj and N j/r ≥
1. Let us prove it. Let D′ = g(D′

Z ). If Pj /∈ � then we have the contradiction
a(S, 1

m D′) < a(S, 0) − N j/r ≤ 0, since � is a non-toric subvariety. Let Pj ∈ �.
Then Pj /∈ CS(Z), and if N j/r < 1, then we have the contradiction a(S, 1

m D′) ≤
N j/r − 1 < 0 since � is a non-toric subvariety.

Assume that Case (2A) of Proposition 2.6 takes place. Then j = 3. Since
N3 > max{N1, N2} then the singularity must be isolated at the point P3. We obtain
the contradiction. It is not hard to prove that Case (2B) of Proposition 2.6 is
impossible. �

Assume that � is a point. Then Diff S(d DX ) is a boundary, and hence we obtain
the contradiction with Theorem 4.2 for the pair (S,Diff S(d DX )) and the point �.

Let a(S, d DX ) > 0. We will obtain a contradiction. Note that the number of
exceptional divisors with discrepancy 0 is finite for the pair (X, d DX ). Now we will
carry out the procedure consisting of the two steps: (i1) replacing d DX by D(δ)
and (i2) replacing (X, d DX ) by other pair with canonical singularities (the variety
X is replaced by other variety also). As the result of finite number of steps of this
procedure we will obtain a contradiction. Let H1 be a general hyperplane section
of large degree containing the center of S on X (at this first step the point P is this
center, and note that this center can be a curve after replacing X as a result of step
(i2)). Also we require that (H1)Z |S ⊂ S is an irreducible reduced subvariety (curve)
not containing any zero-dimensional orbit of S. This last condition is necessary to
our procedure terminates obviously after a finite number of steps.

Let us consider the numbers δ ≥ 0,h(δ) ≥ 0 and thedivisor D(δ) = (d − δ)DX +
h(δ)H1 such that (X, D(δ)) has canonical singularities,� is a center of canonical sin-
gularities of (Z , D(δ)Z − a(S, D(δ))S), and one of the two following conditions are
satisfied: either (a1) a(S, D(δ)) = 0 or (a2) a(S, D(δ)) > 0 and there exists a center
of canonical singularities different from � for the pair (Z , D(δ)Z − a(S, D(δ))S).
Take the maximal number δ with such properties. By E again (for convenience) we
denote some exceptional divisor with discrepancy 0 for (X, D(δ)) such that its center
is � on Z . It is step (i1).

Let a(S, D(δ)) = 0 and � be a curve. By the above statement (X � P) is a
smooth point. We claim that h(δ) = 0, and thus we have the contradiction. Let us
prove it. Consider the general point Q of � and the general (smooth) hyperplane
section H passing through this point. Then (H � Q, (D(δ)Z )|H ) has canonical non-
terminal singularities. This is equivalent to multQ(D(δ)Z )|H = 1. Let us apply the
construction of non-toric canonical blow-ups from Sect. 5 to the curve � provided
that β1 = 1. As the result we obtain the non-toric canonical non-terminal blow-
up (Y ′′, E ′′) → (X � P). By the above a(E ′′, D(δ)) = 0. Since � ⊂ (H1)Z then



Blow-ups of Three-dimensional Toric Singularities 475

the divisor (H1)Y ′′ contains the center of canonical singularities of Y ′′ (see Sect. 5)
always. Therefore h(δ) = 0.

Let a(S, D(δ)) = 0 and � be a point. Then Diff S(D(δ)) is a boundary and we
have the contradiction with Theorem 4.2.

Let a(S, D(δ)) > 0. Let ̂X → X be a log resolution of (X, D(δ)). Let us consider
the set E consisting of all exceptional divisors E ′ on ̂X with the two conditions: (1)
E ′ can be realized by some toric blow-up of (X � P) and (2) a(E ′, D(δ)) = 0.

Let E = ∅. Hence, if T ∈ CS(Z , D(δ)Z − a(S, D(δ))S) and T is a curve, then
T is a non-toric subvariety of (S,Diff S(0)). Let us consider the variety T ∈
CS(Z , D(δ)Z − a(S, D(δ))S)which is the maximal obstruction to increase a coeffi-
cient δ, that is, if put � = T then we can more increase the coefficient δ as the result
of step (i1). If T is a curve then we consider T instead of � and repeat the first step
(i1) to increase the coefficient δ (for the sake to be definite, we denote the curve T by
�). If T is a non-toric point lying on some toric orbit, then we are in Case II. We have
proved that Case II is reduced to Case I, besides we can assume that we consider the
pair (X, D(δ)) for some δ > 0. If T is a point not lying on any toric orbit then we
can consider the point T instead of � and increase δ as the result of step (i1). If T is
a toric point then we can consider the point T instead of � and increase δ and repeat
the procedure from the beginning with the same notation.

Let E = ∅. Let us consider the toric divisorial contraction g1 : Z1 → (X � P)

which realizes the set E exactly. In particular, K Z1 + D(δ)Z1 = g∗
1(K X + D(δ)). Let

P1 be a center of E on Z1. Let us consider locally the pair (Z1 ⊃ P1, D1 = D(δ)Z1)

instead of (X � P, D(δ)). It is step i2). Let us repeat the whole procedure. We obtain
a new divisor D1(δ) on Z1. Let a(S, D1(δ)) = 0. If the center of S on Z1 is a point
then we have the contradiction as above. If the center of S on Z1 is a closure of
one-dimensional toric orbit then we have the similar contradiction, but we must
use the results of Sect. 3 (Example 3.6 and Theorem 3.9) to prove h(δ) = 0. Let
a(S, D1(δ)) > 0. The case E = ∅ is considered as above (the set E will be another
one). In the case E = ∅we obtain a toric divisorial contraction g2 : Z2 → (Z1 ⊃ P1),
which is constructed similarly to the construction of g1. After it let us repeat thewhole
procedure. By construction of partial resolution of (X, d DX ) we obtain some pair
(Zk, Dk(δ)) in a finite numbers of steps such that a(S, Dk(δ)) = 0, and hence we
have the contradiction.

Let (X � P) be a non-Q–factorial singularity, that is, (X � P) ∼= ({x1x2 +
x3x4 = 0} ⊂ (C4

x1x2x3x4 , 0)). According to Sect. 5 it is sufficient to prove that the
analog of Proposition 6.6 is satisfied for this singularity. Arguing as above in The-
orem 6.2, the required statement is reduced to the case of Q-factorial singularities,
this concludes the proof. �

Corollary 6.8 Under the same assumption as in Theorem 6.5 the two following
statements are satisfied:

(1) [2, 6, 8] if f is a terminal blow-up then f is a toric morphism (see Proposition
2.6);

(2) if f is a non-toric morphism then an index of (X � P) is equal to 1. �
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Automorphisms of Hyperkähler
Manifolds and Groups Acting on CAT(0)
Spaces

Nikon Kurnosov and Egor Yasinsky

Abstract We study groups of biholomorphic and bimeromorphic automorphisms
of projective hyperkähler manifolds. Using a geometric action of these groups on
some non-positively curved space, we immediately deduce many of their properties,
including finite presentation, strong form of Tits’ alternative, and some structural
results about groups consisting of transformations with infinite order. We also con-
sider some obstructions to being an automorphism group of a hyperkähler manifold.

Keywords Hyperkahler manifolds · CAT(0) spaces

1 Introduction

The purpose of this note is to explain some boundedness properties on biholomorphic
and bimeromorphic automorphism groups of hyperkähler manifolds via geometric
group theory. Most of these facts should be known to experts, but their proofs (some-
times quite recent) have different nature. Our goal is to put them into the context
of groups acting geometrically on CAT(0) spaces, and to explain some new and old
statements from that point of view. The advantage of this approach is that a group �
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acting on a CAT(0) space <<nicely>> (properly and cocompactly by isometries)
automatically has a lot of goodpropertieswhich are classically known to people doing
metric geometry. For example, a consequence of the Švarc-Milnor lemma states that
� is finitely presented in this case. On the other hand, we would like to restrict the
class of infinite groups which can appear as automorphism groups of hyperkähler
manifolds and, in particular, of K3 surfaces. To the best of our knowledge, there is
no general understanding of how complicated such groups can be, at the moment.

Throughout this note, wework over the complex number fieldC. By a hyperkähler
manifold wemean a compact simply-connected complex Kähler manifold M having
everywhere non-degenerate holomorphic 2-formωM such that H 0(M,�2

M) = CωM .
These manifolds play a very important role in classification of compact Kähler man-
ifolds with vanishing first Chern class. The known examples include K3 surfaces,
the Hilbert schemes Hilbn(S) of 0-dimensional closed subschemes of length n of
a K3 surface S, generalized Kummer varieties, i.e. the kernels of the composition
Hilbn(T ) → Symn T

s→ T, where T is a complex torus and s is the sum morphism,
and O’Grady’s two sporadic examples of dimension 6 and 10.

Let M be a hyperkähler manifold. In present note we are interested in groups of
its biholomorphic and bimeromorphic automorphisms, Aut(M) and Bir(M) respec-
tively. In [33] K. Oguiso also asked (Question 1.5) if the groups Bir(M) and Aut(M)

are finitely generated for projective hyperkähler manifolds.1 Using Global Torelli
Theorem, S. Boissière and A. Sarti proved that Bir(M) is finitely generated. This
does not imply that Aut(M) is finitely generated since Aut(M) is not necessarily of
finite index in Bir(M). The question of finite generation of Aut(M) remained open
until the recent paper of Cattaneo and Fu [18], where the authors were able to give
an affirmative answer to Oguiso’s question.

Theorem 1.1 ([18, Theorem1.5])Let M be a projective hyperkähler manifold. Then
the group Aut(M) is finitely presented.

Another curious group-theoretic property that was recently investigated in dif-
ferent geometric contexts is a Tits’ alternative; see e.g. the works of Cantat [16],
Oguiso [32] or Arzhantsev-Zaidenberg [6, 7]. Recall that a classical Tits’ alternative
states that any finitely generated linear algebraic group over a field is either virtually
solvable (i.e. has a solvable subgroup of finite index), or contains a non-abelian free
group. Following [32] let us say that a group G is almost abelian of finite rank r if
there are a normal subgroup G ′ � G of finite index and a finite group K which fit in
the exact sequence

id → K → G ′ → Z
r → 0.

Then one has the following analogue of Tits’ alternative for hyperkähler manifolds:

Theorem 1.2 ([32, Theorem 1.1]) Let M be a projective hyperkähler manifold and
G be a subgroup of Bir(M). Then G satisfies either:

1 For a non-projective hyperkähler manifold M , the group Bir(M) (and hence Aut(M)) is almost
abelian of rank at most max(ρ(M) − 1, 1). In particular, these groups are finitely generated [33,
Theorem 1.5].
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(1) G is an almost abelian group of finite rank, or
(2) G contains a non-abelian free group.

The goal of this note is to show that many finiteness properties of automorphism
groups of projective hyperkähler manifolds (including Theorems 1.1 and 1.2) follow
from the fact that these groups act geometrically on somemetric space of non-positive
curvature. These metric spaces are the so-called CAT(0) spaces. Roughly speaking,
these are spaceswhich are at least as non-positively curved as the Euclidean plane.An
advantage of this point of view is that it provides a quick and easy way of translating
results from pure metric geometry to hyperkähler world.

Our method is not new: its rough sketch can be found already in [44] (in the
context of K3 surfaces), and then it was applied in [9] for proving that rational
algebraic surfaces with a structure of so-called klt Calabi-Yau pair have finitely many
real forms. However, to apply the same strategy to hyperkähler manifolds one needs
to have some tools which were developed only recently (e.g. that the Kawamata-
Morrison cone conjecture holds for hyperkähler manifolds). So, in this note we tried
to give a reasonably self-contained account of the corresponding construction. Our
first main result is the following:

Theorem A Let M be a projective hyperkähler manifold. Then the groups Aut(M)

and Bir(M) are CAT(0) groups. In particular, they are finitely presented.

To the best of our knowledge, nowadays there is no general understanding of
how complicated automorphism groups of hyperkähler manifolds can be, even for
K3 surfaces (although lots of interesting examples are known). For instance, in [44]
Totaro provides an example of K3 surface whose automorphism group is not even
commensurable with an arithmetic group. On the other hand, in recent years there
has been numerous results which prevent some groups from acting geometrically on
CAT(0) spaces. Thus, TheoremsA can be used to obtain some restrictions on possible
automorphism groups of hyperkähler manifolds. We give some explicit examples in
Sect. 4.5.

Further, from Theorem A we easily deduce the following reinforcement of Tits’
alternative for hyperkähler manifolds:

Theorem B Let M be a projective hyperkähler manifold, and G ⊆ Bir(M) be a
subgroup. Then

(1) either G contains a finite index subgroup isomorphic to Z
n;

(2) or G contains a non-commutative free group.

Another immediate application of Theorem A is

Theorem C (cf. Theorem 7.1 in [18]) Let M be a projective hyperkähler manifold.
Then the groups Aut(M) and Bir(M) have finitely many conjugacy classes of finite
subgroups. In particular, there exists a constant B = B(M) such that |G| � B for
any finite subgroup G ⊂ Bir(M).
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Remark 1.3 A reader familiar with some basic properties of hyperkähler manifolds
might have an impression that Theorem C easily follows from the fact that both
Aut(M) and Bir(M) admit a natural representation in GL(NS(M)) with a finite
kernel, and the groups GLn(Z) are known to have only finitely many conjugacy
classes of finite subgroups. However, finitely generated subgroups of GLn(Z) may
violate the latter property. Indeed, in [22] Grunewald and Platonov give an example
of a finitely generated subgroup of SL4(Z) that contains infinitely many conjugacy
classes of elements of order 4.

Remark 1.4 Let G be a family of groups. Following the terminology introduced
in [35, 36] we say that G is uniformly Jordan (resp. has uniformly bounded finite
subgroups) if there is a constant J = J(G ) (resp. B = B(G )) such that for any group
� ∈ G and any finite subgroup G ⊂ � there exists a normal abelian subgroup A ⊂ G
of index at most J (resp. |G| � B). We say that � is Jordan (resp. has bounded finite
subgroups) if the family {�} is uniformly Jordan (resp. bounded). In view of Theorem
C and Remark 4.6 it is natural then to ask if the following group-theoretic analog of
Beauville’s finiteness conjecture is true:

Question 1.5 Consider the family

Gn = {
Bir(M) : M is a projective hyperkähler manifold of dimension 2n

}
.

Does the familly Gn have uniformly bounded finite subgroups (with a constant B =
B(n) depending only on n)? Is it at least uniformly Jordan with J = J(n)? Same
questions for Aut(M).

In some particular cases one can hope to obtain such bounds using results of
[23, 27, 39].

2 Preliminaries

2.1 Hyperkähler Manifolds

By a hyperkähler (or irreducible holomorphic symplectic) manifold we mean a
compact simply-connected complex Kähler manifold M having everywhere non-
degenerate holomorphic 2-formωM such that H 0(M,�2

M) = CωM . Thesemanifolds
are even dimensional Calabi-Yaumanifolds and play a very important role in classifi-
cation of Kähler manifolds with trivial Chern class. Namely, Beauville–Bogomolov
decomposition theorem [11] states that for any compact Kähler manifold with trivial
Chern class there exists a finite étale cover M̃ → M such that

M̃ ∼= T ×
n∏

i=1

Yi ×
m∏

j=1

Z j ,
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where T is a complex torus, Yi are strict Calabi–Yau manifolds (with π1(Yi ) = 0,
KYi = OYi and h0,p = 0 for 0 < p < dim Yi ), and Z j are hyperkähler manifolds.

One of the most important properties of a hyperkähler manifold is the existence
of Beauville–Bogomolov–Fujiki form (BBF-form for short) [8, 19]. This is an inte-
gral symmetric bilinear form qB B F on H 2(M, Z) of signature (3, 0, b2(M) − 3). By
means of BBF-form, the signature of the Neron-Severi group NS(M) is one of the
following:

(1, 0, ρ(M) − 1), (0, 1, ρ(M) − 1), (0, 0, ρ(M)).

We call these three cases hyperbolic, parabolic, and elliptic respectively. Due to a
deep result of Huybrechts, M is projective if and only if NS(M) is hyperbolic [25],
[21, Proposition 26.13].

Let f : M ��� M ′ be a bimeromorphic map between Calabi–Yau manifolds. By
[21, III.25.14] this map f is an isomorphism in codimension 1 and induces a linear
isomorphism

f ∗ : H 2(M ′, Z)
∼→ H 2(M, Z)

which in the case of hyperkähler manifolds preserves the BBF-form. In particular,
there is a group homomorphism

�NS : Bir(M) → O(NS(M) ⊗ R, qB B F ).

Put
Bir∗(M) = �NS(Bir(M)), Aut∗(M) = �NS(Aut(M)).

We have the following important fact.

Proposition 2.1 ([34, Proposition 2.4]) Let M be a projective Calabi–Yau manifold.
Then the kernel of a homomorphism

�NS : Bir(M) → GL(NS(M))

is a finite group.

2.2 The Kawamata–Morrison Conjecture

In this note we shall consider various cones (i.e. subsets stable under multiplication
by R>0) in the finite-dimensional vector space NS(M)R = NS(M) ⊗ R equipped
with Z-structure given by NS(M) = H 1,1(M, R) ∩ H 2(M, Z).

Let M be a compact, Kähler manifold. In what follows Kah(M) ⊂ H 1,1(M, R)

will denote the open convex Kähler cone of M . Its closure Nef(M) = Kah(M) in
H 1,1(M, R) is called the nef cone. Further, Amp(M) will denote the ample cone of
M . For some varieties these cones have a nice structure, e.g. for Fano varieties they



482 N. Kurnosov and E. Yasinsky

are rational polyhedral. However in general they can be quite mysterious: they can
have infinitely many isolated extremal rays or <<round>> parts. Both phenomena
occur already for K3 surfaces. The Kawamata–Morrison cone conjecture predicts
that for Calabi–Yau varieties the structure of these cones (or rather some closely
related cones) is nice “up to the action of the automorphism group”. Before stating
a suitable version of this conjecture, we need some definitions.

Let V be a finite-dimensional real vector space equipped with a fixedQ-structure.
A rational polyhedral cone in V is a cone, which is an intersection of finitely many
half spaces defined over Q. In particular, such a cone is convex and has finitely
many faces. For an open convex cone C ⊂ V we denote by C + the convex hull of
C ∩ V (Q).

Let � be a group acting on a topological space X . A fundamental domain for the
action of � is a connected open subset D ⊂ X such that

⋃

γ∈�

γ · D = X,

and the setsγ · D are pairwise disjoint. Let X be a subset of ametric spaceY (typically
Y will be either Euclidean or hyperbolic n-space). A side of a convex subsetC ⊂ Y is
a maximal nonempty convex subset of ∂C . A polyhedron in Y is a nonempty closed
convex subset whose collection of sides is locally finite. A fundamental polyhedron
for the action of a discrete isometry group � on X is a convex polyhedron D whose
interior is a locally finite fundamental domain for �. Local finiteness means that
for each point x ∈ X there is an open neighborhood U of x such that U meets only
finitely many sets γ D, γ ∈ �. Obviously, this also implies that every compact subset
K ⊂ X intersects only finitely many sets γ D.

One of the versions of the Kawamata–Morrison cone conjecture says that the
action of the automorphism group of a Calabi–Yau variety on the cone Amp(M)+
has a rational polyhedral fundamental domain. There is also a birational version
for Bir(M) and Mov(M)+ respectively, where Mov(M) denotes the movable cone,
i.e. the convex hull in NS(M)R of all classes of movable line bundles on M . The
conjecture has been proved for K3 surfaces by Sterk and Namikawa [31, 41] using
the Torelli theorem of Piatetski–Shapiro and Shafarevich, and generalized later on 2-
dimensional Calabi–Yau pairs by Totaro [42]. For projective hyperkähler manifolds
the following versions of the Kawamata–Morrison conjectures were recently proved
by E. Markman, E. Amerik and M. Verbitsky:

Theorem 2.2 Let M be a projective simple hyperkähler manifold. Then

(1) [4, Theorem 5.6] The groupAut(M) has a finite polyhedral fundamental domain
on Amp(M)+.

(2) [30, Theorem 6.25] The group Bir(M) has a rational polyhedral fundamental
domain on Mov(M)+.

Remark 2.3 For the reader who would like to follow Ratcliffe’s [37] exposition of
geometrically finite groups, while reading Sect. 3.3, it may be useful to keep in mind
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a somewhat more explicit construction of fundamental polyhedrons in Theorem 2.2.
This is due toE. Looijenga [28, Proposition 4.1 andApplication 4.14]. LetC be a non-
degenerate open convex cone in a finite dimensional real vector space V equipped
with a fixed Q-structure. Let � be a subgroup of GL(V ) which stabilizes C and
some lattice in V (Q). Assume that there exists a polyhedral cone 
 in C+ such that
� · 
 ⊇ C and there is an element ξ ∈ C◦ ∩ V ∗(Q) whose stabilizer �ξ is trivial2

(here C◦ denotes the open dual cone of C). Then � admits a rational polyhedral
fundamental domain � on C+. Moreover, as was noticed before [42, Theorem 3.1]
(and proved in [43, Lemma 2.2]) Looijenga’s fundamental domain coincides with a
Dirichlet domain of � when the representation preserves a bilinear form of signature
(1, ∗). Recall that for a discontinuous group � of isometries of a metric space (X, d)

and a point ξ ∈ X with a trivial stabilizer �ξ one defines the Dirichlet domain for �

as the set
Dξ (�) = {

x ∈ X : d(x, ξ) � d(x, gξ) for all g ∈ �
}
.

Dirichlet polyhedrons are known to have many good properties, in particular they
are locally finite in the interior of the positive cone [43, Corollary 2.3]) and exact
[37, Theorem 6.6.2] (meaning that for each side S of D = Dξ (�) there is an element
γ ∈ � such that S = D ∩ γ D).

Theorem 2.2 (1) has been initially proved in an assumption b2 = 5. Below we
sketch a proof for the case b2 = 5, which follows from the results of Amerik and
Verbitsky (see also [5, Remark 1.5]).

Proposition 2.4 Let M be a projective hyperkähler manifold with b2 = 5. The auto-
morphism group has a rational polyhedral fundamental domain on the ample cone
of M.

Recall that the mapping class group is the group Diff(M)/Diff0(M), where
Diff0(M) is a connected component of diffeomorphism group of M (the group of
isotopies). Consider the subgroup of the mapping class group which fixes the con-
nected component of our chosen complex structure. The monodromy group is the
image of this subgroup in O(H 2(M, Z)).

Denote by Hyp an infinite-dimensional space of all quaternionic triples I, J, K
on M which are induced by some hyperkähler structure, with the same C∞-topology
of convergence with all derivatives. Identify Hypm = Hyp/SU(2) with the space
of all hyperkähler metrics of fixed volume. Define the Teichmüller space Teichh of
hyperähler structures as the quotient Hypm/Diff0. Define the period space of hyper-
kähler structures by the space Perh = Gr+++(H 2(M, R)) of all positive oriented
3-dimensional subspaces in H 2(M, R).

Remark 2.5 The period space Perh is naturally diffeomorphic to
SO(b2 − 3, 3)/SO(3) × SO(b2 − 3). The mapPerh : Teichh → Perh is the period

2 In our situation ξ exists automatically even without assuming that there is a fundamental domain
for �, see e.g. [18, Proposition 6.6].
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map associating the 3-dimensional space generated by the three Kähler forms
ωI , ωJ , ωK to a hyperkähler structure (M, I, J, K , g). This map by [3, Theorem
4.9] is an open embedding for each connected component. Moreover, its image is
the set of all spaces W ∈ Perh such that the orthogonal complement W ⊥ contains no
MBM classes (see below).

A non-zero negative rational homology class (1, 1)-class z is called monodromy
birationally minimal (MBM) if for some isometry γ ∈ O(H 2(M, Z)) belonging to
the monodromy group, γ (z)⊥ ⊂ H 1,1(M) contains a face of the pull-back of the
Kähler cone of one of birational models M ′ of M .

Proof of Proposition 2.4 For each primitiveMBMclass r , denote by Sr the set of all
3-planes W ∈ Gr+++ orthogonal to r . Consider the union ∪r Sr of this sets. Its com-
plement in Gr+++ is identified to a connected component of the Teichmüller space
by [3, Theorem 4.9]. So it is open. From the [5, Theorem 1.7] for X = G/K , where
G = SO(3, 2) and K = SO(3) × SO(2)3 it follows that monodromy group acts on
the set of MBM classes with finite number of orbits. Recall that the monodromy
acts by isometries, thus the square of a primitive MBM class in respect with the
Beauvile-Bogomolov-Fujiki form on M is bounded in a absolute value. This is key
assumption in Amerik-Verbitsky’s proof of Kawamata-Morrison cone conjecture.
Indeed, the [2, Theorem 6.6] implies the finitness of orbits for the Kähler cone.

Consider the quotient S = (Pos(M) ∩ NS(M) ⊗ R)/�, where Pos(M) is posi-
tive cone and � is the Hodge monodromy group. Then by Borel and Harish-Chandra
theorem S is a complete hyperbolic manifold of finite volume. Since Aut(M) acts
with finite number of orbits on Kah(M), then the image of Amp(M) in S is a hyper-
bolic manifold T with finite boundary. One can prove that T admits decomposition
by finitely many cells with finite piecewise geodesic boundary. Finite polyhedral
fundamental domain on the ample cone of M is obtained by suitable liftings of this
cells. We refer the reader to [4, Theorem 5.6] for the further details. �

3 The CAT(0) Space

Let (X, dist) be a metric space. Recall that a geodesic segment [x, y] joining two
points x, y ∈ X is the image of a path of length dist(x, y) joining x and y. A metric
space is said to be geodesic if every two poins in X can be joined by a geodesic. A
geodesic triangle in X consists of three points x, y, z ∈ X and a choice of geodesic
segments [x, y], [y, z] and [x, z].

A geodesicmetric space (X, dist) is said to be aCAT(0) space if for every geodesic
triangle  ⊂ X there exists a triangle ′ ⊂ E

n (here and throughout the paper E
n

denotes the Euclidean n-space with a standard metric) with sides of the same length
as the sides of , such that distances between points on  are less or equal to the

3 In the general case G = SO(3, b2 − 3) and K = SO(3) × SO(b2 − 3).
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distances between corresponding points on ′. Informally speaking, this means that
geodesic triangles in X are <<not thicker>> than Euclidean ones.

Definition 3.1 (CAT(0) groups) Let � be a group acting by isometries on a metric
space X . This action is proper or properly discontinous if for each x ∈ X there exists
r > 0 such that the set of γ ∈ � with

γ · B(x, r) ∩ B(x, r) = ∅

is finite (here and throughout the paper B(x, r) denotes an open ball with center x
and radius r ). The action is cocompact is there exists a compact set K ⊂ X such that
X = � · K . The action is called geometric if it is proper and cocompact. Finally, we
say that � is a CAT(0) group if it acts geometrically on a CAT(0) space.

To prove Theorem Awe shall construct a CAT(0) space where the groups Bir(M)

and Aut(M) act properly and cocompactly by isometries. As was mentioned in
Introduction, here we basically summarize the ideas sketched in [9, 44], but try
to make our exposition accessible for a non-expert in metric geometry. The main
reference where the reader can find most technical facts used here is [1, 37]. Our
construction will involve a hyperbolic space, so we first recall some basic definitions.

3.1 Hyperbolic Space and its Isometries

Ahyperbolicn-dimensional space is ann-dimensionalRiemannian simply connected
space of constant negative curvature. Throughout this note we use several models of
hyperbolic space, which we briefly describe below to establish notation.

3.1.1 Standard Models

Let V be a Minkowski vector space of dimension n + 1 with the quadratic form q :
V → Rof signature (1, n) and inner product of twovectorsv1,v2 denoted by 〈v1, v2〉.
We will choose the coordinates x0, . . . , xn in V such that q = x2

0 − x2
1 − · · · − x2

n .
The vectors v ∈ V with q(v) = 1 form an n-dimensional hyperboloid consisting
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of two connected components: H+ = {x0 > 0}, and H− = {x0 < 0}. The points of
the hyperboloid model H

n are the points on H+. The distance function is given by
dist(u, v) = argcosh〈u, v〉. The m-planes are represented by the intersections of the
(m + 1)-planes in V with H+. The Poincaré model of H

n has its points lying inside
the unit open disk

B
n = {(0, x1, . . . , xn) ∈ R

n+1 : x2
1 + · · · + x2

n < 1}

and is obtained from the hyperboloid model bymeans of the stereographic projection
ζ from the south pole of the unit sphere in V (i.e. the point (−1, 0, . . . , 0)) on the
hyperplane V0 = {x0 = 0}. A subset P ⊂ B

n is called a hyperbolic m-plane if and
only if ζ(P) is a hyperbolic m-plane of H

n .
Denote by E

n the Euclidean n-space with standard Euclidean metric. By Ê
n =

E
n ∪ {∞} we denote its one-point compactification (e.g. Ĉ is the Riemann sphere).

If a is a unit vector in E
n and r ∈ R, then P(a, r) is the hyperplane with unit

normal vector a passing through the point ra. Further, S(a, r) denotes the sphere of
radius r centered at a. We shall also consider extended planes P̂(a, r) = P(a, r) ∪
{∞}. By a sphere in Ê

n we mean either a Euclidean sphere or an extended plane
(so, topologically a sphere too). A p-sphere and a q-sphere of Ê

n are said to be
orthogonal if they intersect and at each finite point of intersection their tangent
planes are orthogonal. One can show that P ⊂ B

n is a hyperbolic m-plane of B
n if

and only if P is the intersection of B
n either with an m-dimensional vector subspace

of V0 = E
n , or an m-sphere of V0 orthogonal to ∂B

n
.

In the Poincare ball model B
n , a horoball based at a ∈ ∂B

n is an Euclidean ball
contained inB

n
which is tangent to ∂B

n at the point a. Assume� contains a parabolic
element having a ∈ ∂B

n as its fixed point. A horocusp region is an open horoball B
based at a point a ∈ ∂B

n such that for all γ ∈ �\Stab�(a) one has γ (B) ∩ B = ∅.
Finally, we mention the upper half-space model

U
n = {(x1, . . . , xn) ∈ E

n : xn > 0}

with a metric induced from B
n in the following way. Let σ be the reflection of

Ê
n in the sphere S(en,

√
2) and ρ be the reflection of Ê

n in Ê
n−1. Then η = σ ◦ ρ

maps homeomorphically U
n to B

n . Put distUn (u, v) = distBn (η(u), η(v)). A subset
P ⊂ U

n is called a hyperbolic m-plane if and only if η(P) is a hyperbolic m-plane of
B

n . One can show that P ⊂ U
n is a hyperbolic m-plane of U

n if and only if P is the
intersection of U

n either with an m-plane of E
n orthogonal to E

n−1, or an m-sphere
of E

n orthogonal to E
n−1.

Recall that a geodesic line (or just geodesic) in a Riemannian manifold M is a
continuousmap γ : R → M such that distM(γ (x), γ (y)) = |x − y|.We also refer to
the image of γ as a geodesic line. For any two distinct points x, y ∈ M there exists a
closed interval [a; b] ⊂ R and a geodesic γ with γ (a) = x , γ (b) = y, which is called
the geodesic segment. In all described models of hyperbolic space, its geodesics are
just hyperbolic lines, i.e. 1-planes.
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3.1.2 Isometries

AMöbius transformation of Ê
n is a finite composition of reflections of Ê

n in spheres.
Consider E

n−1 ≡ E
n−1 × {0} ⊂ E

n . Any f ∈ Möb(Ên−1) can be extended to an ele-
ment of Möb(Ên) as follows. If f is a reflection of Ê

n−1 in P̂(a, r) then f̃ is the
reflection of Ê

n in P̂ (̃a, r) where ã = (a, 0). If f is a reflection of Ê
n−1 in S(a, r)

then f̃ is the reflection of Ê
n in S(̃a, r). The Poincaré extension of an arbitrary

f = f1 ◦ . . . ◦ fm ∈ Möb(Ên−1) is then defined as f̃ = f̃1 ◦ . . . ◦ f̃m .
If Y = U

n or B
n , a Möbius transformation f ∈ Möb(Y ) is a Möbius transforma-

tion of Ê
n that leaves Y invariant. The element f ∈ Möb(Un) is a Möbius transfor-

mation if and only if it is the Poincaré extension of an element of Möb(Ên−1), so
Möb(Un) ∼= Möb(Ên−1) [37, Sect. 4.4]. Similar statement holds for Möb(Bn). Every
Möbius transformation of B

n restricts to an isometry of the conformal ball model
B

n , and every isometry of B
n extends to a unique Möbius transformation of B

n [37,
Theorem 4.5.2]. In particular, Isom(Bn) ∼= Möb(Bn).

Let f ∈ Möb(Bn) be a Möbius transformation (an isometry of the hyperbolic n-
space). Then f maps B

n
into itself and by the Brouwer fixed point theorem, f has a

fixed point in B
n
. Recall that f is said to be elliptic if f fixes a point of B

n; parabolic
if f fixes no point of B

n and fixes a unique point of ∂B
n = S

n−1; loxodromic if f
fixes no point of B

n and fixes two points of S
n−1, say a and b. A hyperbolic line

L joining a and b is called the axis of f , and f acts as a translation along L . If f
translates L in the direction of a, then for any x ∈ B

n
, x = b, one has f m(x) → a

as m → ∞, i.e. a is an attractive fixed point (and b is repulsive).

3.2 Construction of a CAT(0) Space

We are ready to explain the main technical result.

Theorem 3.2 Let V be a vector space of dimension n + 1, n � 2, with a fixed Z-
structure � ∼= Z

n+1, � ⊗ R = V . Assume there is a quadratic form q : V → R of
signature (1, n), a convex cone C in V and a group action � : � → GL(�) ⊂
GL(V ) with discrete image �(�) and finite kernel, such that � preserves C , q, and
has a rational polyhedral (locally finite) fundamental domain � on C . Then � is a
CAT(0) group.

Proof Let H
n be the hyperbolic space associated with (V, q) and set D =

pr
(
C ∩H

n
)
, where pr : V → V is the projection from the origin (inducing an

isometry H
n → B

n). Then D is a convex subset of B
n . The group � acts on D

with a fundamental domain 
D, which moreover has finitely many sides. We are
going to show that D can be “improved” so that � acts properly and cocompactly
on the resulting CAT(0) space. Recall that a point a ∈ ∂B

n = S
n−1 is a limit point
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of a subgroup � ⊂ Möb(Bn) if there is a point b ∈ B
n and a sequence {γi ∈ �}∞i=1

such that {γi b}∞i=1 converges to a. Let C(�) denote the convex hull of the set of limit
points of � on B

n
. Note that this is a closed subset of B

n
[37, Sect. 12.1]. Put

X = D ∩ C(�), 
 = 
D ∩ C(�).

Step 1: There exists a finite family U of horocusp regions with disjoint closures
such that 
\U is compact. See paragraph Sect. 3.3 for details.

Step 2: Put U ′ = ⋃
γ∈� γ (U ). Step 1 shows that � acts cocompactly on X\U ′.

Step 3: Besides, � acts properly discontinuously on X\U ′. Since we assume that
the kernel of the induced homomorphism � : � → Isom(Bn) is finite, it
suffices to show that �(�) acts properly on B

n . By [47, Lemma 3.1.1]
if H and K are subgroups of a group G with K compact and G locally
compact, then H is properly discountinous on G/K if and only if H
is discrete in G. Now take G = Isom(Hn) ∼= O+(1, n), H = �(�), and
K = Stab(x) ∼= On(R), where x ∈ H

n . Notice that O+(1, n) is transitive
on H

n and H
n ∼= O+(1, n)/On(R), see [12, I.2.24].

Step 4: The radii of the horoballs of U ′ can be decreased such that we obtain a
new collection W of open horoballs with disjoint closures and X\W is a
CAT(0) space. This is explained in paragraph Sect. 3.4.

Step 5: The action of � on X\W clearly remains properly discountinuous. It also
remains cocompact by Remark 3.4. This completes the proof.

�

3.3 Explanation of Step 1

A group G ⊂ Möb(Un) is called elementary if G has a finite orbit in Ê
n . An ele-

mentary group G is said to be of parabolic type if G fixes a point on Ê
n and has no

other finite orbits. Let � ⊂ Möb(Un) be a discrete subgroup such that ∞ is fixed by
a parabolic element of �. Then �∞ = Stab�(∞) is an elementary group of parabolic
type. Thus �∞ corresponds under Poincarè extension (see above) to a discrete sub-
group of Isom(En−1) [37, Theorem 5.5.5].

By the Bieberbach theorem [37, Theorem 5.4.6, 7.4.2] there is a �∞-invariant
m-plane Q of E

n−1 with Q/�∞ compact. Denote by N (Q, ε) the ε-neighborhood
of Q in E

n . Then N (Q, ε) is �∞-invariant. Set

U (Q, ε) = U
n\N (Q, ε).

This is an open �∞-invariant subset of U
n
. It is called a cusped region for � based

at ∞ if for all γ ∈ �\�∞ we have

U (Q, ε) ∩ γU (Q, ε) = ∅. (1)
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Viewed in B
n model when m = n − 1, the sets U (Q, ε) are just horocusp regions

based at ∞, as defined in Sect. 3.1. Let c ∈ Ê
n−1 be a point fixed by a parabolic

element of a discrete subgroup � ⊂ Möb(Un). A subset U ⊂ U
n
is a cusped region

for � based at c if upon conjugating � so that c = ∞, the set U transforms to a
cusped region for � based at ∞. A cusped limit point of � is a fixed point c of a
parabolic element of � such that there is a cusped region U for � based at c. Recall
that by L(�) we denoted the set of limit points of � in B

n
, and by C(�) the convex

hull of L(�) in B
n
. Now Step 1 is the content of the following claim.4

Proposition 3.3 ([37, Theorem 12.4.5]) Let � ⊂ Isom(Bn) be a discrete subgroup,
and Z be a closed �-invariant convex subset of B

n. Assume that the action of �

on Z has a finitely sided (locally finite) polyhedral fundamental domain 
. Then
there exists a finite union V of horocusp regions with disjoint closures such that
(
 ∩ C(�))\V is compact in Z.

Proof This is essentially the content of [37, Theorem 12.4.5]. Since there is minor
difference in the setting, we outline the proof for the reader’s convenience. Let 


denote the closure of fundamental polyhedron 
 in B
n
.

By [1, Lemma 4.10] or [37, Sect. 12, Corollary 3] the set P = 
 ∩ L(�) is a
finite set of cusped limit points of �. Let 
 ∩ L(�) consist of cusped limit points
c1, . . . , cm . Choose a proper (i.e. non-maximal) cusped regionUi for� based at ci for
each i such that U 1, . . . , U m are disjoint and U i meets just the sides of 
 incident
with ci . Further, let Bi be a horoball based at ci and contained in Ui such that if
gci = c j then gBi = B j . Then Bi is a proper horocusped region for � based at ci .
Set

K = (
 ∩ C(�)) \
⋃

i

Bi .

As C(�) is closed in B
n
[37, §12.1] (and 
 is closed in B

n by definition), the set K
is closed in B

n . Now exactly the same argument as in [37, Theorem 12.4.5] shows
that K is also bounded. �

Remark 3.4 Note that after finding horoballs Bi corresponding to cusped regions
Ui , we can further shrink them if needed, and the proof of the compactness of
(
 ∩ C(�)\V ) still remains valid.

3.4 Explanation of Step 4 (cf. [9, Lemma 2.10])

Let U = B1 � . . . � BN , where Bi are horocusp regions with disjoint closures, con-
structed in Step 1. By the definition of a horocusp region, for each i the set∪γ∈�γ (Bi )

consists of pairwise disjoint balls. One can view the set

4 It is clear that at this step we may assume that � acts effectively.
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U ′ =
⋃

γ∈�

γ (U ) =
N⋃

i=1

⋃

γ∈�

γ (Bi )

constructed in Step 2 as a finite collection of disconnected sets in a metric space.
Clearly one can decrease the radii of Bi so that U ′ is a family of disjoint open
horoballs. Denote this resulting family by U ′′. We are now going to show that U ′′
can be shrunk further so that X\U ′′ is a CAT(0) space. First, note that H

n\U ′′ is a
complete CAT(0) space by the following general fact:

Theorem 3.5 ([12, II.11.27]) Let Y ⊂ B
n be a subspace obtained by deleting a

family of disjoint open horoballs. When endowed with the induced length metric, Y
is a complete CAT(0) space.

Obviously, a convex subset of a CAT(0) space is itself a CAT(0) space when
endowed with the induced metric. In view of Theorem 3.5, to conclude that X\U ′′
is a CAT(0) space we need to check its convexity in B

n\U ′′ (for the induced length
metric), possibly after decreasing radii of U ′′.

First let us mention the description of geodesics in the truncated hyperbolic space
B

n\U ′′. Let Y be as in Theorem 3.5. By [12, Corollary 11.34], a path c : [a, b] → Y
parametrized by arc length is a geodesic in Y if and only if it can be expressed as a
concatenation of non-trivial paths c1, . . . , cn parametrized by arc length, such that:

(1) each of the paths ci is either a hyperbolic geodesic or else its image is contained
in one of the horospheres bounding Y and in that horosphere it is a Euclidean
geodesic;

(2) if ci is a hyperbolic geodesic then the image ci+1 is contained in a horosphere
and vice versa.

Nowpick two different points x, y ∈ X\U ′′. Let � be the geodesic ofBn joining them.
Note that � ⊂ X , as X is convex in B

n . If � ∩ U ′′ = ∅, then � ⊂ X\U ′′ and we are
done. So, let us assume that � intersectsU ′′. The geodesic of X\U ′′ is a concatenation
of hyperbolic geodesics αi and Euclidean geodesics β j lying on horospheres. Note
that both endpoints of each αi belong to X , hence all αi lie in X\U ′′ (as X is
convex in B

n and αi are hyperbolic geodesics of B
n). To make sure that β j lie in X

we can decrease the radius of each Bi so that the antipodal point of its base point
belongs to X . This will hold for all γ (Bi ) in fact, as X is �-invariant. Denote by W
the resulting disjoint family of open horoballs. Now all β j are contained in X , so
the whole geodesic between x and y is contained in X\W . So, X\W is a CAT(0)
space.
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4 Applications

We are ready apply the results of the previous section in the hyperkähler setting. Let
us start with the following trivial

Lemma 4.1 Let G be a group with a finite normal subgroup H such that G/H is
cyclic. Then G is virtually cyclic, i.e. there is a finite index normal cyclic subgroup
in G.

Proof We may assume that G/H � Z, otherwise the statement is trivial. Consider
the canonical projection π : G → G/H and suppose that π(g) generates G/H ,
where g ∈ G. Then g is of infinite order and G = H � 〈g〉. Hence some power gm

must centralize H and 〈gm〉 is a normal cyclic subgroup of index m|H |. �

Proof of Theorem A We simply apply Theorem 3.2. For ρ(M) � 2 it follows with
� = NS(M), q = qB B F , C = Amp(M)+ for � = Aut(M) and C = Mov(M)+ for
� = Bir(M), and � given by Theorem 2.2 and Remark 2.3. Note that the kernel of
� = �NS is finite by Proposition 2.1.

Now let us treat the case ρ(M) = 2 separately (as will be clear from below, case
ρ(M) = 1 is easier). Let � be either Aut(M) or Bir(M). By Proposition 2.1 there is
a short exact sequence

1 → K → �
�NS−→ �∗ → 1

with �∗ = �NS(�) and K a finite group. For any g ∈ �∗ one has det g = ±1. Put
�+ = {g ∈ �∗ : det g = 1}.By [29, Theorem3.9] one has either�+ = 1 or�+ ∼= Z.
It suffices to consider only the last case. Here we have a short exact sequence

1 → K → �′ = �−1
NS(�

+) → �+ → 1.

By Lemma 4.1, a finite-by-cyclic group is always virtually cyclic. This means
that �′, and hence �, is either finite, or Z up to finite index. But all such groups
are CAT(0) groups (this follows e.g. from the Bieberbach Theorem, see [12, II.7,
Remark 7.3]). �

The following properties of CAT(0) groups will be crucial for us.

Theorem 4.2 ([12, III.�, Theorem 1.1]) Every CAT(0) group � satisfies the follow-
ing properties:

(1) � finitely presented;
(2) � has finitely many conjugacy classes of finite subgroups;
(3) Every solvable subgroup of � has an abelian subgroup of finite index;
(4) Every abelian subgroup of � is finitely generated.

Corollary 4.3 (Theorem A) Let M be a hyperkähler manifold. Then the groups
Aut(M) and Bir(M) are finitely presented.



492 N. Kurnosov and E. Yasinsky

Proof If M is non-projective, then the groupsAut(M) andBir(M) are almost abelian
by [32, Theorem 1.5], hence finitely presented. For projective hyperkähler manifolds
the statement follows from Theorem 4.2 (1). �
Corollary 4.4 (Theorem C) Let M be a projective hyperkähler manifold. Then the
groupsAut(M) andBir(M) have finitely many conjugacy classes of finite subgroups.
In particular, there exists a constant B = B(M) such that for every finite subgroup
G ⊂ Bir(M) one has |G| � B (i.e. Bir(M) has bounded finite subgroups).

Proof Follows from Theorem 4.2 (2). �
Of course, the second part of this statement (as well as Corollary 4.7 below) can be

obtained using Minkowski’s Theorem, which states that GLn(Q) has bounded finite
subgroups (see e.g. [40]). However, as we mentioned in Remark 1.3 the finiteness of
conjugacy classes of finite subgroups is a much more subtle issue.

Remark 4.5 One can compare this result with [35, Theorem 1.8] which states that
Bir(X) has bounded finite subgroups provided that X is an irreducible algebraic vari-
ety which is non-uniruled and has h1(X,OX ) = 0. The latter condition is clearly true
for any projective hyperkähler manifold X , and the former one holds since complex
uniruled varieties have Kodaira dimension −∞, while Calabi-Yau manifolds have
Kodaira dimension zero.

Remark 4.6 In dimension two, i.e. for projective K3 surfaces, it is known that the
orders of their finite automorphism groups are bounded by 3840 (and this bound is
sharp) [26].

Recall that a torsion group is a group in which each element has finite order. In
general it is an open question whether torsion subgroups of any CAT(0) group are
always finite. However in our case the answer to this question is positive.

Corollary 4.7 (Burnside property) Let M be a projective hyperkähler manifold.
Then every torsion subgroup G ⊆ Bir(M) is finite.

Proof Put G∗ = �NS(G) and G0 = G ∩ ker�NS. One has a short exact sequence

1 → G0 → G → G∗ → 1

with G0 finite, and G∗ a torsion group. By Theorem 4.2 (2) (or Corollary 4.4) the
group G∗ has bounded exponent, i.e. there exists d ∈ Z>0 such that the order of any
g ∈ G∗ is � d. Since G∗ is linear, it must be finite by Burnside’s theorem. Therefore
G is finite too. �

4.1 Tits’ Alternative

In this subsection we show how our method implies a strong form of Tits’ alternative
(Theorem B) for projective hyperkähler manifolds. In general this is a well-known



Automorphisms of Hyperkähler Manifolds … 493

open question whether CAT(0) groups always satisfy Tits’ alternative, but in our
case the usual Tits’ alternative for GLn(Q) and some properties of CAT(0) groups
give even stronger restrictions than in the classical settings. The heart of the proof of
Oguiso’s Theorem 1.2 was the fact that a virtually solvable subgroup of O(L), where
L is a hyperbolic lattice of finite rank, must be almost abelian of finite rank. The
proof of the latter involves Lie-Kolchin Theorem and various properties of Salem
polynomials. In our case the key ingredient of Oguiso’s proof follows from the fact
that Bir(M) is a CAT(0) group. But in fact we are able to prove something stronger,
namely, that in the first case of Tits alternative our group is just Zn up to finite index.

Theorem 4.8 (Theorem B) Let M be a projective hyperkähler manifold, and G ⊆
Bir(M) be a subgroup. Then

(1) either G contains a finite index subgroup isomorphic to Z
n;

(2) or G contains a non-commutative free group.

Proof Put G∗ = �NS(G). Then one has a short exact sequence of groups

1 → N → G → G∗ → 1,

with N being a finite group by Proposition 2.1. Assume that G∗ does not contain a
non-abelian free subgroup. Then by usual Tits’ alternative for GL(NS(M) ⊗ R) the
group G∗ has a solvable subgroup S∗ of finite index. Put S = �−1

NS(S∗). We have a
short exact sequence

1 → N → S → S∗ → 1

with [G : S] < ∞, N finite, and S∗ solvable. The centralizer C = CS(N ) of N in S
has finite index in S (indeed, S acts on N by conjugation, which gives a homomor-
phism S → Aut(N ) with kernel CS(N ) and Aut(N ) a finite group). Thus we have
an extension

1 → A → C → C∗ → 1

with A = N ∩ C abelian andC∗ solvable group. Clearly [G : C] < ∞. Since both A
andC∗ are solvable, the groupC ⊂ Bir(M) is solvable. By Theorem 4.2 (3) and (4) it
then contains F ∼= Z

n with [C : F] < ∞. Hence G contains a finite index subgroup
isomorphic to Z

n . �

4.2 Some Applications to Dynamics

Let (X, dist) be a metric space and f ∈ Isom(X) be its isometry. Then one can
consider the displacement function of f

d f : X → R�0, d f (x) = dist( f (x), x).
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The translation length of f is the number ‖ f ‖ = inf{d f (x) : x ∈ X}. The set of
points where d f attains the infimum is denoted by Min( f ). If d f attains a strictly
positiveminimum, then f is called loxodromic; if thisminimum is 0 (i.e. f has a fixed
point), then f is called elliptic; if d f does not attain the minimum (i.e. Min( f ) = ∅),
then f is called parabolic. Elliptic and loxodromic isometries are also called semi-
simple. In the case X = H

n these definitions agree with the old ones.
Now let M be a projective hyperkähler manifold, and f ∈ Bir(M) be birational

automorphism. According to the action of f ∗ on the corresponding hyperbolic space
(NS(M)R, qB B F ) one can classify f as elliptic, parabolic or loxodromic. Denote by
XM the CAT(0) space constructed in Sect. 3, i.e. the space on which Bir(M) acts
properly and cocompactly by isometries of XM . Then one has a group homomor-
phism

�M : Bir(M) → Isom(XM).

We should warn the reader that in general �M does not preserve5 the type of an
isometry. In fact, �(Bir(M)) does not contain parabolic isometries by [12, II.6.10
(2)].

Lemma 4.9 The images of M-loxodromic and M-parabolic birational automor-
phisms under �M are XM -loxodromic. The images of M-elliptic elements are XM -
elliptic. In particular, �M maps semi-simple isometries to semi-simple ones.

Proof First note that if a group � acts geometrically on a proper CAT(0) space then
γ ∈ � has finite order if and only if γ is elliptic.

Let f ∈ Bir(M) be of infinite order, i.e. either M-loxodromic or M-parabolic.
Then, as was noticed above, �M( f ) is either XM -loxodromic, or XM -elliptic. In
the latter case �M( f )n = id for some n > 0. Thus f n ∈ ker�M , i.e. f n acts as
identity onXM . But this also means that f has a fixed point locus on the underlying
hyperbolic space (NS(M)R, qB B F ), i.e. f n is M-elliptic. By [12, II.6.7] we have that
f must be M-elliptic too, contradiction. Finally, the image of an element of finite
order is of finite order, hence M-elliptic elements map to XM -elliptic elements. �

4.3 Structure of Centralizers

Let X be an algebraic variety. Given an element of infinite order f ∈ Bir(X), it is
often useful to understand the structure of its centralizer C( f ), see e.g. [14] or [48].
To clarify this structure in our case, we shall use the following important Flat Torus
Theorem.

Theorem ([12, II.7.1]) Let A be a free abelian group of rank n acting properly by
semi-simple isometries on a CAT(0) space X. Then:

(1) Min(A) = ∩α∈A Min(α) is non-empty and splits as a product Y × E
n;

5 It is not surprising since the metric on XM is not the same as on the initial hyperbolic space.
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(2) Every element α ∈ A leaves Min(A) invariant and respects the product decom-
position; α acts as the identity on Y and as a translation on E

n;
(3) If a finitely generated subgroup � ⊂ Isom(X) normalizes A, then � has a sub-

group of finite index that contains A as a direct factor.

Proposition 4.10 Let M be a projective hyperkähler manifold, and f ∈ Bir(M) be
either parabolic, or loxodromic. Denote by C( f ) the centralizer of f inBir(M). Then
C( f ) has a finite index subgroup H which splits as a direct product: H = N × 〈 f 〉.
Proof Suppose that a group � acts geometrically on a CAT(0) space X , and γ is
an element of infinite order. Then its centralizer C(γ ) acts geometrically on the
CAT(0) subset Min(γ ) of X [38, Theorem 3.2]. Thus we see that C( f ) is a CAT(0)
group, hence finitely generated by Theorem 4.2 (1). It remains to apply the Flat Torus
Theorem (3) to A = 〈 f 〉. �

Given a finitely generated group and its arbitrary element, it is natural to ask how
the iterates of this element behave with respect of generators. Namely, let � be a
finitely generated group with finite symmetric generating set � = �−1. Recall that
the word metric on � is defined as

w�(γ1, γ2) = min{n : γ −1
1 γ2 = σ1σ2 . . . σn, σi ∈ �},

and the length of γ ∈ � is |γ |� = w�(id, γ ). An element γ ∈ � is called distorted
if

lim
n→∞

|γ n|�
n

= 0

and undistorted otherwise. The property of being undistorted is well known to be
independent of choice of �.

Proposition 4.11 Let M be a projective hyperkähler manifold. Then its loxodromic
and parabolic birational automorphisms are undistorted.

Proof Let γ ∈ Bir(M) be a M-loxodromic or M-parabolic automorphism. Then
�(γ ) = �M(γ ) is of infinite order by Lemma 4.9. By [12, I.8.18] for any choice of
basepoint x0 ∈ XM there exists a constant μ > 0 such that

distX M (γ1x0, γ2x0) ≤ μw�(γ1, γ2).

Then one has

lim
n→∞

|γ n |�
n

� lim
n→∞

|�(γ )n |�(�)

n
= lim

n→∞
w�(�)(id, �(γ )n)

n
� lim

n→∞
μ−1 distX M (x0, �(γ )n x0)

n
,

(2)
where x0 ∈ XM is an arbitrary point. Now let X be a CAT(0) space, δ be a semi-
simple isometry, and x ∈ X be any point. Then it is easy to check that

‖δ‖ = distX (x, δn x)

n
. (3)
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By the Flat Torus Theorem, the set Min(〈δ〉) ≡ ∩k Min(γ k) is γ -invariant ans splits
as a product Y × E

1 such that δ acts identically on Y and by translations on E
1. It

then easily follows that ‖δn‖ = n · ‖δ‖. Now taking X = XM and δ = �(γ ) we get
from (2) and (3) that

lim
n→∞

|γ n|�
n

� μ−1‖�(γ )n‖ = μ−1n‖�(γ )‖ > 0,

since ‖�(γ )‖ > 0. �

4.4 Cohomological Properties

Finally we would like to show that cohomological properties of Bir(M) and Aut(M)

mentioned in [18] can be also obtained using our approach. Recall that a group
� is called of type FL if the trivial Z[�]-module Z has a finite resolution by free
Z[�]-modules of finite rank:

0 → Z[�]nk → . . . → Z[�]n1 → Z → 0.

We say that � is of type VFL6 if it is virtually FL, i.e. admits a finite-index subgroup
satisfying property FL.

Proposition 4.12 Let M be a projective hyperkähler manifold. Then the groups
Aut(M) and Bir(M) are of type VFL.

Proof Let � denote either Aut(M) or Bir(M). By Selberg’s lemma, the group
�NS(�) is virtually torsion-free. Since ker�NS is finite, � aslo contains a finite-
index torsion-free subgroup, say �0. Consider the action of � on the associated
CAT(0) space XM . Note that cocompactness is inherited under restriction of the
action of � to any finite-index subgroup, and properness holds for any subgroup of
�. So, the action of �0 onXM is proper and cocompact (and free). By [12, III.�.1.1,
II.5.13], �0 has a finite CW complex as classifying space. By [15, VIII.6.3] �0 is of
type FL then. �

We refer to [15] for further finiteness properties of groups.

4.5 Infinite Automorphism Groups of Hyperkähler Manifolds

Let M be a projective hyperkählermanifold. Aswasmentioned in the Introduction, at
the moment there is no general understanding of how complicated the automorphism

6 Virtuellement une résolution Libre de type Finie.
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groups of hyperkähler manifolds can be, even in the case of K3 surfaces. Here are
just some particular examples in this direction:

• Let X be a K3 surface with Picard number 2. Then Aut(X) is finite precisely when
the Picard lattice contains divisors L with L2 = 0 or with L2 = −2. Otherwise,
Aut(X) is either infinite cyclic, or the infinite dihedral Z/2 ∗ Z/2 [20].

• For any K3 surface with NS(X) � Z(2nd) ⊕ Z(−2n) with n � 2 and d not a
square one has Aut(X) � Z [10].

• A Wehler surface is a K3 surface X given as intersection of two divisors of bide-
grees (1, 1) and (2, 2). In the generic case NS(X) is of rank two with intersection

matrix

(
2 4
4 2

)
and Aut(X) � Z/2 ∗ Z/2. The two generators correspond to the

covering involutions X → P
2 of the projections to the two factors (they are not

symplectic, but their product is, and of infinite order), see [17] for more details
and generalizations.

• In 1977 Shioda and Inose classifiedK3 surfaces withmaximal Picard rank in terms
of their transcendental lattices. In particular, they discussed two K3 surfaces with
maximal Picard rank which are the simplest in the sense that their transcendental
lattices have the smallest possible discriminants equal to 3 and4. ThenVinberg [46]
called these surfaces the most algebraic K3 surfaces, X3 and X4. The surface Xm

is birational to (Ym × Ym)/�m, where Ym = C/(Z + Zωm), ωm = exp(2π i/m)

is an elliptic curve, �m is the cyclic group of order m generated by (z1, z2) �→
(ωm z1, ω−1

m z2). Moreover, Vinberg showed that Aut(X4) is a non-trivial central
extension of

Z/2 ∗ . . . ∗ Z/2
︸ ︷︷ ︸

5 times

�S5

by Z/2 and Aut(X3) is the trivial central extension of

Z/2 ∗ . . . ∗ Z/2
︸ ︷︷ ︸

12 times

�((S3 × S3) � Z/2)

by Z/3.

Of course, none of our main results provide sufficient condition for being an
automorphism group of a projective hyperkähler manifold. For example, it is known
that the (finitely presented) Thompson groupFdoes not satisfyTits alternative. Below
wewould like to collect some examples of groupswhich cannot be the automorphism
groups of any hyperkähler manifolds.

Example 4.13 For each integer m and n consider the Baumslag-Solitar group

BS(m, n) = 〈a, b | a−1bma = bn〉.
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Let M be a projective hyperkähler manifold. By Lemma 4.9, Aut(M) acts onXM by
semi-simple isometries. Since Aut(M) is finitely generated, [12, Theorem 1.1 (iii),
III.�] implies that Aut(M) cannot contain a copy of BS(m, n) with |m| = |n|.
Example 4.14 Our next example of impossible automorphism group has a com-
pletely different flavor. By [12, III.�, Theorem 1.4], every CAT(0) group has solvable
word and conjugacy problems. It is due to Boone andNovikov that there exist finitely
presented groups with an unsolvable word problem (and some explicit presentations
are also known after D. J. Collins). Note that the Baumslag-Solitar group of Example
4.13 has a solvable word problem (e.g. because the classical result of Magnus states
that every one-relator group does).

Finally, there are examples of very simple group extensions which cannot be
automorphism groups of any hyperkähler manifolds.

Example 4.15 Assume that Aut(M) contains a semi-direct product G = Z
n

�ϕ Z.
As G is solvable, Theorem 4.2 (3) implies that G has an abelian subgroup of finite
index. It is easy to see that ϕ must have a finite order then. For example, when n = 2
this shows that the integer Heisenberg group

H3(Z) =
⎧
⎨

⎩

⎛

⎝
1 t x
0 1 y
0 0 1

⎞

⎠ | t, x, y ∈ Z

⎫
⎬

⎭
∼= Z

2
�ϕ Z

cannot embed into Aut(M). Here we identify the matrix in the brackets with the pair
((x, y), t) and ϕ is given by ϕ(t) · (x, y) = (x + t y, y).

Example 4.16 Now consider the free group F = F(a, b, c) on three letters and the
automorphism

ϕ : a �→ a, b �→ ba, c �→ ca2.

Then the group

F �ϕ Z ∼= 〈a, b, c, t | tat−1 = a, tbt−1 = ba, tct−1 = ca2〉

is not aCAT(0) group [24, Proposition 2.1]. Theproof relies on the studyof translation
lengths introduced in paragraph Sect. 4.2.

We believe that a better understanding of CAT(0) groups will provide some
insights about the structure of automorphism groups of hyperkähler manifolds.

Acknowledgements Authors thank Misha Verbitsky for discussions, indicating idea of the proof
of theKawamata-Morrison conjecture in b2 = 5 case. Both authors are YoungRussianMathematics
award winners and would like to thank its sponsors and jury.
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On Generalized Büchi Surfaces

Antonio Laface and Rodrigo Quezada

Abstract The aim of this note is to introduce a class of smooth projective surfaces,
named Generalized Büchi surfaces. These are complete intersections in P

n which
generalize the surfaces arising from theBüchi problem innumber theory [9].We show
that a Generalized Büchi surface of Pn determines, up to projectivities, a subset of
cardinality n + 1 of P1 and viceversa it is determined, up to projectivities, by such a
subset.

Keywords Algebraic surfaces · Hyperelliptic curves · Büchi surfaces
2010 Mathematics Subject Classification Primary 14J25. Secondary 14J29,
14H55

1 Introduction

In what follows all the varieties that we consider are defined over the complex
numbers. Let n be an integer with n ≥ 3 and let {xi }n

i=1 be a sequence of n integers
satisfying the system of second order difference equations

(x2
i+2 − x2

i+1) − (x2
i+1 − x2

i ) = 2 for i ∈ {1, . . . , n − 2}.

For any integer x , the sequence of consecutive integers {xi = x + i}n
i=1 is a solution.

An integral solution is trivial if it is obtained from a sequence of consecutive integers
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by arbitrary sign changes, like e.g. (5,−6,−7, 8, . . . ), and it is non-trivial otherwise.
The Büchi problem is the well known question asking whether there exists a positive
integer n such that all integral solutions of the above equations are trivial. A positive
answer to Büchi’s problemwould imply, using the negative answer to Hilbert’s Tenth
Problem by Yu. Matiyasevich, that there is no algorithm to decide whether a system
of diagonal quadratic forms with integer coefficients admits an integer solution. For
a recent survey on the problem, we refer the reader to [9].

The above equations define an affine surface whose closure in the complex projec-
tive space is theBüchi surface Sn ⊆ P

n . TheBüchi problem, in its geometric formula-
tion, asks if there exists a positive integer n such that all the rational points of Sn lie on
the trivial lines of Sn , see Definition 2.2. In [1] the authors prove that S5 is determined
by its trivial lines: each such line intersects exactly six other trivial lines and the set of
intersection points are all projectively equivalent. In fact S5 is the minimal resolution
of the Kummer surface of the genus two curve y2 = (x − 2)(x − 1)x(x + 1)(x + 2)
defined by the six intersection points. Our aim is to generalize the geometric descrip-
tion of S5 given in [1] to the following class of surfaces.

Definition. Given an (n + 1)-tuple α = (α0, . . . ,αn) of distinct points of P1, the
Generalized Büchi surface Sn(α) ⊆ P

n is the complete intersection of the following
n − 2 diagonal quadrics of Pn:

x2i − (α0 − αi )(α1 − αi )

(α0 − α2)(α1 − α2)
x22 + (α0 − αi )(α2 − αi )

(α0 − α1)(α1 − α2)
x21 − (α1 − αi )(α2 − αi )

(α0 − α1)(α0 − α2)
x20 = 0

where i ∈ {3, . . . , n}.
The name “Generalized Büchi surfaces” is because Sn := Sn(∞, 1, 2, . . . , n), as
shown at the beginning of Sect. 2. Before stating our first result recall that a graph is
bipartite of type (a, b) if it set of vertices is the union of two disjoint sets of cardinality
a and b respectively.

Theorem 1 Let n ≥ 4 be an integer. Then the following hold for Sn(α).

(1) The 2n trivial lines are the only lines on the surface.
(2) Each line meets exactly other n + 1 lines along a subset of points which is

projectively equivalent to α.
(3) If n is odd then the intersection graph of the lines of the surface is bipartite of

type (2n−1, 2n−1).
(4) The defining ideal of the surface is generated by the quadrics which vanish along

the lines.

An immediate consequence of Theorem 1 is that Sn(α) is uniquely determined
by its trivial lines. Before stating our next result let us recall that M0,n denotes the
variety which parametrizes n-tuples of points of P1. This variety admits a natural
action by the symmetric groupSn . We denote by GBSn the set of generalized Büchi
surfaces up to projectivities. Our next result is the following.
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Theorem 2 Let n ≥ 4 be an integer. The assignment α �→ Sn(α) induces a bijection
�n : M0,n+1/Sn+1 → GBSn.

In particular if n is odd the above map establishes a bijection between the moduli
space of hyperelliptic curves of genus 1

2 (n − 1) and GBSn . In this case we show
that the quotient Yn(α) of Sn(α) by the subgroup of even changes of signs is dom-
inated by the second symmetric power of the corresponding hyperelliptic curve C .
More precisely there is a degree two map Sym2(C) → Yn(α) which generalizes the
classical construction of the Kummer surface when C has genus 2.

The paper is organized as follows. In Sect. 2 we prove the main geometric proper-
ties of Generalized Büchi surfaces and show how to reconstruct such a surface from
its lines. Sect. 3 is devoted to describe the geometry of lines of a Generalized Büchi
surface. The main result here is Theorem 1. In Sect. 4 we prove Theorem 2. Sect. 5
introduces the surface Yn(α) as a quotient of a Generalized Büchi surface Sn(α) by
the subgroup of even sign changes. Finally in Sect. 6 we show how to associate a
Generalized Büchi surface to any hyperelliptic curve C and prove that, if α is the
2g + 2-tuple of branch points in the hyperelliptic involution C → P

1, then the quo-
tient Sym2(C) by the natural action of the hyperelliptic involution is isomorphic to
the surface Y2g+1(α). This is Theorem 6.1.

2 Generalized Büchi Surfaces

In this section we discuss the basic properties of Generalized Büchi surfaces. In what
follows we will denote byQi the i-th defining polynomial for the Generalized Büchi
surface and by βi

0,β
i
1,β

i
2 the opposite of the coefficient of x2

0 , x2
1 , x2

2 in Qi , so that
Qi = x2

i − βi
2x2

2 − βi
1x2

1 − βi
0x2

0 = 0. Our first result is the following.

Proposition 2.1 Generalized Büchi surfaces are irreducible smooth projective sur-
faces. These surfaces are rational for n = 3 and 4, K3 for n = 5 and of general type
for n ≥ 6.

Proof To prove the smoothness of Sn(α) observe that, the (n − 2) × (n + 1) Jaco-
bian matrix of the equations that define Sn(α) is

2

⎛
⎜⎜⎜⎜⎜⎜⎝

−β3
0x0 −β3

1x1 −β3
2x2 x3

...
...

...
. . .

−βi
0x0 −βi

1x1 −βi
2x2 xi

...
...

...
. . .

−βn
0 x0 −βn

1 x1 −βn
2 x2 xn

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2.1)

We thus have to show that the above Jacobian matrix has maximal rank. First of
all we claim that a point of a General Büchi surface has at most two coordinates
equal to zero. Indeed assume that three coordinates are zero. From the equations of
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a Generalized Büchi surface it immediately follows that these coordinates cannot
be x0, x1, x2, otherwise all the coordinates would vanish. Similarly it cannot be that
two of the three vanishing coordinates are among the first three. Suppose now that
only one of the vanishing coordinates is among the first three, let us say x0, and the
remaining two are xi , x j . Then

βi
1x2

1 + βi
2x2

2 = 0 and β
j
1 x2

1 + β
j
2 x2

2 = 0.

Since the determinant of the 2 × 2 matrix is

∣∣∣∣
βi
1 βi

2

β
j
1 β

j
2

∣∣∣∣ = (αi − α j )(α0 − α j )(α0 − αi )

(α1 − α2)(α0 − α2)(α0 − α1)
�= 0,

the only solution of the above equations is x1 = x2 = 0, so that again the first three
variables would vanish giving a contradiction. Finally if none of the three vanishing
variables xi , x j , xk is among the first three then

βi
0x20 + βi

1x21 + βi
2x22 = 0, β

j
0 x20 + β

j
1 x21 + β

j
2 x22 = 0 and βk

0 x20 + βk
1 x21 + βk

2 x22 = 0.

Since the determinant of the 3 × 3 matrix is

∣∣∣∣∣∣
βi
0 βi

1 βi
2

β
j
0 β

j
1 β

j
2

βk
0 βk

1 βk
2

∣∣∣∣∣∣
= (α j − αk)(αi − αk)(αi − α j )

(α1 − α2)(α0 − α2)(α0 − α1)
�= 0,

the only solution of the above equations is again x0 = x1 = x2 = 0, a contradiction.
The claim is proved. As a consequence of the claim one can always find n − 2
columns of the above Jacobian matrix whose determinant is non-zero, so that the
matrix has maximal rank.

Now we will prove, by induction on n, the irreducibility of Sn(α). For n = 3 the
surface is a smooth quadric of P3. For n ≥ 4 observe that the map Sn(α) → Sn−1(α)

induced by the projection on the first n coordinates is a double covering branched
along the curve B of equations

βn
2 x2

2 + βn
1 x2

1 + βn
0 x2

0 = Qn−1 = · · · = Q3 = 0.

Since Sn−1(α) is irreducible by induction, if Sn(α) were reducible then it would
be union of two surfaces intersecting at B, so that B would be contained in the
singular locus of the surface. We now show that Sn(α) is smooth at a point of B,
proving in this way that the surface is irreducible. Let p ∈ B be a point such that
x3 · · · xn−1 �= 0 (just take a point [x0 : x1 : x2] on the conicβn

2 x2
2 + βn

1 x2
1 + βn

0 x2
0 = 0

with x0x1x2 �= 0 which lies outside the union of the conics βi
2x2

2 + βi
1x2

1 + βi
0x2

0 = 0
for any i < n). The jacobian criterion implies that B is smooth at p if the following
matrix has maximal rank at p.
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2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β3
0x0 −β3

1x1 −β3
2x2 x3

...
...

...
. . .

−βi
0x0 −βi

1x1 −βi
2x2 xi

...
...

...
. . .

−βn−1
0 x0 −βn−1

1 x1 −βn−1
2 x2 xn−1

−βn
0 x0 −βn

1 x1 −βn
2 x2 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.2)

This is the case because the first n − 3 rows are linearly independent and the last row
is not in the row space of the first n − 3 due to the condition x3 · · · xn−1 �= 0.

Finally, if we denote by H a hyperplane section of Sn(α) then, by the adjunction
formula a canonical divisor of Sn(α) is KSn(α) = (n − 5)H and the last part of the
statement follows, being Sn(α) a smooth complete intersection. �

Observe that Büchi surfaces are an example of Generalized Büchi surfaces.
Indeed, the projectivity [x0 : x1 : · · · : xn] �→ [α−1

0 x0 : x1 : · · · : xn] maps Qi to
x2

i − βi
2x2

2 − βi
1x2

1 − α2
0β

i
0x2

0 . Sending α0 to ∞ and putting αk = k for the other
values of k, the polynomial Qi is mapped to

x2
i − (i − 1)x2

2 + (i − 2)x2
1 − (1 − i)(2 − i)x2

0 .

According to the proof of [1, Corollary 2.2] the zero locus of the above polynomials is
the n-thBüchi surface. Before stating the second result recall the following definition.

Definition 2.2 The trivial lines of the Generalized Büchi surface Sn(α) are the 2n

lines of Pn defined parametrically, in an affine chart, by

t �→ [±(t − α0) : · · · : ±(t − αn)].

We show that Sn(α) is uniquely determined by its trivial lines. More precisely we
have the following.

Proposition 2.3 Each Generalized Büchi surface is the zero locus of the ideal gen-
erated by the quadrics which vanish along its trivial lines.

Proof Let L be the set of trivial lines of Sn(α). The statement is equivalent to show
that the quadratic part I (L)2 of the ideal I (L) is generated by the homogeneous poly-
nomials Qi given in the definition of a Generalized Büchi surface. Let 〈Q3, ...,Qn〉
be the linear span of the quadratic polynomials. The inclusion 〈Q3, ...,Qn〉 ⊆ I (L)2
is obvious. To prove the opposite inclusion, let σk : Pn → P

n be the involution which
exchanges the sign of the k-th coordinate. Let p ∈ L be a point with all coordinates
non-zero and observe that σk(p) ∈ L. Given Q ∈ I (L)2 we have

Q = x2
k + xklk + gk, where lk, gk ∈ C[x0, . . . , xk−1, xk+1, . . . , xn].



506 A. Laface and R. Quezada

From Q(p) = Q(σk(p)) = 0, we deduce that lk(p) = 0. This argument shows that
the linear polynomial lk must vanish at a general point of L and thus it vanishes
along L. Since the linear span of L is the whole space, we conclude that lk vanishes
identically. Repeating the argument for each k proves that Q is a degree two diagonal
homogeneous polynomial, Q = ∑n

i=0 Ci x2
i . Then the polynomial

Q′ := Q −
n−2∑
i=3

CiQi ∈ I (L)2

has the form γ0x2
0 + γ1x2

1 + γ2x2
2 , for some complex numbers γ0, γ1, γ2. By evaluat-

ing Q′ at a line ofL one gets a linear combination of the following three polynomials
(t − α0)

2, (t − α1)
2, (t − α2)

2 of C[t]. This linear combination must be identically
zero because Q′ vanishes on L. Since the above three polynomials are linearly inde-
pendent we conclude that γ0 = γ1 = γ2 = 0. Therefore Q ∈ 〈Q3, ...,Qn〉. �

3 Proof of Theorem 1

The aim of this section is to describe the geometry of lines of a Generalized Büchi
surface. All the results are summarized in the proof of Theorem 1.

Proof of Theorem 1 We prove (1). If n = 4 the surface S is a del Pezzo surface of
degree four which thus contains exactly 24 = 16 lines [7, Example 8.6.6.], the trivial
ones. The double cover map Sn+1(α) → Sn(α), defined by [x0 : · · · : xn+1] �→ [x0 :
· · · : xn], sends lines to lines. Thus, by induction on n, the surface Sn+1(α) contains at
most 2n+1 lines. On the other hand Sn+1(α) contains 2n+1 trivial lines, the statement
follows.

We prove (2). Since the lines of Sn(α) form one orbit with respect to the group of
sign changes, it suffices to prove the statement for the line L parametrized by t �→
[t − α0 : · · · : t − αn]. Let L ′ be another trivial line parametrized by u �→ [ε0(u −
α0) : · · · : εn(u − αn)], where εi ∈ {−1, 1} for any i . If L ∩ L ′ is not empty then
there exist t, u ∈ P

1 such that the following matrix has rank one

(
t − α0 . . . t − αn

ε0(u − α0) . . . εn(u − αn)

)
.

Let i, j be two indices such that εi = ε j . The corresponding 2 × 2 minor is εi (t −
αi )(u − α j ) − εi (t − α j )(u − αi ) = εi (t − u)(αi − α j ), so that u = t . Applying
this substitution, all the 2 × 2minorswith εi = ε j vanish,while eachminorwith εi =
−ε j is equal to ε j (t − αi )(t − α j ) − εi (t − α j )(t − αi ) = 2ε j (t − αi )(t − α j ).
Thus in this last case we conclude t ∈ {αi ,α j }. Assume t = αi , then the i-th column
of the above matrix is the zero vector and, from the above discussion, we conclude
that ε j = εk for any j, k different from i . The intersection point is [αi − α0 : · · · :
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αi − αn]. This proves that L intersects exactly n + 1 trivial lines. By applying the
morphism L → P

1, defined by [z0 : · · · : zn] �→ [z0 − z1 : α1z0 − α0z1], the above
intersection point is mapped to [1 : αi ].

We prove (3). Denote by [n + 1] the set {0, . . . , n}. For each subset P ⊂ [n + 1],
denote by σP the automorphism of Sn(α) that changes the sign of all the variables
with indices in P , we observe that σP = σ[n+1]\P . Then each line of Sn(α) can be
identified with a subset P of [n + 1], also we note that the complement of P is
identified with the same line. Let us denote by P the power set of [n + 1] and let

Pi := {P ∈ P : |P| ≡ i (mod 2)}.

The partition P = P0 ∪ P1 induces a partition L = L0 ∪ L1 of the set of lines of
Sn(α) becauseP ∈ Pi if and only if [n + 1] \ P ∈ Pi , being n odd. A consequence
of (4) is that given P,P ′ ∈ P , the corresponding lines, say LP and LP ′ intersect
if and only if the automorphism σP ◦ σP ′ is the sign change of a single variable,
equivalently if, up to relabelling and taking complements,P ′ ⊂ P and |P \ P ′| = 1.
From this it follows that LP and LP ′ can not belong toL0 orL1 at the same time, since
in both cases the lines LP and LP ′ have opposite signs in at least two coordinates, thus
the graph is bipartite. Finally, since |P0| = |P1|, the graph is of type (2n−1, 2n−1).

We prove (4). This is the content of Proposition 2.3. �

4 Proof of Theorem 2

Let � ⊆ (P1)n+1 be the Zariski closed subset defined by the equality of two or more
factors. Consider the function

(P1)n+1 \ � → GBSn α �→ Sn(α).

In this section we show that ifα′ is a (n + 1)-tuple projectively equivalent toα or it is
a permutation of α then Sn(α) is projectively equivalent to Sn(α

′). As a consequence
the above function descends to a function

�n : M0,n+1/Sn+1 → GBSn,

where M0,n+1 is the moduli space of (n + 1)-tuples of points in P
1.

Lemma 4.1 Let α and α′ be two projectively equivalent (n + 1)-tuples of distinct
points of P1. Then Sn(α) is projectively equivalent to Sn(α

′).

Proof By Proposition 2.3 it is enough to prove that the corresponding unions of
trivial lines L, L′ are projectively equivalent. For simplicity we work with Möbius
transformations instead of projectivities of P1. The group of Möbius transformations
is generated by themaps t �→ at + b, and t �→ t−1, where t is the complex coordinate



508 A. Laface and R. Quezada

and a, b ∈ C with a �= 0. The first transformation maps each line of L to itself.
Indeed the line t �→ [±(t − α0) : · · · : ±(t − αn)] is mapped to t �→ [±(t − (aα0 +
b)) : · · · : ±(t − (aαn + b))] and the latter is the same as the original line after
reparametrizing t with at + b. The second transformation maps L to the union of
lines parametrized by

t �→
[
±(t − 1

α0
) : · · · : ±(t − 1

αn
)

]
.

The projectivity P
n → P

n , defined by [x0 : · · · : xn] �→ [α0x0 : · · · : αn xn], maps
this set of lines back to L, as one can see after reparameterizing t with t−1. �

Lemma 4.2 Let α be an (n + 1)-tuple of distinct points in P
1 and let α′ be a per-

mutation of α. Then Sn(α
′) is projectively equivalent to Sn(α).

Proof Let σ ∈ Sn+1 be the permutation such that α′
i = ασ(i). Let φ ∈ PGL(n +

1,C) be the projectivity defined by φ([x0 : · · · : xn]) = [xσ(0) : · · · : xσ(n)]. Then
φ(Sn(α

′)) = Sn(α). �

Proof of Theorem 2 �n is well-defined by Lemma 4.1 and Lemma 4.2. Moreover
it is surjective by definition. We now show that �n is injective. Let α,α′ be two
(n + 1)-tuples such that �n(α) = �n(α

′), that is Sn(α) is projectively equivalent to
Sn(α

′). In particular the union of lines of the two surfaces are projectively equivalent
and thus α and α′ are projectively equivalent by Theorem 1. When n is odd the
moduli space M0,n+1/Sn+1 of subsets of cardinality n + 1 of P1 is isomorphic to
the moduli space of hyperelliptic curves of genus 1

2 (n − 1), the isomorphism being
given by taking the double cover of P1 branched along the n + 1 points. �

Remark 4.3 Observe that if Z ⊆ P
n , with n > 5, is a surface isomorphic to aGener-

alized Büchi surface Sn(α) ⊆ P
n , then Z is projectively equivalent to Sn(α). Indeed,

by adjunction formula a canonical divisor of Sn(α) is K = (n − 5)H , where H is
a hyperplane section. Since Sn(α) is a complete intersection, its Picard group is
torsion-free by [6, Theorem 1.8, pag. 49] or [2, Theorem B] and the same holds for
Z . In particular there is a unique divisor class [D] on Z such that K Z := (n − 5)D is
a canonical divisor. An isomorphism f : Sn(α) → Z maps [K ] to [K Z ] and thus, by
the above unicity, must map [D] to [H ]. It follows that f ∗(D) is linearly equivalent
to H , so that there exists a rational function h on Sn(α) with div(h) = f ∗(D) − H .
The following map

H 0(Z , D) → H 0(Sn(α), H) γ �→ h · (γ ◦ f )

is linear so it induces a projectivity between Z and Sn(α).

Remark 4.4 Summarizing we have that from a Generalized Büchi surface S ⊆ P
n

we can recover a subset {α0, . . . ,αn} of P1, up to projective equivalence, which
consists of the intersection points of a given line of S with the other lines of S. When
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n = 2g + 1 is odd one associates to S the genus g hyperelliptic curve C , of affine
equation

y2 = (x − α0) · · · (x − α2g+1). (4.1)

This is the double cover of P1 branched along the 2g + 2 points. On the other hand,
if we start with a genus g ≥ 2 hyperelliptic curve, its set of 2g + 2Weierstraß points,
α0, . . . ,α2g+1, can be made to correspond to a Generalized Büchi surface S2g+1(α)

in P2g+1, which is uniquely defined up to projectivities by Lemma 4.1.

5 The Quotient by the Group of Even Sign Changes

Let g ≥ 2 be an integer and let S := S2g+1(α) ⊆ P
2g+1 be a Generalized Büchi

surface.

Definition 5.1 Let G be the subgroup of GL(2g + 2,C) generated by the change
of sign of one of the coordinates. The group of even sign changes is the index two
subgroup

G0 := G ∩ SL(2g + 2,C).

Proposition 5.2 The surface Y := S/G0 is isomorphic to the following hypersur-
face of degree 2g + 2 of P(1, 1, 1, g + 1):

w2 = z0z1z2

2g+1∏
i=3

(βi
2z2 + βi

1z1 + βi
0z0),

where the coefficients are the ones appearing in the equations of a Generalized
Büchi surface. In particular Y has

(2g+2
2

)
ordinary double points, coming from the

intersection points of the 2g + 2 lines defined by the vanishing of the right hand side
of the above equation. The surface is K3 if g = 2 and of general type if g ≥ 3.

Proof Let R := C[x0, . . . , x2g+1]. Since the action is diagonal, the invariant ring
RG0 is generated by monomials. Given a monomial m := ∏

i xai
i , the element of

G0 which changes exactly the signs of the i-th and j-th coordinates maps m to
(−1)ai +a j m. Thus, if m is invariant, ai + a j must be even for any pair of distinct
indices i, j . This implies that all the ai have the same parity. It follows that RG0 is
generated by x2

0 , . . . , x2
2g+1, x0 · · · x2g+1. The corresponding quotient morphism, at

the level of (weighted) projective spaces is

P
2g+1 → P(1, . . . , 1, g + 1) (x0, . . . , x2g+1) �→ (x2

0 , . . . , x2
2g+1, x0 · · · x2g+1).

The image is the hypersurface of equation w2 = z0 · · · z2g+1. The quadratic poly-
nomial x2

i − βi
2x2

2 − βi
1x2

1 − βi
0x2

0 , appearing among the defining equations of S,
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becomes zi − βi
2z2 − βi

1z1 − βi
0z0 in the new variables. This gives the claimed equa-

tion for Y in P(1, 1, 1, g + 1).
From the equation one deduces that Y is a double covering of P2 branched along

the union of 2g + 2 lines. In particular Y is singular at each intersection point of two
such lines and the singularity is an ordinary double point. To compute a canonical
divisor KY for Y we apply the adjunction formula together with the observation that,
being Y a normal surface, its canonical divisor is the closure of a canonical divisor
of the smooth locus. First of all we recall that a canonical divisor of the weighted
projective space P(a0, . . . , an) is KP = −(a0 + · · · + an)H , where H is degree one
Weil divisor [5, Theorem 8.2.3]. In particular a canonical divisor of P(1, 1, 1, g + 1)
is (−g − 4)H . Thus we get

KY = KP + Y |Y ∼ (−g − 4)H + (2g + 2)H |Y = (g − 2)H |Y .

The last part of the statement follows. �

Proposition 5.3 The surface Y := S/G0 is isomorphic to the double cover of P2

branched along the union of 2g + 2 lines tangent to the conic � parametrized by

t �→ [(α0 − t)2 : (α1 − t)2 : (α2 − t)2].

The set of tangency points is projectively equivalent to {α0, . . . ,α2g+1} ⊆ P
1.

Proof To show that the 2g + 2 lines are tangent to a conic� is equivalent to prove that
the points corresponding to these lines, in the dual projective plane, lies on a conic�∗.
The first three points, corresponding to z0, z1 and z2, are the fundamental points of the
dual projective plane, while the remaining ones are of the form [βi

0 : βi
1 : βi

2], where
the βi

k are the ones appearing in the definition of the Generalized Büchi surfaces. A
parametrization of the conic �∗ is the following:

t �→
[

(α1 − t)(α2 − t)

(α0 − α1)(α0 − α2)
: − (α0 − t)(α2 − t)

(α0 − α1)(α1 − α2)
: (α0 − t)(α1 − t)

(α0 − α2)(α1 − α2)

]
.

Indeed α0, α1 and α2 are mapped to the fundamental points of the projective
plane, while αi is mapped to [βi

0 : βi
1 : βi

2]. By taking the derivative of the above
parametrization one can compute the parametrization for the dual conic �, which
turns out to be the stated one. This proves both claims in the statement. �

Remark 5.4 We summarize the content of Proposition 5.3 in the following picture.
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Each trivial line of S is mapped to � by the quotient map S → S/G � P
2. Indeed

the map is defined by [x0 : · · · : x2g+1] �→ [x2
0 : x2

1 : x2
2 ], because one can use the

equations of S to express all the x2
i , with i ≥ 3, as functions of the first three

squares. Thus the parametrized line t �→ [±(t − α0) : · · · : ±(t − α2g+1)] is sent
to the parametrized conic t �→ [(t − α0)

2 : (t − α1)
2 : (t − α2)

2], which is �. By
replacing this parametrization into the equation of Y we deduce that the double
cover Y = S/G0 → S/G is trivial over � since the curve has the following two
preimages of parametric equation

t �→
[
(t − α0)

2 : (t − α1)
2 : (t − α2)

2 : ±
2g+1∏
i=0

(t − αi )

]
.

In particular if we denote by�0, �1 ⊆ Y the above two curves, corresponding respec-
tively to the sign + and −, then the trivial lines of S mapped to �0 are exactly those
with an even number of negative signs.

Proposition 5.5 The surface S is birational to Y := S/G0 if and only if g = 2.

Proof If g = 2 then both S and Y are birational to the Kummer surface of the
jacobian variety of the genus two curve of equation y2 = (x − α1) · · · (x − α5).
This is classical known, see e.g. [7, Theorem 10.3.16].

Assume now g > 2.Denote by KS and e(S) a canonical divisor and the Euler char-
acteristic of the surface S, respectively. Since S ⊆ P

2g+1 is a complete intersection
of 2g − 1 quadrics then by [10, Example 2.3] we have

K 2
S = 4(g − 2)222g−1 e(S) = (2g2 − 5g + 5)22g−1.

Replacing these values in theNoether’s formula [3, I.14], and using h1(S,OS) = 0 [6,
Theorem 1.5 (i i i)a] one deduces

h0(S, KS) = h2(S,OS) = χ(OS) − 1 = (2g2 − 7g + 7)22g−3 − 1,
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where the first equality is by Serre’s duality. On the other side, consider the surface
Y ⊆ P(1, 1, 1, g + 1). The fundamental sequence of Y is

0 �� OP(−Y ) �� OP
�� OY

�� 0.

Taking tensor product with OP(KP + Y ), passing to the long exact sequence in
cohomology and recalling that KY ∼ KP + Y |Y , we get

H 0(P, KP) �� H 0(P, KP + Y ) �� H 0(Y, KY ) �� H 1(P, KP).

Since KP has degree −g − 4 < 0, we have H 0(P, KP) = 0. Moreover by Batyrev-
Borisov vanishing [5, Theorem 9.2.7] we have H 1(P, KP) = 0. It follows that
h0(Y, KY ) = h0(P, KP + Y ), where the last number equals the number of mono-
mials of degree 2g + 2 − (g + 4) = g − 2 in P(1, 1, 1, g + 1). Thus we conclude

h0(Y, KY ) =
(

g

2

)
= g(g − 1)

2
.

Then h0(Y, KY ) < h0(S, KS) for any g > 2. By Proposition 5.2 the surface Y has
only ordinary double points, thus its minimal resolution of singularities π : Ỹ → Y
is crepant (see [8, Theorem 7.5.1]), that is KỸ = π∗KY . As a consequence pg(Ỹ ) =
h0(Ỹ , KỸ ) = h0(Y, KY ). Since two smooth projective birational surfaces have the
same pg and pg(S) > pg(Ỹ ) we conclude that S cannot be birational to Y . �

6 Hyperelliptic Curves and Generalized Büchi Surfaces

Let C be hyperelliptic curve of genus g ≥ 2 and let ı be the hyperelliptic involution.
Let N � (Z/2Z)2 be the subgroup of Aut(C × C) generated by the involutions
(p, q) �→ (ı(p), q) and (p, q) �→ (p, ı(q)). Denote by H the subgroup of Aut(C ×
C) generated by the involution (p, q) �→ (q, p). A direct calculation shows that H is
in the normalizer of N so that N H is a groupwhich contains N as a normal subgroup.
Let

Sym2(C) := (C × C)/H

be the second symmetric power of C with itself, let C × C → Sym2(C) be the
quotient map and denote by p + q the image of (p, q). Observe that H conmutes
with the subgroup N0 of N generated by the involution (p, q) �→ (ı(p), ı(q)). As a
consequence this involution descends to Sym2(C) acting as p + q �→ ı(p) + ı(q).
We denote by Sym2(C)/〈ı〉 the corresponding quotient surface. Recalling that the
symmetric product of P1 with itself is P2 we summarize the above construction in
the following commutative diagram
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C × C
/H ��

π/N
  

Sym2(C)
/〈ı〉 ��

π(2)

  

Sym2(C)/〈ı〉
π(2)

ı

  
P
1 × P

1 /H �� P2
P
2

(6.1)

where π(2) is the degree 4 morphism induced by π. Observe that π(2) is not a quotient
morphism by a group action. In the next theorem we will use the following linear
polynomials.

f0 := (α1 − α2)z0 − (α0 − α2)z1 + (α0 − α1)z2

f1 := (α2
1 − α2

2)z0 − (α2
0 − α2

2)z1 + (α2
0 − α2

1)z2

f2 := α1α2(α1 − α2)z0 − α0α2(α0 − α2)z1 + α0α1(α0 − α1)z2,

(6.2)

Theorem 6.1 Let C be a hyperelliptic curve of genus g ≥ 2 and let α0, . . . ,α2g+1 ∈
P
1 be the images of its Weierstraß points. Then Sym2(C)/〈ı〉 is isomorphic to the

hypersurface of P(1, 1, 1, g + 1) of equation

w2 =
2g+1∏
i=0

(z2 − αi z1 + α2
i z0).

The automorphism of the ambient weighted projective space defined by [z0, z1, z2, w]
�→ [ f0, f1, f2, γg+1w], where γ = (α0 − α1)(α0 − α2)(α1 − α2), maps Y to Sym2

(C)/〈ı〉.
Proof We are going to show that π(2)

ı is a double cover branched along the union
of the 2g + 2 lines of equations z2 − αi z1 + α2

i z0 = 0. These are images of the
curves {p} × C , where p varies along the Weierstraß points of C . We describe the
morphisms of (6.1) in an invariant affine chart of C × C . An affine equation of the
curve C is y2 = f (x), where

f (x) =
2g+1∏
i=1

(x − αi ).

Thus in an affine chart, with coordinates x, y, u, v, the equations of C × C are
y2 = f (x), v2 = f (u), the generator of H is (x, u, y, v) �→ (u, x, v, y) and the
generator of N0 is (x, y, u, v) �→ (x,−y, u,−v). Using elementary invariant theory,
see e.g. [12], we see that the ring of invariants of H is generated by x + u, y + v,
xu, xy + uv, y2 + v2. The latter can be omitted when restricting to C × C because
it is expressed as a symmetric function of x and u. Similarly one sees that the ring of
invariants of N0 is generated by x + u, xu, yv, y2 + v2, xy2 + uv2. The latter two
can be omitted when restricting to C × C because they are expressed as symmetric
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functions of x and u. Thus, in these coordinates, the morphisms in (6.1) are given by

(x, u, y, v)

π

  

�� (x + u, xu, y + v, xy + uv)

π(2)

  

�� (x + u, xu, yv)

π(2)
ı

  
(x, u) �� (x + u, xu) (x + u, xu).

(6.3)

From the above description of π(2)
ı we see that it ramifies along the curves with

yv = 0. By the equation of C × C these are the images of the curves {p} × C , where
p is aWeierstraß point. These are the lines of parametric equation t �→ (αi + t,αi t),
whose homogeneous cartesian equation is z2 − αi z1 + α2

i z0 = 0.
To prove the last part of the statement it suffice to evaluate the latter polynomial

at zi = fi , for i = 0, 1, 2. A direct calculation shows that the following holds:

f2 − αi f1 + α2
i f0 = γ(βi

2z2 + βi
1z1 + βi

0z0),

proving the statement. �

6.1 Rationals Points

The isomorphism Y � Sym2(C)/〈ı〉 given in Theorem 6.1 is defined over the field
Q(α0,α1,α2). On the other hand, by exchanging the labels of the Weierstraß points
one can construct a similar isomorphism defined over the fieldQ(αi ,α j ,αk), for any
i, j, k. In particular if the vector α has at least three rational entries then the isomor-
phism is defined over the rationals. Let us denote by F : C × C → Sym2(C)/〈ı〉 the
degree four quotient map which in affine coordinates is given by

(x, u, y, v) �→ (xu, x + u, yv).

Given a point (p, q) ∈ C × C we denote by Q(p, q) the extension of the rationals
obtained by adding the affine coordinates of the points p and q. Thus if p = (x, y)

and q = (u, v) then Q(p, q) := Q(x, u, y, v). We say that a point of Sym2(C)/〈ı〉
is rational if all of its coordinates are rational numbers.

Proposition 6.2 Let (p, q) ∈ C × C be the preimage, via F, of a rational point of
Sym2(C)/〈ı〉. Then the field extension Q(p, q)/Q is Galois with group G pq isomor-
phic to a subgroup of the Klein group.

Proof By assumption xu, x + u, yv are rational numbers so thatQ(p, q) = Q(x, u,

y, v) = Q(x, y). By the tower law it follows that d := [Q(x, y) : Q] is a divisor of 4.
To prove that the extension is Galois observe that an element of the absolute Galois
group preserves the set {x, u} and the set {−y, y,−v, v}, so that it preservesQ(x, y).
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Since the degree of the extension is a divisor of 4, the only possibilities for the Galois
group are: a subgroup of the Klein group or the order four cyclic group. The last
possibility cannot occur since an element σ ∈ G pq of order four would act, up to
exchange the roles of y and v, as σ(y) = v and σ(v) = −y, so that yv would not be
invariant, a contradiction. �

The above proposition shows that the search for rational points on the surface
Sym2(C)/〈ı〉 leads to look for points of C which live in an abelian extension of the
rationals whose Galois group is a subgroup of the Klein group. In case this group is
trivial, then both p and q would be rational points of C . We show in the following
proposition that when g = 4 we know all such points.

Proposition 6.3 The only rational points of the hyperelliptic curve of equation y2 =∏4
n=−4(x − n) are the Weierstraß points.

Proof Let C be the hyperelliptic curve. By [11, pp. 15] if p is a prime of good
reduction of C then

#C(Q) ≤ #C(Fp) + 2r +
⌊

2r

p − 2

⌋
,

where C is the reduction of C modulo p and r is the rank of the group JC(Q)

of rational points on the Jacobian variety. The discriminant of C is 2623185874, so
p = 13 is a prime of good reduction for C . Moreover #C(F13) = 10 and r = 0. All
these calculations can be checked by means of the following Magma [4] code.

> R<x> := PolynomialRing(Rationals());
> C := HyperellipticCurve(&*[x-n : n in [-4..4]]);
> Factorization(Numerator(Discriminant(C)));
[ <2, 62>, <3, 18>, <5, 8>, <7, 4> ]
> #Points(ChangeRing(C,GF(13)));
10
> RankBounds(Jacobian(C));
0 0

Since C(Q) contains the nine Weierstraß points together with the point at infinity,
the statement follows. �
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Abstract Bondal asked whether the derived category of any smooth projective vari-
ety can be embedded into the derived category of a Fano variety. In [31], the authors
proved that every complete intersection smooth projective variety Y is a Fano visitor,
i.e. its derived category Db(Y ) is equivalent to a full triangulated subcategory of the
derived category Db(X) of a smooth Fano variety X , called a Fano host of Y . They
also introduced the notion of Fano dimension of Y as the smallest dimension of a
Fano host X and obtained an upper bound for the Fano dimension of each complete
intersection variety. In this paper, we generalize Bondal’s question and study triangu-
lated subcategories of derived categories of Fano orbifolds. We proved that there are
many interesting triangulated categories which can be embedded into derived cate-
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1 Introduction

If one were to write up a list of keywords that describe recent developments in
algebraic geometry, it would be hard to miss the words like “derived category” or
“categorification”. The derived category Db(X) of bounded complexes of coherent
sheaves of a projective variety X was found to be a sophisticated invariant which
categorifies geometric invariants such as Hochschild homology, Hochschild coho-
mology and Grothendieck groups of algebraic varieties (cf. [37]). One of the basic
problems in algebraic geometry is to study how invariants of a given variety can be
encoded in invariants of the other varieties. In 2011, Bondal raised the following
question (cf. [7]).

Question 1.1 (Fano visitor problem)
Let Y be a smooth projective variety. Is there a Fano variety X equipped with a fully
faithful embedding Db(Y ) → Db(X)?

If the answer is yes, we call Y a Fano visitor and X a Fano host of Y . From the
categorical point of view, Fano varieties are of particular interest because they admit
natural semiorthogonal decompositions and many examples have been explicitly
calculated (cf. [7, 10, 35, 36, 54]). They are also one of the main objects in bira-
tional geometry and mirror symmetry. If the answer to Question 1.1 is yes for all
smooth projective varieties, some problems about derived categories may be effec-
tively reduced to those of Fano varieties. Moreover the geometry and invariants of X
are closely related to those of Y. Especially, it turns out that moduli spaces of rational
curves or vector bundles on X are closely related to the geometry of Y. See [14, 39,
40, 44] for such examples.

Bondal and Orlov in [10] proved that the derived category of a hyperelliptic
curve Y of genus g is embedded into the derived category of the intersection of two
quadrics in P2g+1. Kuznetsov in [35] proved that the derived categories of some K3
surfaces are embedded into special cubic 4-folds. He also found that some Fano
3-folds contain the derived categories of certain smooth projective curves (cf [36]).
Bernardara, Bolognesi and Faenzi in [7] proved that every smooth plane curve is
a Fano visitor. Segal and Thomas in [54] proved that a general quintic 3-fold is a
Fano visitor by finding an 11-dimensional Fano host. In [31], the authors proved the
following.

Theorem 1.2 ([31, Theorem 4.1]) All smooth projective complete intersections are
Fano visitors.

Moreover, they defined the Fano dimension of a smooth projective variety Y as the
minimum dimension of Fano hosts X of Y . The Fano dimension is defined to be
infinite if no Fano hosts exist. It was also proved that an arbitrary complete inter-
section Calabi-Yau variety Y of codimension ≤ 2 or a general complete intersection
Calabi-Yau variety of codimension ≥ 3 has Fano dimension at most dim Y + 2.
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We generalize the construction and technique of [31] for complete intersections
in more general varieties such as Grassmannians (cf. Theorem 3.1) or other homo-
geneous varieties. Using this, we prove that smooth curves of genus at most 4 are all
Fano visitors and general curves of genus at most 9 are Fano visitors. For surfaces
and higher dimensional varieties, we find more examples of Fano visitors and raise
natural questions. We also provide a Hodge-theoretic criterion for the existence of a
Fano host and decide Fano dimensions of several interesting examples. For instance,
an arbitrary complete intersection Calabi-Yau variety Y of codimension ≤ 2 or a
general complete intersection Calabi-Yau variety Y of codimension ≥ 3, the Fano
dimension is precisely dim Y + 2.

From the perspective of recent developments of the theory of Fano varieties, it
seems to be natural to consider Fano varieties having singularities. By works of
Kawamata (cf. [28–30]), it turns out that considering derived categories of smooth
Deligne-Mumford stacks instead of considering derived categories of their coarse
moduli spaces has many advantages. Therefore we investigate derived categories of
Fano orbifolds instead of derived categories of Fano varieties having only quotient
singularities. Here a Fano orbifold means a smooth Deligne-Mumford stack whose
coarse moduli space is Fano. Moreover Fano orbifolds naturally appear in many
context, e.g. mirror symmetry, orbifold Kahler-Einstein metric, etc. It will be nice if
one can find a way to relate every Fano variety a smooth Artin stack whose coarse
moduli space is the Fano variety, but it seems that we do not have such a method yet.
Therefore a natural generalization of Bondal’s original Fano visitor problem will be
as follows.

Question 1.3 (1) Which triangulated categories can be embedded into derived cat-
egories of smooth Deligne-Mumford stacks or smooth Artin stacks whose coarse
moduli spaces are Fano?
(2) For a smooth projective variety Y, is there a Fano orbifold X such that Db(X )

contains Db(Y ) as a full triangulated subcategory?

In this paper, we restrict ourselves to consider only triangulated subcategories of
Fano orbifolds and found many examples of varieties whose derived categories are
contained in derived categories of Fano orbifolds.

Definition 1.4 Let Y be an algebraic stack. If there is a Fano orbifold X such that
Db(X ) contains Db(Y) then we say Y has an orbifold Fano host X .

Then we can find many examples of varieties which have orbifold Fano hosts. For
example, we have the following result. See Theorem 3.5 for more precise statement
and details.

Theorem 1.5 Every quasi-smooth weighted complete intersection orbifold in a
weighted projective space has an orbifold Fano host.

Then it immediately follows that hyperelliptic curves, 95 families of (orbifold)
K3 surfaces of Reid andmany other well-known examples of quasi-smooth weighted



520 Y.-H. Kiem and K.-S. Lee

complete intersection orbifolds (cf. [1]) have orbifold Fano hosts. Moreover we can
find Fano orbifolds whose derived categories contain derived categories of many
interesting varieties, e.g. Jacobians of curves, generic Enriques surfaces, some fam-
ilies of Kummer surfaces, bielliptic surfaces, certain surfaces with κ = 1, classical
Godeaux surfaces, product-quotient surfaces, holomorphic symplectic varieties, etc.
However we do not know whether there are smooth projective Fano varieties whose
derived categories contain derived categories of these varieties yet.

An interesting recent discovery in the theory of derived categories is the existence
of quasi-phantom subcategories in derived categories of some surfaces of general
type with pg = q = 0 [8, 9, 18, 42, 43, 45]. But no examples of Fano with quasi-
phantom subcategories have been found. From the above constructions, we found
Fano orbifolds whose derived categories contain quasi-phantom categories or phan-
tom categories (cf. Example 6.18). As far as we know, this is the first discovery of a
quasi-phantom category in the realm of Fano (orbifolds). However we do not know
whether there is a smooth Fano variety with a (quasi-)phantom category.

YHK was partially supported by NRF grant 2011-0027969; KSL was partially
supported by IBS-R003-Y1. Part of this work was done while the second named
author was a research fellow of KIAS and visiting the University of Warwick by
support of KIAS. He thanks University of Warwick for wonderful working condi-
tions and kind hospitality. He also thanks Ludmil Katzarkov and Simons Foundation
for partially supporting this work via Simons Investigator Award-HMS. We thank
Marcello Bernardara, Alexey Bondal, Chang-Yeon Chough, Alessio Corti, Enrico
Fatighenti, Tomas Gomez, Atanas Iliev, Ludmil Katzarkov, In-Kyun Kim, Andreas
Krug, Alexander Kuznetsov, Hwayoung Lee, Mudumbai Seshachalu Narasimhan,
Dmitri Orlov, Shinnosuke Okawa, Genki Ouchi, Jihun Park, Miles Reid, Powel
Sosna, Yukinobu Toda for helpful conversations. Last but not least, we thank referees
for helpful comments and suggestions.

Notation. In this paper, all schemes and stacks are defined over the complex number
fieldC. For a vector bundle E on S, the projectivization PE := Proj

(
Sym·E∨)

of E
parameterizes one dimensional subspaces in fibers of E . For an algebraic stack X ,

Db(X ) denotes the bounded derived category of coherent sheaves on X . The zero
locus s−1(0) of a section s : OX → E of a vector bundle E over a scheme X is the
closed subscheme of X whose ideal is the image of s∨ : E∨ → OX .

2 Preliminaries

In this section we recall several definitions and facts which we will use later.
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2.1 Fano Visitor Problem

Let us recall several definitions on Fano varieties.

Definition 2.1 ([27]) A normal projective variety X is Fano if −K X is Q-Cartier
and ample.

We learned the definition of Fano visitor from [7].

Definition 2.2 An algebraic stack Y is called a Fano visitor if there is a smooth
projective Fano variety X together with a fully faithful (exact) embedding Db(Y) →
Db(X). We call such a Fano X a Fano host of Y . If there is a smooth Deligne-
Mumford stack X whose coarse moduli space is Fano and Db(X ) contains Db(Y)

as a full triangulated subcategory, then X is called an orbifold Fano host of Y .

Remark 2.3 Let Y be a singular variety. Then there are objects e1 and e2 such that
Hom(e1, e2[i]) is nonzero for infinitely many i. Therefore there is no Fano orbifold
X such that Db(X ) contains Db(Y ) as a full triangulated subcategory.

Bondal’s question (Question 1.1) asks whether a smooth projective variety is a
Fano visitor. It is easy to see that a Fano host X of a smooth projective variety Y is
not unique because for instance the product X and any smooth Fano variety is also
a Fano host of Y . So we may ask for a Fano host of minimal dimension.

Definition 2.4 ([31]) The Fano dimension of a smooth projective variety Y is the
minimum among the dimensions dim X of Fano hosts X of Y .

See [31] for more discussions and questions related to Fano visitors.

2.2 Coarse Moduli Spaces of Deligne-Mumford Stacks

We refer the reader to [19, 28, 29, 50, 55] for basic definition and properties about
algebraic stacks and coherent sheaves on them. From the famousKeel-Mori theorem,
we know that every algebraic stack locally of finite presentation with finite diagonal
has a coarsemoduli space (cf. [50, Theorem 11.1.2]). Sometimeswe need to compare
derived categories of Deligne-Mumford stacks and their coarse moduli spaces.

Lemma 2.5 Let X be a Deligne-Mumford stack locally of finite type with finite
diagonal and X be its coarse moduli space. Suppose that X is a smooth projective
variety. Then we have a fully faithful functor Lπ∗ : Db(X) → Db(X ).

Proof From [50, Theorem 11.1.2] and [50, Proposition 11.3.4], we have an iso-
morphism OX → Rπ∗OX . Because X is a smooth projective variety we know that
every object in Db(X) is a perfect complex. Then we have a canonical isomor-
phisms Homk(Lπ∗a, Lπ∗b) ∼= Homk(a, Rπ∗Lπ∗b) ∼= Homk(a, b) for any k and



522 Y.-H. Kiem and K.-S. Lee

a, b which are objects in Db(X) by the adjunction formula and the projection for-
mula (cf. [24, Corollary 4.12], [50, Proposition 9.3.6]). Therefore we see that Lπ∗
is a fully faithful functor. �

We will use that quotient stacks of Fano varieties by finite groups form a natural
class of Fano orbifolds.

Corollary 2.6 Let X be a smooth Fano variety and G be a finite group acting on
X. Suppose that the locus with nontrivial stabilizer on X has codimension at least
2. Then [X/G] is a Fano orbifold.

Proof It is easy to see that [X/G] is a smooth Deligne-Mumford stack. From [55,
Proposition 2.11], we see that X/G is the coarse moduli space of [X/G]. From the
assumption on the G-action, there is an open subset of X where G acts freely and
the complement of it has codimension at least 2. Over this open subset, the canonical
bundle is the pullback of the canonical bundle of the image of the open subset.
Because the canonical divisors can be extended into the whole spaces by taking
closures, we see that the canonical divisor of X is the pullback of the canonical divisor
of X/G. Therefore the anticanonical divisor of X/G is ample since its pullback to
X is ample (cf. [41, Corollary 1.2.28]). �

2.3 Semiorthogonal Decomposition

We recall the definition and examples of semiorthogonal decompositions of derived
categories of coherent sheaves.

Definition 2.7 Let T be a triangulated category. A semiorthogonal decomposition
of T is a sequence of full triangulated subcategories A1, · · · ,An satisfying the
following properties:
(1) HomT (ai , a j ) = 0 for any ai ∈ Ai , a j ∈ A j with i > j ;
(2) the smallest triangulated subcategory of T containing A1, · · · ,An is T .

We will write T = 〈A1, · · · ,An〉 to denote the semiorthogonal decomposition.

Let E be a vector bundle of rank r ≥ 2 over a smooth variety S and let
Y = s−1(0) ⊂ S denote the zero locus of a regular section s ∈ H 0(S, E) such that
dim Y = dim S − rank E . Let X = w−1(0) ⊂ PE∨ be the zero locus of the section
w ∈ H 0(PE∨,OPE∨(1)) determined by s under the natural isomorphisms

H 0(PE∨,OPE∨(1)) ∼= H 0(S, q∗OPE∨(1)) ∼= H 0(S, E)

where q : PE∨ → S is the projection map of the projective bundle.

Orlov proved in [52] that Db(X) has the following semiorthogonal decomposition
which was subsequently generalized to higher degree hypersurface fibrations by
Ballard, Deliu, Favero, Isik and Katzarkov in [3].
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Theorem 2.8 ([52, Proposition 2.10], [3]) There is a natural semiorthogonal
decomposition

Db(X) = 〈q∗ Db(S), · · · , q∗ Db(S) ⊗OX OX (r − 2), Db(Y )〉.

Remark 2.9 Orlov proved in particular that there is a fully faithful exact functor
from Db(Y ) to Db(X) (cf. [52, Proposition 2.2]). When an algebraic group G acts
on S and E compatibly and s is a G-invariant section, there is an induced action of
G on X and Y . His proof also works for this equivariant setting to give us a fully
faithful exact functor from Db([Y/G]) to Db([X/G]). See [52, Remark 2.9].

We can provide many examples of orbifold Fano hosts of interesting algebraic
varieties using the following result of Ploog in [53] which was generalized by Krug
and Sosna in [34].

Theorem 2.10 ([34, 53]) Let X, Y be smooth projective varieties with G-action
where G is a finite group. Suppose that �K : Db(Y ) → Db(X) is a fully faithful
functor and K has a G-linearization with respect to the diagonal G-action on Y ×
X. Then K induces a functor �G

K : Db([Y/G]) → Db([X/G]) which is also fully
faithful.

3 Cayley’s Trick and Weighted Complete Intersections

In this section, we recall and generalize the main construction and result in [31].

3.1 Cayley’s Trick

Let S be a smooth variety and s ∈ H 0(S, E) be a regular section of a vector bundle
of rank r ≥ 2 such that Y = s−1(0) is smooth of dimension dim S − r . Let PE∨ =
Proj (Sym·E) denote the projectivization of E∨. Then we have an isomorphism

H 0(S, E) ∼= H 0(PE∨,OPE∨(1))

which gives us a section w of OPE∨(1) corresponding to s. Let X = w−1(0). Since
Y is smooth, X is also smooth by a local computation. We have the following com-
mutative diagram

PN∨

p

��

i   X   PE∨

��

Y   S
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where N is the normal bundle of Y in S.By Orlov’s theorem (cf. Theorem 2.8), there
is a fully faithful embedding Ri∗Lp∗ : Db(Y ) → Db(X). Therefore if X is Fano,
then X is a Fano host of Y and Y is a Fano visitor.

Note that there is an embedding PN∨ → Y × X induced from the above diagram
and the functor Ri∗Lp∗ : Db(Y ) → Db(X) is a Fourier-Mukai transform�K whose
kernel K is OPN∨ . Suppose that there is an algebraic group G acting on Y and the
action extends to S and E and Y is given by an invariant section s. Then G acts on
PN∨ and OPN∨ has a canonical G-linearization induced by the group action. When
G is a finite group, we can recover the Remark 2.9 of Orlov from the Theorem 2.10.
Moreover it holds when G is a reductive algebraic group (cf. [52, Remark 2.9]).

3.2 Complete Intersections in Projective Space

When Y ⊂ P
m is a smooth complete intersection defined by a section s ′ of

⊕l
i=1OPm (ai ) with ai > 0 and l ≥ 0, we enlarge the ambient space Pm to Pm+c = S

and extend the vector bundle
⊕l

i=1 OPm (ai ) to

l⊕

i=1

OPm+c(ai ) ⊕ OPm+c(1)⊕c = E

for c ≥ 0. The section s ′ together with a choice of defining linear equations for
P

m ⊂ P
m+c gives us a section s of E with s−1(0) = s ′−1

(0) = Y . Applying Cayley’s
trick above, we obtain a hypersurface X = w−1(0) of PE∨ whose dimension is
m + 2c + l − 2 = dim Y + 2c + 2l − 2.

The authors proved in [31, Sect. 4.2] that if c is greater than
∑l

i=1 ai − m − l and
1 − l, then X is Fano. This proves the main result (Theorem 1.2) of [31] because X
is a Fano host of Y by the discussion in Sect. 3.1.

3.3 A Generalization

We can capture the essence of the proof of Theorem 1.2 in [31] as follows.

Theorem 3.1 Let S be a smooth projective variety and s be a section of a vector
bundle E of rank r ≥ 2 over S whose zero locus is a smooth subvariety Y = s−1(0)
of codimension r. Let X and w be as in Cayley’s trick in Sect.3.1. Suppose that

(1) E is ample and K ∨
S ⊗ det E∨ is nef, or

(2) there is a nef line bundle H such that F := E ⊗ H∨ is a nef vector bundle and
that K ∨

S ⊗ det E∨ ⊗ Hr−1 is ample.

Then X = w−1(0) is a Fano host of Y = s−1(0).
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Proof By Theorem 2.8, it suffices to show that X is Fano. For (1), see [31, Lemma
3.1]. For (2), let q : PE∨ → S denote the canonical projection. Let us compute K X .
From the relative Euler sequence

0 −→ OPE∨ −→ q∗E∨ ⊗ OPE∨(1) −→ TPE∨/S −→ 0,

we have K ∨
PE∨/S = (q∗ det E∨) ⊗ OPE∨(r). From KPE∨ = q∗KS ⊗ KPE∨/S we have

K ∨
PE∨ ∼= q∗(K ∨

S ⊗ det E∨) ⊗ OPE∨(r).

Therefore we get

K ∨
X = K ∨

PE∨ ⊗ O(−1)|X
∼= q∗(K ∨

S ⊗ det E∨) ⊗ OPE∨(r − 1)|X

∼= q∗(K ∨
S ⊗ det E∨ ⊗ Hr−1) ⊗ OPF∨(r − 1)|X .

By assumption, both q∗(K ∨
S ⊗ det E∨ ⊗ Hr−1) and OPF∨(r − 1) are nef line bun-

dles, hence so is K ∨
X . To see that K ∨

X is big, let us compute the intersection number
(K ∨

X )dim X as follows:

(K ∨
X )dim X = (q∗(K ∨

S ⊗ det E∨ ⊗ Hr−1) ⊗ OPF∨(r − 1)|X )dim X

= (q∗(K ∨
S ⊗ det E∨ ⊗ Hr−1) ⊗ OPF∨(r − 1))dim X · OPE∨(1)

= (q∗(K ∨
S ⊗ det E∨ ⊗ Hr−1) ⊗ OPF∨(r − 1))dim X · (q∗ H ⊗ OPF∨(1)).

By the binomial expansion formula, we see that (K ∨
X )dim X is positive since every term

is a multiple of a nef line bundle and q∗(K ∨
S ⊗ det E∨ ⊗ Hr−1)dim S · OPF∨(1)r−1

is strictly positive by our assumption. Therefore K ∨
X is nef and big, i.e. X is a weak

Fano variety. Then the Mori cone of X is rational polyhedral and the extremal rays
are generated by rational curves by [56, Theorem 1.4].

Finally we claim that K ∨
X intersects positively with all irreducible curves. Let

C be an irreducible curve in PE∨ = PF∨. If q(C) is a point, then the degree of
OPF∨(r − 1)|C is positive becauseOPF∨(1) is ample on each fiber of q : PE∨ → S.
If q(C) is a curve, then the degree of q∗(K ∨

S ⊗ det E∨ ⊗ Hr−1)|C is positive since
K ∨

S ⊗ det E∨ ⊗ Hr−1 is ample. From our assumptions, we find that the degree of
the line bundleq∗(K ∨

S ⊗ det E∨ ⊗ Hr−1) ⊗ OPF∨(r − 1)|C is always positive. Since
the Mori cone is polyhedral, this implies that K ∨

X is ample and X is a Fano variety.�

Remark 3.2 In the proof of Theorem 1.2 in [31, Sect. 4.2], we used H = OPm+c(1)
and chose sufficient large c as written in Sect. 3.2. However when the degrees of
defining equations of Y are large enough, then the above theorem tells us that we can
choose larger H and smaller c. This often gives a Fano host of smaller dimension as
in the following example.
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Example 3.3 Let C be a non-hyperelliptic curve of genus 4. Then C is the complete
intersection of a quadric and a cubic in P3, i.e. C is the zero locus of a regular section
s of E = OP3(2) ⊕ OP3(3) over S = P

3. Let F = OP3 ⊕ OP3(1) with H = OP3(2).
From the above theorem, we find that X = w−1(0) in Cayley’s trick (cf. Sect. 3.1) is a
3-dimensional Fano host of C because F is nef and K ∨

S ⊗ det E∨ ⊗ Hr−1 = OP3(1)
is ample. Note that if we insist on using H = OP3(1) instead, we have to enlarge P3

to P
4 and extend OP3(2) ⊕ OP3(3) to OP4(2) ⊕ OP4(3) ⊕ OP4(1), so that the Fano

host is 5 dimensional.

By Example 3.3, we find that a non-hyperelliptic curve C of genus 4 has Fano
dimension at most 3. We will see below that indeed 3 is the Fano dimension of C .

3.4 Weighted Complete Intersections

We can also extend the main theorem of [31] for the following situation. Let
ā = (a0, a1, · · · , an) be a sequence of positive integers. Then consider the graded
polynomial ring C[z0, · · · , zn] with degree of zi = ai . Then we can define the
weighted projective space P(ā) as the projective variety Proj (C[z0, · · · , zn]). Note
that giving a grading on C[z0, · · · , zn] corresponds to giving a C∗-action on C

n+1.

We also define P(ā) to be the smooth Deligne-Mumford stack [Cn+1 − {0}/C∗]
whose coarse moduli space is P(ā).

Whenwe consider derived categories then it ismore natural to consider aweighted
projective space as a smooth Deligne-Mumford stack P(ā). However when we do
geometry it is easier to consider a weighted projective space as a projective variety
P(ā). See [15] for more details. Let us recall some of relevant definitions.

Definition 3.4 ([15]) (1) For a closed subscheme Y ⊂ P(ā), we can associate a
quasi-cone CY which is the scheme closure of the inverse of Y in the Cn+1. Let us
also denote C∗

Y to be CY − {0}.
(2) A closed subscheme Y ⊂ P(ā) is called quasi-smooth if CY is smooth outside of
its vertex.
(3) Y is a weighted complete intersection of multidegree d̄ = (d1, · · · , dc) if IY is
generated by a regular sequence of homogeneous elements f1, · · · , fc where the
degree of fi is di .

For every quasi-smooth weighted complete intersection Y we consider its associ-
ated stack Y = [C∗

Y /C∗]. It is a smooth Deligne-Mumford stack with coarse moduli
space Y. We call Y a quasi-smooth weighted complete intersection orbifold in a
weighted projective space.

Theorem 3.5 Every quasi-smooth weighted complete intersection orbifold Y in a
weighted projective space has an orbifold Fano host.
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Proof Let Y be a quasi-smooth weighted complete intersection is a weighted projec-
tive spaceP(ā).Wecan embedP(ā) intoP(ā, 1, . . . , 1) andY is again a quasi-smooth
weighted complete intersection in aweighted projective spaceP(ā, 1, · · · , 1).There-
fore we may assume that the dimension n of P(ā) is large enough. Then C∗

Y is a
complete intersection in C

n+1 − {0}. We can regard C∗
Y as a zero set of a section of

the rank c trivial vector bundle onCn+1 − {0}.We can use Cayley’s trick to construct
C∗

X as follows.

C∗
X

  C
n+1 − {0} × P

c−1

��

C∗
Y

  C
n+1 − {0}

Because C∗
Y is defined by a C∗-invariant section, we can naturally extend the C∗-

action to C
n+1 − {0} × P

c−1 and C∗
X . Let X denote the quotient stack [C∗

X/C∗] and
Y denotes the quotient stack [C∗

Y /C∗]. From the definition we see that C∗
Y is smooth

and [C∗
Y /C∗] is a smooth Deligne-Mumford stack whose coarse moduli space is Y.

From Theorem 2.8 and Remark 2.9, we see that Db([C∗
Y /C∗]) can be embedded into

Db([C∗
X/C∗]). Therefore we get the desired result from the following Lemma. �

Lemma 3.6 X is a smooth Deligne-Mumford stack whose coarse moduli space is
X and X is a Fano variety when n is large enough.

Proof Because C∗
Y is smooth we see that C∗

X is also smooth by a local calculation.
For every point of C∗

X the stabilizer of the induced C
∗-action is a finite abelian

group. ThereforeX is a smooth Deligne-Mumford stack whose coarse moduli space
is X = C∗

X/C∗. Therefore X has only quotient singularities and K X is a Q-Cartier
divisor.

Recall that P(ā) is a quotient of Pn by μā-action where μā acts on P
n via

(μ0, · · · , μn) · [z0 : · · · : zn] = [εμ0
0 · z0 : · · · : εμn

n · zn]

where εi is a primitive ai -th root of unity (cf. [15]).
Then we can construct C ∗̃

Y

C ∗̃
Y

��

  C
n+1 − {0}

��

C∗
Y

  C
n+1 − {0}

by lifting of the equations defining CY . Note that C ∗̃
Y
is also a complete intersection

inCn+1 − {0} and we can also apply Cayley’s trick to C ∗̃
Y
. By takingC∗-quotient we

have the following diagram.
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X̃

��

  PE∨

��
������

����
����

����
����

����

Ỹ

��

  P
n

��

X = X̃/μā
  PE∨/μā

������
����

����
����

����
�

Y   P(ā)

In other words we can construct a ramified covering X̃ of X by applying Cayley’s
trick to Pn which is also a ramified covering of P(ā).When n is large enough, we can
see that X̃ is a Fano variety from adjuction (cf. [33, Proposition 5.73]) and one can
compute the canonical divisor of X̃ as in Theorem 3.1. One can also directly check
that the ramification divisors are bounded since the group μā is fixed even though n
is very large. Therefore we see that X is also a Fano variety. �

Remark 3.7 Note that if Y is singular quasi-smooth weighted complete intersection
then Y itself cannot have an orbifold Fano host. Therefore we should consider the
derived category of smooth stack Y whose coarse moduli space is Y instead of the
derived category of Y itself.

However if Y is smooth then we see that Y itself has an orbifold Fano host.

Corollary 3.8 Every smooth weighted complete intersection Y in a weighted pro-
jective space has an orbifold Fano host.

Proof We see that Db(Y ) is contained in Db(Y) from Lemma 2.5 and Y has an
orbifold Fano host from Theorem 3.5. Therefore we see that Y has an orbifold Fano
host. �

4 Fourier-Mukai Transforms and an Embeddability
Criterion

In this section, we use the Fourier-Mukai transform to give a Hodge-theoretic crite-
rion for the existence of a fully faithful functor Db(Y ) → Db(X) for smooth projec-
tive varieties X and Y. Let us recall the following proposition which is well-known
to experts. We give a proof for convenience of readers.

Proposition 4.1 If a Fourier-Mukai transform �K : Db(Y ) → Db(X) is fully faith-
ful, then the induced cohomological Fourier-Mukai transform �H

K : H∗(Y,Q) →
H∗(X,Q) yields an injective homomorphism

⊕

p−q=i

H p,q(Y ) ⊂
⊕

p−q=i

H p,q(X).
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Hence, we have the inequality

∑

p−q=i

h p,q(Y ) ≤
∑

p−q=i

h p,q(X) for all i.

Proof We will follow the arguments in [25]. There exists a right adjoint �K R of �K

and�K R ◦ �K
∼= id ∼= �O�

from the uniqueness of the Fourier-Mukai kernel. Then
we get �H

K R
◦ �H

K
∼= �H

O�

∼= id (cf. [25, Proposition 5.33]). Therefore �H
K induces

an inclusion �H
K : H∗(Y,C) → H∗(X,C) which satisfies

�H
K (H p,q(Y )) ⊂

⊕

r−s=p−q

Hr,s(X)

by the arguments in [25, Proposition 5.39]. �

A first consequence of the above inclusion is the following lower bound.

Corollary 4.2 Let Y be an n-dimensional smooth projective variety with hn,0(Y ) >

0 for n > 0. Then its Fano dimension is at least n + 2.

Proof Suppose that there is a smooth Fano variety X of dimension at most
n + 1 and a fully faithful exact functor F : Db(Y ) → Db(X). From the inclusion⊕

p−q=i H p,q(Y ) ⊂ ⊕
p−q=i H p,q(X), we have the inequality

0 < hn,0(Y ) ≤
⊕

p−q=n

h p,q(X).

Obviously the right hand side is zero unless dim X is n or n + 1. By Kodaira van-
ishing theorem, we have hn,0(X) = 0 and dim X ≥ n + 1. When dim X = n + 1,
we have hn+1,1(X) = dim H 1(X, K X ) = dim H n(X,OX ) = h0,n(X) = hn,0(X) =
0 from Serre duality and complex conjugation. Hence the right hand side is always
zero if dim X ≤ n + 1. This proves the proposition. �

Whendim Y = 1 andY is not rational,h1,0(Y ) > 0 and soweobtain the following.

Corollary 4.3 The Fano dimension of a smooth projective curve which is not ratio-
nal is at least 3.

We will see below that the Fano dimension of a curve Y is exactly 3 when the genus
is 1 or 2 or when Y is a general curve of genus 4.

Combining Corollary 4.2 with the construction of Fano hosts in [31], we can
determine the Fano dimension of a general complete intersection Calabi-Yau variety.
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Proposition 4.4 Let Y ⊂ P
n+c be a smooth projective complete intersection Calabi-

Yau variety of dimension n defined by the vanishing of homogeneous polynomials
f1, · · · , fc. Suppose c ≤ 2 or Y is general in the sense that we can choose the defining
polynomials such that the projective variety S defined by the vanishing of f3, · · · , fc

is smooth. Then the Fano dimension of Y is precisely n + 2.

Proof By [31, Proposition 3.6], the Fano dimension of Y is at most n +
2. By Corollary 4.2, the Fano dimension is at least n + 2. This proves the
proposition. �

For instance, the Fano dimension of an arbitrary quintic 3-fold is 5 and the Fano host
constructed in [31] is of minimal dimension.

5 Curves and their Jacobians

In this section we search for Fano visitors among smooth projective curves. Curves
in this section mean smooth projective curves.

5.1 Hyperelliptic Curves

Bondal and Orlov proved that every hyperelliptic curve is a Fano visitor.

Theorem 5.1 ([10]) Let C be a hyperelliptic curve of genus g. Then there are two
quadric hypersurfaces in P

2g+1 whose intersection is a Fano host of C.

From Bondal and Orlov’s work we see that a hyperelliptic curve C of genus g is a
Fano visitor whose Fano dimension is at most 2g − 1. And this observation indicates
that the Fano dimension of a curve of genus g might increase as g increases. Indeed
the Fano dimension of a curve of genus g may grow arbitrarily large as g increases.

Proposition 5.2 Let fd(g) be the minimum among the Fano dimensions of curves
of genus g. Then limg→∞ fd(g) = ∞.

Proof For any natural number n, there are only finitely many deformation equiv-
alence classes of Fano varieties of dimension n. Therefore there are only finitely
many possible values of

∑
i− j=1 hi, j (X) for n-dimensional Fano varieties X . When

the genus g = h1,0(C) of a curve C is greater than all these possible values, there
can be no n-dimensional Fano host of C . Therefore for any integer n > 0 there is an
integer g0 such that any curve of genus g ≥ g0 has Fano dimension greater than n.
This proves the proposition. �

Remark 5.3 We can also prove that every hyperelliptic curve has an orbifold Fano
host since it is a complete intersection in aweighted projective spaceP(1, 1, 1, g + 1)
of dimension 3.
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5.2 Low Genus Curves

In this subsection we prove that all curves C of genus g ≤ 4 and generic curves of
genus g ≤ 9 are Fano visitors. We will use several classical results about low genus
curves and refer [2, 16] fore more details. If g = 0, C = P

1 itself is a Fano variety.
If g = 1, C ⊂ P

2 is a complete intersection Calabi-Yau variety of codimension 1
and hence its Fano dimension is 3 by Proposition 4.4. If g = 2, C is a hyperelliptic
curve and hence the Fano dimension is at most 3 by Theorem 5.1. By Corollary 4.3,
the Fano dimension of C is at least 3. Therefore we see that every curve of genus 2
is a Fano visitor with Fano dimension 3.

If g = 3, it is well known that C is either a plane quartic or a hyperelliptic curve.
In the former case, we use the construction in Sect. 3.2 with l = 1, m = 2, a1 = 4,
c = 2 to obtain a Fano host X of dimension 5. In the latter case, Bondal-Orlov’s
semi-orthogonal decomposition gives a Fano host of dimension 5.

If g = 4, it is well known that C is either the complete intersection of a quadric
and a cubic in P

3 or a hyperelliptic curve. In the former case, the Fano dimension
is exactly 3 by Example 3.3. In the latter case, Bondal-Orlov’s semi-orthogonal
decomposition gives a Fano host of dimension 7.

A general curve C of genus 5 has canonical embedding into P
4 whose image is

the intersection of three general quadrics. Let S be one of the quadric hypersurfaces
and let s be the section of E = OP4(2)⊕2|S defined by the remaining two quadrics,
so that C = s−1(0). Then PE∨ ∼= S × P

1 is a Fano variety and hence the Mori cone
of PE∨ is rational polyhedral. Let H = OP4(2)|S . Then F = E ⊗ H−1 = O⊕2

P4 is
nef and K ∨

S ⊗ det E∨ ⊗ H = OP4(1)|S is ample. Therefore we see that a general
curve of genus 5 is a Fano visitor and its Fano dimension is 3 from Theorem 3.1.

For curves of genus g ≤ 9,Mukai proved that a general curve of genus g ≤ 9 can
be written as a complete intersection of a linear section of a homogenous space (cf.
[47]). Therefore we obtain the following conclusion.

Theorem 5.4 Generic curves of genus g ≤ 9 are Fano visitors.

Proof We already proved that general curves of genus ≤ 5 are Fano visitors by
using their canonical embeddings. Let C ⊂ Z ⊂ P

N be a curve of genus 6 ≤ g ≤ 9
which is a complete intersection in a homogeneous variety Z embedded in P

N via
the Plücker embedding. From the adjunction formula we see that KC

∼= OPN (1)|C .
In each case, we can find varieties C ⊂ S ⊂ Z ⊂ P

N where S is a 4-dimensional
complete intersection in Z and C is the zero locus of a section of a rank 3 vector
bundle on S. We then find that the variety S and the rank 3 vector bundle satisfy the
assumptions of Theorem 3.1. Therefore C is a Fano visitor. Moreover we see that
the Fano dimensions of general curves of genus 6 ≤ g ≤ 9 are at most 5. �
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Theorem 3.1 enables us to provide many more examples of curves of genus ≥ 10
which are Fano visitors.

Remark 5.5 After we finished writing this paper, we received a manuscript from
Narasimhan [48] in which he proves that all curves of genus at least 6 are Fano
visitors. He also proves that all non-hyperelliptic curves of genus 3, 4 or 5 are Fano
visitors in [49]. Combined with our previous discussions, we see that all curves are
Fano visitors.

It is well known that the moduli space of rank 2 stable vector bundles over a
curve with fixed odd determinant is Fano. Narasimhan proves that the Fourier-Mukai
transform defined by the universal bundle is fully faithful. Recently, Fonarev and
Kuznetsov obtained similar results for generic curves, especially for all hyperelliptic
curves via different method (cf. [17]). It follows that the Fano dimension of an
arbitrary curve of genus g ≥ 2 is at most 3g − 3. But our discussion above for
curves of low genus indicates that this upper bound is far from being optimal.

5.3 Jacobians of Curves

Let C be a curve and J (C) be the Jacobian of C. It is a classical topic in algebraic
geomety to study interactions between C and J (C). Because every curve is a Fano
visitor we can prove that every Jacobian of a curve has orbifold Fano hosts.

Proposition 5.6 Let C be a curve and J (C) be its Jacobian. Then J (C) has orbifold
Fano hosts.

Proof Let F be a smooth projective Fano host of C. It is well-known that there is
a surjection φ(n) : C (n) → J (C) such that Rφ

(n)∗ OC (n) = OJ (C) for n > 2g − 2 and
we see that this surjection induces a fully faithful functor Db(J (C)) → Db(C (n)).

From the Lemma 2.5 we see that there is a fully faithful functor Db(C (n)) →
Db([Cn/Sn]). And from the Theorem 2.10 we see that there is a fully faithful func-
tor Db([Cn/Sn]) → Db([Fn/Sn]). Therefore we see that for every Jacobian of curve
J (C) there is an orbifold Fano host [Fn/Sn]. �

6 Surfaces

In this section we discuss the Fano visitor problem for surfaces. A surface in this
section always means a normal projective surface. Unfortunately, we do not know
whether every smooth projective surface has a Fano host or an orbifold Fano host.
Therefore we raise many questions and give some partial results. Let Y be a surface
and κ denote itsKodaira dimension. First, one can askwhether it is enough to consider
the Fano visitor problem for minimal surfaces only.
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Question 6.1 Let Y be a smooth projective surface and Ỹ denote the blowup of Y
at a point. Is Ỹ a Fano visitor if Y is a Fano visitor? More generally, is a variety
birational to a Fano visitor a Fano visitor?

From now on we study Fano visitor problem for minimal surfaces.

6.1 κ = −∞ Case

If the answer to Question 6.1 is yes, then wemay assume Y is either P2, a Hirzebruch
surface or a ruled surface. Now let us provide several examples of ruled surfaces
having Fano hosts.

Proposition 6.2 Let C = s−1(0) be a smooth projective variety which is defined by
a regular section of a rank r ≥ 2 vector bundle E on S and let F be a rank 2 vector
bundle on S. Suppose that there are line bundles H1 and H2 such that q∗(E ⊗ H∨

1 ),

F ⊗ H∨
2 , K ∨

S ⊗ det E∨ ⊗ det F∨ ⊗ Hr−1
1 ⊗ H 2

2 are nef vector bundles and at least
one of them is ample. Then P(F∨|C) is a Fano visitor.

Proof It is obvious that P(F∨|C) is a complete intersection of a regular section of
q∗E in P(F∨). We can use Cayley’s trick to construct a Fano host X of P(F∨|C)

because it is a complete intersection of a regular section q∗E in P(F∨). Then we
have the following diagram

X   P(q∗E∨)

p

��

P(F∨|C)

��

  PF∨

q

��

C   S

and
K ∨

PF∨ ∼= q∗(K ∨
S ⊗ det F∨) ⊗ OPF∨(2)

and
K ∨

P(q∗ E∨)
∼= p∗(K ∨

PF∨ ⊗ det (q∗E∨)) ⊗ OP(q∗ E∨)(r)

∼= p∗(q∗(K ∨
S ⊗ det F∨ ⊗ det E∨) ⊗ OPF∨(2)) ⊗ OP(q∗ E∨)(r).

From the construction we see that Db(P(F∨|C)) can be embedded into Db(X) and

K ∨
X

∼= p∗(q∗(K ∨
S ⊗ det F∨ ⊗ det E∨) ⊗ OPF∨(2)) ⊗ OP(q∗ E∨)(r − 1).

Using the same argument of proof of Theorem 3.1, we can see that X is Fano. �
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Therefore we get the following results.

Corollary 6.3 All Hirzebruch surfaces are Fano visitors.

Proof Let Y ∼= P(OP1 ⊕ OP1(a)) be a Hirzebruch surface. We can embed P
1 into

P
r+1. Let S = P

r+1, F = OPr+1 ⊕ OPr+1(a), E = O(1)⊕r , and E ′ = O⊕r . From the
same construction and notation as the above Proposition 6.2 we have

K ∨
P(q∗ E∨)

∼= p∗(K ∨
PF∨ ⊗ det (q∗E∨)) ⊗ OP(q∗ E∨)(r)

∼= p∗(q∗(O(r + 2) ⊗ O(−a) ⊗ O(−r)) ⊗ OPF∨(2)) ⊗ OP(q∗ E∨)(r)

∼= p∗(q∗(O(r + 2 − a)) ⊗ OPF∨(2)) ⊗ OP(q∗ E ′∨)(r).

When r is sufficiently large, the above construction gives a Fano host of Y. �

By the same proof we obtain the following.

Corollary 6.4 Let C be a curve which is a complete intersection in a projective
space. Let F be a vector bundle of rank 2 on the projective space which is a direct
sum of two line bundles. Then P(F∨|C) is a Fano visitor.

We thank the referee for letting us know the following result.

Remark 6.5 Ballard, Favero and Katzarkov proved that the derived category of a
projetive toric variety can be embedded into the derived category of a weak Fano
toric Deligne-Mumford stack (cf. [4, Proposition 5.2.5]) using variation of GIT.

6.2 κ = 0 Case

6.2.1 Abelian Surfaces

An Abelian surface which is the product of two elliptic curves is a Fano visitor (cf.
[25, Corollary 7.4]). We also saw that the Jacobian of any genus 2 curve always has
an orbifold Fano host from Proposition 5.6.

6.2.2 K3 Surfaces

The following is a consequence of Theorem 3.1 for K3 surfaces.

Corollary 6.6 Let Y be a K3 surface which is the zero locus of a section of an ample
vector bundle E of rank r on a Fano variety S of dimension of r + 2 where r ≥ 2.
Then Y is a Fano visitor. The Fano dimension of Y is at most 2r .
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Example 6.7 Let V be a Fano 3-fold and let Y be a smooth divisor in |K ∨
V | which

is a K3 surface by adjunction. When V is the zero locus of a regular section of an
ample vector bundle on another Fano manifold W and the line bundle KV is the
restriction of an ample line bundle on W , we find that Y is a Fano visitor by Theorem
3.1. For example, general K3 surfaces of genus 6 ≤ g ≤ 10 satisfy these conditions
(cf. [47]). Therefore general K3 surfaces of genus 6 ≤ g ≤ 10 are Fano visitors and
their Fano dimensions are 4.

The above result can be used tofindorbifoldFanohosts of holomorphic symplectic
varieties. Recall that the Hilbert schemes of points on K3 surfaces are holomorphic
symplectic varieties.

Corollary 6.8 Let Y be a K3 surface and X be a Fano host of Y. Then [Xn/Sn] is
an orbifold Fano host of Y [n].

Proof From theBridgeland-King-Reid-Haiman correspondence (cf. [11, 23])we see
that Db(Y [n]) � Db([Y n/Sn]). Then from Theorem 2.10 we see that Db([Y n/Sn])
can be embedded into Db([Xn/Sn]). Therefore we get the desired result. �

Now let us consider Kummer surfaces. Consider an Abelian surface A having
Fano host and consider an involution σ on A which send x �→ −x with respect to the
group structure on A. Then σ has 16 fixed points and the minimal resolution of A/σ

is a K3 surface S. We call S a Kummer surface. One can prove that if A has a Fano
host F such that σ extends to F and the Fourier-Mukai kernel of the embedding is
σ -invariant, then S has an orbifold Fano host. Let us give such examples as follows.

Proposition 6.9 Let E1, E2 be elliptic curves, A = E1 × E2 be an Abelian surface
and let S be the associated Kummer surface. Then S has an orbifold Fano host.

Proof In this case σ is induced by two involutions σ1, σ2 on E1, E2 respectively.
For each i, the 2-torsion points of Ei form a σi -invariant divisor of degree 4 on Ei

and gives an embedding Ei → P
3. Then σi -action extends to P

3 and it also extends
to Fi = BlEiP

3. Note that there exists an embedding �Ki : Db(Ei ) → Db(Fi ) for
i = 1, 2. Then we have a fully faithful functor �K1�K2 : Db(E1 × E2) → Db(F1 ×
F2). Let us consider the diagonal Z2-actions on E1 × E2, F1 × F2 and E1 × E2 ×
F1 × F2. It is easy to see that K1 � K2 is Z2-invariant hence Z2-linearized. By the
McKay correspondence (cf. [11]) we see that Db(S) ∼= Db([(E1 × E2)/Z2]) can be
embedded into Db([(F1 × F2)/Z2]). Therefore S has an orbifold Fano host. �

Reid constructed 95 families of orbifold K3 surfaces as complete intersections
in weighted projective spaces (cf. [1]). We can apply our method to prove that they
have orbifold Fano hosts.

6.2.3 Enriques Surfaces

We will review a construction of an Enriques surface described in [6,
Example 8.18]. Let Q1(z0, z1, z2) + Q′

1(z3, z4, z5), Q2(z0, z1, z2) + Q′
2(z3, z4, z5),
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Q3(z0, z1, z2) + Q′
3(z3, z4, z5) be three quadric forms with variables z0, · · · , z5 and

let Y be a K3 which is an intersection of three quadrics hypersurfaces defined by
these three quadric forms in P5. Then Y is a smooth K3 surface if we choose Qi , Q′

i
generically. Let σ be an involution on P

5 defined as follows.

σ · [z0 : z1 : z2 : z3 : z4 : z5] = [z0 : z1 : z2 : −z3 : −z4 : −z5].

Then σ induces a fixed point free involution σ on a K3 surface Y when we choose
Qi , Q′

i generically. It is known that the generic Enriques surface can be obtained in
the above construction. See [6, Example 8.18] for more details.

Proposition 6.10 A generic Enriques surface has an orbifold Fano host.

Proof Let S be an Enriques surface obtained as the quotient of a K3 surface Y which
is constructed as above and let X be the Fano host of Y constructed by Cayley’s
trick. Note that σ induces an involution σX on X because Y is defined by σ -invariant
sections. Let S be the Enriques surface whose double cover is Y and we see that
Db(Y/〈σ 〉) = Db([Y/〈σ 〉]) ↪→ Db([X/〈σX 〉]). Therefore the Enriques surface S =
Y/〈σ 〉 has an orbifold Fano host. �

Recently, Kuznetsov proved that general Enriques surfaces can be embedded into
dervied categories of certain Fano varieties in [38]. His constructions also provide
examples of Fano varieties whose Grothendieck groups contain torsion groups as
direct summands.

6.2.4 Bielliptic Surfaces

Recall that a bielliptic surface is the quotient of product of two elliptic curves by a
finite abelian group. They were classified by Bagnera and de Franchis (cf. [6, 12]).

Lemma 6.11 Let E be an elliptic curve and let G be a finite group acting on E .

(Here, we do not assume that the G-action preserves the identity of E so G can
includes translations.) Then there is a G-invariant ample divisor which induces an
embedding E → P

n and the G-action on E extends to P
n. Moreover if 2 ≤ |G| ≤ 4

then E is a zero locus of G-invariant regular section of vector bundle in P
n

Proof Let us consider the quotient map E → E/G. By considering the pullback of
a general point of E/G, we see that there is a G-equivariant line bundle O(D) = L
of degree |G| on E . If |G| = 3, 4, then L induces an embedding of E to P

|G|−1

(cf. [22, Example 3.3.3]). Since L is a G-equivariant line bundle, H 0(E, L) has a
G-module structure. Therefore the G-action on E extends to P

|G|−1. Because G is
an abelian group, H 0(E, L) is a direct sum of 1-dimensional representations of G. If
|G| = 2, then we can use L⊗2 and obtain similar result. Therefore we get the desired
result from the information about the syzygies of elliptic curves in projective spaces
of low dimensions (cf. [2, 16]). �
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Then we have the following result.

Proposition 6.12 A bielliptic surface S = (E1 × E2)/G where |G| ≤ 4 has an orb-
ifold Fano host.

Proof Let S = (E1 × E2)/G be a bielliptic surface. From the above Lemma 6.11,
we can construct two Fano hosts Fi of Ei with embedding �Ki : Db(Ei ) → Db(Fi )

for i = 1, 2. For example, let Fi be the blowup of Ei in P
3. Then we have a fully

faithful functor �K1�K2 : Db(E1 × E2) → Db(F1 × F2). It is easy to check that
K1 � K2 can be G-linearized. Therefore we have the desired embedding �K1�K2 :
Db([E1 × E2/G]) → Db([F1 × F2/G]) and (F1 × F2)/G is a Fano variety. �

6.3 κ = 1 Case

Let us discuss some examples of surfaces with κ = 1.

Example 6.13 Let E be an elliptic curve and C be a curve of genus g ≥ 2. Let G
be a finite group of translations of E and suppose that G is acting on C. Consider
E × C and the diagonal G-action on it. Let Y = (E × C)/G. Because the diagonal
action on E × C is free, Y is a surface with κ = 1.

In order to construct an orbifold Fano host of Y, we will use the moduli space
of rank 2 stable vector bundles whose determinants are isomorphic to a fixed odd
degree line bundle on C. Note that the moduli space turns out to be a Fano host of
C (cf. [17, 48]). Let us fix a G-invariant fixed odd degree line bundle ξ where G is
a finite group acting on the curve C.

Lemma 6.14 Let C be a curve with a G-action where G is a finite group. Suppose
that C has a G-invariant line bundle ξ of odd degree. Then there is a natural action
on the moduli space M of rank 2 stable vector bundles on C whose determinants are
isomorphic to ξ and the universal bundle is a G-invariant vector bundle with respect
to the diagonal action.

Proof Let E ∈ M and g ∈ G.Wecan define theG-action on M by g · E = (g−1)∗E .

Therefore we have a diagonal action onC × M. LetU be the universal vector bundle
on C × M.Note that g∗U is a flat family of rank 2 vector bundles on C × M. There-
fore g∗U induces an isomorphism φg : M → M such that g∗U ∼= (I dC × φg)

∗U.

From the definition of the action one can check that φg is an identity morphism from
M to M. Therefore U is a G-invariant vector bundle on C × M. �

We proved that U is a G-invariant vector bundle if ξ is G-invariant line bundle
of odd degree. However it does not mean that U is a G-equivariant vector bundle
(or U is G-linearizable). Indeed if ξ is not G-equivariant line bundle then U is not
G-equivariant vector bundle. We have the following numerical condition when U
being G-invariant imply U being G-equivariant.
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Lemma 6.15 Let G be a finite group acting on a variety X and let U be a G-invariant
rank 2 simple vector bundle whose determinant ξ is a G-equivariant line bundle.
Suppose that gcd(2, |H 2(G,C∗)|) = 1 then U is a G-equivariant vector bundle.

Proof Because U is a G-invariant vector bundle we have an isomorphism θg :
g∗U → U for each g ∈ G. Because U is simple, we have an element (θgh)

−1 ·
h∗(θg) · θh ∈ C

∗ for any pair g, h ∈ G and this assignment gives an element in
H 2(C,C∗). When we take determinant of each θg we have ((θgh)

−1 · h∗(θg) · θh)
2

which gives the trivial element of H 2(G,C∗) since ξ is a G-equivariant line bun-
dle. Because gcd(2, |H 2(G,C∗)|) = 1 we see that θg gives a trivial element in
H 2(G,C∗). Therefore U is a G-equivariant vector bundle on X. �

Then we can construct orbifold Fano hosts of elliptic surfaces with κ = 1 con-
structed above.

Proposition 6.16 An elliptic surface Y = (E × C)/G constructed above where
|G| ≤ 3 and there is a G-equivariant odd degree line bundle on C. Then Y has
an orbifold Fano host.

Proof From Lemma 6.11 we see that E has a Fano host F1 with G-action and and
the Fourier-Mukai kernel K1 is a G-linearized object with respect to the diagonal
action. From the assumption there is a G-equivariant odd degree line bundle on C.

Again from the above two Lemmas 6.14, 6.15, we see that C has a Fano host F2

with G-action and and the Fourier-Mukai kernel K2 is also a G-linearized object
with respect to the diagonal action. From the Theorem 2.10, we have a fully faithful
functor Db(Y ) � Db([(E × C)/G]) → Db([(F1 × F2)/G]). Therefore we obtain
an orbifold Fano host of Y. �

We expect to obtain many more examples of orbifold Fano hosts of surfaces with
κ = 1 via the above method.

6.4 κ = 2 Case

Surfaces of general type are still mysterious objects. A very simple way to construct
surfaces of general type is to consider complete intersection in projective spaces or
product of two curves. From Remark 5.5, it is very easy to see that they are Fano
visitors. By Theorem 3.1, we can provide many examples of surfaces of general type
which are Fano visitors. However we do not know whether all surfaces of general
type are Fano visitors or not, since many of them, e.g. surfaces of general type
with pg = q = 0, cannot be embedded in projective spaces as complete intersections.

Recently, interestingnewcategories in the derived categories of surfaces of general
typewith pg = q = 0were discovered (cf. [8, 9, 18, 42, 43, 45]). TheirGrothendieck
groups are finite torsion and their Hochschild homology groups vanish. We call them
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quasi-phantom categories. If the Grothendieck group of a quasi-phantom category
also vanishes, then we call it a phantom category. On the other hand, no smooth
projective Fano variety is known to have a quasi-phantom subcategory. Therefore
the following question seems interesting.

Question 6.17 Is there a Fano variety X whose derived category contains a quasi-
phantom category?

Obviously this question is closely related to the Fano visitor problem.

Question 6.18 Let Y be a surface of general type with pg = q = 0. Is there a Fano
host of Y ?

For example, a Fano host of the determinantal Barlow surface will give us a Fano
variety containing a phantom category. Although we do not know the answer to
Question 6.17, we can construct a Fano orbifold whose derived category contains a
quasi-phantom category following [9]. Then we will improve this by constructing
an Fano orbifold containing phantom subcategory, following [21].

6.4.1 Classical Godeaux Surfaces

Let Y ⊂ P
3 be the variety defined by Fermat quintic f = z50 + z51 + z52 + z53 = 0 and

let G = Z5 = 〈ε〉 act on Y by ε · [z0 : z1 : z2 : z3] = [z0 : εz1 : ε2z2 : ε3z3] where
ε = e

2π
√−1
5 is a primitive fifth root of unity. The G-action on Y is free and Y/G is

the classical Godeaux surface.

Proposition 6.19 The classical Godeaux surface has an orbifold Fano host.

Proof Let X = w−1(0) ⊂ PE∨ be a Fano host of Y = s−1(0) ⊂ P
5 obtained by

Cayley’s trick, where s is the section of E = OP5(5) ⊕ OP5(1)⊕2 defined by the
Fermat quintic f and two linear polynomials z4, z5 that cut out P3 in P

5. Let G act
on z4 and z5 trivially. Then G acts on P

5 and E compatibly. Moreover the section
s = ( f, z4, z5) is G-invariant. By Orlov’s theorem (Remark 2.9), we see that there
is a fully faithful embedding Db(Y/G) → Db([X/G]) of the derived category of
the classical Godeaux surface into the derived category of the Fano orbifold [X/G].
Since the derived category of the classical Godeaux surface contains a quasi-phantom
category (cf. [9]), Db([X/G]) also contains a quasi-phantom category. �

6.4.2 Product-Quotient Surfaces

Let us briefly recall the definition of product-quotient surfaces.

Definition 6.20 An algebraic surface S is called a product-quotient surface if there
exist a fiinite group G and two algebraic curves C, D with G-action such that S
is isomorphic to the minimal resolution of (C × D)/G where G acts on C × D
diagonally.
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Product-quotient surfaces provide surprisingly many new examples of surfaces
of general type and play an important role in the theory of algebraic surfaces (cf.
[5]). Recently derived categories of some product-quotient surfaces were studied
and it turns out that some of them have quasi-phantom categories in their derived
categories(cf. [18, 32, 42, 43, 45]). We can construct orbifold Fano hosts of some
of product-quotient surfaces as follows.

Proposition 6.21 Let S be a product-quotient surface which is the minimal resolu-
tion of (C × D)/G. Suppose that C, D have G-equivariant odd degree line bundles
and gcd(2, |H 2(G,C∗)|) = 1. Then S has an orbifold Fano host.

Proof Let C, D be algebraic curve with G-action such that S is a minimal resolution
of (C × D)/G. Then Db(S) is embedded into Db([(C × D)/G]) by the McKay
correspondence (cf. [26]). From Lemma 6.15 we see that C (resp. D) has a Fano
host F1 (resp. F2) with G-action and and the Fourier-Mukai kernel K1 (resp. K2) is
a G-linearized object with respect to the diagonal action. From the Theorem 2.10,
we have a fully faithful functor Db([(C × D)/G]) → Db([(F1 × F2)/G]). Finally
[(F1 × F2)/G] is a smooth Deligne-Mumford stack whose coarse moduli space
(F1 × F2)/G is a Fano variety. Therefore we get the desired result. �

Example 6.22 Let S be a product-quotient surface where the order of G is odd.
Then S satisfies the conditions of the above theorem. See [5, 18, 42] for examples
of these surfaces.

Corollary 6.23 There are Fano orbifolds whose derived categories contain phantom
categories.

Proof Let S1 be the classical Godeaux surface and S2 be the project-quotient surface
obtained by the quotient of product two genus 4 curves with free Z2

3-action. Let X1

be an orbifold Fano host of S1 and X2 be an orbifold Fano host of S2 where we know
the existence from the above discussion. Then X1 × X2 is an orbifold Fano host of
S1 × S2.

It was proved that Db(S1) contains a quasi-phantom category in [9] and Db(S2)
contains a quasi-phantom category in [42]. Then Db(S1 × S2) contains a phantom
category by the result of [21]. Therefore we have an example of Fano orbifold whose
derived category contains a phantom category. Indeed, we can find more examples
of such Fano orbifolds from the results of [18, 42]. �

7 Discussions

7.1 Phantom Categories

From the theorem of [21] we see that there are Fano orbifolds contain phantom cat-
egories. However we do not know any single example of smooth projective Fano
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variety whose derived category contains a (quasi-)phantom category. Recently sev-
eral examples of surfaces whose derived categories containing (quasi-)phantom cat-
egories were constructed. Fano hosts of these surfaces will give us examples of
smooth projective Fano varieties whose derived categories contain (quasi-)phantom
categories.

Question 7.1 (1) Is there a smooth projective Fano variety whose derived category
contains a (quasi-)phantom category?
(2) Is there a smooth projective Fano variety (or a Fano orbifold) whose derived
category contains the derived category of a determinantal Barlow surface (cf. [8])?
(3) Is there a smooth projective Fano variety (or a Fano orbifold) whose derived
category contains the derived category of an elliptic surface construced by Cho and
Lee (cf. [13])?

It will be very interesting if one can see these phantom categories in the Landau-
Ginzburg mirror of (orbifold) Fano hosts.

7.2 Noncommutative Varieties

There are many examples of noncommutative varieties in derived categories of Fano
varieties. For example, Kuznetsov proved there are K3 categories not equivalent to
derived cateogies of K3 surfaces inside derived categories of cubic 4-folds. These K3
categories provide a natural explanation whymany holomorphic symplectic varieties
arise from cubic 4-folds. Noncommutative varieties also appear in derived categories
of cubic 3-folds and interesting applications of these noncommutative varieties were
found (cf. [40]). It will be an interesting question which noncommutative varieties
can be embedded into derived categories of Fano orbifolds. It is also an interesting
problem to find another geometric description of these noncommutative varieties (cf.
[40]) via different Fano hosts.

7.3 Applications and Perspectives

It will be very interesting to find applications of Fano visitor problem to arithmetic
geometry, birational geometry and (homological) mirror symmetry. Indeed, under-
standing derived categories of Fano varieties is very important for all these areas.
For example, it was conjectured by Orlov that semiorthogonal decomposition of the
derived category of a variety will be closely related to motivic decomposition of
the variety (cf. [51]). This idea leads to find new motivic decompositions of moduli
spaces of stable vector bundles on curves (cf [20, 46]). From this perspective, we
raise the following question.
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Question 7.2 Let Y be a smooth projective variety. Is there a Fano variety (or
orbifold) whose motive (in a suitable category of motives) contains the motive of Y
as a direct summand?
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K-stability and Fujita Approximation

Chi Li

Abstract This note is a continuation to the paper [26]. We derive a formula for non-
Archimedean Monge-Ampère measures of big models. As applications, we derive
a positive intersection formula for non-Archimedean Mabuchi functional, and fur-
ther reduces the (Aut(X, L)0)-uniformYau-Tian-Donaldson conjecture for polarized
manifolds to a conjecture on the existence of approximate Zariski decompositions
that satisfy some asymptotic vanishing condition. In an appendix, we also verify this
conjecture for some of Nakayama’s examples that do not admit birational Zariski
decompositions.

Keywords K-stability · Fujita approximation

1 Introduction

Let (X, L) be a polarized projective manifold. The Yau-Tian-Donaldson (YTD) con-
jecture predicts that the existence of constant scalar curvature Kähler (cscK) metrics
in the Kähler class c1(L) is equivalent to a K-stability condition for the pair (X, L).
The K-stability condition is usually expressed as a positivity condition on the Futaki
invariants of test configurations. In a recentwork [26], it was proved that the existence
of cscK metrics is equivalent to the uniform positivity of Mabuchi slopes along all
maximal geodesic rays. Here the maximal geodesic rays, as introduced by Berman-
Boucksom-Jonsson [1], are essentially the geodesic rays in the space of (mildly sin-
gular) positive metrics in c1(L) that can be algebraically approximated by the data
of test configurations. It is known that for test configurations, the Mabuchi slopes (of
geodesic rays associated to test configurations) are the Futaki invariants. So our result
is of a Yau-Tian-Donaldson type. However the approximability of Mabuchi slopes
of (maximal) geodesic rays, is not well-understood yet. In [26], we did a partial com-
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parison between the Mabuchi slope with non-Archimedean Mabuchi functional and
reduced the (G-)uniform version of YTD conjecture to a non-Archimedean version
of entropy regularization conjecture of Boucksom-Jonsson [12].

Furthermore we carried out a partial regularization process (based on Boucksom-
Favre-Jonsson’s work on Non-Archimedean Calabi-Yau theorems) and proved that
uniform K-stability for models (or for filtrations associated to models) is a suf-
ficient (and conjecturally also a necessary) condition for the existence of cscK
metrics. By a model filtration, we mean a filtration of the section ring R(X, L) =⊕+∞

m=0 H 0(X, mL) induced by a model (X ,L) of (X, L). See Definition 2.1 for the
definition of a model, for which the Q-line bundle L is not assumed to be semiample
compared to a test configuration in the usual definition of K-stability (see [19, 31]).
Moreover, if (X ,L) denotes the canonical compactification of (X ,L) over P1 (see
Definition 2.1), then, for the study of K-stability, one can assume that (X ,L) is a
big model which means that L is big over X (see Remark 3.2). The main goal of
this paper is to further reduce Boucksom-Jonsson’s non-Archimedean regularization
conjecture and hence the YTD conjecture to some purely algebro-geometric conjec-
ture about big line bundles (see Conjecture 4.4, or more generally Conjecture 4.7,
for the conjectural statements), which could be studied even without the background
on K-stability or non-Archimedean geometry.

More specifically, we will first derive a formula for the non-ArchimedeanMonge-
Ampère measure of big models, which implies a positive intersection formula for
the non-Archimedean Mabuchi functional of model filtrations. We refer to Sect. 2
for definitions of terms in the following statement of our main results.

Theorem 1.1 For any normal and big model (X ,L) of (X, L), if φ(X ,L) denotes the
associated non-Archimedean psh metric, then the following statements hold true.

(i) If the central fibre is given by X0 = ∑I
i=1 bi Ei , and xi = r(b−1

i ordEi ) is the
Shilov point associated to Ei , then the non-Archimedean Monge-Ampère mea-
sure of φ(X ,L) is given by the formula:

MANA(φ(X ,L)) =
I∑

i=1

bi
(〈L̄n〉 · Ei

)
δxi , (1)

where 〈L̄n〉 ∈ H n,n(X̄ ) is the positive intersection product of big line bundles
(see Sect.2.2).

(ii) The non-Archimedean Mabuchi functional of any big model (X ,L) is given
by:

MNA(X ,L) = 〈L̄n〉 ·
(

K log
X̄ /P1 + S

n + 1
L̄

)

. (2)

The non-Archimedean Monge-Ampère measure on Berkovich spaces were intro-
duced by A. Chambert-Loir [13] and the formula (1) is a generalization of the for-
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mula of non-Archimedean Monge-Ampère measures for smooth semipositive non-
Archimedean metrics. We refer to Sect. 2.2 for the definition of positive intersection
numbers that arise in the study of restricted volumes of big line bundles.

The formula (2), which was announced in [26], generalizes the intersection for-
mula for non-ArchimedeanMabuchi functional of a test configuration [10, 32] which
coincides with the CM weight when the central fibre of the test configuration is
reduced (see [27, 29, 34]). As mentioned above, it together with the work in [26]
further reduce the proof of YTD conjecture to some algebraic conjecture (Conjecture
4.4). Here for the convenience of the readerwe recall themain result from [26], which
is the recent progress in the variational approach to the YTD conjecture (as proposed
in [1, 4]) and incorporates the analytic existence result of Chen-Cheng [14].

Definition 1.2 (X, L) is uniformly K-stable for models if there exists γ > 0 such
that for any model (X ,L), we have:

MNA(X ,L) ≥ γ · JNA(X ,L) (3)

where MNA and JNA are given in (23)-(24).

Theorem 1.3 ([26]) If a polarized manifold (X, L) is uniformly K-stable for models,
then (X, L) admits a cscK metric.

We will see that the positive intersection formula (2) implies that it suffices to test
the uniform K-stability for the models with reduced central fibres in which case
K log

X̄ /P1 = KX /P1 (see Proposition 3.5).
The converse direction of Theorem 1.3 is expected to be true if Aut(X, L)0 is

discrete. Indeed, it is implied by Conjecture 4.4. Moreover there is a version in
the case when Aut(X, L)0 is not discrete (see [26] for details). As observed by Y.
Odaka, such results can be applied to get immediately the G-uniform version of Yau-
Tian-Donaldson conjecture for polarized spherical manifolds (see some beautiful
refinement by Delcroix [16, 17] in this case and Remark 4.14).

We end this introduction with the organization of this paper. In Sect. 2.1, we recall
the construction of non-Archimedean psh metrics frommodels. In Sect. 2.2 we recall
the concepts related to restricted volumes of big line bundles and positive intersection
products, and important results from [6, 20] about the relation between them. In
Sect. 3, we prove Theorem 1.1. In the Sect. 4, we propose a general conjecture which
strengthens the usual Fujita approximation theorem and (in the C∗-equivariant case)
would imply the uniform YTD conjecture for cscK metrics. In the appendix, we
verify this algebraic conjecture for some of Nakayama’s examples that do not admits
birational Zariski decompositions.



548 C. Li

2 Preliminaries

2.1 Non-archimedean Metrics Associated to Models

This paper is a following-up work of [26] and we will mostly follow the notations
from that work.

Definition 2.1 • Amodel of (X, L) is a flat family of projective varieties π : X →
C together with a Q-line bundle L satisfying:

(i) There is a C∗-action on (X ,L) such that π is C∗-equivariant;
(ii) There is a C∗-equivariant isomorphism (X ,L) ×C C∗ ∼= (X, L) × C∗.

• The trivial model of (X, L) is given by (X × C, L × C) =: (XC, LC).
Twomodels (Xi ,Li ), i = 1, 2 are called equivalent if there exists amodel (X3,L3)

and two C∗-equivariant birational morphisms μi : X3 → Xi such that μ∗
1L1 =

μ∗
2L2.

• If we forget about the data L and L, then we say that X is a model of X .
If there is a C∗-equivariant birational morphism rX1,X2 : X1 → X2 for two models
Xi , i = 1, 2, then we say that X1 dominates X2 and write X1 ≥ X2. If X ≥ XC,
then we say that X is dominating.
If X is normal, we say that X is a normal model. We say a model X is a SNC (i.e.
simple normal crossing) if (X ,X red

0 ) is a simple normal crossing pair.
• Let (X̄ , L̄) be the canonical C∗-equivariant compactification of (X ,L) over P1 by
adding the trivial (X, L) at ∞ ∈ P1.
We say that (X ,L) is a big model if L̄ is a big Q-line bundle over X̄ and the stable
base ideal ofmL̄ is the same as theπ -base ideal ofmL form 
 1. In particular, the
stable base locus satisfies B(L) ⊆ X0 = π−1({0}). (This definition is motivated
by [12, Lemma A.6].)
In the following for simplicity of notations, if there is no confusion, we also just
write (X ,L) for (X̄ , L̄).

• If L is semiample over C, then we call the model (X ,L) to be a test configuration
of (X, L).

Remark 2.2 Rigorously speaking, the model of (X, L) should be called the model
of (X × C, L × C). In other words, with the language of [11], we used the base
change from the trivially valued case to the discrete valued case.

In the original literature of K-stability, which we adopt in this paper, the line
bundle L is assumed to be semi-ample. For us this is the only difference between the
definition of test configurations and models.

We refer to [7, 11] for the definition of Berkovich analytification (XNA, LNA)

of (X, L) with respect to the trivially valued field C and the definition of non-
Archimedean psh metrics LNA which are represented by φtriv-psh functions on XNA

(where φtriv is the metric associated to the trivial test configuration).
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For eachmodel (X ,L) of (X, L), we can associate a non-Archimedean pshmetric
φ(X ,L) in the following way. If bm denotes the π -relative base ideal of mL and
μm : Xm → X is the normalized blowup of bm with the exceptional divisor denoted
by Ẽm , then (Xm,Lm = μ∗

mL − 1
m Ẽm) is a semiample test configuration. (Xm,Lm)

defines a smooth non-Archimedean metric φ(Xm ,Lm ) ∈ HNA(L) and we set

φ(X ,L) = lim
m→+∞ φ(Xm ,Lm ). (4)

If the base varietyX is clear,we justwriteφ(X ,L) asφL. It is easy to see that equivalent
models define the same non-Archimedean psh metrics. Moreover, ifL is semiample,
then φ(X ,L) = φ(Xm ,Lm ) for m sufficiently divisible.

By resolution of singularities, we can assume that X is dominating via a C∗-
equivariant birational morphism ρ : X → XC. Write L = ρ∗L + D with D sup-
ported on X0. Then L defines a model function fL on Xdiv

Q
(the set of divisorial

valuations on X ) given by:

fL(v) = G(v)(D), ∀v ∈ Xdiv
Q

(5)

where G(v) : Xdiv
Q

→ (X × C)div
Q

is the Gauss extension, i.e. G(v) is a C∗-invariant
valuation on X × C that extends v and satisfies G(v)(t) = 1. Set φ̃L = φtriv + fL.

The φtriv-psh upper envelope of fL is defined as:

P( fL)(v) = sup
{
(φ − φtriv)(v);φ ∈ PSHNA(L), φ − φtriv ≤ fL

}
. (6)

By [8, Theorem 8.5] we have the identity φ(X ,L) = φtriv + P( fL) =: P(φ̃L). More-
over, by [8, Theorem 8.3], P( fL) is a continuous φtriv-psh function.

Because L̄ is π̄ -big over the compactification X̄ π̄→ P1, when c 
 1, the Q-line
bundle L̄c := L̄ + cX0 is big over X̄ . Moreover, by [7, Lemma A.8], when c 
 1,
the π -relative base ideal of mL̄ is the same as the absolute base ideal of mL̄ for all
m sufficiently divisible. In other words we know that (X ,Lc) is a big model in the
sense in Definition 2.1. Note that we have P(φ̃L) + c = P(φ̃Lc) = φtriv + P( fLc).
As to be explained in Remark 3.2, it suffices to consider big models in the study of
K-stability for models.

2.2 Restricted Volumes and Positive Intersection Products

In this section, we (change the notation and) assume that X is a compact projective
manifold and L is a big line bundle over X of dimension n + 1. Recall that the
volume of L is defined as:

volX (L) = lim sup
m→+∞

h0(X , mL)

mn+1/(n + 1)! . (7)
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Denote by N 1(X ) = Div(X )/ ≡ the Néron-Severi group. Then the volume func-
tional extends to be a continuous function on N 1(X )R = N 1(X ) ⊗Q R. By Fujita’s
approximation theorem, this invariant can be calculated as the movable intersection
number of L (see [18, 25]). In other words, if we let μm : Xm → X be the nor-
malized blowup of b(|mL|) (or its resolution) with exceptional divisor Ẽm and set
Lm = μ∗

mL − 1
m Ẽm , then

volX (L) = lim
m→+∞Ln+1

m . (8)

As a consequence, the limsup in (7) is indeed a limit.
Next we recall the notion of restricted volume [6, 20, 33] and the asymptotic

intersection number that calculates the restricted volume.

Definition 2.3 ([20]) For any irreducible (d-dimensional) subvariety Z ⊂ X
• The restricted volume of L along Z is defined as

volX |Z (L) = lim sup
m→+∞

dimC Im
(
H 0(X , mL) → H 0(Z , mL|Z )

)

md/d! . (9)

• For any Z � B(L) (the stable base locus ofL), the asymptotic intersection number
of L and Z is defined as:

‖Ld · Z‖ := lim sup
m→+∞

Ld
m · Z̃m, (10)

where Z̃m is the strict transform of Z under the normalized blowupμm : Xm → X
of base ideal of |mL|.

Remark 2.4 It is shown in [20] that the limsup in the formula (9) and (10) are
actually limits.

Boucksom-Favre-Jonsson [6] proved that the restricted volume is equal to a pos-
itive intersection product.

Definition 2.5 [[6, Definition 2.5]] Let L be a big Q-line bundle. For any effective
divisor D, define:

〈Ln〉 · D = sup
μ,E

(μ∗L − E)n · μ∗ D, (11)

where supremum is taken over all birational morphism μ : X̃ → X and an effective
divisor E such that μ∗L − E is nef. If D = ∑

i bi Di with bi ∈ R with Di effective,
then we extend the definition (11) linearly:

〈Ln〉 · D =
∑

i

bi 〈Ln〉 · Di .
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Remark 2.6 In [6], Boucksom-Favre-Jonsson defined positive intersection prod-
uct 〈ξ p〉 for any big class ξ ∈ N 1(X )R and 1 ≤ p ≤ n + 1, by developing an
intersection theory on the Riemann-Zariski space. For example, when p = n + 1,
〈ξ n+1〉 = vol(ξ); when p = 1, 〈ξ 〉 is the collection of positive parts of divisorial
Zariski decomposition of π∗ξ for all smooth blowups π : Xπ → X . We refer to [6]
for details on these more general definitions.

Moreover an analytic definition of the positive intersection product was defined
even earlier in [5, Theorem 3.5] (called movable intersection product there). For each
semipositive class α ∈ H 1,1(X , R), define:

〈Ln〉 · α = sup
T,μ

{βn · μ∗α} (12)

where T ranges over all Kähler currents in c1(L) that have logarithmic poles and
μ : X̃ → X ranges over the set of those log resolutions satisfying μ∗T = {E} + β

(with {E} an effective divisor and β smooth and semipositive). By Poincaré duality
the class 〈Ln〉 is uniquely defined as a semipositive class in H n,n(X , R).

In the above definitions, we see that the left-hand-side of (11) depends only on
the numerical class of L and D.

Recall that the augmented base locus of L is defined as (see [20]):

B+(L) =
⋂

L=A+E

Supp(E), (13)

where the intersection is over all decompositions ofL = A + E intoQ-divisors with
A ample and E effective. It is know that the augmented base locus depends only on
the numerical class of L (see [20] and reference therein). We will use the following
important results:

Theorem 2.7 If L → X is a big line bundle, and Z ⊂ X is a prime divisor, then
the following statements are true:

1. ([20, Theorem 2.13, Theorem C]) If Z � B+(L) then volX |Z (L) = ‖Ln · Z‖. If
Z ⊆ B+(L), then volX |Z (L) = 0.

2. ([6, Theorem B]) There is an identity volX |Z (L) = 〈Ln〉 · Z. As a consequence,
volX |Z (L) depends only on the numerical class of L and Z.

As a consequence of these results, we know that in the definition of positive
intersection number in (11), it suffices to take the supremum along the sequence
μm : Xm → X which is the normalized blowup of b(|mL|) (or its resolution) with
exceptional divisor Ẽm . In other words, if we set Lm = μ∗

mL − 1
m Ẽm , then for any

divisor D, we have the identity:

〈Ln〉 · D = lim
m→+∞Ln

m · μ∗ D. (14)
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3 Positive Intersection Formula

Let π : (X ,L) → C be a big model of (X, L). By resolution of singularities, we can
assume that (X ,X red

0 ) is a dominating and SNC model of (X, L). From now on, for
simplicity of notation, we still denote by (X ,L) its natural compactification over P1.

Because L is big over X (= X̄ ) (by the definition of big model), B+(L) �= X ,
there exists a fiber Xt = π−1({t}) for some t ∈ P1 \ {0} such that Xt � B+(L). In
particular, Xt � B(L). We then apply Theorem 2.7 to get

〈Ln〉 · Xt = volX |X (L) = ‖Ln · X‖ = V . (15)

Because 〈Ln〉 · Xt depends only on numerical classes of L and Xt (see Definition
2.5), we can use Xt ≡ X0 = ∑I

i=1 bi Ei to get:

V = 〈Ln〉 · Xt =
I∑

i=1

bi
(〈Ln〉 · Ei

)
. (16)

Nowwecan prove the formula (1) for the non-ArchimedeanMonge-Ampèremeasure
of non-Archimedean metrics associated to model filtrations. This result refines and
generalizes [7, Lemma 8.5].
Proof of Theorem 1.1 (i) We will use the notations in Sect. 2.1. Via the resolution
of singularity, we can first replace X by any SNC model X ′ that dominates X via
π ′ : X ′ → X and replace L by L′ = π ′∗L. For simplicity of notations, we will still
use the notation (X ,L) instead of (X ′,L′).

Because the sequence of continuous metrics φm := φ(Xm ,Lm ) ∈ HNA increases
to the continuous metric φL = φtriv + P( fL), by Dini’s theorem we know that φm

converges to φL uniformly. In particular, φm converges to φL in the strong topology
and MANA(φm) converges strongly, and hence also weakly, to MANA(φL).

Set νX ,m = (rX )∗(MANA(φm)) and νX = (rX )∗MANA(φL) where rX : XNA →
�X is the natural retraction to the dual complex of X (see [11]). Then they are
supported on �X and it is easy to see that νX ,m converges to νX weakly. By Port-
manteau’s theorem for weak convergence of measures (see [2, Theorem 2.1]), we
have:

lim sup
m→+∞

νX ,m({xi }) ≤ νX ({xi }). (17)

On the other hand, we clearly have

νX ,m({xi }) = (rX )∗MANA(φm)({xi })
= MANA(φm)((rX )−1{xi }) ≥ MANA(φm)({xi }).

So we combine the above two inequalities to get:
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lim sup
m→+∞

MANA(φm)({xi }) ≤ νX ({xi }) =: Vi . (18)

We consider two cases:

1. If Ei � B+(L), then Ei is not contained in B(L). By the formula of non-
ArchimedeanMonge-Ampèremeasures of test configurations (see [11, Sect. 3.4])
we get that:

biLn
m · Ẽi = MANA(φm)({xi }), (19)

where Ẽi is the strict transform of Ei under μm . So by (19) and (10) we get

lim sup
m→+∞

MANA(φm)({xi }) = lim sup
m→+∞

biLn
m · Ẽi = bi‖Ln · Ei‖. (20)

So by Theorem 2.7 and the inequality (18) we have

bi 〈Ln〉 · Ei = bi · volX |Ei (L) = bi‖Ln · Ei‖ ≤ Vi . (21)

2. If Ei ⊆ B+(L), then bi 〈Ln〉 · Ei = 0 ≤ Vi .

Combining these with (16), we have:

V =
∑

i

bi 〈Ln〉 · Ei ≤
∑

i

Vi =
∑

i

νX ({xi }) ≤ V .

So the inequalities in the above chain are actually equalities. So bi 〈Ln〉 · Ei = Vi =
νX ({xi }) for i = 1, . . . , I and νX = (rX )∗MANA(φL) is supported on the finite set
{xi ; i = 1, . . . , I }. In other words, we have

(rX )∗MANA(φL) =
N∑

i=1

bi
(〈Ln〉 · Ei

)
δxi . (22)

But we have said that (X ,L) can be replaced by any SNC model that dominates
X . Moreover, the pairs {(xi , Vi ); Vi �= 0} do not depend on the choice of such SNC
models. By using the homemorphism XNA = lim←−�X , it is then easy to conclude that

the Radon measure MANA(φL) is indeed only supported on the finite set {xi ; i =
1, . . . , I } and the identity (1) holds true. �

Remark 3.1 Although our work on K-stability is the through the study of non-
Archimedean geometry in the trivially valued case (which is base-changed to the
discretely valued case, following [11, 12]), the proof of formula for non-Archimedean
Monge-Ampère measure also holds true for more general discrete valued case.

To be more precise, let C◦ = C \ {p} be a punctured algebraic curve and π :
(X ◦,L◦) → C◦ be a flat family of smooth polarized projective manifolds. Any com-
pactification (X ,L) → C of (X ◦,L◦) defines a non-Archimedean metric φ(X ,L) on
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(X ◦,L◦)NA which is the Berkovich analytification with respect to the discrete valua-
tion ordt onC(t) (where p = {t = 0}). See [7] for details of the terminology.Without
the loss of generality, we can also assume that (X ,Xp = π−1({p})) is simple normal
crossing by using resolution of singularities. Then the same proof as above proves a
formula similar to (1) for MANA(φ(X ,L)) (see also [7, Lemma 8.5]).

We recall that the formula for non-Archimedean functionals following the works
in [9, 11, 12] (see also [26]). For any continuous psh metric φ on LNA, the non-
Archimedean Mabuchi functional is given by:

MNA(φ) = HNA(φ) + (EK X )NA(φ) + S ENA(φ) (23)

where the terms on the right-hand-side are given by the following non-Archimedean
integrals:

HNA(φ) =
∫

XNA
AX (x)MANA(φ),

(EK X )NA(φ) =
n−1∑

i=0

∫

XNA
(φ − φtriv)dd

cψ ∧ MANA(φ
[i]
triv, φ

[n−1−i])

ENA(φ) = 1

n + 1

n+1∑

i=0

∫

XNA
(φ − φtriv)MANA(φ

[i]
triv, φ

[n−i]),

where in the second identity ψ is a Hermitian metric on KNA
X . We also recall the

JNA-functional:
JNA(φ) = Ln · sup(φ − φtriv) − ENA(φ). (24)

Remark 3.2 Note that FNA ∈ {MNA, JNA} satisfies FNA(φ + c) = FNA(φ) for any
c ∈ R. In particular, we have FNA(X ,L + cX0) = FNA(X ,L).By the last paragraph
in Sect. 2.1, we can assume that the models (X ,L) in the definition of uniform K-
stability in Definition 1.2 are always big.

Proposition 3.3 With the above notation, we have:

HNA(φL) = 〈Ln〉 · K log
X /X

P1
. (25)

Proof Note that we have the identity:

K log
X /X

P1
= KX + X red

0 − (K X
P1

+ X0) =
∑

i

(AX
P1

(Ei ) − bi )Ei

=
∑

i

bi (AX
P1

(b−1
i ordEi ) − 1)Ei =

∑

i

bi AX (xi )Ei .
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So we can use (1) to get the identity:

HNA(φL) =
∫

XNA
AX (x)MANA(φL) =

∑

i

AX (xi )bi 〈Ln〉 · Ei

= 〈Ln〉 · K log
X /X

P1
.

�
Proposition 3.4 With the above notation, we have the following identities:

(EK X )NA(φL) = 〈Ln〉 · ρ∗K X , (26)

ENA(φL) = 1

n + 1
〈Ln+1〉 = 1

n + 1
〈Ln〉 · L. (27)

Proof Because φm converges to φL strongly, by [11] we have:

(EK X )NA(φL) = lim
m→+∞(EK X )NA(φm) = lim

m→+∞Ln
m · μ∗

mρ∗K X . (28)

Write ρ∗K X = A1 − A2 with A1, A2 very ample. Moreover we can choose Ai , i =
1, 2 to be sufficient general such that Ai , i = 1, 2 do not contain the centers of
Rees valuations of bm for all m. Then the strict transforms of Ai , i = 1, 2 under
μm : Xm → X are the same as the total transform of Ai , i = 1, 2. By using Theorem
2.7 we see that the right-hand-side of (28) is equal to

‖Ln · A1‖ − ‖Ln · A2‖ = 〈Ln〉 · (A1 − A2) = 〈Ln〉 · ρ∗K X . (29)

For the first equality in (27), we can again use φm = φ(Xm ,Lm ) (for which (27) is
known to be true) to approximate and directly apply the Fujita approximation result
in [25, Theorem 11.4.11]. The last equality in (27) follows from the orthogonality
property proved in [5, Corollary 4.5] or [6, Corollary 3.6]. �

We can complete the proof the formula for the non-Archimedean Mabuchi func-
tional.
Proof of Theorem 1.1 (ii) The formula (2) follows immediately from the decomposi-
tionMNA = HNA + (EK X )NA + SENA in (23) and the formula for each part in (25),
(26) and (27). �

As an application of the positive intersection formula, we get:

Proposition 3.5 To check the (G-) uniform K-stability for models (see Definition 1.2
and [26]), it suffices to consider models with reduced central fibres.

Proof Let (X ,L) be any big model. We can take a base change (X (d),L(d)) =
(X ,L) ×C,t �→td C such that its normalization X̃ has reduced central fibers. Let f :
X̃ → X be the natural finite morphism and set L̃ = f ∗L. Then we have the identity

K log

(X̃ ,X̃0)
:= KX̃ + X̃0 = f ∗(KX + X red

0 ) = f ∗K log
(X ,X0)

.
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It is known that volumes of big line bundles are multiplicative under generically
finite morphisms (see [21, Lemma 4.3]). So we get the identity

〈(L̃ + εK log

(X̃ ,X̃0)
)n+1〉 = d · 〈(L + εK log

(X ,X0)
)n+1〉. (30)

Taking derivative with respect to ε at ε = 0, we also get:

〈L̃n〉 · K log

(X̃ ,X̃0)
= d · 〈Ln〉 · K log

(X ,X0)
. (31)

Moreover (30) for ε = 0 gives ENA(φL̃) = d · ENA(φL). On the other hand, it is
known we have the formula (see [11])

(φL̃ − φtriv)(x) = d · (φL − φtriv)(d
−1x), for all x ∈ XNA. (32)

So we get the identity JNA(φL̃) = d · JNA(φL) by (24). Combining these identities
with the positive intersection formula (2), the statement now follows easily. �

4 First Riemann-Roch Coefficients of Big Line Bundles
and Fujita Approximations

In view of the above intersection formula, it seems natural to consider the following
invariant for big line bundles.

Definition 4.1 LetL be a big line bundle over a projective manifoldX of dimension
n + 1. The first Riemann-Roch coefficient (1st-RR coefficient) of L is defined to be:

r1(X ,L) = 〈Ln〉 · KX . (33)

If the base manifold X is clear, we just write r1(X ,L) as r1(L).

The zero-th Riemann-Roch coefficient is of course the volume of L:

r0(X ,L) := volX (L) = 〈Ln+1〉. (34)

One would hope that r1(X ,L) is the second order coefficients in the expansion of
h0(X , mL). This is true if L is big and nef by Fujita’s vanishing theorem. But due
to the example in [15], this does not seem to be true for general big line bundles.

Lemma 4.2 If μ : Y → X is a birational morphism between smooth projective
manifold, which is a composition of blowups along smooth subvarieties. Then we
have:

r1(L) = r1(μ
∗L). (35)
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Proof Write KX as the difference of very ample divisors A1 − A2 and arguing as in
the proof of Proposition 3.4, we see that:

〈Ln〉 · KX = 〈μ∗Ln〉 · μ∗KX . (36)

Let Ei be the exceptional divisor of μ. We just need to show that 〈μ∗Ln〉 · Ei =
volY|Ei (μ

∗Ln) = 0. This can be seen by the inclusion:

Im
(

H0(Y, mμ∗L) → H0(Ei , mμ∗L|Ei )
)

⊆ H0(Ei , mμ∗L|Ei ) = H0(μ∗(Ei ), mL|μ∗(Ei ))

(37)
and using the fact that the right-hand-side is equal to o(mn) because dim(μ∗(Ei )) <

n. �

If we consider L as a Cartier b-divisor in the sense of Shokurov, then because of
identity (35), r1(L) is an invariant of the Cartier b-divisor L.

The following lemma follows immediately from the results in [28, Sect. 3.1].

Lemma 4.3 Let L = P + N be the divisorial Zariski decomposition of L. Then we
have:

r1(L) = r1(P). (38)

Moreover if L admits a Zariski decomposition, i.e. if P is nef, then we have:

r1(L) = Pn · KX . (39)

We propose the following main conjecture.

Conjecture 4.4 Let (X ,L) be a big model of (X, L). Then there exists a sequence
of blowups μm : Xm → X along C∗-equivariant ideal sheaves cosupported on X0

and decompositions into Q-divisors μ∗
mL = Lm + Em with Lm semiample and Em

effective supported on the exceptional divisor of μm such that:

lim
m→+∞ volXm (L̄m) = volX (L̄) and lim

m→+∞ r1(L̄m) = r1(L̄). (40)

Because of the positive intersection formula in (2) and the reduction in [26], this
indeed implies Boucksom-Jonsson’s regularization conjecture. Moreover by the fol-
lowing lemma and the work in [26], it would complete the solution of Yau-Tian-
Donaldson conjecture for cscK metrics.

Lemma 4.5 For any big model (X ,L), Conjecture 4.4 implies that there exists
φm ∈ HNA such that φm converges to φ(X ,L) in the strong topology and MNA(φm) →
MNA(φ(X ,L)).

Proof By the same base change construction as in the proof of Proposition 3.5, we
can assume that X has a reduced central fibre.

For simplicity of notations, we denote by φ = φ(X ,L) (resp. φm) the non-
Archimedean metrics associated to L (resp. Lm). Then because Em is effective,
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we have φ ≥ φm . We claim that φm → φ strongly. Indeed, by [12, Proposition 6.26],
it suffices to show the following non-negative quantity converges to 0 as m → +∞:

JNAφ (φm) =
∫

XNA
(φm − φ)MANA(φm) − ENA(φm) + ENA(φ). (41)

This follows immediately from φm ≤ φ and (27):

0 ≤ JNAφ (φm) ≤ −ENA(φm) + ENA(φ) = volX (L)

n + 1
− volXm (Lm)

n + 1
.

By the positive intersection formula (2) the second identity in (40) implies
MNA(φm) → MNA(φ). �

We hope the Conjecture 4.4 can be studied by using the geometric tools introduced
in the study of Fujita’s approximation theorem. We recall the following definition

Definition 4.6 (see [25, Definition 11.4.3]) Let L be a big line bundle. A Fujita
approximation of L consists of a projective birational morphism μ : X ′ → X with
X ′ irreducible together with a decomposition μ∗L = A + E in N 1(X )Q such that A
is big and semiample and E is effective.

By using the above definition, we generalize the Conjecture 4.4 for all big line
bundles.

Conjecture 4.7 Let L be a big line bundle over a smooth projective manifold X .
Then there exists a sequence of birational morphisms μm : Xm → X with Fujita
approximations μ∗

mL = Lm + Em as in Definition 4.6 such that:

lim
m→+∞ volXm (Lm) = volX (L) and lim

m→+∞ r1(Lm) = r1(L). (42)

Remark 4.8 Sébastien Boucksom pointed out to me that this conjecture could be
formulated using the language of b-divisors. Such a formulation has some conse-
quences and (hopefully) might be useful for studying this problem.

Let’s recall an orthogonality estimate byBoucksom-Demailly-Pǎun-Peternell (see
also [25, Theorem 11.4.21]):

Theorem 4.9 ([5, Theorem 4.1]) Fix any ample line bundle H on X . There
exists a constant C = C(X , H) > 0 such that any Fujita decomposition (μ : X ′ →
X , μ∗L = A + E) satisfies the estimate:

(An · E)2 ≤ C · (volX (L) − volX ′(A)). (43)

We observe an immediate consequence of this estimate.

Lemma 4.10 Let μm : Xm → X be a sequence of birational morphisms such
μ∗

mL = Lm + Em where Lm is ample and Em is effective. Assume that the following
conditions are satisfied:
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1. limm→+∞ volXm (Lm) = volX (L).
2. limm→+∞ Ln

m · μ∗
m KX = 〈Ln〉 · KX .

Then limm→+∞ r1(Lm) = r1(L) if and only if

lim
m→+∞Ln

m · KXm/X = 0. (44)

In particular, if there exists a constant C > 0 independent of m such that for any
irreducible component F of Em we have ordF (KXm/X ) ≤ C · ordF (Em), then we
have the convergence: limm→+∞ r1(Lm) = r1(L).

Remark 4.11 The above lemma suggests that the techniques from birational alge-
braic geometry might be useful for achieving (44). Indeed, our hope is that the MMP
techniques (based on the work of Birkar-Casini-Hacon-McKernan) could be used to
extract suitable exceptional divisors satisfying the conditions in the above lemma.
Note that such type of techniques has prove to be very powerful in the study of
K-stability for Fano varieties (see for example [3]).

By the works in [18, 25] and [6, 20], the sequence {Lm} that satisfy the first two
conditions can be obtained by blowing up base ideals. Moreover one can also getLm

by blowing up appropriate asymptotic multiplier ideals, which satisfy the important
Nadel-vanishing and global generation properties. We review the construction in
[25, 11.4.B, Proof of Theorem 11.4] for the reader’s convenience. Fix a very ample
bundle H onX such that G := KX + (n + 2)H is very ample. Form ≥ 0, set Mm =
mL − G. Given ε > 0 there exists m 
 1 such that vol(Mm) ≥ mn+1(vol(L) − ε).
Set J = J (X , ‖Mm‖), let μm : Xm → X be a common resolution of J such that
μ∗

mJ = O(−Ẽm). ThenLm := L − 1
m Ẽm is semiample andLn+1

m ≥ vol(L) − ε (see
[25, 11.4.B] for more details). By letting ε → 0, we see that the first condition in
Lemma 4.10 is thus satisfied.

Now we claim that in this construction, the second condition in Lemma 4.10 can
also be satisfied. This fact will be used in the calculations of appendix Sect. 5. To
see this, we use some similar argument as in [20, Proof of Theorem 2.13]. Choose
m0 
 1 such that m0L − G = N ′ is effective. Fix a very ample divisor H such that
N := N ′ + H is ample. Then we have the inclusion

b(|(m − m0)L|)OX (−N ) ⊆ b(|(m − m0)L)O(−N ′)
⊆ b(|mL − G|) = b(|Mm |) ⊆ J (‖Mm‖).

We can also assume that μm is both resolutions of b(|Mm |) and b(|(m − m0)L|)
satisfying the identities μ∗

mb(|mL − G|) = OXm (−F̃m) and μ∗
mb(|(m − m0)L|) =

OXm (−Q̃m). Set L′
m = μ∗

m(L − G
m ) − 1

m F̃m and L′′
m = μ∗

mL − 1
m−m0

Q̃m .

Fix any effective divisor D on X . Let D̃m be the strict transform of D under μm .
Then the above inclusion implies:

vol((Lm + N

m
)|D̃m

) ≥ vol((L′
m + N

m
)|D̃m

) ≥ vol(L′′
m |D̃m

).
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Because Lm and L′′
m are both semiample, this implies

(Lm + N

m
)n · D̃m ≥ L′′n

m · D̃m . (45)

Now we can fix a very ample line bundle H such that μ∗
m(m H) − Lm = mμ∗(H −

L) + Ẽm is effective. Then for any 1 ≤ i ≤ n, we have:

lim sup
m→+∞

1

mn
(mLn−i

m ) · N i · D̃m ≤ lim sup
m→+∞

1

mn
(m H)n−i · N i · D̃m = 0.

By expanding the left-hand-side of (45), this implies

〈Ln〉 · D ≥ lim sup
m→+∞

Ln
m · D̃m ≥ lim sup

m→+∞
L′′n

m · D̃m = ‖Ln · D‖

which, by using Theorem 2.7, implies the equality

lim
m→+∞Ln

m · μ∗
m D = ‖Ln · D‖ = 〈Ln〉 · D.

Writing −KX = D1 − D2 with D1, D2 effective, we then see that the second con-
dition of Lemma 4.10 is satisfied too.

Finally we point out that Conjecture 4.7 holds true any for any big line bundle
that admits a birational Zariski decomposition (in the sense of Cutkosky-Kawamata-
Moriwaki). Unfortunately not all big line bundles admit such birational Zariski
decomposition by the counterexamples of Nakayama [30]. On the other hand, we
verify in the appendix that Conjecture 4.7 indeed holds for some of Nakayama’s
examples. Indeed, we will show that in these examples the bound of discrepancies
in the above lemma is indeed satisfied. So it seems to be very interesting to know
whether (44) can be achieved in general.

Definition 4.12 Wesayabig line bundleL admits a birationalZariski decomposition
if there is a modification μ : X̃ → X , a nef R-divisor P and an R-effective divisor
N on X̃ with the following properties:

• μ∗L = P + N .
• For any positive integer m > 0, the map

H 0(X̃ ,OX̃ (�m P�)) → H 0(X̃ ,OX̃ (mL)) (46)

induced by the section em is an isomorphism, where em is the canonical section of
�mN �.

Lemma 4.13 If a big line bundle L admits a birational Zariski decomposition, then
the Conjecture 4.7 for L is true.
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Proof By Lemma 4.2 and (39), we have r1(L) = r1(μ
∗L) = r1(P) = Pn · KX̃ .

Choose any ample divisor A on X̃ . Because P is big and nef, we know that for
k 
 1, kP − A = �k is effective. So we get:

(m + k)P = mP + A + Ek, (47)

which implies the decomposition over X̃ :

μ∗L = P + N = 1

m + k
(mP + A) + 1

m + k
�k + N . (48)

By perturbing the coefficients of A, we can assume that mP + A is a Q-divisor. Set
Lm = 1

m+k (mP + A). Then it is easy to see that (42) holds true. �

Remark 4.14 If (X, L) is a polarized spherical manifold, it is known that its models
in the sense of Definition 2.1 is a Mori dream space (see the appendix A by Y. Odaka
to [16]). Since Zariski decomposition of big lines bundles always exist onMori dream
spaces, the above lemma in the C∗-equivariant setting gives an explanation why the
Yau-Tian-Donaldson conjecture holds for polarized spherical manifolds. See [16,
Appendix A] for a slightly different proof of this fact (again based on Theorem 1.3).
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5 Conjecture 4.7 for Nakayama’s Examples Without
Birational Zariski Decomposition

In this appendix, we will use Lemma 4.10 to show that Conjecture 4.7 is indeed
true for some examples of big line bundles that do not have a birational Zariski
decomposition. Such examples were first discovered by Nakayama [30]. Here we
will do a case studybasedon the constructionofFujita approximation in [25,Theorem
11.4.4] and the calculation of asymptotic multiplier ideals for Nakayama’s examples
in the work of Koike [23].

Wefirstwrite down some notations. Set S = E × E for an elliptic curve E without
complex multiplication. Then the pseudoeffective cone PE(S) coincides with the nef
cone Nef(S). Fix a point p ∈ E and consider in N 1(S)R three classes:

f1 = [{P} × E] =: [F1], f2 = [E × {P}] =: [F2], δ = [�]



562 C. Li

where � ⊂ E × E is the diagonal. Then N 1(S)R is spanned by { f1, f2, δ} and the
description of the nef cone is known (see [24, Lemma 1.5.4]): α = x · f1 + y · f2 +
z · δ ∈ N 1(S)R is nef if and only if

xy + xz + yz ≥ 0, x + y + z ≥ 0. (49)

By standard linear algebra, we can use the following linear transformation to
diagonalize the above relation:

l1 = 1

6
( f1 + f2 − 2δ), l2 = 1

6
(−√

3 f1 + √
3 f2),

1

6
( f1 + f2 + δ)

a = x + y − 2z, b = −√
3x + √

3y, c = 2(x + y + z).

such that α = al1 + bl2 + cl3 ∈ N 1(S)R is nef if and only if

c2 ≥ a2 + b2, c ≥ 0. (50)

Let Li , i = 0, 1, 2 be three line bundles over S. Set

X = P(OS ⊕ (L1 − L0) ⊕ (L2 − L0)) ∼= P(L0 ⊕ L1 ⊕ L2). (51)

Denote by H = OX (1) the tautological line bundle for the first projectivization in
(51).

We use the description of X as a toric bundle over S as in [30]. Let � denote the
standard fan of P2, i.e. the fan generated by three cones:

σ1 = Cone{e1, e2}, σ2 = Cone{e2,−(e1 + e2)}, σ3 = Cone{−(e1 + e2), e1}.

Let h : R2 → R be the piecewise linear function on � satisfying h(e1) = h(e2) = 0
andh(−(e1 + e2)) = −1.Then X is the toric bundle associated to� andh determines
the line bundle H . Set L = π∗L0 + Dh . By a result of Cutkosky (see [23, Lemma
6.1]), L is a big line bundle if and only if there exists (k0, k1, k2) ∈ N3 such that
Lk0
0 ⊗ Lk1

1 ⊗ Lk3
2 is an ample line bundle over S. Moreover it is well-known that the

canonical line bundle of the projective bundle X is given by:

K X = π∗(KS + (L1 − L0) + (L2 − L0)) − 3H = L1 + L2 − 2L0 − 3H. (52)

The last identity uses the triviality of KS .
We will consider the example in [23, Example 6.5]. Set L0 = 4F1 + 4F2 + �,

L1 = OV , L2 = OV (−F1 + 9F2 + �). Then

c1(L0) = 6(l1 + 3l3), c1(L1) = 0, c1(L2) = 6l1 + 10
√
3l2 + 18l3. (53)
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Because c1(L0) is in the interior of the nef cone, L0 is ample. Note that H is relatively
ample. So it is easy to see that there exist a, b ∈ Z>0 such that aL0+bH−K X

n+1 is a very
ample line bundle. Set G = aL0 + bH and

Mp = p L − G = p(L0 + H) − (aL0 + bH) = (p − a)L0 + (p − b)H

= (p − b)

(
p − a

p − b
L0 + H

)

=: (p − b)(Q p + H).

Set Jp := J (X, ‖Mp‖). Let μp : Yp → X be the normalized blowup of Jp with
E p := μ∗

pJp = OYp (−
∑

i cp,i E p,i ). Set Ap = μ∗
p(L) − 1

p E p.
By the discussion after Lemma 4.10, we known that (Yp, Ap) satisfies the first

two conditions of Lemma 4.10. So, by Lemma 4.10, it suffices to show that there
exists C > 0 such that AX (Ei,p) ≤ Cp−1cp,i for any i, p.

For any Q-line bundle L on S and with h as above, define a compact convex set
following [30, Sect. 2.b] (we identify line bundles with their Chern classes):

�(L , h) = {(x, y) ∈ R2≥0; x + y ≤ 1 and L + x(L1 − L0) + y(L2 − L0) ∈ PE(S)}.
(54)

Then it is straight-forward to use (50) and (53) to get:

�(Q p, h) =
{

(x, y) ∈ R2
≥0; x + 5

2
√
6

p − b

p − a
y ≤ 1

}

.

Let ϕp,min be the metric of minimal singularity on Mp. Then it is known that
J (ϕp,min) = J (‖Mp‖) = Jp. For each fan σi , i = 0, 1, 2, there exists an open set
Ui

∼= S × C2 which is an affine toric bundle over S. Applying the result in [23, 5.2],
Jp is trivial on U0, U1, and over U2 we can choose the canonical affine coordinate
(z1, z2) on C2 such that the multiplier ideal is generated by monomials:

Jp(U2) = 〈
zm1
1 zm2

2 ; (m1 + 1, m2 + 1) ∈ Int((p − b)Sp) ∩ Z2
〉

(55)

where

Sp =
⎧
⎨

⎩
(x, y) ∈ R2

≥0; x + y

1 − 2
√
6(p−a)

5(p−b)

≥ 1

⎫
⎬

⎭
, (56)

is generated by the exponents (0, 1), (1, 0), (0, 1 − 2
√
6(p−a)

5(p−b)
), which are the images

of (0, 0), (1, 0), (0, 2
√
6(p−a)

5(p−b)
)under the linearmap (a, b) �→ (〈(a, b) − mσ3, vi 〉)i=1,2

= (a, 1 − a − b)withmσ3 = (0, 1), v1 = (1, 0), v2 = (−1,−1) (see [23, Definition
4.1]). In particular, the multiplier ideal sheaf is co-supported on P(L2) ⊂ P(L0 ⊕
L1 ⊕ L2). Moreover, as pointed out in [23], by using [30, Theorem 2.10], we know
that the line bundle L does not admit birational Zariski decomposition.

Equivalently, we have:
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Jp(U2) =
〈

zm1
1 zm2

2 ; (m1, m2) ∈ Z≥0,
m1

αp
+ m2

βp
> 1

〉

. (57)

where αp = p−b
dp

, βp = (1− 2
√
6

5 )p+ 2
√
6

5 a−b
dp

, dp = 1 − 1
p−b − 1

(1− 2
√
6

5 )p+ 2
√
6

5 a−b
. We

only need to know that there exists C = 4.9−2
√
6

5 > 0 such that αp ≥ Cp, βp ≥ Cp
for p 
 1 since dp = 1 + O(p−1).

Because the multiplier ideal is monomial, we can use the result about Rees valu-
ations of monomial ideals to see that the blow-up of Jp corresponds to the sides of
the Newton-polygons of Jp (see [22, 15.4]). Indeed, such blowup also corresponds
to a subdivision of the cone σ2.

Now let the sides of the Newton polygon be given by Pi−1Pi , 1 ≤ i ≤ r with
Pi = (xi , yi ). Then it is easy to see that P0 = (0, �β� + 1) and Pr = (�α� + 1, 0).
Note that (ai , bi ) = (yi−1 − yi , xi − xi−1) ∈ R2

>0 is a normal vector of Pi−1Pi . The
monomial valuation ordEi that corresponds to the side Pi Pi+1 can be chosen to be
given by the weighted blowup with weights (ai , bi ). Set τi = bi/ai > 0. It is easy to
see that:

w(Ei ) := A(Ei )

ordEi (Jp)
= ai + bi

ai xi−1 + bi yi−1
= 1 + τi

xi−1 + yi−1τi

= ai + bi

ai xi + bi yi
= 1 + τi

xi + yiτi
.

As a consequence, we have:

w(Ei ) − w(Ei+1) = 1 + τi

xi + yiτi
− 1 + τi+1

xi + yiτi+1
= (yi − xi )(τi+1 − τi )

(xi + yiτi )(xi + yiτi+1)
. (58)

From this identity,we easily see thatmax{w(Ei ); 1 ≤ i ≤ r} = max{w(E1), w(Er )}.
Now note that τ−1

1 is at most the absolute value of the slope of the line P0P ′ where
P ′ is the point (1,− β

α
+ β) one the line connecting (α, 0) and (0, β), which gives

the inequality:

w(E1) = 1 + τ1

(�β� + 1)τ1
= 1

�β� + 1
+ 1

(�β� + 1)τ1
≤ 1

β
+ 1

�β� + 1
(�β� + 1 − β + β

α
)

= 1

β
+ �β� + 1 − β

�β� + 1
+ β

�β� + 1

1

α
= O(p−1).

By the same argument (or just by symmetry), we also getw(Er ) = O(p−1). Accord-
ing to the previous discussion, the verification of 3rd condition in Lemma 4.10 is
complete.

Remark 5.1 It is easy to see that the above arguments, which reduce the problem to
the estimates for Rees valuations ofmonomial ideals, works formanymore examples
of Nakayama type.
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On a Conjecture of Fulton on Isotropic
Grassmannians

Yan Li and Zhenye Li

Abstract In this note, we confirm a positivity conjecture of Fulton (Conjecture 1
below) for isotropic Grassmannians IGr(2, 2n) with n ≥ 3. Namely, the quantum
deformation of the basis, formed by the Schubert cycles, is trivial. To the author’s
knowledge, this is the first time that the conjecture holds for a Grassmannian of
type Cn .

Keywords Quantum cohomology · Isotropic Grassmannian
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1 Introduction and Preliminaries

Let V be a 2n-dimensional complex linear space and 〈·, ·〉 be a non-degenerated
skew-symmetric bilinear form on it. Let m ∈ [0, n] be a fixed integer. Then we
define IGr(m, 2n) to be the variety of all m-dimensional isotropic subspace of V .
This is an algebraic variety of dimensional 2m(n − m) + 1

2m(m + 1). The isotropic
Grassmanian can also be realized as a flag variety G/P , where G = Sp2n(C) and P
is a maximal parabolic subgroup of Sp2n(C), which just consists of the stabilizer of
a chosenm-dimensional isotropic subspace in G. The isotropic Grassmannians form
a family called Grassmannians of type Cn (cf. [6, Sect. 2]).
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To describe the classical cohomology ring H∗(IGr(m, 2n); Q) of IGr(m, 2n) we
first give the Schubert cells of IGr(m, 2n). Let λ = (λ1 ≥ λ2 ≥ ... ≥ λm ≥ 0) be a
partition. We identify it with its Young diagram of boxes (cf. [7, 9]). For k ∈ Q≥0,
we call λ a k-strict partition if λ j+1 < λ j whenever λ j > k. Then the Schubert
cells of IGr(m, 2n) are in one-to-one correspondence to the (n − m)-strict partitions
contained in anm × (2n − m)-rectangle [2, Sect. 1]. In the following we will denote
k = n − m.

Let us recall some useful results there: Denote byP(n − m, n) all such partitions.
Fix an isotropic flag F :

0 = F0 � F1 � ... � F2n = V .

For each λ ∈ P(n − m, n), the corresponding Schubert cell is defined by

Xλ = {� ∈ IGr(m, 2n)| dim(� ∩ Fp( j)) ≤ j, ∀1 ≤ j ≤ length(λ)},

where

p( j) = 2n − m + 1 − λ j + #{i |i < j, λi + λ j ≤ 2n − 2m + j − i}

and
length(λ) = #{i |λi 
= 0}.

Then the collection of all

τλ := [Xλ], λ ∈ P(n − m, n)

forms a basis of H∗(IGr(m, 2n); Q). For this result, we refer the reader to [1, 2, 6],
or [8] for a comprehensive study.

Multiplication in this classical cohomology ring is calculated by the Pieri rule
(cf. [2, Theorem 1.1], or [8, Sects. 4 and 5] for origins). In [2] the Pieri rule was
generalized for the small quantum cohomology ring QH∗(IGr(m, 2n); Q), which is
defined by

QH∗(IGr(m, 2n); Q) := H∗(IGr(m, 2n); Q) ⊗Z Q[q],

where q is the formal variable. Denote

|λ| := λ1 + · · · + λm

for a partition λ = (λ1 ≥ λ2 ≥ ... ≥ λm ≥ 0). The multiplication law in this ring is
defined by
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τλ · τμ :=
∑

d ≥ 0, μ is (n − m)-strict,

|ν| = |λ| + |μ| − (2n − m + 1)d

〈τλ, τμ, τν∨〉dτμq
d ,

where 〈·, ·, ·〉d denotes the Gromov-Witten invariant (cf. [2, Sect. 1.4]) and ν∨ is
the dual partition of ν. There is an explicit formula of this multiplication, called the
quantum Pieri rule, proved in [2, Theorem 1.4], which we will frequently use in the
following. To state the formula, we first recall some notations from [2, Sect. 1]:

Definition 1 ([2, Definition 1.2]) Let λ be a k-strict partition, which is identified
with a Young diagram. Two boxes B(ri , ci ) on the ri -row, ci -column (i = 1, 2) are
called k-related to each other if |c1 − k − 1| + r1 = |c2 − k − 1| + r2;

Definition 2 ([2, Definition 1.3])We say that two k-strict partitions λ andμ satisfies
λ → μ if μ can be obtained by removing a vertical strip from the first k columns of
λ and then adding a horizontal strip so that:

(1) if one of the first k columns of μ has the same number of boxes as the same
column of λ, then the bottom box of this column is k-related to at most one box
of μ \ λ;
and

(2) if a column of μ has fewer boxes than the same column of λ, then the removed
boxes and the bottom box of μ in this column must each be k-related to exactly
one box of μ \ λ, and these boxes of μ \ λ must all lie in the same row.

Suppose that λ → μ. Denote by B1 = {B1, ..., Bm} the bottom boxes and their asso-
ciated k-related boxes in Definition 2 (1), and B2 the remaining bottom boxes in μ

and their associated k-related ones in Definition 2 (2). Consider the (k + 1)-th to
(k + n)-th columns (μ \ λ)n+k

n+1 in μ \ λ. Set N (λ, μ) to be the number of connected
components of (μ \ λ)n+k

n+1 \ (B1 ∪ B2) which do not have a box in the (k + 1)-th
column. Note that two boxes are connected if they have at least one common vertex.

Now we state the quantum Pieri rule for IGr(m, 2n):1

Theorem 1 ([2, Theorm 1.4]) For any (n − m)-strict λ ∈ P(n − m, n) and p ∈
Q ∩ [1, 2n − m],

τp · τλ =
∑

μ ∈ P(n − m, n), λ → μ,

|μ| = |λ| + p

2N (λ,μ)τμ +
∑

μ ∈ P(n − m, n + 1), λ → μ,

|μ| = |λ| + p

μ1 = 2n − m + 1

2N (λ,μ)−1τμ∗q,

where μ∗ = (μ2 ≥ μ3 ≥ ...) for μ = (μ1 ≥ μ2 ≥ ...).2

1 Unless otherwise stated, all multiplications below are considered in the quantum sense.
2 We write τp in short of τ(p) if the partition p has only one row.
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We refer to the reader [2, Example 1.1] for an example of these terminologies and
application of Theorem 1.

It is obvious that the Schubert classes {τλ|λ ∈ P(k, n)} forms a basis of the small
quantum cohomology ring of IGr(m, 2n) overQ[q]. Then we can consider the quan-
tum deformation of this canonical basis, which is another basis {σλ|λ ∈ P(k, n)} of
the small quantum cohomology ring over Q[q]. More precisely, for any given col-
lection of constants {aμ ∈ Q|μ ∈ P(k, n)}, the corresponding basis {σλ} is defined
as the solution of the following system:

τλ = σλ +
∑

j≥1

⎛

⎝
∑

|μ|+(n+k−1) j=|λ|
aμσμq

j

⎞

⎠ , λ ∈ P(k, n). (1)

Note that (1) is an upper-triangular system of the σλ’s. It always admits a solution.
Fulton first raised the following conjecture (cf. [4, Conjecture 1]):

Conjecture 1 Suppose that {σλ|λ ∈ P(k, n)} is a quantum deformation of the basis
(1) formed by the Schubert cycles such that:

(�) The coefficients of the the quantum multiplication of any σλ and σμ in the
basis {σλ|λ ∈ P(k, n)} are polynomials in q with nonnegative coefficients.

Then the deformation is trivial. That is, in (1) τλ = σλ for all λ ∈ P(k, n).

In this note, we will confirm this conjecture for IGr(2, 2n) when n ≥ 3. Our method
is to use the quantum Pieri formula Theorem 1 developed in [2]. In particular we will
frequently use the multiplication by a special cycle τ(1,1) and its higher power, which
exists only when n ≥ 3. To our knowledge, this is the first time that Conjecture 1
holds for a Grassmannian of type Cn .

2 Proof of the Positive Conjecture for IGr(2, 2n) with n ≥ 3

We will prove Conjecture 1 for IGr(2, 2n), n ≥ 3 in this section. Also we denote
k = n − m = n − 2. For the proof, we need the following result concerning the
multiplication with a special Schubert class τ(1,1), corresponding to the partition
(1, 1), of IGr(2, 2n):

Lemma 1 Suppose that n ≥ 3. Let t be a positive integer and t ≤ k. Let μ =
(μ1, μ2) ∈ P(k, n). Then we have the following:

(1) If 2t + |μ| ≤ 2k + 1, then

τ(t,t)τμ = τ(μ1+t,μ2+t);
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(2) If 2t + |μ| = 2k + 2 and μ1 
= μ2 or 2t + |μ| = 2k + 3, then

τ(t,t)τμ = τ(μ1+t,μ2+t) + τ(μ1+t+1,μ2+t−1);

(3) If 2t + |μ| = 2k + 2 and μ1 = μ2, then

τ(t,t)τμ = τ(μ1+t+1,μ2+t−1);

(4) If |μ| ≥ 2k + 2 and μ1 + t ≤ 2k + 2, then

τ(t,t)τμ = τ(μ1+t,μ2+t);

(5) If |μ| ≥ 2k + 2 and μ1 + t = 2k + 3, then

τ(t,t)τμ = qτμ2+t .

Proof We prove the Lemma by an induction on t . First consider the case t = 1, this
is a tedious calculation using quantum Pieri’s rule.

By Theorem 1 we can calculate the multiplication of τ1 with an arbitrary Schubert
class as the following:

τ(a,b)τ1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ(a+2,b−1) + τ(a,b+1) + 2τ(a+1,b), if a ≥ b + 2, b > 0 and a + b = 2k + 1;
τ(a+2,b−1) + 2τ(a+1,b), if (a, b) = (k + 1, k);
τ(a,b+1) + 2τ(a+1,b), if (a, b) = (2k + 1, 0);
τ(a+1,b), if a = b + 1, a ≥ k + 2 or a = b;
τ(a,b+1) + qτb, if a = 2k + 2, b ≤ 2k;
qτb, if a = 2k + 2, b = 2k + 1;
τ(a+1,b) + τ(a,b+1), otherwise.

.

(2)

The expression of τ2τμ is much more complicated. We have the following cases:
When μ2 ≤ 2k, there are no quantum terms except the case μ = (2k, 1). Thus

τ2τμ = τ(2k,3) + 2τ(2k+1,2) + 2τ(2k+2,1) + q.

When μ = (2k + 1, a), we have:

• if a = 0, then τ2τμ = τ(2k+1,2) + 2τ(2k+2,1) + q;
• if 1 ≤ a ≤ 2k − 2, then τ2τμ = τ(2k+1,a+2) + τ(2k+2,a+11) + qτa ;
• if a = 2k − 1 or 2k, then

τ2τμ = τ(2k+2,2k) + qτa or qτa, respectively.
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When μ = (2k + 2, a), a ∈ {1, 2, ..., 2k}, a ∈ {1, 2, ..., 2k}, we have:
• if a = 0, then τ2τμ = τ(2k+2,2) + qτ1;
• if 1 ≤ a ≤ 2k − 1, then τ2τμ = τ(2k+2,a+2) + q(τ(a,1) + τa+1);
• if a = 2k or 2k + 1, then τ2τμ = q(τ(a,1) + τa+1).

Then we assume that μ1 ≤ 2k. When |μ| 
= 2k, 2k + 1, we have:

• if μ = (a + 2, a) and a + 2 ≥ k + 1, the result is τ2τμ = τ(a+4,2) + τ(a+3,1);
• if μ = (a + 1, 1), the result is

τ2τμ =
{

τ(a+3,1) + τ(a+2,2), when a ≤ k − 1,

(a + 3, 1), when a ≥ k + 1;

• if μ = (a, a) with a ≤ k − 1, the result is τ2τμ = τ(a+2,a);
• in other remaining cases the result is

τ2τμ = τ(μ1+2,μ2) + τ(μ1+1,μ2+1) + τ(μ1,μ2+2).

When |μ| = 2k and μ = (a, b), where a + b = 2k and a ≥ b ≥ 0, we have:

• if b = 0, the result is τ2τμ = τ2τμ = τ(2k,2) + 2τ(2k+1,1) + 2τ2k+2;
• if a − b = 2, the result is τ2τμ = τ2τμ = τ(k+4,k−2) + 2τ(k+2,k) + 2τ(k+3,k−1);
• if a = b, the result is τ2τμ = τ2τμ = τ(k+3,k−1) + τ(k+2,k);
• in other cases,

τ2τμ = τ2τμ = τ(a+3,b−1) + τ(a,b+2) + 2τ(a+1,b+1) + 2τ(a+2,b).

When |μ| = 2k + 1 and μ = (a, b) with b > 1, we have:

• if a − b = 1, the result is

τ2τμ = τ(k+2,k+1) + τ(k+4,k−1) + 2τ(k+3,k);

• for other cases the result is

τ2τμ = τ(a+3,b−1) + τ(a,b+2) + 2τ(a+1,b+1) + 2τ(a+2,b).

Since
τ(1,1) = τ1τ1 − τ2,

again by Theorem 1, we can calculate the multiplication with τ(1,1) by plugging in
the above relations. This gives the results in items (1)–(5) for t = 1. We give item
(1) as an example.

For item (1):
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• if μ1 = μ2, we get

τ1τ(μ1+1,μ2) − τ(μ1+2,μ2) = τ(μ1+1,μ2+1);
• if μ1 
= μ2 + 2, we get

τ1(τ(μ1+1,μ2) + τ(μ1,μ2+1)) − (τ(μ1+2,μ2) + τ(μ1+1,μ2+1) + τ(μ1,μ2+2)) = τ(μ1+1,μ2+1);

• if μ1 = μ2 + 1, we get

τ1(τ(μ1+1,μ2) + τ(μ1,μ2+1)) − (τ(μ1+2,μ2) + τ(μ1+1,μ2+1)) = τ(μ1+1,μ2+1).

For general t in item (1), since t ≤ k, then by item (1) with t = 1 , we know that

τ(t,t) = τ(1,1)τ(t−1,t−1),

Thus
τ(t,t)τμ = τ(1,1)τ(t−1,t−1)τμ = τ(1,1)τ(μ1+t−1,μ2+t−1)

where μ satisfies the conditions in each item (1) to (5). The last equality follows
from the inductive condition with respect to item (1) and (4). Then the final results
follow from the case t = 1. �

Remark 1 It is crucial to use the cycle τ(1,1) in the proof of Lemma 1. We should
notice that the above calculation is not valid when n = 2 since the cycle τ(1,1) does
not exist when n = 2. Indeed, Conjecture 1 fails for IGr(2, 4). Recall [5, Sect. 3.1].
The Schubert classes of dimensional 0, 2, 4 and 6 (denoted by τ0 = 1, τ1, τ2 and τ3,
respectively) forms a basis of H∗(IGR(2, 4); Q) with classical multiplication law:

τ 2
1 = 2τ2, τ1τ2 = τ3.

The quantummultiplication law of the τi ’s is then given by (cf. [5, Sections 3.2–3.3])

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

τ 2
1 = 2τ2,

τ1 · τ2 = τ3 + q,

τ 2
2 = qτ1,

τi · τ3 = qτi , i = 1, 2,

τ 2
3 = q2.

Consider a quantum deformation
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τ0 = σ0,

τ1 = σ1,

τ2 = σ2,

τ3 = σ3 + aσ2q,

a ∈ Q. (3)

Using a programme “Quantum Calculator” from A. S. Buch [3], it can be
checked that the quantum deformation gives new relations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

σ 2
1 = 2σ2,

σ1 · σ2 = σ3 + (1 + a)q,

σ 2
2 = qσ1,

σi · σ3 = (1 − a)qσi , i = 1, 2,

σ 2
3 = −2aqσ3 + (1 − a2)q2,

a ∈ Q. (4)

Obviously the system (4) satisfies the condition (�) in Conjecture 1 for all a ∈ [−1, 0]
and for a 
= 0 the deformation (3) is non-trivial.

Now we prove the main result:

Theorem 2 Conjecture 1 holds for IGr(2, 2n) for n ≥ 3.

Proof We follow the assumptions in Conjecture 1. Since

|λ| ≤ 2(2n − 2) − 1 = 4n − 5 < 2(2n − 1)

for any λ ∈ P(n − 2, n), wee see that the monomials with q j , j ≥ 2 vanish in (1).
This gives

τλ = σλ +
∑

|μ|+2n−1=|λ|
aμσμq. (5)

For our purpose, in the following, we denote k = n − 2.
Note that when |λ| < 2k + 3, the monomial concerning q vanishes in (5), whence

τλ = σλ.

Thus it is sufficient to deal with the case |λ| ≥ 2n − 1 = 2k + 3,
First, we consider the case |λ| = 2k + 3. Let λ = (λ1, λ2). On one hand, we can

show that aμ ≤ 0, according to the following:
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Case-1.1: λ2 ≤ λ1 − 2. Since in this case the only μ appeared in the monomial
concerning q is ∅, we may assume τλ = σλ + aq. Since λ1 + λ2 = |λ| = 2k + 3, we
have

λ1 ≥ k + 3.

Hence the number
t := 2k + 2 − λ1 + 1 ≤ k.

Thus τ(t,t) is a Schubert class of IGr(2, 2n). Using item (5) of Lemma 1, we have

τ(t,t)τλ = qτ(|λ|+2t−2n+1).

Since 2t ≤ 2k < 2n − 1, we see from (1) that

τ(t,t) = σ(t,t).

Thus we get

σ(t,t)σλ = qτ(|λ|+2t−2n+1) − aσ(t,t)q. (6)

On the other hand, since

2t + |λ| − 2n + 1 = 2k + 2 − λ1 + 1 + λ2 ≤ 2k + 1,

by (1) we have
τ(|λ|+2t−2n+1) = σ(|λ|+2t−2n+1).

Plugging this relation into (6) and combining with the assumption (�) in Conjec-
ture 1, since the multiplications of the basis {σλ} has nonnegative coefficients we get
a ≤ 0 in (6).

Case-1.2: λ = (k + 2, k + 1). Then we consider the remaining case when λ =
(k + 2, k + 1). There is only one choice j = 1 in (1), we have

τλ = σλ + aq.

In this case, by Theorem 1, we conclude that

τ(2k+2)τλ = qτ(k+2,k).

By (1),
σ(2k+2) = τ(2k+2) and σ(k+2,k) = τ(k+2,k).
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It follows that
σ(2k+2)σλ = qσ(k+2,k) − aqσ2k+2.

Again by the assumption (�) in Conjecture 1, a ≤ 0 in the above equation.
Combining the above two cases, we see that aμ ≤ 0 always holds.
Next we show that aμ ≥ 0. We see that

λ = (k + 2 + i, k + 1 − i), for i = 0, 1, . . . , k

and we assume
τ(k+2+i,k+1−i) = σ(k+2+i,k+1−i) + aiq.

For 0 ≤ j ≤ k − 1, by item (1) of Lemma 1, we have

τ(1,1)τ(k+1+ j,k− j) = τ(k+2+ j,k+1− j) + τ(k+3+ j,k− j).

Since σ(k+1+ j,k− j) = τ(k+1+ j,k− j), we get

σ(1,1)σ(k+1+ j,k− j) = τ(1,1)τ(k+1+ j,k− j)

= τ(k+2+ j,k+1− j) + τ(k+3+ j,k− j)

= σ(k+2+ j,k+1− j) + σ(k+3+ j,k− j) + (a j + a j+1)q.

By (�) in Conjecture 1, the coefficients

a j + a j+1 ≥ 0, j = 0, . . . , k − 1.

However, we have already concluded that

ai ≤ 0, i = 0, . . . , k.

Thus it must hold ai = 0 for all i = 0, . . . , k when |λ| = 2k + 3.
Now we turn to the general cases. We will adopt the induction argument. Assume

that we have proved that

τλ = σλ for all |λ| ≤ s, (7)

where s ≥ 2k + 3. Then we consider the case |λ| = s + 1.
As before, we first show that aμ ≥ 0. Since |λ| ≥ 2k + 4 for |λ| = s + 1, thus by

item (4) of Lemma 1 we have

τ(1,1)τ(λ1−1,λ2−1) = τλ.
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Plugging (7) into (1), we get

τ(λ1−1,λ2−1) = σ(λ1−1,λ2−1), τ(1,1) = σ(1,1).

Thus we have that

σ(1,1)σ(λ1−1,λ2−1) = σλ +
∑

|μ|+2k+3=|λ|
aμσμ.

So we conclude that the coefficients aμ ≥ 0.
Then we can show that aμ ≤ 0. We have the following two cases:
Case-2.1: λ2 ≤ λ1 − 2. In this case, we see that λ1 ≥ k + 3. Hence

t = 2k + 2 − λ1 + 1 ≤ k,

and τ(t,t) is a Schubert class of IGr(2, 2n). Using item (5) of Lemma 1, we have

τ(t,t)τλ = qτ(|λ|+2t−2n+1).

Since 2t ≤ 2k < 2n − 1, we see from (1) that

τ(t,t) = σ(t,t).

Thus we get

σ(t,t)σλ = qτ(|λ|+2t−2n+1) − σ(t,t)(
∑

|μ|+2n−1=|λ|
aμσμq). (8)

Since

2t + |μ| = 2t + |λ| − 2n + 1

= 2k + 2 − λ1 + 1 + λ2

≤ 2k + 1,

we have
τ(|λ|+2t−2n+1) = σ(|λ|+2t−2n+1)

and by item (1) of Lemma 1

σ(t,t)σμ = τ(t,t)τμ

= τ(μ1+t,μ2+t)

= σ(μ1+t,μ2+t).
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Plugging the above two relations into (8), we get aμ ≤ 0. On the other hand, we have
already proved that aμ ≥ 0. Hence we get aμ = 0 in this case.

Case-2.2. λ = (l + 1, l), where k + 1 ≤ l ≤ 2k + 1.
In this case, the degree of each μ in (5) is 2l + 1 − (2k + 3), thus μ has the form

((l − k − 1) + i, (l − k − 1) − i), where i = 0, 1, . . . , l − k − 1.

Thus, we may assume that

τλ = σλ +
l−k−1∑

i=0

aiσ((l−k−1)+i,(l−k−1)−i)q.

Since |λ| = 2l + 1 ≥ 2k + 4, so in fact it holds l ≥ k + 2. Taking

t = 2k + 2 − l,

we see that t ≤ k and τ(t,t) is a Schubert class of IGr(2, 2n). By item (5) of Lemma 1,
we get

τ(t,t)τλ = qτ(2k+2).

As 2t ≤ 2k, we have τ(t,t) = σ(t,t). Thus we have that,

σ(t,t)σλ = qσ(2k+2) − σ(t,t)(

l−k−1∑

i=0

aiσ((l−k−1)+i,(l−k−1)−i)q).

Also, by item (3) of Lemma 1, we have

σ(t,t)σ(l−k−1,l−k−1) = τ(t,t)τ(l−k−1,l−k−1)

= τ(t+l−k,t+l−k−2)

= σ(t+l−k,t+l−k−2)

where in last equality holds because the degree of the class is 2k + 2.
Similarly, by item (2) of Lemma 1, we have

σ(t,t)σ(l−k−1+i,l−k−1−i) = τ(t,t)τ(l−k−1+i,l−k−1−i)

= τ(t+l−k−1+i,t+l−k−1−i) + τ(t+l−k+i,t+l−k−2−i)

= σ(t+l−k−1+i,t+l−k−1−i) + σ(t+l−k+i,t+l−k−2−i), i > 0.
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Thus we get

a0 ≤ 0,

a0 + a1 ≤ 0,

a1 + a2 ≤ 0,

...

and

al−k−1 + al−k−2 ≤ 0.

Recall that ai ≥ 0. We conclude that ai = 0 for any i ∈ N.

Remark 2 For a general IGr(m, 2n), we may first consider the multiplication with
the special Schubert class τ(1,...,1) of degree m. After such multiplications are com-
puted out as in Lemma 1, we may find a way to run the calculation and prove the
the conjecture for general m using such multiplications as we did in the special case
m = 2.
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On Locally Nilpotent Derivations of
Danielewski Domains

L. Makar-Limanov

Abstract Let p(Z) ∈ C[Z ] be a polynomial of degree d. In this note I’ll show that if
positive natural numbers n,m, and d are relatively prime then up to an automorphism
there is at most one nonzero irreducible locally nilpotent derivation on the domain
C[X, Y, Z ]/(XnY m − p(Z)).

Keywords Locally nilpotent derivations · Danielewski surfaces

1 Introduction

In this note we take the field C of complex numbers as the ground field. In fact it is
essential only that the ground field has characteristic zero. Also all appearing rings
are domains.

Let R = C[x, y]. It is well known (see [7]) that the kernel of a nonzero locally
nilpotent derivation of R is C[u] where u is an image of x under an automor-
phism. More recently a similar result was proved for domains C[X, Y, Z ]/(XnY −
p(Z)), n > 1, deg(p(Z)) > 1 (see [3, 4]) and C[X, Y, Z ]/(XY − p(Z)) where
deg(p(Z)) > 0 (see [1, 5]). Here we will look from this point of view on the
domains R given by C[X, Y, Z ]/(XnY m − p(Z)) where p(Z) is a monic polyno-
mial and n, m, and d = deg(p(Z)) are relatively prime positive natural numbers. If
d = 1 then the corresponding domains are actually isomorphic to C[x, y]. It turns
out that a nonzero locally nilpotent derivation (lnd for short) exists on R only if
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(d − 1)(n − 1)(m − 1) = 0. So as far as the description of lnds is concerned we
have only previously described cases. On the other hand we have here more direct
proofs, which are substantially shorter.

2 Definitions, Notations and Technical Lemmas

Here we recall briefly some necessary notions and facts.
Let A be a C-algebra. A C-homomorphism ∂ of A is called a derivation of A if

it satisfies the Leibniz rule: ∂(ab) = ∂(a)b + a∂(b).
A derivation is irreducible if ∂(A) does not belong to a proper principal ideal.

(So, since (0) is not a proper ideal, according to this definition zero derivation is
irreducible!)

We will be using in the next section so called Jacobian derivations onC[X, Y, Z ].
Let us take any two p, q ∈ C[X, Y, Z ]. Then ∂(r) = J(p, q, r) where J(p, q, r)

denotes the Jacobian, i. e. the determinant of the corresponding Jacobi matrix, is a
derivation. Let us recall that J(p, q, r) is also skew symmetric.

Any derivation ∂ determines two subalgebras of A. One is the kernel of ∂ which
is usually denoted by A∂ and is called the ring of ∂-constants.

The other is NilA(∂), the ring of nilpotency of ∂ : NilA(∂) = {a ∈ A|∂n(a) =
0, n >> 1}.
In other words a ∈ NilA(∂) if for a sufficiently large natural number n we have
∂n(a) = 0.

Both A∂ and NilA(∂) are subalgebras of A because of the Leibniz rule.
We will call a derivation locally nilpotent if NilA(∂) = A.
The best examples of lnds (locally nilpotent derivations) are the partial derivatives

on the rings of polynomials C[x1, ..., xn].
With the help of a locally nilpotent derivation acting on A, we can define a function

deg∂ by deg∂ (a) = max(n|∂n(a) �= 0) if a ∈ A∗ = A\0 and deg∂ (0) = −∞.
Then the function deg∂ is a degree function, i.e.,

deg∂ (a + b) ≤ max(deg∂ (a), deg∂ (b)) and
deg∂ (ab) = deg∂ (a) + deg∂ (b).

Two locally nilpotent derivations are equivalent if the corresponding degree func-
tion are the same.

By definition deg∂ has only nonnegative values on A∗ and a ∈ A∂\0 if deg∂ (a) =
0. So it is clear that the ring A∂ is “factorially closed”; i. e., if a, b ∈ A∗ and ab ∈ A∂ ,
then a, b ∈ A∂ .

Let F be the field of fractions of A. Any derivation ∂ can be extended to a deriva-
tion on F by the “calculus” formula ∂(ab−1) = (∂(a)b − a∂(b))b−2.Wewill denote
this extended derivation also by ∂ .

Lemma 1 Let ∂ be a locally nilpotent nonzero derivation of A. Then there exists an
element t ∈ F for which ∂(t) = 1 and NilF (∂) = F∂ [t].
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Proof ∂ is a nonzero derivation so A �= A∂ and there exists an a ∈ A\A∂ . Put r =
∂n(a) and s = ∂(r) where n = deg∂ (a) − 1. Then r /∈ A∂ , s ∈ A∂ and ∂(t) = 1 for
t = rs−1. Observe that s ∈ A∂ , we will use this fact later.

It is clear that F∂ [t] ⊂ NilF (∂). Let a ∈ NilF (∂). We will use induction on
deg∂ (a) = n to show the opposite inclusion. If a ∈ F and deg∂ (a) = 0 then a ∈ F∂

by definition. Let us make the step from deg∂ (a) = n − 1 to deg∂ (a) = n. If
deg∂ (a) = n then deg∂ (∂(a)) = n − 1 and by induction ∂(a) = ∑n−1

i=0 ai tn−1−i for
some ai ∈ F∂ . Let f = ∑n−1

i=0 (n − i)−1ai tn−i . Then ∂( f ) = ∂(a). So ∂(a − f ) = 0
which means that a = f + an where an ∈ F∂ . �

Remark 1 It is clear that deg∂ and degt are the same functions. This, of course,
gives a proof of the properties of deg∂ mentioned above. See also [2].

Remark 2 A∂ is algebraically closed in A. Indeed, if a /∈ A∂ then it is represented by
a polynomial of positive degree and p(a) also has a positive degree for any nonzero
polynomial p.

Lemma 2 Let ∂ be a nonzero lnd of A. If ∂ = aε where a ∈ A and ε is a derivation
of A then ∂(a) = 0 and ε is an lnd.

Proof We want to show that deg∂ (a) = 0. It is clear that Aε = A∂ . If deg∂ (a) > 0
then deg∂ (∂(b)) = deg∂ (aε(b)) = deg∂ (a) + deg∂ (ε(b)) > 0 for any b /∈ A∂ . So if
b /∈ A∂ then ∂(b) /∈ A∂ which means that ∂ is not an lnd if A �= A∂ i. e. ∂ �= 0. So
∂(a) = 0. Therefore deg∂ (ε(b)) = deg∂ (b) − 1 for any b /∈ A∂ . Hence ε is an lnd.
Even more, deg∂ = degε . �

Remark 3 We see that any nonzero lnd is equivalent to an irreducible lnd.

Lemma 3 F∂ is the field of fractions of A∂ .

Proof This proof was suggested by Ofer Hadas. Let a, b ∈ A and r = ab−1 ∈ F∂ .
Assume also that deg∂ (a) is minimal possible for all presentations of r as a fraction.
Now, ∂(r) = (∂(a)b − a∂(b))b−2 = 0. So ab−1 = ∂(a)∂(b)−1 and deg∂ (∂(a)) <

deg∂ (a). To avoid a contradiction we have to assume that deg∂ (a) = 0, so a and b
are in A∂ . �

Remark 4 Since F = F∂ (t) the transcendence degree trdeg(F∂ ) = trdeg(F) −
1. Furthermore, trdeg(F) = trdeg(A), trdeg(F∂ ) = trdeg(A∂ ) and trdeg(A∂ ) =
trdeg(A) − 1.

Lemma 4 Let Q ∈ C[X, Y, Z ] be an irreducible polynomial, S = C[X, Y, Z ]/(Q)

be the corresponding factor ring, and π the projection of C[X, Y, Z ] on S. Assume
that there is a nonzero lnd ∂ on S. Let H ∈ C[X, Y, Z ] be such that π(H) ∈ S∂\C.
Then ε(π(G)) = π(J(Q, H, G)) defines an lnd on S which is equivalent to ∂ .

Proof Expression π(J(Q, H, G)) defines a derivation on S. To check this we
should first verify that if π(G1) = π(G2) then ε(π(G1)) = ε(π(G2)). In this case
G2 = G1 + P Q and
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J(Q, H, G2) = J(Q, H, G1 + P Q) = J(Q, H, G1) + J(Q, H, P Q) =
J(Q, H, G1) + J(Q, H, P)Q.
Since J(Q, H, P)Q ∈ (Q) we see that π(J(Q, H, G2)) = π(J(Q, H, G1)).
The linear homomorphism ε is a derivation because

J(Q, H, G1G2) = J(Q, H, G1)G2 + G1J(Q, H, G2)

and π is a linear homomorphism.
Lnd ∂ defines a degree function on S andwe can lift deg∂ onC[X, Y, Z ] to obtain a

function deg onC[X, Y, Z ] : deg(G) = deg∂ (π(G)). This function is nearly an ordi-
nary degree function with the only difference being that there are many polynomials
in C[X, Y, Z ] with deg = −∞: if G ∈ (Q) then (and only then) deg(G) = −∞.

Consider the subring of the field of fractions of S consisting of fractions with
denominators in S∂\0 and denote the result by B. This is a subring since S∂ is closed
undermultiplication. Aswe know ∂ can be extended onB and by the proof of Lemma
1 B contains an element t for which ∂(t) = 1. (The derivation ∂ is an lnd on B.)

Denote by K the set of all polynomials in C[X, Y, Z ] with degree zero, i.e. the
preimage of S∂\0. LetA = C[X, Y, Z ]K be the subring of the field of rational func-
tions C(X, Y, Z) consisting of fractions with denominators in K . Since K is closed
under multiplication A is a ring. The projection π can be extended toA with image
B. Take any preimage T of t : π(T ) = t .

ByLemma1 any element b ∈ B can bewritten as b = ∑n
i=0 bi tn−i where bi ∈ B∂ .

Hence any element a of A can be written as a = ∑n
i=0 ai T n−i where π(ai ) ∈ B∂ ,

i.e. ai ∈ L , the field of fractions of K . So

1 = J(X, Y, Z) =
∑

J(Xi T
i , Y j T

j , Zk T k)

where π(Xi ), π(Y j ), π(Zk) ∈ B∂ .
Using that the Jacobian is skew-symmetric and is a derivation in every argument

we can rewrite each of these summands as a linear combination with coefficients in
A of the Jacobians of the following two types: J(U1, U2, U3) and J(U1, U2, T )where
π(Ui ) ∈ B∂ .

We are going to show that J(U1, U2, U3) ∈ (Q) and that J(U1, U2, T ) is congruent
modulo (Q) to J(Q, H, T ) multiplied by an element of A.

Since π(Ui ) ∈ B∂ and trdeg(B∂ ) = 1 (Remark 4) elements π(Ui ) and π(H) are
algebraically dependent. Therefore for any pair Ui , H there is a polynomial fi such
that fi (H, Ui ) = Pi Q. We can assume that all fi are irreducible.

Now, some boring computations.
J( f1(H, U1), U2, U3) = J(H, U2, U3)

∂ f1
∂ H + J(U1, U2, U3)

∂ f1
∂U1

= J(P1Q, U2, U3) ≡
P1J(Q, U2, U3) (mod (Q)).
Since f1 is irreducible and H, U1 ∈ K both ∂ f1

∂ H and ∂ f1
∂U1

are in K\(Q) and it remains
to show that J(H, U2, U3) ∈ (Q) and J(Q, U2, U3) ∈ (Q).

Next, J(H, f2, U3) = J(H, H, U3)
∂ f2
∂ H + J(H, U2, U3)

∂ f2
∂U2

= J(H, P2Q, U3) ≡
P2J(H, Q, U3) (mod (Q)) and J(H, U2, U3)

∂ f2
∂U2

≡ P2J(H, Q, U3) (mod (Q));
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J (Q, f2, U3)=J (Q, H, U3)
∂ f2
∂ H + J (Q, U2, U3)

∂ f2
∂U2

=J (Q, P2Q, U3) ≡ 0 (mod (Q)).

It remains to show that J(Q, H, U3) ≡ 0 (mod (Q)).
J(Q, H, f3) = J(Q, H, H)

∂ f3
∂ H + J(Q, H, U3)

∂ f3
∂U3

= J(Q, H, P3Q) ≡ 0
(mod (Q)). Hence J(Q, H, U3) ≡ 0 (mod (Q)) and J(U1, U2, U3) ≡ 0
(mod (Q)).

Finally we will check that Jacobians J(U1, U2, T ) are congruent modulo (Q) to
J(Q, H, T ) multiplied by an element of A.
J( f1(H, U1), U2, T ) = J(H, U2, T )

∂ f1
∂ H + J(U1, U2, T )

∂ f1
∂U1

= J(P1Q, U2, T ) ≡
P1J(Q, U2, T ) (mod (Q)).
J(H, f2, T ) = J(H, H, T )

∂ f2
∂ H + J(H, U2, T )

∂ f2
∂U2

= J(H, P2Q, T ) ≡ P2J(H, Q, T )

(mod (Q)); J(H, U2, T )
∂ f2
∂U2

≡ P2J(H, Q, T ) (mod (Q)).

J(Q, f2, T ) = J(Q, H, T )
∂ f2
∂ H + J(Q, U2, T )

∂ f2
∂U2

= J(Q, P2Q, T ) ≡ 0 (mod (Q)).

The derivative ∂ f2
∂U2

is a polynomial in H and U2 which are preimages of elements

fromB∂ . The projection π(
∂ f2
∂U2

) ∈ S∂\0 because we assumed that f2 is an irreducible
polynomial. Hence J(H, U2, T ) and J(Q, U2, T ) are proportional to J(Q, H, T )with
coefficients from A and thus J(U1, U2, T ) is congruent modulo (Q) to J(Q, H, T )

multiplied by an element of A.
Therefore 1 = J(X, Y, Z) ≡ aJ(Q, H, T ) (mod (Q)) for some a ∈ A, i. e. 1 =

π(aJ(Q, H, T )) = π(a)π(J(Q, H, T )). Sinceπ(a) ∈ B its ∂-degree is nonnegative.
Hence deg∂ (a) = deg∂ (J(Q, H, T )) = 0.

To finish the proof observe that we showed that
(a) J(Q, H, U ) ∈ (Q) if deg∂ (U ) = 0, so ε(u) = 0 if u ∈ S∂ ;
(b) deg∂ (J(Q, H, T )) = 0, so ε(t) ∈ S∂\C.
So ε is an lnd on S and ker(ε) = ker(∂) since ker(ε) ⊃ ker(∂) and ker(ε) and ker(∂)

are algebraically closed in S (see Remark 2). Then (b) shows that ∂ and ε give the
same degree function and therefore are equivalent. �

Remark 5 We will be using the following description of ε(g):
ε(g) ≡ J(Q, H, G)where G is a preimage of g. To make it a derivation on S we will
consider the right side modulo the ideal (Q).

Remark 6 It turns out that a similar description of lnds is possible for any finitely
generated domain (see [6]).

Let us also recall the following construction forC[X, Y, Z ].We can take some real
valued weights w(X), w(Y ), and w(Z), define w(Xi Y j Zk) = iw(X) + jw(Y ) +
kw(Z), and extendw to polynomials by definingw(p) be themaximalweight among
the weights of all monomials which are present in p with nonzero coefficients. Then
any p ∈ C[X, Y, Z ] can be written as p = ∑v

i=u pi where each pi is homogeneous,
i. e. consists only of monomials with the same weight, and w(pi ) < w(pi+1). We
will call p̄ = pv the leading form of p.
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3 Results and Proofs

Theorem 1 If R = C[X, Y, Z ]/(Q), where Q = XnY m − p(Z) and p is a poly-
nomial of degree d, has a nonzero lnd and m, n, and d are relatively prime then
(d − 1)(n − 1)(m − 1) = 0.

Proof Let ∂ be a nonzero lnd on R and let h ∈ ker(∂)\C. We may assume that
degz(h) < d since zd = xn ym + (zd − p(z)) in R. Let us replace this derivation by
ε described in Remark5: ε(g) ≡ J(Q, H, G) where H is a preimage of h such that
degZ (H) < d.

Let us take weights w(X) = m + d N , w(Y ) = −n, and w(Z) = nN where N
is a natural number. The leading form Q̄ of Q is XnY m − Zd for any N . The
leading form H̄ of H may depend on N . Let us check that by taking N suf-
ficiently large we can make H̄ = Xi Y j Zk . Indeed, if monomials Xi1Y j1 Zk1 and
Xi2Y j2 Zk2 are in H̄ then N (di1 + nk1) + mi1 − nj1 = N (di2 + nk2) + mi2 − nj2.
If N > m degX (H) + n degY (H) then di1 + nk1 = di2 + nk2 and therefore mi1 −
nj1 = mi2 − nj2. Hence

d(i1 − i2) + n(k1 − k2) = 0

and
m(i1 − i2) − n( j1 − j2) = 0

We assumed that (n, m, d) = 1. Therefore i1 − i2 = ns, k1 − k2 = −ds, and j1 −
j2 = ms where s is an integer. But then s = 0 since |k1 − k2| < d.

Let us fix such a sufficiently large N for which H̄ is a monomial Xi Y j Zk .
Consider nowaderivation ε̄(G) = J(Q̄, H̄ , G).Wecanobserve that the projection

of this derivation on R̄ = C[X, Y, Z ]/(Q̄) is locally nilpotent on R̄. Indeed, it is easy
to see that J(Q̄, H̄ , Ḡ) is either J(Q, H, G) or zero. Since ε is lnd on R we know
that after several applications of a derivation D(−) = J(Q, H,−) to G we obtain a
polynomial which is divisible by Q. It implies, of course, that the leading form of
this polynomial is divisible by the leading form of Q. So if we apply at most the
same number of times ε̄ to Ḡ we get a polynomial which is divisible by Q̄. It may
happen that we’ll get zero or a polynomial which is divisible by Q̄ on one of the
previous steps.

Condition (n, m, d) = 1 makes Q̄ = XnY m − Zd irreducible. Hence R̄ is a
domain. As we saw, in this setting the product of two nonzero elements is
an ε̄-constant only if both factors are constants. Since ε̄(H̄) = ε̄(Xi Y j Zk) = 0
we can conclude that either x , or y, or z is a constant of π(ε̄). (Here x , y,
and z are the images of X , Y , and Z in R̄.) So according to Lemma 4 one
of the derivations εx (−) = J (XnY m − Zd , X,−), εy(−) = J (XnY m − Zd , Y,−),
εz(−) = J (XnY m − Zd , Z ,−) induces a locally nilpotent derivation on R̄.

Now, εx (X) = 0, εx (Y ) = −d Zd−1, εx (Z) = −m XnY m−1. To see when the
induced derivation is an lnd let us use the degree function defined by this derivation on
R̄. Denote by dx , dy , and dz the degrees of x , y, and z correspondingly. Then dx = 0,
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dy − 1 = (d − 1)dz , and dz − 1 = (m − 1)dy . Thus −2 = (m − 2)dy + (d − 2)dz .
Since dy and dz are natural numbers this equality is possible only if either m = 1 or
d = 1. In both these cases π(εx ) is an lnd.

For εy we have εy(X) = d Zd−1, εy(Y ) = 0, εy(Z) = nXn−1Y m . This case is
similar to the previous one and π(εy) is an lnd if and only if either n = 1 or d = 1.

Finally εz(X) = m XnY m−1, εz(Y ) = −nXn−1Y m , εz(Z) = 0. Using the degree
function which would be defined by π(εz) we can see that π(εz) is never an lnd.

This finishes the proof of Theorem 1. �

We have now the following cases in which there is a nonzero lnd on R:
d = 1 which corresponds to the polynomial ring in two variables independently of
values of n and m; n = 1; m = 1.

If d > 1 and R has a nonzero lnd then either n = 1 of m = 1 and we may assume
without loss of generality that m = 1: if m �= 1, n = 1 we will switch x and y.

From now on d > 1 and R is given by a relation xn y = p(z).

Theorem 2 Let ∂ be a nonzero lnd of R = C[X, Y, Z ]/(Q) where Q = XnY −
p(Z) and let h ∈ ker(∂)\C. Then there exists an automorphism α of R such that
α(h) = q(x).

Proof We will be choosing different weights for X , Y , and Z in the course of the
proof of this Theorem. Since for all these choices the weight of Z will be positive and
nw(X) + w(Y ) = dw(Z), the leading form of Q for these weights will be XnY −
Zd .

As above, we can take a preimage H of h for which degZ (H) < d. Let us use
again the weights w1(X) = 1 + d N , w1(Y ) = −n, and w1(Z) = nN . As we saw in
the proof of Theorem 1 we can conclude that if N is very large then the leading form
H̄ of H is either Xi or Y j . (It cannot be a product Xi Y j since then ker(π(ε̄)) 
 x, y
which is possible only if π(ε̄) = 0.) We can also observe that if H̄ = Y j with our
choice of N then h ∈ C[y] since thenw1(H) < 0 while the weight of any monomial
which contains X or Z is positive if N is large enough. (This, of course, imply that
ker(∂) = C[y] and (n − 1)(d − 1) = 0; so n = 1 and there exists an automorphism
of R sending y to x .)

Let us use now different weights: w2(X) = −1, w2(Y ) = n + d N , and w2(Z) =
N . Again, if N is sufficiently large the leading form of H is a monomial. We already
know that this monomial is either Xi or Y j .

If it is Xi then h ∈ C[x] and π(εx (g)) ≡ J(XnY − p(Z), X, G) is indeed an lnd,
and if it is Y j then n = 1.

So we see that if (n − 1)(d − 1) �= 0 then h ∈ C[x]. It remains to consider the
case n = 1 with an additional assumption that h /∈ (C[x] ∪ C[y]). Then the leading
form of H relative to w1 is and Xa and the leading form of H relative to w2 is Y b.

Since x → y, y → x , z → z is an automorphism of R when n = 1 we may also
assume that a ≥ b.
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Let us now chose natural positive weights w3(X) = ρ, w3(Y ) = σ , w3(Z) = τ

so that aρ = bσ , ρ + σ = dτ , and ρ and τ are relatively prime. (If k divides ρ and
τ then k divides σ and we can cancel it.)

Denote by H̄3 the leading form of H relative to w3. Then H̄3 contains both Xa

and Y b. Indeed if w3(H) = aρ = bσ , then both Xa and Y b are in H̄3. Otherwise,
since ρ > 0, w3(H) > aρ and H̄3 contains a monomial Xi Y j Zk for which iρ +
jσ + kτ > aρ.

To bring this to a contradiction let us consider the weights
w4(X) = ρ − dδ1, w4(Y ) = σ − dδ2, w4(Z) = τ − δ1 − δ2 where δ1 and δ2 satisfy
the following conditions:
(1) daδ1 + dbδ2 + degZ (H̄3)(δ1 + δ2) < w3(H̄3) − aρ.
(2) δ1 and δ2 are positive irrational numbers which are linearly independent over the
field of rational numbers.
(3) w4(X) > 0, w4(Y ) > 0, w4(Z) > 0.

Then H̄4 for w4 is a monomial in force of condition (2) and this monomial cannot
be neither Xa nor Y b since in force of condition 1)w4(Xi Y j Zk) = w3(H) − idδ1 −
jdδ2 − k(δ1 + δ2) > w3(Xa) = w3(Y b)whilew4(Xa) = aρ − adδ1 < w3(Xa) and
w4(Y b) = bσ − bdδ2 < w3(Y b). As we already know it is impossible and hence
H̄3 = μXa + · · · + νY b.

Consider now Xb H̄3. This polynomial can be rewritten as a polynomial ψ ∈
C[X, Z ] since XY = Zd in R̄.

The polynomial ψ is ρ, τ homogeneous, so ψ = c
∏

i (X τ − ci Zρ) and H̄3 =
c
∏

i (X τ − ci Zρ)X−b. Let us replace H̄3 by H̄ d
3 .

Lemma 5 (xτ − ci zρ)d x−ρ ∈ R̄.

Proof It is sufficient to show that any monomial xiτ−ρz(d−i)ρ ∈ R̄. Of course,
any monomial of this kind with iτ − ρ ≥ 0 is in R̄. If iτ − ρ < 0 then (d −
i)ρ > d(ρ − iτ) since dτ = ρ + σ and the corresponding monomial is equal to
yρ−iτ z(d−i)ρ−d(ρ−iτ) ∈ R̄. �

The form H̄ d
3 can be written as c

∏
i [(X τ − ci Zρ)d X−ρ] and each of the factors

(xτ − ci zρ)d x−ρ belongs to R̄.
As we know the derivation which is induced on R̄ by ε̄(−) = J(XY − Zd , H̄3,−)

is an lnd. Since ε̄(H̄ d
3 ) = 0 each of these factors is in the kernel of the π(ε̄) and if

there are two different factors then ker(π(ε̄)) has the transcendence degree 2 and
π(ε̄) = 0. Since it is not the case, there is just one factor. Furthermore, since x → λx ,
y → λ−1y, z → z is an automorphism of R̄ it remains to find out for which ρ, τ ,
and d the derivation of R̄ given by π(ε̄)(g) ≡ J(XY − Zd , (X τ − Zρ)d X−ρ, G) is
an lnd.

Let us compute π(ε̄)(z):

π(ε̄)(z) ≡ J(XY − Zd , (X τ − Zρ)d X−ρ, Z) = JX,Y (XY, (X τ − Zρ)d X−ρ) = −X

[d(X τ − Zρ)d−1τ X τ−1−ρ − ρ(X τ − Zρ)d X−ρ−1] ≡ [ρ − τdxτ (xτ − zρ)−1](xτ−
zρ)d x−ρ .

Now, π(ε̄)((xτ − zρ)d x−ρ) = 0, so π(ε̄)(xτ (xτ − zρ)−1) �= 0 since ρ �= dτ .
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Let us denote by deg the degree induced by ε̄. Then deg((xτ − zρ)d x−ρ) = 0 and
deg(z) − 1 = deg(ρ − τdxτ (xτ − zρ)−1) �= 0.

We see that deg(xτ (xτ − zρ)−1) = deg(z) − 1 > 0. This is possible only if
deg(xτ ) = deg(zρ) > deg(xτ − zρ). So
τ deg(x) − ρ deg(z) = 0,
τ deg(x) − deg(z) − deg(xτ − zρ) = −1 and
ρ deg(x) − d deg(xτ − zρ) = 0.

Solving this system we obtain deg(xτ − zρ) = ρ2[ρ2 − τd(ρ − 1)]−1. Now,
ρ2 − τd(ρ − 1) = ρ2 − (ρ + σ)(ρ − 1) = ρ + σ − ρσ = 1 − (ρ − 1)(σ − 1)
since τd = ρ + σ . Since deg(xτ − zρ) > 0we should have 1 − (ρ − 1)(σ − 1) > 0
which is possible only if (ρ − 1)(σ − 1) = 0. Since ρa = σb and a ≥ b we have
σ ≥ ρ and so ρ = 1 if ∂̄ = π(ε̄) is an lnd on R̄.

If ρ = 1 then deg(xτ − z) = 1, deg(x) = d, deg(z) = dτ . Hence if ∂̄ is an lnd
then ∂̄(xτ − z) = λ1 ∈ R̄ ∂̄ .

Since ∂̄(xτ − z) ≡ J(XY − Zd , (X τ − Z)d X−1, X τ − Z) = −(X τ − Z)d X−1

≡ −(xτ − z)d x−1 = λ1 ∈ R̄ ∂̄ we can put xτ − z = λ1t where ∂̄(t) = 1.
Then x = −λd−1

1 td ∈ NilR̄(∂̄), z = xτ − λ1t ∈ NilR̄(∂̄) and y = zd x−1 =
−λ1−d

1 ((−λ1)
(d−1)τ tdτ−1 − λ1)

d ∈ NilR̄(∂̄), i.e. ∂̄ is an lnd on R̄.
We checked that if a ≥ b then H̄3 = c(X τ − c1Z)k X−b. Therefore the leading

form of h relative to the weight given by w3(x) = ρ, w3(y) = σ , w3(z) = τ is
c(xτ − c1z)k x−b.

Observe that a homomorphism β given by x → x , y → (p(z + c−1
1 xτ ))x−1,

z → z + c−1
1 xτ is an automorphism of R. If we apply this automorphism to h then

the leading form of h, as an element of R̄ becomes c[xτ − c1(z + c−1
1 xτ )]k x−b =

c(−c1z)k x−b = νyb. (Hence k = bd.)
Therefore degy(β(h)) = degy(h) while degx (β(h)) < degx (h). If β(h) ∈ C[y]

we can finish the proof since x → y, y → x , z → z is an automorphism of R. If
β(h) /∈ C[y] we can find an automorphism which will decrease either degx or degy
of β(h). Since these degrees cannot decrease indefinitely, a composition of several
automorphisms of this type and, possibly, an automorphism exchanging x and y
gives an automorphism α such that α(h) = q(x). �

4 Conclusion

We proved that there is only the zero lnd on R = C[X, Y, Z ]/(XnY m −
p(z)), deg(p) = d when (d − 1)(m − 1)(n − 1) �= 0 and (d, m, n) = 1; when
(d − 1)(m − 1) �= 0 and n = 1 or when (d − 1)(n − 1) �= 0 and m = 1 all nonzero
lnds have the same kernel; when d = 1 or when n = m = 1 there are lnds with differ-
ent kernels but each kernel can be mapped on a “standard” one by an automorphism.

Lemma 6 Locally nilpotent derivations of a domain A with the same kernel are
equivalent to each other.
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Proof Assume that nonzero lnds ∂1 and ∂2 of A have the same kernel K . We know
that NilF (∂1) = F∂1[t1] and NilF (∂2) = F∂2 [t2] where F is the field of fractions of
A (Lemma 1) and that F∂1 = F∂2 = L = Frac(K ) (Lemma 3). We may assume that
at1 ∈ A for some a ∈ K\0 (see the proof of Lemma 1). Then ∂ i

2(at1) = a∂ i
2(t1) for

any i . Hence t1 ∈ NilF (∂2) and t1 = ∑
i fi t i

2 where fi ∈ L . Similarly, t2 = ∑
j f j t

j
1

where f j ∈ L . Hence degt2(t1) = degt1(t2) = 1 and Lemma is proved.

Remark 7 All these derivations are proportional to each other over F∂ and any
linear combination of these derivations with coefficients in K is again an lnd with
the kernel K . By Lemma 2 at least one of these derivations is irreducible. If A is
not a unique factorization domain then there may be several irreducible derivations
among these derivations (It would be interesting to find an example).

Theorem 3 If R is a ring satisfying conditions of Theorem 1 then, up to an auto-
morphism (and multiplication by c ∈ C), there is just one nonzero irreducible lnd of
R. It is defined by ∂(x) = 0, ∂(y) = p′(z), ∂(z) = xn.

Proof If ε is an lnd of R with Rε = C[x] then ε = q1(x)

q2(x)
∂ and we can assume that

polynomials q1, q2 are relatively prime. We can find two polynomials p1, p2 ∈
C[x] such that the lnd ε1 = p1ε + p2∂ = 1

q2(x)
∂ . Therefore ε1(y) = p′(z)

q2(x)
∈ R and

ε1(z) = xn

q2(x)
∈ R. If q2(x) /∈ C then p′(z)

x ∈ R = C[x,
p(z)
xn , z]. Assume that p′(z)

x =
r(x,

p(z)
xn , z) where r(x, y, z) ∈ C[x, y, z]. Let us take w(x) = 1, w(z) = λ where

λ is a positive irrational number, such that all monomials of r(x, y, z) have different
weights. Thenw(

p′(z)
x ) = i + j (dλ − n) + kλ for some nonnegative integers i, j, k,

i.e. (d − 1)λ − 1 = i + j (dλ − n) + kλ. Since λ is irrational, i − jn + 1 = 0 and
jd + k − d + 1 = 0. Hence j = 0. But then i = −1, which is impossible. Hence
q2 ∈ C. �
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Action of the Automorphism Group on
the Jacobian of Klein’s Quartic Curve

Dimitri Markushevich and Anne Moreau

Abstract Klein’s simple group H of order 168 is the automorphism group of the
plane quartic curve C4, called Klein quartic. By Torelli Theorem, the full automor-
phism group G of the Jacobian J = J (C) is the group of order 336, obtained by
adding minus identity to H . The quotient variety J/G can be alternatively repre-
sented as the quotient C3/˜G of the complex 3-space by the complex crystallographic
group ˜G, the extension of G by the period lattice of the Klein quartic. Moreover, it
turns out that ˜G is generated by affine complex reflections. According to a conjec-
ture of Bernstein-Schwarzman, a quotient ofC

n by an irreducible complex crystallo-
graphic group generated by reflections is a weighted projective space. The conjecture
is known in dimension two and for complexifications of the real crystallographic
groups generated by reflections. The case of ˜G is the first, and in a sense the smallest
of the unknown cases. We compute the orbits and the stabilizers of the action of G
on J and deduce that J/G = C

3/˜G is a strongly simply connected variety with the
same singularities as the weighted projective space P(1, 2, 4, 7).

Keywords Klein’s quartic curve · Automorphism group · Jacobian variety

1 Introduction

Klein’s simple group H168 of order 168 can be defined by H168 � PSL(2, 7) �
GL(3, 2), where GL(n, q), resp. PSL(n, q) stands for the linear (resp. projective
special linear) group of automorphisms of the Fq -vector space F

n
q , where Fq is the

finite field with q elements. Klein introduced this group in 1879 [12] and described
its irreducible 3-dimensional complex representation by automorphisms of the plane
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quartic curve C ⊂ P
2
C
with equation x3y + y3z + z3x = 0, called Klein’s quartic

curve. See, for example [1, 8] for a modern exposition, some applications and inter-
esting ramifications.

Klein’s simple group also appears in the context of groups generated by complex
reflections. Consider it as a complex linear group acting on the 3-dimensional com-
plex vector space V � C

3, whose projectivization is the projective plane containing
the Klein quartic: P(V ) = P

2
C
. This representation embeds H168 into SL(3, C). If we

extend this copy of H168 by adding − idC3 , we will obtain a subgroup of GL(3, C)

of order 336, which we will denote G336. This extension of H168 is not just split, it is
simply a direct product: G336 = {± id} × H168. In spite of the apparent triviality of
this step, it brings in a new very important property: G336 is one of the finite com-
plex reflection groups classified by Shephard–Todd [21]; see also [5] for a simplified
approach to the classification.

On the other hand, the action of G336 on C
3 is of arithmetic nature, as it preserves

a rank-6 lattice in C
3. One can easily see the existence of such a lattice �. Indeed, as

H168 acts on Klein’s curveC , it also acts on its JacobianJ = J (C), a 3-dimensional
abelian variety. So we can represent J (C) as the complex torus C

3/�, where � is
the period lattice of C , and then the action of H168 lifts to a linear action on C

3

leaving invariant �. The fact that the action on C
3 is the same as that on V can be

verified by using the canonical identification J = H 0(C,�1
C)∗/�, and the action

on H 0(C,�1
C) can be deduced from the representation of the 1-forms on C via the

Poincaré residue. In this way we recover a lattice �, invariant under G336, as the
period lattice of C in H 0(C,�1

C)∗.
As G336 leaves invariant the lattice �, one can construct the extension ˜G336 of

G336 by adding the translations by vectors from �:

0−→�−→˜G336−→G336−→0. (1)

The thus obtained group ˜G336 of affine transformations of C
3 is a complex crystal-

lographic group generated by reflections, or a CCR group for short. Moreover, G336

is a maximal finite group of linear transformations leaving invariant �. By Torelli
theorem, the order of the automorphism group of J (C) as a principally polarized
abelian variety is twice the order of the automorphism group of C , and the latter
is 168, which is the maximal order of the automorphism group of a curve of genus
g = 3 by the Hurwitz inequality |Aut(C)| ≤ 84(g − 1).

The main object of interest of the present study is the quotient variety X =
J /G336, which can also be viewed as the quotient C

3/˜G336 by the CCR group.
This quotient can be thought of as the projective spectrum of the algebra of G336-
invariant theta functions for J . For finite reflection groups acting on C

n , we have
the Chevalley–Shephard–Todd Theorem, which states that the algebra of polyno-
mial invariants of the action is also polynomial, that is freely generated by n basic
generators. It is a natural conjecture that the analogue of the Chevalley–Shephard–
Todd Theorem also holds for irreducible affine CCR groups. The conjecture can be
stated in other words by saying that for such a group �, the quotient variety C

n/�

is a weighted projective space. This conjecture, taken in full generality, persists for
more than 40 years, since Looijenga [15] established the result for the CCR groups
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� obtained as the extensions of the Weyl group of a real irreducible root system in
R

n by a complexification of its root lattice. Such complexified real crystallographic
reflection groups depend on one complex parameter τ . Several papers generalized
and improved this result in several ways, and at present it is known to be true for all
CCR groups of Coxeter type [2–4, 9, 11, 23].

The conjecture was also claimed to be proven in dimension two, see [14, 19, 22],
but the proofs were based on an incomplete classification of rank-2 CCR groups.
For example, as we know from [7, 13], the weighted projective plane P(1, 3, 8) is a
CCR quotient, but it is missing in the above references; see also [18], [10, Sect. 5]. In
dimension > 2, not a single result of this type is known for any one of the genuinely
complex crystallographic reflection groups, i. e. those which are not of Coxeter type.
A classification of such groups can be found in [18]. By contrast with the CCR
groups of Coxeter type, genuinely complex CCR groups are all rigid: there is no
continuous parameter τ . According to Popov’s classification, there exists a unique
complex crystallographic reflection group with point group G336: it is listed as [K24]
in Table 2 in loc. cit. (24 being the number of G336 in the classification table of [21]).
From Popov’s table, one also reads off the generators of the invariant lattice � and
the extension cocycle, which can only be zero in this case. Thus an extension of
G336 by � is always split, so that G̃336 = � � G336 is a unique such extension, and
the G336-invariant lattice � is unique modulo equivalence. We will use a slightly
different, more symmetric representation of � from [17].

Our results on the singularities of X make it plausible that X is the weighted
projective space P(1, 2, 4, 7). We look into the combinatorics of the action of G336

and list the stabilizers and the orbits in J . As follows from Theorem 3.1, X and
P(1, 2, 4, 7) have the same singularities.

2 Klein’s Group H168, Its Double G336 and the Invariant
Lattice �

We introduce the group G = G336 directly in its embedding in U(3) as the group
generated by reflections in the roots of the complex root system, usually denoted
J3(4), but we will fix the notation R for it. We describe it following [17, pp. 235–
236]. The root systemR is the set of vectors of C

3, obtained from (2, 0, 0), (0,α,α)

and (1, 1, ᾱ), where α = 1+i
√
7

2 , by sign changes and permutations of coordinates.
The root lattice � = Q(R) generated by R can be given by

� = {(z1, z2, z3) ∈ O3 | z1 ≡ z2 ≡ z3 mod α, z1 + z2 + z3 ≡ 0 mod ᾱ},

whereO = Z + Zα = Z[α] is the ring of integers of the quadratic field K = Q(α).
The group G is the subgroup of U(3) leaving invariant �. The translations by �

extend G to an affine crystallographic reflection group G̃.
The standard Hermitian scalar product of C

3 is not primitive when restricted to
�, so we will endow C

3 with the Hermitian scalar product which is half the standard
one:
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∀x, y ∈ C
3, (x, y) := 1

2

3
∑

i=1

x̄i yi .

With these definitions,R contains 42 roots e, all of thembeing of square 2: (e, e) = 2.
They are divided in 21 pairs of opposite roots ±e. Choosing one representative from
each pair in an arbitrary way, we obtain the subset R0 of 21 roots which will be
called positive roots. The group G is generated by the 21 reflections in the positive
roots e ∈ R0,

re : C
3 → C

3, x �→ x − (e, x)e,

and Klein’s simple group is the unimodular part of G:

H168 = {h ∈ G | det(h) = 1}.

It can be thought of as the group generated by the 21 antireflections ρe := −re,
or by products rere′ of pairs of reflections (e, e′ ∈ R0). These generating sets are
redundant; to generate G, it suffices to use three reflections. We choose the three
“basic” roots as e1 = (0,α,α), e2 = (0, 0, 2) and e3 = (1, 1, ᾱ) in such a way that
the corresponding generators of G are the same as chosen in [21, (10.1)]:

r1 = re1 =
(

1 0 0
0 0 1
0 1 0

)

, r2 = re2 =
(

1 0 0
0 1 0
0 0 −1

)

, r3 = re3 = 1
2

(

1 −1 −α
−1 1 −α
−ᾱ −ᾱ 0

)

.

These generators satisfy the following relations:

r21 = r22 = r23 = (r1r2)
4 = (r2r3)

4 = (r3r1)
3 = (r1r2r1r3)

3 = 1.

By loc. cit., this is a presentation of G by generators and relations.
Obviously, ρi = −ri (i = 1, 2, 3) generate H168. As a minimal set of generators

of H168 one can choose

r3r1 = 1
2

(

1 −α −1
−1 −α 1
−ᾱ 0 −ᾱ

)

and r1r2 =
(

1 0 0
0 0 −1
0 1 0

)

; (r3r1)
3 = (r1r2)

4 = 1.

The orders of elements of G are 1, 2, 3, 4, 6, 7, 14. An example of an element of
maximal order in G (an analogue of a Coxeter element) is

r1r2r3 = 1
2

(

1 −1 −α
ᾱ ᾱ 0
−1 1 −α

)

, (r1r2r3)
7 = −1. (2)

Remark that� is a freeO-module of rank 3, generated by the basic roots e1, e2, e3
introduced above:

� = Oe1 + Oe2 + Oe3.

This representation of � implies that the elements of H and G can be given by
matrices from M3(O) in the basis (e1, e2, e3). The disadvantage of this representation
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is that it is not unitary. So we stick to the representation of G by unitary matrices in
the standard basis of C

3 from which we started, though the elements of these unitary
matrices are half-integers fromO. The columns of each matrix in G are roots fromR
divided by 2, so making a complete list of elements of G amounts to the enumeration
of all the triples of mutually orthogonal roots in R. Over Z, we will fix

(ε1, . . . , ε6) = (αe1,αe2,αe3, ᾱe1, ᾱe2, ᾱe3)

as the “standard” Z-basis of �.
The famous equation ofKlein’s quartic x3y + y3z + z3x = 0 is referred to coordi-

nates in which an order-7 element of H168 is diagonalized with eigenvalues ζ, ζ4, ζ2,
where ζ = exp 2πi

7 , but in the coordinates used in our representation it becomes

x4 + y4 + z4 − 3ᾱ(x2y2 + x2z2 + y2z2) = 0.

The next table from [6] provides a list of the 15 conjugacy classes of subgroups of
H168 with their minimal overgroups and maximal subgroups; these data determine
a structure of a lattice (partially ordered set) on the set of subgroups of H168. The
notation for groups used in the column “Structure” is standard for papers in the
theory of finite groups; we explain some of them that are unusual in other fields of
mathematics: n is a cyclic group of order n; mn is the direct product of n copies of a
cyclic group of order m; N : L is a semi-direct product of N and L with N a normal
subgroup; Ln(q) is what we denote P SL(n, q), so that L2(7) � H168. The repetition
of a type of a subgroup means that there are two orbits under conjugation, their
lengths are given in the column “Length”. The last two columns refer to subgroups by
their numbers from the first column, the integers between parentheses indicating the
number of distinct subgroups of given type that are minimal overgroups or maximal
subgroups for the subgroup from the current line.

Nr. Structure Order Length Maximal subgroups Minimal overgroups
1 L2(7) 168 1 2 (7), 3 (7), 4 (8)
2 22 : S3 24 7 5, 7 (3), 9 (4) 1
3 22 : S3 24 7 6, 7 (3), 9 (4) 1
4 7 : 3 21 8 8, 13 (7) 1
5 A4 12 7 10, 13 (4) 2
6 A4 12 7 11, 13 (4) 3
7 D8 8 21 10, 12, 11 2, 3
8 7 7 8 15 4
9 S3 6 28 13, 14 (3) 2, 3
10 22 4 7 14 (3) 5, 7 (3)
11 22 4 7 14 (3) 6, 7 (3)
12 4 4 21 14 7
13 3 3 28 15 4 (2), 5, 6, 9
14 2 2 21 15 9 (4), 10, 11, 12
15 1 1 1 8 (8), 13 (28), 14 (21)
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We will not list all the subgroups of G, but just note that each subgroup K of H168

has a degree-two extension in G, denoted ±K :

±K = 〈−1, K 〉 = {±k | k ∈ K } � {±1} × K .

Of course, G also has other types of subgroups.
For future reference, we provide some explicit examples of subgroups of H168

from the table:

D8 = 〈s, t | s4 = t2 = 1, tst = s−1〉 =
{1, s = h4, h2

4, h3
4, t = ρ1, ρ2, ρ2h4, h4ρ1}, h4 = ρ1ρ2; (3)

7 � G7 = {1, g7, . . . , g67}, g7 = ρ1ρ2ρ3 = −r1r2r3 = 1
2

(−1 1 α
−ᾱ −ᾱ 0
1 −1 α

)

; (4)

7 : 3 � G21 = 〈g7, h3 | g77 = h3
3 = 1, h3g7h−1

3 = g27〉, h3 = ρ1ρ3ρ1ρ2; (5)

22 : S3 � S4 � G24 =
{

γ =
(±1 0 0

0 ±1 0
0 0 ±1

)

,

(±1 0 0
0 0 ±1
0 ±1 0

)

,

(

0 0 ±1
0 ±1 0

±1 0 0

)

,

(

0 ±1 0
±1 0 0
0 0 ±1

)

,

(

0 0 ±1
±1 0 0
0 ±1 0

)

, or

(

0 ±1 0
0 0 ±1

±1 0 0

) ∣

∣

∣

∣

det γ = 1

}

. (6)

In the next table we list the conjugacy classes of H :

ord (γ) 1 2 3 4 7 7
|ClH (γ)| 1 21 56 42 24 24
γ 1 ρ1 h3 h4 g7 g−1

7

The representatives h3, h4, g7 are defined in (3)–(5). The conjugacy classes of G
are deduced from these in an obvious way: to every conjugacy class ClH (γ) in H
correspond two conjugacy classes in G of the same length: ClG(γ) = ClH (γ) and
ClG(−γ) = −ClH (γ).

3 Fixed Loci of Elements of G336 Acting on J = C
3/�

We divide the elements of G in two classes, elliptic and parabolic; the parabolic
ones are defined as those having 1 among their eigenvalues, and all the remaining
elements are called elliptic. The elliptic elements are −1, the 42 elements of order 4
with determinant −1, the 56 elements of order 6, and those of order 7 and 14. There
are also 42 elements of order 4 with determinant 1, but they are parabolic. For both
orders 7 and 14, there are two conjugacy classes of length 24, but what we need for
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enumerating the fixed points is the number of cyclic subgroups generated by them,
and there are fewer classes of elliptically generated cyclic subgroups.

Proposition 3.1 G has the following cyclic subgroups generated by elliptic ele-
ments:

(i) One group of order 2, C2 = {±1}, with 64 fixed points in J that are images of
the half-periods of �:

{ξ0, . . . , ξ63} =
{

6
∑

i=1

xiεi , xi ∈ {

0, 1
2

}

}

.

(ii) One conjugacy class of 21 cyclic subgroups of order 4, C (1)
4 , . . . , C (21)

4 , having
each 16 fixed points in J . Choosing C (1)

4 = 〈h′
4〉, h′

4 = −r1r2 : (z1, z2, z3) �→
(−z1, z3,−z2), we find the representatives of the 16 fixed points of h′

4 in the
form

{β0, . . . , β15} = ι0(1, 0, 0) + ι1(α, 0, 0) + ι2(
α
2 , α

2 , −α
2 ) + ι3(

ᾱ
2 , 1, 0), ιk ∈ {0, 1} .

(iii) One conjugacy class of 28 cyclic subgroups of order 6, C (1)
6 , . . . , C (28)

6 , hav-
ing each 4 fixed points in J . Choosing C (1)

6 = 〈c〉 with c = (z1, z2, z3) �→
(−z3,−z1,−z2) we identify the representatives of the 4 fixed points in � as:

ωi j = i

2
(ᾱ, ᾱ, ᾱ) + j (1, 1, 1), (i, j) ∈ {0, 1}2,

so that ω00 = 0 and the remaining 3 points ωi j belong to the set of 64 fixed
points of C2 from item (i).

(iv) One conjugacy class of 8 subgroups C (1)
7 , . . . , C (8)

7 of order 7, having each 7
fixed points on J . Choosing C (1)

7 = 〈g7〉, where g7 is defined in (5), we find the
following representatives of the 7 fixed points of C (1)

7 :

η0 = 0, ηi = 1

7

(

− iε1 − iε2 + iε3 + iε4 + iε5 − iε6
)

, i = 1, . . . , 6.

(v) One conjugacy class of 8 cyclic subgroups C (1)
14 , . . . , C (8)

14 of order 14, having
each a unique fixed point, the zero of J .

Proof Let γ be an elliptic element and z ∈ C
3 a fixed point of γ modulo �. This

means that γz − z ∈ �, or else z ∈ (γ − idC3)−1(�). Thus the number of fixed
points modulo � is equal to [(γ − idC3)−1(�) : �]. Hence to evaluate the num-
ber of fixed points on J , it suffices to calculate the determinant of γ − id�, where
γ is viewed as an automorphism of the rank-6 Z-module �. When working with
3 × 3 complex matrices, this determinant becomes | det(γ − idC3)|2. The calcula-
tion of det(γ − idC3) for γ = −1, h′

4, c, g7, −g7 gives, respectively, the values
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−8, −4, −2, i
√
7, −1. This implies the assertion on the numbers of fixed points.

The explicit representatives produced in the statement are obtained by a direct cal-
culation. It is quite easy for the orders < 7, and for order 7, we wrote down g7 by an
integer matrix in the Z-basis (εi ) of � and searched for the fixed points in the unit
cube of R

6. We omit further details. �

The non-elliptic elements different from 1 have fixed loci of positive dimension
in J , which are translates of elliptic curves or abelian surfaces. We denote the
eigenspace of γ corresponding to an eigenvalue λ by V (γ)

λ , or simply by Vλ. We also
denote �

(γ)

λ or just �λ the intersection � ∩ V (γ)

λ . When this is a full-rank lattice
in V (γ)

λ , the quotient J (γ)

λ = Jλ := V (γ)

λ /�
(γ)

λ is an abelian variety of dimension
dim V (γ)

λ .
When λ = 1 is among the eigenvalues of γ, J (γ)

1 is the connected component
of 0 in the fixed locus J γ = FixJ (γ), but the latter fixed locus can contain several
connected components, which are translates of J (γ)

1 . The number of components
can be determined as follows. Let �

(γ)
a , V (γ)

a be the anti-invariant parts of γ in �,
respectivelyV , that is the orthogonal complements of�(γ)

1 , V (γ)

1 , andJa = V (γ)
a /�

(γ)
a

(the superscript (γ) can be omitted when there is no risk of confusion). Then J1 and
Ja are complementary in the sense that J1 + Ja = J and J1 ∩ Ja is finite. As the
action of γ restricted to Ja is elliptic, we can determine the number of fixed points
#J γ

a for this action as we did before, for example by computing the determinant of
(γ − idC3)|Va . Then we have for the group of connected components of J γ :

J γ/J1 � J γ
a /(J γ

a ∩ J1).

Hence to know the number of components, we have to determine #(J γ
a ∩ J1), that

is, the number of points of J γ
a whose representatives in C

3 are zero modulo V1 + �.
For reflections the eigenspace V1 is a plane, in which case we call it the mirror.

For the remaining non-trivial parabolic elements γ, V1 is 1-dimensional, and we call
it the axis of γ. For both reflections and antireflections, we have Va = V−1.

Proposition 3.2 G has the following cyclic subgroups of order > 1 generated by
parabolic elements:

(i) One conjugacy class of 21 subgroups of order 2 generated by reflections; the
fixed locus in J of each of them is the abelian surface, the image of the mirror
of the reflection.

(ii) One conjugacy class of 21 subgroups of order 2 generated by antireflections;
the fixed locus in J of each of them is the union of 4 translates of the elliptic
curve J1 in J , the image of the axis of the antireflection.

(iii) One conjugacy class of 28 subgroups of order 3; the fixed locus in J of each
of them is the elliptic curve J1, the image of the axis of the generator.

(iv) One conjugacy class of 21 cyclic subgroups of order 4; the fixed locus in J of
each of them is the elliptic curve J1, the image of the axis of the generator.
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Proof (i) As the reflections form one conjugacy class, it suffices to compute
the fixed locus just for one of them; choose r2 : (z1, z2, z3) �→ (z1, z2,−z3). For
z = (z1, z2, z3) ∈ C

3, the point z + � ∈ J = C
3/� is fixed under r2 if and only

if r2(z) − z = −z3(0, 0, 2) ∈ �, which is equivalent to z3 ∈ O. Then there exists
v ∈ V1 = ker(r2 − idC3) such that z = v + z3(ᾱ, 1, 1), hence z ≡ v mod � and
thus z represents the point v + � of the abelian surface J1 = V1/(V1 ∩ �), the
image of the mirror V1 in J . We see that the restricted action on Ja = J−1 is by
multiplication by −1, so the fixed locus J r2

a consists of 4 points, images of the half-
periods of �−1, but all the 4 fixed points are contained in J1, so J r2

a /(J r2
a ∩ J1) is

trivial.
(ii) Compute the fixed locus of ρ2 = −r2. Here V1 is the z3-axis. For z =

(z1, z2, z3) ∈ C
3, the point z + � ∈ J = C

3/� is fixed under ρ2 if and only if
ρ2(z) − z = (−2z1,−2z2, 0) ∈ �, which is equivalent to

(z1, z2, 0) ∈ 1
2�a, where �a := � ∩ {z3 = 0} = O(2, 0, 0) + O(α,α, 0).

The latter condition means that (z1, z2, 0), modulo �a, is one of the 16 linear com-
binations of the vectors

(1, 0, 0), (ᾱ, 0, 0), (α
2 , α

2 , 0), (1, 1, 0)

with coefficients from {0, 1}. As (1, 1, 0) ≡ (1, 1, ᾱ) mod V1 and (1, 1, 0) +
(1, 0, 0) + (ᾱ, 0, 0) ≡ (ᾱ, 1, 1) + (2, 0, 0) mod V1, we see that only four of the
16 linear combinations are distinct modulo V1 + �, which implies the conclusion.

(iii) We will determine the fixed locus of the order-3 element c4 = −c, where c
is the order-6 element from Proposition3.1 (iii). For z ∈ C

3 the property of being a
fixed point of the order-3 element −c modulo � can be given the following charac-
terization:

(z3 − z1, z1 − z2, z2 − z3) ∈ �a = � ∩ {z1 + z2 + z3 = 0} = O(α, 0, −α) + O(0, α, −α).

Looking at the induced action on the abelian surfaceJa, we easily find 9 fixed points,
whose representatives modulo �a can be given by

θi j = i
3 (−α,−α, 2α) + j

3 (−2,−2, 4), i, j = 0, 1, 2

The existence of exactly nine fixed points for the induced action on Ja can be
confirmed by the calculation of the determinant of (−c − id)|Va . Now we eas-
ily see that the θi j are 0 modulo V1 + �, for example, θ1,0 = 1

3 (−α,−α, 2α) =
−(α,α, 0) + 2

3 (α,α,α), where −(α,α, 0) ∈ � and 2
3 (α,α,α) ∈ V1. Hence the

images of θi j + V1 in J are one and the same elliptic curve passing through zero.
(iv)We will determine the fixed locus of the order-4 parabolic element h4 = −h′

4,
where h′

4 was defined in Proposition3.1 (ii): h4 : (z1, z2, z3) �→ (z1,−z3, z2). Here
V1 is the z1-axis. A point z ∈ C

3 is fixed under h4 modulo � if and only if
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(0, z2 + z3, z3 − z2) ∈ �a = � ∩ {z1 = 0} = O(0, 2, 0) + O(0,α,α).

There are 4 solutionsmodulo�a: 0, (0, 1, 1), (0, 0,α), and (0, 1, 1 + α). All of them
are in � + V1, for example, (0, 1, 1) = (ᾱ, 1, 1) + (−ᾱ, 0, 0) with (ᾱ, 1, 1) ∈ �,
(−ᾱ, 0, 0) ∈ V1. Hence the fixed locus of h4 is connected. �

4 Orbits with Elliptic Stabilizers

Wewant to enumerate all the possible stabilizersGu = StabG(u) and Hu = StabH (u)

of points u ∈ J . In this section we will consider the points u fixed by at least one
elliptic element of G. Such points and their stabilizers will be called elliptic. In the
case when the stabilizer Gu is non-trivial but contains no elliptic elements, we will
call u and its stabilizer parabolic. The parabolic points will be studied in the next
section.

The knowledge of the stabilizer provides the length of the orbit of u, which is
the index of the stabilizer, and determines the singularities of the quotient varieties
at G · u and H · u, the orbits of u viewed as points of the respective quotients that
are the images of u. The image of u is a nonsingular point of the quotient if and
only if the stabilizer is generated by reflections, otherwise it is a singularity, locally
analytically equivalent to the linear quotient C

3/Gu , resp. C
3/Hu .

The points of a Zariski open set of J have trivial stabilizer in G or H ; we call
this Zariski open set the free locus of G, resp. H .

The non-free locus of G is the union of two-dimensional images of mirrors of
reflections, of a number of curves and of a number of isolated points. The union of
images of mirrors will be called the discriminant arrangement in J . By Proposi-
tion3.2 (i), the discriminant arrangement is the union of 21 abelian surfaces passing
through zero, whichwewill also call, by abuse of language,mirrors ormirror abelian
surfaces. A generic point of a mirror abelian surface which is the image of the mirror
of a reflection r has minimal stabilizer, equal to 〈r〉. The stabilizer can jump along
some curves, called special curves. The special curves that belong to the discrim-
inant arrangement are the intersection curves of two or more mirrors. Such curves
are called special discriminant curves.

The points of a special curve with stabilizer bigger than that of the generic point of
the curve will be called dissident points of the special curve. The curve components
of the non-free locus will be called off-discriminant special curves, and the points
of the zero-dimensional irreducible components of the non-free locus will be called
isolated special points.

We will also distinguish the points u of the non-free locus in J according to the
property whether their stabilizer Gu in G is cyclic or not; we will say that u is a
cyclic point if Gu is a cyclic subgroup of G. The most special point is 0 ∈ J ; it is
stabilized by the whole of G and is a smooth point of X = J /G, as G is generated
by reflections.
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Nowwe are turning to the locus of elliptic points. It turns out that the only isolated
special points are the elliptic cyclic points fixed by elements of order 7. They are
treated in the next Proposition; we determined six of them in Proposition3.1 (iv),
and all of them belong to the orbits of these six.

We denote by Cd a cyclic group of order d, and by 1
d (ν1, ν2, ν3) the (analytic

equivalence class of the) cyclic quotient singularity C
3/Cd , where the generator cd

of Cd acts by cd : (z1, z2, z3) �→ (εν1 z1, εν2 z2, εν3 z3), ε = exp
(

2πi
d

)

.

Proposition 4.1 Let T7 denote the set of 48 non-zero points of J fixed by elements
of order 7.

(i) Suppose η ∈ T7 is fixed under the action of an element σ ∈ H168 of order 7.
Then StabH168(η) = 〈σ〉 is of order 7, so T7 is the union of two H168-orbits of
length 24.

(ii) In the notation of i), the normalizer NH168(〈σ〉) � G21, where G21 is the group
of order 21 introduced in (5), and there exists an element τ of order 3 in
NH168(〈σ〉) such that τ (η) = 2η, hence η, 2η, 4η belong to one of the two
H168-orbits in T7, while 3η, 5η, 6η belong to the other. As representatives
of the two orbits, one can choose η1 and η3, where ηi (i = 1, . . . , 6) were
introduces in Proposition3.1 (iv), and we denote by the same symbol ηi the
fixed points of g7 on J represented by the vectors ηi ∈ C

3.
(iii) The images in Y = J /H168 of the 2 H168-orbits in T7 are 2 isolated cyclic

quotient singularities of Y of local analytic type 1
7 (1, 2, 4).

(iv) The action of −1 permutes the two H168-orbits, hence T7 is just one G-orbit,
whose image in the quotient X = J /G is an isolated singularity of local ana-
lytic type 1

7 (1, 2, 4).

Proof For any element σ of order 7, FixJ (σ) is the same as FixJ (〈σ〉). As there is
only one conjugacy class of subgroups of order 7 in H168, we can restrict ourselves
to one particular element of order 7, say the element g7 introduced in (5). So we
assume σ = g7. As we know that H168 has eight 7-Sylow subgroups, the order of the
normalizer of 〈g7〉 is 21. The formula (5) presents a subgroup of order 21 normaliz-
ing 〈g7〉, which is G21, hence NH168(〈g7〉) = G21. The order-3 element h3 from (5)
normalizes 〈g7〉, hence leaves invariant FixJ (〈g7〉). By a direct calculation we check
that h3 doubles each fixed point of 〈g7〉. Indeed, expressing η1 in coordinates of C

3,
we obtain

η1 =
⎛

⎜

⎝

i
√
7

7
7+i

√
7

14

1 − 2i
√
7

7

⎞

⎟

⎠
, h3 = 1

2

⎛

⎝

1 −α 1
−ᾱ 0 −ᾱ
−1 −α −1

⎞

⎠ , h3(η1) − 2η1 =
⎛

⎝

1 − α
−1 − α
−3 + α

⎞

⎠ ∈ �.

As ηi = iη1 for all i = 1, . . . , 6, we deduce that the 〈h3〉-orbit of η1 consists of the
three points η1, η2, η4. This implies (i) and (ii), and the remaining assertions easily
follow. �

We will now compute the stabilizers of the remaining points from fixed loci of
elliptic elements. The next proposition uses the notation of Proposition 3.1.
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Proposition 4.2 (i) The locus T6 of non-zero fixed points of elements of order
6 in G is the union of orbits of the 3 fixed points ωi j ((i, j) �= (0, 0)) of
the order-6 element c = (z1, z2, z3) �→ (−z3,−z1,−z2). We have: StabH168

(ω10) � StabH168(ω11) � S4, StabH168(ω01) = StabH168(ω10) ∩ StabH168(ω11) �
S3. The three points are contained in J 〈−1〉 and are special on the off-
discriminant special curve J (−c)

1 , the image of the axis z1 = z2 = z3 of
−c : (z1, z2, z3) �→ (z3, z1, z2). Moreover, ω10 and ω11 are quadruple points
of the configuration of special curves, as they each belong to and are dis-
sident on three special discriminant curves which are fixed by the order-4
elements in their stabilizers. Say, for ω10, the stabilizer is nothing else but
the monomial subgroup (6), the three axes of its 6 order-4 elements are just
the coordinate axes of C

3, and the three extra special curves passing through
ω10 are the images of the coordinate axes. The stabilizers in G are twice big-
ger, StabG(ωi j ) = ±StabH168(ωi j ) := {±1} × StabH168(ωi j ), and they are gen-
erated by reflections, so that the images of ωi j in X are smooth points.

(ii) The locus T ′
4 of non-zero fixed points of elements of order 4 with determinant

−1 is the union of the orbits of the 15 fixed points βi (i �= 0) of the order-4
element h′

4. In the notation of βi we will understand i as a binary multiindex
ι0ι1ι2ι3 varying from 0000 to 1111. The next table lists the stabilizers of βi

(except for β0000 = 0), up to isomorphism, and the singularities at the images
of the corresponding points βi in X. We mark by the plus sign the βi that are
fixed by −1; the numbers between brackets in the last line indicate the number
of images in X of the points βi from the current column; D8, D′

8 denote dihedral
groups of order 8, the first of which is a subgroup of H168, the second is not;
similarly for the pair S4, S′

4.

StabH168 (βi ) S4 A4 D8 C2 × C2 C2

StabG (βi ) ±S4 S′
4 ±D8 D′

8 C4

β0001 β1010 β0011

β0010 β0101 β1011

β0100(+) β0110 β1001 β0111

βi β1100(+) β1101 β1000(+) β1110 β1111

Image in X Smooth [2] Smooth [2] Smooth [1] Smooth [2] 1
4 (1, 2, 3)[1]

All the G-stabilizers except for C4 are generated by reflections and the corre-
sponding points βi are mapped to smooth points of X = J /G. The image in X
of the points βi with stabilizer C4 is a non-isolated cyclic quotient singularity
of analytic type C

3/C4, where C4 acts with weights 1, 2, 3.
(iii) The locus T2 of 63 points fixed by the action of −1 on J \{0} decomposes into

the following G-orbits:

• the two orbits of the points β0100,β1100 from (ii) (or of ω10, ω11 from (i)) with
G-stabilizers ±S4, of length 7 each;

• the orbit of the point β1000 with G-stabilizer ±D8 of length 21;
• the orbit of the point ω01 from (i) with G-stabiliser ±S3 of length 28.
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These stabilizers are generated by reflections, so the image of T2 in X consists
of 4 smooth points.

Proof (i) The first assertion follows from the fact that the elements of order 6 form
one orbit under conjugation by H168 (and by G). All the remaining assertions but the
last one are proved by a routine verification, which we performed using the computer
algebra system Macaulay2 [16]. For the last assertion, remark that the groups S3, S4
are generated by their elements of order 2, and all the elements of order 2 in H168 are
antireflections. Hence the stabilizers of ωi j in H168 are generated by antireflections.
Passing to the stabilizers of ωi j in G, we extend the stabilizers in H168 by adding−1,
and this obviously provides groups generated by reflections.

(ii) As in (i), the proof is obtained by a computer-assisted enumeration of the
elements of the stabilizers, followed by the inspection of the elements of order 2.

(iii) All the points of T2 belong to orbits already enumerated in (i), (ii), so (iii) is
an obvious consequence of (i), (ii). �

5 Parabolic Orbits and Singularities of J /G336

In the previous section, we enumerated all the elliptic special points inJ . All of them,
except for those belonging to the orbit in the last column of the table in Proposition
4.2 (ii), turn out to be non-cyclic, that is have non-cyclic stabilizer in G. Now we
will enumerate the parabolic points.

An obvious way to obtain a curve whose generic point is non-cyclic is to take the
intersection of two mirror abelian surfaces fixed by reflections. Recall what happens
in the case when the two reflections, say r, r ′, commute: they generate a subgroup
(Z/2Z)2, their product ρ = rr ′ is an anti-reflection, and there is a unique cyclic
subgroup of order 4 in H containing ρ. This follows from the description of the
lattice of subgroups of H in Sect. 1. Thus the curve which is the intersection of the
mirrors of two commuting reflections r, r ′ can be also characterized as the image
J (ρ)

1 in J of the axis of the antireflection ρ = rr ′, and the full fixed locus J ρ of ρ is
the union of four translates of the elliptic curve J (ρ)

1 (Proposition 3.2, (ii)).
We will start by enumerating the parabolic points u with cyclic Hu .

Proposition 5.1 Let u ∈ J be a parabolic point, and assume that Hu is cyclic. Then
one of the following three cases is realized:

(a) Hu = 〈ρ〉 is of order 2. In this case ρ is an anti-reflection and its fixed locus
J ρ is the disjoint union of 4 translates κi + J (ρ)

1 (i = 0, 1, 2, 3) of the elliptic
curve J (ρ)

1 . The points κi can be choosen in such a way that the following is
true: κ0 = 0, κ1, κ2, κ3 = κ1 + κ2 are points of order 2, and u belongs to one
of three curves κi + J (ρ)

1 , i = 1, 2, 3. For generic ui ∈ κi + J (ρ)

1 , i = 1, 2, the
H-stabilizer Hui = 〈ρ〉 is of order 2, while the G-stabilizer Gui � (Z/2Z)2 is
generated by two reflections ri , r ′

i such that ρ = rir ′
i . For generic u3 ∈ κ3 + J (ρ)

1 ,
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the H- and G-stabilizers coincide: Gu3 = Hu3 = 〈ρ〉 = Gu1 ∩ Gu2 . For all the
three curves κi + J (ρ)

1 , i = 1, 2, 3, the subgroup of H leaving invariant each of
them is isomorphic to D8.

(b) u ∈ J c3 for some element c3 ∈ H of order 3, Hu = 〈c3〉, and Gu is of type S′
3 (a

subgroup, isomorphic to S3 and not contained in H). The subgroup of H (resp.
G) leaving invariant J c3 is of type S3 (resp. ±S3).

(c) u ∈ J c4 for some element c4 ∈ H of order 4, Hu = 〈c4〉, and Gu is of type D′
8.

The subgroup of H (resp. G) leaving invariant J c4 is D8 (resp. ±D8), where we
denote, as before, by D8 (resp. D′

8) a dihedral subgroup of order 8 embedded in
H (resp. in G in such a way, that the image contains four reflections).

In the cases (b), (c), Gu is generated by reflections and the image of u in X is
nonsingular. In the case (a), the subgroups Gu1 , Gu2 are generated by reflections and
Gu3 is not, where ui denotes a generic point of the curve κi + J (ρ)

1 , so the images of
u1, u2 in X are nonsingular and the image of u3 is a non-isolated singularity of type
1
2 (1, 1, 0).

Proof The cyclic subgroups of H are all conjugate to those generated by ρ1, h3, h4

or g7. Only ρ1, h3, h4 are parabolic. We have |Gu | = 2|Hu | or Gu = Hu . In the case
|Hu | = 2, we have Hu = 〈ρ〉 for an element ρ of order 2; all the 21 elements of order
2 in H are anti-reflections, conjugate to each other, so we may assume ρ = ρ2. It
is impossible that u ∈ J (ρ)

1 , because every element of order 2 in H is the square of
an element of order 4 fixing the same axis, and hence u would then be fixed by a
subgroup of order 4 in H at least. Hence u belongs to J ρ\J (ρ)

1 , which is the union
of the three translates of J (ρ)

1 according to Proposition 3.2 (ii):

[(1, 0, 0)] + J (ρ)

1 , [(α
2 , α

2 , 0)] + J (ρ)

1 , [(1 + α
2 , α

2 , 0)] + J (ρ)

1 .

We can set κ1 = [(1, 0, 0)], κ2 = [(α
2 , α

2 , 0)]; the assertions about the stabilizers are
verified by a direct calculation. This provides the case (a).

If |Hu | = 3, then Hu = 〈c3〉 for some element c3 of order 3. Each element of
order 3 is a product of two reflections, so Gu ⊃ 〈r, c3〉 � S3, where r is one of those
reflections. Let K = 〈−r, c3〉. Obviously, K � 〈r, c3〉 � S3. From the table of Sect. 1
describing the lattice of subgroups of H , we see that each 3 is a subgroup of index 2 in
a unique S3, its normalizer. The subgroups S3 form one orbit in H , so we may choose
K = 〈−r1, c3〉, where r1 is one of our basic reflections and c3 = c4 = −c is the same
order-3 element as the one used in the proof of Proposition 3.2 (iii). We saw there
that the fixed locus J c3 is the elliptic curve obtained as the image of the diagonal
locus of points (x, x, x) ∈ C

3 in C
3/�. Now z = (z1, z2, z3) + � is fixed under r1 :

(z1, z2, z3) �→ (z1, z3, z2) if and only if r1(z) − z ∈ �, or (0, z3 − z2, z2 − z3) ∈ �.
Obviously, this condition is automatically satisfied for any z of the form (x, x, x),
which implies that Gu ⊃ 〈r, c3〉 � S3. This provides the case (b).

By a similar argument, assuming |Hu | = 4, we reduce the proof to the case when
Hu = 〈h4〉, where h4 is the element of order 4 from the proof of Proposition 3.2 (iv).
The axis of h4 is the first coordinate axis of C

3, and one easily verifies that Gu = D′
8
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for generic point u of the form (z1, 0, 0) + �. For non-generic points of this form
the stabilizer may be bigger, but then Hu is non-cyclic, and as we will see in the next
proposition, this implies that u is non-parabolic, so all such cases have been treated
in the previous section. �

Now we consider the case when Hu is non-cyclic.

Proposition 5.2 Let u ∈ J , u �= 0 and assume Hu non-cyclic. Then one of the fol-
lowing cases is realized.

(d) Hu contains S3. Then u ∈ T6, where T6 is the locus of nonzero points fixed by
elements of order 6. This locus, described in Proposition 4.2 (i), is the union of
orbits of the three points ω01,ω10,ω11 with G-stabilizers ±S4 or ±S3.

(e) Hu contains (Z/2Z)2. Then u belongs to the orbit of one of the 16 fixed points
of the elliptic order-4 element h′

4 from Proposition 3.1 (ii), and the possible
G-stabilizers of u are D′

8, ±D8, S′
4 and ±S4.

In particular, none of these points u is parabolic. Their G-stabilizers are generated
by reflections, so their images in X are smooth points.

Proof As Hu is non-cyclic, it contains at least twodistinct cyclic subgroups generated
by elements from the orbits of ρ1, h3, h4, g7 or g−1

7 . We can disregard the elements
of order 7, because for a nonzero fixed point of such an element, its stabilizer is of
order 7 and hence is cyclic. So, we have to consider only the cases when Hu contains
two cyclic subgroups of orders 2, 3 or 4.

The first case we will consider is when Hu contains subgroups of orders 2 and 3.
From the table in Sect. 1 describing the lattice of subgroups of H we see that then
Hu is one of the subgroups S3, A4, S4.

Assume that Hu ⊃ S3. As the subgroups S3 form one orbit, we can choose S3 =
〈−r1, c3〉 as in the proof of the previous proposition. As before, J c3 is the elliptic
curve obtained as the image of the diagonal of C

3, that is the locus of points of the
form (x, x, x)modulo�, and z = (z1, z2, z3) + � is fixedunder−r1 : (z1, z2, z3) �→
(−z1,−z3,−z2) if and only if r1(z) + z ∈ �, or (2z1, z2 + z3, z3 + z2) ∈ �. For a
point z of the form (x, x, x) the latter condition is equivalent to x(2, 2, 2) ∈ �, which
gives four points stabilized by S3:

J S3 =
{

ι1
(ᾱ,ᾱ,ᾱ)

2 + ι2(1, 1, 1)
}

ι1,ι2=0,1
( mod �).

We now see that the three of these points different from 0 belong to the locus T6 from
Proposition 4.2 (i), which ends the proof for the case when Hu ⊃ S3.

We will not consider separately the cases Hu ⊃ A4 or S4, because in these cases
Hu contains a subgroup � (Z/2Z)2. So we will just consider one case when Hu ⊃
(Z/2Z)2.

There are two orbits of subgroups 22 in H , and respectively two orbits of
their normalizers S4. For each “positive” root e ∈ R0, there are two pairs (e′, e′′),
( f ′, f ′′) of orthogonal roots in R0, such that e′ ⊥ e′′, f ′ ⊥ f ′′, roots from differ-
ent pairs being non-orthogonal. Say, if e = (2, 0, 0), then, for an appropriate choice
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of R0, the two orthogonal pairs are (e′, e′′) = ((0, 2, 0), (0, 0, 2)) and ( f ′, f ′′) =
((0,α,α), (0,α,−α)). We can choose for representatives of the two orbits of 22 in
H the subgroups H22 = 〈ρe′ , ρe′′ 〉 and H ′

22 = 〈ρ f ′ , ρ f ′′ 〉, and H22 ∩ H ′
22 = 〈ρe〉. We

have:

(z1, z2, z3) + � ∈ J H22 ⇐⇒ (2z1, 2z2, 0) ≡ (0, 2z2, 2z3) ≡ 0 mod �

⇐⇒ z = (z1, z2, z3) ∈ �̄ = Z
(α,α,α)

2 + O3.

As [�̄ : �] = 16, #J H22 = 16. Similarly one verifies that #J H ′
22 = 16. Moreover,

by inspecting the G-stabilizers of the 16 fixed points, we observe that each of them
contains at least one elliptic element of order 4. All such elements are conjugate to
h′
4, thus the possible stabilizers Gu in (d) are those appearing in Proposition 3.1 (ii),

except for Du � C4, for which Hu � C2 is too small.
It remains to consider the case when Hu contains two cyclic subgroups, one of

which has order 4. Denoting by c4 a generator of the latter subgroup of order 4,
we see that Hu contains two distinct cyclic subgroups, one of which is of order 2,
generated by c24, and this brings us to one of the cases treated above. �

Now we are ready to enumerate the singularities of the quotient variety X . We
say that a variety (as always in this paper, over C) is strongly simply connected if its
smooth locus is connected and simply connected.

Theorem 3.1 The quotient X = J /G is a normal strongly simply connected variety
whose singular locus is the union of two irreducible components, P

1 = � and an
isolated point p. Denoting π : J → X the natural map, we have p = π(T7) and � =
π(κ3 + J (ρ)

1 ), where T7 is the orbit of fixed points of elements of order 7, described
in Proposition4.1, ρ is an anti-reflection and κ3 + J (ρ)

1 is the elliptic curve in the
fixed locus of ρ defined in Proposition5.1 (a).

The singularity at p is of analytic type 1
7 (1, 2, 4). At all but one points of �, the

singularity of X is of type 1
2 (1, 0, 1), that is C × A1, the Cartesian product of C with

a surface du Val singularity of type A1. The unique point q of � where the type of
singularity changes is the image of the orbit of one of the points βι0ι1ι2ι3 from the last
column of the table in Proposition4.2 (ii), say β0011. The type of singularity at q is
1
4 (1, 2, 3).

Proof The strong simply-connectedness follows from [22, Theorem 3.2.1]; see also
[20] or [4, Proposition 0.1]. In fact, for the quotients of C

n by complex crystallo-
graphic groups, the property of the group to begenerated by affine complex reflections
is equivalent to the strong simply-connectedness of the quotient.

Singularities of X may only occur in the image of the points of J whose G-
stabilizers are not generated by reflections. We made a complete inventory of pos-
sible G-stabilizers. The orbits of points whose G-stabilizers are not generated by
reflections are those mentioned in the statement of the theorem. �
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We note that the weighted projective space P(1, 2, 4, 7) is also strongly simply
connected andhas the same singularities as X , which provides some evidence towards
the conjecture stated in the introduction.

References

1. Bauer, M., Itzykson, C.: A case study in finite groups: PSL2(F7). Int. J. Mod. Phys. A5,
3125–3153 (1990)

2. Bernšteı̆n, I.N., Švarcman, O.V.: Chevalley’s theorem for complex crystallographic Coxeter
groups. (Russian) Funktsional. Anal. I Prilozhen. 12, 79–80 (1978)

3. Bernstein, J., Schwarzman, O.: Complex crystallographic coxeter groups and affine root sys-
tems. J. Nonlinear Math. Phys. 13, 163–182 (2006)

4. Bernstein, J., Schwarzman, O.: Chevalley’s theorem for the complex crystallographic groups.
J. Nonlinear Math. Phys. 13, 323–351 (2006)

5. Cohen, A.M.: Finite complex reflection groups. Ann. Sci. Ecole Norm. Sup. 9(4), 379–436
(1976). Erratum, 11, 613 (1978)

6. Connor, T., Leemans, D.: An atlas of subgroup lattices of finite almost simple groups. Ars
Math. Contemp. 8, 259–266 (2015)

7. Deraux,M.:Non-arithmetic lattices fromaconfigurationof elliptic curves in anAbelian surface.
Comment. Math. Helv. 93, 533–554 (2018)

8. Levy, S.: The eightfold way. The beauty of Klein’s quartic curve. Mathematical Sciences
Research Institute Publications, vol. 35, x+331 pp. Cambridge University Press, Cambridge
(1999)

9. Friedman, R., Morgan, J.W., Witten, E.: Principal G-bundles over elliptic curves. Math. Res.
Lett. 5, 97–118 (1998)

10. Goryunov, V., Man, S. H.: The complex crystallographic groups and symmetries of J10, Sin-
gularity theory and its applications. In: Advanced Studies in Pure Mathematics, vol. 43, pp.
55–72. Mathematics Society, Japan, Tokyo (2006)

11. Kac, V.G., Peterson, D.H.: Infinite-dimensional Lie algebras, theta functions and modular
forms. Adv. Math. D 53, 125–264 (1984)

12. Klein, F.: Über die transformationen siebenter ordnung der elliptischen Funktionen.Math. Ann.
14, 428–471: Œuvres. Tome III, 90–136 D (1879)

13. Koziarz, V., Rito, C., Roulleau, X.: The bolza curve and some orbifold ball quotient surfaces.
Mich. Math. J. 70, 423–448 (2021)

14. Kaneko, J., Tokunaga, S., Yoshida, M.: Complex crystallographic groups II. J. Math. Soc. Jpn.
34(1982), 595–605 (1982)

15. Looijenga, E.: Root systems and elliptic curves. Invent. Math. 38, 17–32 (1976/77)
16. Grayson, D., Stillman, M.: Macaulay2, a software system for research in algebraic geometry.

www.math.uiuc.edu/Macaulay2/
17. Mazur, B.: Arithmetic on curves. Bull. Am. Math. Soc. (N.S.) 14, 207–259 (1986)
18. Popov, V.L.: Discrete complex reflection groups. Communications of the Mathematical Insti-

tute, Rijksuniversiteit Utrecht, 15. Rijksuniversiteit Utrecht, Mathematical Institute, Utrecht,
89 pp (1982)

19. Švarcman, O.V.: AChevalley theorem for complex crystallographic groups generated by reflec-
tions in the affine space C

2. Uspekhi Mat. Nauk 34, 249–250 (1979)
20. Shvartsman, O.V.: Cocycles of complex reflection groups and the strong simple-connectedness

of quotient spaces. In: Problems in Group Theory and Homological Algebra, Yaroslav, pp. 32–
39. Gos. University, Yaroslavl (1991)

21. Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Canad. J.Math. 6, 274–304 (1954)
22. Tokunaga, S., Yoshida, M.: Complex crystallographic groups I. J. Math. Soc. Jpn. 34(1982),

581–593 (1982)
23. Wirthmüller, K.: Root systems and Jacobi forms. Compos. Math. 82, 293–354 (1992)

www.math.uiuc.edu/Macaulay2/


Some Observations on the Dimension
of Fano K-Moduli

Jesus Martinez-Garcia and Cristiano Spotti

Abstract In this short note we show the unboundedness of the dimension of the
K-moduli space of n-dimensional Fano varieties, and that the dimension of the stack
can also be unbounded while, simultaneously, the dimension of the corresponding
coarse space remains bounded.

Keywords K-stability · K-moduli · Fano varieties

1 Main Statement

Moduli spaces of K-stable Fano varieties have been intensively investigated in the
last decade, both from a general theory point of view as well as via the study of
explicit examples. There are two objects of interest, the moduli stack of K-semistable
Fano varieties MK and its good moduli space, in the sense of Alper, MK which
parametrises K-polystable varieties. We refer the reader to [16] for a survey in the
construction of these objects in the case of smoothable varieties (cf. [17]) and to
[11] for the most recent construction in the general case. In this note, we observe the
following:

Theorem 1.1 For each n > 1 the dimension (as a variety) of the K-moduli spaces
MK of n-dimensional Fano varieties is unbounded. Moreover, the dimension of the
K-moduli stackMK can be arbitrarily big, while the dimension of its coarse variety
MK remains bounded.

Here, for dimension of the K-moduli stack MK at a given K-polystable point [X ]
we mean the difference between the dimension of the versal space of (K-semistable)
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Q-Gorenstein deformations of the variety X minus the dimension of its reductive
automorphism group, cf. [15, Sect. 0AFL].

It is well-known that smooth Fano manifolds, and more generally ε-log terminal
Fano varieties (where ε > 0 is fixed), form a bounded family in a fixed dimension
[4]. Thus to construct such examples we need to consider non-smoothable varieties
whose Kawamata log terminal (klt) singularities get worse and worse.

Ourmain theorem is a quick consequence of these twodimensional easy examples.

Proposition 1.2 Consider the following two families of K-polystable normal sur-
faces:

1. Xl := (P1 × P
1)/Zl , for l ≥ 2, where the generator 1 of the cyclic group Zl acts

by
([z0 : z1], [w0 : w1]) �→ ([ζ z0 : z1], [ζ−1w0 : w1]),

where ζ is a primitive l-root of unity.
2. Yl := P

2/Zl for l ≥ 3, l odd, where the generator 1 of the cyclic group Zl acts by

[z0 : z1 : z2] �→ [ζ z0 : ζ−1z1 : z2],

where ζ is a primitive l-root of unity.

Then

1. the dimension as a variety of the K-moduli space MK at [Xl] is equal to 2l − 3
if l �= 2, 4, and equal to 2 (resp. 6) for l = 2 (resp. l = 4).

2. the dimension of the K-moduli stack MK at [Yl ] is equal to l − 3 for l �= 3, 9 and
equal to 4 (resp. 8) for l = 3 (resp. 9). However, [Yl] is an isolated K -polystable
point for l �= 3, 9.

The surfaces Xl with l = 2, 4 and Yl with l = 3, 9 are actually Q-Gorenstein
smoothable and they appear in the boundary of K -moduli of smooth del Pezzo
surfaces of degree 4, 2, 3 and 1 respectively [13, (Example 5.7, (4.3), Example
3.10)].

Note that if we had considered Yl for l even, we would have a Z2 subgroup
fixing the line z2 = 0 (thus the more natural way to think about the quotient is as a
pair (X, D), considering the line at infinity with weight 2

l ). This pair will be only
log-K-polystable, not X .

Proof (Proof of Theorem 1.1) It simply follows by taking X̃l = Xl × P
n−2. Of

course, being the product of two K -polystable varieties, such n-dimensional vari-
eties are still K -polystable [18] and hence the dimension of the K -moduli spaces at
[X̃l] tends to infinity with l. Similarly, one may take Ỹl = Yl × P

n−2 and have that
the moduli stack has arbitrary dimension while [Ỹl] is still an isolated K-polystable
point. Note, moreover, that Yl (or Ỹl ) for l �= 3, 9 actually give examples where theK-
moduli reduces to a point while there are many non isomorphic strictly K-semistable
Fano varieties around Yl (we are unaware if a similar phenomenon can occur for
smooth Fano manifolds too; note that Yl has klt singularities).



Some Observations on the Dimension of Fano K-Moduli 611

These are toric examples, thus they suggest the following problem:

Problem 1.3 Study in detail the local theory ofK-moduli of toric del Pezzo surfaces.

We expect that such investigations are interesting and important when studying
moduli spaces of non-necessarily Q-Gorenstein smoothable del Pezzo surfaces.

The proof of the above Proposition is based on the local study of K-stability
for Q-Gorenstein deformations of the surfaces, which is possible even in this non-
smoothable setting thanks to the recent works [5, 6]. This type of computations have
been performed for the Q-Gorenstein smoothable cases of the above examples in
[13]. A similar strategy to show interesting behaviour of K-moduli spaces near toric
varieties has also been considered in [8] to show that the moduli can be reducible
and non-reduced.

After writing up a first draft of this problem in late December 2020, we found
out that the first example in Proposition 1.2 was considered a few weeks before in
[10], when studying the K-stability of hypersurfaces in P(1, 1, a, a). We would like
to thank A. Petracci for having a look at an early draft of our manuscript and giving
us very useful comments which improved our manuscript.

2 Proof of Proposition 1.2

Proposition 1.2 is a consequence of the next few lemmas.

Lemma 2.1 For the surface Xl above we have that Sing(Xl) = {2Al−1, 21
l (1, 1)},

and the connected component to the identity is Aut0(Xl) = (C∗)2. Similarly for Yl

we have that Sing(Yl) = {Al−1, 21
l (1, 2)} and Aut0(Yl) = (C∗)2.

Proof Let’s consider the Yl case (Xl is completely analogous and we omit it). The
singularities of Yl correspond to points onP2 whereZl acts with non-trivial stabilizer.
Near [0 : 0 : 1] the action hasweight (1,−1) resulting in a Al−1 canonical singularity.
Similarly near the points [1 : 0 : 0] and [0 : 1 : 0] the action as weight (1, 2) resulting
in 1

l (1, 2) quotient singularities The statement about the automorphism follows by
noting that Aut0(Yl) ∼= Aut0(P2; S) ∼= (C∗)2, where S = {[0 : 0 : 1], [1 : 0 : 0], [0 :
1 : 0]} and Aut0(P2; S) is the connected component of the automorphism group
containing the identity and fixing the subset S. For a similar computation see [12,
Lemma 3.1].

Remark 2.2 Note that there is no ε > 0 such that the non-Du Val singularities of
the set of varieties {Xl}l�2 and {Yl}l�3, l odd, are ε-log terminal. Indeed, each of the
two singular points 1

l (1, 1) in Xl is locally analytically isomorphic to the affine
cone over the rational normal curve Cl ⊂ P

l and its resolution has exceptional locus
E ∼= P

1 with E2 = −l. It follows that their log discrepancies equal to 2
l − 1 → −1

as l → ∞, and moreover −K Xl is Q-Cartier (with Cartier index going to infinity)
with (−K Xl )

2 = 8
l → 0 as l → ∞, and similarly for Yl .
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Lemma 2.3 Xl and Yl are K-polystable Fano variety whose space of Q-Gorenstein
deformations are given by

1. qDef(Xl) ∼= qDef(Al−1) ⊕ qDef(Al−1) ∼= C
2(l−1) for l �= 2, 4.

2. qDef(Yl) ∼= qDef(Al−1) ∼= C
(l−1) for l �= 3, 9.

Proof (Proof of Lemma 2.3) Yl (and Xl) is a K-polystable del Pezzo surface as Zl

acts by isometries with respect to the Fubini-Study metric in P2 (with respect to the
product in P

1 × P
1 of the product of the Fubini-Study metrics in P

1, respectively).
Hence, both Xl and Yl inherit an (orbifold) Kähler-Einstein metric and consequently
they are K-polystable by [3].

By [1, Lemma 6], it follows that there are no local-to-global obstructions to Q-
Gorenstein deformations on del Pezzo surfaces. Since Xl is toric it does not admit
equisingular deformations (i.e. non-trivial deformations to a non-isomorphic pro-
jective variety with the same singularities), e.g., [14, Lemma 4.4]. Hence all Q-
Gorenstein deformations must come from local Q-Gorenstein deformations of the
singularities. Thus

qDef(Yl) =
∏

p∈Sing(Yl )

qDef(p) (1)

and similar for Xl .
Note that any deformation of Al−1 isQ-Gorenstein and given by the versal family

xy = zl + al−2zl−2 + · · · + a0. Hence the vector (a0, a1, . . . , al−2) defines a point
in qDef(Al−1) and qDef(Al−1) ∼= C

l−1. The proof follows from Lemma 2.1, once
we show that qDef(p) = {0} for p non-Du Val. We will do this for Yl , since the case
of Xl is very similar.

We claim the two 1
l (1, 2) singularities of Yl are Q-Gorenstein rigid (i.e. they do

not admit Q-Gorenstein deformations) if l �= 3, 9, and Q-Gorenstein smoothable
otherwise. Let w = hcf(l, 3), r > 0 such that l = wr , m � 0 and 0 � w0 < r such
that w = mr + w0. It is well known (see e.g. [1]) that a quotient singularity 1

l (1, 2)
is Q-Gorenstein rigid if and only if m = 0, or equivalently if w = w0. Moreover,
1
l (1, 2) is Q-Gorenstein smoothable (often known as a T-singularity) if and only if
w0 = 0 and a primitive T-singularity if in addition m = 1.

The number w = hcf(l, 3) can only be 1 or 3. If w = 1, then l = wr = r and
1 = w = mr + w0 implies that m = 0 so 1

l (1, 2) is Q-Gorenstein rigid. If w = 3
then l = 3k for some k ∈ N but in fact, that means that l = 3k = wr = 3r , so l = 3r .
If r = 1 then m = 1 and w0 = 0 so 1

3 (1, 2) is a primitive T-singularity. The case
r = 2 is excluded, otherwise l would be even. If r = 3, then m = 1 and w0 = 0 and
1
9 (1, 2) is Q-Gorenstein smoothable. If r � 4, (r odd) then m = 0 and 1

3r (1, 2) is
Q-Gorenstein rigid. Hence, whenever l �= 3, 9 we have qDef( 1l (1, 2)) = {0}.

For Xl similar computations show that the singularities 1
l (1, 1) areQ-Gorenstein

rigid for l �= 2, 4.

Remark 2.4 For l = 2, Xl has four A1 singularities giving a four dimensional versal
space of deformation. For l = 4, the deformation space has (beside the deformations
coming from the two A3 singularities) Q-Gorenstein deformations coming from the
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one dimensional family ofQ-Gorenstein smoothings of the 1
4 (1, 1) singularities. For

l = 3, Yl is just the unique cubic surface with 3A2-singularities, given by xyz = t3

(and the only strictly K-polystable surface in the K-moduli of del Pezzo surfaces
of degree 3). The case l = 9 was studied in [13, Example 3.10] and it appears in
the boundary of the K-moduli compactification of smooth del Pezzo surfaces of
degree 1.

Lemma 2.5 The natural action of G = Aut0(Xl) ∼= (C∗)2 (G ′=Aut0(Yl) ∼= (C∗)2)
on qDef(Xl) (respectively qDef(Yl)) for l �= 2, 4 (resp. l �= 3, 9) is not effective.
Moreover:

1. The action on qDef(Xl) ∼= C
2(l−1) of G/ ∩x (Gx ) ∼= C

∗ with t = λ1λ2 ∈ G/ ∩x

(Gx ), is given by

(a0, a1, . . . , al−2, a
′
0, . . . , a

′
l−2) �→ (tla0, tl−1a1, . . . , t2al−2, t−l a

′
0, . . . , t−2a

′
l−2);

2. The action on qDef(Yl) ∼= C
l−1 of G ′/ ∩x (G ′

x )
∼= C

∗ with t = λ1λ2 ∈ G ′/ ∩x

(G ′
x ), is given by

(a0, a1, . . . , al−2) �→ (t la0, t l−1a1, . . . , t2al−2).

Proof Let us start with Yl . In local coordinates near the Al−1-point [0 : 0 : 1]we can
take coordinates on Aut0(Yl) ∼= (C∗)2-action such that the action is just given by

(u, v) �→ (λ−1
1 u, λ−1

2 v).

Taking invariants for the Zl -action x = ul , y = vl and z = uv, we get the induced
action on the Al−1-quotient singularity xy = zl given by (λ−l

1 x, λ−l
2 y, (λ1λ2)

−1z).
Considering then the natural action induced on the versal deformation family of the
singularity xy = zl + al−2zl−2 + · · · + a0, we get that

(a0, a1, . . . , al−2) �→ ((λ1λ2)
la0, (λ1λ2)

l−1a1, . . . , (λ1λ2)
2al−2).

In particular note that the action is non effective since the action of the subtorus
(s, s−1) ⊆ (C∗)2 is clearly trivial. Finally, putting t = λ1λ2 we obtain our statement
for Yl .

The statement for Xl is completely analogous, but (crucially) noticing that if we
take coordinates on Aut0(Xl) to be such that near the point ([0 : 1], [0 : 1]) the action
is again by given by (u, v) �→ (λ−1

1 u, λ−1
2 v), then near the point ([1 : 0], [1 : 0]) one

get an action with opposite weights. From there the statements follows immediately.

Descriptions of the local actions for the smoothable cases of Xl and Yl can be
found in [13]. Also note that since the above action is not effective (with a C

∗ as
stabilizer) all the small deformations will have a residual C∗-action on them.
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Lemma 2.6 When l �= 2, 4 the K-moduli space near [Xl] is (étale locally) described
by the affine GIT quotient C2(l−1)//C∗, where the C

∗-action is given as in Lemma
2.5. Similarly for Yl when l � 4 l �= 9, the K-moduli space near [Yl] is (étale locally)
described by the affine GIT quotient Cl−1//C∗,

Proof Any Q-Gorenstein deformation of Xl and Yl is still a Fano variety since the
canonical KX of the total space of a deformation X is Q-Cartier and ampleness is
an open condition. Moreover, the deformation is singular, since it is flat and K 2

X /∈
Z (alternatively, as pointed out by a referee, it is singular because there are rigid
singularities). Then the characterization of those varieties in the deformation which
are K -polystable follows by the local GIT description of non-necessarily smoothable
Fano varieties in [5, Proof of Theorem 4.5], cf. [2, Remark 2.11], where it is shown
that K -semistability is an open condition and that K -polystability can be checked
locally by considering the action of the automorphisms.

We are now ready to conclude the proof of our Proposition 1.2:

Proof (Proof of Proposition 1.2). ForYl it is clear that all points near zero in qDef(Yl)

are K-semistable by openness. However, note that all such points are destabilized to
zero since

lim
t→0

(t la0, . . . , t2al−2) = 0.

Hence only 0 is GIT polystable, and Yl is an isolated K-polystable variety. However,
by [15, Lemma 98.12.1], the dimension of the stack at the point Yl is equal to

dimYl (MK ) = dim qDef(Yl) − dimAut(Yl) = (l − 1) − 2 = l − 3.

For Xl it is now sufficient to compute the dimension (as a variety) of the GIT
quotient C2(l−1)//C∗ above. But it is clear that the generic orbit is closed (with no
further stabilizer). Indeed, if coordinates a j and a′

j in Lemma 2.5 are all non-zero,

then the orbits are given by the closed set a j a
′
j = c j �= 0, with j = 0, . . . , l − 2.

Hence dimCMK near [Xl] is simply given by 2(l − 1) − 1 = 2l − 3 as claimed.

Observe that if we consider a deformation of Xl which smooths only one of the
two Al−1 singularities, the resulting variety is strictly K-semistable and never K-
polystable, since in order to obtain K-polystable varieties we need to deform the two
Al−1 singularities simultaneously by the same computation as for the Yl case in the
last paragraph of the proof of Proposition 1.2.

Note also that for Xl , l �= 2, 4, since the action is not effective, we also have a
discrepancy between the dimension of the stack and the dimension of the coarse
space (which is then one dimension bigger than expected).
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3 Some Final Comments

The general small deformation Xt of Xl is then a K-polystable variety which is also
Kähler-Einstein by [9]. Moreover the second Betti number gets bigger and bigger as
l goes to infinity: indeed, smoothing out an Al−1-singularity introduces a chain of
S2 of length l − 1, giving distinct homological classes. Hence:

Corollary 3.1 There are K-polystable/Kähler-Einstein del Pezzo surfaces with arbi-
trarily big second Betti number.

Weshould also observe that thismoduli space corresponds to themoduli ofKähler-
Einstein orbifolds with positive cosmological constant, hence giving also examples
of moduli spaces of positive Einstein orbifolds of unbounded dimension. Thus, from
a more differential geometric perspective, it would be interesting to know if a bound
on the second Betti number would instead force the dimension of the moduli spaces
of such metrics to stay bounded.

Finally, note that the unboundedness of the dimension can be avoided by bounding
below either the volume or the singularities. Indeed, that is what [7] proves, where
the measure of boundedness used for the singularities is the alpha-invariant. This
does not contradict our example, as we had that K 2

Xl
→ 0 as l grows and the log

discrepancies were monotonously decreasing with l towards−1.What is remarkable
of this example is not that a bound below on the volume or the singularities are
required to achieve boundedness of families, there were plenty of examples of this
behaviour in [7]. What is remarkable is that removing such bounds not only gives an
infinite number of families (whose dimension, one may think could, in principle, be
uniformly bounded), but it also gives infinite dimension of the moduli.
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Okounkov Bodies and the Kähler
Geometry of Projective Manifolds

David Witt Nyström

Abstract Given a projective manifold X equipped with an ample line bundle L ,
we show how to embed certain torus-invariant domains D ⊆ C

n into X so that the
Euclidean Kähler form on D extends to a Kähler form on X lying in the first Chern
class of L . This is done using Okounkov bodies �(L), and the image of D under the
standard moment map will approximate �(L). This means that the volume of D can
be made to approximate the Kähler volume of X arbitrarily well. As a special case
we can let D be an ellipsoid. We also have similar results when L is just big.

Keywords Okounkov bodies · Kahler currents

1 Introduction

In toric geometry there is a beautiful correspondence between Delzant polytopes �

and toric manifolds X� equipped with an ample torus-invariant line bundles L�.
This is important since many properties of L� can be read directly from the polytope
�.Okounkov found in [16, 17] a generalization of sorts, namely a way to associate a
convex body �(L) to an ample line bundle L on a projective manifold X , depending
on the choice of a flag of smooth irreducible subvarieties in X . In the toric case, if
one uses a torus-invariant flag, one essentially gets back the polytope �. The convex
bodies�(L) are now called Okounkov bodies. Theywere popularized by the work of
Kaveh-Khovanskii [7, 8] and Lazarsfeld-Mustaţă [13], where it was shown that the
constructionworks in far greater generality, e.g. big line bundles (for more references
see the exposition [2]).

Recall that the volume of a line bundle measures the asymptotic growth of
h0(X, kL) := dimC H 0(X, kL):
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vol(L) := lim sup
k→∞

n!
kn

h0(X, kL).

L is then said to be big if vol(L) > 0. When L is ample or nef, asymptotic Riemann-
Roch together with Kodaira vanishing shows that vol(L) = (Ln). This is not true in
general, since (Ln) can be negative while the volume always is nonnegative.

The key fact about Okounkov bodies is that they capture this volume:

vol(L) = n!vol(�(L)). (1)

Here the volume of the Okounkov body is calculated using the Lebesgue measure.
This means that results from convex analysis, e.g. the Brunn-Minkowski inequality,
can be applied to study the volume of line bundles.

In the toric setting, a fruitful way of thinking of � is to treat it as the image of
a moment map. There is a holomorphic (C∗)n-action on X� which lifts to L� and
choosing an (S1)n-invariant Kähler form ω� ∈ c1(L�) gives rise to a symplectic
moment map μω�

whose image can be identified with �.
Building on joint work with Harada [4], Kaveh shows in the recent work [6]

how Okounkov body data can be used to gain insight into the symplectic geometry
of (X,ω), where ω is some Kähler form in c1(L) (it does not matter which Käh-
ler form ω ∈ c1(L) one uses since by Moser’s trick all such Kähler manifolds are
symplectomorphic).

In short, Kaveh constructs symplectic embeddings fk : ((C∗)n, ηk) ↪→ (X,ω)

where ηk are (S1)n-invariantKähler forms that depend on data related to a certain non-
standardOkounkovbody�(L) (i.e. the order onNn used is not the lexicographic one).
As k tends to infinity the image of the corresponding moment map will fill up more
and more of �(L), showing that the symplectic volume of ((C∗)n, ηk) approaches
that of (X,ω). Just as in [4] the construction uses the gradient-Hamiltonian flow
introduced by Ruan [18], and is thus fundamentally symplectic in nature.

1.1 Main Results

We first introduce the following notion:

Definition 1.1 We say that a Kähler manifold (Y, η) fits into a polarized projective
manifold (X, L) if for every relatively compact open set U ⊆ Y one can choose a
holomorphic embedding f of U into X so that f∗η extends to some Kähler form ω
on X lying in c1(L). If dimC Y = dimC X = n and

∫
Y

ηn =
∫

X
c1(L)n

we say that (Y, η) fits perfectly into (X, L).
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The special case of (Cn, η) (η being some nonstandard S1-invariant Kähler form)
fitting into (X, L) was considered in [20].

Let
μ(z) := (|z1|2, . . . , |zn|2),

which we note is a moment map of (Cn,ωst )with respect to the standard torus-action
(here ωst := ddc|z|2 denotes the standard Euclidean Kähler form on Cn).

Pick a complete flag X• := X = X0 ⊃ X1 ⊃ Xn−1 ⊃ Xn = {p} of smooth irre-
ducible subvarieties. One can then define the associated Okounkov body �(L). We
introduce the notion of the Okounkov domain D(L) ⊆ C

n which is a torus-invariant
domain with the property that

�(L)◦ ⊆ μ(D(L)) ⊆ �(L),

(where in general both inclusions are strict). We note that by (1)

∫
D(L)

ωn
st =

∫
X

c1(L)n. (2)

Theorem A. We have that (D(L),ωst ) fits perfectly into (X, L). For any relatively
compact subset U ⊂ D(L) we can furthermore choose the embedding f : U → X
so that

f −1(Xi ) = {z1 = ... = zi = 0} ∩ U.

So on ( f (U ), f∗ωst ) ⊆ (X,ω) there is a torus-action with moment map μ ◦ f −1

whose image approximates �(L) and for any ε > 0 we can choose U so that

∫
f (U )

ωn > (1 − ε)

∫
X

ωn.

These results are still true if we use some nonstandard additive order on N
n to

define theOkounkov body�(L). Of particular interest here is the deglex order, which
gives rise to the infinitesimal Okounkov bodies that appear in [13] and in the recent
work of Küronya-Lozovanu [10, 11].

When L is very ample there is a particular choice of flag X• which makes D(L)

an ellipsiod, namely the ellipsiod E(1, . . . , 1, (Ln)) defined by the inequality

n−1∑
i=1

|zi |2 + (Ln)−1|zn|2 < 1.

This leads to the following theorem.

Theorem B. If L is very ample, then we have that (E(1, . . . , 1, (Ln)),ωst ) fits
perfectly into (X, L), and the associated embeddings can be chosen to be centered
at any point p ∈ X .
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There is an interesting connection between this result and the notion of Seshadri
constants.

Recall the definition of the Seshadri constant ε(X, L , p), introduced by
Demailly [3].

Definition 1.2 The Seshadri constant of an ample line bundle L at a point p is given
by

ε(X, L , p) := inf
C

L · C

multpC
,

where the infimum is taken over all curves C in X.

One can show that the Seshadri constant ε(X, L , p) also measures the maximal
size of embedded balls centered at p such that the restricted Kähler structure is
standard.

Theorem 1.3 We have that ε(X, L , p) is equal to the supremum of r such that
(Br , 0,ωst ) fits into (X, L) with the embeddings centered at p.

This result can be extracted from Lazarsfeld [12] (see Theorem 5.1.22 and
Proposition 5.3.17); the main argument is due to McDuff-Polterovic [14].

From Theorem 1.3 follows the inequality

ε(X, L , p) ≤ (Ln)
1
n .

When this inequality is strict for (X, L , p) (which is the general case) it means that no
ball (Br , 0,ωst ) can fit perfectly into (X,ωL) centered at p. Nevertheless TheoremB.
says that one always can find an ellipsoid which fits perfectly into (X,ωL) centered
at p.

Let �(L) be an infinitesimal Okounkov body at p and D(L) the corresponding
Okounkov domain. One can easily show that

ε(X, L , p) = sup{r : Br ⊆ D(L)}

so thus Theorem A. can be thought of as strengthening of Theorem 1.3.
The proof of Theorem A. relies on finding suitable toric degenerations. Here

we follow [1], but as in [5, 6] we do not degenerate the whole section ring R(L)

but rather H 0(X, kL) for fixed k. We couple the degeneration with a max con-
struction to find a suitable positive hermitian metric of L , whose curvature form
will provide the appropriate Kähler form ω in the theorem. We recently used this
technique to construct Kähler embeddings related to canonical growth conditions
[20, Theorem C].
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1.2 The Big Case

We have similar results when L is just big. Then there are no longer any Kähler forms
in c1(L) so instead we use Kähler currents in c1(L) with analytic singularities.

Definition 1.4 If L is big we say that a Kähler manifold (Y, η) fits into (X, L) if
for every relatively compact open set U ⊆ Y there is a holomorphic embedding f
of U into X such that f∗η extends to a Kähler current with analytic singularities on
X lying in c1(L). If dimC Y = dimC X = n and

∫
Y

ηn =
∫

X
c1(L)n,

then we say that (Y, η) fits perfectly into (X, L).

Theorem C. Wehave that (D(L),ωst )fits perfectly into (X, L).Wecan furthermore
choose each embedding f : U → X (U ⊂ D(L)) so that

f −1(Xi ) = {z1 = · · · = zi = 0} ∩ U.

1.3 Related Work

The work of Kaveh [6] which inspired this paper has already been mentioned. This
built on joint work with Harada [4], which in turn used the work of Anderson [1] on
toric degenerations.

Anderson showed in [1] how, given some assumptions, the data generating the
Okounkov body also gives rise to a degeneration of (X, L) into a possibly singular
toric variety (X�, L�), where � = �(L) (the assumptions force �(L) to be a poly-
tope, which is not the case in general). In their important work [4]Harada-Kaveh used
this to, under the same assumptions, to construct a completely integrable system {Hi }
on (X,ω), with ω a Kähler form in c1(L), such that �(L) precisely is the image of
the moment map μ := (H1, . . . , Hn). More precisely, they find an open dense subset
U and a Hamiltonian (S1)n-action on (U,ω) such that the corresponding moment
map μ := (H1, . . . , Hn) extends continuosly to the whole of X . Their construction
uses the gradient-Hamiltonian flow introduced by Ruan [18].

In the recent work [20], given an ample line bundle L and a point p ∈ X , we
show how to construct an (S1)-invariant plurisubharmonic function φL ,p on Tp X ,
such that the corresponding growth condition φL ,p + O(1) is canonically defined.
We then prove that the growth condition provides a sufficient condition for certain
Kähler balls (B1, η) to be embeddable into some (X,ω) with ω ∈ c1(L) and Kähler
[20, Theorem D].

The very general Seshadri constant ε(X, L; 1) is defined as the supremum of
ε(X, L; p) over all points p of X , which is the same as the Seshadri constant at
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a very general point. In [5] Ito proved that if � is an integer polytope such that
1
k � ⊂ �(L) then

ε(X, L; 1) ≥ 1

k
ε(X�, L�; 1).

He did this using the same kind of toric degeneration as was later used by Kaveh in
[6] and that we use here. One can easily show that this also follows from our results.
This illustrates the difference between our results and those of Kaveh in [6]. Since
Kaveh’s construction is symplectic that only implies the weaker symplectic version
of Ito’s theorem, namely the corresponding lower bound on the Gromov width [6,
Corollary 8.4].

2 Okounkov Bodies and Domains

Let L be a big line bundle on a projective manifold X . Choose a complete flag
X = X0 ⊃ X1 ⊃ Xn−1 ⊃ Xn = {p} of smooth irreducible subvarieties Xi such that
codimXi = i . We can then choose local holomorphic coordinates zi centered at p
such that in some neighbourhood U of p,

Xi ∩ U = {z1 = · · · = zi = 0} ∩ U.

Also pick a local trivialization of L near p. Locally near p we can then write any
section s ∈ H 0(X, kL) as a Taylor series

s =
∑

α

aαzα.

When s is nonzero we let

v(s) := min{α : aα = 0},

where the mininum is taken with respect to the lexicographic order (or some other
additive order of choice). The Okounkov body �(L) of L (for ease of notation the
dependence of the flag is usually not written out) is then defined as

�(L) := Conv

({
v(s)

k
: s ∈ H 0(X, kL) \ {0}, k ≥ 1

})
.

Here Conv means the closed convex hull.

Remark 2.1 Another natural choice of order on Nn to use is the deglex order. This
means that α < β if |α| < |β| (|α| := ∑

i αi ) or else if |α| = |β| and α is less than
β lexicographically. If one uses this order to define the Okounkov body, this will
only depend on the flag of subspaces of Tp X given by Tp Xi , and it will be equivalent



Okounkov Bodies and the Kähler Geometry of Projective Manifolds 623

to the infinitesimal Okounkov body considered in [13] and in the recent work of
Küronya-Lozovanu [10, 11] (see [20]).

Let us define
A(kL) := {v(s) : s ∈ H 0(X, kL) \ {0}}.

By elimination we can find sections sα ∈ H 0(X, kL), α ∈ A(kL), such that

sα = zα +
∑

β>α,β /∈A(kL)

aβzβ .

If
s =

∑
α∈A(kL)

aαzα +
∑

β /∈A(kL)

aβzβ

then we must have that
s =

∑
α∈A(kL)

aαsα,

because otherwise we would have that v(s − ∑
aαsα) /∈ A(kL). It follows that sα is

a basis for H 0(X, kL) so
|A(kL)| = h0(X, kL), (3)

where |A(kL)| denotes the number of points in A(kL).
If s = zα1 + ∑

β>α1
aβzβ and t = zα2 + ∑

β>α2
bβzβ , then

st = zα1+α2 +
∑

β>α1+α2

cβzβ

and hence v(st) = v(s) + v(t). This implies that for k, m ∈ N :

A(kL) + A(mL) ⊆ A((k + m)L) (4)

and thus
�(L) :=

⋃
k≥1

A(kL) × {k} ⊆ N
n+1

is a semigroup.
Combined with a result by Khovanskii [9, Proposition 2] it leads to the proof of

the key result (see e.g. [7, 8] or [13]).

Theorem 2.2 We have that

vol(L) = n!vol(�(L)),

where the volume of �(L) is calculated using the Lebesgue measure.
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From this we see that when X has dimension one, �(L) is an interval of length
deg(L). When L is ample one gets that 0 ∈ �(L) and thus

�(L) = [0, deg(L)]. (5)

Let

�k(L) := 1

k
Conv(A(kL)).

From (4) we see that for k, m ∈ N :

�k(L) ⊆ �km(L). (6)

The following lemma is also an immediate consequenceof the result ofKhovanskii
(see e.g. [19, Lemma 2.3]).

Lemma 2.3 Let K be a compact subset of �(L)◦. Then for k > 0 divisible enough
we have that

K ⊂ �k(L).

From this it follows that

�(L)◦ =
⋃
k≥1

�k(L)◦.

Let�k(L)ess denote the interior of�k(L) as a subset ofRn
≥0 with its induced topology.

Definition 2.4 We define the essential Okounkov body �(L)ess as

�(L)ess :=
⋃
k≥1

�k(L)ess .

By (6) we get that for any k, m ∈ N, �k(L)ess ⊆ �km(L)ess and thus

�(L)ess =
⋃
k≥1

�k!(L)ess .

We also see that �k!(L)ess is increasing in k which then implies that �(L)ess is an
open convex subset of Rn

≥0.

Lemma 2.5 Let K be a compact subset of �(L)ess . Then for k > 0 divisible enough
we have that

K ⊂ �k(L)ess .

This is proved in the same way as Lemma 2.3.
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It is easy to see that
�(L) ∩ {x1 = 0} ⊆ �(L |X1),

where �(L |X1) is defined using the induced flag X1 ⊃ X2 ⊃ ... ⊃ Xn . When L is
ample the restriction map from H 0(X, Lk) to H 0(X1, L |X1) is surjective for k large
enough (see e.g. [12]), hence we have an equality

�(L) ∩ {x1 = 0} = �(L |Y1). (7)

Let L1 denote the holomorphic line bundle associated with the divisor X1. An
important fact, proved by Lazarsfeld-Mustaţă in [13] is that

�(L) ∩ {x1 ≥ r} = �(L − r L1) + re1. (8)

For a ∈ R
n we let�a denote the convex hull of {0, a1e1, a2e2, . . . , anen} and�ess

a
the interior of �a as a subset of Rn

≥0.

Proposition 2.6 If L is very ample, then there is a flag X = X0 ⊃ X1 ⊃ · · · ⊃ Xn =
{p} of smooth irreducible subvarieties of X such that

�(L) = �(1,...,1,(Ln))

and
�(L)ess = �ess

(1,...,1,(Ln)).

Proof Since L is very ample, we can find a flag X = X0 ⊃ X1 ⊃ · · · ⊃ Yn = {p}
of smooth irreducible subvarieties of X such that for each i ∈ {1, . . . , n} the line
bundle L |Xi−1 is associated with the divisor Xi in Xi−1.

From repeated use of (7) and (8) we get that

�(L) ∩ {x1 = r1, . . . , xn−1 = rn−1} =�

((
1 −

∑
i

ri

)
L |Xn−1

)

=
[
0,

((
1 −

∑
i

ri

))
(Ln)

]
,

using (5) and the fact that deg(L Xn−1) = (Ln). In other words,

�(L) = �(1,...,1,(Ln)).

Since
�(L |Yn−1)

ess = [0, (Ln)),
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we similarly get that
�(L)ess = �ess

(1,...,1,(Ln)).

�

Recall that
μ(z) := (|z1|2, . . . , |zn|2).

Definition 2.7 We define the Okounkov domain D(L) to be

D(L) := μ−1(�(L)ess).

We note that D(L) is a bounded domain inCn . We also note that when�(L)ess =
�ess

(1,...,1,(Ln)) we get that D(L) = E(1, . . . , 1, (Ln)), i.e. the ellipsoid defined by the
inequality

n−1∑
i=1

|zi |2 + (Ln)−1|zn|2 < 1.

3 Torus-Invariant Kähler Forms and Moment Maps

Let (M,ω) be a symplectic manifold. Assume that there is an S1-action on M which
preserves ω and let V be the generating vector field. We must have that LV ω = 0.
By Cartan’s formula we have that

d(ω(V, ·)) = LV ω − dω(V, ·) = 0,

so the one-form ω(V, ·) is closed. A function H is called a Hamiltonian for the
S1-action if

d H = ω(V, ·).

If H is a Hamiltonian, then clearly so is H + c for any constant c. If M has an
(S1)n-action which preserves ω, and each individual S1-action has a Hamiltonian
Hi , we call the map μ := (H1, . . . , Hn) a moment map for the (S1)n-action. There is
a more invariant way of defining the moment map so that it takes values in the dual
of the Lie algebra of the acting group, but we will not go into that here.

Let A ⊆ N
n be a finite set and assume that Conv(A)ess is nonempty. Let

DA := μ−1(Conv(A)ess) = μ−1(Conv(A))◦

and let XA denote the manifold we get by removing from C
n all the submanifolds

of the form {zi1 = · · · = zik = 0} which do not intersect DA. Then



Okounkov Bodies and the Kähler Geometry of Projective Manifolds 627

φA := ln

(∑
α∈A

|zα|2
)

is a smooth strictly psh function on XA and we denote by ωA := ddcφA the corre-
sponding Kähler form.

Note that we can write

φA(z) = uA(x) := ln

(∑
α∈A

ex ·α
)

,

where xi := ln |zi |2 and uA is a convex function on R
n .

Let us think of (XA,ωA) as a symplectic manifold. The symplectic form ωA is
clearly invariant under the standard (S1)n-action on XA and it is a classical fact that
μA : z �→ ∇u(x) is a moment map for this action. To see this we define uA(w) :=
uA(Rew) forw ∈ XA and note that uA is the pullback ofφA by the holomorphicmap
f : w → ew/2. We then have that f ∗ωα = ddcuα. The pullback of the vector field
generating the i :th S1-action is (2π)∂/∂xi , so to show that ∂/∂xi uα is a Hamiltonian
we need to establish that

d
∂

∂xi
uA = ddcuA((2π)∂/∂xi , ·).

This is easily checked using that

ddcuA = 1

2πi

∑
i, j

∂2u

∂xi∂x j
dwi ∧ dw̄ j .

Clearly
μA(C∗)n = Conv(A)◦

while
μA(XA) = Conv(A)ess .

Another classical fact is that for any open (S1)n-invariant set U ⊆ XA we have
that ∫

U
ωn
A = vol(μA(U )).

To see this, write f −1(U ) = V × (iR)n and thus

∫
U

ωn
A =

∫
V ×(i[0,2π])n

(ddcuA)n =
∫

V
det(Hess(u)) =

∫
∇u(V )

dx,
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where Hess(u) denotes the Hessian of u, and in the last step we used that this is equal
to the Jacobian of ∇u.

Lemma 3.1 Let U be a relatively compact open subset of DA. Then there exists a
smooth function g : XA → R with compact support such that ω := ωA + ddcg is
Kähler and on U we have that ω = ωst .

Proof Using Legendre transforms one can find a smooth (S1)n-invariant strictly
psh function φ on XA which is equal to |z|2 on U and such that the image of the
gradient of u(x) := φ(ex1/2, . . . , exn/2) is compactly supported in Conv(A)ess . One
sees then that φA − φ is proper on XA. Let C be a constant such that φ + C > φA
on D. Pick some δ > 0 and let maxreg(x, y) be a smooth convex function such
that maxreg(x, y) = max(x, y) whenever |x − y| > δ. Then φ′ := maxreg(φ + C +
δ,φA) is a smooth strictly psh function on XA which is equal to φ + C + δ on U
while being equal to φA outside of some compact set. It follows that g := φ′ − φA
has the desired properties. �

4 Kähler Embeddings of Domains

In the introduction we had the following definition.

Definition 4.1 We say that a Kähler manifold (Y, η) fits into (X, L) if for every
relatively compact open set U � Y there is a holomorphic embedding f of U into
X such that f∗η extends to a Kähler form on X lying in c1(L). If in addition

∫
Y

ηn =
∫

X
c1(L)n

then we say that (Y, η) fits perfectly into (X, L).

Recall that A(kL) := {v(s) : s ∈ H 0(X, kL)}.
Theorem 4.2 Assume that L is ample. Then for k large enough, (XA(kL),ωA(kL))

fits into (X, kL), and each associated Kähler embedding f : U → X can be chosen
so that

f −1(Xi ) = {z1 = · · · = zi = 0} ∩ U.

Before proving Theorem 4.2 we need a simple lemma.

Lemma 4.3 For any finite set A ⊆ N
n there exists a γ ∈ (N>0)

n such that for all
α ∈ A:

α < β ∈ N
n =⇒ α · γ < β · γ. (9)

This is a standard fact which is true for any additive order, see e.g. [1, Lemma 8].
It plays a key role in constructing toric degenerations.
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Proof Pick a number C ∈ N such that C > |α| for all α ∈ A. We claim that

γ :=
∑

i

(2C)n−i ei

has the desired property (9). Assume that α < β. By definition there is an index j
such that αi = βi for i < j while β j > α j . It follows that

(β − α) · γ =
∑

i

(2C)n−i (βi − αi ) = (2C)n− j (β j − α j ) +
∑
i> j

(2C)n−i (βi − αi ) ≥

≥ (2C)n− j − |α|
∑
i> j

(2C)n−i ≥ Cn− j > 0.

�

We can now prove Theorem 4.2. As in [6] the proof relies on a toric deformation,
given by a suitable choice of γ. However, instead of coupling it with a gradiant-
Hamiltonian flow, we finish the proof using a max construction. This is similar to
the proof of Theorem D in [20].

Proof Recall thatwehave local holomorphic coordinates zi centered at p.Weassume
that the unit ball B1 ⊂ C

n lies in the image of the coordinate chart z : V → C
n .

Let k be large enough so that Conv(A(kL)) has nonempty interior and let U be
a relatively compact open set in XA(kL).

Pick a basis sα for H 0(X, kL) indexed by A(kL) such that locally

sα = zα +
∑
β>α

aβzβ .

Pick a γ as in Lemma 4.3 with A := A(kL) and let τγz := (τγ1 z1, . . . , τγn zn). It
follows that

sα(τγz) = τα·γ(zα + o(|τ |)) (10)

for τγz ∈ B1.
Let f : XA(kL) → [0, 1] be a smooth function such that f ≡ 0 on U and f ≡ 1

on the complement of some smoothly bounded compact set K ⊆ XA(kL). Pick 0 <

δ � 1 such that
φ := φA(kL) − 4δ f

is still strictly psh. It follows from (10) thatwe can pick 0 < τ � 1 such that τγz ∈ B1

whenever z ∈ K and so that

φ > ln

⎛
⎝ ∑

α∈A(kL)

∣∣∣∣ sα(τγz)

τα·γ

∣∣∣∣
2
⎞
⎠ − δ
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on U while

φ < ln

⎛
⎝ ∑

α∈A(kL)

∣∣∣∣ sα(τγz)

τα·γ

∣∣∣∣
2
⎞
⎠ − 3δ

near ∂K .
Letmaxreg(x, y)be a smooth convex function such thatmaxreg(x, y) = max(x, y)

whenever |x − y| > δ. Then the regularized maximum

φ′ := max
reg

⎛
⎝φ, ln

⎛
⎝ ∑

α∈A(kL)

| sα(τγz)

τα·γ |2
⎞
⎠ − 2δ

⎞
⎠

is smooth and strictly plurisubharmonic on XA(kL), identically equal to φ onU while
identically equal to ln(

∑
α∈A(kL) | sα(τγ z)

τα·γ |2) − 2δ near the boundary of K . We get that

ω := ddcφ′

is equal to ωA(kL) on U .
If we assume that k is large enough so that kL is very ample then ln(

∑
α∈A(kL) |

sα(τγ z)
τα·γ |2) extends as a positive metric of kL and thus ω extends to a Kähler form in

c1(kL).
Since U was arbitrary this shows that (XA(kL),ωA(kL)) fits into (X, kL). We also

note that the embedding f of U into X was given by z �→ τγz, and thus we have that

f −1
R (Xi ) = {z1 = · · · = zi = 0} ∩ U.

�

We can now combine this result with Lemma 3.1 to obtain Theorem A..

Theorem A. Wehave that (D(L),ωst ) fits perfectly into (X, L) and each associated
Kähler embedding f : U → X can be chosen so that

f −1(Xi ) = {z1 = · · · = zi = 0} ∩ U.

Proof If U is a relatively compact open set in D(L) then by Lemma 2.5 for k > 0
divisible enough the closure of U is contained in μ−1(�k(L)ess), or in other words,√

kU is relatively compact in DA(kL), which is in turn relatively comapact in XA(kL).
Thus by Lemma 3.1 there exists a smooth function g : XA(kL) → R with support
on a relatively compact set U ′ such that ω := ωA(kL) + ddcg is Kähler and on

√
kU

we have that ω = ωst . By Theorem 4.2, if k is large enough, (XA(kL),ωA(kL)) fits
into (X, kL). Thus we can find a holomorphic embedding f ′ : U ′ → X such that
f ′∗ωA(kL) extends to a Kähler form ω ∈ c1(kL). Then letting f : U → X be defined
as f (z) := f ′(

√
kz) we get that f∗ωst = 1

k f ′∗ωst |√kU extends to a Kähler form ω ∈
c1(L).
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That ∫
D(L)

ωn
st =

∫
X

c1(L)n

followed from Theorem 2.2 and it is clear that the f : U → X we found had the
property that

f −1(Xi ) = {z1 = · · · = zi = 0} ∩ U.

�

Theorem B. If L is very ample then we have that (E(1, . . . , 1, (Ln)), 0,ωst ) fits
perfectly into (X, L), and the associated embeddings can be chosen to be centered
at any point p ∈ X .

Proof This follows directly from combining Theorem A. with Proposition 2.6. �

5 Big Line Bundles

If L is big but not ample there are no Kähler forms in c1(L). Instead one can consider
Kähler currents with analytic singularities that lies in c1(L). We can use these to
define what it should mean for a Kähler manifold (Y, η) to fit into (X, L) when L is
just big.

Definition 5.1 If L is big we say that a Kähler manifold (Y, η) fits into (X, L) if
for every relatively compact open set U ⊆ Y there is a holomorphic embedding f
of U into X such that f∗η extends to a Kähler current with analytic singularities on
X lying in c1(L). If dimC Y = dimC X = n and

∫
Y

ηn =
∫

X
c1(L)n

we say that (Y, η) fits perfectly into (X, L)

Theorem C. Wehave that (D(L),ωst )fits perfectly into (X, L).Wecan furthermore
choose each embedding f : U → X (U ⊂ D(L)) so that

f −1(Xi ) = {z1 = · · · = zi = 0} ∩ U.

For a big line bundle L and sufficiently large k, if sm is a basis for H 0(kL) we get
that ddc ln(

∑
m |sm |2) is a Kähler current with analytical singularities which lies in

c1(kL). Thus one proves Theorem C. exactly as in the ample case.
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Fano Shimura Varieties with Mostly
Branched Cusps

Yota Maeda and Yuji Odaka

Abstract Weprove that the Satake-Baily-Borel compactification of certain Shimura
varieties are Fano varieties, Calabi-Yau varieties or have ample canonical divisors
with mild singularities. We also prove some variants statements, give applications
and discuss various examples including new ones, for instance, the moduli spaces of
unpolarized (log) Enriques surfaces.

Keywords Satake-Baily-Borel compactification · Shimura varieties · Fano
varieties · Calabi-Yau varieties

1 Introduction

We prove that the Satake-Baily-Borel compactification of certain Shimura varieties
are Fano varieties or with ample canonical divisor by means of special modular
forms (see Theorem 2.4). Their unbranched open subsets are always quasi-affine,
and in Fano Shimura varieties case, we observe that most of cusps are covered by
the closure of branch divisors. In Sect. 3, we give various concrete examples, which
include the moduli of (log) Enriques surfaces, those corresponding to I I2,26, and
those associated to various Hermitian lattices which we construct.

The studyof birational types ofShimuravarieties is a semi-classical topic;Tai [60],
Freitag [19] and Mumford [52] (resp. Kondō [40, 42], Gritsenko-Hulek-Sankaran
[30] and Ma [48]) showed some Siegel (resp. orthogonal) modular varieties are of
general type. Recently, the first author studied a similar problem for unitary modular
varieties [50].
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On the other hand, in order to prove that Shimura varieties have negative Kodaira
dimension, one of the powerful tools for it is the use of certain reflective modular
forms [25, 27, 28, 47, 49].

For this recurring theme, our main idea in this paper is to focus on the Satake-
Baily-Borel compactification, study it through modern birational geometry adapted
to singular varieties and give applications. In this paper, we define “special” reflective
modular forms, motivated by the work of Gritsenko-Hulek [28], and show a criterion
for proving the Satake-Baily-Borel compactification of Shimura varieties are Fano
varieties.

Then, we discuss examples in Sect. 3, including new ones, to which we apply
our criterion. For instance, it follows that the Satake-Baily-Borel compactification
of the moduli spaces of unpolarized (log) Enriques surfaces are Fano varieties; see
Example 3.13, 3.17.

We also give some applications to the understanding of cusps and rationality
problems. That is, for these Fano-like Shimura varieties, all but one compact cusps
are shown to be contained in the closure of branch divisors. In the same setup, we
also show that if there are no such compact cusps, two general points are connected
by a rational curve i.e., rationally connected by [68]. See Corollary 2.8 for details.
The former uses [4, 22], and in particular it logically relies on a vanishing theorem
proven in loc.cit. We do not know of another proof which does not use a vanishing
theorem (Problem 2.14). See Corollaries 2.8, 2.10, 2.12 for the details and more
assertions proven. For instance, the moduli space of (unpolarized) Enriques surface
is shown to be rationally connected, which is a weaker version of a famous result of
Kondō [41].

2 Main Results and Proofs

In this section, we prove general theorems which are mentioned in the introduction.
In the later Sect. 3, we apply them to various concrete examples. First, we introduce
some notations.

2.1 Convention and Notation

Below, we discuss the linear equivalence class of a Cartier divisor and the corre-
sponding holomorphic line bundle interchangeably. Similarly, we do not distinguish
the Q-linear equivalence class of a Q-Cartier divisor and the corresponding Q-line
bundle. We use the following notations throughout.

• G is a simple algebraic group over Q, not isogenous to SL(2).
• G is the identity component of G(R), which we assume to be a simple Lie group.
• K is a maximal compact subgroup of G,
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• The corresponding Hermitian symmetric domain is G/K .
• Take an arithmetic subgroup � ⊂ G(Q) i.e., commensurable to G(Z).

• X := �\G/K and its Satake-Baily-Borel compactification X
SBB

[6, 58].
• H denotes the upper half plane (which is an example of X ).

• ∂ X
SBB

denotes the boundary of the Satake-Baily-Borel compactification, i.e.,

X
SBB \ X .

• Denote a toroidal compactification of X in the sense of [5], with an arbitrary fixed
cone decompositions, simply as X . (The choice of cone decompositions do not
affect the following discussions.)

• Denote the boundary divisor X \ X as � (with coefficients 1).
• Denote the branch divisor of G/K → �\G/K to be ∪i Bi (⊂ X) with prime divi-
sors Bi and branch (or ramification) degree di . We denote the closure of Bi in X

(resp., X
SBB

) as Bi (resp., Bi
SBB

).
• Xo := X \ ∪i Bi .
• L := K X + � + ∑

i
di −1

di
Bi ∈ Pic(X) ⊗ Q and its descended (automorphic) Q-

line bundle on X
SBB

, i.e., K
X
SBB + ∑

i
di −1

di
Bi

SBB
.

• Recall from [6] and [51, 3.4, 4.2 (also see 1.3)] that L is ample (resp., semiample)

on X
SBB

(resp., X ) and a meromorphic section of L⊗t for t ∈ Z>0 corresponds to
meromorphic automorphic form of arithmetic weight ct for some c ∈ Z. In this
paper, weight always simply refers to the arithmetic weight (in the sense of e.g.,
[30]) and call c the canonical weight, following e.g., [30]. See also Lemma 2.3 for
the calculation of c.

2.2 Special Reflective Modular Forms

Recall that reflective modular form is the concept originally formulated in [25] for
orthogonal case, which means that the divisor is defined by reflections. In this paper,
we consider the following stronger properties, or proper subclass of reflective modu-
lar forms. The upshot of our general observation is that the existence of such special
reflective modular forms give strong implications on the birational properties of
modular varieties (see Theorem 2.4). These modular forms are rare, but luckily still
various interesting examples are known (cf., [27], our Sect. 3). We also construct
new examples in the Sect. 3.

Assumption 2.1 (Special reflective modular forms—General case) Consider the
following subclasses of reflective modular forms.

(i) A non-vanishing holomorphic section f of

OX (N (s(X)L −
∑

i

di − 1

di
Bi ))

(

:= L⊗aN

(

−
∑

i

N (di − 1)

di
Bi

))
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for some N ∈ Z>0, s(X) ∈ Q>0 with s(X)N , N
di

∈ Z>0.
(ii) A non-vanishing holomorphic section f of OX (N (s(X)L − ∑

i ci Bi )) for
some N ∈ Z>0, s(X) ∈ Q>0, and ci ∈ Q with 0 ≤ ci ≤ di −1

di
for all i , such

that s(X)N , Nci ∈ Z.

We follow the same convention below.

For a specific choice of G and � that we are about to specify, Assumption 2.1(i)
specializes to the following simpler condition.

Assumption 2.2 (Special reflective modular forms—orthogonal case) For n > 2,
assume that there is a quadratic lattice� of signature (2, n) such thatG = O(� ⊗ Q)

with � ⊂ O(�). In this situation, we consider the following subclasses of reflective
modular forms.

(i) A non-vanishing holomorphic section f of OX (N (s(X)L − 1
2

∑
i Bi )) for

some N ∈ Z>0, s(X) ∈ Q>0 with s(X)N , N
2 ∈ Z>0.

Indeed, for the above G and �, Gritsenko-Hulek-Sankaran showed that every branch
divisor arises from reflections (of order 2) [30, 2.12, 2.13], i.e., the ramification
degrees di are all 2.

Note that N is unessential as it getsmultipliedwhen replacing f by its power,while
the quantity s(X) is more essential and sometimes called a slope in the literature.
When we work on the cases G = O(2, n) or G = U (1, n) and regard f as a modular
form,we call its arithmeticweight, in the sense of [30] for instance, simply as aweight
from now on.

We also review the following well-known fact for the convenience.

Lemma 2.3 (cf., [19, Hilfsatz 2.1], [30, Sect. 6.1]) In the orthogonal case G =
O(2, n) (resp., in the unitary case G = U (1, n)), the canonical weight c in the sense
of Sect. 2.1 is n (resp., n + 1).

Proof Recall that the compact dual Dc of D in the orthogonal case G = O(2, n) is
the n-dimensional quadratic hypersurface (resp., Dc = Pn in the unitary case G =
U (1, n)), its canonical divisor is K Dc = OPn+1(−n)|Qn (resp., K Dc = OPn (−n − 1))
so that the canonical weight c is n (resp., n + 1). �

Note that the quantity s(X) in Theorem 2.4 is the (arithmetic) weight of the modular
form s divided by such canonical weight c and some constant; see Remarks 3.8 and
3.27.

Below, we discuss various Shimura varieties X which can be roughly divided into
two types, i.e., those with modular forms satisfying Assumption 2.1(i), and those
with modular forms satisfying Assumption 2.1(ii).

The former is discussed in the next Sect. 2.3, with examples given in Sect. 3, and
the latter is discussed in the Sect. 2.4 while some examples are given in [28, 49].
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2.3 Main General Results and Proofs

Here is our first general theorem.

Theorem 2.4 (Birational properties) We follow the notation as above. If there is
a reflective modular form which satisfies Assumption 2.1(i) with some s(X) ∈ Q>0,

then the Satake-Baily-Borel compactification X
SBB

of X = �\D only has log canon-
ical singularities and Xo is quasi-affine. In addition,

(i) if s(X) > 1, then X
SBB

is a Fano variety i.e., −K
X
SBB is ample (Q-Cartier),

(ii) if s(X) = 1, then X
SBB

is a Calabi-Yau variety i.e., K
X
SBB ∼Q 0, or

(iii) if s(X) < 1, then K
X
SBB is ample.

Terminology. In this paper, we often say a normal variety is a log canonical model
(resp., canonical model) in the sense that it only has log canonical singularities
(resp., canonical singularities) and the canonical class is ample. Hence, in the case

(iii) above, X
SBB

is a log canonical model. For the basics of birational geometry, we
refer to e.g., [39].

Proof Note that the codimension of the boundary of the Satake-Baily-Borel com-

pactification ∂ X
SBB := X

SBB \ X is at least 2, following from our assumption that
G is not isogenous to SL(2). Indeed, for such G, any maximal real parabolic sub-
group P has unipotent radical of dimension at least 2 so that Levi part of P has real
codimension at least 3. The existence of the special reflective modular form implies

∑

i

di − 1

di
Bi ∼Q s(X)L . (1)

If we regard the holomorphic section satisfying Assumption 2.1(i) as a section of the
ample line bundle L⊗s(X)N , it follows that the complement of the vanishing locus is

affine but that is nothing but X
SBB \ ∪i Bi

SBB
which includes Xo. This proof reflects

the idea of [10].
From (1) and the definition of L it follows that

−K
X
SBB ∼Q (s(X) − 1)L (2)

in Pic(X
SBB

) ⊗ Q. Hence, −K
X
SBB is ample Q-Cartier if s(X) > 1. Similarly, K

X
SBB

is ample Q-Cartier (resp., K
X
SBB = 0) if s(X) < 1 (resp., if s(X) = 1). On the other

hand, from [51, 3.4, 4.2 (also see 1.3)], X
SBB

is obtained as a projective spectrum

of a certain log canonical ring, hence the pair (X
SBB

,
∑

i
di −1

di
Bi

SBB
) has only log

canonical singularity (as a pair) and K
X
SBB + ∑

i
di −1

di
Bi

SBB
is ample (see also [1,

3.4, 3.5]). Thus
∑

i
di −1

di
Bi

SBB
is also Q-Cartier so that X itself is also log canonical.

On the other hand, recall that the construction of the Baily-Borel compactification
[6] is a projective spectrum of the graded ring of automorphic forms and L is the c
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multiple tensors of its tautological line bundle O(1) in the construction. Hence, it is
ample so that our latter statements of the above theorem all follow from (2). This
fact is more clarified in [51, Sects. 3, 4]. We complete the proof. �

Remark 2.5 The above results are analogous to the Fanoness results in [18], (resp.,
[36, Sect. 2] also [45, Sect. 4]) in the context of moduli of (semi)stable bundles
over curves (resp., surfaces). For the case over surfaces, the determinant line bundle
which descends to the Donaldson-Uhlenbeck compactification is used in the place
of automorphic line bundle L .

Remark 2.6 Case (iii) is a variant of the so-called “low weight cusp form trick”
(cf., e.g., [30]). See also [25], [27, Sect. 5.5] and references therein.

We introduce the following notion.

Definition 2.7 Wecall a cusp F of X
SBB

naked if it is not contained inSupp(Bi
SBB

) ∩
∂ X

SBB
for any i . Further, we call it minimal naked if it is minimal with respect to the

closure relation among naked cusps, i.e., F \ F is contained in (∪iSupp(Bi
SBB

)) ∩
∂ X

SBB
. Also, we call ∂ X

SBB \ ⋃
i Bi

SBB
the naked locus.

Below, we observe a certain weakening of connected-ness of cusps closure in
the case of s(X) > 1, i.e., Fano case. This follows from [4, 4.4, 6.6 (ii)], [22, 8.1],
[21, Sect. 3], [24, 1.2] as the proof below, which is essentially just a review to make
our logic more self-contained. Compare with our examples of the modular varieties
given in the next section.

Corollary 2.8 (Boundary structure for Fano Shimura varieties) Let us assume the
same assumption of Theorem 2.4 and further that s(X) > 1. Then, the naked locus

∂ X
SBB \

⋃

i

Bi
SBB

is connected and its closure is nothing but the non-log-terminal locus of X
SBB

. More
strongly, there is at most one minimal naked cusp with respect to the closure relation.

Furthermore, if we suppose such a minimal naked cusp F exists, there is an
effective Q-divisor DF such that (F, DF ) has only klt singularities and is a log Fano
pair, i.e., −KF − DF is ample and Q-Cartier. For instance, if F is a modular curve,
it is rational i.e., F 
 P1 (with “Hauptmodul”).

Proof Firstly, we prepare the following general lemma (compare with e.g., [1, Sect.
3]).

Lemma 2.9 (Log canonical centers)

(i) Under the notation of Sect. 2.1 for general Shimura varieties, without the above
assumptions in Corollary 2.8, the log canonical centers of (X

SBB
,
∑

i
di −1

di
Bi

SBB
)

are nothing but cusps of the Satake-Baily-Borel compactification X
SBB

.
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(ii) Under the above assumptions in Corollary 2.8, the log canonical centers of

X
SBB

are nothing but cusps of the Satake-Baily-Borel compactification X
SBB

which are not contained in ∪iSupp(Bi
SBB

).

proof of Lemma 2.9 As in [5, Chap. III, Sect. 7], we replace the (implicit dividing)
discrete group� in the notation Sect. 2.1 by its neat subgroup (cf., [5]) of finite index.

In that way, we replace X (and X
SBB

) by its finite cover so that the first desired claim

(i) for the log canonical centers of (X
SBB

,
∑

i
di −1

di
Bi

SBB
) is reduced to the case when

there is no Bi .
Then, there is a log resolution of (X

SBB
,
∑

i
di −1

di
Bi

SBB
) as a toroidal compact-

ificaftion [5, chapter III], see especially loc.cit 6.2. By its construction in op.cit
of toroidal nature (see again e.g., [1, Sect. 3]), all the exceptional prime divisors
have the discrepancy −1 and hence the claim (i) for the log canonical centers of

(X
SBB

,
∑

i
di −1

di
Bi

SBB
) follows.

For the proof of latter claim (ii), note that the existence of special reflective

modular form implies
∑

i
di −1

di
Bi

SBB
is a Q-Cartier divisor by (1) of the proof of

Theorem 2.4. Hence, the note that log canonical centers of X
SBB

form a subset of
the lc centers of (i) which are not contained in the support of the effective Q-Cartier

divisor
∑

i
di −1

di
Bi

SBB
. Hence, the claim of Lemma 2.9 (ii).

Now we start the proof of Corollary 2.8. We take the union of the minimal naked

cusps of X
SBB

as W and put the reduced scheme structure on it. We denote the
corresponding coherent ideal sheaf of O

X
SBB as IW .

From a vanishing theorem of [4, 4.4], [22, 8.1], whose absolute non-log version

is enough for our particular purpose here, we have H 1(X
SBB

, IW ) = 0. On the other

hand, H 0(X
SBB

, IW ) = 0 also holds since it is a linear subspace of H 0(X
SBB

,O)

which is identified withC because of the properness of X
SBB

, combined with the fact
that W �= ∅. Hence, combinedwith standard cohomology exact sequence arguments,
H 0(OW ) 
 C follows. Hence, it implies the connectivity of W , so that there is at
most 1 minimal naked cusp F .

For such F , the existence of DF on the closure F follows from applying the log

canonical subadjunction [24, 1.2] to F ⊂ (X
SBB

, 0). �
We make a caution that the above Corollary 2.8 does not claim the naked cusp

always has log terminal singularity. Nevertheless, in the Q-rank 1 case, we have the
following.

Corollary 2.10 (Q-rank 1 case) Under the same assumptions of Theorem 2.4 with
> 1, if further Q-rank of G is 1 (e.g., when G 
 U (1, n) for some n so that G/K is
an n-dimensional complex unit ball), only either one of the followings hold.

(i) There is exactly one naked cusp F of X
SBB

which is an isolated non-log-terminal
locus but at worst log canonical. Furthermore, there is an effective Q-divisor
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DF such that (F, DF ) is a klt log Fano pair hence in particular, the modular
branch divisor in F is nonzero effective.

(ii) No naked cusp exists and X is rationally connected, i.e., two general points
are connected by a rational curve and has at worst log terminal singularities.
Furthermore, X \ Supp ∪i Bi is affine (not only quasi-affine).

Proof Note that the condition thatQ-rank ofG is 1 implies that the boundary strata of
the Satake-Baily-Borel compactification of X are all compact and do not have closure
relations. Thus, among the above statements, the only assertionwhich does not follow
trivially from Corollary 2.8 is the rationally connected assertion for the latter case

(ii). We confirm it as follows: the non-existence of naked cusp means X
SBB \ X

is included in ∪iSupp(Bi
SBB

) which implies the log terminality of X . Hence, it is
rationally connected by a theorem of Zhang [68]. Finally, X \ Supp ∪i Bi is affine
by the proof of Theorem 2.4 and the assumption that there are no naked cusps. �

Here is a version of the converse direction of Theorem 2.4.

Theorem 2.11 (Abstract existence of specialmodular forms) We follow the notation

of Theorem 2.4. If X
SBB

satisfies either

• K
X
SBB ≡ 0 or

• either K
X
SBB or −K

X
SBB is ample with Picard number 1,

then there are special reflective modular forms satisfying Assumption 2.1(i) for some
s(X) ∈ Q>0 and sufficiently divisible N ∈ Z>0. Furthermore, if it is of a certain
orthogonal type, i.e., G is isogenous to SO(�) for � = U ⊕ U (l) ⊕ N with some
negative definite lattice N and l ∈ Z>0, the modular forms are necessarily Borcherds
lift of some nearly holomorphic elliptic Mp2(Z)-modular forms of a specific principal
part of the Fourier expansion in the sense of [11], [13, Sects. 1.3, 3.4].

Proof Given the proof of Theorem 2.4, we can almost trace back the arguments
as follows. In either cases, the automorphic line bundle L is proportional to

K
X
SBB in Pic(X

SBB
), hence so is it to

∑
i

di −1
di

Bi
SBB

. Therefore, O(N (s(X)L −
∑

i
di −1

di
Bi

SBB
)) is trivial for some s(X), N . The last assertion follows from [13,

5.12], [14, 1.2]. �

2.4 Modular Varieties with Big Anti-Canonical Classes

Recall that Gritsenko-Hulek [28] (resp., Maeda [49]) discuss the classes of reflective
orthogonal modular forms (resp., unitary modular forms) satisfying Assumption
2.1(ii) with s(X) > 1 and proved uniruledness of X and constructs some examples.

This subsection proves the following a slight refinement of their results, which
applies to the examples constructed in loc.cit.
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Theorem 2.12 (cf., [28, 2.1], [49, 4.1]) We follow the notation of Sect. 2.1, and
discuss Shimura varieties X = �\D for a priori general G. If there is a reflective
modular form � which satisfies Assumption 2.1(ii) with some s(X) ∈ Q>1, , we

define V� := ∪F F ⊂ ∂ X
SBB

where F runs through all cusps along which � does
not vanish (as a function, or a section of L⊗s(X)N ). Then, the following holds.

(i) The Satake-Baily-Borel compactification X
SBB

of X = �\D only has log
canonical singularities, Xo is quasi-affine and −K

X
SBB is big.

(ii) For any two closed points x, y ∈ X
SBB

, there are union of rational curves C
such that C ∪ V� is connected (i.e., rationally chain connected modulo V� cf.,

[33, 1.1]). In particular, X is uniruled. If G = U (1, n) for some n, then X
SBB

is even rationally chain connected.
(iii) If we consider the set of cusps outside V�, there is at most 1 minimal element

(cusp) with respect to the closure relation.

Proof We first consider (i) of the above theorem. From the existence of�, it follows
in the same way that

−K
X
SBB ∼Q (s(X) − 1)L +

∑

i

(
di − 1

di
− ci

)

Bi
SBB

,

hence it is big. The proofs of the other assertions in (i) are the same as those of

Theorem 2.4. For (ii), note that the non-klt locus of (X
SBB

,
∑

i (
di −1

di
− ci )Bi

SBB
)

is the union of log canonical centers of (X
SBB

,
∑

i
di −1

di
Bi

SBB
) which are not

inside Supp(div(�)). Hence, the assertion (ii) directly follows from [33, 1.2] for

(X
SBB

,
∑

i
di −1

di
Bi

SBB
). The assertion for the unitary case holds since the cusps are

all 0-dimensional (cf., e.g., [8, Sect. 4]). Indeed, it follows since the Levi part of real
parabolic subgroup of G corresponding to the cusps are U (0, n − 1), which is triv-
ial. For (iii), the same arguments as Corollary 2.8, similarly applying [4, 4.4, 6.6(ii)]

or [22, 8.1] to the log canonical Fano pair
(

X
SBB

,
∑

i

(
di −1

di
− ci

)
Bi

SBB
)
, give a

proof. �
Remark 2.13 We can also show a variant of Corollary 2.8, Theorem 2.12(iii) under
general meromorphic modular forms if we replace the use of [4, 6.6(ii)] by [4, 4.4]
or [23, 6.1.2]. However, because the obtained statement is rather complicated and no
interesting applications have been found (yet at least), we omit it in this paper.

We conclude this section by posing a natural problem.

Problem 2.14 In specific situations, e.g., when G = SO(� ⊗ Q) for a quadratic
lattice �, or in the unitary modular case corresponding to a Hermitian lattice as later
Sect. 3.4, the assertions of Corollaries 2.8, 2.10, Theorem 2.12(iii) can be phrased in
a purely lattice theoretic manner. Is there a more lattice theoretic or number theoretic
proof without the use of a vanishing theorem in algebraic geometry?



642 Y. Maeda and Y. Odaka

3 Examples of Fano and K-ample Cases

We provide examples of which Theorems 2.4, Corollarys 2.8, 2.10, Theorem 2.11
in Sect. 2.3 apply. In the examples, the compactified modular varieties are either
Fano varieties or with ample canonical classes. There are also some examples with
s(X) = 1, for instance [20] (cf., also earlier [7] with a weaker statement) but we do
not focus such cases in this paper.

3.1 Siegel Modular Cases

We start by discussing the Satake-Baily-Borel compactifications of some semi-
classical modular varieties, which we show to fit our picture. The examples in this
subsection and the next Sect. 3.2 do not use explicit modular forms but they are Fano
varieties so that the converse Theorem 2.11 applies to imply the (abstract) existence
of special reflective modular forms.

The examples with explicit special reflective modular forms, to which we can
apply Theorem 2.4 will be discussed from the next Sect. 3.3. Here are two examples
of Siegel modular varieties whose Satake-Baily-Borel compactifications are Fano
varieties.

Example 3.1 ([38]) The Satake-Baily-Borel compactification of the moduli of prin-

cipally polarized abelian surfaces A2
SBB

is known to be a weighted projective hyper-
surface in P(4, 6, 10, 12, 35) of degree 70 with the coarse moduli isomorphic to
P(2, 3, 5, 6) by relating to the invariants of genus 2 curves, hence binary sextics.
Note that the adjunction does not work due to non-well-formedness, as indeed one
has non-trivial isotropy (μ2) along a divisor in the moduli stack. The reduction of
the natural Faltings-Chai model over Fp are also determined (cf., [37, 62]).

Example 3.2 (cf., [61, 5.2] (also [38])) The Satake-Baily-Borel compcatification of

themoduli of principally polarized abelian surfaces with level 2 structure�(2)\HSBB

is known to be a quartic 3-fold

5∑

i=0

xi =
(

5∑

i=0

x2
i

)2

− 4

(
5∑

i=0

x4
i

)

= 0, (3)

with non-isolated singularities along 15 lines. Since this is a hypersurface, it is clearly
Gorenstein and has ample anticanonical class. It also follows from [51, Sects. 3, 4]
(cf., also [1, 3.5]) again that it is at least log canonical.
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3.2 Orthogonal Modular Cases, Part I

Below,we consider the caseswhereG = SO(� ⊗ Q) for a quadratic lattice (�, ( , ))

of signature (2, n) with n ∈ Z>0. We realize the Hermitian symmetric domain X =
G/K as G/K 
 D� which is defined as one of (the isomorphic two) connected
components of

{v ∈ P(� ⊗ C) | (v, v) = 0, (v, v) > 0}.

We keep this notation throughout in the discussion of orthogonal modular vari-
eties. Our first two examples in this Part I are understood via moduli-theoretic meth-
ods and GIT as follows.

Example 3.3 (Hilbert) The GIT compactification of the moduli of cubic surfaces
([55, Sect. 4.2]) is known to be isomorphic to the Satake-Baily-Borel compactifi-
cation of the stable locus which admits uniformization of complex ball (cf., [3]).
Hilbert’s invariant calculation in his thesis tells this is P(1, 2, 3, 4, 5), hence the only
cusp is not naked because of the log terminality. Obviously, it is also a (Q-)Fano
variety. This is also one of the simplest examples of the K-moduli variety of Fano
varieties ([55, Sect. 4.2]).

Given [48], it is reasonable to ask the following problem in general.

Problem 3.4 Classify the lattices � of signature (2, n) such that the Satake-Baily-
Borel compactification �\D� are Fano varieties, especially when � = O+(�) or
Õ+(�).

From what follows, our arithmetic subgroup satisfies � is either O+(�) or the
stable orthogonal group Õ+(�).

Example 3.5 (Moduli of elliptic K3 surfaces) We consider the moduli MW of
Weierstrass elliptic K3 surfaces, which is an open subset of O+(�)\D� for � :=
U⊕2 ⊕ E8(−1)⊕2. We consider its Satake-Baily-Borel compactification ([56, The-

orem 7.9]), which we denote MW
SBB

here. Recall from loc.cit Sect. 7.1 that there
are exactly two 1-cusps intersecting at the only 0-cusp. Two 1-cusps are Mnn

W with
canonical Gorenstein singularity and M seg

W with toroidal singularity (including the

0-cusp Mnn
W ∩ M seg

W ) hence MW
SBB

also only has log terminal singularity ([57, Part I,
Sect. 2]). The notation of our superscripts “nn” and “seg” follow that of [56, Chapter
7] where some collapsing of hyperKähler metrics to segment i.e., [0, 1] is partially
observed along M seg

W , and also that non-normal degenerations are parametrized by
Mnn

W .

We recall that MW
SBB

coincides with a certain GIT quotient of a weighted projec-
tive space ([56, Theorem 7.9]). Using the fact as well as some analysis of singularities
along the 1-cusps in [57, Part I], we prove the following.
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Theorem 3.6 MW
SBB

is a 18-dimensional log terminal rational Fano variety of
Picard rank 1, although not isomorphic to any weighted projective space. Its two
1-cusps M seg

W and Mnn
W are both non-naked.

Proof The description of MW
SBB

as a GIT quotient [56, Theorem 7.9] allows us to

apply [12, Corollary 3] to confirm there is an effective Q-divisor D on MW
SBB

such

that −K
MW

SBB − D is ample. Therefore, −K
MW

SBB is big. On the other hand, MW
SBB

has Picard rank 1 because of the same GIT quotient description. Hence, the bigness

of −K
MW

SBB implies it is actually even ample i.e., MW
SBB

is a Fano variety.
The fact that both 1-cusps are non-naked are follows from Corollary 2.8, because

MW
SBB

is log terminal as proven in [57, Part I, Sect. 2]. (The log terminality also fol-

lows from [12, Theorem1] combined again with the fact that MW
SBB

has Picard rank
1.) As for the rationality of MW , [44] proved it, based on more classical rationality
result of the moduli space of hyperelliptic curves (of genus 5).

The only remained thing to prove in the above theorem is that MW
SBB

is not a
weighted projective space. From the analysis of singularity type along 1-cusp Mnn

W
in [57, Part I, Theorem 2.2], it easily follows that the local fundamental group along

the transversal slice is (Z/2Z)4 hence not cyclic. In particular, MW
SBB

can not be a
weighted projective space. We complete the proof of Theorem 3.6. �

As a corollary, we also observe the following.

Corollary 3.7 On the orthogonal modular variety MW
SBB

, there are special reflec-
tive modular forms which satisfy Assumption 2.2(i) (of Sect. 2.2) for some s(X) > 1
and sufficiently divisible N ∈ Z>0.

Proof By the above theorem 3.6, we can apply Theorem 2.11 to complete the
proof. �

3.3 Orthogonal Modular Cases, Part II

From here, we use the Borcherds products to show that various Satake-Baily-Borel
compactifications of orthogonal modular varieties are Fano varieties or log canonical
models.
Notation. Let

H(�) := {v ∈ D� | (v, �) = 0}

be the special divisorwith respect to � ∈ �with (�, �) < 0. For any primitive element
r ∈ � satisfying (r, r) < 0, we define the reflection σr ∈ O+(�)(Q) with respect to
r as follows:

σr (�) := � − 2(�, r)

(r, r)
r.
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Then, the union of ramification divisors of π� : D� → �\D� is

⋃

r∈�/±:primitive
σr ∈� or −σr ∈�

H(r)

by [30] for � ⊂ O+(�) and n > 2. They also showed that the ramification degrees
are 2. We sometimes denote π� as π . We also define

H−2 :=
⋃

�∈�, �2=−2

H(�)

H−4 :=
⋃

�∈�, �2=−4

H(�)

H−4,special−even :=
⋃

�∈�:special−even, �2=−4

H(�).

Here we say a vector r ∈ � is special-even (also called even type e.g., in [43]) if
(�.r) is even for any � ∈ �, i.e., div(r) is even integer, so that the corresponding
reflection lies in �. We define div(r) is the positive generator of the ideal

{(�, r) | � ∈ �}.

Remark 3.8 Below, for orthogonal cases, if f is a modular form corresponding to
a section satisfying Assumption 2.2(i), we can compute s(X) = k

2mn . Here, k is the
weight of f and m is the multiplicity of div f , and n = dimX .

Example 3.9 Let I I2,26 = U ⊕ U ⊕ E8(−1) ⊕ E8(−1) ⊕ E8(−1) be an even uni-
modular lattice of signature (2, 26). We consider the case � = O+(�). There is the
modular form �12 of weight 12 on DI I2,26 by Borcherds [9] with

div�12 = H−2. (4)

On the other hand, the ramification divisors of the map π : I I2,26
→ X := O+(I I2,26)\DI I2,26 areH−2 by the even unimodularity of � and [30].

Now�2×26
12 satisfiesAssumption 1.2(i) with s(X) = 3

13 and byTheorem2.4(iii) so

that the Satake-Baily-Borel compactification X
SBB

of the 26-dimensional orthogonal
modular variety X = O+(I I2,26)\DI I2,26 is a log canonical model i.e., with ample
canonical divisor K

X
SBB and at worst log canonical singularities. Let us specify and

study the non-log-terminal locus or the log canonical center.
First, recall that there are exactly 24 1-cusps, which correspond to Niemeier

lattices and all intersect at a common closed point (cf., e.g., [26, 1.1]). In particular,
there is a 1-cusp which is the compactification of the modular curve SL(2, Z)\H

corresponding to the Leech lattice. We denote the particular 1-cusp as CLeech.
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For the Harish-Chandra-Borel embedding

DI I2,26 ⊂ Dc
I I2,26 ⊂ P(I I2,26 ⊗ C),

OP(I I2,26⊗C)(1) restricts toOP1(1)|H for any 1-cuspH ⊂ P1. For instance, by [9, Sect.
10], [26, 1.2],�12 restricts to theRamanujan cusp form�12(q) := q

∏
n≥1(1 − qn)24

of weight 12 on CLeech. Since the only modular branch divisor is H−2, together
with (4) and Lemma 2.9, it implies that the only log canonical center is the CLeech.
Recall that through the well-known isomorphism SL(2, Z)\H 
 A1(C) ⊂ P1(C),
the elliptic modular forms of weight 12k can be regarded with a section of OP1(k),
at the level of coarse moduli. In other words, OP1(12k)|H descends to a line bundle
OP1(k) on P1 
 SL(2, Z)\H where H denotes the rational closure of H.

In particular, (2s(X)L .CLeech) = 1, where L follows the notation of Sect. 2.1.
Equivalently (K

X
SBB .CLeech) = 5

3 , (B.CLeech) = 1 as s(X) = 3
13 . We summarize our

conclusion in this case neatly as I I2,26 attracts special attention.

Corollary 3.10 (I I2,26 case) The Satake-Baily-Borel compactification X
SBB

of the
26-dimensional orthogonal modular variety X = O+(I I2,26)\DI I2,26 is a log canon-
ical model i.e., with ample canonical divisor K

X
SBB and at worst log canonical singu-

larities. Further, the non-log-terminal locus is the single CLeech 
 P1 in the boundary
∂ XSBB which compactifies 1-cusp SL(2, Z)\H and is characterized by that the cor-
responding isotropic plane p ⊂ I I2,26 ⊗ R satisfies that (p⊥ ∩ I I2,26)/(p ∩ I I2,26)
is the Leech lattice i.e., contains no roots. Its degree is (K

X
SBB .CLeech) = 5

3 . (resp.,

(B.CLeech) = 1).

Later in Example 3.32, we also construct a 13-dimensional unitary modular subva-
riety which also compactifies with ample canonical class as the Satake-Baily-Borel
compactification.

Example 3.11 Let � := U ⊕ U ⊕ E8(−1) be an even unimodular lattice of sig-
nature (2, 10). We again consider the case � = O+(�). Borcherds constructed a
reflective modular form on D�.

Theorem 3.12 ([9, 10.1, 16.1]) There is a reflective modular form �252 of weight
252 on D� such that

div�252 = H−2.

Here, by the map π : D� → X := O+(�)\D�, the divisorsH−2 maps to the unique
branch divisors (cf., [30, Sect. 2]). Hence �10t

252 satisfies Assumption 2.2(i) with
s(X) = 63

5 for some t ∈ Z, and by Theorem 2.4(i), the compactified Shimura variety

X
SBB

is a Fano variety. Actually, [34, 1.1], [17, 4.1] (also attributed to Shiga and [46])
shows it is the weighted projective space P(2, 5, 6, 8, 9, 11, 12, 14, 15, 18, 21).
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Example 3.13 (Moduli of Enriques surfaces) The well-studied moduli space MEnr

of (unpolarized) Enriques surfaces (cf., e.g., [10, 41, 54, 59]) also fit into our setting.
Let �Enr := U ⊕ U (2) ⊕ E8(−2) be an even lattice of signature (2, 10). Then the
Shimura variety

MEnr := O+(�Enr )\D�Enr

is a 10-dimensional quasi-projective variety. Nowwe review the ramification divisors
of the natural map π : D�Enr → MEnr and moduli description. From [29, 30], the
ramification divisors are

H−2 ∪ H−4,special−even .

On the other hand, let
M̃Enr := Õ+(�Enr )\DL Enr

be a finite cover of MEnr. Then the following are known.

Proposition 3.14 (i) MEnr\π(H−2) is the so-called moduli space of Enriques
surfaces (cf., e.g., [54]). Moreover this is rational (Kondo [41]).

(ii) M̃Enr\π(H−2), which is a finite cover of MEnr, is the moduli space of Enriques
surfaces with a certain level-2 structure. Moreover M̃Enr and M̃Enr\π(H−2)

are of general type (Gritsenko-Hulek cf., [29]).
(iii) MEnr\(π(H−2) ∪ π(H−4,special−even)) is the moduli space of non-nodal

Enriques surfaces.

Going back to our situation, we need special reflective modular forms satisfying
Assumption 2.2(i). Our input here is the following.

Lemma 3.15 ([10, 43]) There exist two reflective modular forms �4 and �124 on
DL Enr of weights 4, 124 respectively such that;

div�4 = H−2,

div�124 = H−4,special-even.

We put F128 := �4�124. Then this is a weight 128 modular form on DL Enr and
div(F128) is exactly the ramification divisors of the map π : DL Enr → MEnr with
coefficients 1. Now F2

128 has a trivial character and satisfies Assumption 2.2(i) with

s(X) = 32
5 and by Theorem 2.4(i), MEnr

SBB
is a log canonical Fano variety.

Actually, it is even log terminal without naked cusps as we confirm in the follow-
ing. By [59, 3.3, 4.5], there are only two 0-cusps which correspond to an isotropic
vector e in the first summand U and an isotropic vector e′ the second summand
U (2) of �Enr. They belong to the same 1-cusp which corresponds to isotropic plane
Qe ⊕ Qe′. That 1-cusp is contained in the closure of H−4,special−even since e and e′
are orthogonal to the (norm-doubled) root of E8(−2), the third summand of LEnr.
By loc.cit, the only other 1-cusp corresponds to another isotropic plane
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p = Qe′ ⊕ Q(2e + 2 f + α)

where e, f is the standard basis of the first summand U and α is norm −8 integral
vector in the third summand E8(−2). Since p is obviously orthogonal to the −2
vector e − f ∈ U , the corresponding 1-cusp is also contained in the closure of the
Coble locusH−2. Hence there are no naked cusps so that we conclude the following.

Corollary 3.16 The Satake-Baily-Borel compactification MEnr
SBB

of the moduli of
Enriques surfaces MEnr is a log terminal Fano variety.

Example 3.17 (Moduli of log Enriques surfaces) For each 1 ≤ k ≤ 10 (k �= 2), let
�logEnr,k := U (2) ⊕ A1 ⊕ A1(−1)⊕9−k be an even lattice of signature (2, 10 − k).
Then the associated Shimura variety O+(�logEnr,k)\DLlogEnr is a (partial compact-
ification of) the moduli space of log Enriques surface with k 1

4 (1, 1) singularities.
For the definition of log Enriques surfaces with 1

4 (1, 1) singularities, see [16, Defi-
nition 2.1, 2.6]. Yoshikawa [63] and Ma [47] constructed reflective modular forms
on DLlogEnr for k ≤ 7 which we use.

Theorem 3.18 ([63, Theorem 4.2(i)]) There is a reflective modular form �4 of
weight 4 + k on D�logEnr,k with

div�4+k = H−2.

Theorem 3.19 ([47, Appendix by Yoshikawa; A.4, proof of A.5]) There is a reflec-
tive modular form �124,k of weight −k2 − 9k + 124 on D�logEnr,k with

div�124,k = H−4.

On the other hand, the ramification divisors of the map π : DLlogEnr,k → X :=
O+(LlogEnr,k)\DLlogEnr,k is the union of special divisors with respect to (−2)-vectors
and (−4)-vectors by the same discussion. As (�4+k�124,k)

t (10−k) with t ∈ Z>0 sat-
isfies Assumption 2.2(i) with s(X) = −k2−8k+128

2(10−k)
for k ≤ 7, by Theorem 1.3 (i), we

conclude the following.

Corollary 3.20 For the above (partially compactified) moduli spaces of log Enriques
surface with k 1

4 (1, 1) singularities with 1 ≤ k ≤ 7 (k �= 2) X = O+(�logEnr,k)\
DLlogEnr , the Satake-Baily-Borel compactifications X

SBB
are Fano varieties.

Actually, they are also unirational, by [47].

Example 3.21 (Simple lattices case) Let� be a quadratic lattice overZ of signature
(2, n). We recall from [15] that� is called simple if the space of cusp forms of weight
1 + n

2 associated with a finite quadratic form�∨/� is zero. Then the special divisors
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on D� are all given by the divisors of Borcherds lift, so that we can apply Theorem
2.4.

In fact, Wang-Williams [65] showed that for every simple lattice � of signature
(2, n)with 3 ≤ n ≤ 10, the graded algebra ofmodular forms for certain subgroups of
the orthogonal group is freely generated. From this, we have the associated Shimura
varieties are weighted projective spaces, in particular, log terminal Q-Fano.

From Theorem 2.4, all Borcherds product satisfying Assumption 2.2(i) should
have s(X) > 1. Also from Corollary 2.8, the boundary of the Satake-Baily-Borel
compactification is in the closure of the branch divisors. See the tables of examples
in [65].

We remark that before [15, 65] showed there are only finitely many isometry
classes of even simple lattices � of signature (2, n).

3.4 Preparation for Unitary Case—Hermitian Lattice

Here, we recall some material on Hermitian lattices treated in [35] to prepare for
constructing some examples of unitary modular varieties from the next subsection.
There, we similarly apply Theorem 2.4 to certain restriction of Borcherds products
to explore their birational properties.

Here is the setup. Let F = Q(
√

d) be an imaginary quadratic field for a square-
free negative integer d, and OF be its ring of integers. Let δ be the inverse different
of F , i.e.,

δ :=
{

1
2
√

d
(d ≡ 2, 3 mod 4),

1√
d

(d ≡ 1 mod 4).

Let (�, 〈 , 〉) be a Hermitian lattice of signature (1, n) over OF in the sense of [35]
i.e., a finite freeOF -module with an Hermitian formwhich is δOF -valued.We define
the dual lattice �∨ as

�∨ := {v ∈ � ⊗OF F | 〈v,w〉 ∈ δOF (∀w ∈ �)}.

We say � is unimodular if � = �∨ and � is even if 〈v, v〉 ∈ Z for all v ∈ �.
The latter means the associated quadratic form is even. It is also known that the
quotient A� = �∨/� is a finite OF -module, called the discriminant group. Then,
Ũ (�) := {g ∈ U (�) | g|A�

= 1A�
} is the so-called discriminant kernel or the stable

unitary group. For a Hermitian lattice�, we define�(a) := (�, a〈 , 〉) for a ∈ δOF .
Analogously to quadratic forms, we also have the following proposition.

Proposition 3.22 There exists a unimodular Hermitian lattice M and an element
b ∈ OF such that � = M(b) if and only if the ideal {〈v,w〉 ∈ δOF | w ∈ �} with
respect to v ∈ � is equal bδOF for every primitive element v ∈ �.
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Let D� be the Hermitian symmetric domain (complex ball) with respect to
U (�)(R), equivalently,

D� := {v ∈ P(� ⊗ C) | 〈v, v〉 > 0}

and H(v) be the special divisor with respect to v ∈ �. For any element r ∈ � sat-
isfying 〈r, r〉 < 0 and ξ ∈ O×

F \{1}, we define the quasi-reflection τr,ξ ∈ U (�)(Q)

with respect to r , ξ as follows:

τr,ξ (�) := � − (1 − ξ)
〈�, r〉
〈r, r〉 r.

Note that for ξ = −1, we have the usual reflection. See also [2]. We also remark
that, for example, for F = Q(

√−1), we get τ 2
r,

√−1
= τr,−1 and for F = Q(

√−3),

we get τ 2
r,ω = τr,ω for any r ∈ � where ω is a primitive third root of unity.

The union of ramification divisors of π� : D� → �\D� is

⋃

r

H(r)

by [8, Corollary 3] for� ⊂ U (�) and n > 1. Here, the union runs thorough primitive
elements r ∈ �/O×

F with 〈r, r〉 < 0 such that ητr,ξ ∈ � for some η ∈ O×
F and ξ ∈

O×
F \{1}. We consider the natural embedding of the type I domain to the type IV

domain
ι : D� ↪→ D�Q

where (�Q, ( , )) is the quadratic lattice associated with (�, 〈 , 〉), i.e., �Q := � as
a Z-module and ( , ) := TrF/Q〈 , 〉. For the analysis of ramification divisors on D�,
we first prepare the following lemma.

Lemma 3.23 For F = Q(
√

d), assume d ≡ 2, 3 mod 4 or d = −3. Then

ι(
⋃

r∈�/O×
F :primitive

ητr,ξ ∈U (�) for ∃η∈O×
F , ∃ξ∈O×

F \{1}

H(r)) ⊂
⋃

r∈�Q/±:primitive
σr ∈O+(�Q) or −σr ∈O+(�Q)

H(r) ∩ ι(D�).

Proof For F �= Q(
√−1), Q(

√−3), it suffices to show that if

2〈�, r〉
〈r, r〉 ∈ OF ,

then

α := 2(�, r)

(r, r)
= 2 TrF/Q 〈�, r〉

TrF/Q〈r, r〉 ∈ Z.

Since 〈r, r〉 ∈ Q, we have
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α = �2〈�, r〉
〈r, r〉 .

Hence for d ≡ 2, 3 mod 4 with d �= −1, this concludes lemma.
For F = Q(

√−1), it needs to show that if

(1 − √−1)
〈�, r〉
〈r, r〉 ∈ OF or (1 + √−1)

〈�, r〉
〈r, r〉 ∈ OF ,

then α ∈ Z. In the following, let a, b be rational integers. First, we assume

(1 − √−1)
〈�, r〉
〈r, r〉 = a + √−1b ∈ OF .

Then α = a − b ∈ Z. Second, we assume

(1 + √−1)
〈�, r〉
〈r, r〉 = a + √−1b ∈ OF .

Then α = a + b ∈ Z. This concludes lemma for F = Q(
√−1).

For F = Q(
√−3), assume that one of the following holds.

(1 ± ω)
〈�, r〉
〈r, r〉 ∈ OF , (5)

(1 ± ω2)
〈�, r〉
〈r, r〉 ∈ OF , (6)

2
〈�, r〉
〈r, r〉 ∈ OF . (7)

Through some simple computation,when (5) or (6) hold, thenwehaveα ∈ Z. Finally,
we assume (7). Let

α = α1 = 2(�, r)

(r, r)
= a − b

2
,

α2 = 2(�, ωr)

(ωr, ωr)
= −a

2
+ b,

α3 = 2(�, ω2r)

(ω2r, ω2r)
= −a + b

2
.

Hence, the assumption a + ωb ∈ OF implies one of αi for i = 1, 2, 3 is an element
of Z. On the other hand, we have H(r) = H(ωr) = H(ω2r) and ι(H(r)) ⊂ H(r),
thus this concludes lemma for F = Q(

√−3). �

For the computation of multiplicities of unitary modular forms later, we need the
following converse to [35, Remark after 6.1].
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Lemma 3.24 Let r ∈ � be a primitive element with 〈r, r〉 < 0.

(i) The special divisor H(r) is contained in exactly #O×
F

2 special divisors of the
form H(r ′) ⊂ D�Q for some primitive r ′ ∈ �Q.

(ii) The restriction of the special divisor Hr |D�
is H(r) with multiplicity 1 i.e.,

reduced.

Proof We fix
√

d ∈ C and the corresponding embedding F ↪→ C. First, we prove
(i). Note H(r)|D�

= H(r ′)|D�
if and only if Cr ′ = Cr for r, r ′ ∈ �. This implies

r = ar ′ for some a ∈ C×. Since r is primitive, we have a ∈ O×
F . On the other hand,

as H(r ′) only depends on Rr ′ so that H(r ′) = H(−r ′), the number we concern is
#O∗

F
2 .
The proof of (ii) is as follows. Since 〈r, r〉 < 0, H(r) is again an orthogonal

symmetric domain which is an (analytic) open subset of a quadric hypersurface,
say Qn−1 ⊂ Qn ⊂ Pn+1. Thus the restriction of the Cartier divisor r = 0 to Qn is
reduced and H(r) is its open subset. H(r) is also an open subset of the restriction
of r = 0 to the linear subspace, which is also clearly reduced. Hence the assertion
follows. �

3.5 Unramifiedness of Unitary Modular Varieties

Theorem 3.25 Let F = Q(
√

d) (d �= −1) be an imaginary quadratic field and �

be a Hermitian unimodular lattice over OF of signature (1, n) for n > 1. We assume
d ≡ 2, 3 mod 4. Then for any arithmetic subgroup � ⊂ U (�), the canonical map

π� : D� → �\D� does not ramify in codimension 1, so that X
SBB

is a log canonical
model.

Proof It suffices to show the claim for � = U (�). The ramification divisors are
defined by τr,ξ for some primitive r ∈ � and ξ ∈ O×

F \{1} and by Lemma 3.23, they
are included in the set

⋃

r∈�,b∈Z,ξ∈O×
F \{1}

⋃

r∈�/O×
F

〈r,r〉=− b
2 , τr,ξ ∈U (�)

H(r).

Now

τr,ξ (�) = � − (1 − ξ)
〈�, r〉
〈r, r〉 r.

We assume that r ∈ � is a reflective element, that is, τr,ξ ∈ U (�) for some ξ ∈
O×

F \{1}. Then
(1 − ξ)

〈�, r〉
〈r, r〉 = −2(1 − ξ)〈�, r〉

b
.
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Since r is primitive and � is unimodular, by Proposition 3.22, there exists an � ∈ �

such that 〈�, r〉 = 1
2
√

d
, so we have

(1 − ξ)
〈�, r〉
〈r, r〉 = −1 − ξ

b
√

d
/∈ OF

for F �= Q(
√−1), Q(

√−3). This implies τr,ξ /∈ U (�) and this is contradiction. The
last assertion then follows from [51] (or as a special case of our Theorem 2.4(iii)). �

Note that we can also deduce this result from [66, Lemma 2.2].

Corollary 3.26 Let F = Q(
√

d) (d �= −1) be an imaginary quadratic field and
(�, 〈 , 〉) = M(b) be a Hermitian lattice over OF of signature (1, n) for n > 1
where M is a unimodular Hermitian lattice and b ∈ OF . We assume d ≡ 2, 3 mod 4,
and b√

d
/∈ OF . Then for any arithmetic subgroup � ⊂ U (�), the canonical map

π� : D� → �\D� does not ramify in codimension 1.

3.6 Unitary Modular Cases, Part I—Fano Cases

Below, for the definition of Hermitian lattices; see Appendix 3.8.

Remark 3.27 We can estimate the value s(X) as orthogonal modular varieties and
use it to determine the birational types of ball quotients. Note that the ramification
degrees arising from unitary cases may differ from orthogonal ones [8], so we have
to pay attention to the computation of a; compare with Remark 3.8.

For F = Q(
√−1), let B2 (resp. B4) be a union of ramification divisor with ram-

ification degree 2 (resp. 4). If a modular form f of weight k vanishes on B2 (resp.
B4) with order 2m (resp. 3m) for some m ∈ Z>0, then f satisfies Assumption 2.1(i)
and s(X) = k

4mn .

Example 3.28 For F = Q(
√−1), let � := �U⊕U ⊕ �E8(−1) be an even unimod-

ular Hermitian lattice over O
Q(

√−1) of signature (1, 5) whose associated quadratic
lattice is �Q = U ⊕ U ⊕ E8(−1).

The only ramification divisors of the map D� → X := U (�)\D� are

⋃

r∈�/O×
F :primitive

〈r,r〉=−1

H(r)

with ramification degree 2. For more details, see Example 3.32.
By Example 3.11, f := �252|D�

is a weight 252 modular form with
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div f = 2
∑

r∈L/O×
Q(

√−1)
:primitive

〈r,r〉=−1

H(r)

whose coefficient comes from Lemma 3.24. Therefore applying Theorem 2.4(i) for
f 12 with s(X) = 21

2 , we have the following.

Corollary 3.29 The Satake-Baily-Borel compactification X
SBB

of the Shimura vari-
ety X := U (�)\D� is a Fano variety, where � := �U⊕U ⊕ �E8(−1) for F =
Q(

√−1).

Example 3.30 For F = Q(
√−1), let � := �U⊕U (2) ⊕ �E8(−1)(2) be an even Her-

mitian lattice over O
Q(

√−1) of signature (1, 5) whose associated quadratic lattice
is �Q = U ⊕ U (2) ⊕ E8(−2). The ramification divisors on D�Q with respect to
O+(�Q) is the union of special divisors with respect to (−2)-vectors and special-
even (−4)-vectors, so the ramification divisors on D� with respect to U (�) are
included in the union of special divisors with respect to (−1)-vectors and special-
even (−2)-vectors since 〈v, v〉 is real for all v ∈ �. Here we say a vector r ∈ � is
special-even if �〈r, v〉 ∈ Z for any v ∈ �. The only ramification divisors of π are

⋃

r∈L/O×
Q(

√−1)
:primitive

〈r,r〉=−1, τr,−1∈U (�)

H(r) ∪
⋃

r∈L/O×
Q(

√−1)
:special-even, primitive

〈r,r〉=−2, τr,−1∈U (�)

H(r)

with ramification degree di = 2 and

⋃

r∈�/O×
Q(

√−1)
:primitive

〈r,r〉=−1, τr,
√−1∈U (�)

H(r) ∪
⋃

r∈�/O×
Q(

√−1)
:special-even, primitive

〈r,r〉=−2, τr,
√−1∈U (�)

H(r).

with ramification degree di = 4. For any primitive element r ∈ � with 〈r, r〉 = −1,
we have

τr,−1(�) = � + 2〈�, r〉r.

By the description of Hermitian lattices �U⊕U (2) and �E8(−1)(2),

2〈�, r〉 ∈ O
Q(

√−1).

Hence τr,−1 ∈ U (�) for any (−1)-primitive element r ∈ �. For any special-even
primitive element r ∈ � with 〈r, r〉 = −2, we have

τr,−1(�) = � + 〈�, r〉r.

By the definition of�U⊕U (2), if�〈�, r〉 ∈ Z, then�〈�, r〉 ∈ Z for any � ∈ �. Also by
the definition of �E8(−2), we have 〈�, r〉 ∈ O

Q(
√−1) for any � ∈ �. Hence τr,−1 ∈
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U (�) for any special-even (−2)-primitive vector r ∈ �. Therefore the map D� →
X := U (�)\D� ramifies along

⋃

r∈L/O×
Q(

√−1)
:primitive

〈r,r〉=−1

H(r) ∪
⋃

r∈L/O×
Q(

√−1)
:special-even, primitive
〈r,r〉=−2

H(r).

For (−1)-primitive vector r ∈ �,

τr,
√−1(�) = � + (1 − √−1)〈�, r〉r.

If r ∈ �E8(−1)(2), then by the description of the Hermitian matrix defining �E8(−2),
we have 〈�, r〉 ∈ O

Q(
√−1), so (1 − √−1)〈�, r〉 ∈ O

Q(
√−1). If r ∈ �U⊕U (2), then the

ideal {〈�, r〉 | � ∈ �U⊕U (2)} is generated by 1+√−1
2 since det(LU⊕U (2)) = 1

2 , so (1 −√−1)〈�, r〉 ∈ OQ(
√−1). From a similar discussion as above, we have τr,

√−1 ∈ U (�)

for any (−1)-primitive vector r ∈ �.
For special-even (−2)-primitive vector r ∈ �,

τr,
√−1(�) = � + (1 − √−1)

2
〈�, r〉r.

If r ∈ �E8(−1)(2), then there exists an � ∈ �E8(−1)(2) such that 〈�, r〉 = 1, sowe have
(1−√−1)〈�,r〉

2 = 1−√−1
2 /∈ O

Q(
√−1). If r ∈ �U⊕U (2), then there exists an � ∈ �U⊕U (2)

such that 〈�, r〉 = 1+√−1
2 , so we have (1−√−1)〈�,r〉

2 = 1
2 /∈ O

Q(
√−1). Thus, we have

τr,
√−1 /∈ U (�) for any special-even (−2)-primitive vector r ∈ �.
Therefore, the ramification in codimension 1 only occurs along

⋃

r∈�/O×
Q(

√−1)
:primitive

〈r,r〉=−1

H(r)

with ramification degree 2, and along

⋃

r∈�/O×
Q(

√−1)
:special-even, primitive
〈r,r〉=−2

H(r)

with ramification degree 4.
This example implies Theorem 3.25 does not hold for non-unimodular lattices

and F = Q(
√−1).

By Example 3.13, we have modular forms �4|D�
and �124|D�

such that
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div�4|D�
= 2

∑

r∈�/O×
Q(

√−1)
:primitive

〈r,r〉=−1

H(r)

div�124|D�
= 2

∑

r∈�/O×
Q(

√−1)
:special-even, primitive
〈r,r〉=−2

H(r)

whose coefficient again comes from Lemma 3.24.
Hence, applying Theorem 2.4(i) to (�4|2D�

�124|3D�
)12 with s(X) = 62, we have

the following.

Corollary 3.31 The Satake-Baily-Borel compactification X
SBB

of the Shimura vari-
ety X := U (�)\D� is a Fano variety, where � := �U⊕U (2) ⊕ �E8(−1)(2) for F =
Q(

√−1).

3.7 Unitary Modular Cases, Part II—with Ample Canonical
Class

Example 3.32 For F = Q(
√−1), let � := �U⊕U ⊕ �E8(−1) ⊕ �E8(−1) ⊕ �E8(−1)

be an even unimodular Hermitian lattice of signature (1, 13) whose associated
quadratic lattice is �Q = I I2,26 = U ⊕ U ⊕ E8(−1) ⊕ E8(−1) ⊕ E8(−1). The
ramification divisors on D�Q with respect to O+(�Q) is the union of special divi-
sors with respect to (−2)-vectors, so the ramification divisors on D� with respect
to U (�) are included in the union of special divisors with respect to (−1)-vectors
as 〈v, v〉 is real for all v ∈ �. There exist possibly double ramification divisors i.e.,
those with di = 2, and quadruple ramification divisors i.e., those with di = 4, of the
natural morphism π : D� → X := U (�)\D�. It ramifies in codimension 1 along

⋃

r∈�/O×
Q(

√−1)
:primitive

〈r,r〉=−1, τr,−1∈U (�)

H(r)

with ramification degree 2, and

⋃

r∈�/O×
Q(

√−1)
:primitive

〈r,r〉=−1, τr,
√−1∈U (�)

H(r)

with ramification degree 4.
For any primitive element r ∈ � with 〈r, r〉 = −1, we have

τr,
√−1(�) = � + (1 − √−1)〈�, r〉r,
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but by Proposition 3.22 and unimodularity of �, 〈�, r〉 = 1
2
√−1

for some � ∈ �.
Hence τr,−1 /∈ U (�) for any (−1)-primitive element r ∈ �, that is, there is noquadru-
ple ramification divisors.

For any primitive element r ∈ � with 〈r, r〉 = −1, we have

τr,−1(�) = � + 2〈�, r〉r.

Here,

〈�, r〉 ∈ δOF = 1

2
√−1

O
Q(

√−1),

so 2〈�, r〉 ∈ O
Q(

√−1). Thus, τr,−1 ∈ U (�) for any (−1)-primitive element r ∈ �,
that is, there are only double ramification divisors along

⋃

r∈�/O×
Q(

√−1)
:primitive

〈r,r〉=−1

H(r)

with ramification degree 2. By Example 3.9, f := �12|D�
is a weight 12 modular

form whose divisors are equal to double ramification divisors;

div f = 2
∑

r∈�/O×
F :primitive

〈r,r〉=−1

H(r)

whose coefficient again comes from Lemma 3.24. Therefore applying Theorem
2.4(iii) to f 28 with s(X) = 3

14 , we have the following the following.

Corollary 3.33 The Satake-Baily-Borel compactification X
SBB

of the Shimura vari-
ety X := U (�)\D� is a log canonical model, where � := �U⊕U ⊕ �E8(−1) ⊕
�E8(−1) ⊕ �E8(−1) for F = Q(

√−1). Recall from Terminology after Theorem 2.4
that a log canonical model in this paper means it has only log canonical singulari-
ties and ample canonical class.

Example 3.34 For F = Q(
√−2), let � := �′

U⊕U (2) ⊕ �′
E8(−1)(2) be an even Her-

mitian lattice overO
Q(

√−2) of signature (1, 5). The union of ramification divisors of
the map π : D� → X := U (�)\D� are the union of special divisors with respect
to (−1)-vectors only, unlike F = Q(

√−1) case. Of course, these divisors ramify

with ramification degree 2, so we can also show X
SBB

is a log canonical model.
(Applying Theorem 2.4(iii) to f 12 with s(X) = 1

6 , where f := �4|D�
.) This exam-

ple implies Theorem 3.25 does not hold for non-unimodular lattices and there exist
Hermitian lattices, whose quadratic lattices are the same, admitting Shimura varieties
with various birational types according to imaginary quadratic fields.
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Corollary 3.35 The Satake-Baily-Borel compactification X
SBB

of the Shimura vari-
ety X := U (�)\D� is a log canonical model, where � := �′

U⊕U (2) ⊕ �′
E8(−1)(2)

for F = Q(
√−2).

Remark 3.36 For F = Q(
√−2), let � := �′

U⊕U ⊕ �′
E8(−1) ⊕ �′

E8(−1) ⊕ �′
E8(−1)

be an even unimodular Hermitian lattice over O
Q(

√−2) of signature (1, 13), whose
associated quadratic lattice �Q is U ⊕ U ⊕ E8(−1) ⊕ E8(−1) ⊕ E8(−1).

Now, we know that for any arithmetic subgroup � ⊂ U (�), the map π : D� →
�\D� does not ramify in codimension 1. This is exactly an example of Theorem3.25.

Thus the Satake-Baily-Borel compactification �\D�
SBB

is a log canonical model.

Remark 3.37 For any imaginary quadratic field with class number 1, we can con-
struct �U⊕U and �E8 ; see [49, Appendix A]. As in Theorem 3.25, we can show that
the correspondingmap does not ramify in codimension 1 for any arithmetic subgroup
so that the Satake-Baily-Borel compactification is log canonical model again.

Remark 3.38 By the same reason as Remark 3.36, for F �= Q(
√−1), the map

π : D� → �\D� does not ramify in codimension 1, where � := �U⊕U ⊕ �E8(−1)

and � ⊂ U (�) is any arithmetic subgroup. This is also an example of Theorem 3.25

and �\D�
SBB

is a log canonical model.

3.8 More Examples

For F = Q(
√−1), let �−1 := �U⊕U ⊕ �E8(−1)(2). Then, the map π : D�−1 →

U (�−1)\D�−1 ramifies at the union of special divisors with respect to (−1)-vectors
and (−2)-special-even vectors. By [64, Theorem 8.1], there exists a reflective mod-
ular form �12 of weight 12 on D(�−1)Q such that

div�12|D�
= 2

∑

r∈�−1/O×
Q(

√−1)
:primitive

〈r,r〉=−1

H(r)

whose coefficient again comes fromLemma 3.24. Thus, ι��12 = �12|D�−1
is a reflec-

tive modular form on D�−1 , but this does not satisfy Assumption 2.2(ii) because the
ramification divisors properly include the divisors of �12|D�−1

, i.e.,

Supp(div�12|D�
) �

⋃

r∈L/O×
Q(

√−1)
:primitive

〈r,r〉=−1

H(r) ∪
⋃

r∈L/O×
Q(

√−1)
:special-even, primitive
〈r,r〉=−2

H(r),

where the right-hand side is the ramification divisor. Hence, we can not show the

Fano-ness of (U (�−1)\D�−1)
SBB

in this way (but we can show the uniruledness or
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more strongly, rationally-chain-connectedness of U (�−1)\D�−1 by [49, Theorem
5.1]).

On the other hand, for F = Q(
√−2), let �−2 be the Herimtian lattice over

O
Q(

√−2) of signature (1, 5) whose associated quadratic lattice is U ⊕ U ⊕ E8(−2).
Then the map π : D�−2 → U (�−2)\D�−2 has no ramification divisors, so we can
not even show the uniruledness.
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Appendix: Matrix Definitions

The following matrices are taken from [49, Appendix].

A.1 Q(
√−1) Cases

Q(
√−1) Cases Let �U⊕U be an even unimodular Hermitian lattice of signature

(1, 1) over O
Q(

√−1) defined by the matrix

1

2
√−1

(
0 1

−1 0

)

whose associated quadratic lattice (�U⊕U )Q is U ⊕ U .
Let�U⊕U (2) be an even Hermitian lattice of signature (1, 1) overO

Q(
√−1) defined

by the matrix
1

2

(
0 1 + √−1

1 − √−1 0

)

whose associated quadratic lattice (�U⊕U (2))Q is U ⊕ U (2).
Let �E8(−1) be an even unimodular Hermitian lattice of signature (0, 4) over

O
Q(

√−1) defined by the matrix

−1

2

⎛

⎜
⎜
⎝

2 −√−1 −√−1 1√−1 2 1
√−1√−1 1 2 1

1 −√−1 1 2

⎞

⎟
⎟
⎠
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whose associated quadratic lattice (�E8(−1))Q is E8(−1). This matrix is called
Iyanaga’s matrix.

A.2 Q(
√−2) Cases

Q(
√−2) Cases Let �′

U⊕U be an even unimodular Hermitian lattice of signature
(1, 1) over O

Q(
√−2) defined by the matrix

1

2
√−2

(
0 1

−1 0

)

whose associated quadratic lattice (�′
U⊕U )Q is U ⊕ U .

Let �′
U⊕U (2) be a Hermitian lattice of signature (1, 1) over O

Q(
√−2) defined by

the matrix (
0 1

2
1
2 0

)

whose associated quadratic lattice (�′
U⊕U (2))Q is U ⊕ U (2).

Let �′
E8(−1) be an even unimodular Hermitian lattice of signature (0, 4) over

O
Q(

√−2) defined by the matrix

−1

2

⎛

⎜
⎜
⎝

2 0
√−2 + 1 1

2

√−2
0 2 1

2

√−2 1 − √−2
1 − √−2 − 1

2

√−2 2 0
− 1

2

√−2
√−2 + 1 0 2

⎞

⎟
⎟
⎠

whose associated quadratic lattice (�′
E8(−1))Q is E8(−1).
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Abstract We present the state of the art concerning classification of closed simply
connected Sasaki-Einstein 5-manifolds.

Keywords Sasaki-Einstein metrics · K-stability · Del Pezzo surfaces

2000 Mathematics Subject Classification 53C25 · 32Q20 · 14J45

1 Introduction

1.1 Sasaki-Einstein 5-Manifold

A Riemannian manifold (M, g) is called Sasakian if the cone metric r2g + dr2

defines a Kähler metric on M × R
+. If the metric g satisfies the Einstein condition,

i.e., Ricg = λg for some constant λ, then the metric g is called Einstein.
In this note, we briefly explain how to find closed simply connected 5-manifolds

that allow Sasaki-Einsteinmetrics.We then list closed simply connected 5-manifolds
that are known so far to admit Sasaki-Einstein metrics. We also present possible
candidates for Sasaki-Einstein 5-manifolds to complete the classification of closed
simply connected Sasaki-Einstein 5-manifolds.

A numerous number of closed simply connected Sasaki-Einstein manifolds,
in particular 5-manifolds, have been mined based on the method introduced by
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Kobayashi [23] and developed by Boyer, Galicki, and Kollár [5, 10, 25]. Their
method may be summarized as follows. A quasi-regular Sasakian structure on a
manifold L can be written as the unit circle subbundle of a holomorphic Seifert

C
∗-bundle over a complex algebraic orbifold (S,�), where � = ∑ (

1 − 1
mi

)
Di ,

mi ’s are positive integers, and Di ’s are distinct irreducible divisors. A simply con-
nected Sasakian manifold L is Einstein if and only if −(KS + �) is ample, the first
Chern class of c1(L/X) is a rational multiple of−(KS + �), and there is an orbifold
Kähler-Einstein metric on the orbifold (S,�).

Closed simply connected 5-manifolds are completely classified by Barden and
Smale [1, 37]. Since every closed simply connected Sasaki-Einstein 5-manifold is
spin, for the purpose of the present note it is enough to explain the classification of
closed simply connected spin 5-manifolds done by Smale [37].

Theorem 1.1 ([37]) For a positive integer m, up to diffeomorphisms, there is a
unique closed simply connected spin 5-manifold Mm with H2(Mm, Z) = Z/mZ ⊕
Z/mZ. Furthermore, a closed simply connected spin 5-manifold M is of the form

M = kM∞#Mm1# . . . #Mmr ,

where kM∞ is the k-fold connected sum of S2 × S3 for a non-negative integer k and
mi is a positive integer greater than 1 with mi dividing mi+1. In particular, for any
such M,

H2(M, Z) = Z
⊕k ⊕ H2(Mm1 , Z) ⊕ . . . ⊕ H2(Mmr , Z)

= Z
⊕k ⊕ (Z/m1Z ⊕ Z/m1Z) ⊕ . . . ⊕ (Z/mrZ ⊕ Z/mrZ) .

A closed simply connected spin 5-manifold is called a Smale 5-manifold.
Besides spinnability, closed simply connected 5-manifolds have topological con-

ditions in the second integral homology groups to carry Sasaki-Einstein structures.
The following topological properties of closed simply connected Sasaki-Einstein
5-manifolds are verified in [25, Theorems 1.4, 1.6, 1.8] and [27, Theorem 7].

Theorem 1.2 Let M be a closed simply connected Sasaki-Einstein 5-manifold.

(1) The torsion part of H2(M, Z) is one of the following:

(a) Z/mZ ⊕ Z/mZ, where m is a positive integer;
(b) (Z/5Z ⊕ Z/5Z)⊕2;
(c) (Z/4Z ⊕ Z/4Z)⊕2;
(d) (Z/3Z ⊕ Z/3Z)⊕2, (Z/3Z ⊕ Z/3Z)⊕3, (Z/3Z ⊕ Z/3Z)⊕4;
(e) (Z/2Z ⊕ Z/2Z)⊕n, where n ≥ 1.

(2) If H2 (M, Z) = Z/mZ ⊕ Z/mZ for a positive integer m, then m is not divisible
by 30.

(3) If H2 (M, Z)tor = (Z/5Z ⊕ Z/5Z)⊕2 or (Z/3Z ⊕ Z/3Z)⊕4, then rank (H2

(M, Z)) = 0.
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(4) If H2 (M, Z)tor = (Z/4Z ⊕ Z/4Z)⊕2, then rank (H2 (M, Z)) ≤ 1.
(5) If H2 (M, Z)tor = Z/mZ ⊕ Z/mZ for an integer m ≥ 12, then rank (H2

(M, Z)) ≤ 8.

Therefore, to classify Samle 5-manifolds that allow Sasaki-Einstein metrics,
we have only to consider 5-manifolds with the second integral homology groups
described in Theorem 1.2. For such a 5-manifold M , we determine whether it has
a quasi-regular Sasakian structure, which is given by a Seifert bundle L → (S,�).
We then determine whether the orbifold del Pezzo surface (S,�) allows an orbifold
Kähler-Einstein metric.

1.2 Kähler-Einstein Orbifold

The theory onKähler-Einsteinmetrics andK-stability of Fano varieties and the theory
on valuative criterions for K-stability have developed dramatically for the last ten
years.

To briefly explain a classical method to determine existence of Kähler-Einstein
metrics on Fano orbifolds, we introduce the α-invariants of Fano varieties. Let X
be a projective Q-factorial normal variety and � be a Q-divisor on X such that the
log pair (X,�) has at worst Kawamata log terminal singularities. We suppose that
(X,�) is a log Q-Fano variety, i.e., the divisor −(KX + �) is ample.

Definition 1.3 The α-invariant of the log Q-Fano variety (X,�) is defined by

α(X,�) = sup

{

λ ∈ Q

∣
∣
∣
∣
∣

the log pair (X, � + λD) is log canonical for every

effective Q-divisor D numerically equivalent to − (KX + �)

}

.

One of the roles of the α-invariant on Fano orbifolds is given by the following
statement that has been gradually improved.

Theorem 1.4 ([20, 34, 39]) Let (X,�) be a Fano orbifold. If

α(X,�) >
dim(X)

dim(X) + 1
,

then (X,�) admits an orbifold Kähler-Einstein metric.

Boyer, Galicki, Kollár, and Nakamaye applied the α-invariant method to various
Fano orbifolds, in particular, del Pezzo orbifolds, and they foundAnumerous number
of closed simply connected Sasaki-Einstein manifolds [6, 7, 10–13, 25, 26].

In 2016 Fujita and Odaka introduced a new invariant of a Fano variety, so-called
δ-invariant, which has evolved into a criterion for K-stability through the work of
Blum and Jonsson. The δ-invariant measures how singular the average divisors of
sections that form a basis for plurianticanonical linear systems are, using their log
canonical thresholds.
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Definition 1.5 Let m be a positive integer such that | − m(KX + �)| is non-empty.
Set �m = h0(X,OX (−m(KX + �)). For a section s in H0(X,OX (−m(KX + �))),
we denote the effective divisor of the section s by D(s). If �m sections s1, . . . , s�m
form a basis of the spaceH0(X,OX (−m(KX + �)), then the anticanonicalQ-divisor

D := 1

�m

�m∑

i=1

1

m
D(si )

is said to be of m-basis type. We set

δm(X,�) = sup

{

λ ∈ Q

∣
∣
∣
∣
∣

the log pair (X,� + λD) is log canonical for

every effective Q-divisor D of m-basis type

}

.

The δ-invariant of (X,�) is defined by the number

δ(X,�) = lim sup
m

δm(X,�).

Using the δ-invariant, Fujita and Odaka set up a criterion for K-(semi)stability in
an algebro-geometric way. Indeed, the following assertion has been verified to be
true by Blum-Jonsson [4] and Fujita-Odaka [21].

Theorem 1.6 A log Q-Fano variety (X,�) is K-stable (resp. K-semistable) if and
only if δ(X,�) > 1 (resp. ≥ 1).

Note that uniform K-stability is equivalent to K-stability ([31, Theorem 1.5]).
The bridge between K-polystability and existence of Kähler-Einstein metrics has

been completely established for log Fano pairs [2, 3, 17–19, 29–31, 40, 41].

Theorem 1.7 A Fano orbifold (X,�) is K-polystable if and only if it allows an
orbifold Kähler-Einstein metric.

For new Sasaki-Einstein 5-manifolds, this newly established δ-invariant method
has been applied to certain del Pezzo hypersurfaces in [35]. This application brings
us new Sasaki-Einstein rational homology 5-spheres, nM2, n ≥ 2.

1.3 Tools for α-Invariant

The tools to estimate the α-invariants in this note are presented in this section.
Let S be a surface with at most cyclic quotient singularities and D an effective

Q-divisor on the surface S. Also let p be a point of S.

Lemma 1.8 Suppose that p is a smooth point of S. If the log pair (S, D) is not log
canonical at p, then mult p(D) > 1.
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Proof See [28, Proposition 9.5.13], for instance. �

Let C be an integral curve on S that passes through the point p. Suppose that C
is not contained in the support of the divisor D. If p is a smooth point of the surface
S and the log pair (S, D) is not log canonical at p, then it follows from Lemma 1.8
that D · C > 1.

Now suppose that p is a singular point of S. Recall that S has a cyclic quotient
singularity of type 1

n (a, b) at p, where a and b are coprime positive integers that are
also coprime to n.

Lemma 1.9 If the log pair (S, D) is not log canonical at p and C is not contained
in the support of the divisor D, then

D · C >
1

n
.

Proof This follows from [24, Proposition 3.16], Lemma 1.8, and
[15, Lemma 2.2]. �

In general, the curve C may be contained in the support of the divisor D. In this
case, we write

D = aC + �,

where a is a positive rational number and � is an effective Q-divisor on S whose
support does not contain the curve C .

We first suppose that both the surface S and the curve C are smooth at p.

Lemma 1.10 Suppose that a ≤ 1. If the log pair (S, D) is not log canonical at p,
then

C · � ≥ (C · �)p > 1,

where (C · �)p is the local intersection number of C and � at p.

Proof This immediately follows from the inversion of adjunction (see [36, Corol-
lary 3.12]). �

We now suppose that S has a cyclic quotient singularity of type 1
n (a, b) at p as

before.

Lemma 1.11 Suppose that a ≤ 1. If the curve C is smooth at p and the log pair
(S, D) is not log canonical at p, then

C · � >
1

n
.

Proof The required inequality follows from the inverse of adjunction, [24, Proposi-
tion 3.16], and [15, Lemma 2.2]. �
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2 Link of a Quasi-Homogeneous Hypersurface Singularity

2.1 From Kähler-Einstein to Sasaki-Einstein

Links of quasi-homogeneous hypersurface singularities are Seifert bundles over the
corresponding projective hypersurfaces in weighted projective spaces.

Let X be a quasi-smooth hypersurface in a weighted projective space P(w) =
P(a0, a1, . . . , an) defined by a quasi-homogeneous polynomial F(z0, z1, . . . , zn) in
variables z0, . . . , zn with weights wt(zi ) = ai . The equation F(z0, z1, . . . , zn) = 0
also defines a hypersurface X̂ in C

n+1 that is smooth outside the origin. The link of
X is defined by the intersection

LX = S2n+1
w ∩ X̂ ,

where S2n+1
w is the unit sphere centred at the origin inC

n+1 with the Sasakian structure
induced from the weight w = (a0, a1, . . . , an) (see [6, Sect. 1] [38, Example]). This
is a smooth compact manifold of real dimension 2n − 1. It is simply-connected if
n ≥ 3 ([32, Theorem 5.2]). The situation can be diagrammed as follows [13]:

LX S2n+1
w

X P(w)

where the horizontal arrows are Sasakian and Kählerian embeddings, respectively,
and the vertical arrows are S1 orbibundles and orbifold Riemannian submersions.

Put m = gcd(a1, . . . , an). Suppose that m > 1 and gcd(a0, a1, . . . , ai−1, âi ,
ai+1, . . . , an) = 1 for each i = 1, . . . , n. Also set b0 = a0 and bi = ai

m for i =
1, . . . , n. The weighted projective space P(a0, a1, . . . , an) is not well-formed, while
the weighted projective space P(b0, b1, . . . , bn) is well-formed (see [22, Defini-
tion 5.11]).

There is a quasi-homogeneous polynomial G(x0, . . . , xn) in variables x0, . . . , xn
with weights wt(xi ) = bi such that F(z0, z1, . . . , zn) = G(zm0 , z1, . . . , zn). The
equation G(x0, . . . , xn) = 0 defines a quasi-smooth hypersurface Y in
P(b0, b1, . . . , bn). We suppose that degw(F) − ∑

ai < 0 and Y is well-formed in
P(b0, b1, . . . , bn) (see [22, Definition 6.9]). Denote by D the divisor on Y cut by
x0 = 0. Note that (Y, m−1

m D) is a Fano orbifold since degw(F) − ∑
ai < 0.

The method by Kobayashi has evolved into the following assertion through the
works of Boyer, Galicki, and Kollár

Theorem 2.1 ([5, Theorem 2.1], [23, Theorem 5]) If there is a Kähler-Einstein edge
metric on Y with angle 2π

m along the divisor D, then there is a Sasaki-Einstein metric
on the link LX of X.
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In the following three sections, we apply the method to certain del Pezzo hyper-
surfaces in three dimensional weighted projective spaces. This application brings us
new Sasakin-Einstein Smale 5-manifolds, 3M∞#3M2, 2M∞#3M2, and 2M∞#4M2,
which support Conjecture 3.5. In order to verify existence of orbifoldKähler-Einstein
metrics, the α-invariant method will be applied to the del Pezzo hypersurfaces cor-
responding to the Smale 5-manifolds.

From now on, for a given weighted projective space P(a0, a1, a2, a3), we always
use the quasi-homogeneous coordinates x , y, z, w with wt(x) = a0, wt(y) = a1,
wt(z) = a2, wt(w) = a3.

2.2 Smale 5-Manifold 3M∞#3M2

For a positive integer k, let Ŝ1 be a quasi-smooth hypersurface of degree 8k in
P(2, 2k, 2k, 4k − 1). We may assume that it is defined by a quasi-homogeneous
equation

xw2 + f4(y, z) + xk f3(y, z) + x2k f2(y, z) + x3k f1(y, z) + ax4k = 0,

where fd is a homogenous polynomial of degree d and a is a constant. Since Ŝ1 is
quasi-smooth, the polynomial f4 must be reduced. As an orbifold, Ŝ1 can be regarded
as the log del Pezzo surface

(
S1,

1
2Cw

)
, where S1 is the quasi-smooth hypersurface

of degree 4k in P(1, k, k, 4k − 1) defined by the quasi-homogeneous equation

xw + f4(y, z) + xk f3(y, z) + x2k f2(y, z) + x3k f1(y, z) + ax4k = 0

and Cw is the curve on S1 cut by w = 0. The curve Cw is isomorphic to a smooth
plane quartic curve.Meanwhile, it follows from [33, Corollary] that the link of Ŝ1 has
the second Betti number 3. Therefore, the link of Ŝ1 is diffeomorphic to 3M∞#3M2

by [25, Theorem 5.7] and Theorem 1.1.

Theorem 2.2 For k ≥ 2,
(
S1,

1
2Cw

)
allows an orbifold Kähler-Einstein metric.

Proof By Theorem 1.4, it is enough to show

α

(

S1,
1

2
Cw

)

>
2

3
.

Let D be an effective Q-divisor such that D ≡ − (
KS1 + 1

2Cw

)
. We then suppose

that
(
S1,

1
2Cw + 3

4D
)
is not log canonical at a point p on S1.

We first write D = αCw + �, where � is an effective Q-divisor whose support
does not contain the curve Cw. Let E be a general member in |OS1(k)|. Then

2

4k − 1
= D · E ≥ αCw · E = 4α,
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which implies α ≤ 2
4(4k−1) ≤ 1

14 . Therefore,
(
S1,Cw + 3

4�
)
is not log canonical at

p. However,
3

4
Cw · � = 3 − 6(4k − 1)α

2k
≤ 3

2k
.

It then follows from Lemmas 1.8 and 1.10 that p is either a singular point of S1 on
Cw or located outside Cw.

The hyperplane section Cx by x = 0 consists of four distinct curves C1, . . . ,C4

that meet only at [0, 0, 0, 1]. Each curve Ci passes through exactly one of the four
singular points of type 1

k (1,−1) on S1. Suppose that p lies onCi for some i . Wewrite
D = αCw + βCi + �, where � is an effective Q-divisor whose support contains
neither Cw nor Ci . It follows from [16, Lemma 2.2] that we may assume that the
support of D does not contain the support of Cx . This implies that either β = 0 or
the support of � does not contain C j for some j �= i . In the latter case, we have

1

2k(4k − 1)
= D · C j ≥ βCi · C j = β

1

4k − 1
.

Therefore, β ≤ 1
2k , and hence

(
S1,Ci + (

1
2 + 3

4α
)
Cw + 3

4�
)
is not log canonical at

p. However,

3

4
� · Ci = 3

4
(D − αCw − βCi ) · Ci

≤ 3

4

(
1

2k(4k − 1)
+ β

3k − 1

k(4k − 1)

)

≤ 3

8k(4k − 1)
+ 3(3k − 1)

8k2(4k − 1)
= 3

8k2
≤ 1

4k − 1
,

((
1

2
+ 3

4
α

)

Cw + 3

4
�

)

· Ci = 1

k

(
1

2
+ 3

4
α

)

+ 3

4
� · Ci

≤ 1

k

(
1

2
+ 3

4
α

)

+ 3

8k2
≤ 1

2k
+ 3

8k(4k − 1)
+ 3

8k2
≤ 1

k
.

By Lemmas 1.10 and 1.11, these two inequalities implies that p must be outside Cx .
Let C be a general member in |OS1(k)| passing through p and we write D =

γC + �, where � is an effective Q-divisor whose support does not contain C . Then

2

4k − 1
= D · C ≥ γC2 = 4kγ

4k − 1
,

which implies γ ≤ 1
2k . Therefore,

(
S1,C + 1

2Cw + 3
4�

)
is not log canonical at p.

However,
3

4
� · C = 3

4
(D − γC) · C ≤ 3

4
D · C = 3

2(4k − 1)
.
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This contradicts to Lemma 1.10. Therefore, (S1, 1
2Cw + 3

4D) must be log canonical.
Consequently, we obtain

α

(

S1,
1

2
Cw

)

≥ 3

4
.

�

Corollary 1 The Smale 5-manifold 3M∞#3M2 admits a Sasaki-Einstein metric.

Proof Since the link of Ŝ1 is diffeomorphic to 3M∞#3M2, the statement follows
from Theorems 2.1 and 2.2. �

2.3 Smale 5-Manifolds 2M∞#4M2

For a positive integer k, let Ŝ2 be a quasi-smooth hypersurface of degree 12k in
P(2, 2k, 4k, 6k − 1). We may assume that it is defined by a quasi-homogeneous
equation

xw2 + z3 + y6 + ax6k +
5∑

�=1

x�kg6−�(y, z) = 0,

where gd is a quasi-homogenous polynomial of degree dk and a is a constant. As
an orbifold, Ŝ2 can be regarded as the log del Pezzo surface

(
S2,

1
2Cw

)
, where S2

is the quasi-smooth hypersurface of degree 6k in P(1, k, 2k, 6k − 1) defined by the
quasi-homogeneous equation

xw + z3 + y6 + ax6k +
5∑

�=1

x�kg6−�(y, z) = 0

and Cw is the curve on S2 cut by w = 0. Since the hypersurface Ŝ2 is quasi-smooth,
the curve Cw must be smooth.

Theorem 2.3 For k ≥ 2,
(
S2,

1
2Cw

)
allows an orbifold Kähler-Einstein metric.

Proof Since the proof of Theorem 2.2 works verbatim, we omit the proof. �

Corollary 2 The Smale 5-manifold 2M∞#4M2 admits a Sasaki-Einstein metric.

Proof The curve Cw is isomorphic to a smooth curve of degree 6 in P(1, 1, 2), and
hence its genus is 4.Meanwhile, it follows from [33, Corollary] that the link of Ŝ2 has
the second Betti number 2. Therefore, the link of Ŝ2 is diffeomorphic to 2M∞#4M2

by [25, Theorem 5.7]. Then the statement follows from Theorems 2.1 and 2.3. �
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2.4 Smale 5-Manifolds 2M∞#3M2

Let Ŝ3 be a quasi-smooth hypersurface of degree 18 in P(2, 4, 6, 7). As an orbifold,
Ŝ3 can be regarded as the log del Pezzo surface

(
S3,

1
2Cw

)
, where S3 is a quasi-

smooth hypersurface of degree 9 in P(1, 2, 3, 7) and Cw is the curve on S3 cut by
w = 0. The curve Cw is quasi-smooth in P(1, 2, 3).

We suppose that the curve Cx cut by x = 0 intersects Cw at a point other than
[0 : 1 : 0 : 0]. We may then assume that the surface S3 is defined by

yw + y3z + z3 + xg8(x, y, z) = 0,

where g8 is a quasi-homogenous polynomial of degree 8 in x , y, z.

Theorem 2.4 The log pair
(
S3,

1
2Cw

)
admits an orbifold Kähler-Einstein metric.

Proof Let D be an effective Q-divisor such that D ≡ − (
KS3 + 1

2Cw

)
. It is enough

to show that
(
S3,

1
2Cw + 3

4D
)
is log canonical.

Suppose that
(
S3,

1
2Cw + 3

4D
)
is not log canonical at a point p on S.

Write D = αCw + �, where � is an effective Q-divisor whose support does not
contain Cw. Let E be a general member in |OS3(2)|. Then

3

14
= D · E ≥ αCw · E = 3α,

which implies α ≤ 1
14 . Therefore,

(
S3,Cw + 3

4�
)
is not log canonical at p. However,

3

4
Cw · � = 9(1 − 14α)

16
≤ 9

16
.

This means that p is either [0 : 1 : 0 : 0] or located outside Cw.
Now we write D = αCw + βCx + �, where � is an effective Q-divisor whose

support contains neither Cw nor Cx . We have β ≤ 1
2 since

3

14
= D · E ≥ βCx · E = 3β

7
.

Therefore,
(
S3,

(
1
2 + 3α

4

)
Cw + Cx + 3

4�
)
is not log canonical at p. The inequality

3

4
� · Cx = 3

4
(D − αCw − βCx ) · Cx ≤ 9

112

implies that p is either [0 : 1 : 0 : 0] or located outside Cx . Suppose that p = [0 : 1 :
0 : 0]. Note that Cx intersects Cw at a point other than p. Then

(
1

2
+ 3α

4

)

(Cw · Cx )p + 3

4
� · Cx ≤ 1

2

(
1

2
+ 3α

4

)

+ 9

112
≤ 1

2
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yields a contradiction. Therefore, the point p must be outside Cx ∪ Cw.
The hyperplane section Cy by y = 0 consists of three distinct curves C1, C2,

C3 that meet only at [0 : 0 : 0 : 1]. Suppose that p lies on Ci for some i . We write
D = αCw + γCi + �, where � is an effective Q-divisor whose support contains
neither Cw nor Ci . It follows from [16, Lemma 2.2] that we may assume that the
support of D does not contain the support of Cy . This implies that either γ = 0 or
the support of � does not contain C j for some j �= i . In the latter case, we have

1

14
= D · C j ≥ γCi · C j = 3γ

7
.

Therefore, γ ≤ 1
6 . This implies that

(
S3,Ci + (

1
2 + 3

4α
)
Cw + 3

4�
)
is not log canon-

ical at p. However, the inequality

3

4
� · Ci = 3

4
(D − αCw − γCi ) · Ci ≤ 3

56
+ 3γ

7
< 1

shows a contradiction. Therefore, p must be outside Cy .
Then there is a unique curve C in |OS3(2)| passing through p. Since p is located

outside Cx ∪ Cy ∪ Cw, the curve C must be irreducible. Write D = δC + �, where
� is an effective Q-divisor whose support does not contain C . Then

3

14
= D · C ≥ δC2 = 6δ

7
,

which implies δ ≤ 1
4 . Therefore,

(
S3,C + 1

2Cw + 3
4�

)
is not log canonical at p.

However,
3

4
� · C = 3

4
(D − δC) · C ≤ 3

4
D · C = 9

56
,

which yields a contradiction. Therefore, (S3, 1
2Cw + 3

4D) must be log canonical. �

Corollary 3 The Smale 5-manifold 2M∞#3M2 admits a Sasaki-Einstein metric.

Proof The genus of the curve Cw is 3. Therefore, [33, Corollary] and [25, Theo-
rem 5.7] imply that the link of Ŝ is diffeomorphic to 2M∞#3M2. The statement then
follows from Theorems 2.1 and 2.4. �
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3 Sasaki-Einstein 5-Manifolds: Old and New

3.1 Known Sasaki-Einstein 5-Manifolds

For every smooth del Pezzo surface S, every smooth member C in | − KS|, and
β ∈ (0, 1], Cheltsov andMartinez-Garcia compute the α-invariant of (S, (1 − β)C).
For our purpose, their result can be summarized as follows.

Theorem 3.1 Let Sr be the blow up of P
2 along r points in general position and Cr

be a smooth member in its anticanonical linear system.

• If r ≥ 3, then

α

(

Sr ,
m − 1

m
Cr

)

>
2

3

for each integer m ≥ 2.
• If r = 2, then

α

(

Sr ,
m − 1

m
Cr

)

>
2

3

for each integer m ≥ 3.
• If r = 1, then

α

(

Sr ,
m − 1

m
Cr

)

>
2

3

for each integer m ≥ 4.

Proof This immediately follows from [14, Sect. 2] and [14, Theorem 4.1]. �

This result of Cheltsov andMartinez-Garcia slightly improves [27, Corollary 21].

Theorem 3.2 The Smale 5-manifold rM∞#Mm allows a Sasakin-Einstein metric if
m ≥ 2 for 3 ≤ r ≤ 8, m ≥ 3 for r = 2, and m ≥ 4 for r = 1.

Proof Let Sr be the blow up of P
2 along r points in general position. It is a smooth

del Pezzo surface of degree 9 − r . Let Cr be a smooth member in its anticanonical
linear system. Note that the curve Cr is an elliptic curve. For 1 ≤ r ≤ 8 and m ≥ 2,
[27, Corollary 21] provides a simply connected Seifert bundle L over the orbifold(
Sr ,

m−1
m Cr

)
whose first Chern class is a rational multiple of − (

KSr + m−1
m Cr

)
. It

follows from [25, Theorem 5.7] that L is diffeomorphic to the Samle 5-manifold
rM∞#Mm .

Meanwhile, Theorems 1.4 and 3.1 imply that
(
Sr ,

m−1
m Cr

)
allows an orbifold

Kähler-Einstein metric if m ≥ 2 for 3 ≤ r ≤ 8, m ≥ 3 for r = 2, and m ≥ 4 for
r = 1. Therefore, in such a case, the Seifert bundle L allows a Sasaki-Einstein
metric. �
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Theorem 3.2 answers [9, Question 11.4.1 (iii)].
The following table lists all the Smale 5-manifolds that are known to allow Sasaki-

Einstein metrics.

Smale 5-manfolds Sasaki-Einstein References
kM∞ every k ≥ 0 [7, Theorem 1.2] for k ≤ 7

[12, Theorem A] for k = 8
[11, Theorem A] for k = 9
[26, Theorem 1] for k ≥ 6

8M∞#Mm every m ≥ 2 [27, Corollary 21] for m ≥ 7
Theorem 3.2 for m ≥ 2

7M∞#Mm every m ≥ 2 [27, Corollary 21] for m ≥ 7
Theorem 3.2 for m ≥ 2

6M∞#Mm every m ≥ 2 [27, Corollary 21] for m ≥ 7
Theorem 3.2 for m ≥ 2

5M∞#Mm every m ≥ 2 [27, Corollary 21] for m ≥ 7
Theorem 3.2 for m ≥ 2

4M∞#Mm every m ≥ 2 [27, Corollary 21] for m ≥ 7
Theorem 3.2 for m ≥ 2

3M∞#Mm every m ≥ 2 [27, Corollary 21] for m ≥ 7
Theorem 3.2 for m ≥ 2

2M∞#Mm every m ≥ 2 [27, Corollary 21] for m ≥ 7
Theorem 3.2 for m ≥ 3
[13, Theorem A] for m = 2

M∞#Mm every m ≥ 2 [27, Corollary 21] for m ≥ 7
Theorem 3.2 for m ≥ 4
[13, Theorem A] for m = 3
[13, Table3] for m = 2

M∞#2M4 Yes [9, Theorem 11.4.13]
M∞#2M3 Yes [13, Theorem A]
M∞#3M3 Yes [13, Theorem A]
M∞#nM2 every n ≥ 2 [25, Proof 9.6]

Mm every m ≥ 2 with 30 � m [8, Theorem 21] for m ≥ 3 with 6 �

m
[25, Theorem 1.6] for m ≥ 12 with
30 � m
[9, Theorem 11.4.12] for m = 6
[13, Table2] for m = 2

2M5 Yes [25, Proof 9.6]
2M4 Yes [25, Proof 9.6]
4M3 Yes [25, Proof 9.6]
3M3 Yes [8, p. 359]
2M3 Yes [27, Example 19]
nM2 every n ≥ 2 [13, Theorem A] for n =

2, 3, 5, 6, 7
[35, Main Theorem] for n ≥ 4
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3.2 Remaining Candidates for Sasaki-Einstein 5-manifolds

The table in the previous section and Theorem 1.2 show that the following 5-
manifolds remain as candidates for closed simply connected Sasakin-Einstein 5-
manifolds.

Smale 5-manfolds Candidates Partial results
kM∞#2M3 k ≥ 2
kM∞#3M3 k ≥ 2
kM∞#nM2 k ≥ 3, n ≥ 2 [13, Theorem A] for 5M∞#2M2

[13, Theorem A] for 4M∞#2M2
Corollary 1 for 3M∞#3M2
Corollary 2 for 2M∞#4M2
Corollary 3 for 2M∞#3M2

kM∞#Mm k ≥ 9 and 2 ≤ m ≤ 11

To complete the classification of Sasaki-Einstein Smale 5-manifolds, we propose
the following three conjectures.

Conjecture 3.3 ([9,Question 11.4.1 (i)]) LetM be aSmale 5-manifold of the second
Betti number at least 9. It admits a Sasaki-Einsteinmetric if and only ifH2(M, Z)tor =
0.

Conjecture 3.4 Let M be a Smale 5-manifold of the second Betti number at
least 2. If it admits a Sasaki-Einstein metric, then H2(M, Z)tor can be neither
(Z/3Z ⊕ Z/3Z)⊕2 nor (Z/3Z ⊕ Z/3Z)⊕3.

Conjecture 3.5 For each integer k ≤ 8 and n ≥ 2, the Smale 5-manifold kM∞#nM2

admits a Sasaki-Einstein metric.

Note that the last conjecture holds for k = 0, 1 (see the table in Sect. 3.1).
Consequently, if the three conjectures above are true, then we are able to complete

the classification of closed simply connected Sasaki-Einstein 5-manifolds by adding
the Smale 5-manifold kM∞#nM2, 2 ≤ k ≤ 8 and n ≥ 2 to the table in Sect. 3.1.

Acknowledgements This work has been supported by IBS-R003-D1, Institute for Basic Science
in Korea.
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Singularities of Pluri-Fundamental
Divisors on Gorenstein Fano Varieties
of Coindex 4

Jinhyung Park

Abstract Let X be a Gorenstein canonical Fano variety of coindex 4 and dimension
n with H fundamental divisor. Assume h0(X, H) ≥ n − 2. We prove that a general
element of the linear system |mH | has at worst canonical singularities for any integer
m ≥ 1.When X has terminal singularities and n ≥ 5, we show that a general element
of |mH | has at worst terminal singularities for any integer m ≥ 1. When n = 4, we
give an example of Gorenstein terminal Fano fourfold X such that a general element
of |H | does not have terminal singularities.

Keywords Fano variety · Fundamental divisor · Singularity of a pair ·
Anticanonical divisor
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1 Introduction

Throughout the paper, we work over the field C of complex numbers. Let X be a
Gorenstein Fano variety of dimension n with canonical singularities. The index of
X is

iX := max{t ∈ Z | −KX ∼ t H where H is an ample Cartier divisor}.

It is well known that
1 ≤ iX ≤ n + 1.
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The coindex of X is n + 1 − iX . An ample Cartier divisor H on X with−KX ∼ iX H
is called the fundamental divisor of X . Since Pic(X) is torsion-free, H is uniquely
determined up to linear equivalence. It is a natural problem to study singularities of
general members in pluri-fundamental linear systems |mH | for all integers m ≥ 1.

By Kobayashi–Ochiai, X is a projective space if iX = n + 1, and X is a hyper-
quadric if iX = n. A Gorenstein canonical Fano variety X with iX = n − 1 is a del
Pezzo variety, and del Pezzo varieties were classified by Fujita [8, 10]. If X is a del
Pezzo variety, then the base locus Bs |H | is empty or consists of a single point neither
in Sing X nor in Sing Y , where Y ∈ |H | is a general member. Thus Y has canon-
ical/terminal singularities if X has canonical/terminal singularities. A Gorenstein
canonical Fano variety X with iX = n − 2 is a Mukai variety, and smooth Mukai
varieties were classified by Mukai [21] under the assumption that |H | contains a
smooth divisor. Mella [20] verified this assumption, and moreover, he also proved
that if X is a Gorenstein Mukai variety with canonical/terminal singularities, then
a general member in |H | has canonical/terminal singularities except when X is a
complete intersection in P(1, 1, 1, 1, 2, 3) of a quadric defined in the first four linear
variables and a sextic. Finally, note that if iX ≥ n − 2, then |mH | is base point free
for every integer m ≥ 2 (see [18, Remark 4.5]). We can conclude that singularities
of general members in |mH | with m ≥ 1 are well understood when iX ≥ n − 2.

In this paper, we consider the case iX = n − 3, i.e., X has coindex 4. Floris [4]
proved that a general member of the linear system |H | has canonical singularities if X
is a Gorenstein canonical Fano variety of coindex 4 and h0(X, H) �= 0. However, in
contrasts to the smaller coindex cases, there is a smooth Fano fourfold X of coindex
4 such that every member in |H | is singular (see [14, Example 2.12]). Heuberger [12]
proved that if X is a smooth Fano fourfold, then a generalmember in | − KX | has only
terminal singularities. This is a natural generalization of a classical result of Shokurov
[23] for smooth Fano threefolds. Heuberger’s theorem together with aforementioned
results implies that a general member in |H | has only terminal singularities if X is
smooth.

The main result of this paper is the following.

Theorem 1.1 Let X be aGorenstein canonical Fano variety of coindex 4 and dimen-
sion n ≥ 4, and H be the fundamental divisor of X.

(1) Assume that h0(X, H) ≥ n − 2. Then a general member of the linear system
|mH | has only canonical singularities for every integer m ≥ 1.

(2) Assume that X has terminal singularities and h0(X, H) ≥ n − 2. Then a general
member of the linear system |mH | has only terminal singularities for every
integer m ≥ 1 unless (n,m) = (4, 1), (4, 2), (4, 3).

(3) Assume that X is smooth. Then h0(X, H) ≥ n − 2, and a general member of
the linear system |mH | has only terminal singularities for every integer m ≥ 1
unless (n,m) = (4, 2).

If X is a smooth Fano variety of coindex 4 and dimension n, then Floris [4,
Theorem 1.2] and Liu [18, Theorem 1.2] showed that h0(X, H) ≥ n − 2. If X is
singular, then we do not know whether H 0(X, H) �= 0. This nonvanishing follows
from the following:
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Conjecture 1.2 (Ambro–Kawamata effective nonvanishing conjecture [1, 16]) Let
(X,�) be a klt pair, and D be a Cartier divisor on X . If D is nef and D − (KX + �)

is nef and big, then H 0(X, D) �= 0.

This conjecture has been verified for low dimensional varieties [16] and Fano
weighted complete intersections [22]. Especially, [16, Proposition 4.1 and Theo-
rem 5.2] say that if X is a Gorenstein Fano fourfold with canonical singularities,
then h0(X, H) ≥ 2. Although the methods of the present paper do not yield the
results for higher coindex cases directly, we may still expect that Theorem 1.1 for
higher coindex would follow from the effective nonvanishing conjecture (cf. [13]).

In Theorem 1.1 (2), when n = 4, one cannot expect that a general member in |H |
has terminal singularities. We give an example of Gorenstein terminal Fano fourfold
X such that a general member of the linear system |H | does not have terminal
singularities (see Example 2.4 (1)). In Theorem 1.1 (3), we do not know whether
there is an example of a smooth Fano fourfold such that a general element in |2H |
does not have terminal singularities. See Remark 3.5 for some partial result.

By [19, Corollary 3], if X is a Gorenstein Fano variety of coindex 4 and dimension
n with canonical singularities and h0(X, H) ≥ n − 2, then |mH | is base point free
for any integer m ≥ 4 (see Remark 2.2). In particular, if X is a smooth Fano variety
of coindex 4, then a general member in |mH | is smooth for any integer m ≥ 4.

One may expect that if a general member in |H | has only mild singularities, then
so does a general member in |mH | for any m ≥ 2. More generally, we may ask the
following:

Question 1.3 Let X be a smooth projective variety, and L , M be divisors on X . Sup-
pose that general members of |L| and |M | have only canonical/terminal singularities.
Then does a general member of |L + M | have also canonical/terminal singularities?

The answer is “NO” of course. Some counterexamples are given in Example 3.1.

Organization. The paper is organized as follows. Section2 is devoted to proving
Theorem 1.1 (1) and (2). We also give some examples of terminal Fano fourfolds
in which a general member of the fundamental linear system does not have terminal
singularities (see Example 2.4). In Sect. 3, we negatively answer Question 1.3 in
Example 3.1, and we prove Theorem 1.1 (3).

2 Pluri-fundamental Divisors on Singular Fano Varieties

In this section, we prove Theorem 1.1 (1) and (2). For the definitions and basic
properties of singularities of pairs, we refer to [17]. We begin with fixing some
notations. Let X be a Gorenstein Fano variety of coindex 4 and dimension n ≥ 4
with canonical singularities, and H be the fundamental divisor on X .Wehave−KX =
(n − 3)H . Assume that h0(X, H) ≥ n − 2. Then |mH | �= ∅ for each integerm ≥ 1.
Take a log resolution
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fm : Xm −→ X

of the ideal of the base locus Bs |mH |. We may assume that fm is obtained by a
sequence of blow-ups along smooth centers. We write

KXm = f ∗
mKX +

∑

i

am,i Em,i and | f ∗
mmH | = |Mm | +

∑

i

rm,i Em,i ,

where all Em,i are prime divisors, |Mm | is the free part of | f ∗
mmH |, and∑

i rm,i Em,i is
thefixedpart of | f ∗

mmH |. By [4,Theorem1.1], a generalmember of |H | is irreducible.
Since h0(X, H) ≥ 2, it follows that dim Bs |H | ≤ n − 2; thus dim Bs |mH | ≤ n − 2
for each integer m ≥ 1. Hence every Em,i is an fm-exceptional divisor. Since H is a
Cartier divisor, all am,i and rm,i are nonnegative integers.

Lemma 2.1 dim Bs |mH | ≤ 2 for any integer m ≥ 1.

Proof By [4, Proposition 4.1], (X, Xn−1) is a plt(=purely log terminal) pair, where
Xn−1 ∈ |H | is a general member. As Xn−1 is connected, [17, Proposition 5.51]
shows that Xn−1 is irreducible and normal. By [17, Theorem 5.50], Xn−1 has
Gorenstein canonical singularities. Note that −KXn−1 = ((n − 1) − 3)Hn−1, where
Hn−1 := H |Xn−1 . If n ≥ 5, then Xn−1 is an (n − 1)-dimensional Gorenstein canoni-
cal Fano variety of index iXn−1 ≥ (n − 1) − 3 with h0(Xn−1, Hn−1) ≥ (n − 1) − 2.
If iXn−1 > (n − 1) − 3, then |Hn−1| is base point free (cf. [18, Remark 4.5]) so
that (Xn−1, Xn−2) is a plt pair, where Xn−2 ∈ |Hn−1| is a general member. If
iXn−1 = (n − 1) − 3, then by [4, Proposition 4.1], (Xn−1, Xn−2) is also a plt pair.
Continuing this process, we finally obtain a Calabi–Yau threefold X3 with canonical
singularities and h0(X3, H4|X3) ≥ 1. Notice that

Bs |H | = Bs |Hn−1| = · · · = Bs |H4| = Bs |H4|X3 |.

This shows dim Bs |H | ≤ 2. Note that Bs |mH | ⊆ Bs |H | for any m ≥ 2. Then the
lemma follows. �

Remark 2.2 (1) If the Ambro–Kawamata effective nonvanishing conjecture is true
for Gorenstein Fano variety of coindex 4 with canonical singularities, then [4, Propo-
sition 4.1] and the “ladder” argument as in the proof of Lemma 2.1 show that
h0(X, H) ≥ n − 2.

(2) If X is a Gorenstein Fano variety of coindex 4 with canonical singularities and
h0(X, H) ≥ n − 2, then the “ladder” argument and [19, Theorem 2] show that |mH |
is base point free for every integer m ≥ 4.

The following proposition, inspired by [12, Proposition 9], is the key ingredient
of the proof of Theorem 1.1.

Proposition 2.3 For an integer m ≥ 1, we have
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am,i ≥ m + n − 3

m
rm,i − 1 for all i.

Proof Suppose that am,i − m+n−3
m rm,i < −1 for some i . Let

c0 := inf{c | am,i − crm,i ≤ −1 for some i}.

Then 0 < c0 < m+n−3
m . For an integer k > c0, choose k general members D1, . . . , Dk

∈ |mH |, and let � := c0 · D1+···+Dk
k . Then the pair (X,�) is lc(=log canonical) but

not klt(=Kawamata log terminal). LetW be a minimal lc center of the lc pair (X,�).
Since D1, . . . , Dk ∈ |mH | are general, (X,�) is klt outside the base locus Bs |mH |
(cf. [1, Lemma 5.1]). Thus W is contained in Bs |mH |, so dimW ≤ 2 by Lemma
2.1.

By the generalization of Kawamata’s subadjunction formula [7, Theorem 1.2],
there exists an effective divisor � on W such that

(KX + �)|W ∼Q KW + �

and the pair (W, �) is klt. Note that

mH − (KX + �) ∼Q (m + n − 3 − c0m)H.

Since c0m < m + n − 3, it follows that mH − (KX + �) is ample. Then mH |W −
(KW + �) is ample.Recall that dimW ≤ 2.By [16,Theorem3.1], H 0(W,mH |W ) �=
0. Now, since mH − (KX + �) is ample and W is an lc center of the lc pair (X,�),
we can apply [6, Theorem 2.2] to see that the restriction map

H 0(X,mH) −→ H 0(W,mH |W )

is surjective. However, W ⊆ Bs |mH |, so this restriction map is the zero map. We
obtain H 0(W,mH |W ) = 0, which is a contradiction. Thus the proposition holds. �

We are ready to prove Theorem 1.1 (1) and (2).

Proof of Theorem 1.1 (1) and (2)Recall that X is aGorenstein Fano variety of coindex
4 and dimension n with canonical singularities. We assume that h0(X, H) ≥ n − 2.
Let Ym ∈ |mH | be a general element for an integer m ≥ 1.

(1) Wewant to prove that Ym has canonical singularities. If (X,Ym) is a plt pair, then
[17, Theorem 5.50 and Proposition 5.51] imply that Ym has canonical singularities
since Ym is Gorenstein. Thus it is enough to show that the pair (X,Ym) is plt. The
birational morphism fm : Xm → X is a log resolution of (X,Ym). We have

KXm + f −1
m,∗Ym = f ∗

m(KX + Ym) +
∑

i

(am,i − rm,i )Em,i .

If rm,i = 0, then am,i − rm,i ≥ 0 > −1. If rm,i ≥ 1, then Proposition 2.3 implies that
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am,i − rm,i ≥ n − 3

m
rm,i − 1 > −1.

Thus (X,Ym) is a plt pair.
(2) Assume that X has terminal singularities and n = dim X ≥ 5 or m ≥ 4. We
want to show that Ym has terminal singularities. If m ≥ 4, then [19, Theorem 2] (see
also Remark 2.2 (2)) implies that |mH | is base point free; hence Ym has terminal
singularities. From now on, assume that n ≥ 5 and 1 ≤ m ≤ 3. We know that Ym
is a normal projective variety with canonical singularities. Let Y ′

m := f −1
m,∗Ym be the

strict transform of Ym under fm . Since Y ′
m ∈ |Mm | is a general element, Y ′

m is smooth.
Then

f ′
m := fm |Y ′

m
: Y ′

m −→ Ym

is a log resolution of Ym . We have

KY ′
m

= f ′
m

∗KYm +
∑

i

(am,i − rm,i )Em,i |Y ′
m
.

Since X has terminal singularities, we have am,i ≥ 1 for all i .
Consider the case m = 1. Note that m+n−3

m = n − 2 ≥ 3. If r1,i ≥ 1, then Propo-
sition 2.3 implies that a1,i − r1,i ≥ 2r1,i − 1 > 0. If r1,i = 0, then a1,i − r1,i > 0.
Thus Y1 has terminal singularities.

Suppose now that Ym does not have terminal singularities for some 2 ≤ m ≤ 3.
Then there is some i0 such that am,i0 = rm,i0 ≥ 1 and Em,i0 |Y ′

m
is an fm |Y ′

m
-exceptional

divisor. Since Ym has terminal singularities outside Bs |mH |, we see that fm(Em,i0) ⊆
Bs |mH |. Since n ≥ 5 and 2 ≤ m ≤ 3, we have m+n−3

m ≥ 5
3 . If rm,i ≥ 2, then

Proposition 2.3 implies that am,i − rm,i ≥ 2
3rm,i − 1 > 0. Thus am,i0 = rm,i0 = 1.

If fm(Em,i0) � Sing X , then dim fm(Em,i0) = n − 2 since fm is a composition of
smooth center blow-ups. This means that fm(Em,i0) is a divisor on Ym and Em,i0 |Y ′

m

is not an fm |Y ′
m
-exceptional divisor. Thus fm(Em,i0) ⊆ Sing X , and dim fm(Em,i0) ≤

n − 3 because X has terminal singularities. By taking further blow-ups, we may
assume that f1 = fm and X1 = Xm . Then there is an i1 such that E1,i1 = Em,i0 . We
have a1,i1 = am,i0 = 1. Now, since fm(Em,i0) ⊆ Bs |mH | ⊆ Bs |H |, it follows that
r1,i1 ≥ 1. Thus a1,i1 − r1,i1 ≤ 0. Note that E1,i1 |Y ′

1
is an f1|Y ′

1
-exceptional divisor.

We get a contradiction to that Y1 has terminal singularities. Hence Ym has terminal
singularities for any 2 ≤ m ≤ 3. �

Finally, we provide some examples of terminal Fano fourfolds in which a general
element in the fundamental linear system does not have terminal singularities.

Example 2.4 (1) Let Z := X2,6 be a complete intersection in P(1, 1, 1, 1, 2, 3) of
a general quadric defined in the first four linear variables x0, . . . , x3 and a general
sextic (cf. [20, Theorem 1]). Then Z is a Gorenstein terminal Fano threefold of index
1, and Sing Z = {p = (0 : 0 : 0 : 0 : −1 : 1)}. A general member of |HZ | is singu-
lar at p, where HZ = −KZ is the fundamental divisor of Z . Let X := Z × P1 so
that X is a Gorenstein Fano fourfold of index 1 with terminal singularities. Note
that H = −KX = π∗

1 (−KZ ) + π∗
2 (−KP1) is the fundamental divisor of X , where
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π1 : X → Z and π2 : X → P1 are projections. A general element Y in |H | has one
dimensional singular locus {p} × P1. Since dim Y = 3, it follows that Y does not
have terminal singularities. Here Y is a Gorenstein Calabi–Yau threefold with canon-
ical singularities.

(2) Let X := X9 be a weighted hypersurface in P(1, 1, 1, 1, 3, 3) of degree 9 (cf.
quasismooth Fano 4-fold hypersurfaces ID 8 in [11] based on [2]). Then X is a non-
Gorenstein Q-Fano fourfold with terminal singularities such that −KX is a hyper-
plane with (−KX )4 = 1. Note that Sing X consists of three terminal singular points
of the type 1

3 (1, 1, 1, 1). A general element in | − KX | is a weighted hypersurface S9
inP(1, 1, 1, 3, 3) of degree 9, and S9 is a Gorenstein canonical Calabi–Yau threefold.
Note that Sing S9 consists of three (non-terminal) canonical singular points of the
type 1

3 (1, 1, 1).

3 Pluri-fundamental Divisors on Smooth Fano Varieties

In this section, we first answer Question 1.3 by constructing smooth projective vari-
eties X and divisorsM such that general members in |M | are smooth but all members
in |mM | are not normal for some m ≥ 2, and then prove Theorem 1.1 (3).

Example 3.1 (1) If E is an exceptional divisor on a smooth projective variety, then
|mE | = {mE} for all m ≥ 1. Now, E is smooth, but mE is non-reduced for any
m ≥ 2.

(2) Let C be a smooth projective curve of genus 2. There are two distinct points
P, Q onC such that 2P ∼ 2Q ∼ KC . In particular, Q − P ∈ Pic0(C) is a 2-torsion.
We can also find τ ∈ Pic0(C) such that H 0(C, P + τ) = H 0(C, Q − P + τ) =
H 0(C, 2τ) = 0. Let E := OC(P) ⊕ OC(τ ), and S := P(E) with the natural projec-
tion π : S → C and the tautological divisor H , i.e.,OS(H) = OP(E)(1). Let A := H
and B := H + π∗(Q − P). Then A, B are sections of π , so they are smooth irre-
ducible curves isomorphic to C . Furthermore, A, B satisfy the following:

• A2 = B2 = A.B = 1,
• A � B but 2A ∼ 2B,
• h0(S, A) = h0(S, B) = 1, and
• h0(S, 2A) = h0(S, 2B) = 2.

Notice that A, B meet at one point p on S and every member of |2A| = |2B| has
multiplicity at least 2 at p. Thus every member in |2A| = |2B| is not normal.

(3) [22, Example 5.9] For an integer m ≥ 1, let

X = X(2m+1)(2m+2) ⊆ P( 1, . . . , 1︸ ︷︷ ︸
1+2m(2m+1)

, 2m + 1, 2m + 2)

be a weighted hypersurface of degree (2m + 1)(2m + 2). Then X is a smooth Fano
variety of index 2. If H is the fundamental divisor of X , then a general member
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of |H | is smooth. However, | − 2i H | does not contain a smooth member for any
1 ≤ i ≤ m. In this case, a general member in | − 2i H | has terminal singularities.

We now turn to the proof of Theorem 1.1 (3).

Proof of Theorem 1.1 (3) except the case (n,m) = (4, 3) Let X be a smooth Fano
variety of coindex 4 and dimension n with fundamental divisor H . By Theorem 1.1
(2), we only have to consider the cases (n,m) = (4, 1), (4, 3). If (n,m) = (4, 1),
then H = −KX . Now, [12, Theorem 2] says that a general element in | − KX | has
terminal singularities. �

Remark 3.2 Let X be a smooth Fano variety of coindex 4, and H be the fundamental
divisor of X . By [19, Theorem 4], |mH | is base point free for any integer m ≥ 4;
hence a general element Ym ∈ |mH | is smooth in this case. But there is a smooth
Fano fourfold X of coindex 4 such that every member in |H | is singular (see [14,
Example 2.12]).

To finish the proof of Theorem 1.1, it only remains to prove that if H is the
fundamental divisor of a smooth Fano fourfold X of coindex 4, then a general element
Y ∈ |3H | has terminal singularities. We know that Y has canonical singularities. As
in Sect. 2, take a log resolution f : X3 → X of the ideal of the base locus Bs |3H |.
Wemay assume that f is isomorphic outside Bs |3H | and it is obtained by a sequence
of blow-ups along smooth centers. We write

KX3 = f ∗KX +
∑

i

ai Ei and | f ∗3H | = |M | +
∑

i

ri Ei ,

where all Ei are f -exceptional prime divisors and |M | is the free part of | f ∗3H | and∑
i ri Ei is the fixed part of | f ∗3H |. We may assume that f (Ei ) ⊆ Bs |3H | for all i .

All ai and ri are positive integers.

Lemma 3.3 If a general element Y in |3H | has at worst isolated singularity at x
and multx Y ≤ 2, then Y has terminal singularity at x.

Proof Wemay assume that f factors through the blow-up of X at x with exceptional
divisor Ei0 . We have ai0 = 3 and ri0 ≤ 2, so ai0 − ri0 > 0. For every f -exceptional
divisor Ei with f (Ei ) = {x} but Ei �= Ei0 , we have ai ≥ 4 since f is a composition
of smooth center blow-ups. It is impossible that ai = ri ≥ 4 because Proposition
2.3 says that ai ≥ 4

3ri − 1 > ri when ri ≥ 4. Thus ai − ri > 0, and hence, Y has
terminal singularity at x . �

Lemma 3.4 dim Bs |mH | ≤ 1 for any integerm ≥ 2. In particular, dim Sing Y ≤ 1.

Proof Suppose that dim Bs |mH | ≥ 2 for some integer m ≥ 2. By Lemma 2.1, we
have dim Bs |mH | = 2, so there is an irreducible surface S ⊆ Bs |mH | ⊆ Bs |H |.
Now, take two general elements D1, D2 ∈ |H |. By Proposition 2.3, (X, D1 + D2) is
an lc pair, and S is an lc center of (X, D1 + D2). There is a minimal lc center C of
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(X, D1 + D2) contained in S. By [7, Theorem 1.2], there is an effective divisor � on
C such that

(KX + D1 + D2)|C ∼Q KC + �

and (C, �) is a klt pair. By [16, Theorem 3.1], H 0(C,mH |C) �= 0 since mH −
(KX + D1 + D2) ∼ (m − 1)H is ample. Now, by [6, Theorem 2.2], the restriction
map

H 0(X,mH) −→ H 0(S,mH |S)

is surjective. However, S ⊆ Bs |mH |, so this restriction map is the zero map. We
get a contradiction. Therefore, dim Bs |mH | ≤ 1 for any integer m ≥ 2. Now, since
Sing Y ⊆ Bs |3H |, it follows that dim Sing Y ≤ 1. �

Proof of Theorem 1.1 (3) for the case (n,m) = (4, 3) We want to prove that a
general element Y ∈ |3H | has terminal singularities. Note that H = −KX and
dim Bs |3H | ≤ 1 by Lemma 3.4. We know that h0(X, H) ≥ 2.

First, assume that H 4 ≥ 2. Take a general element Z ∈ |H |, which is a Gorenstein
Calabi–Yau threefold with terminal singularities. Suppose that dim Bs |3H | = 1.
Then Z is nonsingular at a general point x in Bs |3H |. By [15, Theorem 3.1], |3H |Z |
is base point free at x . But x ∈ Bs |3H | = Bs |3H |Z |, so we get a contradiction. Thus
dim Bs |3H | ≤ 0. Suppose that Y has non-terminal singularity at x . By Lemma 3.3,
multx Y ≥ 3. Now, by Proposition 2.3, (X, Z + Y ) is an lc pair. Thus multx Z = 1,
so Z is nonsingular at x . By [15, Theorem 3.1], 3H |Z is base point free at x , so we
get a contradiction as before. Hence Y has at worst terminal singularities.

Next, assume that H 4 = 1. The sectional genus of the polarized pair (X, H) is
g(X, H) = (KX+3H).H 3

2 + 1 = 2. By Fujita’s classification [9, Proposition C], we
have 2 ≤ h0(X, H) ≤ 4, and the following hold:

• h0(X, H) = 4 ⇔ X = X10 ⊆ P(1, 1, 1, 1, 2, 5) is a hypersurface of degree 10.
• h0(X, H) = 3 ⇔ X = X6,6 ⊆ P(1, 1, 1, 2, 2, 3, 3) is a complete intersection of
type (6,6).

If h0(X, H) = 4, then Bs |H | = Bs |3H | = {x} and |2H | is base point free. In this
case, multx Y = 1, so Y is smooth. If h0(X, H) = 3, then |3H | is base point free so
that Y is smooth. We now suppose that h0(X, H) = 2.1 By Riemann–Roch formula,
we have

h0(X,mH) = m2(m + 1)2

24
H 4 + m(m + 1)

24
H 2.c2(X) + 1.

Then H 2.c2(X) = 10, and h0(X, 2H) = 5, h0(X, 3H) = 12. Let Z1, Z2 ∈ |H | and
W ∈ |2H | be general members. Then S := Z1 ∩ Z2 is an irreducible Gorenstein
surface with KS = H |S , and C := Z1 ∩ Z2 ∩ W is a Gorenstein curve with KC =
3H |C . We have Hi (X, �H) = 0 for 1 ≤ i ≤ 3 and � ∈ Z, so we get

1 It is unknown whether there is a smooth Fano fourfold X with h0(X, −KX ) = 2 (cf. [19, Question 5]).
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h0(Z1, H |Z1) = 1, h0(Z1, 2H |Z1) = 3, h0(Z1, 3H |Z1) = 7
h0(S, H |S) = 0, h0(S, 2H |S) = 2, h0(S, 3H |S) = 4
h0(C, H |C) = 0, h0(C, 2H |C) = 1, h0(C, 3H |C) = 4.

Thus pa(C) = h0(C, 3H |C) = 4. As C.H |S = 2, we see that C has at most two
irreducible components. If C is non-reduced, then C = 2H ′ for some H ′ ∈ |H |S|.
However, since h0(S, H |S) = 0, it follows that C is reduced.

Suppose that there is an irreducible curve A on X with A ⊆ Bs |2H | ∩ Bs |3H |.
Since h0(S,C) = h0(S, 2H |S) = 2, it follows that C has two irreducible com-
ponents. We write C = A + B on S. Since the restriction map H 0(X, 3H) →
H 0(C, KC) is surjective, we have A ⊆ Bs |KC |. Note that

degA(KC) = degB(KC) = 3

since
degA(H |C) = A.H = 1 and degB(H |C) = B.H = 1.

By [5, Definition 2.1 and Formula (3)], we have

4 = pa(C) = pa(A) + pa(B) + A · B − 1,

where

A · B := degA(KC) − 2pa(A) + 2 = degB(KC) − 2pa(B) + 2.

If A · B ≥ 2, then C is numerically 2-connected in the sense of [3, Definition 3.1].
In this case, by [3, Theorem 3.3], |KC | is base point free, so we get a contradiction
to that A ⊆ Bs |KC |. Thus A · B = 1, and then, pa(A) = pa(B) = 2. Consider an
exact sequence

0 −→ ωB −→ ωC −→ ωC |A −→ 0,

which induces the following exact sequence

0 −→ H 0(B, KB) −→ H 0(C, KC) −→ H 0(A, KC |A)

Then h0(A, KC |A) ≥ 2,which is a contradiction to that A ⊆ Bs |KC |. Thuswe obtain
dim Bs |2H | ∩ Bs |3H | ≤ 0.

Recall that Z1 is a Gorenstein Calabi–Yau threefold with terminal singularities.
Then dim Sing Z1 ≤ 0. If Y is singular along a curve D, then D ⊆ Bs |3H | and D �

Bs |2H |. For a general point x ∈ D, we have multx |H | = 1 and multx |2H | = 0,
so multx Y = 1 by the upper semicontinuity of the multiplicity. We get a contra-
diction because Y is singular at x . This means that Y cannot be singular along a
curve. By Bertini’s theorem, we see that multx Y ≤ 2 for all x /∈ Bs |2H | ∪ Sing Z1.
Now, suppose that Y has an isolated non-terminal singular point x . By Lemma
3.3, multx Y ≥ 3, which implies that x ∈ Bs |2H | ∪ Sing Z1. Note that every gen-
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eral element Y ′ ∈ |3H | has multx Y ′ ≥ 3. By Proposition 2.3, (X,Y + Z1) is an lc
pair, so multx Z1 = 1. If multx W = 1, then the upper semicontinuity of the multi-
plicity shows that multx Y ′ ≤ 2, which is a contradiction. Thus multx W ≥ 2. Now,
dim Bs |2H | ∩ Bs |3H | ≤ 0 implies thatC ∩ Y ′ has dimension zero. Notice thatC ∩
Y ′ = Z1 ∩ Z2 ∩ W ∩ Y ′ has length 6, and recall that multx W ≥ 2 and multx Y ′ ≥
3. Hence C ∩ Y ′ is indeed supported at a single point x . Since H 0(X, 3H) →
H 0(C, 3H |C) is surjective, every element in |3H |C | has a single support x . But this
is impossible since h0(C, 3H |C) ≥ 2. We can conclude that Y has at worst terminal
singularities. �

Remark 3.5 Let X be a Fano fourfold of coindex 4 with fundamental divisor H =
−KX . Suppose that H 4 ≥ 4, H 2.S ≥ 3 for every irreducible surface S, and H 3.C ≥
2 for every irreducible curve C . Take a general element Z ∈ |H |. By [16, Theorem
3.1], |2H |Z | is base point free at every nonsingular point in Z . This implies that
dim Bs |2H | ≤ 0. In this case, we can easily show that a general member in |2H |
has terminal singularities.
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A Database of Group Actions
on Riemann Surfaces

Jennifer Paulhus

Abstract The automorphism group of a Riemann surface is an important object in a
number of different mathematical fields. An algorithm of Thomas Breuer determines
all such groups for a fixed genus given a complete classification of groups up to a
sufficiently large order, but data generated from this algorithm did not include the
generators of the correspondingmonodromy group, another crucial piece of informa-
tion for researchers. This paper describes modifications the author made to Breuer’s
code to add the generators, as well as other new code to compute additional infor-
mation about a given Riemann surface. Data from this project has been incorporated
into the L-functions and Modular Forms Database (http://www.lmfdb.org) and we
also describe the relevant data which may be found there.

Keywords Riemann surfaces · Automorphism groups · Group actions · Surface
kernel epimorphisms · Fuchsian groups · Algebraic curves · Automorphisms

AMS classification 14H37 · 20H10 · 30F20

1 Introduction

The study of groups acting on Riemann surfaces and the corresponding branched
coverings is classical, dating back to work of Klein, Hurwitz, and others [26, 27,
32]. The field saw a revival in the mid 19th century [21, 22, 36, 51], while the
advent of computer algebra programs led to many new advances since the beginning
of this century. Of particular interest for this paper is work of Breuer who created
an algorithm and wrote computer code to determine all groups acting on Riemann
surfaces of a given genus [5]. He ran the code up to genus 48, and recorded the groups
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along with limited information about the ramification of the mapping X → X/G
from a Riemann surface X to the orbit space of X by the group G acting on it.

Groups acting onRiemann surfaces are also important tomathematicians working
in other areas, from the Galois theory of extensions of C(z) [55], to Jacobian variety
decompositions [33, 41], to Galois covers of the projective line corresponding to
Shimura varieties [15], to questions about indecomposable rational functions [16].
Most of these topics utilize the generators of the monodromy group of the cover-
ing corresponding to the mapping X → X/G. Within Breuer’s code, generators of
the monodromy group were also computed, but not recorded. We added function-
ality to Breuer’s code to fully compute these generators, and wrote new code to
compute additional information about Riemann surfaces. As this data will aid other
researchers, we are creating a publicly visible, easily accessible database containing
this data.

Enter the L-functions and Modular Forms Database (LMFDB), a huge database
of mathematical objects. As an established database with a strong infrastructure,
LMFDB is an ideal location to post this data. Part of its goal is to provide opportunities
for unexpected connections betweenmathematical concepts. This paper describes the
modifications we made to Breuer’s code, as well as additional computations we use
to generate data on LMFDB (such as which actions correspond to full automorphism
groups, and which correspond to hyperelliptic curves). The relevant code may be
found at http://github.com/jenpaulhus/group-actions-RS and the database is at http://
www.lmfdb.org/HigherGenus/C/Aut.

Section2 is an overview of the necessary mathematical background on groups
acting on Riemann surfaces, and in Sect. 3 we describe the theoretical underpinnings
of the original code ofBreuer. In Sect. 4we explain the newmathematical information
added to the data and discuss the organization of the data on LMFDB. Finally, in
Sect. 5 we enumerate planned future additions to the database.

2 Background on Riemann Surfaces

Let X be a compact Riemann surface of genus g ≥ 2 (also referred to as a “curve”),
and let G =Aut(X), the group of biholomorphic maps from X to itself. It is well
known that this group is finite and bounded in size by 84(g − 1). There is a natural
mapping φ : X → Y = X/G where Y is the orbit space of X under the action of G
(φ sends x ∈ X to the orbit of x under the action of G), and g0 denotes the genus of
the quotient Y . It is possible that this mapping branches at several points of Y , say
on a set B ⊂ Y of size r . Letting φ−1(B) ⊂ X be the inverse image of these points,
the mapping from X − φ−1(B) to Y − B is a degree d covering for some positive
integer d. For details on the covering space theory used in the paper, we recommend
[35, Chaps. 11 and 12]. For our specific situation, we recommend [17] or [5].

Fix a base point y0 ∈ Y − B. Then φ−1(y0) consists of d points in X − φ−1(B),
say φ−1(y0) = {x1, . . . , xd} ⊂ X . Now consider a loop starting at y0 and traveling
once around one branch point in B. For each element xi in φ−1(y0) this loop lifts

http://github.com/jenpaulhus/group-actions-RS
http://www.lmfdb.org/HigherGenus/C/Aut
http://www.lmfdb.org/HigherGenus/C/Aut
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uniquely to a path in X which starts at xi and ends at some x j ∈ φ−1(y0), thus defining
a permutation on the d elements of φ−1(y0): send i to the number of the endpoint of
the corresponding lift starting at xi . There is one such permutation for each element
of B and these r permutations induce a map ρ : π1(Y − B, y0) → Sd where Sd is
the symmetric group on d elements, and the image of ρ is called the geometric
monodromy group which is isomorphic to the Galois group of the covering which in
our setting is Aut(X). The order of each permutation corresponding to a loop around
one element of B is denoted mi for 1 ≤ i ≤ r . When X and Y are connected, the
image of ρ is a transitive subgroup of Sd .

The universal cover of a compact Riemann surface of genus greater than 1
is the upper half plane H = {z ∈ C | Im(z) > 0} which has automorphism group
PSL(2,R), and so X may be described as the orbit space of H by a torsion free
subgroup of Aut(H) (see [5, Theorem 3.9] or [30, 4.19.8]). Call that torsion free
subgroup K . It is isomorphic to π1(X, x0), for any base point x0 ∈ X since Riemann
surfaces are path-connected.

Similarly, Y is equivalent to the orbit space of H by a subgroup � of PSL(2,R)

called a Fuchsian group. These Fuchsian groups have an explicit presentation which
considers B ⊂ Y [5, Theorem 3.2]:

� = 〈α1, β1, . . . , αg0 , βg0 , γ1, . . . , γr |
g0∏

i=1

[αi , βi ]
r∏

j=1

γ j = 1, γ
m j

j = 1〉 (1)

where [αi , βi ] is the commutator of αi and βi . The list of non-negative integers
[g0; m1, . . . , mr ] is called the signature of � and is uniquely determined for each
Fuchsian group. The action of � on H induces an action of �/K on H/K , so G ∼=
�/K . As such we have an exact sequence

1 → K
ι−→ �

η−→ G → 1. (2)

Then,G = Aut(X)mayalso be defined as the imageof a surface kernel epimorphism,
a surjection η : � → G.

Observe that different surface kernel epimorphisms may exist for fixed groups �

and G so to classify actions it is not sufficient to only give the group and signature.
We also need to describe the map η via, say, a description of where η sends the
generators. Due to the structure of �, the Galois group of the covering is completely
defined by 2g0 hyperbolic generators a1, b1, . . . , ag0 , bg0 and r elliptic generators
c1, . . . , cr such that the ci have order mi and the product

∏g0
i=1[ai , bi ] ∏r

j=1 c j = 1G

where 1G is the identity element of G. We call this list of 2g0 + r generators of G a
generating vector.

Conversely, suppose G is any transitive subgroup of some symmetric group Sd

with 2g0 + r generators {a1, b1, . . . , ag0 , bg0 , c1, . . . , cr } such that the ci have order
mi and

∏g0
i=1[ai , bi ] ∏r

j=1 c j = 1G . We say such a group has product one generators,
and a set of 2g0 + r generators is a product one generator. Then any surjection
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η : � → G defined as η(αi ) = ai , η(βi ) = bi , and η(γi ) = ci has a corresponding
kernel K , and G acts on the compact Riemann surface X defined as the orbits of K
acting on H.

Hence there is a one-to-one correspondence between surjective maps η : � → G
with ker(η) a torsion free group and finite groups which have product one generators.
This is the beautiful existence theoremofRiemann (really a generalization of it) and it
gives a way to translate the topological language of ramified coverings to the world
of generators of finite groups. There are several very good sources on Riemann’s
existence theorem, particularly [17]. For a brief survey with generalizations and
historical perspectives, see [20]. The topic is also treated briefly in [39, pp. 90–94],
or in relation to function fields and the Inverse Galois Problem in [55].

There are a number of different equivalence relations that may be placed on the
surface kernel epimorphisms and we must make choices about which equivalence
relation to classify group actions up to in the database. For more information on
classifications of automorphism groups of Riemann surfaces up to other equivalence
classes see Sects. 4 and 5. Breuer’s algorithm computes epimorphisms up to an equiv-
alence relation which is slightly weaker than topological or conformal equivalence,
meaning two distinct group actions in his data may actually be topologically (or even
conformally) equivalent.

Let G be a finite group which is the image of a surface kernel epimorphism
η : � → G, with [g0; m1, . . . , mr ] the signature of �. We do not want to consider
two actions to be distinct if they merely come from a permuting of the mi in the
corresponding signature. As such we will assume that the mi in the signature are in
non-decreasing order. We denote by C = (C1, . . . , Cr ) a list of r conjugacy classes
in G (not necessarily distinct) each containing elements of order mi . Define S to
be a set of r -tuples {(s1, . . . , sr ) : si ∈ Ci }. Then G acts on S by component-wise
conjugation called simultaneous conjugation. We note for later that this is precisely
the action of the inner automorphisms of G on the generating vectors.

The properties of a tuple in S being a product one generator are invariant under
simultaneous conjugation. In the special case when these tuples are generating vec-
tors, any two vectors in the same orbit under simultaneous conjugation represent
conformally equivalent actions in the Riemann surface (although the converse is not
always true). This follows from the definition of conformal equivalence (see Sect. 5.2)
and the fact that conjugation is an element of Aut(G). We classify our actions up to
simultaneous conjugation.

Given a Riemann surface X of genus g, a group G acting on X with signature
[g0; m1, . . . , mr ], a tuple C = (C1, . . . , Cr ) of conjugacy classes of G, and a gen-
erating vector (s1, . . . , sr ) with si in Ci , then the tuple (g, G, C) is called a refined
passport [50] (alternatively that Xis of ramification type (g, G, C) [37] or that the
action is defined by the geometric signature [g0; [m1, C1], [m2, C2], . . . , [mr , Cr ]]
[47]). A passport is a similar tuple of information, but the conjugacy classes are
only considered in Sd , so the actions are only classified up to the cycle type of the
generators of G.
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3 Breuer’s Code

Breuer’s contribution to this topic was to devise an algorithm to generate a list of all
groups and corresponding signatures for which there is a surface kernel epimorphism
η : � → G for a fixed genus. We only give a brief overview of his algorithm here
(see [5] for more details).

Breuer’s algorithm first generates a list of all possible signatures for Fuchsian
groups � for a given genus g and given order n of the automorphism group, using
combinatorial restrictions on possible mi values as well as the Riemann-Hurwitz
formula.

Next the algorithm searches the small group database in [18] and uses group
theoretic results to construct a list of groups G of order n which could have one of
the determined admissible signatures for that n. If a group of order n does not have
elements of orders corresponding to the values in the signature, it is removed from
the list of potential automorphism groups.

Finally, the algorithm determines which possible groups G satisfy the condition
that there is a surjective morphism η : � → G. This step in the algorithm utilizes
several different group theoretic results concerning the structure of conjugacy classes.
The algorithm first attempts to show no such surjection exists. It determines all
possible lists of conjugacy classes C = (C1, . . . , Cr ) such that the order of elements
in Ci is mi (i.e., potential refined passports for a given genus and group). Breuer then
computes the size of HomC(g0, G), the set of homomorphisms from the Fuchsian
group corresponding to the given signature to the group G, using the following
theorem.

Theorem 3.1 (Theorem 3, [29]) With C = (C1, . . . , Cr ) as above,

|HomC(g0, G)| = |G|2g0−1
∑

χ∈Irr(G)

χ(1)2−2g−r
r∏

i=1

∑

σi ∈Ci

χ(σi ).

When this value is 0, there cannot be a surface kernel epimorphism for that refined
passport. In the case where g0 = 0 a result in [48, Theorem 1] gives a sufficient
condition on the irreducible characters of a group G to show there is not a surjective
homomorphism η : � → G.

Conversely, to show there is an epimorphism η : � → G, a specific generating
vector defining the particular surface kernel epimorphism must be found (as the
images in G of αi , βi , γ j from (1) under the mapping η). A brute search of all
possible generating vectors for a given refined passport is not feasible, especially for
large signatures or large groups.

Instead, for the case g0 = 0, Breuer considers a possible list of conjugacy classes
C = (C1, . . . , Cr ) which has not been ruled out by the results outlined above, and
uses the following proposition to quickly generate one element of each orbit under
the action of simultaneous conjugation.
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Proposition 3.2 (Lemma 15.27, [5]) Fix elements σi ∈ Ci for each 1 ≤ i ≤ r . Then
the following set T gives us precisely one representative for each orbit of the action
of G on S = {(s1, . . . , sr ) : si ∈ Ci } by simultaneous conjugation:

T = {(σ1, σ
b2
2 , . . . , σ br

r ) : bi ∈ R(b1, . . . , bi−1) for 2 ≤ i ≤ r}

where R(b1, . . . , bi−1) is a set of representatives of the double coset

CG(σi )\G/CG(σ1, σ
b2
2 , . . . , σ

bi−1
i−1 ),

defined iteratively and where CG(g1, g2, . . . , gk) means the intersection of the cen-
tralizers of gi ∈ G for 1 ≤ i ≤ k.

The set T may or may not contain product one generators, but if it does these will
represent all possible generating vectors up to simultaneous conjugation (again, for
the case where g0 = 0). Thus each element of T is tested to see if it is a product one
generator.

The g0 > 0 case follows similarly by consideringHomC(g0, G) as a disjoint union
and using Proposition 3.2 on certain lists of conjugacy classes. More details may be
found in the proof of Theorem 3.1 in [29].

Breuer did not record these generating vectors in his original data, though. His
goal was to list group and signature pairs only.

4 New Additions

As mentioned above, one way to fully classify group actions on Riemann surfaces,
is to produce a generating vector for each action. We converted Breuer’s code to the
computer algebra languageMagma [4] to align the code with other programs written
by the author.We also added functionalitywhich, given a group and signature, outputs
the generating vector(s) for each refined passport up to simultaneous conjugation,
generated via Proposition 3.2 (see [42], specifically the file genvectors.mag).
With this code we do not need to reproduce all of Breuer’s program. We use his
already generated group and signature pairs as a starting point, and then add the
generating vectors using the modified version of his code.

There is a software package in GAP called MapClass, which, among other
computations, finds the generating vectors given a group and list of conjugacy classes
corresponding to a refined passport [28]. Quotients of all triangle groups (actions
such that g0 = 0 and r = 3 or 4) acting on surfaces of genus up to 101, giving one
generating vector per group and signature pair may be found at [10]. We also note
that lists of actions with monodromy up to genus 21 were independently computed
and posted online [31].
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4.1 Full Actions

One important piece of information which is not determined in Breuer’s original
code is whether the group action described is the full automorphism group for the
family of curves with corresponding data. Suppose we have an exact sequence

1 → K
ι−→ �

η−→ G → 1

as in (2), and a corresponding generating vector fromourmodified version ofBreuer’s
code. It is possible that there is some group G̃ so that G < G̃, a Fuchsian group �0,
a mapping j : � → �0, and an exact sequence

1 → K
ιo−→ �0

η0−→ G̃ → 1

so that η = η0 ◦ j . In this case, the generic element of this family ofRiemann surfaces
has automorphism group G̃ and signature that of �0.

In [46] there are conditions for determining exactly when this situation occurs.
(Identical results were independently discovered in [8].) Given G and �, the paper
also describes explicitly how to compute G̃ and �0. The cases where G � G̃ are
covered in [46, Theorem p. 390], while the remaining cases are covered in Tables1
and 2 of that paper. First, the signature of � must match one of only a handful of
signatures for which this scenario can happen, originally listed in [52]. For example,
if g0 = 0 and there are more than 4 branch points, the given group G is always the
full automorphism group of the generic point of the family (η in this case never
satisfies the conditions outlined in [46]). In the cases where G � G̃, if the signature
is one of the few that might lead to a larger automorphism group there must also
exist an element of the automorphism group of G that behaves in a certain way on
the generating vector corresponding to the action η.

We have written code [43] which takes the output of the modified Breuer program
and determines if the mapping η defined by a generating vector satisfies one of
the conditions outlined in Ries. When such an example is found, the group G̃ and
signature of �0 are also recorded. One caveat: the code only determines the group
G̃ and signature of �0, it does not determine exactly which refined passport (if there
is more than one) the original group G and signature correspond to. This should be
possible to determine using information in the proof of the Theorem on p. 390 in
[46].

In the special case when the signature of the action is [0; k, k, k] or [0; k, k, k, k],
we must determine if there exists an automorphism of G which acts in a certain
way on a generating vector up to applying an element of Aut+(�) to the elements
of the generating vector, where Aut+(�) is orientation preserving automorphisms
of �. In the two cases when this happens, g0 = 0 so the group Aut+(�) is the Artin
braid group. This group is an infinite (but finitely generated) group generated by
Q1, . . . , Qr−1 where Qi is themapping sendingonegenerating vector (s1, s2, . . . , sr )



700 J. Paulhus

to (s1, . . . , si−1, si+1, s−1
i+1si si+1, si+2, . . . , sr ) [38, Sect. 3.7]. We call two generating

vectors which are equivalent up to the action of this group braid equivalent.
Even though the braid group is infinite, the orbit of a given generating vector

under the action of the elements of the braid group is finite (since the group G is
finite there are only a finite number of generating vectors). To exhaustively determine
whether the action corresponds to the full group, we need to generate the whole orbit
of a given generating vector and test if there is an element of Aut(G) which acts
on one of the generating vectors in that orbit in such a way to satisfy the conditions
as described in Ries’s paper. To do this, given a generating vector and all cycles
of it (or permutations if the group is abelian), we apply the braids Q1, Q2 (and
Q3 in the case of [0; k, k, k, k]) to the list of generating vectors and test all of the
elements in this list against the condition set out in [46, Theorem p. 390]. If we find an
automorphism satisfying the conditions in this theorem, we have a candidate for the
full automorphism group. If not, we apply the braids to the new larger set and repeat
the process. Eventually the whole orbit is generated (if it doesn’t find, along the way,
a generating vector in the orbit which satisfies the condition mentioned above) and
the program will terminate since the orbit is finite. If it terminates without finding
a generating vector satisfying the conditions, the action represented by the initial
generating vector must be the full automorphism group.

4.2 Special Properties

Once we determine whether an action represents the full automorphism group, we
compute additional information connected to the given refined passports. For exam-
ple, Riemann surfaces described by these actions might be hyperelliptic curves or
cyclic trigonal curves. A hyperelliptic curve of genus g is defined by the presence
in its automorphism group of a central involution with 2g + 2 fixed points, while a
cyclic trigonal curve of genus g is defined by the presence of an automorphism of
order 3 which fixes g + 2 points. Using [53], given a generating vector we compute
the number of fixed points of a given automorphism (also see [5, Lemma 10.4]), and
then determine if the curve is hyperelliptic or cyclic trigonal. The code also com-
putes the hyperelliptic involution or trigonal automorphism, which we include in the
database.

Work of the author gives a method to use the automorphism group of a curve
(and the generating vectors of the action) to produce a decomposition of its Jacobian
variety [41]. The code to implement this methodmay be found at [44] andwe use that
code on our compiled list of generating vectors. An entry such as E × E3 × A4 ×
A2
5 in the database means the decomposition consists of four factors: an elliptic

curve, three isogenous copies of (possibly) another elliptic curve, one dimension
four abelian variety, and two isogenous copies of a dimension five abelian variety.
Each factor corresponds to a particular irreducible C-representation of G and we
also record the corresponding irreducible C-character as determined by Magma’s
character table for the group.
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While generating vectors themselves are enough to define group actions on Rie-
mann surfaces, the equation(s) for the curves in a given family are valuable to know
as well. Determining an equation for a curve given an automorphism group and
signature is, in general, a very hard problem and there are many papers in which
equations for certain families of curves with group actions are found, for example
[23, 24, 45, 54]. For this database we add known equations for hyperelliptic curves
[49], genus 3 curves with automorphisms [37], and genus 4–7 curves with “large”
automorphism groups (the size of the automorphism group is at least 4(g − 1)) [53]
with one small exception. In [49] the equations are classified up to passports, not
up to refined passports (the cycle structure of the generating vectors instead of the
conjugacy classes in G). In two cases (if G ∼= C2 × C2, and if G ∼= C4 × C2 and
the quotient of G by the hyperelliptic involution is C2 × C2) there is more than one
equation listed in [49] but in our data there are distinct refined passports which are in
the same passport. The author does not know a way to determine which equation(s)
correspond to which refined passport.

4.3 Equivalence Relations

Aswementioned earlier, distinct generating vectors may well produce actions which
are the same up to certain equivalence relations. Breuer’s code already only produces
actions up to simultaneous conjugation, but we also compute equivalence classes for
two other equivalence relations.

Two actions η1 and η2 are topologically equivalent if there exists an ω ∈ Aut(G)

and φ ∈ Aut+(�) so that the following diagram commutes [7].

�
η1−−−−→ G

⏐⏐�φ

⏐⏐�ω

�
η2−−−−→ G

Notice this means that η2 = ω ◦ η1 ◦ φ−1. As such, two actions are topologi-
cally equivalent precisely when they are in the same orbit under the action of
Aut(G) × Aut+(�) [7, Proposition 2.2]. This last statement translates the defini-
tion of topological equivalence to an algebraic condition which is computationally
feasible to check in many cases. Based on Sage code described in [3] we wrote
Magma code which, in the case when g0 = 0, inputs all generating vectors (up to
simultaneous conjugation) for a fixed group and signature and returns a representa-
tive (and the corresponding orbit) of each equivalence class of generating vectors.
We restrict to g0 = 0 because Aut+(�) is much easier to work with in this case.

In the study of Hurwitz spaces (and the related inverse Galois problem) generating
vectors up to the action of Inn(G) × Aut+(�) are instead used. Since Breuer’s code
already computes one representative per equivalence class under the action of inner
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automorphisms (which is precisely simultaneous conjugation) and since the actions
of each group in this direct product commute with each other, to find the orbits under
the action we only need consider the action of Aut+(�) on the output of the modified
Breuer code for each group and signature pair.When g0 = 0, this action is exactly the
braid action we described in Sect. 4.1 and we use the same technique described there
to compute equivalence classes under the braiding action and assign a representative
generating vector for each orbit.

4.4 Summary

One note about our presentation of groups. Breuer’s original code outputs a group as
labeled in Magma or GAP, so as a pair (a, b) which indicates the group is of order a
and is the bth group of that order in the database of small groups. OurMagma version
of Breuer’s code requires the group to be a permutation group to compute double
coset representatives as in Proposition 3.2. However, in Magma many groups of the
form SmallGroup(a,b) are not permutation groups. Also, to correspond to the
mapping ρ : π1(Y − B, y0) → Sd from Sect. 2, the group G must be transitive and
satisfy the Riemann-Hurwitz formula. So we first convert the group to a minimum
degree transitive permutation group. The code to do this is at [43]. In doing so, we
are specifying that our covers are Galois.

Putting everything together, the final process to create the database at
http://www.lmfdb.org/HigherGenus/C/Aut is:

• For a fixed genus, load all the signature and group pairs computed with Breuer’s
original program and loop over this data.

• Convert groups of the form SmallGroup(a, b) in Breuer’s data to permuta-
tion groups.

• Use our modified version of Breuer’s code to determine the refined passports, and
compute generating vector(s) for each.

• Determine if the action on each refined passport describes the full automorphism
group of the family.

• Compute the Jacobian variety decomposition.
• If the action is the full action, check if the family consists of hyperelliptic or cyclic
trigonal curves. In special cases we add equations.

• In the case of g0 = 0, determine equivalence classes and representatives up to
braid and topological equivalence.

• Future additional information will be computed at this point.

http://www.lmfdb.org/HigherGenus/C/Aut
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4.5 Organization of the Data on LMFDB

As of publication of this paper, the database contains complete data up to genus 15
when the quotient X/G is the Riemann sphere (g0 = 0) and up to genus 7 when
g0 > 0.

Each tuple of information: (genus, group, signature) has its own page on LMFDB.
On each such page there is a list of the different refined passports corresponding to
the given genus, group, and signature, and links to individual pages for each refined
passport. Up to genus 7, every page also gives an option to only view actions up to
topological equivalence. Clicking on the label of the given representative for an
equivalence class leads to a page which lists all the refined passports in the given
equivalence class (and further delineated according to which are braid equivalent to
each other).

The individual pages of each refined passport list all generating vectors corre-
sponding to this passport. We also list which conjugacy classes the refined pass-
port corresponds to (as labeled by Magma when we initially generate the data–see
Sect. 5.1). These pages also contain information about whether the action represents
the full automorphism group of the family of Riemann surfaces. If the example is
not the full automorphism group, a link to the action which does correspond to the
full automorphism group is also included. We note if a refined passport of a full
automorphism group corresponds to a hyperelliptic curve or a cyclic trigonal curve,
and list the corresponding hyperelliptic involution or trigonal automorphism. Known
equations are also displayed on these pages. Up to genus 7 if there is more than one
generating vector on a page, there is an option to list only the representatives of each
orbit under the braid action instead of all generating vectors. This feature is of par-
ticular value as the genus gets large, as there are examples of refined passports with
thousands of distinct generating vectors up to simultaneous conjugation but only a
small handful up to braid action.

On both types of pages, a download button is available which downloads aMagma
or GAP record with information for the given refined passport (or several records
representing all the refinedpassports corresponding to a specific group and signature).
For researchers working on questions requiring computations of generating vectors
this feature should be the most useful as these files can simply be downloaded and
then loaded intoMagmaorGAP for immediate access to the generating vectors. Also,
a variety of search fields such as signature, or dimension of the family, or whether
the family is hyperelliptic add to the functionality of the pages, and all search results
may also be downloaded as Magma or GAP files.

A variety of statistics about the data currently in the database reside at https://
www.lmfdb.org/HigherGenus/C/Aut/stats. The statistics list the maximum order of
a group acting for each genus and all the unique groups which act for a fixed genus.
The number of distinct refined passports and distinct generating vectors for each
genus are also calculated, as well as the distribution of generating vectors in the
database by dimension.

https://www.lmfdb.org/HigherGenus/C/Aut/stats
https://www.lmfdb.org/HigherGenus/C/Aut/stats
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5 Future Work

We plan to add additional information to the database. Here are a few examples.

5.1 Better Representation of Groups

One issue with the current data is that different representations of isomorphic groups
can create different lists of generating vectors as the representatives of each orbit
under the equivalence relationswehave discussed.Also the labeling of the irreducible
characters or conjugacy classes is dependent on Magma’s labeling for that particular
representation of the group (so the 2nd conjugacy class may not represent the same
conjugacy class for distinct isomorphic groups).

Recently a database of small groups has been incorporated into LMFDB (see
https://www.lmfdb.org/Groups/Abstract/). Among many other pieces of informa-
tion for each group, particular elements of the group are fixed as generators (as are
relations defining the group) and the conjugacy classes and irreducible characters of
the group have a fixed labeling, all assigned in a deterministic way.

We can redo the computations from scratch (i.e., follow the steps outlined in
Sect. 4.4) but now starting from the fixed representation of the group as defined
in the small group database. Doing so ensures that labeling of generating vectors,
conjugacy classes, and irreducible characters will be deterministic. No more debate
over what is meant by the 2nd irreducible character or the 2nd conjugacy class of the
group! The group pages also produce character tables and we will be able to link the
irreducible characters listed on our pages directly to the corresponding row of the
character table presented on the group’s page.

5.2 Equivalence Relations

Some researchers only requires knowledge about distinct actions up to conformal
(or analytic) equivalence. Two actions η1 : � → G and η2 : � → G are conformally
equivalent if there is some ω ∈ Aut(G) and h̃ ∈ Aut(H) = PSL(2,R) so that the
following diagram commutes

K −−−−→ �
η1−−−−→ G

⏐⏐�h̃∗
⏐⏐�h̃∗

⏐⏐�ω

K −−−−→ �
η2−−−−→ G

where h̃∗ is the map that takes some γ ∈ K (or in �) and sends it to h̃γ h̃−1 [7]. This
definition induces a conformal mapping h : X → X where X = H/K . We hope to

https://www.lmfdb.org/Groups/Abstract/
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find a way to efficiently compute equivalence classes of generating vectors up to
conformal equivalence, and then provide options on the LMFDB pages to only show
generating vectors up to conformal equivalence.

5.3 Higher Genus Data

Breuer computed all group and signature pairs up to genus 48, and Conder computed
group and signature pairs for large groups (those with |G| > 4(g − 1)) up to much
higher genus [11]. We plan to use the steps described in Sect. 4.4 to compute and
then upload higher genus data to the database, although first some current code will
need to be made more efficient to effectively compute data in higher genus.

As one particular example, the code to compute orbits of actions under topological
equivalence is very slow for particular families of groups as the genus increase. There
are several theoretical results and computational techniques that will speed up these
computations. In addition, for g0 > 0 the action of Aut+(�) is more complicated
than in the case where the quotient genus is the Riemann sphere and so we don’t
currently provide the option to list actions with g0 > 0 up to topological equivalence.
The code we use to compute topological equivalence would need to be rewritten to
be able to do so.

5.4 Other Topics

• There is much current research on superelliptic curves, and we could incorporate
known data about these families into LMFDB.

• A new section in the LMFDB provides a database of Belyı̆ maps [40]. There are
many connections that could be made between that database and the one described
in this paper.

• Let H < G, then there are methods for determining both coverings X → X/H
and X/H → X/G [47]. These methods were programmed in SAGE [3] and we
intend to add this feature to our code.

• The group and signature pairs which show up for a fixed genus create a poset. We
could display such a diagram to emphasize connections among families of curves
in the moduli spaceMg . Several papers describe the branch locus ofMg for low
genus g, for example [1, 6, 12]. Our database provides the information and tools
to attempt a description in higher genus.

• TheRiemannmatrix and corresponding periodmatrix are crucial objects for under-
standing certain computational properties of Riemann surfaces. If an equation for
the curve is known, there are some computational ways to compute these matrices
[13, 14, 19]. If only the group action is known, there are algorithms that work well
in low genus that could be added to our computations [2, 34].
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• It would be nice to determine the fields of definition of these curves. Some work in
this direction includes [9, 25], as well as [24] which produces an algorithm to find
an algebraic model of a given curve in its (minimal) definition field. It is worth
trying to program this algorithm.
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A 1-Dimensional Component
of K-Moduli of del Pezzo Surfaces

Andrea Petracci

Abstract We explicitly construct a component of the K-moduli space of
K-polystable del Pezzo surfaces which is a smooth rational curve.

Keywords K-stability · Del pezzo surfaces · K-moduli

1 Introduction

One of the most important and recent results in K-stability and in the theory of
Fano varieties is the construction of K-moduli [3, 8–10, 15, 18, 22, 35, 37]. It has
been proved that, for every positive integer n and every positive rational number
V , Q-Gorenstein families of K-semistable Fano varieties over C of dimension n
and anticanonical volume V form an algebraic stack MKss

n,V of finite type over C.

Moreover, this stack admits a good moduli space MKps
n,V , which is a projective scheme

over C, and the set of closed points of MKps
n,V coincides with the set of K-polystable

Fano varieties over C of dimension n and anticanonical volume V . We refer the
reader to [36] for a survey on these topics.

The case of smoothable del Pezzo surfaces has been extensively studied [23, 25,
26]. Moreover, K-moduli are understood for cubic 3-folds [21], cubic 4-folds [19],
and for certain pairs (S, C) where S is a surface and C is a curve on S [5, 6].

The goal of this note is to show how toric geometry and deformation theory can
help understanding the geometry of explicit components of K-moduli. Similar ideas
were used in [16] to construct examples of reducible or non-reduced K-moduli of
Fano 3-folds (see also [28, 29]), in [20] to study the K-stability of certain del Pezzo
surfaces with Fano index 2, and in [24] to study the dimension of K-moduli. In this
note we analyse a specific example of K-polystable toric del Pezzo surface and we
prove the following:
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Theorem 1.1 There exists a connected component of MKps
2, 2215

which is isomorphic to

P
1.

It is natural to wonder about the following:

Question 1.2 Does there exist V ∈ Q>0 such that a connected component of MKps
2,V

is a smooth curve of positive genus?

Outline. In Sect. 2.1webriefly recall the deformation theory of the surface singularity
given by the cone over the rational normal curve of degree 4. In Sect. 2.2we introduce
a Fano polygon P and a K-polystable toric del Pezzo surface X , and we analyse its
deformation theory; in particular, we show that the connected component of the
K-moduli space of K-polystable del Pezzo surfaces that contains X is smooth and
1-dimensional. In Sect. 2.4 we prove that X is a hypersurface in a toric 3-fold Y
and in Sect. 2.5 we prove that deforming X inside the linear system |OY (X)| on
Y gives the versal deformation of X . This gives a non-constant morphism from an
open subset of |OY (X)| to the K-moduli space. In Sect. 2.3 we conclude the proof
of Theorem 1.1. In Sect. 3 we sketch what mirror symmetry says in this context.

Notation and conventions. We work over an algebraically closed field of charac-
teristic zero, which is denoted by C. A Fano variety is a normal projective variety
overC such that its anticanonical divisor isQ-Cartier and ample. A del Pezzo surface
is a Fano variety of dimension 2. We assume that the reader is familiar with toric
geometry [14]. Every toric variety we consider is normal.

If r, a1, . . . , an are integers and r ≥ 1, then the symbol 1r (a1, . . . , an) stands for the
quotient of A

n under the action of the cyclic group µr defined by ζ · (x1, . . . , xn) =
(ζ a1 x1, . . . , ζ an xn) for every ζ ∈ µr . We use the same symbol to indicate the étale-
equivalence class of the singularity of this quotient variety at the image of the origin
of A

n .

2 Proof

2.1 Deformations of 1
4(1, 1)

The cyclic quotient singularity 1
4 (1, 1) is the affine cone over the 4thVeronese embed-

ding ofP1 intoP
4. The deformations of this singularity have been studied by Pinkham

[32, Sect. 4]. Here we concentrate on theQ-Gorenstein deformations—see [29, Sect.
2] for a quick recap.

The singularity 1
4 (1, 1) has Gorenstein index 2. Its index 1 cover is

1
2 (1, 1), which

is the hypersurface singularity (xy − z2 = 0) in A
3
x,y,z = SpecC[x, y, z]. Therefore

1
4 (1, 1) is the closed subschemeof the 3-fold quotient singularity 1

2 (1, 1, 1)x,y,z given,
with respect to the orbifold coordinates x, y, z, by the equation xy − z2 = 0.

Since the miniversal deformation of 1
2 (1, 1) is given by xy − z2 + t = 0 in A

3
x,y,z

over C[[t]], we have that the miniversal Q-Gorenstein deformation of 1
4 (1, 1) is given

by
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xy − z2 + t = 0 (1)

inside 1
2 (1, 1, 1)x,y,z over C[[t]]. This specifies a formal morphism

Spf(C[[t]]) −→ DefqG
(
1

4
(1, 1)

)
, (2)

which is smooth and induces an isomorphismon tangent spaces. Here Spf denotes the
formal spectrum of a local noetherian C-algebra. We will always use this morphism
when considering the Q-Gorenstein deformation functor of the singularity 1

4 (1, 1).
Now we make a calculation which will be useful in Sect. 2.5. Consider the 2-

parameter deformation
xy − z2 + s1 + s2z4 = 0 (3)

in 1
2 (1, 1, 1)x,y,z over C[[s1, s2]]. By versality this deformation comes from the

miniversal deformation (1) via pull-back along a formal morphism

Spf(C[[s1, s2]]) −→ Spf(C[[t]]) (2)−→ DefqG
(
1

4
(1, 1)

)
, (4)

which is induced by a local C-algebra homomorphism C[[t]] → C[[s1, s2]]. Via the
automorphism of 1

2 (1, 1, 1)x,y,z × Spf(C[[s1, s2]]) given by

z �→ z
√
1 − s2z2 =

∞∑
n=0

(2n)!
4n(n!)2(1 − 2n)

sn
2 zn+1

we get an isomorphism of the deformation (3) with xy − z2 + s1 = 0, which is
exactly the miniversal deformation (1) once we use the equality t = s1. Therefore the
morphism in (4) is inducedby the localC-algebra homomorphismC[[t]] → C[[s1, s2]]
given by t �→ s1.

2.2 The Surface X

In the lattice N = Z
2 consider the polygon P which is the convex hull of the points

(
2
1

)
,

(
1
2

)
,

(−1
2

)
,

(−2
−1

)
,

(−1
−2

)
,

(
1

−2

)

and is depicted in Fig. 1. (The meaning of the red segments in this figure will be clear
in Sect. 2.4.) It is clear that P is a Fano polytope, i.e. it is a lattice polytope such that
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Fig. 1 The polygon P in
Sect. 2.2

the origin is in the interior and the vertices are primitive lattice points. Because of
this we can consider the face fan (also called spanning fan) of P: this is the collection
of cones (with apex at the origin) over the faces of P; it is made up of 6 rational
cones in N .

Proposition 2.1 Let X be the toric variety associated to the face fan of P. Then:

(1) X is a K-polystable toric del Pezzo surface with anticanonical volume 22
15 ;

(2) the surface X has exactly 6 singular points: 2 points of type 1
3 (1, 1), 2 points of

type 1
4 (1, 1), 2 points of type 1

5 (1, 2);
(3) the automorphism group Aut(X) is isomorphic to (C∗)2 � C2, where C2 is the

cyclic group of order 2 and the non-trivial element of C2 acts on (C∗)2 via
(z, w) �→ (z−1, w−1).

Proof (1) Since N has rank 2, the dimension of X is 2. By a slight modification of
[14, Theorem 8.3.4], since the fan of X is the face fan of a Fano polytope, we have
that X is Fano.

Let P◦ denote the polar of P (see [16, Sect. 2.4]); it is a rational polytope in the
dual lattice M = HomZ(N , Z) and is the moment polytope of the toric boundary of
X , which is the reduced sum of the torus invariant prime divisors of X and is an
anticanonical divisor. The anticanonical volume of X is the normalised volume of
P◦, which is 22

15 . Here the normalised volume is the double of the Lebesgue measure:
in this way the normalised volume of a unimodular simplex is 1. Since P is centrally
symmetric (i.e. P = −P), also P◦ is centrally symmetric, hence the barycentre of
P◦ is the origin. Therefore X is K-polystable by [7].

In order to prove (2) one needs to analyse the six 2-dimensional cones of the face
fan of P and apply [14, Sect. 10.1]. For instance, the two horizontal edges of P give
the two 1

4 (1, 1) singularities.
(3) let TN denote the 2-dimensional torus N ⊗Z (C∗)2 = SpecC[M] which acts

on X . Let Aut(P) be the group of the symmetries of P: it is generated by −idN .
Since every facet of P◦ has no interior lattice points, by [16, Proposition 2.8] Aut(X)

is the semidirect product TN � {±idN }. �
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The points of type 1
3 (1, 1) and 1

5 (1, 2) are Q-Gorenstein rigid, i.e. they do not
deform Q-Gorensteinly. The Q-Gorenstein deformations of 1

4 (1, 1) have been con-
sidered in Sect. 2.1.

By [1, Lemma 6] there are no local-to-global obstructions forQ-Gorenstein defor-
mations of X , so the Q-Gorenstein smoothings of the two 1

4 (1, 1) points of X , which
we denote p1 and p2, can be realised globally and simultaneously. More precisely,
since Hi (X, TX ) = 0 for i ≥ 1 by [30], the product of the restriction morphisms to
the germs (pi ∈ X)

DefqG(X) −→ DefqG(p1 ∈ X) × DefqG(p2 ∈ X) (5)

is smooth and induces an isomorphism on tangent spaces. So C[[t1, t2]] is the hull
of DefqG(X) and ti is the Q-Gorenstein smoothing parameter of (pi ∈ X). Here the
parameter ti is defined through (2). In the next section we will realise the miniversal
Q-Gorenstein deformation of X in a linear system in a toric Fano 3-fold.

Proposition 2.2 LetM (resp. M) be the connected component of the K-moduli stack
MKss

2, 2215
(resp. the K-moduli space MKps

2, 2215
) which contains the point corresponding to

X. Then M is a smooth projective irreducible curve.

Proof Since Q-Gorenstein deformations of del Pezzo surfaces are unobstructed by
[1, Lemma 6], by [16, Remark 2.4] we get that M is smooth and M is normal.
Moreover M is projective by [22].

The automorphism group Aut(X) acts on the hull C[[t1, t2]]. The weights of t1
(resp. t2) in M is (0, 1) (resp. (0,−1)). Therefore the invariant subring of the formal
action of TN = (C∗)2 on C[[t1, t2]] is C[[t1t2]]. The group C2 swaps t1 and t2, so it
leaves t1t2 invariant. Therefore the invariant subring of the formal action of Aut(X)

on C[[t1, t2]] is C[[t1t2]].
By the Luna étale slice theorem for algebraic stacks [4] the local structure of

M → M is given by the commutative square

[
Spf C[[t1, t2]] / Aut(X)

]
M

Spf C[[t1t2]] M

where the horizontal maps are formally étale and maps the closed point to [X ]. This
implies that M has dimension 1. Hence M is a smooth projective curve. �

2.3 The 3-Fold Y and the Proof of Theorem 1.1

Consider A
6 with coordinates x1, x2, y1, y2, z1, z2. Consider the toric 3-fold Y given

by the GIT quotient A6//(C∗)3 where the linear action of (C∗)3 on A
6 is specified by

the weights
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x1 x2 y1 y2 z1 z2
0 0 1 1 1 1 L1

0 1 3 1 0 6 L2

1 0 1 3 6 0 L3

and by the stability condition whose unstable locus is the vanishing locus of the ideal

(x1, x2, z1) · (x1, x2, z2) · (y1, y2) · (y1, z2) · (y2, z1) (6)

in the polynomial ring C[x1, x2, y1, y2, z1, z2]. Now L1, L2, L3 are the Q-line bun-
dles on Y which come from the standard basis of the character lattice of (C∗)3. They
form a Z-basis of the divisor class group of Y .

We see that H0(Y, 2L1 + 6L2 + 6L3) has dimension 4 and its monomial basis is
made up of the monomials

z1z2, y1y2x2
1 x2

2 , x4
1 y21 , x4

2 y22 .

We consider a special affine subspace of H0(Y, 2L1 + 6L2 + 6L3) and we relate to
the surface X considered in Sect. 2.2:

Proposition 2.3 Let Y be the toric 3-fold defined above. Let X be the toric del Pezzo
surface considered in Sect. 2.2. Consider the flat family X → A

2 = SpecC[s1, s2]
of hypersurfaces in the linear system |2L1 + 6L2 + 6L3| on Y defined by the equation

z1z2 − y1y2x2
1 x2

2 + s1x4
1 y21 + s2x4

2 y22 = 0. (7)

Then:

(A) the fibre of X → A
2 over the origin 0 ∈ A

2 is the toric surface X;
(B) the base change of X → A

2 to C[[s1, s2]] is the miniversal Q-Gorenstein defor-
mation of X.

We postpone the proof of this proposition: the proof of (A) is given in Sect. 2.4
and the proof of (B) is given in Sect. 2.5. Now we show how this proposition implies
our main result.

Proof of Theorem 1.1. Let M and M be as in Proposition 2.2. We have that M is a
smooth projective irreducible curve. We want to show that M is isomorphic to P

1.
LetX → A

2 be theQ-Gorenstein family considered in Proposition 2.3. Since the
central fibre is K-polystable, by openness of K-semistability [9], there exists an open
neighbourhood U of the origin in A

2 such that the fibred product X ×A2 U → U
induces a morphism U → M, which is formally smooth at the origin.

By looking at the action of Aut(X) on the base of the miniversal Q-Gorenstein
deformation of X (see the proof of Proposition 2.2),we see that there areK-polystable
surfaces in U non-isomorphic to X . Therefore, by composing U → M withM →
M , we get a non-constant morphismU → M . By restricting to a general line passing
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through the origin in U ⊆ A
2, we get that M is unirational. Therefore M is rational

by Lüroth’s theorem. This concludes the proof of Theorem 1.1. �

2.4 Proof of Proposition 2.3(A)

We need to prove that the surface X is the hypersurface in the 3-fold Y defined by
the equation z1z2 − y1y2x2

1 x2
2 = 0. We apply the Laurent inversion method [13, 33,

34].
Let e1, e2 be the standard basis of N = Z

2. Consider the decomposition

N = N ⊕ NU

where N = Ze1 and NU = Ze2. Let M be the dual lattice of N . Let Z be the TM -
toric variety associated to complete fan in the lattice M with rays generated by e∗

1
and −e∗

1. It is clear that Z is isomorphic to P
1. Let DivTM

(Z) be the rank-2 lattice
consisting of the torus invariant divisors on Z : a basis of DivTM

(Z) is given by the
torus invariant prime divisors on Z , namely E+, E−, which are associated to the rays
e∗
1, −e∗

1 respectively. The divisor sequence [14, Theorem 4.1.3] of Z is

0 −→ N = Ze1

ρ�=
⎛
⎝ 1
−1

⎞
⎠

−−−−−−→ DivTM
(Z) = ZE+ ⊕ ZE−

(
1 1

)
−−−→ Pic(Z) = Z −→ 0.

We consider the following ample torus invariant divisors on Z

Dx1 = E+ + E− Dy1 = −E+ + 2E−
Dx2 = E+ + E− Dy2 = 2E+ − E−

and their corresponding moment polytopes in N :

PDx1
= conv {−e1, e1} PDy1

= conv {e1, 2e1} ,

PDx2
= conv {−e1, e1} PDy2

= conv {−2e1,−e1} .

Now consider the following elements in the lattice NU = Ze2:

χx1 = 2e2 χy1 = e2
χx2 = −2e2 χy2 = −e2.

The polytopes
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PDx1
+ χx1 PDy1

+ χy1

PDx2
+ χx2 PDy2

+ χy2

in N = N ⊕ NU are the four red segments in Fig. 1. Clearly the polygon P is the
convex hull of these four segments. By [13, Definition 3.1] the set

S = {(
Dx1 , χx1

)
,

(
Dx2 , χx2

)
,

(
Dy1 , χy1

)
,

(
Dy2 , χy2

)}

is a ‘scaffolding’ on the Fano polygon P .
Consider the rank-3 lattice Ñ := DivTM

(Z) ⊕ NU = ZE+ ⊕ ZE− ⊕ Ze2. Let M̃

be the dual lattice of Ñ and let 〈·, ·〉 : M̃ × Ñ → Z be the duality pairing. Following
[13, Definition A.1] we consider the polytope QS ⊆ M̃R defined by the following
inequalities:

〈 · ,−Dx1 + χx1〉 ≥ −1,

〈 · ,−Dx2 + χx2〉 ≥ −1,

〈 · ,−Dy1 + χy1〉 ≥ −1,

〈 · ,−Dy2 + χy2〉 ≥ −1,

〈 · , E+〉 ≥ 0,

〈 · , E−〉 ≥ 0.

Let �S be the normal fan of QS . One can see that �S is the complete simplicial fan
in Ñ = DivTM

(Z) ⊕ NU with rays generated by the following vectors:

x1 = −Dx1 + χx1 = −E+ − E− + 2e2
x2 = −Dx2 + χx2 = −E+ − E− − 2e2
y1 = −Dy1 + χy1 = E+ − 2E− + e2
y2 = −Dy2 + χy2 = −2E+ + E− − e2
z1 = E+,

z2 = E−.

Let Y be the TÑ -toric variety associated to the fan �S . Thus Y is a Q-factorial
Fano 3-fold with Cox coordinates x1, x2, y1, y2, z1, z2. With respect to the basis of
Ñ given by E+, E−, e2, the rays of the fan �S are the columns of the matrix

⎛
⎝−1 −1 1 −2 1 0

−1 −1 −2 1 0 1
2 −2 1 −1 0 0

⎞
⎠ .

The transpose of this matrix gives an injective Z-linear homomorphism M̃ → Z
6.

By [14, Theorem 4.1.3] the cokernel of this is the divisor map of Y and is isomorphic
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to the divisor class group of Y . In this case, one finds that the divisor map of Y is the
Z-linear homomorphism Z

6 → Cl(Y ) � Z
3 given by the following matrix.

x1 x2 y1 y2 z1 z2
0 0 1 1 1 1 L1

0 1 3 1 0 6 L2

1 0 1 3 6 0 L3

Here L1, L2, L3 are the elements of the chosen Z-basis of Cl(Y ). This 3 × 6 matrix
gives the weights of a linear action of the torus (C∗)3 on Å6. By [14, Sect. 5.1] Y
is the GIT quotient of this action with respect to the stability condition given by the
irrelevant ideal

(x1, x2, z1) · (x1, x2, z2) · (y1, y2) · (y1, z2) · (y2, z1).

Therefore Y is the toric 3-fold considered in Sect. 2.3.
We now consider the injective linear map

θ := ρ� ⊕ idNU : N = N ⊕ NU −→ Ñ = DivTM
(Z) ⊕ NU .

By [13, Theorem 5.5] θ induces a toric morphism X → Y which is a closed embed-
ding. We want to understand the ideal of this closed embedding in the Cox ring of Y
by using the map θ .

We follow [34, Remark 2.6]. We see that θ(N ) is the hyperplane defined by the
vanishing of h = E∗+ + E∗− ∈ M̃ . Now we compute the duality pairing between h
and the primitive generators of the rays of �S: 〈h, x1〉 = 〈h, x2〉 = −2, 〈h, y1〉 =
〈h, y2〉 = −1, 〈h, z1〉 = 〈h, z2〉 = 1. We get that the polynomial

z1z2 − y1y2x2
1 x2

2 (8)

is the generator of the ideal of the closed embedding X ↪→ Y in the Cox ring of Y . In
otherwords, X is the hypersurface inY defined by the vanishing of the polynomial (8)
in the Cox coordinates of Y . This concludes of (A) in Proposition 2.3.

2.5 Proof of Proposition 2.3(B)

We want to show that, after base change to C[[s1, s2]], the family of hypersurfaces
in Y defined by the vanishing of (7) is the miniversal Q-Gorenstein deformation of
X . Since the map in (5) is smooth and induces an isomorphism on tangent spaces,
we need to check that locally this family induces the miniversal deformations of the
singularity germs of X . Let t1 and t2 be the two smoothing parameters of the two
1
4 (1, 1) singularities of X , as fixed in Sect. 2.1. We proceed by analysing each chart
of the affine open cover of Y given by the fan �S .
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• The cone σx1,z1,z2 gives the isolated singularity
1
2 (1, 1, 1)x1,z1,z2 on Y . In this chart,

by dehomogenising (7), we get the equation z1z2 − x2
1 + s1x4

1 + s2 = 0 in the orb-
ifold coordinates. This is exactly theQ-Gorenstein smoothing of 1

4 (1, 1) described
at the end of Sect. 2.1. So we have t2 = s2.

• The cone σx2,z1,z2 gives the isolated singularity
1
2 (1, 1, 1)x2,z1,z2 on Y . In this chart

we get the equation z1z2 − x2
2 + s1 + s2x4

2 = 0. We are in a completely analogous
situation as the previous case, so t1 = s1.

• The cone σx1,y2,z2 gives the isolated singularity
1
5 (2, 1, 4)x1,y2,z2 on Y . In this chart

we get the equation z2 − y2x2
1 + s1x4

1 + s2y22 = 0, which is quasi-smooth because
there is no constant term and z2 appears with degree 1. So all fibres of X → Å2

have a 1
5 (1, 2) singularity at the 0-stratum of this chart of Y .

• The cone σx2,y1,z1 gives the isolated singularity
1
5 (1, 2, 4)x2,y1,z1 on Y . The equation

is z1 − y1x2
2 + s1y21 + s2x4

2 = 0 and, in a way analogous to the previous case, we
get a 1

5 (1, 2) singularity on every fibre of X → Å2 at the 0-stratum of this chart
of Y .

• The cone σx1,y1,z1 gives the non-isolated singularity 1
3 (1, 1, 0)x1,y1,z1 . The equa-

tion is z1 − y1x2
1 + s1x4

1 y21 + s2 = 0. Since it is quasi-smooth, this gives a 1
3 (1, 1)

singularity on every fibre ofX → Å2 at a point on the curve (x1 = y1 = 0) ⊂ Y .
• The cone σx2,y2,z2 gives the non-isolated singularity

1
3 (1, 1, 0)x2,y2,z2 . The equation

is z2 − y2x2
2 + s1 + s2x4

2 y22 = 0 and, similarly to the previous case, we have a
1
3 (1, 1) singularity on every fibre ofX → Å2 at a point on the curve (x2 = y2 =
0) ⊂ Y .

• In the fan �S there are two 3-dimensional cones which we have not been anal-
ysed yet: these are σx1,x2,y1 , whose corresponding chart on Y is the non-isolated
singularity 1

12 (3, 1, 4)x1,x2,y1 , and σx1,x2,y2 , which gives the non-isolated singularity
1
12 (4, 1, 3)x1,x2,y2 on Y . We want to show that it is useless to analyse these cones.
Let V denote the complement in Y of the union of the already analysed charts; V
is made up of 3 torus-orbits: the 0-stratum corresponding to σx1,x2,y1 , the 0-stratum
corresponding to σx1,x2,y2 , and the 1-stratum corresponding to σx1,x2 . In other words
V is the projective curve (x1 = x2 = 0) in Y . By looking at the Eq. (7) and at the
irrelevant ideal (6) it is clear that V does not intersect any fibre of X → Å2.

To sum up, we have that the familyX → Å2 realises the Q-Gorenstein smoothings
of the two 1

4 (1, 1) points on X and leaves the 1
3 (1, 1) points and 1

5 (1, 2) points
untouched (i.e. the deformation is formally isomorphic to a product around these
points of the central fibre). By versality the family X → Å2 induces a morphism
Spf(C[[s1, s2]]) → DefqG(X), which is associated to the isomorphism C[[s1, s2]] �
C[[t1, t2]], where s1 = t1 and s2 = t2. In other words, the base change of X → Å2

to C[[s1, s2]] is the miniversal Q-Gorenstein deformation of X . This concludes the
proof of Proposition 2.3(B).
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3 Mirror Symmetry

In [1] some conjectures for del Pezzo surfaces were formulated. In this section we
sketch some evidence for these conjectures in the case of the toric del Pezzo surface
X and of itsQ-Gorenstein deformations. In addition to [1], we refer the reader to [11,
12, 31] and to the references therein for more details about the notions introduced
below.

3.1 Combinatorial Avatars of Connected Components
of Moduli of Del Pezzo Surfaces

According to [1, Conjecture A] there is a 1-to-1 correspondence between

• connected components of the moduli stack of del Pezzo surfaces (with a toric
degeneration) and

• mutation equivalence classes of Fano polygons.

Here a Fano polygon is a lattice polygon whose face fan defines a del Pezzo surface
(an example is P in Sect. 2.2); and mutation is a certain equivalence relation on Fano
polygons introduced in [2]—we do not give further details here and we refer the
reader to [1, 17].

The correspondence works in the following way: to (the mutation equivalence
class of) the Fano polygon P one associates the connected component M of the
moduli stack of del Pezzo surfaceswhich contains the surface X , which is the toric del
Pezzo surface associated to the face fan of P . One has thatM is smooth and contains
M (the connected component of the K-moduli stack parametrising K-semistable del
Pezzo surfaces and containing X ) as an open substack.

3.2 Classical Period

Consider the family of maximally mutable Laurent polynomials with Newton poly-
tope P and with T-binomial edge coefficients [1, Definition 4]. This is the 6-
dimensional family

f = x2y + x−2y−1 + (x + 2 + x−1)(y2 + y−2)

+ a1xy + a2x−1y−1 + b1x + b2x−1 + c1xy−1 + c2x−1y

inQ[a1, a2, b1, b2, c1, c2][x±, y±], where a1, a2, b1, b2, c1, c2 are indeterminates. In
Fig. 2 the coefficients of f are written next to the corresponding lattice points of P .

The classical period of f is the power series
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Fig. 2 The coefficients of
the maximally mutable
Laurent polynomials with
Newton polytope P and with
T-binomial edge coefficients
(see Sect. 3.2)

π f (t) =
(

1

2π i

)2 ∫
{(x,y)∈(C∗)2||x |=|y|=ε}

1

1 − t f (x, y)

dx

x

dy

y

in Q[a1, a2, b1, b2, c1, c2][[t]], for some 0 < ε � 1. The first coefficients of π f are:

π f (t) = 1 + 2(a1a2 + b1b2 + c1c2 + 7)t2+
+ 6(a1b1 + 2a1c2 + a2b2 + 2a2c1 + 4b1 + 4b2 + c1 + c2)t

3 + · · · .

3.3 Quantum Period

Let X ′ be the surface corresponding to a general point inM ; in other words, X ′ is a
general Q-Gorenstein deformation of the toric surface X . The quantum period of X ′
[27, Definition 3.2] is a certain generating function for genus zero Gromov–Witten
invariants of X ′ which depends on certain parameters related to the singularities of
X ′. In this case there are 6 parameters because the singular locus of X ′ is made up
of 2 points of type 1

3 (1, 1) and 2 points of type 1
5 (1, 2).

In general it is very difficult to compute the quantum period of a Fano orbifold.
Since X ′ is a hypersurface in the toric Fano Y , one can use the quantum Lefschetz
theorem to compute a specialisation of the quantum period of X ′, i.e. the power series
G X ′ ∈ Q[[t]] obtained from the quantum period by setting the parameters equal to
some numbers. This can be done as follows. We use the notation as in Sect. 2.4. One
can see that the nef cone of Y is spanned by the divisor classes
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L1 + 3L2 + 3L3,

4L1 + 9L2 + 9L3,

5L1 + 9L2 + 15L3,

5L1 + 15L2 + 9L3.

We consider the cone � ⊆ R
3 defined by the inequalities

l1 + 3l2 + 3l3 ≥ 0,

4l1 + 9l2 + 9l3 ≥ 0,

5l1 + 9l2 + 15l3 ≥ 0,

5l1 + 15l2 + 9l3 ≥ 0

and by the inequalities

l3 ≥ 0,

l2 ≥ 0,

l1 + 3l2 + l3 ≥ 0,

l1 + l2 + 3l3 ≥ 0,

l1 + 6l3 ≥ 0,

l1 + 6l2 ≥ 0.

The first inequalities say that we are taking (the closure of) the cone of the effective
curves in N1(Y )R, i.e. we are taking the dual of the nef cone of Y ; with the sec-
ond inequalities we are taking the curve classes on which the prime torus-invariant
divisors of Y have non negative degrees.

By using methods similar to [27], one can prove that a specialisation of the quan-
tum period of X ′ is the power series G X ′(t) ∈ Q[[t]] equal to

∑
(l1,l2,l3)∈�∩Z3

(2l1 + 6l2 + 6l3)!
l3! l2! (l1 + 3l2 + l3)! (l1 + l2 + 3l3)! (l1 + 6l3)! (l1 + 6l2)! t2l1+5l2+5l3 .

Notice the following numerology: at the denominator there are the factorial of the
degrees of the prime torus-invariant divisors of Y , the numerator is the factorial of
the degree of theQ-line bundleOY (X ′) = 2L1 + 6L2 + 6L3, the exponent of t is the
degree of the Q-line bundle −KY − X ′ = 2L1 + 5L2 + 5L3, which by adjunction
restricts to −K X ′ on X ′.

If
∑

d≥0 Cdtd is the quantum period of X ′, then the regularised quantum period of
X ′ is

∑
d≥0 d! Cdtd . From the computation above one computes the first coefficients

of a specialisation of the regularised quantum period of X ′:
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Ĝ X ′(t) = 1 + 16t2 + 936t4 + 520t5 + 76840t6 + 131880t7 + 7360920t8+
+ 22806000t9 + 770459256t10 + 3451657440t11 + 85553394696t12 + · · · .

3.4 Equality of Periods

A second mirror-symmetric expectation [1, Conjecture B] is that there is an equality
between

• the regularised quantum period of a general surface X ′ inM and
• the classical period of the family of maximally mutable Laurent polynomials with
Newton polytope P and with T-binomial edge coefficients.

Notice that in our case both periods depend on 6 parameters which should be iden-
tified.

Combining Sects. 3.2 and 3.3 one can verify the equality between a specialisation
of the regularised quantum period of X ′ and the classical period of the Laurent
polynomial obtained from f by setting a1 = a2 = 1 and b1 = b2 = c1 = c2 = 0:

Ĝ X ′(t) = π f (t)|a1=a2=1, b1=b2=c1=c2=0.
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A Non-standard Bezout Theorem
for Curves

Tristram de Piro

Abstract This paper provides a non-standard analogue of Bezout’s theorem for
algebraic curves. We achieve this by showing that, in all characteristics, the notion
of Zariski multiplicity coincides with intersection multiplicity when we consider
the full families of projective degree d and degree e curves in P2(L). The result
is particularly interesting in that it holds even when we consider intersections at
singular points of curves or when the curves contain non-reduced components.

Keywords Bezout theorem · Zariski multiplicity · Intersection multiplicity

The techniques of non-standard analysis, originally developed for the real numbers,
were recently introduced by Zilber in the context of Zariski structures. In [17], he
gives a rigorous notion of Zariski multiplicity, which, in the case of 2 curves C1

and C2, intersecting in a point a, can count the number of intersections of the 2
curves in an infinitely small neighborhood of a after moving one of the curves. This
idea was used intuitively in the work of the Italian school of algebraic geometry,
in particular by Severi. One advantage of this approach is that it avoids an over
reliance on algebra, in favour of a more geometric approach. The successes of their
work are well known; the development of the notion of genus for algebraic curves,
building on the original ideas of Plucker, and the classification of algebraic surfaces.
This paper sets out to show that this non-standard analysis can be useful in algebraic
geometry, by providing a more geometric framework for understanding intersections
of algebraic curves in the plane. In particular, themain result of the paper, a geometric
proof of Bezout’s theorem, enhances an important idea in the foundational work of
the Italian school. We assume some familiarity with certain notions from algebraic
and analytic geometry, as well as the material from Sects. 1–5 of [7]. We summarise
the relevant facts, for the proofs of the paper, in the following three sections.
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1 Etale Morphisms and Algebraic Multiplicity

Definition 1.1 A morphism f of finite type between varieties X and Y is said to be
etale if for all x ∈ X there are open affine neighborhoods U of x and V of f (x) with
f (U ) ⊂ V such that restricted to these neighborhoods the pull back on functions is
given by the inclusion;

f ∗ : L[V ] → L[V ] [x1, . . . , xn]
< f1, . . . , fn >

and

det (
∂ fi

∂x j
)(x) �= 0 , (∗)

The coordinate free definition of etale is that f should be flat and unramified,
where a morphism f is unramified if the sheaf of relative differentials �X/Y = 0,
clearly this last confition is satisfied using the condition (∗). If we tensor the exact
sequence,

f ∗�Y → �X → �X/Y → 0

with L(x) the residue field of x , we obtain an isomorphism

f ∗�Y ⊗ L(x) → �X ⊗ L(x).

Identifying �X ⊗ L(x) with T ∗
x,X gives that

d f : (mx/m2
x )

∗ → (m f (x)/mx
f (x))

∗

is an isomorphism of tangent spaces or dually f ∗(m f (x)) = mx . Call this property
of etale morphisms (∗∗).

We will also require some facts about the etale topology on an algebraic variety
Y , see [14] for more details. We consider a category Yet whose objects are etale mor-
phismsU → Y andwhose arrows are Y -morphisms fromU → V . This category has
the following 2 desirable properties. First given y ∈ Y , the set of objects of the form
(U, x) → (Y, y) form a directed system, namely (U, x) ⊂ (U ′, x ′) if there exists an
etale morphism U → U ′ taking x to x ′. Secondly, we can take “intersections” of
open sets Ui and U j by considering Ui j = Ui ×Y U j ; the projection maps are easily
show to be etale and the composition of etale maps is etale, so Ui j → Y still lies
in Yet . If Y is an irreducible variety over L , then all etale morphisms into Y must
come from reduced schemes of finite type over L , though they may well fail to be
irreducible considered as algebraic varieties. Now we can define the local ring of Y
in the etale toplogy to be;

O∧
y,Y = lim→,y∈U OU (U )
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As any open set U of Y clearly induces an etale morphism U →i Y of inclusion,
we have that Oy,Y ⊂ O∧

y,Y . We want to prove that O∧
y,Y is a Henselian ring and in fact

the smallest Henselian ring containing Oy,Y . We need the following lemma about
Henselian rings, which can be found in [15].

Lemma 1.2 Let R be a local ring with residue field L, and maximal idealm. Suppose
that R satisfies the following condition.

If f1, . . . fn ∈ R[x1, . . . xn] and the reductions modulo the maximal ideal m,

f̄1 . . . f̄n have a common root ā in Ln, for which Jac( f̄ )(ā) = (
∂ f̄i

∂x j
)i j (ā) �= 0, then

ā lifts to a common root in Rn (*).
Then R is Henselian.

It remains to show that O∧
y,Y satisfies (∗).

Proof Given f1, . . . fn satisfying the condition of (∗), we can assume the coefficients
of the fi belong to OUi (Ui ) for covers Ui → Y ; taking the intersection U1...i ...n we
may even assume the coefficients define functions on a single etale cover U of Y .
By the remarks above we can consider U as an algebraic variety over L , and even an
affine algebraic variety after taking the corresponding inclusion. We then consider
the variety V ⊂ U × An defined by Spec( R(U )[x1,...,xn ]

f1,... fn
). Letting u ∈ U denote the

point in U lying over y ∈ Y , the residue of the coefficients of the fi at u corresponds
to the residue in the local ring R, which tells us exactly that the point (u, ā) lies in
V . By the Jacobian condition, we have that the projection π : V → U is etale at the
point (u, ā), and hence on some open neighborhood of (u, ā), using Nakayama’s
Lemma applied to �V/U . Therefore, replacing V by the open subset U ′ ⊂ V gives
an etale cover of U and therefore of Y , lying over y. Now clearly the coordinate
functions x1, . . . xn restricted to U ′ lie in O∧

y,Y and lift the root ā to a root in O∧
y,Y �

We define the Henselization of a local ring R to be the smallest Henselian ring
R′ ⊃ R, with R′ ⊂ Frac(R)alg . We have in fact, see [14], that;

Theorem 1.3 Given an algebraic variety Y , O∧
y,Y is the Henselization of Oy,Y

We recall the following Definition 3.6.7 from [17];

Definition 1.4 Let F ⊂ D × Mk be a finite covering of D and (a, b) ∈ F , then;

Multb(a, F/D) = Card(F(a′, ∗Mk)) ∩ Vb

for a′ ∈ Va generic in D over M, where;

Va = {a′ ∈ ∗D : π(a′) = a}

M ≺ ∗M and π : ∗M → M is a universal specialisation.

Definition 1.5 If F is a finite covering of D, we say that F is unramified in the sense
of Zariski structures if for all (a, b) ∈ F , multb(a, F/D) = 1.
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The following theorem requires some knowledge of Zariski structures, see
Sects. 1–4 of [7], or Sect. 2 of this paper.

Theorem 1.6 Zariski multiplcity is preserved by etale morphisms Let π : X → Y be
an etale morphism with Y smooth, then any (ab) ∈ graph(π) ⊂ X × Y is unramified
in the sense of Zariski structures.

For this we need the following fact whose algebraic proof relies on the fact that
etale morphisms are flat, see [13];

Fact 1.7 Any etale morphism can be locally presented in the form

V
g−−−−→ Spec((A[T ]/ f (T ))d)

⏐
⏐
�π

⏐
⏐
�π ′

U
h−−−−→ Spec(A)

where f (T ) is a monic polynomial in A[T ], the derivative f ′(T ) is invertible in
(A[T ]/ f (T ))d , g, h are isomorphisms and (A[T ]/ f (T ))d = { h

dn : h ∈ A[T ], n ∈
Z≥0}.

Using Lemma 4.6 of [7] and the fact that the open set V is smooth, we may safely
replace graph(π) by graph(π ′) ⊂ F ′′ × F where F ′′ is the projective closure of
Spec((A[T ]/ f (T )), F is the projective closure of Spec(A) and graph(π ′) is the
projective closure of graph(π ′) and show that (g(b)a) is Zariski unramified. Note
that over the open subset U = Spec(A) ⊂ F , graph(π ′) = Spec(A[T ]/ f (T )) as
this is closed in U × F ′′. For ease of notation, we replace (g(b)a) by (ba).

Suppose that f has degree n. Let σ1 . . . σn be the elementary symmetric functions
in n variables T1, . . . Tn . Consider the equations

σ1(T1, . . . , Tn) = a1

. . .

σn(T1, . . . , Tn) = an (*)

where a1, . . . an are the coefficients of f with appropriate sign. These cut out a closed
subscheme C ⊂ Spec(A[T1 . . . TN ]). Suppose (ba) ∈ graph(π ′) = Spec(A[T ]/
f (T )) is ramified in the sense of Zariski structures, then I can find (a′b1b2) ∈ Vabb

with (a′b1),(a′b2) ∈ Spec(A(T )/ f (T )) and b1, b2 distinct. Then complete (b1b2) to
an n-tuple (b1b2c′

1 . . . c′
n−2) corresponding to the roots

of f over a′. The tuple (a′b1b2c′
1 . . . c′

n−2) satisfies C , hence so does the specialisa-
tion (abbc1 . . . cn−2). Then the tuple (bbc1 . . . cn−2) satisfies (∗)with the coefficients
evaluated at a. However such a solution is unique up to permutation and corresponds
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to the roots of f over a. This shows that f has a double root at (ab) and therefore
f ′(T )|ab = 0. As (ab) lies inside Spec(A[T ]/ f (T ))d , this contradicts the fact that
f ′ is invertible in A[T ]/ f (T ))d .

We also review some facts about algebraic multiplicity and show that algebraic
multiplicity is preserved by etale morphisms.

Definition 1.8 Given projective varieties X1, X2 and a finite morphism f : X1 →
X2, the algebraic multiplicity multalg

a f (a)(X1/X2) of f at a ∈ X1 is length(Oa,X1/

f ∗m f (a)) where m f (a) is the maximal ideal of the local ring O f (a).

Remark 1.9 Note that this is finite, by the fact that finite morphisms have finite
fibres and the ring Oa,X1/ f ∗m f (a) is a localisation of the fibre f −1( f (a)) ∼=
R( f −1(U )) ⊗R(U ) L ∼= R( f −1(U ))/m f (a) where U is an affine subset of X2 con-
taining f (a).

We now have the following.

Theorem 1.10 (Algebraic multiplicity is preserved by etale morphisms) Given
finite morphisms f : X3 → X2 and g : X2 → X1 with f etale. If a ∈ X3, then
multalg

a,g f (a)(X3/X1) = multalg
f (a),g f (a)(X2/X1).

Proof This result is essentially given in [15]. Let O∧
f (a),X2

be the Henselisation
of the local ring at f (a). By base change, we have an etale morphism f ′ : X ′ =
X3 ×X2 Spec(O∧

f (a)) → Spec(O∧
f (a)). By the definition of an etale morphism given

above, we may write this cover locally in the form Spec(O∧
f (a)

[x1,...,xn ]
f1,..., fn

), with

det ( ∂ fi

∂x j
) �= 0 at each closed point in the fibre over f (a). At the closed point a,

let ai be the residues of the xi in L , then we have that (a1, . . . an) is a common
root for { f̄1, . . . , f̄n} where f̄i is obtained by reducing fi with respect to the maxi-
mal ideal m f (a),X2 of O∧

f (a). As O∧
f (a) is Henselian, by the above, and the determi-

nant condition, we can lift the roots ai to roots αi of the fi in O∧
f (a). We therefore

obtain a subscheme Z = Spec(O∧
f (a)

[x1,...,xn ]
<x1−α1,...,xn−αn

>) of X ′ which is isomorphic
to Spec(O∧

f (a)) under the restriction of f . Let Q be the OX ′ ideal defining Z , we
then have that ma,X ′ = f ∗m f (a),X2 ⊕ Qa . As f is etale, by (∗∗) after Definition 1.1
above, ma,X ′ = f ∗m f (a),X2 , therefore Qa = 0 and by Nakayama’s lemma Q = 0 in
an open neighborhood of a in X ′. This gives that Z = X ′ in an open neighborhood
of a. Hence we obtain the sequence O f (a),X2 → f ∗ Oa,X3 →i∗ Oa,X ′ (***) where
the map i∗ f ∗ is the inclusion of O f (a),X2 inside O∧

f (a),X2
. Now if n ⊂ m f (a),X2 is

the pullback g∗mg f (a),X1 , we have that length(O f (a),X2/n) = length(O∧
f (a),X2

/n),
hence the result follows by (∗ ∗ ∗) as required. �
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2 Zariski Multiplicity

Wework in the context of Theorem 3.3 in [7]. Namely, W (we used the notation V in
[7]) will denote a smooth projective variety defined over an algebraically closed field
L , considered as a Zariski structure with closed sets given by algebraic subvarieties
defined over L . All notions connected to the definition of Zariski multiplicity will
come from a fixed specialisation map π : W (Kω) → W (L) where Kω denotes a
"universal" algebraically closed field containing L = K0. We consider D a smooth
subvariety of some cartesian power W m and a finite cover, with respect to projection
onto the first coordinate, F ⊂ D × W k , all defined over L (*). This allows us tomake
sense of Zariskimultiplicity. In general,we canmove freely betweenZariski structure
notation and algebraic geometry notation. Clearly (∗) makes sense algebraically.
Conversely, if X and Y denote fixed projective varieties defined over L with Y
smooth and a finite morphism f : X → Y over L is given , then we can reduce
to the situation of (∗) by taking F to be graph( f ) ⊂ X × Y with the projection
map onto the second factor and W to be the corresponding projective space Pn(L)

where X, Y ⊂ Pn(L). We can even take W to be the 1-dimensional Zariski structure
P1(L) by using the embedding of Pn(L) into the N ’th Cartesian power of P1(L)

for sufficiently large N .
We use the definition of Zariski multiplicity for irreducible finite covers, see

Definition 1.4 and also given in 4.1 of [7]. We will also require the following gener-
alisation.

Definition 2.1 Let F ⊂ D × W k be an equidimensional, finite cover of smooth D,
with irreducible components C1, . . . , Cn . Then for (ab) ∈ F , we define
Multab(F/D) = ∑

(ab)∈Ci
Multab(Ci/D).

Clearly this is well defined using the definition of Zariski multiplicity for irre-
ducible covers. However, until Lemma 2.10, the assumption that F is irreducible
will be in force.

Lemma 2.2 (Zariski multiplicity is multiplicative over composition) Suppose that
F1, F2 and F3 are smooth, irreducible, with F2 ⊂ F1 × W k and F3 ⊂ F2 × W l finite
covers. Let (abc) ∈ F3 ⊂ F1 × W k × W l. Then multabc(F3/F1) = multab(F2/F1)

multabc(F3/F2).

Proof To see this, let m = multab(F2/F1) and n = multabc(F3/F2). Choose a′ ∈
Va ∩ F1(Kω)generic over L . Bydefinition,wecanfinddistinctb1 . . . bm inW k(Kω) ∩
Vb such that F2(a′, bi )holds.As F2 is afinite cover of F1,wehave thatdim(a′bi/L) =
dim(a′/L) = dim(F1) = dim(F2), so each (a′bi ) ∈ Vab ∩ F2 is generic over L .
Again by definition, we can find distinct ci1 . . . cin in W l(Kω) ∩ Vc such that
F3(a′bi ci j ) holds. Then the mn distinct elements (a′bi ci j ) are in Vabc, so by def-
inition of multiplicity multabc(F3/F1) = mn as required. �

Lemma 2.3 Let hypotheses be as in the above lemma with the extra condition that
the cover F3/F2 is etale. Then for (abc) ∈ F3, multabc(F3/F1) = multab(F2/F1)
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Proof This is an immediate consequence of Lemma 2.2 and Theorem 1.6. �

Lemma 2.4 (Zariski multiplicity is summable over specialisation) Suppose that
F ⊂ D × W k is a finite irreducible cover with D smooth. Suppose (ab) ∈ F,
a′ ∈ Va ∩ D and a′′ ∈ Va′ ∩ D with a′′ generic over L. Then

Multab(F/D) = �b′∈Vb∩F(a′)Multa′b′(F/D)

where F(a′) = {y ∈ F : pr(y) = a′} and pr : F → D is a projection.

Proof Suppose F(a′′b1), . . . F(a′′bn) hold with bi ∈ Vb, so {b1, . . . , bn}witness the
fact that Multab(F/D) = n. Write {b1, . . . bn} as {b11, . . . , b1m1 , b21, . . . , b2m2 , . . . ,

bi1, . . . bi j , . . . , bimi , . . . , bnmn } (*), where bi j maps to ai in the specialisation taking
a′′ to a′. To prove the lemma, it is sufficient to show that F(a′y) ∩ Vb = {a1, . . . , an}
and Mult(a′ai )(F/D) = mi . The second statement just follows from the fact that a′′
is generic in D over L in Va′ . To prove the first statement, suppose we can find an+1

with F(a′an+1) and an+1 ∈ Vb but an+1 /∈ {a1, . . . an}. By Theorem 3.3 in [7], we
can find c with F(a′′c) and (a′′c) specialising to (a′an+1). As an+1 ∈ Vb, (a′an+1)

specialises to (ab), hence so does (a′′c). Therefore, c must witness the fact that
Multab(F/D) = n and appear in the set {b1, . . . , bn}. This clearly contradicts the
arrangement of {b1, . . . , bn} given in (∗). �

Definition 2.5 Let F ⊂ U × V × W k be an irreducible finite cover of U × V with
U and V smooth.

Given (u, v, x) ∈ F we define;

Le f t Multu,v,x (F/D) = Card(Vx ∩ F(u′, v)) for u′ ∈ Vu ∩ U generic over L .

Right Multu,v,x(F/D) = Card(Vx ∩ F(u, v′)) for v′ ∈ Vv ∩ V generic over L .

We first show that both left and right multiplicity are well defined. In order
to see this, observe that the fibres F(u, V ) and F(U, v) are finite covers of V
and U respectively with U and V smooth. Moreover, the fibres F(u, V ) and
F(U, v) are equidimensional covers of V and U respectively. In order to see
this, as U is smooth, it satisfies the presmoothness axiom with the smooth pro-
jective variety W k given in Definition 1.1 of [7]. The fibre F(u, V ) = F ∩ (W k ×
{u} × V ). By presmoothness, each irreducible component of the intersection has
dimension at least dim(F) + dim(W k × V ) − dim(U × V × W k) = dim(F) −
dim(U ) = dim(V ). As F(u, V ) is a finite cover of V , it has exactly this dimen-
sion. Now we can use the definition of Zariski multiplicity given in Definition 2.1.

We then claim the following.

Lemma 2.6 (Factoring Multiplicity) In the situation of the above definition, we
have that;
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Multu,v,x (F/U × V ) = �x ′∈(Vx ∩F(y,u′,v)) Right Multx ′,u′,v(F/U × V ) for u′
generic in U over L.

Multu,v,x (F/U × V ) = �x ′∈(Vx ∩F(y,u,v′))Le f t Multx ′,u,v′(F/U × V ) for v′
generic in V over L.

Proof We just prove the first statement, the proof of the second is apart from
notation identical. By the construction in Sect. 2 and Lemma 3.2 of [7], we can
choose algebraically closed fields L = K0 ⊂ Kn1 ⊂ Kn2 ⊂ Kω, and tuples u′ ∈
Kn1 , v′ ∈ Kn2 such that u′ is generic in U over L , v′ is generic in V over
Kn1 with specialisations π1 : Pn(Kn1) → Pn(L) and π2 : Pn(Kn2) → Pn(K1) such
that π2(u′v′) = (u′v) and π1(u′v) = (uv). Now dim(u′v′/L) = dim(v′/L(u′)) +
dim(u′/L) = dim(V ) + dim(U ), hence u′v′ is generic inU × V over L . Therefore
Multu,v,x = Card(Vx ∩ F(u′v′)). Let S = {y11, . . . , y1m1 , . . . , yi ji , . . . , yn1, . . . ,

ynmn } be distinct elements in Vx ∩ W k witnessing this multiplicity such that for 1 ≤
ji ≤ mi , π2(yi ji ) = zi ∈ Vx ∩ W k . It is sufficient to show that Right Multu′v,zi (F/U
× V ) = mi and {z1, . . . zn} enumerates Vx ∩ F(y, u′, v). The first statement follows
as v′ ∈ Vv ∩ V is generic in V over L(u′). For the second statement, suppose that
we can find zn+1 ∈ Vx ∩ F(y, u′, v) with zn+1 /∈ {z1, . . . zn}. Consider F(u′, V ) as a
finite cover of V , defined over L(u′), so by the above F(u′, V ) is an equidimensional,
see Definition 2.9 finite cover of V . Then, as v′ was chosen to be generic in V over
L(u′), choosing an irreducible component of F(u′, V ) passing through (zn+1, u′v),
by the lifting result of Theorem 3.3 in [7], we can find yn+1 ∈ Vzn+1 ∩ W k such that
F(yn+1, u′, v′). Clearly, yn+1 ∈ S which contradicts the definition of S. �

Theorem 3.3 of [7] does not hold in the case when D fails to be smooth. However,
in the case of etale covers, we still have the following result;

Lemma 2.7 Lifting Lemma for Etale Covers

Let F ⊂ D × W k be an etale cover of D defined over L, with the projection map
denoted by f . Then given a ∈ D, (ab) ∈ F and a′ ∈ Va ∩ D generic over L, we can
find b′ ∈ Vb such that F(a′, b′) holds. Moreover b′ is unique, hence Multab(F/D) =
1. Moreover, in the situation of Lemma 2.3, without requiring that F2 is smooth, we
have that for (abc) ∈ F3, multabc(F3/F1) = multab(F2/F1).

Proof Using the definition of etale given in Sect. 1 above, we can assume that the
cover is given algebraically in the form f ∗ : L[D] → L[D] [x1,...,xn ]

f1,..., fn
with det ( ∂ fi

∂x j
)i j

(x) �= 0 for all x ∈ F . So we can present the cover in the form f1(x, y) = 0, f2(x, y)

= 0, . . . , fn(x, y) = 0, with y in D and x in An(L). Let Lm be the algebraic closure
of the field generated by L and ḡ(a) where ḡ is a tuple of functions defining D
locally. Consider the system of equations f1(x, a) = f2(x, a) = . . . = fn(x, a) = 0
defined over Lm . Then this system is solved by b in Lm with the property that
det ( ∂ fi

∂x j
)i j (b) �= 0 (*). Now suppose that a′ ∈ Va ∩ D is chosen to be generic over

L . By the construction given in Lemma 2.2 of [7], we may assume that a′ lies
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in Ls[[t1/r ]], the formal power series in the variable t1/r for some algebraically
closed field Ls extending Lm . This is a henselian ring, hence if we consider the
system of equations f1(x, a′) = f2(x, a′) = . . . = fn(x, a′) = 0 with coefficients
in Ls[[t1/r ]], by the fact that the system specialises to a solution in Ls with the
condition (*) we can find a solution b′ in Ls[[t1/r ]]. Then (a′b′) lies in F and by
construction b′ ∈ Vb. The uniqueness result follows from the proof of Theorem 1.6.
For the last part, suppose that multab(F2/F1) = n, then we can find a′ ∈ Va ∩ F1

generic over L and {b1, . . . bn} ∈ Vb ∩ W k distinct such that F(a′, bi ) holds. Each
(a′bi ) is generic in F2 over L , hence by the previous part of the lemma, we can find a
unique ci ∈ Vc ∩ W l such that F3(a′bi ci ) holds. This show that multabc(F3/F1) = n
as required. �

Lemma 2.8 (Lifting Lemma for Etale Covers with Right(Left) Multiplicity) Let
hypotheses be as in Lemma 2.2, with the additional assumption that F1 = U × V ,
F2 is a smooth irreducible cover of F1 and F3 is an irreducible etale cover of F2.
Then, with notion as in Definition 2.5, given (uvbc) ∈ F3, Right Multuvbc(F3/F1) =
Right Multuvb(F2/F1). Similarly for left multiplicity.

Proof Suppose that Right Multuvb(F2/F1) = n, then for v′ ∈ Vb generic in V over
L , we can find {b1, . . . , bi , . . . bn} ∈ Vb with F2(uv′bi ) holding. For each bi we claim
that there exists a unique ci ∈ Vc such that F3(uv′bi ci ) holds. For the existence, we
can use Lemma 2.7, with the simple modification that, with the notation there, if Lm

is the algebraic closure of the field generated by ḡ(uv), then provided dim(V ) ≥ 1,
we can find v′ ∈ Vv ∩ V generic over L with uv′ ∈ Ls[[t1/r ]] for some algebraically
closed field Ls containing Lm . For the uniqueness, we can use the fact that Zariski
multiplicity is summable over specialisation, see Lemma 2.4, and the fact that for
generic (u′v′b′

i ) ∈ Vuvb ∩ F2, we can find a unique c′
i ∈ Vc such that F3(u′v′b′

i c
′
i )

holds. Finally, we claim that {b1c1, . . . , bncn} enumerate F3(uv′xy) ∩ Vbc. This is
clear by the above proof and the fact that {b1, . . . , bn} enumerates F2(uv′x) ∩ Vb.�

Definition 2.9 We say that g : F → D is an equidimensional finite cover of D if
F = ⋃

1≤i≤k Fi with Fi irreducible, dim(F) = dim(Fi ), and g : Fi → D finite.

Lemma 2.10 The following versions of the above properties hold when we consider
finite equidimensional covers, possibly with components, with the definition of Zariski
multiplicity given in Definition 2.1.

Proof For Lemma 2.3, we replace the hypotheseswith F1 is smooth irreducible, F2 is
an equidimensional finite cover of F1 and F3 is an etale cover of F2. We then claim,
using notation as in Lemma 2.2, that multabc(F3/F1) = multab(F2/F1). By defi-
nition multabc(F3/F1) = ∑

(abc)∈Ci
(multabc(Ci/F1)), where Ci are the irreducible

components of F3 passing through (abc). As F3 is an etale cover of F2, the images of
the Ci are precisely the irreducible components Di of F2 passing through (ab), each
Ci is an etale cover of Di and multab(F2/F1) = ∑

(ab)∈Di
(multab(Di/F1)). Hence,

it is sufficient to prove the result in the case when F2 and F3 are irreducible. This is
just Lemma 2.3.
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For Lemma 2.4, we replace the hypothesis with F is an equidimensional finite
cover of D. The proof then goes through exactly as in the lemmawith the observation
that if we find an+1 ∈ Vb and F(a′an+1) then we can find an irreducible component
C passing through (a′an+1) which allows us to apply Theorem 3.3 in [7] to obtain c
with C(a′′c) and (a′′c) specialising to (a′an+1).

For Definition 2.5, we alter the hypothesis to F is an equidimensional finite cover
of U × V . Again, we can use an identical proof to show that left multiplicity and
right multiplicity are well defined. The proof of Lemma 2.6 with the new hypothesis
on F is identical.

We don’t require amodified version of Lemma 2.7, the result we need is contained
in the modified proof of Lemma 2.3.

For Lemma 2.8, we alter the hypotheses to F2 is an equidimensional cover of F1

and F3 is an etale cover of F2.We then claim that for (uvb) a non-singular point of F2

and (uvbc) ∈ F3, necessarily non-singular as well, that Right Multuvbc(F3/F1) =
Right Multuvb(F2/F1) and similarily for left multiplicity. To prove this, note that as
(uvb) and (uvbc) are non-singular points, there exist unique components C and D
passing through (uvb) and (uvbc) respectively. Now replacing C and D by the open
subsets C ′ and D′ of smooth points, we can apply the definition of Right Multiplicity
and the proof of Lemma 2.8. �

3 Analytic Methods

In order to use the method of etale morphisms, which preserve Zariski multiplicity,
we need to work inside the Henselisation of local rings L[x1, . . . , xn](x1,...,xn). In the
next section, we will only need the result for the local ring in 2 variables L[x, y](x,y).

We let L[[x1, . . . , xn]] denote the ring of formal power series in n variables, which
is the formal completion of L[x1, . . . , xn](x1,...,xn) with respect to the canonical order
valuation, see for example Sect. 2 of [7]. The following is a classical result, requiring
the fact that etale morphisms are flat, used in the proof of the Artin approximation
theorem. This relates the henselisation of the ring L{x1, . . . , xn} of strictly conver-
gent power series in several variables with its formal completion L[[x1, . . . , xn]],
see [3] or [16]. Namely, that the henselisation of (L[x1, . . . xn](x1,...xn)) is equal to
L[[x1, . . . xn]] ∩ L(x1, . . . xn)

alg , where L(x1, . . . xn)
alg is the algebraic closure of

the function field L(x1, . . . xn).
This implies that

O∧
0̄,An

∼= L[[x1, . . . xn]] ∩ L(x1, . . . xn)
alg

The following result, which can be found in [4], is essential for the next section.
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Lemma 3.1 (Weierstrass Preparation) Let F(x1, . . . xn) be a polynomial in
L[x1, . . . , xn] which is regular in the variable xn. Then we have F(x1, . . . , xn) =
U (x1, . . . , xn)G(x1, . . . , xn) where U (x1, . . . , xn) is a unit in the local ring L[[x1,
. . . , xn]] and
G(x1, . . . , . . . xn) is a Weierstrass polynomial in xn with coefficients in L[[x1, . . . ,
xn−1]]

We will require the Weierstrass decomposition to hold inside the henselisation of
(L[x1, . . . , xn]), therefore we need to show that the Weierstass data can be found
inside L(x1, . . . , xn)

alg . This is achieved by the following lemma.

Lemma 3.2 (Definability of Weierstrass data) Let F(x1, . . . , xn) be a polyno-
mial with coefficients in L such that F is regular in xn, then if F(x1, . . . , xn) =
U (x1, . . . , xn)G(x1, . . . , xn) is the Weierstrass decomposition of F with G(x1, . . . ,
xn) = xm

n + a1(x1, . . . , xn−1)xm−1
n + · · · + am(x1, . . . , xn−1), and ai ∈ L[[x1, . . . ,

xn−1]],U (x1, . . . , xn) ∈ L[[x1, . . . , xn]], then ai (x1, . . . , xn−1) ∈ L(x1, . . . , xn−1)
alg

and U (x1, . . . , xn) ∈ L(x1, . . . , xn)
alg.

Proof This can be proved by rigid analytic methods. Equip L with a complete non-
trivial non-archimedean valuation v and corresponding norm ||.||v , this can be done
for example by assuming that L is a power series field of large transcendence degree
with a non-archimidean valuation, see [4, 6]. Let Tn−1(L) be the free Tate algebra
in the indeterminate variables x1, . . . , xn−1 over L , that is the subalgebra of strictly
convergent power series in L[[x1, . . . , xn−1]]. By the proof ofWeierstrass preparation
in [4], as F ∈ Tn−1(L)[xn], the coefficients ai lie in Tn−1(L) and U (x1, . . . , xn) ∈
Tn−1(L)[xn]. Now choose (u1, . . . un−1) ⊂ L transcendental over the coefficients of
F with max({||ui ||}) ≤ 1. Then if s1(ū), . . . , sm(ū) denote the roots of F(ū, xn)

with ||si (ū)|| ≤ 1, then both U (ū, si (ū)) and G(ū, si (ū)) define elements of L and
moreover, by a theorem in [16], we have that the coefficients ai (ū) are symmetric
functions of the si (ū). Hence the ai (ū) belong to L(ū)alg . As ū was transcendental,
we have that each ai ∈ L[x1, . . . , xn−1]alg . AsU (x1, . . . xn) = F/G(x1, . . . , xn), we
clearly have that U (x1, . . . , xn) ∈ L[x1, . . . , xn]alg as well. �

4 Families of Curves in P2(L)

We consider the family Qd of projective curves in P2(L) with degree d. An element
of Qd may be written;

∑

0≤i+ j≤d

ai j (X/Z)i (Y/Z) j = 0

which, rewriting in homogenous form, becomes;

∑

0≤i+ j≤d

ai j X i Y j Zd−(i+ j) = 0
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For ease of notation, we will use affine coordinates x = X/Z and y = Y/Z . More
generally, if we give an affine cover, we implicitly assume that it can be projectivized
by taking ȳ = (y1, . . . , yn) = (Y1/Z , . . . , Yn/Z). As the notion of Zariski multiplic-
ity is local, this will not effect our calculations.

Now consider two such families Qd and Qe. Then we have the cover obtained by
intersecting degree d and degree e curves

Spec(L[x, y, ui j , vi j ]/ < s(ui j , x, y), t (vi j , x, y) >) → Spec(L[ui j , vi j ]).(∗)

where

s(ui j , x, y) =
∑

0≤i+ j≤d

ui j x
i y j

t (vi j , x, y) =
∑

0≤i+ j≤e

vi j x
i y j

We denote the parameter space for degree d curves by U and the parameter space
for degree e curves by V . These are affine spaces of dimension (d + 1)(d + 2)/2
and (e + 1)(e + 2)/2 respectively. Both Qd and Qe are irreducible. The cover (*)
is generically finite, that is there exists an open subset U ′ ⊂ Sp(L[ui j , vi j ]) for
which the restricted cover has finite fibres. Throughout this section, we will denote
the base space of the cover by U × V , bearing in mind that we implicitly mean
by this (U × V ) ∩ U ′. Now, given 2 fixed parameters sets ū and v̄, with (ū, v̄) ∈
U ′, corresponding to curves Cū and Cv̄ , the algebraic multiplicity of the cover (∗)

at (00, ū, v̄) is exactly the intersection multiplicity I (Cū, Cv̄ , 00) of the curves at
(00). The cover (*) is equidimensional as U × V satisfies the presmoothness axiom
with the smooth projective variety P2(L). Restricting to a finite cover over U ′, by
definition 2.1 we can also define the Zariski multiplicity of the cover at the point
(00, ū, v̄). The main result that we shall prove in this paper is the following, which
generalises an observation given in [12].

Theorem 4.1 In all characteristics, the algebraic multiplicity and Zariski multiplic-
ity of the cover (∗) coincide at (00, ū, v̄).

Definition 4.2 We say that a monic polynomial p(x, ȳ) is Weierstrass in x if
p(x, ȳ) = xn + · · · + q j (ȳ)xn− j + · · · + qn(ȳ) with q j (0̄) = 0.

Definition 4.3 Let F(x, ȳ) be a polynomial in x with coefficients in L[ȳ]. We say
the cover

Spec(L[x ȳ]/ < F(x, ȳ) >) → Spec(L[ȳ])

is generically reduced if for generic ū ∈ Spec(L[ȳ]), F(x, ū) has no repeated
roots.
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Definition 4.4 Let F → U × V be a finite cover with U and V smooth, such that
for (ū, v̄) ∈ U × V the fibre F(ū, v̄) consists of the intersection of algebraic curves
Fū, Fv̄ . We call the family sufficiently deformable at (ū0, v̄0) if there exists ū′ ∈ U
generic over L such that Fū′ intersects Fv̄0 transversely at simple points.

We now require a series of lemmas.

Lemma 4.5 Let F(x, ȳ) be a Weierstrass polynomial in x with F(0, 0̄) = 0 then
algebraic multiplicity and Zariski multiplicity coincide at (0, 0̄) if the cover

Spec(L[x ȳ]/ < F(x, ȳ) >) → Spec(L[ȳ])

is generically reduced.

Proof Wehave that F(x, ȳ) = xn + q1(ȳ)xn−1 + . . . + qn(ȳ)where qi (0̄) = 0. The
algebraic multiplicity is given by length(L[x]/F(x, 0̄)) = ord(F(x, 0̄) = n in the
ring L[x] with the canonical valuation. We first claim that the Zariski multiplicity is
the number of solutions to xn + q1(ε̄)xn−1 + . . . + qn(ε̄) = 0 (†), where ε̄ is generic
in V0̄. For suppose that (a, ε̄) is such a solution, then F(a, ε̄) = 0 and by special-
isation F(π(a), 0̄) = 0. As F is a Weierstrass polynomial in x , π(a) = 0, hence
a ∈ V0, giving the claim. We have that Disc(F(x, ȳ)) = Resȳ(F, ∂ F

∂x ) is a regular
polynomial in ȳ defined over L . By the fact that the cover is generically reduced,
this defines a proper closed subset of Spec(L[ȳ]). Therefore, Disc(F(x, ȳ))|ε̄ �= 0,
hence (†) has no repeated roots. This gives the lemma. �

Lemma 4.6 Let F(x, ȳ) be any polynomial with F(x, 0̄) �= 0 and F(0, 0̄) = 0. Then
if the cover Spec(L[x, ȳ]/ < F(x, ȳ) >) → Spec(L[ȳ]) is generically reduced, the
Zariski multiplicity at (0, 0̄) equals ord(F(x, 0̄)) in L[x].
Proof By theWeierstrass Preparation Theorem, Lemma 3.1, we canwrite F(x, ȳ) =
U (x, ȳ)G(x, ȳ) with U (x, ȳ), G(x, ȳ) ∈ L[[x, ȳ]], G(x, ȳ) a Weierstrass polyno-
mial in x and deg(G) = ord(F(x, 0̄)), see also the more closely related state-
ment given in [2]. By Lemma 3.2, we may take the new coefficients to lie inside
the Henselized ring L[x, ȳ]∧

0̄
, hence inside some finite etale extension L[x, ȳ]ext

of L[x, ȳ] (possibly after localising L[x, ȳ] corresponding to an open subset of
Spec(L[x, ȳ]) containing (0, 0̄)). Now we have the sequence of morphisms;

Sp(L[x, ȳ]ext/U G) → Spec(L[x, ȳ]/F) → Spec(L[ȳ])

The left hand morphism is etale at 0̄, hence by Lemma 2.3 or Lemma 2.7, to
compute the Zariski multiplicity of the right hand morphism, we need to compute
the Zariski multiplicity of the cover

Spec(L[x, ȳ]ext/U G) → Spec(L[ȳ])

at (0, 0̄)li f t , themarked point in the cover above (0, 0̄). Choose ε̄ ∈ V0̄, the fibre of the
cover is given formally analytically by L[[x, ȳ]]/ < U G > ⊗L[ȳ],ȳ �→ε̄ L , hence by
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solutions to U (x, ε̄)G(x, ε). By definition of Zariski multiplicity, we consider only
solutions (x ε̄) inV(0,0̄)li f t . AsU (x, ȳ) is a unit in the local ring L[x, ȳ]ext

(0,0̄)li f t , wemust

have U (x, ε̄) �= 0 for such solutions, otherwise by specialisation U ((0, 0̄)li f t ) = 0.
Hence, the solutions are given by G(x, ε̄) = 0. Now, we use the previous lemma to
give that the Zariski multiplicity is exactly deg(G) as required. �

Now return to the cover

Sp(L[x, y, ui j , vi j ]/ < s(ui j , x, y), t (vi j , x, y) >) → Sp(L[ui j , vi j ]) (*)

We will show below, Lemma 4.12, that this is a sufficiently deformable family at
(ū0, v̄0) when Cū0 and Cv̄0 define reduced curves. We claim the following.

Lemma 4.7 Suppose parameters ū0 and v̄0 are chosen such that Cū0 and Cv̄0 are
reduced Weierstrass polynomials in x. Then the Zariski multiplicity of the cover (∗)

at (0, 0, ū0, v̄0) equals the intersection multiplicity I (Cū0 , Cv̄0 , (0, 0)) of Cū0 and
Cv̄0 at (0, 0).

Proof Introduce new parameters ū′ and v̄′. Let Cū′
ū0 and C v̄′

v̄0
denote the curves Cū0

and Cv̄0 deformed by the parameters ū′ and v̄′ respectively. That is Cū′
ū0 is given by

the new equation�1≤i+ j≤d(u0
i j + u′

i j )xi y j . Let F(y, ū′, v̄′) = Res(Cū′
ū0 , C v̄′

v̄0
). Then,

F(0, 0̄, 0̄) = Res(s(u0
i j , x, 0), t (v0

i j , x, 0)) = 0

asCū0 andCv̄0 areWeierstrass in x and share a common solution at (0, 0). By a result
due to Abhyankar, see for example [1], ordy(F(y, 0̄, 0̄))=�x I (Cū0 , Cv̄0 , (x0)) at
common solutions (x, 0) to Cū0 and Cv̄0 over y = 0. As Cū0 and Cv̄0 are Weier-
strass polynomials in x , this is just I (Cū0 , Cv̄0 , (0, 0)). By the previous lemma and
the fact that F(y, ū, v̄) is generically reduced (see argument (†) below), it is there-
fore sufficient to prove that the Zariski multiplicity of the cover (∗) at (00, ū0, v̄0)

equals the Zariski multiplicity of the cover Spec(L[y, ū′, v̄′]/ < F(y, ū′, v̄′) >) →
Spec(L[ū′, v̄′]) (**) at (0, 0̄, 0̄). Suppose theZariskimultiplity of (∗∗) equalsn. Then
there exist distinct y1, . . . , yn ∈ V0 and (δ̄, ε̄) generic in V(0̄,0̄) ∩ U × V such that
F(yi , δ̄, ε̄) holds. Consider Q(ū′, v̄′) = Res(F(y, ū′, v̄′), ∂ F/∂y(y, ū′, v̄′)). This
defines a closed subset of U × V defined over L , we claim that this in fact proper
closed (†). By the fact that the family is sufficently deformable at (ū0, v̄0), we
can find (ū, v̄0) such that Cū intersects Cv̄0 transversely at simple points. With-
out loss of generality, making a linear change of coordinates, we may suppose
that for there do not exists points of intersection of the form (x1y) and (x2y)

for x1 �= x2. By Abhyankar’s result, this implies that F(y, ū′, v̄0) has no repeated
roots. Then, by genericity of (δ̄, ε̄), we have that Q(δ̄, ε̄) �= 0. Hence F(yi , δ̄, ε̄) is
a non-repeated root. By Abhyankar’s result, we can find a unique xi with (xi yi )

a common solution to the deformed curves C δ̄
ū0 and C ε̄

v̄0
. We claim that each

(xi yi ) ∈ V00. As C δ̄
ū0(xi yi ) = 0, by the fact (ū0, δ̄, yi ) specialises to (ū0, 0̄, 0) and

Cū0 is a Weierstrass polynomial in x , we have that π(xi ) = 0 as well. This shows
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that the Zariski multiplicity of the cover (∗), referred to at the beginning of Sect. 4,
in this case, is at least n. Suppose the Zariski multiplicity of the cover (∗) is strictly
bigger than n, then we can find generic parameters {u′, v′} ⊂ V0,0 and distinct
{(x1y1), . . . , (xn+1yn+1)} ⊂ V(0,0) ∩ Cu

u0 ∩ Cv

v0
. If, for some yi , there exist at least

2 distinct x ji , with (x ji , yi ) ∈ {(x1y1), . . . , (xn+1yn+1)}, then ordyi F(y, u′, v′) ≥ 2,
contradicting the fact that F is generically reduced. Otherwise, there exist at least
n + 1 distinct yi , corresponding to solutions F(yi , u′, v′) = 0, with yi ∈ V0, (††).
Using the fact that ordy F(y, 0, 0) = n, and using Lemma 4.6, the Zariski multiplic-
ity of the cover Spec(L[ū, v̄, y]/ < F(y, ū, v̄) >) → Spec(L[ūv̄]) at (0, 0̄0̄) is n,
contradicting (††). �

We now have the following result;

Lemma 4.8 Let Cū0 and Cv̄0 be reduced curves, having finite intersection, then the
Zariski multiplicity, see Definition 1.4, of the cover (∗) at ((0, 0), ū0, v̄0) equals the
intersection multiplicity I (Cū0 , Cv̄0 , (0, 0)) of Cū0 and Cv̄0 at (0, 0).

Proof We have Cū0 = s(u0
i j , x, y) and Cv̄0 = t (v0

i j , x, y). By making the substitu-

tions Ū = ū0 + ū and V̄ = v̄0 + v̄, we may assume that ū0 = v̄0 = 0̄. Moreover, we
can suppose that;

s(0̄i j , x, 0) �= 0 and
t (0̄i j , x, 0) �= 0.(∗∗)

This can be achieved by making the invertible linear change of variables (x ′ =
x, y′ = λx + μy)with (λ, μ) ∈ L2 andμ �= 0, noting that asCū0 andCv̄0 are curves,
for some choice of (λ, μ), the corresponding polynomials s(u0

i j , x, y) and t (v0
i j , x, y)

do not vanish identically on the line λx + μy = 0. It is trivial to check that the
transformation preserves both Zariski multiplicity and intersection multiplicity, so
our calculations are not effected.

We may then apply the Weierstrass preparation theorem, Lemma 3.1, in the ring
L[[ui j , vi j , x, y]], obtaining factorisations s(ui j , x, y) = U1(ui j , x, y)S(ui j , x, y)

and t (vi j , x, y) = U2(vi j , x, y)T (vi j , x, y) where U1 and U2 are units in the local
rings L[[ui j , x, y]] and L[[vi j , x, y]], S, T are Weierstrass polynomials in x with
coefficients in L[[ui j , y]] and L[[vi j , y]] respectively. A close inspection of the
Weierstrass preparation theorem, see [2], shows that we can obtain the following
uniformity in the parameters ū and v̄.

Namely, if U = {ui j : s(ui j , x, 0) �= 0} and V = {vi j : t (vi j , x, 0) �= 0}, are the
constructible sets for which (∗) holds, then if we let RU and RV denote the coordinate
rings of U and V , we may assume U1, U2 lie in RU [[x, y]] and the coefficients of
S, T lie in RU [[y]] and RV [[y]] respectively. By Lemma 3.2, we may assume that
U1, U2, S and T lie in a finite etale extension RU×V [x, y]ext of the algebra A =
RU×V [x, y] (again, possibly after localisation corresponding to an open subvariety
of Spec(A). Now we have the sequence of morphisms.

Spec( RU×V [x,y]ext

<U1S,U2T >
) → Spec( RU×V [x,y]

<s,t> ) → Spec(RU×V ).
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We claim that the left hand morphism is etale at the point (0̄, 0̄, (00)li f t ). This
follows from the fact that RU×V [x, y]ext is an etale extension of RU×V [x, y] and the
maximal ideal given by (0̄, 0̄, (00)li f t ) contains < U1S, U2T >. Now consider the
cover;

Spec( RU×V [x,y]ext

<U1S,U2T >
) → Spec(RU×V ) (***)

For ū, v̄ in U × V , the fibre of this cover over ū, v̄ corresponds exactly to the
intersection of the reducible curves C ′

ū and C ′
v̄ which lift the original curves Cū

and Cv̄ to an etale cover of Spec(L[xy]). By Theorem 1.10 and Lemma 2.3, in the
case when Cū0 , Cv̄0 intersect at simple points, or Lemma 2.7, for singular points of
intersection, and the corresponding Lemma 2.10 for reducible covers, it is sufficient
to show that the Zariski multiplicity of the cover (***) at (0̄, 0̄, (00)li f t ) corresponds
to the intersection multiplicity of the curves C ′

ū0
, C ′

v̄0
at (00)li f t . The idea now is to

apply Lemma 4.7 to the Weierstrass factors of C ′
ū and C ′

v̄ . This will be achieved by
the “unit removal” lemma below, Lemma 4.15. �

In order to prove the "unit removal lemma", we first require somemore definitions
and a moving lemma for curves;

Definition 4.9 Let X → Spec(L[x, y]) be an etale cover in a neighboorhood of
(0, 0), with distiguished point (0, 0)li f t . We call a curve C on X passing through
(0, 0)li f t Weierstrass if, in the power series ring L[[x, y]], the defining equation of
C may be written as a Weierstrass polynomial in x with coefficients in L[[y]].
Definition 4.10 Let F → U × V be a finite equidimensional cover of a smooth base
of parameters U × V with a section s : U × V → F . We call the cover Weierstrass
with units if the fibres F(ū, v̄) can be written as the intersection of reducible curves
C ′

ū and C ′
v̄ in an etale cover Aū,v̄ of Uū,v̄ ⊂ Spec(L[x, y]) with the distinguished

point s(ū, v̄) lying above (0, 0) and C ′
ū, C ′

v̄ factoring as Uū Fū and Uv̄ Fv̄ with Uū, Uv̄

units in the local ring Os(ū,v̄),Aū,v̄
and Fū, Fv̄ Weierstrass curves in Aū,v̄ .

Let hypotheses on F, U and V be as above. We call the cover Weierstrass if the
fibres F(ū, v̄) can be written as above but with C ′

ū, C ′
v̄ Weierstrass curves in Aū,v̄ .

We say that aWeierstrass cover (with units) factors through the family of projective
degree d and degree e curves if the cover F → U × V factors as F → F ′ → U × V
where F ′ → U × V is the finite equidimensional cover obtained by intersecting the
families Qd and Qe restricted to U and V .

Lemma 4.11 The cover (***) in Lemma 4.8 is a Weierstrass cover with units fac-
toring through the family of projective degree d and degree e curves.

Proof Clear by the above definitions. �

Lemma 4.12 Moving Lemma for Reduced Curves
Let Qd and Qe be the families of all projective degree d and degree e curves. That is,
with the usual coordinate convention x = X/Z , y = Y/Z, Qd consists of all curves
of the form s(ū, x, y) = ∑

0≤i+ j≤d ui j x i y j . Then, if ū, v̄ are chosen in L, so that the
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reduced curves Cū and Cv̄ are defined over L, if the tuple ū′ is chosen to be generic
in U over L, the deformed curve Cū′

ū intersects Cv̄ transversely at simple points.

Proof We can give an explicit calculation;

Let Cū′
ū be defined by the equation s(ū′, x, y) = ∑

0≤i+ j≤d u′
i j x

i y j and Cv̄ by
t (v̄, x, y) = ∑

0≤i+ j≤e vi j x i y j with {vi j : 0 ≤ i + j ≤ e} ⊂ L and {u′
i j : 0 ≤ i +

j ≤ d} algebraically independent over L . Let (x0y0) be a point of intersection, then
dim(x0y0/L) = 1, otherwise dim(x0y0/L) = 0 and, as L is algebraically closed,
we must have that x0, y0 ∈ L . Substituting (x0y0) into the equation s(ū′, x, y) = 0,
we get a non trivial linear dependence over L between u′

00 and u′
i j for 1 ≤ i + j ≤ d

which is impossible. Now, the locus of singular points for Cv̄ is defined over L and
hence (x0y0) is a simple point of Cv̄ . Now we further claim that s(ū′, x, y) = 0
defines a non-singular curve in P2(Kω) with transverse intersection to Cv̄ Con-
sider the conditions Sing(ū) given by ∃x0∃y0((

∂s
∂x (x0y0),

∂s
∂y (x0y0)) = (0, 0)) and

Non-Transverse(ū) by ∃x0∃y0(
∂s
∂x (x0y0)

∂t
∂y (x0y0) − ∂s

∂y (x0y0)
∂t
∂x (x0y0) = 0) By the

properness of P2(Kω), these conditions define closed subsets of the parameter space
U defined over L . We claim that this in fact a proper closed subset. This can be
proved in a number of ways. In the case where we restrict ourselves to affine curves,
the result follows from a classical result of Kleiman, see [10], as affine space A2(Kω)

is homogenous for the action of the additive group (A2(Kω),+). More generally, we
can use the moving lemma, given in [9], by observing that the class of all degree d
projective curves is closed under rational equivalence. We can also give an explicit
proof using Bertini’s theorem;

Observe that the curve Cū defines a complete linear system |Cū | corresponding
exactly to the zero loci of sections σ of the bundleOP2(d). We claim the following;

(i). The system |Cū | is base point free.

(ii). The system |Cū | separates points.

Nowwe can define amorphism�d : P2(K ) → Pd(d+3)/2(K ), by sending x ∈ P2

to the hyperplane Hx ⊂ U of curves of degree d, passing through x . By (i) and (i i),
the restriction of �d to Cv̄ is injective. By arguments on Frobenius for curves, given
in [7], we can assume that �d is an immersion. Using Bertini’s Theorem, a generic
hyperplaneHū′ of Pd(d+3)/2(K ) will intersect I m(Cv̄) transversely in simple points.
By definition of the morphism �d , and the fact that it is an immersion, the corre-
sponding curve Cū′

ū also intersects Cv̄ transversely in simple points.

One can also give an enumerative calculation, which was done in an older version
of this paper, see [5], but it seems unnecessary. �
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Remark 4.13 If we restrict the family of curves, the result in general fails. A simple
example is given by the family of all projective degree 3 curves Q0,0

3 passing through
(0, 0) with x = X/Z and y = Y/Z . If we take Cv̄ to be the cusp x2 − y3, then any
curve in Q0,0

3 will have a non-transverse intersection with Cv̄ at the origin.

Lemma 4.14 Moving Lemma for Curves with Finitely Many Marked Points
Let hypotheses be as in the previous lemma with Cū and Cv̄ defining reduced curves.
Suppose also that there exists finitely many marked points {p1, . . . , pn} on Cv̄ defined
over L. Then for ū′ ∈ U generic over L the deformed curve Cū′

ū intersects Cv̄ trans-
versely at finitely many simple points excluding the set {p1, . . . , pn}.
Proof As before, the condition that ū′ defines a curve Cū′

ū either with non-transverse
intersection to Cv̄ or passing through at least one of the points {p1, . . . , pn} is a
closed subset of U defined over L . Using the above proof and the obvious fact that
we can find a curve Cū′

ū not passing through any of the points {p1, . . . , pn}, we see
that it is proper closed. �

Lemma 4.15 Unit Removal for Reduced Curves
Let (π, s) : F → U × V be a Weierstrass cover with units factoring through projec-
tive degree d and degree e curves. Let (ū, v̄) ∈ U × V , then there exists a Weierstrass
cover (π ′, s ′) : F− → U ′ × V ′ with U ′ ⊂ U and V ′ ⊂ V open subsets, (ū, v̄) ∈
U ′ × V ′, such that Mult(ū,v̄,s(ū,v̄))(F/U × V ) = Multū,v̄,s ′(ū,v̄))(F−/U ′ × V ′).

Proof Let C ′
ū and C ′

v̄ be the Weierstrass curves with units in Aū,v̄ lifting the curves
Cū and Cv̄ . Now suppose that Multū,v̄,s(ū,v̄)(F/U × V ) = n. Then we can find
(ū′, v̄′) ∈ Vūv̄ ∩ U × V generic over L such that the deformed curve Cū′

ū intersects
C v̄′

v̄ at the n distinct points x1, . . . , xn in Vs(ū,v̄). Now using the Weierstrass fac-
torisations of Cū′

ū and C v̄′
v̄ , we claim that U ū′

ū (xi ) �= 0 and U v̄′
v̄ (xi ) �= 0. Suppose

not, then U ū′
ū (xi ) = U v̄′

v̄ (xi ) = 0 and as (ū′, v̄′, xi ) specialises to (ū, v̄, s(ū, v̄)), then
Uū(s(ū, v̄)) = Uv̄(s(ū, v̄)) = 0. This contradicts the fact that Uū and Uv̄ are units
in the local ring Os(ū,v̄),Aū,v̄

. Therefore, we must have that Fū′
ū (xi ) = F v̄′

v̄ (xi ) = 0.
This shows that Multū,v̄,s(ū,v̄)(F−/U × V ) ≥ n where F− → U × V is the cover
of U × V obtained by taking as fibres F−(ū, v̄) the intersection of the Weierstrass
factors Fū and Fv̄ . Formally, if F is defined by Spec( RU×V [x,y]ext

<U1S,U2T >
) then F− is defined

by Spec( RU×V [x,y]ext

<S,T >
). Clearly as F− ⊂ F is a union of components of F , we have

that Multū,v̄,s(ū,v̄)(F−/U × V ) ≤ n as well. This proves the lemma. �

We now complete the proof of Lemma 4.8. By unit removal, it is sufficient to
compute the Zariski multiplicity of the cover

Spec(
RU×V [x, y]ext

< S, T >
) → Spec(RU×V )

The fibre over (ū, v̄) of this cover corresponds exactly to the intersection of the
Weierstrass curves Fū and Fv̄ lifting Cū and Cv̄ . We then use Lemma 2.7, noting
that the Weierstrass factors are still reduced, see [2], to finish the result, with the
straightforward modification that we work in a uniform family of etale covers.
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We now turn to the problem of non-reduced curves. We will show the following
stronger version of Lemma 4.8.

Lemma 4.16 Let Cū0 and Cv̄0 be non-reduced curves having finite intersection,
then the Zariski multiplicity of the cover (*) at ((0, 0), ū0, v̄0) equals the intersection
multiplicity I (Cū0 , Cv̄0 , (0, 0)) of Cū0 and Cv̄0 at (0, 0).

First, we will require some more lemmas.

Lemma 4.17 Let Cū0 and Cv̄0 be reduced curves intersecting transversely at (0, 0).
Then the Zariski multiplicity, left multiplicity and right multiplicity of the cover (*)
at ((0, 0), ū0, v̄0) equals 1.

Proof First note that by Lemma 2.6, and the corresponding Lemma 2.10, and the fact
that a generic deformation C v̄′

v̄0
will still intersect Cū0 transversely by Lemma 4.12,

it is sufficient to prove the result for right multiplicity.
In order to show this we require the following result, given for analytic curves in

[2], we will only need the result for polynomials.
Implicit Function Theorem:
If G(X, Y ) is a power series with G(0, 0) = 0 then GY (0, 0) �= 0 implies there

exists a power series η(X) with η(0) = 0 such that G(X, η(X)) = 0.
In order to show that Right Mult(0,0),ū0,v̄0(F ′/U × V ) = 1,where F ′ is the family

obtained by intersecting degree d and degree e curves, we apply the implicit function
theorem to the curve Cū0 at the point (0, 0) of intersection with Cv̄0 . Let G(X, Y )

and H(X, Y ) denote the polynomials defining the curves. We have that G(0, 0) =
H(0, 0) = 0. Moreover, as the first curve is non-singular at (0, 0), we may also
assume that GY (0, 0) �= 0. Now let η(X) be given by the theorem. As the intersection
of the curves Cū0 and Cv̄0 is transverse, ordX H(X, η(X)) = 1.Now we have the
sequence of maps;

L[v̄] → L[X, Y ][v̄]
< G(u0, X, Y ), H(v̄, X, Y ) >

→ L[X ]ext [Y ][v̄]
< Y − η(X), H(v̄, X, Y ) >

.

where L[X ]ext is an etale extension of L[X ] containing η(X). Note that η(X) is
trivially algebraic over L(X). This corresponds to a sequence of finite covers F1 →
F ′(u0, V ) → Spec(L[v̄]). The left hand morphism is trivially etale at (v̄0, (00)li f t ),
hence it is sufficient to compute the Zariski multiplicity of F ′ → Spec(L[v̄]) at
(v̄0, (00)li f t ) by Lemma 2.3, or the corresponding Lemma 2.10. This is a straightfor-
ward calculation, the fibre over v̄0 consists of the scheme Spec( L[X,η(X)]

G(X,η(X))
) = Spec(L)

as ordX (H(X, η(X))) = 1, hence is etale at the point (v̄0, (00)li f t ). By Theorem 1.6,
the Zariski multiplicity is 1. �

Lemma 4.18 Let hypotheses be as in Lemma 4.17, then for any (ū′, v̄′) ∈ V(ū0,v̄0),
we have that Card(F ′(ū′, v̄′) ∩ V0,0) = 1

Proof This follows immediately from Lemmas 4.17 and 2.4. �
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Definition 4.19 For ease of notation, given curvesCū andCv̄ of degree d and degree
e intersecting at x ∈ P2(Kω), we define Multx(Cū, Cv̄) to be the corresponding
Zariski multiplicity of the cover F ′ → U × V at the point (x, ū, v̄). Similarly for
left/right multiplicity.

We can now give the proof of Lemma 4.16.

Proof Case 1. Cv̄0 is a reduced curve (possibly having components). Write Cū0

as Gn1
1 (X, Y ) . . . Gnm

m (X, Y ) = 0 with Gi the reduced irreducible components of
Cū0 with degree di passing through (0, 0). Choose ε̄11 , . . . ε̄

n1
1 , . . . ε̄

j
i , . . . ε̄1m, . . . , ε̄nm

m
independent generic in Ui , the parameter space for degree di projective curves with
ε̄

j
i ∈ Vū0

i
, where ū0

i defines Gi . By repeated application of Lemma 4.14, the deformed

curves G
ε̄

j
i

i = 0 intersect Cv̄0 transversely at disjoint sets of points We denote by Z
ε̄

j
i

those points lying in V00. Now the curve defined by
∏

i j G
ε̄

j
i

i = 0 is a deformation
C ε̄

ū0 of Cū0 . We let Z ε̄ denote the points of intersection of C ε̄
ū0 with Cv̄0 in V00. Then

we have;

Z ε̄ =
⋃

i j

Z
ε̄

j
i

Card(Z ε̄ ) =
∑

i j

Card(Z
ε̄

j
i
)

By Lemma 2.4, we have that

Le f t Mult(00)(Cū0 , Cv̄0) =
∑

x∈Z ε̄

Le f t Multx(C
ε̄
ū0 , Cv̄0)

=
∑

i, j

∑

x∈Z
ε̄

j
i

Le f t Multx(C
ε̄
ū0 , Cv̄0)(∗)

We now claim that for a point x ∈ Z
ε̄

j
i
,

Le f t Multx(C
ε̄
ū0 , Cv̄0) = Le f t Multx(G

ε̄
j
i

i , Cv̄0)(∗∗)

This follows as both the reduced curves C ε̄
ū0
and G

ε̄
j
i

i intersect Cv̄0 transversely at
x . Hence, in both cases the left multiplicity is 1, by Lemma 4.17.

Combining (∗) and (∗∗), we obtain;

Le f t Mult(00)(Cū0 , Cv̄0) =
∑

i, j

∑

x∈Z
ε̄

j
i

Le f t Multx(G
ε̄

j
i

i , Cv̄0)
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Now using Lemma 2.4 again gives that;

Le f t Mult(00)(Cū0 , Cv̄0) =
m

∑

i=1

ni Le f t Mult(00)(Gi , Cv̄0)(∗ ∗ ∗)

If we go through exactly the same calculation with Mult replacing Left Mult, we
see as well that

Mult(00)(Cū0 , Cv̄0) =
m

∑

i=1

ni Mult(00)(Gi , Cv̄0)

By Lemma 4.8, this gives

Mult(00)(Cū0 , Cv̄0) =
m

∑

i=1

ni I (Gi , Cv̄0 , (00))

By a straightforward algebraic calculation, see the references below at the end of
the proof for the required more general result, this gives

Mult(00)(Cū0 , Cv̄0) = I (Cū0 , Cv̄0 , (00))

as required.
Case 2. Both Cū0 and Cv̄0 define non-reduced curves. Write Cū0 as above and

Cv̄0 as H e1
1 . . . H en

n with Hi the reduced compoments with degree ci of Cv̄0 passing
through (00). Then H1 . . . Hn = 0 defines a reduced curve passing through (00).
Now repeat the argument in Case 1 for the curves Cū0 and H1 . . . Hn = 0. Again let
Z ε̄ be the intersection points of the deformed curve Cε

ū0
with H1 . . . Hn = 0 in V(00).

By (***) of Case 1, Lemmas 2.4 and 4.18 with the fact that the intersection of C ε̄
ū0

with H1 . . . Hn is transverse, we have;

Card(Z ε̄ ) =
m

∑

i=1

ni Mult(00)(Gi , H1 . . . Hn)

Nowusing the argument in Case 1 applied to the reduced curves Gi and H1 . . . Hn ,
we have;

Card(Z ε̄ ) =
m

∑

i=1

ni

n
∑

j=1

I (Gi , Hj , (00))(∗)

We claim that for any component Hj

Card(Hj ∩ Z ε̄ ) =
m

∑

i=1

ni I (Gi , Hj , (00))
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This follows as the deformed curve C ε̄
ū0

a fortiori intersects Hj transversely at
simple points. Therefore, again by Case 1, gives the expected multiplicity. Now,
using this together with (*), we write Z ε̄ as ∪ j Z j

ε̄ where Z j
ε̄ are the disjoint sets

consisting of the intersection of C ε̄
ū0
with Hj . Then by Lemma 2.6, we have that

Mult(00)(Cū0 , Cv̄0) =
∑

j

∑

x∈Z j
ε̄

Right Multx(C
ε̄
ū0 , Cv̄0)

We can now calculate the Right Mult term by applying Case 1 to the intersection
of Cv̄0 with the reduced curve C ε̄

ū0
at the points of intersection x ∈ Z j

ε̄ . At a point

x ∈ Z j
ε̄ , we have that

Right Multx(C
ε̄
ū0 , Cv̄0) = e j I (C ε̄

ū0 , Hj , x) = e j

as the intersection is transverse. Finally this gives;

Mult(00)(Cū0 , Cv̄0) =
m

∑

i=1

n
∑

j=1

ni e j I (Gi , Hj , (00))

By an algebraic result, see [11] for the case of complex algebraic curves, or [8]
for its generalisation to algebraic curves in arbitrary characteristics, we have

Mult(00)(Cū0 , Cv̄0) = I (Cū0 , Cv̄0 , (00))

as required. �

The following version of Bezout’s theorem in all characteristics is now an easy
generalisation from the above lemma. For curves C1 and C2 in P2(L), we let
M(C1, C2, x)denote the intersectionmultiplicity or theZariskimultiplicity,we know
from the above that the two are equivalent.

Theorem 4.20 (Non-Standard Bezout)
Let C1 and C2 be projective curves of degree d and degree e in P2(L), possibly with
non-reduced components, intersecting at finitely many points {x1, . . . , xi , . . . xn},
then we have;

n
∑

i=1

M(C1, C2, xi ) = de

.

Of course, we could just quote the algebraic result given in [10] (though this in
fact only holds for reduced curves). Instead we can give a non-standard proof, which
in many ways is conceptually simpler and doesn’t involve any algebra.
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Proof Let Qd and Qe be the families of all projective degree d and degree e curves.
Then we have the cover F → U × V with F ⊂ U × V × P2(L) obtained by inter-
secting the families Qd and Qe. We have that

n
∑

i=1

M(C1, C2, xi ) =
n

∑

i=1

Multxi ∈F(ū0,v̄0)(F/U × V )

where (ū0, v̄0) define C1 and C2. By Lemma 4.3 in [7], this equals

∑

x∈F(ū,v̄)

Multx,ū,v̄(F/U × V )

where (ū, v̄) is generic in U × V . Using, for example, the proof of Lemma 4.12,
generically independent curves Cū and Cv̄ intersect transversely at a finite number
of simple points. Hence, by Lemma 4.17, the Zariski multiplicity calculated at these
points is 1. As the cover F has degree de, there is a total number de of these points
as required. �
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Embeddings of the Symmetric Groups
to the Space Cremona Group

Yuri Prokhorov

Abstract We study embeddings of symmetric groups to the space Cremona group.

Keywords Cremona group · Fano variety · Terminal singularity

1 Introduction

The classification of finite subgroups in the Cremona groups Crn(C) is an old-
standing problem that goes back to works of classics of Italian algebraic geometry.
In the last two decades the interest to this problem was reactivated; see for exam-
ple [6, 15], and references therein. In particular, now there is a basically complete
classification of finite subgroups in the plane Cremona group Cr2(C) [6].

In this paper we are interested in embeddings of symmetric groups SN to Cre-
mona group Cr3(C) and, more generally, to groups of birational self-maps of three-
dimensional rationally connected varieties. This problem is interesting not only in
its own sake but also in relation with computation of essential dimension of SN

(cf. [7]).

Proposition 1.1 Let X be a rationally connected threefold and let Bir(X) be the
group of its birational self-maps.

(i) For n ≥ 8 the symmetric group Sn does not admit any embedding to Bir(X).
(ii) Any embedding S7 ⊂ Bir(X) up to conjugation is induced by the action of S7

on the smooth variety X ′
6 ⊂ P

5 ⊂ P
6 given by the equations
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7∑

i=1

xi =
7∑

i=1

x2
i =

7∑

i=1

x3
i = 0 (1.1.1)

with natural action of S7 on x1, . . . , x7 by permutations. Moreover, any three-
dimensional S7-Mori fiber space over a rationally connected base is equivari-
antly isomorphic to the variety (1.1.1).

In particular, Sn is non embeddable to Cr3(C) for n ≥ 7 (because the variety (1.1.1)
is not rational [2]).

Note that embeddings to Cr3(C) of some other classes of “large” finite groups
were studied in [1, 10].

Our second main result is related to the symmetric group S6. Unfortunately it is
not complete.

Proposition 1.2 Let Y be a rationally connected threefold. Then for any embedding
S6 ⊂ Bir(Y ) there exists a S6-equivariant birational map Y ��� X such that one
of the following holds:

(i) X is a Fano threefold with at worst terminal Gorenstein S6Q-factorial singu-
larities and ρ(X) = 1;

(ii) X is a Fano threefold with terminal S6Q-factorial singularities and ρ(X) = 1
such that all the non-Gorenstein points of X are cyclic quotients of index 2. The
number n of these points equals 12 or 15 and there are two possibilities:

(A) n = 12, −K 3
X = 2g + 4, g ≥ −1, dim | − K X | = g + 1;

(B) n = 15, −K 3
X = 2g + 11/2, g ≥ −2, dim | − K X | = g + 1.

Moreover, any S6-Mori fiber space is equivariantly isomorphic to one of the above
cases.

Recall that a normal G-variety X is said to be GQ-factorial if some multiple nD
of any G-invariant divisor is Cartier [14].

We do not know any examples of non-Gorenstein Fano threefolds admitting an
S6-action. We expect that the case 1.2(ii) does not occur. In contrast there are a lot of
examples of actions ofS6 on Gorenstein Fano threefolds (case 1.2(i)). In Sect. 6 we
collect known ones. However we do not assert that our collection is complete. The
particular the case of actions ofS6 on del Pezzo threefolds is completely studied in
Sect. 7.
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2 Preliminaries

We work over a complex number field C throughout.

Notation 2.1 • Sn andAn denote the symmetric and the alternating groups, respec-
tively.

• As usual, Pic(X) denotes the Picard group of a variety X and ρ(X) is the rank of
Pic(X).

• Cl(X) denotes the Weil divisor class group of a normal variety X and r(X) :=
rkCl(X).

• If a group G acts on an object A, then AG is the set of G-invariant elements.
• If a group G acts on a variety X , then ρ(X)G := rkPic(X)G and r(X)G :=
rkCl(X)G .

Throughout this paperwe use the terminology and notation of the equivariantmin-
imal model program [14]. In particular, a GQ-Fano variety X is a variety equipped
with an action of a finite group G such that X has only terminal GQ-factorial singu-
larities, rkPic(X) = 1, and the anticanonical divisor −K X is ample. In this situation,
we say that X is a G-Fano variety if X is Gorenstein or, equivalently, K X is a Cartier
divisor.

For any (possibly singular) Fano threefold X we define its genus as follows

g = g(X) := dim | − K X | − 1 = dim H 0(X,−K X ) − 2.

Thus g(X) is an integer ≥ −2. This definition agrees with usual definition of genus
for smooth Fano threefolds [8].

We need some standard information about groupsS6 and A6 and their actions on
finite sets and lower-dimensional algebraic varieties.

Lemma 2.2 (i) Let ρ be a faithful irreducible representation of the group S6.
Then dim(ρ) ∈ {5, 9, 10, 16}.

(ii) Let ψ be a faithful irreducible representation of the group A6. Then dim(ψ) ∈
{5, 8, 9, 10}.

Recall that [Aut(S6) : Inn(S6)] = 2, where Inn(S6) is the subgroup of inner
automorphisms. Let υ be an outer automorphism.

Proposition 2.3 (see e.g. [19, Sect. 2.6, Theorem 2.4], [4])

(i) Up to conjugacy, a maximal subgroup of S6 is one of the following:

A6, S5, υ(S5), N(S3 × S3) � (S3 × S3) � µ2, S4 × S2, υ(S4 × S2).

(ii) Up to conjugacy, a maximal subgroup of A7 is one of the following:

A6, S5, H1, H2, N(A4 × A3)

where H1 � H2 � PSL2(F7) and |N(A4 × A3)| = 72.
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Corollary 2.4 Let G := S6 act transitively on a set � with |�| ≤ 16. Let G P be
the stabilizer of P ∈ �. There are only the following cases:

No. 1◦ 2◦ 3◦ 4◦ 5◦ 6◦
|�| 1 2 6 12 10 15
G P S6 A6 S5 A5 (S3 × S3) � µ2 S4 × S2

Lemma 2.5 The groups S6 and A7 do not admit embeddings into Cr2(C) nor into
Bir(S), where S is an elliptic ruled surface.

Proof See e.g. [6]. �

Lemma 2.6 ([6])

(i) The group A6 does not admit embeddings into Bir(S), where S is an elliptic
ruled surface.

(ii) Up to conjugacy and automorphisms of A6 there exists exactly one embedding
A6 ⊂ PGL3(C).

The image of A6 ↪→ PGL3(C) whose image is called the Valentiner group (see [6]
and references therein).

Lemma 2.7 ([12, Lemma B.2]) Let X be a threefold with at worst terminal singu-
larities such that Aut(X) has a subgroup G isomorphic to A6. Then X contains no
G-invariant points.

3 Main Reduction

The following assertion is well known (see e.g. [14, Sect. 14])

Proposition 3.1 Let Y be a rationally connected variety and let G ⊂ Bir(Y ) be a
finite subgroup. Then there there exists a G-equivariant birational map Y ��� X,
where X is a projective variety having a G-Mori fiber space structure f : X → Z.

Proposition 3.2 (cf. [10, Sect. 4.2]) Let G = SN with N ≥ 6 and let f : X → Z
be a G-Mori fiber space, where X is rationally connected threefold. Then Z is a
point, i.e. X is a GQ-Fano threefold.

Proof Assume that dim(Z) ≥ 1. Then f is either GQ-del Pezzo fibration and Z �
P
1 or a GQ-conic bundle and Z a rational surface (see [14, Sect. 10]). The map f

induces a homomorphism
� : G −→ Aut(Z).

Assume that dim(Z) = 2. Then the generic fiber Xη of f is a smooth rational curve.
The kernel of� acts on Xη faithfully. Hence ker(�) 
⊃ A6 and so� is injective. This
contradicts Lemma 2.5.



Embeddings of the Symmetric Groups … 753

Thus we may assume that f is a GQ-del Pezzo fibration. Again by Lemma 2.5
the image of � is either trivial or a cyclic group of order two. In both cases �(G)

has a fixed point o ∈ Z . Let F be the scheme fiber over o. Then the proof of [12,
Lemma B.5] works without any changes. Thus F � P

2. SinceSN , for N ≥ 6, does
not act faithfully on P

2, the alternating subgroup AN acts on F trivially. This again
contradicts Lemma 2.7. �

Corollary 3.3 Let Y be a rationally connected algebraic threefold. Suppose that
Bir(Y ) contains a subgroup G � SN with N ≥ 6. Then there exists a G-equivariant
birational map Y ��� X, where X is a GQ-Fano threefold.

4 Non-gorenstein Fano Threefolds

The goal of this section is to prove the following result.

Proposition 4.1 (cf. [10, Lemma 6.1]) Let X be a non-Gorenstein Fano threefold
with terminal singularities such that Aut(X) ⊃ G � S6. Let � be the set of all non-
Gorenstein points. Then any point P ∈ � is a cyclic quotient singularity of type
1
2 (1, 1, 1), the action of G on � is transitive, and one of the following holds:

(i) |�| = 12, G P � A5,
(ii) |�| = 15, G P � S4 × S2.

Proof Fix a non-Gorenstein point P ∈ X and let P1 = P, . . . , Pk be its orbit. Let
r ≥ 2 be the Gorenstein index of (X � P), let

π : (X �, P�) −→ (X, P)

be the index one cover (see [17, Sect. 3.5]), where P� = π−1(P). Then π is the topo-
logical universal cover (of degree r ). Thus, there is an exact sequence of groups

1 −→ M
α−→ G�

P
β−→ G P −→ 1, (4.1.1)

where M � µr and G�

P is a finite subgroup in Aut(X �, P�). The group G�

P faith-
fully acts on the Zariski tangent space T := TP�,X � to X � at the point P�. Recall that
(X �, P�) is a hypersurface singularity [17]. Hence, we have dim(T ) ≤ 4. By the clas-
sification of three-dimensional terminal singularities (see [17, Sect. 6.1]) the action
of the group α(M) on T in some coordinate system has one of the following forms:

(a) dim(T ) = 3, (x1, x2, x3) −→ (ζr x1, ζ−1
r x2, ζa

r x3),
(b) dim(T ) = 4, (x1, x2, x3, x4) −→ (ζr x1, ζ−1

r x2, ζa
r x3, x4),

(c) dim(T ) = 4, (x1, x2, x3, x4) −→ (ζ4x1,−ζ4x2, ζ4x3,−x4), r = 4,

where ζr is a primitive r -th root of unity and gcd(r, a) = 1.
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Denote by T ′ ⊂ T the subspace generated by the M-eigenspaces on which M
acts faithfully. Thus dim(T ′) = 3 and T ′ = T in the case (a). The subspace T ′ is
G�

P -invariant and so G�

P ⊂ GL(T ′) = GL3(C).
Recall that we can associate with (X � P) a basket B(X, P), that is, a finite

collection of cyclic quotient terminal singularities (Xα � Pα) [17, Sect. 6.1 and
Theorem 9.1 (III)]. Moreover, B(X, P) = {(X � P)} if and only if (X � P) is a
cyclic quotient singularity (case (a)). In the case (b) all the singularities in B(X, P)

are of index r . In the case (c) the basket B(X, P) contains a point of index 4 and at
least one point of index 2. Denote

B(X) :=
⋃

P∈X

B(X, P).

According to [9] we have

∑

Q∈B(X)

(
rQ − 1

rQ

)
≤ 24. (4.1.2)

In particular, k ≤ |�| ≤ 16.
We use Corollary 2.4. First we consider the case Corollary2.4.2o, i.e. G � A6.

SinceA6 has no non-trivial three-dimensional representations of dimension≤ 4 (see
Lemma 2.2), the sequence (4.1.1) does not split. In particular, the representation
G�

P ↪→ GL(T ′) is irreducible (otherwise the restriction to a two-dimensional G�

P -
invariant subspace T2 ⊂ T ′ would be a faithful representation of G�

P ). Then M acts
on T ′ by scalar multiplications and so r = 2. But in this case the determinant map
det : G�

P → C
∗ splits the sequence (4.1.1). Cases Corollary2.4.1o and 3o are similar.

Thus k ≥ 10 and we may assume that any G-orbit on � has length at least 10.
Then r = 2 by (4.1.2).Moreover, P ∈ X is a cyclic quotient singularity and |�| =

k, i.e. P = P1, . . . , Pk are all non-Gorenstein points of X . We have T ′ := T � C
3.

Since any normal subgroup of order 2 is contained in the center, G�

P is a central
extension of G P . Let H � = G�

P ∩ SL(T ′). Then H � is a normal subgroup of G�

P and
G�

P/H � � µm for somem.Moreover, H � does not contain M (because H � ⊂ SL(T ′)
and M is a group of order 2 acting by scalar multiplication). Hence, m is even. Let
H := β(H �). Then H � H � and G P/H � µm/2.

Consider the case Corollary2.4.5o. Then G P � (S3 × S3) � µ2. The commuta-
tor subgroup [G P , G P ] is a group of order 18 and

G P/[G P , G P ] � µ2 × µ2.

Since G P/H is cyclic, H either coincides with G P or [G P : H ] = 2. If H = G P ,
then G�

P = H � × M � G P × µ2. On the other hand, G P has no three-dimensional
faithful representation. Hence, H is an index 2 subgroup in G P and G�

P/H � � µ4.
Note that the center of H � H � is trivial and H has no faithful two-dimensional
representations. Hence, the representation of H on T ′ is irreducible. Let Syl3(H) be
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the Sylow 3-subgroup. Then Syl3(H) is normal in H and H/Syl3(H) transitively
permute Syl3(H)-eigenspaces. This is impossible. �

Corollary 4.2 Let X be a Fano threefold with terminal singularities such that
Aut(X) ⊃ G � S7. Then X is Gorenstein.

Proof Easily follows from Proposition 4.1. We have to note only that S7 con-
tains no subgroups of index 12 or 15, hence S7 cannot act on the set � as in
Proposition 4.1. �

Proof of Proposition 1.2 Let G = S6 be a subgroup in Bir(Y ), where Y is a ratio-
nally connected threefold. By Proposition 3.1 there exists an equivariant bira-
tional map Y ��� X , where X is a variety having a G-Mori fiber space structure
X → Z . By Proposition 3.2 the base Z is a point, i.e. X is a GQ-Fano threefold.
Assume that X is not Gorenstein. By Proposition 4.1 we have only one of the cases
Propositions 4.1(i) or 4.1(ii). It remains to prove the last assertion of 1.2(ii). For this,
we apply the orbifold Riemann-Roch [17]:

g + 1 = dim | − K X | = 1

2
(−K X )3 − 1

4
k + 2.

Hence, −K 3
X = 2g − 2 + k/2, where k = 12 or 15. �

5 Proof of Proposition 1.1

In this section we prove Proposition 1.1. Note that the proof also follows from [1,
Theorem 4.3]. Let X be a rationally connected variety such that Bir(X) ⊃ G � Sn ,
n ≥ 7. Let G0 := An ⊂ G. By [10, Theorem 1.5] we have n = 7. By Proposition 3.1
we may assume that X is a variety having a G-Mori fiber space structure X → Z .
By Proposition 3.2 the base Z is a point, i.e. X is a GQ-Fano threefold and by
Corollary 4.2 the singularities of X are Gorenstein.

Lemma 5.1 The linear system | − K X | is very ample and defines an embedding

X = X2g−2 ⊂ P
(
H 0(X,−K X )∨

) = P
g+1.

If g ≥ 5, then the image X2g−2 is an intersection of quadrics in P
g+1.

Proof See [10, Lemmas 5.3 and 5.4]. �

Lemma 5.2 If g ≤ 4, then g = 4 and we have the case 1.1(ii).

Proof The embedding X = X2g−2 ⊂ P
g+1 is G-equivariant and P

g+1 is naturally
identified with P(H 0(X,−K X )∨). Since S7 has no non-trivial representations of
dimension ≤ 5, we have g ≥ 4. If g = 4, then by [10, Lemma 5.4] X = X6 ⊂ P

5 is
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an intersection of a quadric and a cubic.Here the representation ofG on H 0(X,−K X )

is irreducible and there exists exactly one invariant quadric.We obtain the case 1.1(ii).
This variety X ′

6 is not rational according to [2]. �

Assume that g = 5. In this case dim H 0(X,−K X ) = 7. The variety X ⊂ P
6 is

a complete intersection of three quadrics, say Q1, Q2, Q3 (see Lemma 5.1). They
generate a two-dimensional linear system (net)Q. The induced action ofG0 = A7 on
Q is trivial by Lemma 2.5. Therefore, all the quadrics in the netQ are G0-invariant.
The faithful G0-representation H 0(X,−K X )∨ is reducible:

H 0(X,−K X )∨ = W1 ⊕ W6,

where dim(W1) = 1 and dim(W6) = 6. Here W6 is again a (unique) standard irre-
ducible representation having exactly one invariant quadric, say Q′. On the other
hand, the surface P(W6) ∩ X is a complete intersection of (invariant) quadrics
Qi ∩ P(W6). Again this gives a contradiction.

From now on we assume that g ≥ 6. Let G0 := A7 ⊂ G. If r(X)G0 = 1, then by
[10, Theorem 1.5] we have X � P

3. In this case the action of S7 on P
3 lifts to a

faithful action of a central extension S̃7 of S7 on H 0(P3, OP3(1)). Since the Schur
multiplier of S7 has order 2 (see e.g. [4]), we may assume that S̃7 is either S7

itself or a double cover of S7. However such S̃7 has no faithful four-dimensional
representations, a contradiction.

Thus we assume that r(X)G0 > 1. We claim that X contains no planes. Indeed, in
the case ρ(X) = 1 this is the statement of [13, Theorem 1.1]. For general case, we
just note that the proof of [13, Theorem 1.1] works without changes. It uses only that
X is a G-Fano threefold with g ≥ 6 such that −K X is very ample and the image of
the anticanonical map is an intersection of quadrics (Lemma 5.1). Thus X contains
no planes.

Let X1 → X be a small G0Q-factorialization (we take X1 = X if X is G0Q-
factorial). Then ρ(X1)

G0 > 1. Run G0-equivariant MMP on X1:

X1
ϕ1

X2
ϕ2 · · · ϕN−2

X N−1
ϕN−1

X N

Since X contains no planes, the variety X1 contains no surfaces S1 such that
(−K X1)

2 · S1 = 1. Then by the classification of G-extremal contractions (see e.g.
[14, Theorems 7.1.1 and 8.2.4]) the variety X2 has at worst terminal Gorenstein sin-
gularities whose anticanonical class−K X2 is nef, big, and does not contract divisors.
Moreover, dim | − K X2 | ≥ dim | − K X1 | and X2 contains no G0-invariant effective
divisors S2 such that (−K X2)

2 · S2 = 1. Continuing the process we end up with a
G0-Mori fiber space X N /Z with

dim | − K X N | ≥ dim | − K X | = g + 1 ≥ 7.

Then by [10, Theorem 1.5] we have X N � P
3. Denote Y := X N−1 and consider the

last contraction
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ϕ = ϕN−1 : Y = X N−1 −→ X N = P
3.

Let E ⊂ Y be its exceptional divisor. Assume that dimϕ(E) = 0. Again by the
classification of extremal contractions [14, Theorems 7.1.1 and 8.2.4]ϕ is the blowup
of a G0-invariant set of distinct points P1, . . . , Pr . By Lemma 2.7 the stabilizer of any
point onP

3 is not isomorphic toA6. Hence, r ≥ 8 and so (−KY )3 = (−KP3)3 − 8r ≤
0 a contradiction. Therefore, C := ϕ(E) is a curve. Clearly, C is not contained in a
plane. Assume thatC is irreducible. LetC ′ → C be the normalization. SinceAut(P1)

contains no subgroups isomorphic toA7, C ′ is not rational. Also, one can see that C ′
is not an elliptic curve. We have

(−K X N )3 − (−K X N−1)
3 = 2(−K X N−1)

2 · E + 2pa(C) − 2.

(see e.g. [13, Proposition 5.1]).
Thus 2pa(C) − 2 < 64 − 10 and pa(C) ≤ 27. On the other hand, by the Hurwitz

bound the the order of the automorphism group of C ′ is at most 84(g(C ′) − 1) ≤
2184. Since 2184 < |A7|, the group G0 = A7 cannot act effectively on C , a contra-
diction.

Thus, the curve C is reducible. Let C1, . . . , Cr be its irreducible components
and let G1 be the stabilizer of C1 in G0 = A7. By [10, Lemma 5.3] the linear sys-
tem | − K X N−1 | is base point free. Let S1, S2 ∈ | − K X N−1 | be two general members.
Then C ⊂ ϕ(S1) ∩ ϕ(S2), where ϕ(Si ) ∈ | − KP3 |. Hence r ≤ degC ≤ 16. Since
the group G0 permutes C1, . . . , Cr transitively, by Proposition 2.3(ii) we have only
two possibilities:

(i) G1 � PSL2(F7), r = 15;
(ii) G1 � A6, r = 7.

In both cases deg(C1) ≤ 2. Hence C1 � P
1. On the other hand, the groups PSL2(F7)

and A6 cannot act on P
1 effectively, a contradiction.

6 Examples

In this section we collect examples ofS6-Fano threefolds. Note that a faithful action
of a group G on an algebraic variety X induces an embedding G ⊂ Bir(X) and an
embedding G ⊂ Crn(C) if X is rational.

Example 6.1 Let S̃6 be the pull-back of S6 ⊂ SO6(R) under the double cover

SU4(C) → SO6(R).

Then S̃6 is a non-trivial central extension of S6 by µ2. This defines an embedding
S6 ⊂ PGL4(C), so S6 acts on P

3.
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In all examples below the groupS6 is supposed to act on x1, . . . , x6 by permuta-
tions.

Example 6.2 Let X be a smooth quadric threefold given in P
5 by

6∑

i=1

xi =
6∑

i=1

x2
i = 0.

Then X admits a S6-action by permutations of coordinates.

Example 6.3 The Segre cubic X s
3 is a subvariety in P

5 given by the equations

6∑

i=1

xi =
6∑

i=1

x3
i = 0.

The singular locus of this cubic consists of 10 nodes and AutX s
3 � S6. More-

over, the quotient X s
3/S6 ⊂ P

5/S6 is isomorphic to the weighted projective space
P(2, 4, 5, 6) ⊂ P(1, 2, 3, 4, 5, 6). Therefore, r(X s

3)
S6 = 1 and so X s

3 is a S6-Fano
threefold. Obviously, X s

3 is rational.

Example 6.4 ([18, Sect. 4]) Let X = X4(λ) ⊂ P
4 ⊂ P

5 is a quartic given by the
equations

6∑

i=1

xi =
6∑

i=1

x4
i + λ

( 6∑

i=1

x2
i

)2 = 0,

where λ is a constant 
= −1/4. The hypersurface X4(λ) is singular at the 30 points
of theS6-orbit of (1 : ω : ω2 : 1 : ω : ω2) with ω := e2πi/3. Additional isolated sin-
gularities occur only in the following cases

• λ = −1/2, |Sing(X)| = 45,
• λ = −7/10, |Sing(X)| = 36,
• λ = −1/6, |Sing(X)| = 40.

In the case λ = −1/4, the singularities are not isolated and X4(λ) is so-called Igusa
quartic.

As in Example 6.3 one can see that r(X4(λ))S6 = 1. For λ /∈ {−1/2, −7/10,
−1/6} the variety X4(λ) is not rational [3]. For λ = −1/2 the variety X4(λ) is
called Burkhardt quartic. It is rational. For λ = −7/10 and −1/6, X4(λ) is also
rational [5].

Example 6.5 (double quadric). Let X = X2·4 ⊂ P(16, 2) is given by

6∑

i=1

xi =
6∑

i=1

x2
i = y2 −

6∑

i=1

x4
i = 0,
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where xi and y are coordinates in P(16, 2) with deg xi = 1, deg y = 2. This X2·4 has
30 nodes and r(X2·4) = 1. This variety was studied in [16]. It is not rational.

Example 6.6 (cubic complex). Consider the following complete intersections of a
quadric and a cubic X6 ⊂ P

5:

X6(λ) : ∑6
i=1 x2

i = ∑6
i=1 x3

i − λ
(∑6

i=1 xi

)3 = 0,

X ′
6 : 6∑6

i=1 x2
i −

( ∑6
i=1 xi

)2 = ∑6
i=1 x3

i = 0.

Then these X6’s are Fano threefolds with at worst Gorenstein terminal singularities.
Let λ0 := −1/18, let λ1 be a root of 180λ2 + 20λ + 1, and let λ2 be a root of
288λ2 + 32λ + 1. Then

(i) X ′
6 and X6(λ) for λ /∈ {λ0,λ1, λ̄1,λ2, λ̄2} are smooth,

(ii) |Sing(X (λ1))| = |Sing(X (λ̄1))| = 6,
(iii) |Sing(X (λ2))| = |Sing(X (λ̄2))| = 15,
(iv) |Sing(X (λ0))| = 20.

In all cases r(X)S6 = 1. The general variety X6(λ) in the pencil is not rational [2].

7 del Pezzo Threefolds

Recall that a del Pezzo variety is a Fano variety X with at worst canonical Gorenstein
singularities such that the canonical class K X is divisible by dim(X) − 1 in the group
Pic(X). In this section, we consider only del Pezzo threefolds with at worst terminal
Gorenstein singularities. In this case, −K X = 2H , where H is am ample Cartier
divisor. Usually, P

3 is not considered as a del Pezzo threefold. The self-intersection
number d := H 3 = −K 3

X/8 is called the degree of X .

Example 7.1 Let G = A6 ⊂ PGL3(C) be the Valentiner group (see Lemma 2.6).
Then G acts faithfully on the variety X6 of complete flags on P

2. This X6 is a smooth
del Pezzo variety of degree 6 [8, 11]. Note however that ρ(X6) = 2 and the induced
action of A6 on Pic(X6) is trivial. Therefore, X6 is not an A6-Fano threefold.

Proposition 7.2 Assume that A6 faithfully acts on a del Pezzo threefold X (here we
do not assume that X is a G-Fano). Then X is equivariantly isomorphic to one of
the following varieties:

(i) X = X3 ⊂ P
4 is the Segre cubic (see Example 6.3);

(ii) X is the variety of complete flags on P
2 (see Example 7.1).

Proof Let d be the degree of X . It is easy to see by Riemann-Roch that

dim H 0(X,− 1
2 K X

) = d + 2.
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The action of the group A6 on X lifts to an action of its central extension (double
cover) Ã6 by µ2 on H 0(X,− 1

2 K X ). Recall that there exists an exceptional isomor-
phism

A6 � PSL2(F9)

(see e.g. [19, Sect. 3.3.5]). Thus a unique central extension Ã6 of A6 by µ2 can be
identified with SL2(F9).

Lemma 7.3 Let X be a del Pezzo threefold that admit a faithful action of A6. Then
the linear system | − 1

2 K X | contains no invariant members.

Proof Suppose that S ∈ | − 1
2 K X | is an invariant divisor. Then−(K X + S) is ample,

we can apply quite standard connectedness arguments of Shokurov (see, e.g., [12,
LemmaB.5]): for a suitable G-invariant boundary D, the pair (X, D) is lc, the divisor
−(K X + D) is ample, and the minimal locus V of log canonical singularities is also
G-invariant. Moreover, V is either a point or a smooth rational curve. By Lemma 2.7
the group A6 has no fixed points. Hence, A6 ⊂ Aut(P1), a contradiction. �

The dimensions of irreducible representations of Ã6 = SL2(F9) are as follows: 1,
4, 5, 8, 9, 10. By Lemma 7.3 H 0(X,− 1

2 K X ) has no one-dimensional subrepresen-
tations. Note that 1 ≤ d ≤ 7 (see e.g. [11]). Therefore, d ∈ {2, 3, 6, 7}. Consider
these possibilities one by one.

Case d = 2. In this case the half-canonical map is a double cover π : X → P
3 =

P(H 0(X,− 1
2 K X )∨) whose branch divisor B ⊂ P

3 is a quartic.

But it is easy to compute that the group Ã6 = SL2(F9) has no invariants 0 
= φ ∈
S4H 0(X,− 1

2 K X )∨.

Case d = 3. In this case X = X3 ⊂ P
4 is a cubic. The action of Ã6 on H 0(X,− 1

2 K X )

is not faithful; it is induced from the standard representation ofA6 on C
5. Then there

is exactly one invariant hypersurface of degree 3 (see 7.2(i)).

Case d = 6. By [11] X has at most one singular point. Then by Lemma 2.7 X is
smooth. Assume that X � P

1 × P
1 × P

1. Then the induced representation of A6 on
Pic(X) is trivial. Hence the groupA6 effectively acts on the factors of P

1 × P
1 × P

1.
Clearly, this is impossible. Therefore, X 
� P

1 × P
1 × P

1. Then by the classification
[8] X is unique up to isomorphism, and it can be realized as the variety of complete
flags on P

2. We get the case 7.2(ii).

Case d = 7. In this case the variety X is smooth and isomorphic to the blowup of a
point on P

3 (see e.g. [11]). Thus the action of A6 descends to P
3. On the other hand,

this action has no fixed points by Lemma 2.7, a contradiction. �

Corollary 7.4 Assume that the group S6 faithfully acts on a del Pezzo threefold X
of degree d. Then X is equivariantly isomorphic to the Segre cubic (Example 6.3).

Proof The action of the subgroup A6 ⊂ S6 is described in Proposition 7.2. It is
sufficient to show that the case 7.2(ii) does not occur. Assume that X is isomorphic
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to the variety of complete flags on P
2. In this case the linear system | − 1

2 K X | defines
an embedding X = X6 ⊂ P

7, where the space P
7 can be identified with the projec-

tivization of H 0(X,− 1
2 K X )∨. The action of the group S6 on X = X6 ⊂ P

7 lifts to

an action of a double cover S̃6 on H 0(X,− 1
2 K X )∨. By Lemma 7.3 the represen-

tation of S̃6 on H 0(X,− 1
2 K X )∨ has no one-dimensional subrepresentations. Then

H 0(X,− 1
2 K X )∨ = W ′ ⊕ W ′′, where W ′ and W ′′ are four-dimensional irreducible

faithful representations. ThusP(H 0(X,− 1
2 K X )∨) contains two disjointS6-invariant

three-dimensional subspacesP(W ′) andP(W ′′). Recall that X = X6 ⊂ P
7 is an inter-

section of quadrics. Assume that P(W ′) ∩ X is not empty. If dim(P(W ′) ∩ X) = 2,
then P(W ′) ∩ X is a S6-invariant quadric in P(W ′) = P

3. Clearly, this is impos-
sible. If dim(P(W ′) ∩ X) = 1, then P(W ′) ∩ X contains a S6-invariant curve of
degree ≤ 4 and the genus of this curve is at most 1. Again this is impossi-
ble. Let dim(P(W ′) ∩ X) = 0. Then P(W ′) ∩ X = {P1, . . . , Pk}, where k ≤ 8. By
Corollary 2.4 and Lemma 2.7 the stabilizer G1 ⊂ S6 of P1 is isomorphic toS5. Note
that the representation of G1 in the tangent space TP1,X is faithful. On the other hand,
the group S5 has no faithful three-dimensional representations, a contradiction.

Therefore, P(W ′) ∩ X = ∅. Then the projection p : X → P(W ′′) from P(W ′)
must be a S6-equivariant finite morphism. By the Hurwitz formula

K X = p∗KP(W ′′) − R

where R is the ramification divisor. Since p∗KP(W ′′) ∼ −4H ∼ 2K X , where H is a
hyperplane section of X , the divisor R cannot be effective, a contradiction. �
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On Hodge-Riemann Cohomology Classes

Julius Ross and Matei Toma

Abstract We prove that Schur classes of nef vector bundles are limits of classes that
have a property analogous to the Hodge-Riemann bilinear relations. We give a num-
ber of applications, including (1) new log-concavity statements about characteristic
classes of nef vector bundles (2) log-concavity statements about Schur and related
polynomials (3) another proof that normalized Schur polynomials are Lorentzian.
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1 Introduction

Since the dawn of time, human beings have asked some fundamental questions: who
are we? why are we here? is there life after death? Unable to answer any of these, in
this paper we will consider cohomology classes on a complex projective manifold
that have a property analogous to the Hard-Lefschetz Theorem and Hodge-Riemann
bilinear relations.

To state our results let X be a projective manifold of dimension d ≥ 2. We say
that a cohomology class � ∈ H d−2,d−2(X; R) has the Hodge-Riemann property if
the intersection form

Q�(α, α′) :=
∫

X
α�α′ for α, α′ ∈ H 1,1(X; R)
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has signature (+,−,−, . . . ,−). We write

HR(X) = {� with the Hodge Riemann property}

and HR(X) for its closure.

This definition is made in light of the fact that the classical Hodge-Riemann
bilinear relations say precisely that if L is an ample line bundle on X , then c1(L)d−2

is in HR(X). A natural question, initiated by Gromov [12], is if there are other
cohomology classes that have this property, and our first result answers this in terms
of certain characteristic classes of vector bundles.

Theorem (⊆ Theorem 7.2) Let E be a nef vector bundle on X and λ be a partition
of d − 2. Then the Schur class sλ(E) lies in HR(X).

In fact we can do better; for each i define the derived Schur polynomials s(i)
λ by

requiring that

sλ(x1 + t, . . . , xe + t) =
|λ|∑

i=0

s(i)
λ (x1, . . . , xe)t

i .

Theorem (⊆ Theorem 7.2) Let E be a nef vector bundle on X and λ be a partition
of d − 2 + i . Then the derived Schur class s(i)

λ (E) lies in HR(X).

We prove moreover:

• Analogous statements hold for monomials of derived Schur classes of possibly
different nef vector bundles (Theorem 7.4).

• If E is perturbed by adding a sufficiently small ample class, then sλ(E) lies in
HR(X) (rather than in just the closure) (Remark 7.3).

• The above holds even in the setting of compact Kähler manifolds, where nef-
ness of E is taken in the metric sense following Demailly-Peternell-Schneider
(Theorem 8.3).

*

Our above result is interesting even in the case that E = ⊕e
i=1Li is a direct

sum of ample line bundles, from which we deduce that the Schur polynomial
sλ(c1(L1), . . . , c1(Le)) lies in HR(X). As a concrete example, s(1,1)(x1, x2) = x2

1 +
x1x2 + x2

2 , so if L1 and L2 are ample line bundles on a fourfold the class

c1(L1)
2 + c1(L1)c1(L2) + c1(L2)

2 ∈ HR(X). (1.1)

As already noted, the classical Hodge-Riemann bilinear relations tell us that the
classes c1(L1)

2 and c1(L2)
2 both lie in HR(X), and it was proved by Gromov [12]

that the mixed term c1(L1)c1(L2) also lies in HR(X). However in general having the
Hodge-Riemann property is not preserved under taking convex combinations, and
thus (1.1) is new.
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From these considerations it is natural to ask which universal combinations of
characteristic classes of ample (resp. nef) vector bundles lie inHR(X) (resp. HR(X)).
Although we do not know the full answer to this, the following is a contribution in
this direction.

Theorem (⊆ Theorem 9.3) Let E be a nef vector bundle on a projective manifold
of dimension d, and λ be a partition of d − 2. Suppose μ0, . . . , μd−2 is a Pólya
frequency sequence of non-negative real numbers. Then the combination

d−2∑
i=0

μi s
(i)
λ (E)c1(E)i

lies in HR(X).

*

As an application of these results we are able to give various new inequalities
between characteristic classes of nef vector bundles. Continuing to assume X is
projective of dimension d, let λ and μ be partitions of length |λ| and |μ| respectively
and assume |λ| + |μ| ≥ d.

Theorem (= Theorem 10.5) Assume E, F are nef vector bundles on X. Then the
sequence

i �→
∫

X
s(|λ|+|μ|−d−i)
λ (E)s(i)

μ (F) (1.2)

is log-concave

As a particular case, we get that if E is a nef vector bundle and λ a partition of d,
then

j �→
∫

X
s( j)
λ (E)c1(E) j

is log-concave, which as a special case says the map

i �→
∫

X
ci (E)c1(E)d−i

is also log-concave. One should think of these statements as higher-rank analogs of
the Khovanskii-Tessier inequalities. We even get combinatorial applications of this,
such as the following:

Corollary (= Corollary 10.10) Let λ and μ be partitions, and let d be an integer
with d ≤ |λ| + |μ|. Assume x1, . . . , xe, y1, . . . , y f ∈ R≥0. Then the sequence

i �→ s(|λ|+|μ|−d+i)
λ (x1, . . . , xe)s

(i)
μ (y1, . . . , y f )

is log concave.
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Corollary (= Corollary 10.12) Let λ be a partition and x1, . . . , xe ∈ R≥0. Then the
sequence

i �→ s(i)
λ (x1, . . . , xe)

is log-concave.

This last statement has been known for a long time for the partition λ = (e), for
then the derived Schur polynomials become the elementary symmetric polynomials
ci (see Example 3.2). Then more is true namely, i �→ ci (x1, . . . , xe) is ultra-log
concave—a result which is due to Newton [18] (see, for example, [5, Chap. 11] for
a modern treatment).

As a final application we show how knowing that Schur classes of nef bundles
lie in HR(X) gives another proof of a result of Huh-Matherne-Mészáros-Dizier [13]
that the normalized Schur polynomials are Lorentzian.

1.1 Comparison with Previous Work

There is some overlap between Theorem 7.2 and our original work on the subject in
[21]. A principal difference is that in [21]we show that derived Schur classes of ample
bundles have theHodge-Riemann property, whereas herewe settle inmerely showing
these classes are limits of classes with this property. So even though logically many
of our results follow from [21], the proofs we give here are simpler and substantially
shorter. In fact, our account here does not depend on any of the details of [21] and
is self-contained relying only on a few standard techniques in the field (as contained
say in [16]). The main tools we use are the Bloch-Gieseker theorem, and the cone
classes of Fulton-Lazarsfeld that express Schur classes as pushforwards of certain
Chern classes (which builds on the determinantal formula of Kempf-Laksov [14]) .
The material on the non-projective case in §8, on convex combinations in §9 and on
inequalities in §10 is all new.

We refer the reader to [21] for a survey of otherworks concerningHodge-Riemann
classes. Although there are many places in which log-convexity and Schur polyno-
mials meet (e.g. [4, 10, 13, 15, 19, 20]) we are not aware of any previous inequalities
that cover precisely those studied here.

1.2 Organization of the Paper

Sections2, 3 and 4 contain preliminarymaterial on Schur polynomials, derived Schur
polynomials and cone classes. We also include in Sect. 5 a self-contained proof of a
theorem of Fulton-Lazarsfeld concerning positivity of (derived) Schur polynomials.
The main theorems about derived Schur classes having the Hodge-Riemann property
are proved in Sect. 7, and in Sect. 8 we explain how this extends to the non-projective
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case. In Sect. 9 we consider convex combinations of Hodge-Riemann classes, and in
Sect. 10 we give our application to inequalities and our proof that normalized Schur
polynomials are Lorentzian.

2 Notation and Convention

We work throughout over the complex numbers. For the majority of the paper we
will take X to be a projective manifold (which we always assume is connected), and
E a vector bundle (which we always assume to be algebraic). Given such a vector
bundle E we denote by π : P(E) → X the space of one-dimensional quotients of E ,
and by π : Psub(E) → X the space of one-dimensional subspaces of E . We say that
a vector bundle E is ample (resp. nef) if the hyperplane bundle OP(E)(1) on P(E) is
ample (resp. nef).

Wewillmake use of the formalismofQ-twisted bundles (see [16, Sect. 6.2, 8.1.A],
[17, p. 457]). Given a vector bundle E on X of rank e and an element δ ∈ N 1(X)Q the
Q-twisted bundle denoted E〈δ〉 is a formal object understood to have Chern classes
defined by the rule

cp(E〈δ〉) :=
p∑

k=0

(
e − k

p − k

)
ck(E)δ p−k for 0 ≤ p ≤ e. (2.1)

Here and henceforth we abuse notation and write δ also for its image under
N 1(X)Q → H 2(X; Q), so the above intersection is taking place in the cohomol-
ogy ring H∗(X).

By the rank of E〈δ〉 we mean the rank of E . The above definition is made so if
δ = c1(L) for a line bundle L on X then

cp(E〈c1(L)〉) = cp(E ⊗ L).

The splitting principle provides for any vector bundle E a morphism p : X ′ → X
such that p∗ H∗(X) injects into H∗(X ′) and so that p∗E = ⊕

Li is a direct sum of
line bundles. In this situation we call xi := c1(Li ) the Chern roots of E . So, if E has
Chern roots given by x1, . . . , xe then E〈δ〉 is understood to have Chern roots x1 +
δ, . . . , xe + δ. The twist of anQ-twisted bundle is givenby the rule E〈δ〉〈δ′〉 = E〈δ +
δ′〉. That (2.1) continues to hold when E is an Q-twisted bundle is an elementary
calculation - for convenience of the reader we omit the proof.

We say that E〈δ〉 is ample (resp. nef) if the class c1(OP(E)(1)) + π∗δ is ample
(resp. nef) on P(E).

Suppose p(x1, . . . , xe) is a homogeneous symmetric polynomial of degree d ′ and
E is a Q-twisted vector bundle of rank E on X with Chern roots τ1, . . . , τe. Then we
have the well-defined characteristic class
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p(E) := p(τ1, . . . , τe) ∈ H d ′,d ′
(X; R).

By abuse of notation we let ci denote the i th elementary symmetric polynomial,
so ci (E) ∈ Hi,i (X; R) is unambiguously defined as the i th-Chern class of E .

3 Derived Schur Classes

By a partition λ of an integer b ≥ 1 we mean a sequence 0 ≤ λN ≤ · · · ≤ λ1 such
that |λ| := ∑

i λi = b. For such a partition, the Schur polynomial sλ is the symmetric
polynomial of degree |λ| in e ≥ 1 variables given by

sλ = det

⎛
⎜⎜⎜⎝

cλ1 cλ1+1 · · · cλ1+N−1

cλ2−1 cλ2 · · · cλ2+N−2
...

...
...

...

cλN −N+1 cλN −N+2 · · · cλN

⎞
⎟⎟⎟⎠

where ci denotes the i-th elementary symmetric polynomial. The coefficients of sλ

count the number of certain semi-standard Young tableau (the reader is referred
to [7] for more background concerning Schur polynomials). In particular, Schur
polynomials are monomial positive by which we mean when written as a sum of
monomials each (non-trivial) coefficient is strictly positive.

We will have use for the following symmetric polynomials associated to Schur
polynomials.

Definition 3.1 (Derived Schur polynomials) Let λ be a partition. For any e ≥ 1 we
define s(i)

λ (x1, . . . , xe) for i = 0, . . . , |λ| by requiring that

sλ(x1 + t, . . . , xe + t) =
|λ|∑

i=0

s(i)
λ (x1, . . . , xe)t

i for all t ∈ R.

In fact s(i)
λ depends also on e but we drop that from the notation. By convention

we set s(i)
λ = 0 for i /∈ {0, . . . , |λ|}. For 0 ≤ i ≤ |λ|, clearly s(i)

λ is a homogeneous
symmetric polynomial of degree |λ| − i and s(0)

λ = sλ.
Thus for any Q-twisted vector bundle E of rank e we have classes

s(i)
λ (E) ∈ H |λ|−i,|λ|−i (X; R),

and by construction if δ ∈ N 1(X)Q then

sλ(E〈δ〉) =
|λ|∑

i=0

s(i)
λ (E)δi .
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Example 3.2 (Chern classes) Consider the partition of λ = (p) consisting of just
one integer. Then sλ = cp, and from standard properties of Chern classes of a tensor
product if rk E = e ≥ p then

s(i)
λ (E) =

(
e − p + i

i

)
cp−i (E) for all 0 ≤ i ≤ p.

Example 3.3 (Derived Schur polynomials of Low degree) We list some of the
derived Schur classes of low degree for a bundle E of rank e. First

s(1) = c1, s(1)
(1) = e

and for e ≥ 2,

s(2,0) = c2 s(1)
(2,0) = (e − 1)c1 s(2)

(2,0) =
(

e

2

)

s(1,1) = c21 − c2, s(1)
(1,1) = (e + 1)c1 s(2)

(1,1) =
(

e + 1

2

)

and for e ≥ 3,

s(3,0,0) = c3 s(1)
(3,0,0) = (e − 2)c2 s(2)

(3,0,0) =
(

e − 1

2

)
c1

s(3)
(3,0,0) =

(
e

3

)

s(2,1,0) = c1c2 − c3 s(1)
(2,1,0) = 2c2 + (e − 1)c21 s(2)

(2,1,0) = (e2 − 1)c1

s(3)
(2,1,0) = 2

(
e + 1

3

)

s(1,1,1) = c31 − 2c1c2 + c3 s(1)
(1,1,1) = (e + 2)(c21 − c2) s(2)

(1,1,1) =
(

e + 2

2

)
c1

s(3)
(1,1,1) =

(
e + 2

3

)

Example 3.4 (Lowest Degree Derived Schur Classes) Suppose e ≥ λ1. Then we
can write the Schur polynomial as a sum of monomials

sλ(x1, . . . , xe) =
∑

|α|=|λ|
cαxα1

1 · · · xαe
e

where cα ≥ 0 for all α (in fact the cα count the number of semistandard Young
tableaux ofweightαwhose shape is conjugate toλ). Since e ≥ λ1, sλ is not identically
zero, so at least one of the cα is strictly positive. Thus in the expansion
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sλ(x1 + t, . . . , xe + t) =
|λ|∑

i=0

s(i)
λ (x1, . . . , xe)t

i

the coefficient in front of t |λ| is strictly positive, i.e. s(|λ|)
λ > 0.

So, in terms of characteristic classes, if E has rank at least λ1 then

s(|λ|)
λ (E) ∈ H 0(X; R) = R

is strictly positive.

4 Cone Classes

We will rely on a construction exploited by Fulton-Lazarsfeld that express Schur
classes as the pushforward of Chern classes, and we include a brief description
here. Let E be a vector bundle of rank e on X of dimension d and suppose 0 ≤ λN ≤
λN−1 ≤ · · · ≤ λ1 is a partition of length |λ| = b ≥ 1 andλ1 ≤ e. Set ai := e + i − λi

and fix a vector space V of dimension e + N . Then it is possible to find a nested
sequence of subspaces 0 � A1 � A2 � · · · � AN ⊂ V with dim(Ai ) = ai .

By abuse of notation we also let V denote the trivial bundle over X . We set
F := V ∗ ⊗ E = Hom(V, E) and let f + 1 = rk(F) = e(e + N ). Then inside F
define

Ĉ := {σ ∈ Hom(V, E) : dim ker(σ (x)) ∩ Ai ≥ i for all i = 1, . . . , N and x ∈ X}

which is a cone in F . Finally set

C = [Ĉ] ⊂ Psub(F).

Proposition 4.1 C has codimension b and dimension d + f − b, has irreducible
fibers over X and is flat over X (in fact it is locally a product). Moreover if

0 → OPsub(F)(−1) → π∗F → U → 0 (4.1)

is the tautological sequence then

sλ(E) = π∗c f (U |C). (4.2)

Proof This is described by Fulton-Lazarsfeld in [9]. An account (that is written for
the the case |λ| = d) can be found in [16, (8.12)] and an account for general |λ| is
given in [21, Proposition 5.1] that is based on [8]. We remark that in [21, Proposition
5.1]wemade the additional assumption that N ≥ b and e ≥ 2, but have since realized
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these are not necessary (we used this to ensure that f ≥ b, but this actually follows
immediately from e ≥ λ1). �

This extends to Q-twisted bundles E ′ = E〈δ〉. Here we identify

P ′ := Psub(F〈δ〉) π→ X

with Psub(F)
π→ X but the quotient bundle U on P ′ is replaced by U ′ := U 〈π∗δ〉.

We consider the same cone [C] ⊂ P ′. Then (4.2) still holds in the sense that

sλ(E ′) = π∗c f (U
′|C). (4.3)

To see this, observe that as δ ∈ N 1(X)Q we have δ = 1
m c1(L) for some m ∈ Z and

line bundle L . Then for t divisible by m

π∗(c f (U 〈tπ∗δ〉|C) = π∗c f (U ⊗ π∗Lt/m |C) = sλ(E ⊗ Lt/m) = sλ(E〈tδ〉) (4.4)

where the second equality uses (4.2). But both sides of (4.4) are polynomials in t , so
since this equality holds for infinitely many t it must hold for all t ∈ Q, in particular
when t = 1 which gives (4.3).

A key feature we will rely on is that if E ′ is assumed to be nef then so is U ′. For
if E ′ is nef then so is F ′ := F〈δ〉 and the formal surjection F ′ → U ′ coming from
(4.1) implies that U ′ is also nef (see [16, Lemma 6.2.8] for these properties of nef
Q-twisted bundles).

Another extension is to the product of Schur classes of possibly different vector
bundles E1, . . . , E p on X . Let λ1, . . . , λp be partitions and assume rk(E j ) ≥ λ

j
1

for j = 1, . . . , p. We consider again the corresponding cones Ci that sit inside
Fi := Hom(Vi , Ei ) for some vector space Vi . We may consider the fiber product
C := C1 ×X C2 ×X · · · ×X C p inside⊕ j Hom(Vi , Ei ) =: F and its projectivization
[C] ⊂ Psub(F). Then, using that each Ci is flat over X , if U is the tautological vector
bundle on Psub(F) of rank f we have

π∗c f (U |C) =
∏

j

sλ j (E j ) (4.5)

(see [16, 8.1.19], [9, Sect. 3c]).

5 Fulton-Lazarsfeld Positivity

Using the cone construction we quickly get the following positivity statement, which
is essentially a weak version of a result of Fulton-Lazarsfeld [9]. For the reader’s
convenience we include the short proof here.
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Proposition 5.1 Let X be smooth and projective of dimension d, λ be a partition
of length d + i for some i ≥ 0 and E be an Q-twisted nef vector bundle. Then∫

X s(i)
λ (E) ≥ 0.

Proof We first claim that if E is a nef Q-twisted bundle of rank d on an irreducible
projective variety X of dimension d then

∫
X cd(E) ≥ 0. By taking a resolution of

singularities we may assume X is smooth. Let h be an ample class on X . By the
Bloch-Gieseker Theorem [2] we have

∫
X cd(E〈th〉) �= 0 for all t > 0 since E〈th〉 is

ample (here we allow t to be irrational extending the notation in the obvious way,
and observe that although the original Bloch Gieseker result is not stated for twisted
bundles the same proof works in this setting, see [16, p. 113] or Sect. 8). Expanding
this as a polynomial in t gives

0 �=
∫

X
cd(E) + tcd−1(E)h + · · · + td hd for all t ∈ R>0.

Clearly this polynomial is strictly positive for t � 0, and hence since it is nowhere-
vanishing, is strictly positive for all t > 0. In particular

∫
X cd(E) ≥ 0 as claimed.

To prove the Proposition, wemay assume e := rk(E) ≥ λ1 else sλ(E) = 0 and the
statement is trivial. When |λ| = d, (4.3) gives a map π : C → X from an irreducible
variety C of dimension n and a nef Q-twisted bundle U of rank n so that π∗cn(U ) =
sλ(E). So by the previous paragraph

∫
X sλ(E) = ∫

C cn(U ) ≥ 0.

Finally suppose i ≥ 0 and |λ| = d + i . Set X̂ = X × Pi and τ = c1(OP1(1)).
Since |λ| = dim(X̂) we have

0 ≤
∫

X̂
sλ(E〈τ 〉) =

∫
X̂

|λ|+i∑
j=0

s( j)
λ (E)τ j =

∫
X

s(i)
λ (E)

∫
Pi

τ i =
∫

X
s(i)
λ (E).

�
Corollary 5.2 Let X be smooth and projective of dimension d, λ be a partition of
length d + i − 2, let E be a nef Q-twisted bundle of rank e ≥ λ1 and h be an ample
class on X. Then

∫
X s(i)

λ (E)h2 ≥ 0.

Proof Rescale so h is very ample, and apply the previous theorem to the restriction
of E to the intersection of two general elements in the linear series defined by h. �
Remark 5.3 Bypassing to a resolution of singularities, one sees that the statement of
Propositon 5 and Corollary 5.2 extend to the case that X is irreducible and projective
but not necessarily smooth.

Remark 5.4 (Derived Schur Polynomials are Numerically Positive) If |λ| = d + i
then

∫
X s(i)

λ (E) ≥ 0 for all nef vector bundles E on any irreducible projective variety

X of dimension d. That is, s(i)
λ is a numerically positive polynomial in the sense

of Fulton-Lazarsfeld, and hence by their main result [9, Theorem I] we deduce
s(i)
λ can be written as a non-negative linear combination of the Schur polynomials

{sμ : |μ| = d}. This answers a question of Xiao [22, p. 10].
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Remark 5.5 (Monomials of Derived Schur Classes) It is easy to extend this to
monomials of derived Schur polynomials. That is, if E1, . . . , E p are nef bundles on
X and λ1, . . . , λp are partitions such that

∑
j |λ j | = d then

∫
X

∏
j

sλ j (E j ) ≥ 0. (5.1)

We simply repeat the proof of Proposition 5.1 using (4.5) in place of (4.3)). For the
derived case suppose we also have integers i1, . . . , i p and that our partitions are such
that

∑
j |λ( j)| − i j = d. Then

∫
X

∏
j

s
(i j )

λ j (E j ) ≥ 0. (5.2)

To see this consider the product X̂ := X × ∏
j Pi j and let τ j be the pullback of

the hyperplane class in Pi j to X̂ . Then (5.1) applies to the class
∏

j sλ j (E j (τ j )).

Expanding this as a symmetric polynomial in the τ j the coefficient of
∏

j τ
i j

j is

precisely
∏

j s
(i j )

λ j (E j ) so (5.2) follows. The analog of Corollary 5.2 also holds for
monomials of derived Schur polynomials.

6 Hodge-Riemann Classes

Let X be a projective smooth variety dimension d and let� ∈ H d−2,d−2(X; R). This
defines an intersection form

Q�(α, α′) =
∫

X
α�α′ for α, α′ ∈ H 1,1(X; R).

Definition 6.1 (Hodge-Riemann Property) We say that a bilinear form Q on a finite
dimensional vector space has the Hodge-Riemann property if Q is non-degenerate
and has precisely one positive eigenvalue. We say that � ∈ H d−2,d−2(X; R) has the
Hodge-Riemann property if Q� does, and denote by HR(X) denote the set of all �
with this property.

Definition 6.2 (Weak Hodge-Riemann Property) A bilinear form Q on a finite
dimensional vector space is said to have the weak Hodge-Riemann property if it
is a limit of bilinear forms that have the Hodge-Riemann property. We say that �

has the weak Hodge-Riemann property if Q� does, and denotes by HRw(X) the set
of � with this property.

So Q has the weak Hodge-Riemann property if and only if it has one eigenvalue
that is non-negative, and all the others are non-positive. Clearly
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HR(X) ⊂ HRw(X)

but we do not claim these are equal (the issue being that in principle Q� could
be the limit of bilinear forms with the Hodge-Riemann property that do not come
from classes in H d−2,d−2(X; R)). If h is ample then by the classical Hodge-Riemann
bilinear relations hd−2 ∈ HR(X), and so HRw(X) is a non-empty closed cone inside
H d−2,d−2(X; R).

It is convenient to work with HRw(X) as it behaves well with respect to pullbacks
and pushforwards. This is captured by the following simple piece of linear algebra.

Lemma 6.3 Let f : V → W be a linear map of vector spaces and QV and QW be
bilinear forms on V and W respectively such that

QW ( f (v), f (v′)) = QV (v, v′) for all v, v′ ∈ V .

Suppose that QW has the weak Hodge-Riemann property and there is a v0 ∈ V \ {0}
with QV (v0, v0) ≥ 0. Then QV has the weak Hodge-Riemann property.

Proof Let N = ker( f ). Then N is orthogonal to all of V with respect to QV . The
signature on a complementary subspace to N is induced by QW . Thus QV can
only be negative semi-definite, or have the weak Hodge-Riemann property, and the
assumption that QV (v0, v0) ≥ 0 means it is the latter case that occurs. �

Lemma 6.4 (Pullbacks) Let π : X ′ → X be a surjective map between smooth
varieties of dimension d. Let � ∈ H d−2,d−2(X, R) and suppose there is an h ∈
H 1,1(X; R) \ {0} with

∫
X �h2 ≥ 0 and that π∗� ∈ HRw(X ′). Then � ∈ HRw(X).

Proof This follows from Lemma 6.3 applied to π∗ : H 1,1(X; R) →
H 1,1(X ′; R) since Qπ∗�(π∗α, π∗α′) = ∫

X ′ π
∗(�αα′) = deg(π)

∫
X �αα′ = deg(π)

Q�(α, α′). �

Lemma 6.5 (Pushforwards) Let π : X ′ → X be a surjective map between smooth
varieties. Let �′ ∈ HRw(X ′) and suppose there is an h ∈ H 1,1(X; R) \ {0} with∫

X (π∗�′)h2 ≥ 0. Then π∗�′ ∈ HRw(X).

Proof This follows from Lemma 6.3 applied to π∗ : H 1,1(X; R) → H 1,1(X ′; R)

since from the projection formula,

Q�′(π∗α, π∗α′) =
∫

X ′
�′(π∗α)(π∗α′) =

∫
X

π∗�′αα′ = Qπ∗�(α, α′).

�

Wewill need the following variant that allows for an intermediate space that might
not be smooth.
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Lemma 6.6 Let X, Y, Z be irreducible projective varieties with morphisms Z
σ→

Y
π→ X and assume that Z and X are smooth. Let d = dim X and assume Z and Y

are of the same dimension n and that σ is surjective. Let � ∈ H 2n−4(Y ; R) be such
that �′ := π∗� ∈ H d−2,d−2(X; R). Assume

(i) σ ∗� ∈ HRw(Z).
(ii) There exists an h ∈ H 1,1(X; R) \ {0} such that

∫
X (π∗�)h2 ≥ 0.

Then π∗� ∈ HRw(X).

Proof Let p = π ◦ σ : Z → X . By the projection formula

Qσ ∗�(p∗α, p∗α′) =
∫

Z
σ ∗�p∗αp∗α′ =

∫
Z

σ ∗�σ ∗π∗ασ ∗π∗α′

= deg(σ )

∫
Y

�π∗απ∗α′ = deg(σ )

∫
X
(π∗�)αα′ = deg(σ )Qπ∗�(α, α′).

Thus the result follows from Lemma6.3 applied to p∗:H 1,1(X;R) → H 1,1(Z;R).
�

7 Schur Classes Are in HR

Lemma 7.1 Let X be a smooth projective manifold of dimension d ≥ 4, and E be
a nef Q-twisted bundle of rank d − 2. Then cd−2(E) ∈ HRw(X).

Proof This is exactly as in [21, Proposition 3.1]. First assume that E is ample and
X is smooth. By a consequence of the Bloch-Gieseker Theorem for all t ∈ R≥0 the
intersection form

Qt (α) :=
∫

X
αcd−2(E〈th〉)α for α ∈ H 1,1(X; R)

is non-degenerate (we remark that we are allowing possibly irrational t here, and
then cd−2(E〈th〉) is to be understood as being defined as in (2.1)). Now for small t
we have

cd−2(E〈th〉) = td−2hd−2 + O(td−3).

Observe that for an intersection form Q, having signature (+,− . . . ,−) is invariant
under multiplying Q by a positive multiple, and is an open condition as Q varies
continuously. Thus since we know that hd−2 has the Hodge-Riemann property, the
intersection form (α, β) �→ ∫

X αhd−2β has signature (+,− . . . ,−), and hence so
does Qt for t sufficiently large. But Qt is non-degenerate for all t ≥ 0, and hence
Qt must have this same signature for all t ≥ 0. Thus cd−2(E) ∈ HR(X).

Since any Q-twisted nef bundle E can be approximated by an Q-twisted ample
vector bundle we deduce that cd−2(E) ∈ HR(X) ⊂ HRw(X). �
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Theorem 7.2 (Derived Schur Classes are in HR) Let X be smooth and projective of
dimension d ≥ 2, let λ be a partition of length d + i − 2 and let E be a Q-twisted
nef vector bundle on X. Then

s(i)
λ (E) ∈ HR(X).

Proof The statement is trivial unless e := rk(E) ≥ λ1 and d ≥ 2 which we assume
is the case. When d = 3, s(i)

λ is a positive multiple of c1 and then the result we want
follows from the classical Hodge-Riemann bilinear relations. Sowe can assume from
now on that d ≥ 4.

Fix an ample class h on X . We first prove that sλ(E) ∈ HRw(X). Consider the
case i = 0 so |λ| = d − 2. By Corollary 5.2

∫
X sλ(E)h2 ≥ 0. Also, the cone con-

struction described in §4 (particularly (4.3)) gives an irreducible variety π : C → X
of dimension n and a nef Q-twisted vector bundle U of rank n − 2 such that

π∗cn−2(U ) = sλ(E).

Since C is irreducible we can take a resolution of singularities σ : C ′ → C . Then
σ ∗U is also nef, and Lemma 7.1 gives cn−2(σ

∗U ) ∈ HRw(C ′). Thus Lemma 6.6
implies sλ(E) ∈ HRw(X).

Consider next the case i ≥ 1, so |λ| = d + i − 2. Again by Corollary 5.2,∫
X s(i)

λ (E)h2 ≥ 0. Consider the product X̂ = X × Pi and set τ = c1(OPi (1)). Sup-

pressing pullback notation, theQ-twisted bundle E〈τ 〉 on X̂ is nef, so by the previous
paragraph sλ(E〈τ 〉) ∈ HRw(X̂). Now

sλ(E〈τ 〉) =
|λ|∑
j=0

s( j)
λ (E)τ j

so if π : X̂ → X is the projection

π∗sλ(E〈τ 〉) = s(i)
λ (E).

Thus by Lemma 6.5 we get also s(i)
λ (E) ∈ HRw(X).

To complete the proof define

�t = s(i)
λ (E〈th〉) for t ∈ Q≥0

and
f (t) = det(Q�t ).

Note that the leading term of �t is a positive multiple of hd−2 (this is Example 3.4
and it is here we use that e ≥ λ1). In particular, for t sufficiently large Q�t is non-
degenerate (in fact it has the Hodge-Riemann property). Thus f is not identically
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zero, and since it is a polynomial in t this implies f (t) �= 0 for all but finitely many
t . Thus there is an ε > 0 so that f (t) �= 0 for rational 0 < t < ε and we henceforth
consider only t in this range. Then Q�t is non-degenerate, and as Q�t (h, h) ≥ 0
it cannot be negative definite. The previous paragraph gives �t ∈ HRw(X), so we
must actually have �t ∈ HR(X) for small t ∈ Q>0. Thus �0 = s(i)

λ (E) ∈ HR(X) as
claimed. �

Remark 7.3 Note the above proof gives more, namely that if h is an ample class
and E is nef and λ1 ≤ rk(E) we have

s(i)
λ (E〈th〉) ∈ HR(X) for all but possibly finitely many t ∈ Q>0.

As mentioned in the introduction, the main result of [21] says more namely that if
E is ample of rank at least λ1 then s(i)

λ (E) ∈ HR(X), but the proof of that statement
is significantly harder.

Theorem 7.4 (Monomials of Schur Classes are in HR) Let X be smooth and pro-
jective of dimension d and E1, . . . , E p be nef vector bundles on X. Let λ1, . . . , λp

be partitions such that ∑
i

|λi | = d − 2.

Then the monomial of Schur polynomials

∏
i

sλi (Ei )

lies in HR(X).

Proof The proof is similar to what has already been said, so we merely sketch the
details. Set � = ∏

i sλi (Ei ). Then (4.5) gives a map π : C → X from an irreducible
variety of dimension n and nef bundle bundle U on C so π∗cn−2(U ) = �. A small
modification of the proof of Proposition 5.1 and Corollary 5.2 means that if h is
ample

∫
X �h2 ≥ 0.

Consider
�t := π∗cn−2(U 〈tπ∗h〉)

and take a resolution σ : C ′ → C . Then σ ∗U 〈π∗h〉 remains nef, so Lemma 6.6
implies �t ∈ HRw(X).

Now we can equally apply this construction replacing each Ei with Ei ⊗ O(th)

for t ∈ N (which one can check does not change π : C → X ) giving

π∗cn−2(U 〈th〉) =
∏

i

sλi (Ei 〈th〉) for t ∈ N.
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In particular applying Example 3.4 to each factor on the right hand side, the highest
power of t is a positive multiple of hd−2. Thus for almost all t ∈ Q>0 we have Q�t

is non-degenerate, and so in fact Q�t ∈ HR(X). Taking the limit as t → 0 gives the
result we want. �

8 The Kähler Case

The main place in which projectivity has been used so far is in the application of the
Bloch-Gieseker Theorem, and here we explain how this projectivity assumption can
be relaxed. Following Demailly-Peternell-Schneider [6] we say a line bundle L on
a compact Kähler manifold X is nef if for all ε > 0 and all Kähler forms ω on X
there exists a hermitian metric h on L with curvature ddc log h ≥ −εω. We say that
a vector bundle E on X is nef if the hyperplane bundle OP(E)(1) is nef.

For the rest of this section let (X, ω) be a compact Kähler manifold of dimension
d. Given a vector bundle E and δ ∈ H 1,1(X; R)we can consider theR-twisted bundle
E〈δ〉 whose Chern classes are defined just as in the case of Q-twists in the projective
case. We identify P(E〈δ〉) with P(E), and say that E〈δ〉 is nef if for any Kähler
metric ω′ on P(E), any ε > 0, and any closed (1, 1) form δ′ on X such that [δ′] = δ,
there exists a hermitian metric h on OP(E)(1) such that

ddc log h + π∗δ′ ≥ −εω′.

We refer the reader to [6] for the fundamental properties of nef bundles on compact
Kählermanifolds, in particular to the statement that a quotient of a nef bundle is again
nef, and the direct sum of two nef bundles is again nef (and each of these statements
extend to the case of R-twisted nef bundles with minor modifications of the proofs
involved).

Theorem 8.1 (Bloch-Gieseker for Kähler Manifolds) Let E be a nef R-twisted vec-
tor bundle of rank e ≤ d and t > 0. Let e + j ≤ d and consider

� := ce(E〈tω〉) ∧ ω j .

Then then map

H d−e− j (X)
∧�−→ H d+e+ j (X)

is an isomorphism.

Proof Write E = E ′〈δ〉 where E ′ is a genuine vector bundle. Fix t > 0 and set
Et := E〈tω〉 = E ′〈δ + tω〉. Set π : P(E ′) → X and define ζ ′ = c1(OP(E ′)(1)) and
ζ := ζ ′ + π∗(δ + t[ω]). Then ζ e − c1(Et )ζ

e−1 + · · · + (−1)ece(Et ) = 0 where we
supress pullback notation for convenience.
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Suppose a ∈ H d−e− j (X) has ace(Et )ω
j = 0, and we will show that a = 0. To

this end define

b = a.(ζ e−1 − c1(Et )ζ
e−2 + · · · + (−1)e−1ce−1(Et ))

so by construction
ζbω j = ±ace(Et )ω

j = 0.

We claim that ζ is a Kähler class. Given this for now, the Hard-Lefschetz property
for ζ then gives bω j = 0 and hence aω j = π∗(bω j ) = 0 and hence a = 0 by the
Hard-Lefschetz property of ω j

It remains to show that ζ is Kähler, and the following is essentially what is
described in [6, Proof of Theorem 1.12]. Fix ω′ a Kähler metric on P(E ′), and
fix a hermitian metric on E ′ which induces a hermitian metric ĥ on OP(E ′)(1). Then
ddc log ĥ is strictly positive in the fiber directions, so there is a constant C > 0 with

ddc log ĥ + Cπ∗ω ≥ C−1ω′.

Let δ′ be a closed (1, 1)-form on X with [δ′] = δ, and choose ε > 0 sufficiently small
that (t − C2ε)ω + Cεδ′ > 0. Then as E is assumed to be nef there is a hermitian
metric h on OP(E ′)(1) such that ddc log h + π∗δ′ ≥ −εω′.

Then the class ζ = c1(OP(E ′)(1)) + π∗[δ + tω] is represented by the form

(1 − Cε)ddc log h + Cεddc log ĥ + π∗(δ′ + tω)

which is bounded from below by

(1 − Cε)(−εω′ − π∗δ′) + Cε(C−1ω′ − Cπ∗ω) + π∗(tω + δ′)

= Cε2ω′ + (t − C2ε)π∗ω + Cεπ∗δ′

≥ Cε2ω′ > 0.

Thus ζ is a Kähler class as claimed. �

Corollary 8.2 Let E be a nef R-twisted vector bundle of rank e ≤ d and j = d − e.
Then ∫

X
ce(E)ω j ≥ 0.

Proof Let f (t) = ∫
X ce(E〈tω〉)ω j . The Bloch-Gieseker theorem implies f (t) �= 0

for all t > 0, and since it is clearly positive for t � 0 f is not identically zero. Since
f is polynomial in t we get f (t) > 0 for t > 0 sufficiently small, which proves the
statement. �
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From here almost all the results in this paper extend to the Kähler case, and the
proofs have only trivial modifications. We state only one and leave the rest to the
reader.

Theorem 8.3 (Derived Schur classes of nef vector bundles on Kähler manifolds are
in HR) Let X be a compact Kähler manifold of dimension d ≥ 2, let λ be a partition
of length d + i − 2 and let E be an R-twisted nef vector bundle on X. Then

s(i)
λ (E) ∈ HR(X).

9 Combinations of Derived Schur Classes

An interesting feature of the Hodge-Riemann property for bilinear forms is that it
generally is not preserved by taking convex combinations, and so there is no reason
to expect that a convex combination of classes with the Hodge-Riemann property
again has the Hodge-Riemann property. In fact this phenomena occurs even for
combinations of Schur classes of an ample vector bundle as the following example
shows

Example 9.1 ([21, Sect. 9.2]) Let X = P2 × P3 Then N 1(X) is two-dimensional,
with generators a, b that satisfy a3 = 0, a2b3 = 1. SetOX (a, b) = OP2(a) � OP3(b)

and consider the nef vector bundle

E = O(1, 0) ⊕ O(1, 0) ⊕ O(0, 1).

One computes that the form

(1 − t)c3(E) + ts(1,1,1)(E)

gives an intersection form on N 1(X) with matrix

Qt :=
(

t 2t
2t 1 + 2t

)
.

For t ∈ (0, 1/2) the matrix Qt has two strictly positive eigenvalues. Thus fixing
t ∈ (0, 1/2), any small pertubation of E by an ample class gives an ample Q-twisted
bundle E ′ so that (1 − t)c3(E ′) + ts(1,1,1)(E ′) does not have the Hodge-Riemann
property.

Given this it is interesting to ask if there are particular convex combinations of
(derived) Schur classes that do retain the Hodge-Riemann property. To state one such
result we need the following definition, for which we recall a matrix is said to be
totally positive if all its minors have non-negative determinant,.
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Definition 9.2 (Pólya Frequency Sequence) Let μ0, . . . , μN be non-negative num-
bers, and set μi = 0 for i < 0. We say μ0, . . . , μN is a Pólya frequency sequence if
the matrix

μ := (μi− j )
N
i, j=0

is totally positive.

Theorem 9.3 Suppose that X has dimension d ≥ 4 that h is an nef class on X and
E is a nef vector bundle. Let |λ| = d − 2 and μ0, . . . , μd−2 be a Pólya frequency
sequence. Then the class

d−2∑
i=0

μi s
(i)
λ (E)hi (9.1)

lies in HR(X).

Theorem 9.3 follows quickly from the following statement, for which we recall
ci denotes the i-th elementary symmetric polynomial.

Proposition 9.4 Suppose that X has dimension d ≥ 4 and E is a nef vector bundle.
Let λ be a partition of d − 2. Let D1, . . . , Dq be ample Q-divisors on X for some
q ≥ 1. Then for any t1, . . . , tq ∈ Q>0 the class

d−2∑
i=0

s(i)
λ (E)ci (t1D1, . . . , tq Dq)

lies in HR(X).

Proof of Theorem 9.3 If all the μi vanish the statement is trivial, so we assume this
is not the case. From the Aissen-Schoenberg-Whitney Theorem [1], the assumption
that μi is a Pólya frequency sequence implies that the generating function

d−2∑
i=0

μi z
i

has only real roots, and since eachμi is non-negative these roots are then necessarily
non-positive. Writing these roots as {−t j } for t j ∈ R≥0 means

d−2∑
i=0

μi z
i = κ

N∏
j=0

(z + t j ) where κ > 0

which implies
μi = κci (t1, . . . , tN ) for all i.
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Now for each j let t (n)
j ∈ Q>0 tend to t j as n → ∞. Fix an ample divisor h′′ and

consider the class h′ := h + 1
n h′′. Proposition 9.4 (applied with q = N and D1 =

· · · = Dq = h′) implies

d−2∑
i=0

s(i)
λ (E)ci (t

(n)
1 , . . . , t (n)

N )(h′)i

lies in HR(X). Taking the limit as n → ∞ gives the statement we want. �
Proof of Proposition 9.4 Set

� := �(D1, . . . , Dp) :=
d−2∑
i=0

s(i)
λ (E)ci (D1, . . . , Dp).

Without loss of generality we may assume all the Di are integral and very ample.
Write t j = r j/s for some positive integers r j and s. By an iterated application of the
Bloch-Gieseker covering construction, we find a finite u : Y → X and line bundles
η j on X ′ such that that η⊗s

j = u∗O(D j ). Thus

r j c1(η j ) = t j u
∗ D j .

Set E ′ = u∗E . Consider the cone construction for E ′ as described in §4. That is,
there is a surjective π : C → Y from an irreducible variety C of dimension n, and a
nef vector bundle U on C ′ of rank n − 2 such that π∗cn−2(U ) = sλ(E ′). In fact more
is true namely;

Lemma 9.5
π∗cn−2−i (U |C) = s(i)

λ (E ′) for 0 ≤ i ≤ |λ|. (9.2)

Sketch Proof. Formally this is clear: for if δ′ ∈ H 1,1(X; R) then cn−2(U 〈π∗δ′〉) =∑
cn−2−i (U )(π∗δ′)i and pushing this forward to X gives a polynomial in δ′ of classes

on X whose coefficients are the derived Schur classes s(i)
λ (E ′). For a full proof we

refer the reader to [21, Proposition 5.2]. �
Continuing with the proof of the Proposition, set

F =
p⊕

i=1

η
⊗ri
i

so
c j (F) = c j (r1c1(η1), · · · , rpc1(ηp)) = u∗c j (t1D1, . . . , tp Dp).

Then on C ′ the bundle
Ũ := U ⊕ π∗F
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is nef. Take a resolution σ : C → C ′, the vector bundle σ ∗U remains nef and so
using Theorem 7.2 and Lemma 6.6

π∗cn−2(Ũ ) ∈ HRw(Y ).

But

π∗cn−2(Ũ ) = π∗(cn−2(U ) + cn−3(U )π∗c1(F) + · · · + cn−2−d(U )π∗cd(F))

= sλ(E ′) + s(1)
λ (E ′)c1(F) + · · · + s(d−2)

λ (E ′)cd−2(F)

= u∗�.

So by Lemma 6.4 applied to u : Y → X we conclude that � ∈ HRw(X).
To show that in fact � ∈ HR(X) we consider the effect of replacing each Di with

Di + th. Let �t := �(D1 + th, . . . , Dp + th) which is a polynomial in t whose
td−2 term is some positive multiple of hd−2. Setting f (t) = det(Q�t ) we conclude
exactly as in the end of the proof of Theorem 7.2 that �t ∈ HR(X) for t ∈ Q+
sufficiently small, and thus � ∈ HR(X) as required. �

Question 9.6 Suppose that μ1, . . . , μd−2 is a Pólya frequency sequence with each
μi strictly positive, and that h and E are ample. Is it then the case that the class in
(9.1) is actually in HR(X)? The difficulty here is that to follow the proof we have
given above one needs to address the possibility that some of the t j are irrational.

10 Inequalities

10.1 Hodge-Index Type Inequalities

The simplest and most fundamental inequality obtained from the Hodge-Riemann
property is the Hodge-index inequality.

Theorem 10.1 (Hodge-Index Theorem) Let X be a manifold of dimension d and
� ∈ HRw(X). If β ∈ H 1,1(X) is such that

∫
X β2� ≥ 0 then for any α ∈ H 1,1(X) it

holds that ∫
X

α2�

∫
X

β2� ≤
(∫

X
αβ�

)2

. (10.1)

Moreover if � ∈ HR(X) and
∫

X β2� > 0 then equality holds in (10.1) if and only if
α and β are proportional.

Proof The statement is about symmetric bilinear forms with the given signature
and its proof is standard. Indeed, the case when

∫
X β2� = 0 is trivial and the case

when the intersection form is nondegenerate and
∫

X β2� > 0 is classical. Finally,
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the case when the intersection form is degenerate and
∫

X β2� > 0 reduces itself to
the previous one by modding out the kernel of the intersection form. �

In particular (namely Theorem 7.2) the inequality (10.1) applies when� = sλ(E)

whenever λ is a partition of d − 2, E is a nef Q-twisted bundle on X and β is nef.
We now prove a variant of this that gives additional information.

Theorem 10.2 Let X be a projective manifold of dimension d ≥ 4 and let E be a
Q-twisted nef vector bundle and h ∈ H 1,1(X; R) be nef. Also let λ be a partition of
length |λ| = d − 1. Then for all α ∈ H 1,1(X; R),

∫
X

α2s(1)
λ (E)

∫
X

hsλ(E) ≤ 2
∫

X
αhs(1)

λ (E)

∫
X

αsλ(E). (10.2)

Remark 10.3 (i) In the case that λ = (d − 1) and rk(E) = d − 1 the inequality
(10.2) becomes

∫
X

α2cd−2(E)

∫
X

hcd−1(E) ≤ 2
∫

X
αhcd−2(E)

∫
X

αcd−1(E). (10.3)

This was previously proved in [21, Theorem 8.2]. In fact (10.3) was shown to
hold for all nef vector bundles of rank at least d − 1 and if E, h are assumed
ample then equality holds in (10.3) if and only if α = 0. We imagine a similar
statement holds in the context of Theorem 10.2.

(ii) Assume in the setting of Theorem 10.2 that
∫

X sλ(E)h > 0 and let W be the
kernel of the map H 1,1(X) → R given by α �→ ∫

X αsλ(E). Then W has codi-
mension 1, and (10.2) says that the intersection form Qsλ(E) is negative semidef-
inite on W . This is different information to the Hodge-Index inequality which
is essentially a reformulation of the fact that this intersection form is negative
semidefinite on the orthogonal complement of h.

(iii) The inequality (10.2) generalizes to anyhomogeneous symmetric polynomial p
in e variables with the property that p(E) ∈ HR(X) for allQ-twisted nef vector
bundles E of rank e (with the obvious definition for the derived polynomials
p(i)).

Proof of Theorem 10.2 If e := rk(E) < λ1 the statement is trivial, so we assume
e ≥ λ1. We start with some reductions. By continuity, it is sufficient to prove this
under the additional assumption that h is ample. Also replacing E with E〈th〉 for
t ∈ Q>0 sufficiently small we may assume that

∫
X sλ(E)h > 0.

Now set X̂ = X × P1 and Ê = E � OP1(1). Observe Ê is nef on X̂ and |λ| =
dim(X̂) − 2. So Theorem 7.2 implies

sλ(Ê) ∈ HR(X̂).
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Let α ∈ H 1,1(X; R) and denote by τ the hyperplane class on P1. Also to ease
notation define

� := sλ(E) ∈ H d−1,d−1(X; R) and �′ := s(1)
λ (E) ∈ H d−2,d−2(X; R)

so sλ(Ê) = � + �′τ .
Now define

α̂ := α − κτ where κ :=
∫

X α�′h∫
X �h

so
α̂sλ(Ê)h = α̂(� + τ�′)h = 0.

Also observe ∫
X̂

sλ(Ê)h2 =
∫

X
�′h2 > 0

so the Hodge-Index inequality applied to sλ(Ê) yields

0 ≥
∫

X̂
α̂2sλ(Ê) =

∫
X̂
(α2 − 2κατ)(� + τ�′) =

∫
X

α2�′ − 2κ
∫

X
α�.

Rearranging this gives (10.2). �

10.2 Khovanskii-Tessier-Type Inequalities

Let X be smooth and projective of dimension d. Suppose that E, F are vector bundles
on X , and let λ and μ be partitions of length |λ| and |μ| respectively, and to avoid
trivialities we assume |λ| + |μ| ≥ d.

Definition 10.4 We say a sequence (ai )i∈Z of non-negative real numbers is log
concave if

ai−1ai+1 ≤ a2
i for all i (10.4)

We note that for a finite sequence, say ai = 0 for i < 0 and for i > n, log-concavity
is equivalent to (10.4) holding in the range i = 1, . . . , n − 1.

Theorem 10.5 Assume E, F are nef. Then the sequence

i �→
∫

X
s(|λ|+|μ|−d−i)
λ (E)s(i)

μ (F) (10.5)

is log-concave

Before giving the proof, some special cases are worth emphasising.
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Corollary 10.6 Suppose that |λ| = |μ| = d. Then the sequence

i �→
∫

X
s(d−i)
μ (E)s(i)

λ (F)

is log-concave

Corollary 10.7 Suppose that |λ| = d and let h be a nef class on X. Then the sequence

i �→
∫

X
s(d−i)
λ (E)hd−i (10.6)

is log-concave. In particular the map

i �→
∫

X
ci (E)hd−i (10.7)

is log-concave.

Proof of Corollary 10.7 By continuity wemay assume that h is ample. Let L be a line
bundle with c1(L) = h. By rescaling h we may, without loss of generality, assume
L is globally generated giving a surjection

O⊕ f +1 → L → 0

for some integer f . Let F∗ be the kernel of this surjection. Then F is a vector
bundle of rank f that is globally generated and hence nef. Now set μ = ( f ), so
s( j)
μ (F) = c f − j (F) = h f − j . We now replace i with f − d + i in (10.5) (which is an
affine linear transformation so does not affect log-concavity). Note that

|λ| + |μ| − d − ( f − d + i) = |λ| − i,

so Theorem 10.5 gives (10.6)
Finally (10.7) follows upon letting e := rk(E) and putting λ = (e) so s( j)

λ (E) =
ce− j (E) so s(|λ|−i)

λ (E) = ci (E). �
Proof of Theorem 10.5 The first thing to note is that all the quantities in (10.5)

are non-negative (see Remark 5.5). Also, we may as well assume rk(E) ≥ λ1 and
rk(F) ≥ μ1 else the statement is trivial.

Set
j = |λ| + |μ| − d − i

and define

ai :=
∫

X
s( j)
λ (E)s(i)

μ (F)
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so the task is to show that (ai ) is log-concave. We observe that ai = 0 if either i or
j are negative, or i > |μ| or j > |λ|. Thus the range of interest is

i := max{0, |μ| − d} ≤ i ≤ min{|μ|, |λ| + |μ| − d} =: i .

Fix such an i in this range and consider

X̂ = X × P j+1 × Pi+1.

Let τ1 be the pullback of the hyperplane class on P j+1 and τ2 the pullback of the
hyperplane class on Pi+1 and consider

� = sλ(E(τ1)) · sμ(F(τ2)).

Observe that by construction |λ| + |μ| = d + i + j = dim X̂ − 2 =: d̂ − 2.Expand-
ing� as a polynomial in τ1, τ2 one sees that the coefficient of τ

j
1 τ i

2 is precisely s( j)
λ s(i)

μ .
Thus ∫

X̂
�τ1τ2 =

∫
X

s( j)
λ s(i)

μ

∫
P j+1

τ
j+1
1

∫
Pi+1

τ i+1
2 =

∫
X

s( j)
λ s(i)

μ = ai .

Similarly
∫

X̂ �τ 2
1 = ai−1 and

∫
X̂ �τ 2

2 = ai+1.

Now, since E(τ1) and F(τ2) are nef on X̂ we know from Theorem 7.4 that � ∈
HR(X̂). Thus the Hodge-Index inequality (10.1) applies with respect to the classes
τ1, τ2 which is ∫

X̂
�τ 2

1

∫
X̂

�τ 2
2 ≤

(∫
X̂

�τ1τ2

)2

(10.8)

giving the log-concavity we wanted. �

Remark 10.8 In [21] we gave a slightly different proof of (10.6) which gave more,
namely that if X is smooth and E and h are ample then the map in question is strictly
log-concave. We expect that an analogous improvement can be made to Theorem
10.5, but it is not clear how this can be proved using the methods we have given here,
since the bundle F constructed in the above proof is only nef.

Question 10.9 Is there a natural statement along the lines of Theorem 10.5 that
applies to three or more nef vector bundles? For instance perhaps it is possible to
package characteristic numbers into a homogeneous polynomial that can be shown
to be Lorentzian in the sense of Brändén-Huh [3].

Corollary 10.10 Let λ and μ be partitions, and let d be an integer with d ≤ |λ| +
|μ|. Assume x1, . . . , xe, y1, . . . , y f ∈ R≥0. Then the sequence

i �→ s(|λ|+|μ|−d+i)
λ (x1, . . . , xe)s

(i)
μ (y1, . . . , y f )

is log concave.
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Proof By continuity we may assume the xi and yi are rational. Furthermore, by
clearing denominators, we may suppose they all lie in N. Then take X = Pd and
E = ⊕e

i=1 OPd (xi ) and F = ⊕ f
i=1 OPd (yi ). Then for any symmetric polynomial p

of degree δ we have p(E) = p(x1, . . . , xe)τ
δ and similarly for F . Thus what we

want follows from Theorem 10.5. �

Putting e = f we can consider

ui := s(|λ|+|μ|−d+i)
λ s(i)

μ

as a polynomial in x1, . . . , xe. Still assuming d ≤ |λ| + |μ|, Corollary 10.10 says
that

(u2
i − ui+1ui−1)(x1, . . . , xe) ≥ 0 for any x1, . . . , xe ∈ R≥0.

Question 10.11 Is u2
i − ui+1ui−1 monomial-positive (i.e. a sum of monomials with

all non-negative coefficients)?

Corollary 10.12 Let λ be a partition and x1, . . . , xe ∈ R≥0. Then the sequence

i �→ s(i)
λ (x1, . . . , xe)

is log-concave.

Proof By continuity we may assume xi ∈ Q>0, and then by clearing denominators
that they are all inN. Set d = |λ| and X = Pd and E = ⊕e

j=1 OPd (xi ) and h = c1(E)

which are both ample. Then for any symmetric polynomial p of degreed in e variables
we have

∫
X p(E) = p(x1, . . . , xe). Thus Corollary 10.7 tells us that the map

i �→ s(d−i)
λ (x1, . . . , xe)(x1 + · · · xe)

d−i =: ai

is log-concave That is ai−1ai+1 ≤ a2
i , and dividing both sides of this inequality by

(x1 + . . . + xe)
2d−2i gives that i �→ s(d−i)

λ (x1, . . . , xe) is log-concave. Replacing d −
i with i does not change the log-concavity, so we are done. �

Question 10.13 Do Corollary 10.10 or Corollary 10.12 have a purely combinatorial
proof?

10.3 Lorentzian Property of Schur Polynomials

We end with a discussion on how our results relate to those of Huh-Matherne-
Mészáros-Dizier [13]. To do so we need some definitions that come from [3].
A symmetric homogeneous polynomial p(x1, . . . , xe) of degree d is said to be
strictly Lorentzian if all the coefficients of p are positive and for any α ∈ Ne with∑

j α j = d − 2 we have
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∂α p

∂xα
has signature (+,−, . . . ,−).

We say p is Lorentzian if it is the limit of strictly Lorentzian polynomials.
Any homogeneous polynomial p of degree d can be written as p = ∑

μ aμxμ

where the sum is over μ ∈ Ze
≥0 with

∑
μ j = d. We write [p]μ := aμ for the coef-

ficient of xμ. The normalization of p is defined by

N (p) :=
∑

μ

aμ

μ! xμ.

Theorem 10.14 (Huh-Matherne-Mészáros-Dizier [13, Theorem 3])The normalized
Schur polynomials N (sλ) are Lorentzian.

Our proof needs a preparatory statement. For this we set

t j (x1, . . . , xe) = x j for each j = 1, . . . , e.

Lemma 10.15 Let p(x1, . . . , xe) be a homogeneous polynomial of degree d, let e′
be any integer satisfying e′ ≥ max1≤ j≤e degx j

(p), where degx j
(p) is the degree of p

with respect to the indeterminate x j , and set

q(x1, . . . , xe) := xe′
1 · · · xe′

e p(x−1
1 , . . . , x−1

e ).

Let α ∈ Ze
≥0 with

∑
j α j = d − 2 and set β j := e′ − α j . Then

∂α

∂xα
N (p) = 1

2

∑
1≤i, j≤e

[qti t j ]β xi x j .

Proof For 1 ≤ i ≤ e set δi = (0, . . . , 0, 1, 0, . . . , 0) ∈ Ze with 1 at the i-th position.
Then if p is written as p = ∑

μ aμxμ, we get

∂α

∂xα
N (p) = 1

2

∑
1≤i, j≤e

aα+δi +δ j xi x j = 1

2

∑
1≤i, j≤e

[qti t j ]β xi x j ,

as one can check by expanding p in monomials. �

Proof of Theorem 10.14 Take a partition λ = (λ1, . . . , λN ) of d := |λ| with 0 ≤
λN ≤ · · · ≤ λ1 and assume λ1 ≤ e else the statement is trivial. Then d is the degree of
sλ(x1, . . . , xe). Note that by adding zero members to the partition λ we may increase
N without changing the value of sλ. We may therefore suppose that in our case
N ≥ e. The dual partition to λ is defined by
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λi := e − λN−i for i = 1, . . . , N

so |λ| = Ne − |λ| = Ne − d.
Applying the definition

sλ = det

⎛
⎜⎜⎜⎝

cλ1 cλ1+1 · · · cλ1+N−1

cλ2−1 cλ2 · · · cλ2+N−2
...

...
...

...

cλN −N+1 cλN −N+2 · · · cλN

⎞
⎟⎟⎟⎠

to
x N
1 · · · x N

e sλ(x−1
1 , . . . , x−1

e )

and multiplying each row of the matrix defining

sλ(x−1
1 , . . . , x−1

e )

with x1 · · · xe, we get
x N
1 · · · x N

e sλ(x−1
1 , . . . , x−1

e ) =

det

⎛
⎜⎜⎜⎝

ce−λ1 ce−λ1−1 · · · ce−λ1−N+1

ce−λ2+1 ce−λ2 · · · ce−λ2−N+2
...

...
...

...

ce−λN +N−1 ce−λN +N−2 · · · ce−λN

⎞
⎟⎟⎟⎠ = sλ̄(x1, . . . , xe).

Thus
sλ(x1, . . . , xe) = x N

1 · · · x N
e sλ(x−1

1 , . . . , x−1
e )

and, equivalently,

sλ(x1, . . . , xe) = x N
1 · · · x N

e sλ(x−1
1 , . . . , x−1

e ).

It is tempting to now apply Lemma 10.15, but before doing that we introduce a
small perturbation. For ε > 0 set x̃ j := x j + ε

∑
p x p and let

qε(x1, . . . , xe) := sλ(x̃1, . . . , x̃e)

and
pε(x1, . . . , xe) := x N

1 · · · x N
e qε(x−1

1 , . . . , x−1
e ),

so
qε(x1, . . . , xe) = x N

1 · · · x N
e pε(x−1

1 , . . . , x−1
e ). (10.9)
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We will show that N (pε) is strictly Lorentzian for small ε > 0, which completes the
proof since pε tends to sλ as ε tends to zero.

To this end, let α ∈ Ze
≥0 with

∑
j α j = d − 2 and set β j := N − α j and

X :=
e∏

j=1

Pβ j .

Let τ j denote the pulback of the hyperplane class on Pβ j to X , and set h := ∑
j τ j

which is ample. Next set

E :=
e⊕

j=1

π∗
j OP

β j (1) and E ′ := E〈εh〉.

Then E is a nef vector bundle on X and by construction dim X = Ne − d + 2 =
|λ| + 2. So from Theorem 7.2 we know sλ(E) ∈ HR(X). In fact by Remark 7.3 we
actually have sλ(E ′) ∈ HR(X) for sufficiently small ε > 0 andwe assume henceforth
this is the case.

Now by (10.9) and Lemma 10.15,

∂α

∂xα
N (pε) = 1

2

∑
1≤i, j≤e

[qε ti t j ]β xi x j (10.10)

and our goal is to show that this has the desired signature. But this is precisely what
we already know, since thinking of sλ̄(E ′)τiτ j as a homogeneous polynomial in
τ1, . . . , τe, integrating over X picks out precisely the coefficient of τβ , and as E ′ has
Chern roots τ1 + εh, · · · , τe + εh this becomes

∫
X

sλ̄(E ′)τiτ j = [qε ti t j ]β.

Hence the quadratic form in (10.10) is precisely the intersection form 1
2 Qsλ̄(E ′) on

H 1,1(X), which has signature (+,−, . . . ,−) and we are done. �

Remark 10.16 There is a lot of overlap between what we have here and the original
proof in [13]. For instancewe rely here on our Theorem that Schur classes of (certain)
ample vector bundles have the Hodge-Riemann property, which in turn relies on the
Bloch-Gieseker theorem and thus on the classical Hard-Lefschetz Theorem. On the
other hand, [13] relies on the fact that the volume function on a projective variety is
Lorentzian, which is a facet of the Hodge-index inequalities (that are a consequence
of the Hodge-Riemann bilinear relations).

Also, instead of our cone classes discussed in Sect. 4, the authors in [13] use a
different aspect of Schur classes that is also a degeneracy locus. Finally we remark
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the use of the dual partition λ also appears crucially in [13]. Nevertheless there is a
slightly different feel to the two proofs, and we leave it to the readers to decide if
they consider them “essentially the same” [11].
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On Large Deviation Principles and the
Monge–Ampère Equation (Following
Berman, Hultgren)

Yanir A. Rubinstein

Abstract This is mostly an exposition, aimed to be accessible to geometers, ana-
lysts, and probabilists, of a fundamental recent theorem of R. Berman with recent
developments by J. Hultgren, that asserts that the second boundary value problem for
the real Monge–Ampère equation admits a probabilistic interpretation, in terms of
many particle limit of permanental point processes satisfying a large deviation princi-
ple with a rate function given explicitly using optimal transport. An alternative proof
of a step in the Berman–Hultgren Theorem is presented allowing to to deal with all
“tempratures” simultaneously instead of first reducing to the zero-temperature case.

Keywords Probability theory · Monge-Ampere equations · Optimal transport
problem

1 Introduction

The purpose of this exposition is to present one particularly beautiful connection
between the Monge–Ampère equation and probability, specifically, a large devia-
tion principle, discovered by Berman. Since the original work by Berman is still
unpublished [4], and moreover deals with the more technically involved case where
the gradient image is a polytope (that arises from toric varieties), it seemed more
pedagogical to give an exposition that concentrates on subsequent work of Hultgren
[17] that elaborates Berman’s ideas in the case the gradient image has no boundary
(that arises from Abelian varieties) as many of the key ideas are present already in
the latter setting.
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It is worth pointing out thatwhile the lack of boundary is a simplification,Hultgren
beautifully deals with a different set of technicalities that arises in the Abelian setting
that is absent from Berman’s toric setting: theta function analysis.

We completely skip the connection to Abelian varieties in this exposition as our
goal was to present strictly the Monge–Ampère to LDP connection, stripping away
the underlying geometry. Our exposition culminates in Theorem 8.8, due toHultgren.

We take the opportunity to present an alternative proof to Theorem 8.8 that
deals with all “tempratures” simultaneously instead of first reducing to the zero-
temperature case as in the work of Berman and Hultgren (cf. [16, Remark 24, p.
59]). Basically this amounts to replacing an application of the Gärtner–Ellis theorem
with a direct computation (we still use Gärtner–Ellis theorem in several other places).
The proof we present culminates in Sect. 8.1 and is self-contained in the sense that
we present essentially all the basic prerequisites from large deviations theory and
optimal transport.

The family of Monge–Ampère equations Berman originally considers actually
corresponds to and is inspired by the Ricci continuity method introduced by the
author in 2008 [28] in connection with the Ricci flow and the search for Kähler–
Einstein metrics. The idea there, explained in detail in the survey [29, Sect. 6], is to
extend Aubin’s continuity method originally defined for parameter values t ∈ [0, 1]
all the way ‘back’ in time to t ∈ (−∞, 1]. This is motivated by the Ricci flow [28,
Sect. 3], [29, Sect. 6] and is exploited heavily in subsequent work on existence of
singular Kähler–Einstein metrics where the standard continuity method of Aubin
cannot be readily used, but where the asymptotic analysis of the limit t → −∞
allows to bypass the difficulty in getting the continuity method ‘started’ [18, Sect. 9].
Berman [4] discovered a physics interpretation for this analytical gadget where the
temperature corresponds precisely to −1/t , and so the limit t → −∞ becomes for
him a ‘zero-temperature limit’. Making this connection to physics proved extremely
fruitful as it led Berman to several observations, including the LDP result we describe
in this survey.

Goal of present work. The purpose of these lectures is to give a detailed exposi-
tion of some of Berman’s ideas [4] in the setting of Hultgren’s work [17] hopefully
with some simplification (in particular the alternative proof mentioned above). We
give some additional background in probability, hopefully to allow the dissemi-
nation of this beautiful piece of mathematics to a wider audience, given that the
necessary background from probability might not be standard for most students in
geometric analysis. We learned the little probability that we were able to present
here from reading Berman and Hultgren [4, 17] as well as using the classic reference
of Dembo–Zeitouni [8] and the more recent textbook of Rassoul-Agha–Seppäläinen
[25] where thorough, and probably more accurate, presentations of the results in
Sects. 3–6 can be found. For the results on optimal transport our main reference is
Ambrosio–Gigli [1].

Organization. We start by giving some anecdotes from the history of relations
between Monge–Ampère equations and probability in Sect. 2. This by no means
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is even an attempt at an exhaustive historical account. Rather, it is for the sake of
placing the idea of Berman in a broader historical context. Section 3 serves as a
gentle crash (oxymoron alert) course on large deviation principles (LDP). Section 4
discusses moment generating functions and the associated LDP with rate function
coming from the Legendre transform of the function: this is the Gärtner–Ellis Theo-
rem. Section 5 completes the proof of theGärtner–Ellis Theorem. Section 6 discusses
a general criterion for the existence of an LDP without using a moment generating
function. Section 7 briefly reviews the fundamentals of optimal transportation, and
computes, following Berman [4], the Legendre transform of Wasserstein distance as
well as identifies the candidate rate function for a family of Monge–Ampère equa-
tions (34) related to the Ricci continuitymethod [28, 29]. Section 8 presents the proof
of Berman–Hultgren’s Theorem 8.8, showing an LDP for a sequence of empirical
measures arising from theta functions on Abelian varieties (although we do not go
into any of the underlying complex geometry, which is beautifully presented in Hult-
gren’s work and in fact is one of the novelties of his work [17]). The rate function
is related to optimal transport, and the whole construction is intimately related to
solutions of the “master equation” (34). Most of Sect. 8 is devoted to our approach
described above to the proof of Theorem 8.8, culminating in Sect. 8.1, and in Sect. 8.2
we present the original proof of Berman and Hultgren, and briefly compare the two
approaches.

2 Monge–Ampère and Probability

The Laplace and Poisson equations have myriad probabilistic connections and inter-
pretations, e.g., through Brownian motion, eigenfunctions, nodal sets [6, 19, 35].
Being the higher-dimensional analogue of these equations, one would expect similar,
albeit more complicated, relations between the (homogeneous or non-homogeneous)
Monge–Ampère equation and probability.

Perhaps Gaveau was the first to pioneer such relations, when he discovered that
the solution to the complex Monge–Ampère equation can be expressed as the value
function of a stochastic optimal control problem and found a semi-group that can
be studied in relation to a parabolic version of the Monge–Ampère equation [12–
14]. This generalized the classical probabilistic representation of the solution of
the Laplace equation in one complex dimension. Another fundamental relation was
discovered byKrylov who provedC1,1 a priori estimates for the realMonge–Ampère
equation, among other results [20–23]. We refer to Delarue [7] for excellent lecture
notes that survey, expand, and give a pedagogical point of view on both Gaveau’s and
Krylov’s achievements (and also cover the complex case for the latter). Another type
of relation between Monge–Ampère and probability arises in the theory of optimal
transportation (see, e.g., Villani [31, 32]) where one seeks a map pushing forward
one probability measure into another. Indeed, the optimal (cost-minimizing) map
can be expressed as the gradient of a convex function and the push-forward equation
becomes a real Monge–Ampère equation.
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Another classical connection appears through the theory of Markov semigroups,
which in turn are closely related to the heat kernel. In this context hypercontractivity
plays a central role and leads to (logarithmic and regular) Sobolev inequalities. This
goes back towork ofGross [15]. For our anecdotal storytellingwemention that Bakry
and Bakry–Ledoux [2, 3] showed how to use these ideas to establish Sobolev and
diameter estimates in the presence of positive Ricci curvature. This was then applied
in the setting of a degenerate complexMonge–Ampère equation [18, Proposition 6.2]
to by-pass standard “Riemannian” proofs that do not readily apply in the degenerate
setting.

A spectacular relation between Monge–Ampère equations and probability was
discovered by Zelditch who together with collaborators studied several instances
where large deviation principles (LDP) make their appearance in complex geome-
try [11, 33, 34]. In particular, Song–Zelditch found a large deviation principle that
underlies the canonical Bergman approximation scheme [9, 24] for the Cauchy prob-
lem for the homogeneous realMonge–Ampère equation (this equation governs initial
value geodesics in the space of Kähler metrics with toric symmetry) [30].

Berman subsequently discovered that an LDP holds also in the quite distinct
setting of the second boundary value problem for non-homogeneous real Monge–
Ampère equation [4] that appears naturally in the setting of toric Kähler manifolds
as well as optimal transport. Since the gradient image in this setting is a polytope,
there are issues with the corners and the boundary that render the computations
more involved. For that reason, the subsequent follow-up work of Hultgren is more
appropriate for our exposition, as in the setting of Abelian varieties that he studies
the gradient image is a torus, while the main features of Berman’s work are still
present. The sections of the line bundles over Abelian varieties, theta functions, are
more complicated to represent than the simple toric monomials that appear in the
case of toric varieties, but that is not a steep price to pay for the lack of boundary.
Although outside the scope of these notes, we mention that Berman also discovered
an LDP in a sort of complex version of his aforementioned toric result in the case
β > 0, where the toric variety is replaced by a polarized complex manifold and the
role of the permanental point process is played by a determinantal point process [5].

3 Large Deviation Principles

We will be interested in asymptotic behavior, or more precisely, the asymptotic
concentration, of a sequence of probability spaces

(X ,A, μn),

indexed by n ∈ N. Here, (X ,A) is a measure space, i.e., X is a set, also called
the sample space, consisting of all possible outcomes, and A is a σ -algebra (the
collection of measurable sets in X ), and {μn} are probability measures on (X ,A),
i.e., functions μn : A → [0,∞] satisfying μn(∅) = 0 and μn(∪i Ai ) = ∑

i μn(Ai )
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whenever Ak ∩ Al = ∅ for all k, l, and with total massμn(X ) = 1. The last property
is what makes a general measure a probability measure. Often, it is customary to
omit A from the notation and refer to the triple (X ,A, μn) simply by the notation
μn ∈ P(X ), where P(X ) denotes the space of probabilitymeasures on (X ,A). Since
the next definition requires a topology, we will always assume our measure space is
Borel (i.e., the measurable sets are generated by the open ones).

Definition 3.1 We say that {(X ,A, μn)}n (or, for brevity, sometimes just {μn}n)

satisfies a large deviation principle with normalization rn ↗ ∞ (and denote this
statement by LDP(μn, rn)) if there exists a lower semicontinuous function I : X →
[0,∞] such that

lim inf
n→∞

1

rn
logμn(O) ≥ − inf

O
I, ∀ O open in X ,

and

lim sup
n→∞

1

rn
logμn(C) ≤ − inf

C
I, ∀ C closed in X .

Under mild assumptions on X , there is actually no ambiguity in the rate function
I [25, Theorem 2.13]. Here is where the stipulation that the rate function be lower
semicontinuous is relevant.

Lemma 3.2 Suppose X is a regular topological space and that the sequence of
probability spaces (X ,A, μn) satisfies L D P(μn, rn). Then,

I (x) = sup
{

− lim inf
1

rn
logμn(O) : O � x, O is an open set in X

}
.

Remark 3.3 For a sort of converse see Proposition 6.1.

Remark 3.4 The definition of a regular topological space will be given in the proof
shortly.

Proof Define I by the above formula. Suppose that LDP(μn, rn) holds with rate
function F . By Definition 3.1, whenever O is an open set in X with O � x ,

F(x) ≥ inf
O

F ≥ − lim inf
1

rn
logμn(O).

Taking the supremum over all such O does not change the left hand side, while the
right hand side becomes I (x). Thus, F ≥ I .

Conversely, fix x and let c be such that c < F(x). It suffices to show that c ≤ I (x).
Indeed, the assumption on X means that any point can be separated from any closed
set not containing it by means of disjoint open sets. Thus, we can separate x from
the closed set {F ≤ c} � x , i.e., choose open G � x with G ∩ {F ≤ c} = ∅, i.e.,
G ⊂ {F > c}. Now, since F is lower semicontinuous its inf over any closed set
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is attained. In particular, infG F ≥ c. (Note that we could not otherwise conclude
c ≤ inf {F>c} F!) Thus,

c ≤ inf
G

F ≤ − lim sup
1

rn
logμn(G) ≤ − lim inf

1

rn
logμn(G) ≤ I (x),

so F(x) ≤ I (x), concluding the proof. �

The fact that the function I is nonnegative is crucial: it means probability of events
(an event is an element of A) is exponentially decaying in general, with rate

‘rn × infimum of Iover the closure of the event′.

Of particular interest are therefore the zeros of the rate function, i.e., the events
I −1(0) (when this set is non-empty; it is always non-empty if the rate function is
good [8, p. 4], i.e., I has compact sub-level sets in X ). The significance of zeros is
nicely captured in terms of random variables, which we now turn to discuss.

Remark 3.5 Note that by setting O = C = X it follows that inf I = 0.

� � �

Probability measures and random variables can often be interchanged in the dis-
cussion, and by abuse of terminology this will sometimes be the case. Let us briefly
discuss the terminology involved. Let (X ,A, μ) be a probability space and let (Y,B)

be a measure space (a typical example is R with B being the usual Borel sets). A
random variable with values in Y is a measurable function X : X → Y (here,
measurable takes into account both A and B). To such an X one may associate a
probability space (Y,B, ν) defined by

ν(B) := μ({x ∈ X : X (x) ∈ B}), for B ∈ B

(the previous formula is often written, with some abuse, as ν(B) := μ{X ∈ B}). In
other words, ν(B) := μ(X−1(B)), or,

ν = X#μ.

One also refers to ν as the law of X . Note that often when discussing the random
variable X the “background space” (X ,A, μ) is completely auxiliary/irrelevant since
one is completely focused on (Y,B, ν). Thus, often one does not distinguish between
X and the resulting or pushed-forward measure ν.

� � �

When the sequence of probability spaces
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(X ,A, μn)

happen to correspond to the laws of a sequence of random variables Xn (on some
auxiliary probability space (X̃ , Ã, μ̃)) with values inX , the zeros of the rate function
have the following meaning. We say that x ∈ X is a limiting value of {Xn} with
probability c if

lim
n

μ̃({|Xn − x | < ε}) = lim
n

μn(Bε(x)) = c,

for all ε > 0 small.

Lemma 3.6 Consider a sequence of random variables Xn whose laws μn satisfy
LDP(μn, rn). Suppose that x ∈ X is a limiting value of {Xn} with probability c > 0
(independent of n). Then x ∈ I −1(0). In fact, x ∈ I −1(0) whenever 1

rn
logμn({|Xn −

x | < ε}) → 0.

To give an intuitive idea of Lemma 3.6, at least in the situations that we will be
interested in, x ∈ I −1(0)whenever x ∈ X is a “limiting value of Xn with probability
decaying slower than e−Crn (for all C > 0).”

Proof One has

inf
Bε (x)

I ≤ − lim sup
1

rn
logμn(Xn ∈ Bε(x)) = − lim sup

1

rn
log μ̃n(X−1

n (Bε(x))) = 0.

Letting ε → 0 and using I ≥ 0 and lower semicontinuity guarantees I (x) = 0 since
I ≥ 0. �

One particular situation of practical interest is when I −1(0) is a singleton. In that
case a sort of converse of the previous statement holds.

Corollary 3.7 Suppose that the sequence of probability spaces (X ,A, μn) satisfies
LDP(μn, rn) with a good rate function I (i.e., I has compact sub-level sets in X )
and that I −1(0) = {x} ⊂ X . Then μn → δx weakly.

Proof First, note that. �

Claim 3.8 For all closed C ⊂ X ,

lim supμn(C) ≤ δx (C).

Proof Indeed, this is trivial when x ∈ C since then the right-hand side equals 1.
Otherwise,

lim sup
n→∞

1

rn
logμn(C) ≤ − inf

C
I =: −ε < 0,

since I is good and so the infimum is attained, and by assumption it cannot be zero
as x is the only zero of the nonnegative function I . Thus, for n large
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1

rn
logμn(C) ≤ − inf

C
I = −ε,

so μn(C) < e−rnε and recalling that rn ↗ ∞ (Definition 3.1), lim supμn(C) = 0 =
δx (C) as desired. �

The proof now follows from the so-called portmanteau theorem, but we give the
quick proof for completeness. Note that Claim 3.8 implies

lim inf μn(O) ≥ δx (O),

for all open O ⊂ X (by looking atC = X \O). To show the convergence is equivalent
to showing

lim
∫

X
f μn =

∫

X
f δx ,

for all bounded continuous functions f . Indeed, if 0 ≤ a ≤ f ≤ b,

lim inf
∫

X
f μn = lim inf

∫ b

a
μn{ f > t}dt

≥
∫ b

a
lim inf μn{ f > t}dt

≥
∫ b

a
δx { f > t}dt

=
∫

X
f δx .

Repeating the above computation for− f gives lim sup
∫
X f μn ≤ ∫

X f δx , so Corol-
lary 3.7 follows.

4 Moment Generating Functions

From now on we will further impose that X has the structure of a topological vector
space so that we have notions of a dual space X ∗ consisting of linear functionals on
X and a corresponding pairing denoted by 〈 · , · 〉.

The logarithm of the moment generating function of the sequence of probability
spaces (X ,A, μn) with normalization {rn} is defined by

p(θ) := lim
1

rn
log

∫

X
ern〈θ,x〉μn(x),

assuming the limit exists and is finite, for each θ ∈ X ∗. (For example, if X = R
n

then X ∗ = R
n , and if X = P(Rd) then X ∗ = C0

b (Rd).)
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A generating function encodes a lot of information, as discovered by Gärtner,
and rediscovered by Ellis. The following theorem holds for rather general X but
we will prove it for X = R

n although the proof essentially works verbatim for any
locally convex topological vector space X under the assumption of exponential
tightness of the sequence of measures (defined in Sect. 5.2). Being a novice in the
field, the author will follow Berman and Zelditch and refer to the next theorem as
the Gärtner–Ellis Theorem, although a more accurate attribution of credit is given in
the historical notes in Dembo–Zeitouni to which the reader is warmly referred to for
much more accurate statements of all the results on LDPs that we discuss in these
notes [8, Sect. 2.3].

In general, exponential tightness is a necessary assumption (which will hold in
our specific setting in X = R

n (see Lemma 5.5) and X = P(X) for X a compact
manifold). In the following we denote by f � the Legendre dual of f [27, p. 104],

f �(y) := sup
x

[〈x, y〉 − f (x)]. (1)

(Wewill later use this same definitionmore generally for functions on abstract spaces
where the pairing will be taken to be the natural one in each setting.)

Theorem 4.1 Suppose that the moment generating function p of the sequence of
probability spaces (X ,A, μn) with normalization {rn} is well defined (in particular,
finite) and Gateaux differentiable. Then LDP(μn, rn) with rate function p�.

Before proving the Gärtner–Ellis Theorem let us prove two famous corollaries
thereof.

4.1 Cramér’s Theorem

Let {Xi }n
i=1 be independent, identically distributed, random variables (i.i.d.r.v.) on X̃

with values inR. This means that the law of Xi is equal to someμ ∈ P(R) regardless
of i . The sample mean is by definition the random variable with values in R,

Sn :=
∑

Xi/n.

This is the “probability” notation. Recalling that a randomvariable is really a function
leads to a more precise notation. The random variable Sn is the measurable function
Sn : X̃ n → R

(x1, . . . , xn) �→ [X1(x1) + . . . Xn(xn)]/n.

This is really the composition

(x1, . . . , xn) �→ (X1(x1), . . . , Xn(xn)) �→ [X1(x1) + . . . Xn(xn)]/n,
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and so the law of Sn is the push forward of the law of theRn-valued random variable

X1 ⊗ · · · ⊗ Xn := (X1, . . . , Xn)

under the “mean map”
sn : (k1, . . . , kn) �→

∑
ki/n.

The law of X1 ⊗ · · · ⊗ Xn is μ ⊗ · · · ⊗ μ. Thus, the law of Sn is μn := (sn)#μ
⊗n .

Corollary 4.2 Suppose that μ = f dx with f ∈ C0(R) and with compact support.
Then LDP(μn, n) with rate function p�.

Proof Let θ ∈ R. The moment generating function is

p(θ) = lim
1

n
log

∫

R

enxθμn(x)

= lim
1

n
log

∫

Rn

en sn(a1,...,an)θμ⊗n(a1, . . . , an)

= lim
1

n
log

∫

R

ea1θμ(a1) · · ·
∫

R

eanθμ(an)

= lim
1

n
log

( ∫

R

eaθμ(a)n
)n

= log
∫

R

eaθμ(a)

(2)

This is C1 because of the assumption on μ so we are done by Theorem 4.1. �

4.2 Sanov’s Theorem

The projection via the mean map gives rather crude information. Set Xn := X ⊗
· · · ⊗ X . Another sequence of measures that can be obtained from the n-fold product
via the “empirical” map δn : Xn → P(X),

δn(x1, . . . , xn) := 1

n

n∑

i=1

δxi .

The measures
	n := (δn)#μ

⊗n ∈ P(P(X)), (3)

all live on the same space and therefore can be studied via a large deviation principle,
if the associated moment generating function exists. Note that 	n is the law of the
random variable δn : (Xn, μ⊗n) → P(X), i.e., of the random measure δn (where
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the randomness is determined byμ⊗n , i.e., by sampling n points in X independently,
each according to μ).

Define the entropy functional Ent : P(X) × P(X) → R,

Ent(μ, ν) :=
∫

X
log

ν

μ
ν, (4)

whenever ν is absolutely continuous with respect to μ, and ∞ otherwise.

Corollary 4.3 Suppose that μ = f dx with f ∈ C0(X) and with compact support.
LDP(	n, n) with rate function Ent(μ, · ).
Proof Now X = P(X). Let θ ∈ C0

b (X) = X ∗. The moment generating function is

p(θ) = lim
1

n
log

∫

P(X)

en〈θ,ν〉	n(ν)

= lim
1

n
log

∫

P(X)

en〈θ,ν〉(δn)#μ
⊗n

= lim
1

n
log

∫

Xn

en〈θ,δn(x1,...,xn)〉μ(x1) ⊗ · · · μ(xn)

= lim
1

n
log

∫

Xn

en〈θ, 1n
∑n

i=1 δxi 〉μ(x1) ⊗ · · ·μ(xn)

= lim
1

n
log

∫

Xn

e
∑n

i=1 θ(xi )μ(x1) ⊗ · · · μ(xn)

= lim
1

n
log

( ∫

X
eθμ

)n

= log
∫

X
eθμ.

(5)

This is C1 because of the assumption on μ so we are done by Theorem 4.1 and
Lemma 4.4 below. �

Define I : C0(X) → R,

Iμ(θ) := log
∫

X
eθμ. (6)

Recall the definition of the Legendre transform (1), where in the following lemma
the pairing is taken to be the usual “integration pairing”’ between functions and
measures.

Lemma 4.4 The Legendre transform of Ent(μ, · ) is Iμ and vice versa.

Proof First, Iμ is convex on C(X) since it is a moment generating function (see
Lemma 4.5). Alternatively, the arguments in the proof of Lemma 4.5 show convexity.
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We will show that Legendre transform of Iμ is Ent(μ, · ) which therefore will imply
that the latter is also convex. We claim that

Ent(μ, ν) + Iμ(θ) ≥ 〈θ, ν〉. (7)

Indeed,

Iμ(θ) − 〈θ, ν〉 = log
∫

X
eθμ − 〈θ, ν〉

= log
∫

X
eθ μ

ν
ν − 〈θ, ν〉

≥
∫

X
log

(
eθ μ

ν

)
ν − 〈θ, ν〉

=
∫

X

(
θ + log

μ

ν

)
ν − 〈θ, ν〉 = −Ent(μ, ν),

with equality if and only if ν = eθμ/
∫

eθμ (so that ν ∈ P(X)). Thus, Ent(μ, ν) ≥
I �
μ(ν) := supθ [〈θ, ν〉 − Iμ(θ)]. On the other hand, putting θ = log ν

μ
,

〈
log

ν

μ
, ν

〉
− Iμ

(
log

ν

μ

)
= Ent(μ, ν) − 0,

so Ent(μ, ν) ≤ supθ [〈θ, ν〉 − Iμ(θ)]. Thus, Ent(μ, ν) = I �
μ(ν) and so in particular

from the general property of the Legendre transform (1) (see also [27, p. 104]),

f (x) + f �(y) ≥ 〈x, y〉, (8)

it follows that (7) holds, as claimed. Equation (7) gives,

sup
ν

[〈θ, ν〉 − Ent(μ, ν)
] ≤ Iμ(θ),

and now putting ν = eθμ/
∫

eθμ we see equality is attained, so Iμ is the Legendre
transform of Ent(μ, · ), concluding the proof. �

4.3 Properties of the Moment Generating Function

Lemma 4.5 The moment generating function is convex.

Proof The pointwise limit of a sequence of convex functions is convex (one way to
think about it is in terms of the epigraphs— and clearly the limits of convex sets is
a convex sets, and the limits of epigraphs is moreover an epigraph). Thus, it suffices
to show that
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1

rn
log

∫

X
ern〈θ,x〉μn(x)

is a convex function. Indeed, since || f g||L1(μ) ≤ || f ||L2(μ)||g||L2(μ),

1

rn
log

∫

X
ern 〈(θ1+θ2)/2,x〉μn(x) = 1

rn
log

∫

X

√
ern 〈θ1,x〉

√
ern 〈θ2,x〉μn(x)

≤ 1

rn
log

(√∫

X
ern 〈θ1,x〉μn(x)

√∫

X
ern 〈θ2,x〉μn(x)

)

= 1

2

(
1

rn
log

∫

X
ern 〈θ1,x〉μn(x) + 1

rn
log

∫

X
ern 〈θ2,x〉μn(x)

)

,

as desired. �

Lemma 4.6 p� is convex and nonnegative.

Proof By definition
p�(x) := sup

θ

[〈x, θ〉 − p(θ)]

is a supremum of affine functions, hence it is convex. Plugging in θ = 0 and using
that p(0) = 0 it follows that p�(x) ≥ 0. �

The reader that compares the statement of Theorem 4.1 to that in some books
might note that one does not really need to assume the moment generating function
is differentiable and certain weaker assumptions are enough. One of them though is
automatic from convexity:

Lemma 4.7 If there exists a small ball B about the origin on which p < ∞ then
p > −∞ everywhere.

Proof This is a general fact about convex functions that can be proved as follows:

p(0) ≤ 1

1 + C
p(−Cθ) + C

1 + C
p(θ),

so
C

1 + C
p(θ) ≥ p(0) − 1

1 + C
p(−Cθ).

Now, choose C > 0 small enough so that Cθ ∈ B and note p(0) = 0. �

5 Proof of the Gärtner–Ellis Theorem

The goal of this section is to give a proof of Theorem 4.1. The proof of the upper
bound (the one about close sets) is a little easier and so we will go over it at first.



808 Y. A. Rubinstein

There are two main steps: first, prove the upper bound for compact sets; second,
show that compact sets capture the general case.

5.1 The Upper Bound for Compact Sets

The upper bound for compact sets is sometimes called the weak upper bound LDP.
Let C ⊂ X then be a compact set. We claim that

lim sup
n→∞

1

rn
logμn(C) ≤ − inf

C
p�.

Fix δ > 0. For each x ∈ X let y(x) ∈ X ∗ satisfy 〈x, y(x)〉 − p(y(x)) > p�(x) −
δ and let Bδ,y(x)

x be a neighborhood of x ∈ X defined as follows

Bδ,y(x)
x := {z ∈ X : |〈z, y(x)〉 − 〈x, y(x)〉| < δ}.

Finitely many neighborhoods of affine subspaces Bδ,y1(x1)
x1 , . . . , Bδ,ym (xm )

xm cover C by
compactness. Observe that asymptotically we reduce the calculations for the “left-
hand side” to one ball:

lim sup
n→∞

1

rn
logμn(C) ≤ lim sup

n→∞
1

rn
log

m∑

i=1

μn(Bδ,yi (xi )
xi

)

= lim sup
n→∞

1

rn
log

(
m sup

i∈{1,...m}
μn(Bδ,yi (xi )

xi
)
)

= lim sup
n→∞

[
1

rn
logm + 1

rn
log sup

i∈{1,...m}
μn(Bδ,yi (xi )

xi
)

]

= lim sup
n→∞

1

rn
log sup

i∈{1,...m}
μn(Bδ,yi (xi )

xi
).

Now,

μn(Bδ,yi (xi )
xi

) =
∫

B
δ,yi (xi )
xi

μn(z)

=
∫

B
δ,yi (xi )
xi

ern〈z,yi (xi )〉e−rn〈z,yi (xi )〉μn

≤ ernδ−rn〈xi ,yi (xi )〉
∫

B
δ,yi (xi )
xi

ern〈z,yi (xi )〉μn

≤ ernδ−rn〈xi ,yi (xi )〉
∫

X
ern〈z,yi (xi )〉μn

(integration in the z variable). Taking log and the limit,
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lim sup
1

rn
logμn(Bδ,yi (xi )

xi ) ≤ −〈xi , yi (xi )〉 + δ + p(yi (xi )) ≤ −p�(xi ) + 2δ ≤ − inf
C

p� + 2δ.

Letting δ tend to zero completes the argument.

5.2 Exponential Tightness

Definition 5.1 A sequence of probability measures {μn} ⊂ P(X ) is exponentially
tight with normalization rn if for each b ∈ (0,∞) there exists a compact set Kb ⊂ X
such that

lim sup
1

rn
logμn(X \Kb) ≤ −b.

Remark 5.2 The point of course is that Kb is independent of n.

Remark 5.3 Note, of course, that exponential tightness is automatic ifX is compact
(or if there is a compact set containing the support of all the μn)! In particular, note
that X = P(B) (for some compact (finite-dimensional) manifold B) is a compact
set by Prokhorov’s theorem [32, p. 43], [1, Theorem 1.3]: Let X be a Polish space
and P ⊂ P(X ); then P is pre-compact for the week topology if and only if for every
ε > 0 there is a compact set Kε ⊂ X such that μ(X \Kε) ≤ ε for all μ ∈ P .

Lemma 5.4 Suppose that the large deviation upper bound inequality holds for
(μn, rn) for all compact sets. Suppose also that sequence of probability measures
{μn} ⊂ P(X ) is exponentially tight with normalization rn. Then the large deviation
upper bound inequality holds.

Proof Then equality hold for all compact sets by assumption. So consider a closed set
F that is not necessarily compact. Of course, μn(F) ≤ μn(F ∩ Kb) + μn(X \Kb).
This is a very coarse inequality (since X \Kb is a large set!), but it does the job since
μn(X \Kb) is uniformly small and F ∩ Kb is compact (so we can apply the large
deviation upper bound to it):

lim sup
1

rn
logμn(F) ≤ lim sup

1

rn
log[μn(F ∩ Kb) + μn(X \Kb)]

≤ max{−b, lim sup
1

rn
logμn(F ∩ Kb)}

≤ max{−b,− inf
F∩Kb

I }
≤ max{−b,− inf

F
I },

andbychoosingb > inf F I (recall I ≥ 0byassumption)weget lim sup 1
rn
logμn(F) ≤

− inf F I . �

Thus, to complete the proof of the upper bound it remains to show:
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Lemma 5.5 The sequence of probability measures {μn} ⊂ P(X ) is exponentially
tight with normalization rn.

Proof For this proof we assume X = R
n (otherwise, one needs to incorporate the

exponential tightness assumption into the assumptions of Theorem 4.1). This fol-
lows directly from the assumption that a moment generating function exists. Indeed,
choose a coordinate xi and bound the tail in that direction:

μn{xi ≥ b} =
∫

{xi ≥b}
e−rn〈θ,x〉ern〈θ,x〉μn(x)

≤ e−rnb|θ |
∫

{xi ≥b}
ern〈θ,x〉μn(x)

≤ e−rnb|θ |
∫

X
ern〈θ,x〉μn(x)

= e−rnb|θ | pn(θ)

Now,
1

rn
log pn(θ) = p(θ) + o(1),

so
pn(θ) = ern(p(θ)+o(1)).

So, fixing θ and then choosing b > 0 sufficiently large (p(θ) is finite!), and summing
over all coordinate directions concludes the proof. �

5.3 The Lower Bound

Our goal is to show that

lim inf
n→∞

1

rn
logμn(O) ≥ − inf

O
p�, ∀ O open in X .

Fix an open set O and a point z ∈ O where infO p� is attained up to some ε. First, as
in the proof of the upper bound, we will show that 1

rn
logμn(O) is essentially equal

to 1
rn
logμn(Bδ) for some ball Bδ containing z. Indeed, for any B and any σ ∈ X ∗,

1

rn
logμn(B) = 1

rn
log

∫

B
e−rn〈z,σ 〉ern〈z,σ 〉μn(z) (9)

We want to do essentially the same computation as for the upper bound, except that
now of course the inequality
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∫

B
ern〈z,σ 〉μn ≤

∫

X
ern〈z,σ 〉μn

goes in the wrong direction. To remedy that, we need to identify some way of local-
izing the integral so that, at least asymptotically, the integrals are equal. The key is
to notice that the relevant point for localizing is

σ := (∇ p)−1(z).

Consider
e〈σ, · 〉μn,

or, rather, the associated probability measures

νσ,n := e〈σ, · 〉μn

/ ∫

X
e〈σ,y〉μn(y).

Lemma 5.6 The sequence of probability measures {νσ,n} localizes around z =
∇ p(σ ). More precisely, we have the upper bound large deviation inequality for
{(νσ,n, rn)} with rate function p� − 〈σ, · 〉 + p(σ ).

Remark 5.7 Recall that
p�(z) = 〈σ, z〉 − p(σ ), (10)

and
p�( · ) + p(σ ) > 〈σ, · 〉 away from z. (11)

We postpone the proof of Lemma 5.6 to the end of the section.
Thus, the rate function in the statement is nonnegative with a unique zero at z.

Thus the desired localization:

Corollary 5.8 For any δ > 0,

lim
n

νσ,n(Bz
δ ) = 1.

Proof It suffices to show that

lim sup
n

1

rn
log νσ,n(X \Bz

δ ) < 0.

By the large deviation upper bound inequality for {(νσ,n, rn)} and (11) (note X \Bz
δ

is closed!),

lim sup
n

1

rn
log νσ,n(X \Bz

δ ) ≤ − inf
x /∈Bz

δ

[p�(x) − 〈σ, x〉 + p(σ )] ≤ −C,
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for some C = C(δ), as desired. �

Thus, as we wished,

∫

Bz
δ

νσ,n =
∫

X
νσ,n + o(1) = 1 + o(1).

Now we are ready to go back to (9),

1

rn
logμn(Bz

δ ) = 1

rn
log

∫

Bz
δ

e−rn〈σ,x〉ern〈σ,x〉μn(z)

= 1

rn
log

∫

Bz
δ

e−rn〈σ,x〉 pn(σ )νσ,n(x)

= p(σ ) + o(1) + 1

rn
log

∫

Bz
δ

e−rn〈σ,x〉νσ,n(x)

≥ p(σ ) + o(1) + 1

rn
log inf

Bz
δ

e−rn〈σ,x〉 + 1

rn
log

∫

Bz
δ

νσ,n(x)

≥ p(σ ) + o(1) − 〈σ, z〉 − δ + o(1)

= −p�(z) + o(1) − δ,

where we used Corollary 5.8 and (10). Letting first n go to infinity and then δ go to
zero concludes the proof.

Proof (Proof of Lemma 5.6) First, observe that the Legendre transform of

p( · + σ) − p(σ )

is
p� − 〈σ, · 〉 + p(σ ). (12)

Thus, it suffices to show that the moment generating function of {νσ,n} is p( · + σ) −
p(σ ). Indeed,

lim
1

rn
log

∫

X
ern〈θ,x〉νσ,n(x) = lim

1

rn
log

∫

X
ern〈θ,x〉e〈σ,x〉μn(x)

/

pn(σ )

= −p(σ ) + lim
1

rn
log

∫

X
ern〈θ+σ,x〉μn(x)

= −p(σ ) + p(θ + σ).

All the assumptions of Theorem 4.1 are met for this generating function since they
are met for p. Under those assumptions we have already established the upper bound
inequality in Theorem 4.1. Therefore, we have the upper bound large deviation
inequality for {(νσ,n, rn)} with rate function (12). �
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6 LDP Without Moment Generating Functions

Sometimes, a large deviation principle holds even when the assumptions of
Theorem 4.1 are not satisfied. For one, a moment generating function may not exist.
Also, the rate function can sometimes be nonconvex (not that Theorem 4.1 guaran-
tees the rate function will be convex, being the Legendre transform of the moment
generating function). The following result nevertheless characterizes large deviation
principles and gives a useful tool to show their existence. It is sort of a converse for
Lemma 3.2.

Proposition 6.1 Let X be a compact metric space. LDP (μn, rn) if and only if

lim
d→0

lim sup
n→∞

1

rn
logμn(Bd(x)) = lim

d→0
lim inf

n→∞
1

rn
logμn(Bd(x)), ∀x ∈ X . (13)

The rate function is then equal to minus (13).

Proof ⇐=: Suppose (13) holds, and denote either side by −g(x). Note that g is
indeed a rate function: it is evidently not negative, and it is lower semicontinuous
because the super level sets {g > a} are open as if g(x) > a, i.e., −g(x) < −a, then
because the limits in (13) are decreasing in d, then for some Bd(x),

lim inf
n→∞

1

rn
logμn(Bd(x)) < −a,

so for every y ∈ Bd(x) choosing d ′ so that Bd ′(y) ⊂ Bd(x),

lim inf
n→∞

1

rn
logμn(Bd ′(y)) ≤ lim inf

n→∞
1

rn
logμn(Bd(x)) < −a,

so −g(y) < −a.
To prove the lower bound, let O ∈ X be open, fix ε > 0, and let x ∈ O be such

that g(x) ≤ infO g + ε, and let d > 0 be such that Bd(x) ⊂ O . Then

lim inf
n→∞

1

rn
logμn(O) ≥ lim inf

n→∞
1

rn
logμn(Bδ(x))

≥ lim
d→0

lim inf
n→∞

1

rn
logμn(Bδ(x))

= −g(x) =≥ − inf
O

g − ε.

Now let ε tend to zero.
To prove the upper bound, let C ⊂ X be closed. Because X is compact, so is C .

Similar to the proof of Sect. 5.1 we cover C with finitely many balls and then
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lim sup
n→∞

1

rn
logμn(C) ≤ lim sup

n→∞
1

rn
log

m∑

i=1

μn(Bdi (xi ))

= lim sup
n→∞

1

rn
log

(
m sup

i∈{1,...m}
μn(Bdi (xi ))

)

= lim sup
n→∞

[
1

rn
logm + 1

rn
log sup

i∈{1,...m}
μn(Bdi (xi ))

]

= lim sup
n→∞

1

rn
log sup

i∈{1,...m}
μn(Bdi (xi ))

= maxi∈{1,...m} lim sup
n→∞

1

rn
logμn(Bdi (xi ))

= lim sup
n→∞

1

rn
logμn(Bd1(x1)),

where the last equality is without loss of generality. Fix ε > 0. By (13), for each
x ∈ X there exists d(x, ε) > 0 such that

lim sup
n→∞

1

rn
logμn(Bd(x,ε)(x)) ≤ max{−g(x) + ε,−1/ε}

(note that if g is finite one can simplify the right-hand side to −g(x) + ε). Now,
cover C with the balls ∪x∈C Bd(x,ε)(x); then, by compactness of C we may choose a
finite sub-cover, and thus, we may assume that we have chosen d1 = d(x1, ε)! Thus,

lim sup
n→∞

1

rn
logμn(C) ≤ lim sup

n→∞
1

rn
logμn(Bd1(x1))

≤ max{−g(x1) + ε,−1/ε},

and letting ε tend to zero,

lim sup
n→∞

1

rn
logμn(C) ≤ −g(x1) ≤ − inf

C
g.

=⇒: Conversely, suppose LDP (μn, rn) with rate function I . By the large deviation
lower bound,

I (x) ≥ inf
O

I ≥ − lim inf
n→∞

1

rn
logμn(O),

for any open set O containing x , so putting O = Bd(x) and supping over d,

I (x) ≥ − lim
d→0

lim inf
n→∞

1

rn
logμn(Bd(x)).
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By the large deviation upper bound,

− lim sup
n→∞

1

rn
logμn(Bd(x)) ≥ inf

Bd (x)

I,

so

I (x) ≥ − lim
d→0

lim inf
n→∞

1

rn
logμn(Bd (x)) ≥ − lim

d→0
lim sup

n→∞
1

rn
logμn(Bd (x)) ≥ lim

d→0
inf

Bd (x)

I,

and it suffices to show that
lim
d→0

inf
Bd (x)

I ≥ I (x).

If not, there exists xk such that limk I (xk) < I (x) and xk → x , contradicting lower
semicontinuity of I . �

7 Optimal Transport

The problem of optimally transporting a given probability measure μ ∈ P(X) (the
source measure) to another given probability measure ν ∈ P(Y ) (the target measure)
has a long history, going back toMonge in the 18th century. It is the problemoffinding
a measurable map T : X → Y satisfying

T#μ = ν (14)

and minimizing ∫

X
c(x, T (x))μ(x),

where c : X × Y → R is somegiven cost function, typically c(x, y) = |x − y|2. This
integral is the total cost, and c(x, T (x))μ(dx) is the infinitesimal cost of transporting
x to T (x), withμ(dx)measuring the amount of mass at the source point x . By abuse
of notation we denote the latter by μ(x) and not dμ(x) or μ(dx).

As in previous sections, one should think of X = Y = R
n or X = Y = P(Rd) as

the typical examples in our course for the underlying spaces. Typical examples for
the measures to be transported include uniform measures 1
 (for a unit-volume set

) and the empirical measures

δn(x1, . . . , xn) := 1

n

n∑

i=1

δxi .

Choosing both the source and the target measures to be empirical measures with
the same number of point masses (i.e., choosing μ and ν in the image of δn for the
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same n) gives rise to the so-called discrete optimal transport problem. The solution
is then given by a permutation σ ∈ Sn on the set of n letters, satisfying

n∑

i=1

c(xi , yi ) ≤
n∑

i=1

c(xi , yσ(i)). (15)

In the prototypical case of squared distance cost some cancellations give that

n∑

i=1

|xi − yi |2 ≤
n∑

i=1

|xi − yσ(i)|2

can be rewritten as
n∑

i=1

−〈xi , yi 〉 ≤
n∑

i=1

−〈xi , yσ(i)〉. (16)

So, the cost |x − y|2 is really ‘equivalent’ to the cost −〈x, y〉. More generally, if
c(x, y) = d(x, y) + f (x) + g(y) then c and d are equivalent:

∫

X
c(x, T (x))μ(x) =

∫

X
d(x, T (x))μ(x) +

∫

X
f μ +

∫

X
g(T (x))μ =

∫

X
d(x, T (x))μ(x) +

∫

X
f μ +

∫

Y
gν

(as
∫

X f μ + ∫
Y gν is a constant completely determined by the “data” μ, ν), where

in the last equation we used that

∫

X
g ◦ T μ =

∫

Y
gν,

by (14) [31, (9)].
More generally, one can search for an optimal transportation plan. Given a product

space, say X × Y , equipped with projection maps πX : X × Y → X and πY : X ×
Y → Y , the marginals of a measure γ ∈ P(X × Y ) are (πX )#γ and (πY )#γ .

Definition 7.1 A transportation plan is a probability measure γ ∈ P(X × Y )whose
marginals are μ and ν. We denote this by γ ∈ (μ, ν).

I.e., γ (A × Y ) = μ(A) and γ (X × B) = ν(B) for all Borel A ⊂ X and B ⊂ Y

Definition 7.2 An optimal transportation plan is a transportation plan minimizing

∫

X×Y
cγ.

The “best” transport plan is the one coming from transport map T : X → Y .
Denote by Id⊗T : X → X × Y the map x �→ (x, T (x)). Indeed, γ :=
(Id⊗T )#μ ∈ (μ, ν) since (Id⊗T )#μ(A × Y ) = μ

(
(Id⊗T )−1(A × Y )

) = μ(A)

and (Id⊗T )#μ(X × B) = μ
(
(Id⊗T )−1(X × B)

) = μ(T −1(B)) = ν(B) since
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T#μ = ν. Our goal will be to show that under some natural assumptions the optimal
plan must be of such a form, i.e., supported on the graph of a map.

For example, in the case of empirical measures, a transportation plan must be
coming fromamap represented by a permutation (in otherwords, itmust be supported
on the graph of a permutation in the product space): if one of the source points is
not in supp γ then the first marginal condition is violated (γ ({xi } × Y ) = 0 while
μ{xi } = 1/n but γ (A × Y ) = μ(A)), while if one of the target points is not in supp γ

then the second marginal condition is violated. Thus σ ∈ Sn , or more precisely,

γ := 1

n

∑
δ(xi ,yσ(i)) = δgr(T ),

(where T : xi �→ yσ(i)) is optimal if and only if (16) holds.

7.1 From the Discrete Problem to the General One

A beautiful part of the story is that the discrete problem actually is the key to under-
standing thegeneral transport problem.Equation (16) leads to the followingdefinition
(we replace n in (16) with m for the following discussion).

Definition 7.3 A set A ⊂ X × Y is cyclically monotone if (16) holds for any
{(xi , yi )}m

i=1 ⊂ A, m ∈ N, and any σ ∈ Sm .

Cyclical monotonicity essentially characterizes convexity. More precisely, the
graph of the sub differential of a convex function f is cyclically monotone: if yi ∈
∂ f (xi )

f (z) ≥ f (xi ) + 〈z − xi , y〉, ∀z,

so taking z = xi+1 (with xm+1 = x1) and adding up the equations yields (16). Con-
versely, to a cyclically monotone set A we can associate a convex function f A such
that A ⊂ gr(∂ f A) as follows. Fix (x0, y0) ∈ A and set

f A(x) := sup
m∈N

sup
{(xi ,yi )}m

i=1⊂A

{
〈x − xm , ym〉 + 〈xm − xm−1, ym−1〉 + . . . + 〈x1 − x0, y0〉

}
.

Note that f A is not ±∞ :

Claim 7.4 f A(x0) = 0.

Remark 7.5 Wewill eventually prove muchmore, namely, that f A is nowhere±∞.

Proof First, f A(x0) ≤ 0 from (16) with m replaced by m + 1 and σ(i) = i + 1.
Second, f A(x0) ≥ 0 by putting m = 1 and (x1, y1) = (x0, y0) in the definition
of f A. �

Finally, if (a, b) ∈ A, want to show b ∈ ∂ f A(a) (the sub-differential of f A), i.e.,
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f A(z) ≥ f A(a) + 〈z − a, b〉, ∀z. (17)

Given any ε > 0 there is some m ∈ N and some {(xi , yi )}m
i=1 ⊂ A such that

f A(a) − ε = 〈a − xm, ym〉 + 〈xm − xm−1, ym−1〉 + . . . + 〈x1 − x0, y0〉. (18)

Thus,

f A(a) + 〈z − a, b〉 = ε + 〈z − a, b〉 + 〈a − xm , ym 〉 + 〈xm − xm−1, ym−1〉 + . . . + 〈x1 − x0, y0〉 ≤ ε + f A(z),

putting m + 1 and {(xi , yi )}m
i=1 ∪ {(a, b)} in the definition of f A. Letting ε → 0

concludes the proof of (17).

Exercise 7.6 Find the mistake in the previous argument.

Solution. The problem was that we were implicitly assuming that f A(a) < ∞.

Indeed, if f A(a) = ∞ one cannot, given any ε > 0, find {(xi , yi )}m
i=1 ⊂ A such

that (18) holds. Instead, let t ∈ R be any number satisfying t < f A(a) (possibly,
f A(a) = ∞). Now, there do exist, by definition, {(xi , yi )}m

i=1 ⊂ A such that

t < 〈a − xm, ym〉 + 〈xm − xm−1, ym−1〉 + . . . + 〈x1 − x0, y0〉. (19)

Thus, for all z,

t + 〈z − a, b〉 < 〈z − a, b〉 + 〈a − xm , ym 〉 + 〈xm − xm−1, ym−1〉 + . . . + 〈x1 − x0, y0〉 ≤ f A(z),
(20)

by putting m + 1 and {(xi , yi )}m
i=1 ∪ {(a, b)} in the definition of f A. Supping over

all t in (20),

f A(a) + 〈z − a, b〉 = sup
t< f A(a)

t + 〈z − a, b〉 ≤ f A(z),

as desired, i.e., b ∈ ∂ f A(a), unless f A(a) = ∞ (in which case ∂ f A(a) = ∅ by defi-
nition). To exclude this, i.e., to show f A is always finite, we put z = 0 in (20), and
use Claim 7.4,

t + 〈0 − a, b〉 < f A(0) = 0,

so we get the a priori estimate

t < 〈a, b〉, for any t < f A(a).

Hence, f A(a) = supt< f A(a) t ≤ 〈a, b〉 and in particular f A(a) is finite (obviously
f A > −∞ since it is a supremum of finite quantities over a nonempty set).
Recall the definition of the sub-differential ∂ f (17) of a convex function f : Rn →

R. The graph of ∂ f is defined as gr(∂ f ) := {(x, y) : x ∈ R
n, y ∈ ∂ f (x)}. Thus, we

have shown:
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Theorem 7.7 (Rockafellar’s Theorem) A set A ⊂ R
n × R

n is cyclically monotone
if and only if A ⊂ gr(∂ f ) for a convex function f : Rn → R.

Remark 7.8 Note, again, that part of the conclusion of the theorem is that f is
finite (which should not come as a surprise, as also the set A is “finite-valued” by
assumption; the converse direction is obvious since if f is finite-valued then so is
∂ f ). In fact,

f A(x) ≤ inf
(x,y)∈A

〈x, y〉 ≤ h{x}×Rn∩A(x),

where hK is the support function of the set K with equality in the last inequality if
A is graphical (i.e., of the form gr(∂ f ) with f as above).

The Fundamental Theorem of OT gives the final chain connecting the discrete
problem to the continuous problem: the support of an optimal transport plan is cycli-
cally monotone. Thus, by a previous observation it is contained in the graph of the
sub differential of a convex function. Since a convex function is differentiable away
from a (Lesbegue) measure zero set as measures (Id⊗∂ f )#μ = (Id⊗∇ f )#μ where
on the right hand side by ∇ f we mean (by some abuse of notation) the gradient
map restricted to those x ∈ R

n where ∂ f (x) is a singleton (that we then denote by
∇ f (x)); note also that assuming μ is absolutely continuous, Lebesgue measure zero
sets are also μ-measure zero sets. Thus, we have come full circle, and solved the
original transportation problem in terms of a map.

Theorem 7.9 (Fundamental Theorem of Optimal Transport) Let γ ∈ (μ, ν).
Then,
γ optimal ⇔ supp γ is cyclically monotone ⇔ exists f convex such that
supp γ ⊂ gr(∂ f ).

Proof By Theorem 7.7, it suffices to show the first equivalence, but we will actu-
ally only use the hard part of Theorem 7.7 and proceed to prove the implications
cyclically. First, suppose that for some γ ∈ (μ, ν), supp γ is cyclically monotone.
By Theorem 7.7, there exists f convex such that supp γ ⊂ gr(∂ f ). Thus, for every
γ̃ ∈ (μ, ν), ∫

X×Y
−〈x, y〉γ =

∫

supp γ

−〈x, y〉γ

=
∫

supp γ

[− f (x) − f �(y)]γ

= −
∫

X
f μ −

∫

Y
f �ν.

=
∫

X×Y
[− f (x) − f �(y)]γ̃

≤
∫

X×Y
−〈x, y〉γ̃ ,

(21)

so by definition γ is optimal.
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Next, assume that γ is optimal. We want to show that supp γ is cyclically mono-
tone. Fix {(xi , yi )}m

i=1 ⊂ supp γ . To that end, we carefully construct γ̃ ∈ (μ, ν) of
the form γ̃ := γ + η with

0 ≤
∫

X×Y
−〈x, y〉γ̃ −

∫

X×Y
−〈x, y〉γ ≈

n∑

i=1

−〈xi , yσ(i)〉 −
n∑

i=1

−〈xi , yi 〉. (22)

Of course, the idea is to construct the positive part of η to be concentrated near
{(xi , yσ(i))}m

i=1 and the negative part of η to be concentrated near {(xi , yi )}m
i=1. We

have to do this in such a way that γ + η is still admissible (i.e., a transport plan).
Equivalently, (πX )#η = 0, (πY )#η = 0.

For the construction, we fix ε > 0. Set

	 :=
m∏

i=1

γ |Bε (xi )×Bε (yi )

|γ (
Bε(xi ) × Bε(yi )

)|

This is an auxiliary probability measure on P
(
(X × Y )m

)
. It is useful, because it’s

marginals allow us to cyclically modify the way γ transports: in order to transport
Bε(xi ) to Bε(yσ(i)) instead of to Bε(yi ) we would add

(πBε (xi ), πBε (yσ(i)))#	 − (πBε (xi ), πBε (yi ))#	.

to γ . So, overall, we set

η := mini |γ (
Bε(xi ) × Bε(yi )

)|
m

m∑

i=1

[
(πBε (xi ), πBε (yσ(i)))#	 − (πBε (xi ), πBε (yi ))#	

]
.

(23)
The constantmini |γ (

Bε(xi ) × Bε(yi )
)|/m in front of some ensures that γ + η is still

a positivemeasure (recalling that |γ (
Bε(xi ) × Bε(yi )

)| appears in the denominator of
	, so the largest negative term inside the brackets in (23) ismini |γ (

Bε(xi ) × Bε(yi )
)|

and there are atmostm of these negative terms).Next, to show (πY )#η = 0 amounts to
η(X × B) = 0 for each B, and indeed, up to a positive factor (πY )#η(B) = η(X × B)

equals

m∑

i=1

[
(πBε (xi ), πBε (yσ(i)))#	(X × B) − (πBε (xi ), πBε (yi ))#	(X × B)

]

=
m∑

i=1

	(X × Y × · · · × X
σ�i�-th slot× B × · · · × X × Y )

−
m∑

i=1

	(X × Y × · · · × X
i-th slot× B × · · · × X × Y ) = 0
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Finally, (πX )#η = 0 is easier as

m∑

i=1

[
(πBε (xi ), πBε (yσ(i)))#	(A × Y ) − (πBε (xi ), πBε (yi ))#	(A × Y )

]

=
m∑

i=1

	(X × Y × · · · × A
σ�i�-th slot× Y × · · · × X × Y )

−
m∑

i=1

	(X × Y × · · · × A
i-th slot× Y × · · · × X × Y ) =

m∑

i=1

0 = 0

(i.e., is term-by-term zero). Thus, we have shown (22) up to o(ε). Letting ε → 0
proves (16), as claimed. �

7.2 Dual Formulation

A rather immediate consequence of Theorems 7.7 and 7.9 is the following dual for-
mulation of the optimal transportation problem in terms of an optimization problem
on functions instead of measures.

Theorem 7.10 Let c(x, y) = −〈x, y〉.

inf
γ∈(μ,ν)

∫

X×Y
cγ = sup

f (x)+g(y)≤c(x,y)

[ ∫

X
f μ +

∫

Y
gν

]
. (24)

Proof According to Lemma 7.12 there exists γ realizing the infimum on the left-
hand side. Let f, g be such that f (x) + g(y) ≤ −〈x, y〉. Then

∫

X×Y
cγ ≥

∫

X×Y
( f (x) + g(y))γ =

∫

X
f μ +

∫

Y
gν.

It thus remains to show
∫

X×Y
cγ ≤ sup

f (x)+g(y)≤c(x,y)

[ ∫

X
f μ +

∫

Y
gν

]
. (25)

Theorems 7.7 and 7.9 imply that supp γ ⊂ gr(∇φ) for some convex function φ.
Since φ(x) + φ�(y) ≥ −c(x, y) with the quality if and only if (x, y) ∈ gr(∂φ),
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∫

X×Y
cγ =

∫

supp γ

cγ

=
∫

gr(∂φ)

cγ

=
∫

X×Y
[−φ(x) − φ�(y)]γ

=
∫

X×Y
[−φ(x) − φ�(y)]γ

= −
∫

X
φμ −

∫

Y
φ�ν.

Thus, (25) holds as already the pair ( f, g) = (−φ,−φ�) equals the left-hand side.�

In fact, we saw that the dual formulation can be given in terms of a single (and
convex) function. Also, we play a bit with the signs, to get:

Corollary 7.11 (Dual formulation of optimal transportation)

sup
γ∈(μ,ν)

∫

X×Y
〈x, y〉γ = inf

f ∈C(X)

[ ∫

X
f μ +

∫

Y
f �ν

]
= inf

f ∈Cvx(X)

[ ∫

X
f μ +

∫

Y
f �ν

]
.

Lemma 7.12 The infimum on the left hand side of (24) is attained.

Proof The proof follows Ambrosio–Gigli who work in a more general setting [1,
Sect. 1.1]. Since c : X × Y → R is continuous (in fact, lower semicontinuous is
enough, with slightly more work [1, Theorem 1.2]) then γ �→ ∫

cγ is continuous
with respect to the weak topology. Since

γ (X × Y\K1 × K2) ≤ μ(X\K1) + μ(Y\K2), (26)

for any γ ∈ (μ, ν), it follows that(μ, ν) satisfies the assumptions of Prokhorov’s
Theorem (see [1, Theorem 1.3]): indeed, the right-hand side of (26) can be made
arbitrarily small by Ulam’s Theorem (any Borel probability measure on a Polish
space is concentrated on a compact set up to an arbitrarily small error) applied to the
Polish measure spaces (X, μ) and (Y, ν). Thus,(μ, ν) is pre-compact. The closure
of a pre-compact set is by definition compact, it suffices to show that (μ, ν) is
actually closed (with respect to the weak topology), but this is immediate since∫

f μ = ∫
f (x)γn → ∫

f (x)γ = ∫
f μ (note that (x, y) �→ f (x) for f ∈ C(X) is

inC(X × Y ) so then α �→ ∫
f (x)α is continuous with respect to the weak topology)

and similarly for the other marginal. Since a lower semicontinuous functional attains
its infimum on a compact set, we are done. �
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7.3 The Legendre Transform of Wasserstein Distance

Denote by
C(X) := C0(X) ∩ L∞(X) (27)

the continuous and bounded functions on X .
Let Jν : C(X) → R be

Jν( f ) :=
∫

Y
f �ν. (28)

Denote by W 2
2 : P(X) × P(Y ) → R

W 2
2 (μ, ν) := inf

γ∈(μ,ν)

∫

X×Y
cγ (29)

the Wasserstein distance between μ and ν. It will be convenient to extend this func-
tional toM(X) × M(Y ) “by infinity,” namely

W 2
2 (μ, ν) := ∞

if either μ /∈ P(X) or ν /∈ P(Y ).
Our work so far can be summarized in terms of Legendre duality these two func-

tionals: indeed, for any μ ∈ P(X),

−W 2
2 (μ, ν) = inf

f ∈C(X)

[ ∫

X
f μ +

∫

Y
f �ν

]

= − sup
f ∈C(X)

[
〈 f,−μ〉 − Jν( f )

]
= −J �

ν (−μ),

while if μ ∈ M(X) but μ /∈ P(X) then since ( f + C)� = f � − C we see 〈 f +
C,−μ〉 − J ( f + C) = 〈 f,−μ〉 − Jν( f ) + C(1 − μ(X)) which can be made arbi-
trarily large if μ(X) = 1, which is to say that J �

ν (−μ) = ∞, i.e., we have

W 2
2 (μ, ν) = J �

ν (−μ). (30)

The following theorem summarizes this and more. This is the first time the Monge–
Ampère operator

MAν f := (∇ f �)#ν (31)

makes its appearance.

Remark 7.13 When ν = dx this reduces to the well-known Monge–Ampère oper-
ator

MA f = d∇ f := d
∂ f

∂x1
∧ · · · ∧ d

∂ f

∂xn
,
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since
∫

X
F(∇ f �)#dx =

∫

Y
F ◦ (∇ f �)dx =

∫

Y
F ◦ (∇ f )−1dx =

∫

X
Fd∇ f (x) =

∫

X
F det∇ f (x).

When f ∈ C2 then MA f = det∇2 f .

Theorem 7.14 Jν and W 2
2 (− · , ν) are convex, lower semicontinuous, and Legendre

dual to each other. Jν is Gateaux differentiable and

d Jν | f = −MAν f. (32)

Proof • First, note that Jν is actually continuous: if C(X) � f j → f in C0 then
f �

j → f � pointwise and hence uniformly [27, Theorem 10.8] so J is continuous.
• Convexity of J is elementary:

Jν

(θ + χ

2

)
=

∫

Y
sup

x

[
〈x, y〉 − θ(x) + χ(x)

2

]
ν

≤ 1

2

∫

Y
sup

x
[〈x, y〉 − θ(x)]ν + 1

2

∫

Y
sup

x
[〈x, y〉 − χ(x)]ν

= 1

2
Jν(θ) + 1

2
Jν(χ).

• Convexity of W 2
2 (− · , ν) then follows from (30), being the supremum of affine

functionals, which also implies lower semi-continuity (the supremum of continuous
functions).

• Legendre duality was already proven in (30).
• Legendre duality implies that

Jν( f ) + W 2
2 (μ, ν) ≥ −〈 f, μ〉. (33)

Fix f . To show Gateaux differentiability and (32) it suffices to show that there
exists exactly oneμ for which equality is attained, and that thenμ = MAν f . Define
μ =: (∇ f �)#ν. By Theorem 7.9 and Corollary 7.11 then (Id⊗∇ f )#μ ∈ (μ, ν) is
an optimal transport plan and

W 2
2 (μ, ν) = −〈 f, μ〉 − 〈 f �, ν〉 = −〈 f, μ〉 − Jν( f ).

Now, μ = (∇ f �)#ν = MAν f by definition. Thus, it suffices to show that this μ is
the only one attaining equality in (33), i.e., it suffices to show that J is strictly convex.
Suppose α is another such measure, i.e.,

W 2
2 (α, ν) = −〈 f, α〉 − 〈 f �, ν〉.

FromTheorem7.9 andCorollary 7.11 (Id⊗∇ f )#α ∈ (α, ν) is an optimal transport
plan and α = (∇ f �)#ν so α = μ. �
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7.4 Rate Function for Monge–Ampère

Let β ∈ R and let
μ0 ∈ P(X)

be a fixed reference probability measure. We are interested in the Monge–Ampère
equation

MAν f = eβ f μ0

/ ∫

X
eβ f μ0. (34)

Define Fβ,ν : C(X) → R by

Fβ,μ0,ν(θ) := 1

β
Iμ0(βθ) + Jν(θ). (35)

By (32) and the proof of Lemma 4.4:

Lemma 7.15 Fβ,μ0,ν is Gateaux differentiable and

d Fβ,μ0,ν |θ = eβ f μ0

/ ∫

X
eβ f μ0 − MAν f. (36)

Finally, we can define the rate function underlining theMonge–Ampère equation:

Gβ,μ0,ν := βW 2
2 ( · , ν) + Ent(μ0, · ) + C, (37)

where C is a constant that will guarantee the function is nonnegative and zero at its
minimum.

Proposition 7.16 Assume that Fβ,μ0,ν admits a unique (up to a constant) minimizer
φmin. Then Gβ,μ0,ν admits a unique minimizer μ = MAν φmin. The converse is also
true.

Before going into the proof, let us motivate it with a general observation about
Legendre duals in finite dimensions. If

F = f1 + f2

is the sumof twodifferentiable strictly convex functions, and x is the uniqueminimum
of F then

G(y) := f �
1 (y) + f �

2 (−y)

has a unique minimum at d f1(x). Indeed,

d f1(x) = −d f2(x)
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while (G is differentiable since f �
1 and f �

2 are by the strict convexity of f1, f2 [27,
Theorem 26.3])

dG(y) = d f �
1 (y) − d f �

2 (−y) = (d f1)
−1(y) − (d f2)

−1(−y)

and setting y = d f1(x) = −d f2(x)

dG(y) = (d f1)
−1(d f1(x)) − (d f2)

−1(− − d f2(x)) = x − x = 0.

Thus, y is a critical point of the convex function G, hence a minimum point. This is
the only minimum point since the proof is reversible: if dG(ỹ) = 0 we get d f �

1 (ỹ) =
d f �

2 (−ỹ) so d f1(x̃) = −d f2(x̃) for x̃ = d f �
1 (ỹ), so then x̃ is a critical point of F ,

hence a minimum, so then x = x̃ since by assumption x was the unique minimum.
Thus d f �

1 (y) = d f �
1 (ỹ) implying y = ỹ if f �

1 is strictly convex, but this follows from
differentiability of f1 [27, Theorem 26.3].

Proof Essentially, the conclusion of the finite-dimensional discussion above holds
also in our situation by chasing through the definitions and avoiding the use of [27,
Theorem 26.3]. Here goes.

First, by Theorem 7.14 and (8),

W 2
2 (μ, ν) + Jν( f ) ≥ −〈 f, μ〉, equality if and only if μ = MAν f.

Second, by Lemma 4.4 and (8),

Ent(μ0, μ) + Iμ0( f ) ≥ 〈 f, μ〉, equality if and only if μ = e f μ0/

∫

X
e f μ0.

Let φmin be the minimizer of Fβ,μ0,ν . By Lemma 7.15

MAν φmin = eβφminμ0

/ ∫

X
eβφminμ0. (38)

• Assume first β > 0. Then setting f = φmin and f = βφmin, respectively, in the
inequalities above

Gβ,μ0,ν(μ) = βW 2
2 (μ, ν) + Ent(μ0, μ) + C,

≥ −β〈φmin, μ〉 − β Jν(φmin) − Iμ0(βφmin) + 〈βφmin, μ〉
= −β Jν(φmin) − Iμ0(βφmin)

= −βFβ,μ0,ν(φmin),

with equality if and only if μ = eβφminμ0/
∫

X eβφminμ0 = MAν φmin. Note that
−βFβ,μ0,ν(φmin) is some constant independent of μ. Thus, μ = MAν φmin is the
unique minimizer of Gβ,μ0,ν .
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• Assume now that β < 0. Fix μ ∈ M(X). Let φ ∈ C(X) be such that equality
hold in (33). Now applying above argument to f = φ and f = βφ, respectively,
gives

Gβ,μ0,ν(μ) ≥ −βFβ,μ0,ν(φ) ≥ −βFβ,μ0,ν(φmin),

(the last inequality simply because φmin is a minimizer of Fβ,μ0,ν and β < 0) with
equality in the first inequality if and only if μ = eβφμ0/

∫
X eβφμ0 and in the second

inequality if and only if φ = φmin so overall μ = eβφminμ0/
∫

X eβφminμ0 = MAν φmin

by (38). �

Remark 7.17 We leave the details for the simpler case β = 0 to the reader (in this
special case the Wasserstein distance does not even appear, and one is basically
reduced to Sanov’s Theorem (Corollary 4.3)). Of course, one has to also define
F0,μ0,ν appropriately by taking the derivative at β = 0 of (35).

8 Moment Generating Function for Monge–Ampère

Our goal is now to construct a sequence of probability measures on P(X) (i.e.,
randommeasures, or elements of P(P(X))) whose moment generating function (for
some normalization) is precisely Gβ,μ0,ν .

Naturally, in view of Sanov’s Theorem (Corollary 4.3), the entropy term in Gβ,μ0,ν

will come fromμ⊗n
0 . To obtain theWasserstein distance termwewill need tomultiply

the symmetric measure by a symmetric function that captures discrete optimal trans-
port distance. Here is the key observation [10, Theorem 3.2]. Let Hnd : Xnd → R (the
reader can basically consider the examples (40) and (41) although the next lemma is
more general). Set

	β,n := δnd

#

(
e−β Hnd μ⊗nd

0

)/
Zβ,n ∈ P(P(X)),

with Zβ,n := ∫
Xnd e−β Hnd μ⊗nd

0 is the normalizing constant guaranteeing that 	β,n is
a probability measure; let

Cβ := lim
n

1

nd
log Zβ,n, (39)

where the limit exists and is finite according to Claim 8.3 below.

Lemma 8.1 Let E : P(X) → R be continuous and let Hnd : Xnd → R. Suppose
that limn→∞ ||Hnd /nd − E ◦ δnd ||L∞(Xnd

)
= 0.

Then LDP(	β,n, nd) with rate function βE + Ent(μ0, · ) + Cβ,n, where

Cβ = − inf
μ

[
βE(μ) + Ent(μ0, μ)

]
.
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Remark 8.2 In some sense, the constant Cβ has to equal this value if this function
is to be a rate function, indeed this way the infimum is equal to zero, as it must by
Remark 3.5.

Proof This does not seem to follow easily from a moment generating function com-
putation. Instead, we use the more direct criterion given by Proposition 6.1. Now
X = P(X), with balls takenwith respect to the p-Wasserstein distance (p ∈ [1,∞)).
Hereweneed the fact thatwhen X is compact, P(X) equippedwith the p-Wasserstein
distance function is a compact metric space [1, Sect. 2], [32] (the point is that “p-
Wasserstein distance metrizes the weak topology” and that P(X) is compact with
respect to the weak topology). We compute (and apply Claim 8.3 below),

lim
e→0

lim sup
n→∞

1

nd
log	β,n(Be(μ)) = lim

e→0
lim sup

n→∞
1

nd
log

∫

(δnd
)−1(Be(μ))

e−β Hnd μ⊗nd

0 − Cβ,n

= lim
e→0

lim sup
n→∞

1

nd
log

∫

(δnd
)−1(Be(μ))

e−βnd (E◦δn+o(1))μ⊗nd

0 − Cβ,n

= −βE(μ) + lim
e→0

lim sup
n→∞

1

nd
log

∫

(δnd
)−1(Be(μ))

μ⊗nd

0 − Cβ,n

= −βE(μ) − Ent(μ0, μ) − Cβ,n,

by Corollary 4.3 and Proposition 6.1 (remembering the minus sign in the latter).
Similarly for the liminf. Applying Proposition 6.1 again, we are done. �
Claim 8.3 The limit (39) exists and is finite. In fact,

Cβ,n = − inf
μ

[
βE(μ) + Ent(μ0, μ)

]
.

Proof By our previous computation the limit is bounded below, indeed, for any
e > 0 and any μ,

lim inf
n

1

nd
log Zβ,n = lim inf

n

1

nd
log

∫

Xnd
e−β Hnd μ⊗nd

0

≥ lim inf
n

1

nd
log

∫

(δnd
)−1(Be(μ))

e−β Hnd μ⊗nd

0 ,

so for every μ,

lim inf
n

1

nd
log Zβ,n ≥ −βE(μ) − Ent(μ0, μ)

≥ sup
μ

[ − βE(μ) − Ent(μ0, μ)
]

= − inf
μ

[
βE(μ) + Ent(μ0, μ)

]
,

and so,

lim sup
n

1

nd
log Zβ,n ≥ − inf

μ

[
βE(μ) + Ent(μ0, μ)

]
.
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Finally, by compactness of P(X), fix e > 0 and cover the space with finitely-many
balls Be(μ1), . . . , Be(μk). Then, of course,

Zβ,n =
∫

P(X)

(δnd
)#

(
e−β Hnd μ⊗nd

0

)

=
∫

(δnd
)−1(P(X))

e−β Hnd μ⊗nd

0

≤
k∑

j=1

∫

(δnd
)−1(Be(μ j ))

e−β Hnd μ⊗nd

0

≤ k sup
j

∫

(δnd
)−1(Be(μ j ))

e−β Hnd μ⊗nd

0 ,

so

lim inf
n

1

nd
log Zβ,n ≤ lim inf

n

1

nd
log k + lim inf

n

1

nd
log sup

j

∫

(δnd
)−1(Be(μ j ))

e−βHnd μ⊗nd

0

= lim inf
n

1

nd
log sup

j

∫

(δnd
)−1(Be(μ j ))

e−βHnd μ⊗nd

0

= sup
j

[ − βE(μ j ) − Ent(μ0, μ j )
]

= − inf
j

[
βE(μ j ) + Ent(μ0, μ j )

]

≤ − inf
μ

[
βE(μ) + Ent(μ0, μ)

]
.

Similarly,

lim sup
n

1

nd
log Zβ,n ≤ − inf

μ

[
βE(μ) + Ent(μ0, μ)

]
,

so we conclude Cβ,n = limn
1

nd log Zβ,n exists and equals − infμ
[
βE(μ) +

Ent(μ0, μ)
]
. �

8.1 Finite-dimensional Approximations of Wasserstein
Distance

In view of Lemma 8.1, Proposition 7.16 (and (37)), it remains for us to construct
functions {Hn} that approximate the (pull-back under the empirical map of the)
Wasserstein distance W 2

2 ( · , ν). We will do this in the special case ν = dx .
Let n ∈ N. There are nd 1/n-lattice points of the cube [0, 1]d , and we denote them

by p1, . . . , pnd . Set
φ

(n)
i (x) :=

∑

m∈Zd

e−n|x−pi −m|2 .
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A sort of “theta function” for the real torus

T := R
d/Zd .

There are two sorts of symmetric functions on T
nd

one may cook up from the φi ’s.
First, consider the matrix

�(x1, . . . , xn) := [φ(n)
i (x j )]nd

i, j=1.

Which functions f of �(x1, . . . , xn) are invariant under permutations, i.e., satisfy

f (�(x1, . . . , xn)) = f (�(xσ(1), . . . , xσ(n)))?

In other words, which functions of amatrix are invariant under permutations of rows?
Note that the determinant is only invariant up to a sign. However, the permanent is
fully invariant. First,

Hn(x1, . . . , xn) := −1

n
log per�(x1, . . . , xn). (40)

Here,

per A :=
∑

σ∈Snd

nd
∏

i=1

Aiσ(i).

Second,

Hn(x1, . . . , xn) := −1

n
log perstrop �(x1, . . . , xn). (41)

Here, the semi-tropical permanent is obtained from the permanent by replacing
summation by supremum,

perstrop A := sup
σ∈Snd

nd
∏

i=1

Aiσ(i).

Lemma 8.4 For both (40) and (41), limn→∞ ||Hn/nd − W 2
2

(
dx, δn( · ))||L∞(Xn) =

0.

Proof Since δnd
(p1, . . . , pnd ) → dx weakly (the points are dense and uniformly

distributed) then in view of Claim 8.5 below, it suffices to show that

lim
n→∞ ||Hn/nd − W 2

2

(
δnd

(p1, . . . , pnd ), δnd
( · ))||L∞(Xnd

)
= 0.

This is a nice simplification since we have an explicit formula for the Wasserstein
distance on the image of the empirical map! Indeed [31, p. 5],
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W 2
2

(
δnd

(p1, . . . , pnd ), δnd
(x1, . . . , xnd )

) = inf
σ∈Snd

∑
d(pi , xσ(i))

2.

It is now a simple exercise to complete the proof using Claims 8.6 and 8.7 below.�

Claim 8.5 Let M be compact manifold. Let x1, . . . , xk ∈ M and p1, . . . , pk ∈ M.
Suppose that δk(p1, . . . , pk) → ν weakly. Then

lim
k

||W 2
2

(
δk(p1, . . . , pk), δ

k( · )) − W 2
2

(
ν, δk( · ))||L∞(Xk ) = 0.

Proof Wasserstein distance is a distance function (see [31, 32]), hence,

∣
∣W2

(
δk(p1, . . . , pk), δ

k(x1, . . . , xk)
) − W2

(
ν, δk(x1, . . . , xk)

)∣
∣ ≤ W2

(
δk(p1, . . . , pk), ν

)
,

with the right-hand side independent of x1, . . . , xk . On a compact manifold weak
convergence implies convergence in the Wasserstein distance, hence the right-hand
side converges to zero as k tends to infinity. Finally,

∣
∣W 2

2

(
δk(p1, . . . , pk), δ

k(x1, . . . , xk)
) − W 2

2

(
ν, δk(x1, . . . , xk)

)∣
∣

≤ (
W2(δ

k(p1, . . . , pk), δ
k(x1, . . . , xk)) + W2

(
ν, δk(x1, . . . , xk)

))
W2

(
δk(p1, . . . , pk), ν

)

≤ (
2W2

(
δk(p1, . . . , pk), δ

k(x1, . . . , xk)
) + o(1)

)
W2(δ

k(p1, . . . , pk), ν)

≤ (
2
1

k

∑
d(xi , pi )

2 + o(1)
)
W2

(
δk(p1, . . . , pk), ν

)

≤ (
C(M) + o(1)

)
W2

(
δk(p1, . . . , pk), ν

)
,

since compactness implies the diameter is bounded. This concludes the proof. �

Claim 8.6 Let F : Snd → (0,∞). Then

1

nd+1
log sup

σ

F(σ ) = 1

nd+1
log

∑

σ

F(σ ) + o(1).

Proof Of course,

1

nd+1
log sup

σ

F(σ ) ≤ 1

nd+1
log

∑

σ

F(σ ).

Conversely,
1

nd+1
log

∑

σ

F(σ ) ≤ 1

nd+1
log nd sup

σ

F(σ ).

and by Stirling 1
nd+1 log nd = o(1). �

Claim 8.7 − 1
n logφ

(n)
i (x) = d(pi , x)2 + o(1).
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Proof By definition,
d(pi , x)2 = inf

m∈Zd
|x − pi − m|2.

Now, of course,

1

n
logφ

(n)
i (x) = 1

n
log

∑

m∈Zd

e−n|x−pi −m|2 ≥ 1

n
log sup

m∈Zd

e−n|x−pi −m|2 = −d(pi , x)2.

Conversely, for every ε > 0 there exists C, R > 0 such that

∑

m∈Zd

e−n|x−pi −m|2 ≤
∑

m∈BR(0)∩Zd

e−n|x−pi −m|2 + ε ≤ C
∑

m∈BR(0)∩Zd

e−n|x−pi −m|2 .

Assuming, without loss of generality, that supm∈Zd e−n|x−pi −m|2 is obtained in BR(0),
we have ∑

m∈BR(0)∩Zd

e−n|x−pi −m|2 ≤ C Rd sup
m∈Zd

e−n|x−pi −m|2 ,

so
1

n
logφ

(n)
i (x) = 1

n
log

∑

m∈Zd

e−n|x−pi −m|2

≤ 1

n
logC + 1

n
log sup

m∈BR(0)∩Zd

e−n|x−pi −m|2

≤ o(1) + 1

n
logC Rd sup

m∈Zd

e−n|x−pi −m|2

= o(1) + 1

n
log sup

m∈Zd

e−n|x−pi −m|2

= o(1) − d(pi , x)2,

where o(1) depends on R, but goes to zero as n tends to infinity (for R fixed). Letting
n tend to infinity concludes the proof. �

Finally, we obtain the following theorem due to Berman [4, Theorem 1.1] and
Hultgren [17, Theorem 3.2].

Theorem 8.8 For both (40) and (41), LDP(	β,n, nd) with rate function Gβ,μ0,dx .
The set G−1

β,μ0,dx (0) is a singleton precisely when (34) has a unique solution.
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Proof The first statement follows from Lemmas 8.1 and 8.4. The second statement
follows from Proposition 7.16. �

8.2 An Alternative Proof—Zero Temperature Approach

We were lucky enough to find finite-dimensional approximations to the main func-
tional we were interested in (for all β at once). Here is an alternative approach,
due to Berman in the permanental/Monge–Ampère setting, which allows to ‘reverse
engineer’ the main functional by computing the limit of the moment generating func-
tionswhen β = βn = n → ∞. This is an easier task because in this “zero-temprature
limit” the entropy contribution disappears. This is a standard method in the field and
its benefit in this setting is that when writing out the moment generating functions
explicitly, the symmetry in the Hamiltonians can be exploited to reduce much of the
complexity. Once an explicit formula for the limit is attained [4, Proposition 5.3],
[17, Lemma 3.8], the Gärtner–Ellis Theorem can be invoked to deduce an LDP for
this “zero-temperature” case (stated as a part of Theorem 1.1 in Berman’s paper [4]
and as Theorem 3.6 in Hultgren’s article [17]). This LDP can then be used to deduce
Lemma 8.4 above (corresponding to Lemma 4.9 in [4] and Lemma 3.14 in [17]),
after which Theorem 8.8 is proved as in the previous section. This original approach
of Berman and Hultgren to proving Theorem 8.8 also can be made to work in the
case we are no longer on the torus, but rather on a non-compact manifold, as in the
toric setting. The reason we chose the proof we presented above is that we found it
slightly more pedagogical to directly deal with all β at once and avoid this extra use
of the Gartner–Ellis theorem.

We will now explain the main part of the alternative argument for Theorem 8.8,
that as just mentioned, was the original proof. Namely, how to prove the LDP when
β = βk = k → ∞. Here is the main observation:

Lemma 8.9 Let Hn : Xnd → R be given by (40) or (41). Set

	n,n := δnd

#

(
e−nHn μ⊗nd

0

)/
Zn,n ∈ P(P(X)).

Then LDP(	n,n, nd+1) with rate function W 2
2 (dx, · ).

Proof This time, we can use Theorem 4.1. By Claim 8.10 below, lim 1
nd+1 log Zn,n =

0. Thus, assuming (40), the moment generating function simplifies as follows,
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p(θ) = lim
1

nd+1
log

∫

P(X)

end+1〈θ,ν〉	n,n(ν)

= lim
1

nd+1
log

∫

Xnd
end+1〈θ,δnd

( · )〉
(

e−nHn μ⊗nd

0

)

= lim
1

nd+1
log

∫

Xnd
end+1〈θ,δnd

(x1,...,xnd )〉e−nHn(x1,...,xnd )μ0(x1) ⊗ · · · μ0(xnd )

= lim
1

nd+1
log

∫

Xnd
end+1n−d ∑nd

i=1 θ(xi )e−nHn(x1,...,xnd )μ0(x1) ⊗ · · · μ0(xnd )

= lim
1

nd+1
log

∫

Xnd
en

∑nd

i=1 θ(xi )
∑

σ

∏
φ

(n)
i (xσ(i))μ0(x1) ⊗ · · · μ0(xnd )

= lim
1

nd+1
log

∫

Xnd

∑

σ

∏[
enθ(xσ(i))φ

(n)
i (xσ(i))

]
μ0(x1) ⊗ · · · μ0(xnd )

= lim
1

nd+1
log

∫

Xnd
nd !

∏[
enθ(xi )φ

(n)
i (xi )

]
μ0(x1) ⊗ · · ·μ0(xnd )

= lim
1

nd+1
log

∫

Xnd

∏[
enθ(xi )φ

(n)
i (xi )

]
μ0(x1) ⊗ · · · μ0(xnd )

= lim
1

nd+1
log

∏[ ∫

X
enθφ

(n)
i μ0

]

= lim
1

nd

nd
∑

i=1

1

n
log

[ ∫

X
enθφ

(n)
i μ0

]
.

By Claim 8.7, − 1
n logφ

(n)
i (x) = d(pi , x)2 + o(1). and by Claim 8.13 below we thus

have

p(θ) = lim
1

nd

nd
∑

i=1

[
(−θ)�(pi ) + o(1)

] = lim
〈
δnd

(p1, . . . , pnd ), (−θ)�
〉 =

∫

X
((−θ)�dx,

since δk(p1, . . . , pk) → dx . Thus, by Theorems 4.1 and 7.14 we are done. �

Claim 8.10 lim 1
nd+1 log Zn,n = 0.

In fact, we will give a rate of decay, 1
nd+1 log Zn,n = O(1/n).

Remark 8.11 It actually suffices to show that lim 1
nd+1 log Zn,n exists—it then must

be zero: by Theorem 4.1, once we have a large deviation principle and we know that
the rate function is W 2

2 (dx, · ) up to a constant, then we can determine that constant
by the fact that the infimum of the rate function must be zero (Remark 3.5). Since
inf W 2

2 (dx, · ) = 0 (attained for dx), we get the constant must be zero. At any rate,
we will prove Claim 8.10 directly.

Remark 8.12 In fact, here is a quick proof: limn
1

nd+1 log Zn,n = p(0), which, by
the previous computation, equals

∫
0� = 0.
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Proof We compute,

lim
1

nd+1
log Zn,n = lim

1

nd+1
log

∫

Xnd
per[φ(n)

i (x j )]μ⊗nd

0

= lim
1

nd+1
log

∫

Xnd

∑

σ

nd
∏

i=1

φ
(n)
i (xσ(i))μ0(x1) ⊗ · · · μ0(xnd )

= lim
1

nd+1
log

∫

Xnd

∑

σ

nd
∏

i=1

φ
(n)
i (xi )μ0(x1) ⊗ · · · μ0(xnd )

= lim
1

nd+1
log

∫

Xnd
nd !

∏
φ

(n)
i (xi )μ0(x1) ⊗ · · · μ0(xnd )

= lim
1

nd+1
log

∫

Xnd

∏
φ

(n)
i (xi )μ0(x1) ⊗ · · · μ0(xnd )

= lim
1

nd+1
log

∏ ∫

X
φ

(n)
i μ0

= lim
1

nd

nd
∑

i=1

1

n
log ||φ(n)

i ||L1(μ0) ≤ Cn,

whereCn := supi=1,...nd
1
n log ||φ(n)

i ||L1(μ0). Now, it remains to estimateCn . By Claim

8.7, − 1
n logφ

(n)
i (x) = d(pi , x)2 + o(1), so

1

n
log ||φ(n)

i ||L1(μ0) ≤ 1

n
log ||e−n(d(pi ,x)2+o(1))||L1(μ0) = O(1/n).

Since i was arbitrary, Cn = O(1/n) and we are done. �

Claim 8.13 limk→∞ 1
k log

∫
ek(d(x,y)2− f (x))dx = f �(y).

Proof Of course, limk→∞ ||F ||Lk(X,μ) = ||F ||L∞(X) for continuous F and compact
X and probability μ. By definition, supx [d(x, y)2 − f (x)] = f �(y). So,

lim
k→∞

1

k
log

∫

ek(d(x,y)2− f (x))dx = lim
k→∞ log ||ed(x,y)2− f (x)||Lk (dx)

= log ||ed(x,y)2− f (x)||L∞

= ||d(x, y)2 − f (x)||L∞

= f �(y),

as desired. �

The alternative proof of Theorem 8.8 (that is actually the original proof in [17])
is now a consequence. The point is that once we know there is a large deviation
principle for β → ∞we can use Proposition 6.1 and Sanov’s Corollary 4.3 to deduce
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the convergence in Lemma 8.4 in an argument which provide a formal converse of
Lemma 8.1 above, valid in the β → ∞ case (see Lemma 4.9 in [4] or the proof of
Theorem 3.2 in [17]). After that we get the LDP in Theorem 8.8 by applying Lemma
8.4 as above.
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On Birational Boundedness of Some
Calabi–Yau Hypersurfaces

Taro Sano

Abstract We show the birational boundedness of anti-canonical irreducible hyper-
surfaces which form 3-fold plt pairs. We also treat a collection of Du Val K3 surfaces
which is birationally bounded but unbounded.

Keywords Calabi-Yau varieties · Boundedness

1 Introduction

In the classification of algebraic varieties, Calabi–Yau manifolds (CY manifolds for
short) form an important class. It is not known whether n-dimensional CYmanifolds
form a bounded family for a fixed n ≥ 3.

On the other hand, in the 2-dimensional case, there are infinitely many projective
families of K3 surfaces although they are analytically deformation equivalent. Reid
observed that there are only 95 families of weighted K3 hypersurfaces ([31, pp.300],
[18, 13.3]). Inspired by this, we ask whether K3 surfaces in a 3-fold are bounded or
not. We show the following statement in this note.

Theorem 1.1 Let (X, D) be a plt pair such that dim X = 3, D is irreducible and
reduced, and K X + D ∼ 0. Then D forms a birational bounded family.

An interesting feature is that X can be unbounded as in Example 2.11. In fact, we
study the birational boundedness of a prime divisor D for a 3-fold plt pair (X, D)

such that K X + D ≡ 0 in Theorem 2.12. It turns out that D is birationally bounded
unless X is birational to a conic bundle over a Du Val surface S with KS ∼ 0. The
divisor D can be unbounded as in the exceptional case as in Example 2.15. The pair
as above is called a plt CY pair in this note (Definition 2.1). CY pairs have been
studied in several contexts of algebraic geometry (cf. [4], [9], [26], etc).
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The following example due to Oguiso forces us to use ‘birational boundedness’
rather than ‘boundedness’ in Theorem 1.1.

Theorem 1.2 (= Example 3.2) Fix any positive integer d. Then we have an
unbounded collection of Du Val K3 surfaces which are birational contractions of
smooth K3 surfaces of degree 2d.

When d = 2, the examples are birational contractions of some smooth quar-
tic surfaces and infinitely many of them can be embedded into rational 3-folds
(Remark 3.3). Thus the statement in Theorem 1.1 is optimal in a sense.

Classically, examples of CY 3-folds are constructed by taking weighted or toric
hypersurfaces. In Sect. 4, we ask whether CY hypersurfaces in rationally connected
varieties form a bounded family.We confirm that toric hypersurfaces form a bounded
family in Corollary 4.6.

Throughout this paper, we work over the complex number field C.

2 Finiteness of Anticanonical Calabi–Yau Surfaces
in a 3-fold

We follow the notation in [22].

Definition 2.1 We say that (X, D) is a plt Calabi–Yau (CY) pair if (X, D) is a plt
pair such that K X + D ≡ 0. A plt CY pair (X, D) is called a reduced plt CY pair if
D is a reduced divisor.

Note that X can be non-Q-Gorenstein, but the support of the round down �D� of D
is normal (cf. [22, Proposion 5.51]). Note also that X is Q-factorial in codimension
2 (cf. [12, Proposition 9.1]) and K X + D is torsion (cf. [21, Corollary 10], [13,
Theorem 1.2]).

When K X + D ∼ 0 and D is reduced, we have the following.

Proposition 2.2 Let (X, D) be a reduced plt CY pair such that K X + D ∼ 0.
Then D has only canonical singularities. If X is Q-Gorenstein, then X has only

canonical singularities.

Proof We can take a log resolution μ : X̃ → X of (X, D) such that

K X̃ + D̃ = μ∗(K X + D) +
∑

ai Ei

for some integersai ≥ 0,where D̃ is the strict transformof D and Ei is the exceptional
divisor. Note that ai ≥ 0 since K X + D is Cartier. This implies that X has only
canonical singularities in codimension 2 (outside the non-Q-Gorenstein locus). In
particular, we see that K X is Cartier in codimension 2 and (K X + D)|D = K D is
trivial. Thus, by restricting the equality to D̃, we see that D has only canonical
singularities. �
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The plt CY property is preserved by steps of the K X -MMP as follows.

Proposition 2.3 Let (X, D) be a reduced plt CY pair such that X is projective and
Q-factorial. Let φ : X ��� Y be a birational map which is a step of a K X -MMP, that
is, φ is either a divisorial contraction or a flip. Let DY := φ∗ D.

Then the pair (Y, DY ) is also a plt CY pair.

Remark 2.4 We can not hope that (Y, DY ) is dlt when (X, D) is so. Consider the
pair (P3, D) for a quartic surface D with a simple elliptic singularity p ∈ D and its
blow-up X1 → P3 at p. Let D1 ⊂ X1 be the strict transform of D and E1 be the
exceptional divisor. Then (X1, D1 + E1) is a dlt CY pair, X1 → P3 is a K X -negative
divisorial contraction and (P3, D) is lc and not dlt.

Proof Since we have DY = φ∗(D) ∈ |−KY |Q, it is enough to show that (Y, DY ) is
plt. Let E be an exceptional divisor overY (hence over X ). Ifφ : X → Y is a divisorial
contraction and E is the φ-exceptional prime divisor, we see that E �⊂ Supp D by
the negativity lemma (cf. [3, Lemma 3.6.2]) since D is φ-ample. Hence we have
−1 < a(E, X, D) = a(E, Y, DY ) since both K X + D and KY + DY are trivial. Also
when φ is a flip, we have the same equality by the same reason. Hence we see that
both discrepancies are greater than −1, thus (Y, DY ) is also plt. �

The following is based on the argument in the e-mail from Chen Jiang.

Proposition 2.5 Let n ∈ Z>0 and I ⊂ [1, 0] ∩ Q be a DCC set. Let (X, D) be an
n-dimensional projective plt CY pair such that the coefficients of D belong to I . Then
we have the following.

(i) (X, D) is ε-plt for some ε > 0 which only depends on n and I , that is, for an
exceptional divisor E over X, the discrepancy a(E; X, D) > −1 + ε.

(ii) Assume that dim X = 3 and D is reduced.
Then D is bounded except when D has only Du Val singularities and X is smooth
in codimension 2 around D.
We have (K X + D)|D = K D in the exceptional case.

Proof (i) This can be shown by the same argument as [11, Corollary 2.9] (In
fact, (i) follows from [4, Lemma 2.48]). Suppose that there exists a plt CY pair
(Xn, Dn) which is εn-plt for some εn > 0 such that (εn)n is a decreasing sequence
and limn→∞ εn = 0. Then there is an extraction X̃n → Xn of a divisor En with
a(En; Xn, Dn) = −1 + εn so that (X̃n, D̃n + (1 − εn)En) satisfies the assumption
of the global ACC [15, Theorem 1.5] since I ∪ {1 − εn | n ∈ N} is a DCC set. Thus
{1 − εn | n ∈ N} is a finite set and this is a contradiction.

(ii) By the adjunction using the different, we have an equality

K X + D|D = K D +
l∑

i=1

bi Bi



842 T. Sano

as Q-divisors for some prime divisors B1, . . . , Bl . Note that bi belongs to some
finite set I0 by the global ACC [15, Theorem 1.5] since bi belongs to a DCC set
{1 − 1

n | n ∈ N}. Suppose that bi �= 0 for some i . Then we see that (D,
∑

bi Bi ) is
ε-lc for some ε independent of X . By [2, Theorem 6.9], we see that D belongs to a
bounded family.

Hence the problem is reduced to the case K X + D|D = K D . This implies that X
is smooth at all codimension 1 points of D by the local computation of the different
(cf. [23, Proposition 4.5 (1)]). Thus we see that K D ≡ 0. Such surfaces are bounded
except when D has only Du Val singularities by [2, Theorem 6.9]. �

If a plt CY pair (X, D) admits a del Pezzo fibration X → C over a curve, then D
belongs to a bounded family as follows. (Note that C is either P1 or an elliptic curve
by the canonical bundle formula. )

Proposition 2.6 Let (X, D) be a projective Q-Gorenstein 3-fold plt CY pair with a
fiber space φ : X → C over a smooth curve C such that D is irreducible, reduced
and φ-ample.

Then there exist a positive integer N and an ample line bundle H on D such that
N is independent of X and H2 ≤ N, thus such D’s form a bounded family.

Proof Note first that (X, D) is ε-plt by Proposition 2.5 (i) for some ε > 0 and the gen-
eral fiber X p over p ∈ C of φ is an ε-lc log del Pezzo surface. By Proposition 2.5(ii),
it is enough to consider the case where D has only Du Val singularities and X is
smooth in codimension 2 around D. By this, the restriction −K X |D is determined as
a Weil divisor. �

Claim 2.7 There exists a positive integer m such that m is independent of X and mL
is a Cartier divisor for all Weil divisor L on D.

Proof of Claim. The claim follows since there are finitely many possibilities for the
singularities on D (cf. [1, (4.8.1)]). Let νD : D̃ → D be the minimal resolution. If D
is singular, then D̃ is either a K3 surface or an Enriques surface. Then the number of
the νD-exceptional (−2)-curves is less than ρ(D̃) ≤ 20 (or < 10 if D̃ is Enriques)
since the exceptional curves are linearly independent in Pic D̃.

We shall find an ample divisor of the form m(−K X + aF)|D for a fiber F :=
φ−1(p). The point is that a can be unbounded as in Example 2.11, but the degree of
the divisor is bounded.

Let φD := φ|D : D → C and FD := φ−1
D (p) be its fiber over p ∈ C . Then φD is

an elliptic fibration since, for a general p ∈ C , we have FD ∈ |−KF |Q for a log del
Pezzo surface F and we check h0(FD,OFD ) � C.

Let LD := m(−K X |D) be the restricted divisor which is φD-ample. Let

α := min{a ∈ Z | h0(D,LD + aFD) �= 0}.
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Then we have an exact sequence

0 = H0(D,LD + (α − 1)FD) → H0(D,LD + αFD) → H0(FD, (LD + αFD)|FD ).

Note that (LD + αFD)|FD = −mK X |FD and its degree is m(−K 2
F ) =: md, where F

is a general fiber of φwhich is an ε-lc del Pezzo surface of degree d. Indeed, we have

−K X · FD = −K X · D · F = (−K X )2 · F = (−KF )2 = d.

Note that d ≤ δ for some integer δ = δε determined by ε (the maximal integer degree
of ε-lc del Pezzo surfaces. See [19] for the optimal bound. ). Since FD is an elliptic
curve, we have h0(FD, (LD + αFD)|FD ) = md. Thus, by the above exact sequence,
we see that

h0(D,LD + αFD) ≤ md. (1)

Claim 2.8 The Cartier divisor LD + (k + α)FD is ample for k > 2δm.

Proof of Claim. Let νD : D̃ → D be the minimal resolution of D and FD̃ := ν∗
D(FD)

be the pull-back, and φD̃ := νD ◦ φD : D̃ → C be the composition.
Let ν∗

D(LD + αFD) = M + E be the decomposition to the mobile part M and
fixed part E . We can write E = ∑l

i=1 ai Ci for some ai ≥ 0 and (−2)-curves
C1, . . . , Cl so that C1, . . . , Cl ′ are φD̃-horizontal and Cl ′+1, . . . , Cl are φD̃-vertical.
Note that

md = ν∗
D(LD + αFD) · FD̃ ≥ E · FD̃ = (

l∑

i=1

ai Ci ) · FD̃ ≥
l ′∑

i=1

ai

since Ci is vertical for i > l ′. Hence we obtain

ai ≤ δm (i = 1, . . . , l ′).

In order to check LD + (k + α)FD is nef, it is enough to check

ν∗
D(LD + (α + k)FD) · Ci ≥ 0

for i = 1, . . . , l ′ since LD is φD-ample. For k ≥ 2δm, we have

ν∗
D(LD + (α + k)FD) · Ci = (M + E + k FD̃) · Ci

≥ (ai Ci + k FD̃) · Ci = −2ai + k(FD̃ · Ci ) ≥ −2δm + k(FD̃ · Ci ) ≥ 0.

since Ci is horizontal and FD̃ · Ci ≥ 1. Thus LD + (α + k)FD is nef for k ≥ 2δm,
thus ample when k > 2δm. �



844 T. Sano

For a positive integer β and a divisor Lβ := LD + (α + β)FD , we have an exact
sequence

0 → H 0(D,Lβ) → H 0(D,Lβ+1) → H 0(FD,Lβ+1|FD ).

By h0(FD,Lβ+1|FD ) = h0(FD,LD|FD ) = md as before, we have

h0(D,Lβ+1) ≤ h0(D,Lβ) + md.

By this and (1), we obtain

h0(D,L2δm+1) ≤ md + (2δm + 1)md = 2δm2d + 2md ≤ 2m2δ2 + 2mδ.

Since L2δm+1 is ample, we have hi (D,L2δm+1) = 0 for i = 1, 2. Since L2δm+1 is
Cartier, we obtain

h0(D,L2δm+1) = χ(D,L2δm+1) = χD + (L2δm+1)
2

2
,

where χD := χ(D,OD) = 0, 1, 2 since D is either a (Du Val) K3 surface, Enriques
surface or abelian surface.

Thus we see that L2
2δm+1 is bounded by the constant 2(2m2δ2 + 2mδ − χD) and

H := L2δm+1 has the required property. By [2, Lemma 3.7 (1)], we see that D forms
a bounded family. �

Remark 2.9 When D is an abelian surface, we have the same statement as Claim 2.8
for k > 0 since an effective divisor on D is nef.

Example 2.10 There are infinitely many examples of conic bundles with smooth
anticanonical members in [24, Example 20]. Let P := P(OP2 ⊕ OP2(3) ⊕ OP2(c))
for c ≥ 3 and X := Xc ∈ |OP(2)| be a smooth member. Then φ : X → P2 is a conic
bundle and |−K X | contains a smooth member D. Since D is also an anticanonical
member of P(OP2 ⊕ OP2(3)), we see that D is bounded with a polarizationOP(1)|D

of degree 18. We see that ρ(X) = 2 by the Lefschetz type theorem [32, Theorem 2]
and check that the collection {Xc}c=1,2,... is unbounded. Indeed, a nef and big divisor
on X can be written as

Ha,b := −aK X + bF = a(−K X + cF) + (b − ca)F,

where a, b ∈ Z>0 satisfy b ≥ ca and F := φ∗OP2(1). Thus we compute

H 3
a,b ≥ (−K X + cF)3 = 2(OP(1)

4) = 2(c2 + 3c + 9)

by using H · (H − 3 f ) · (H − c f ) = 0 for H := OP(1) and f := π∗OP2(1) for
π : P → P2. Indeed, since we have H 3 = (c + 3)H 2 · f − 3cH · f 2 and H 2 · f 2 =
1, we obtain



On Birational Boundedness of Some Calabi–Yau Hypersurfaces 845

H4 = H(H3) = H((c + 3)H2 · f − 3cH · f 2) = (c + 3)H3 · f − 3c(H2 f 2)

= (c + 3)((c + 3)H2 · f − 3cH · f 2) · f − 3c · 1 = (c + 3)2 − 3c = c2 + 3c + 9.

Hence we see the unboundedness of Xc.
Moreover, we check that the collection {Xc | c ≥ 3} is birationally unbounded by

the same argument as [27]. Indeed, the discriminant curve Bc ⊂ P2 of φc : Xc → P2

has degree 2c + 6 as [24, Example 20], thus 4KP2 + Bc is effective when c ≥ 3.
Hence the conic bundle φc : Xc → P2 is birationally rigid (cf. [10, Theorem 4.2]).
Thenwe can use the argument in [27, Sect. 3] to show that {Xc | c ≥ 3} is birationally
unbounded.

Example 2.11 There also exist infinitely many examples of del Pezzo fibrations
X → P1 such that X is smooth and |−K X | contains a smooth member. Let

X := Xn ⊂ P := PP1(O ⊕ O ⊕ O(2) ⊕ O(n))

be a smooth member of |OP(3)|. Then the induced projection φ : X → P1 is a del
Pezzo fibration and |−K X | = |OP(1) ⊗ φ∗O(−n)| contains a smoothmember S.We
see that S is isomorphic to an anticanonical member of PP1(O ⊕ O ⊕ O(2)) and has
a polarization of the degree independent of n. However, the collection {Xn}n∈N is
not bounded. Indeed, we see that Pic X = Z(−K X ) ⊕ Z(F) for F := φ∗OP1(1) as
above, and a nef and big line bundle

Ga,b := a(−K X ) + bF = a(−K X + nF) + (b − na)F

should satisfy b ≥ na. Thus we see the unboundedness of Xn by computing

G3
a,b ≥ (−K X + nF)3 = 3n + 6

since 0 = H 2 · (H − 2 f )(H − n f ) = H 2(H 2 − (n + 2)H · f + 2n f 2) = H 4 −
(n + 2)H 3 · f = H 4 − (n + 2), where H := OP(1) and f is the fiber class.

For an elliptic curve C and a positive integer d, consider PC := P(OC ⊕ OC ⊕
OC ⊕ OC(d P)) and a smooth member Xd ∈ |OPC (3)|. Then Xd → C is a del Pezzo
fibration and Sd ∈ |−K Xd | is an abelian surface with a bounded polarization. We
check the unboundedness of Xd by a similar calculation as above.

The following implies Theorem 1.1.

Theorem 2.12 Let (X, D) be a projective 3-fold plt CY pair such that D is irre-
ducible and reduced. Then D is birationally bounded unless all of the following
hold:

(1) K X + D � 0, but 2(K X + D) ∼ 0.
(2) X is birational to a conic bundle Y → S such that S is either a Du Val K3 surface

or an abelian surface.
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(3) For the strict transform DY ⊂ Y of D, the induced morphism DY → S is étale
in codimension 1

In particular, Theorem 1.1 holds.

Proof By taking a small Q-factorial modification (cf. [23, Corollary 1.37]), we may
assume that X is Q-factorial.

Letφ : X ��� Xm be a birational map induced by a K X -MMP andφD : D ��� Dm

be the birational map induced by φ. We also have a Mori fiber space φm : Xm → S.
Note that (Xm, Dm) is also a plt CY pair by Proposition 2.3. It is enough to consider
the case where Dm has only Du Val singularities by Proposition 2.5(ii). The problem
is to bound such Dm .

Consider the case dim S = 0. Then Xm is a ε-lc Fano 3-fold for some ε > 0 by
Proposition 2.5, thus it is bounded by [5, Theorem 1.1] and Dm is also bounded.

Next consider the case dim S = 1. Then Xm → S is a del Pezzo fibration and Dm

is bounded by Proposition 2.6.
Next consider the case where dim S = 2 and the induced morphism Dm → S is

of degree 2 and branched along a curve. Then (S, 1
2 R) is a 1

2 -lc CY pair (cf. [22,
Proposition 5.20]), where R ∈ |−2KS| is the branch divisor of the double cover
πm : Dm → S (or its Stein factorization). Then (S, 1

2 R) is log bounded by [2, Theo-
rem 6.9]. Thus Dm is also bounded since it is a crepant modification of the double
cover of S branched along R (For a polarization H on S with the bounded degree,
π∗

m H gives a quasi-polarization on Dm with the bounded degree).
Finally consider the case where dim S = 2 and πm : Dm → S is étale in codimen-

sion 1. Then we see that KS ≡ 0. Thus S and Dm are bounded unless S has only
Du Val singularities by [2, Theorem 6.8]. Since we are interested in the birational
boundedness of D, it is enough to assume KS ∼ 0, that is, S is either a Du Val
K3 surface or an abelian surface since Enriques surfaces and bielliptic surfaces are
bounded. Hence the problem is reduced to the following claim.

Claim 2.13 In the above setting, assume that S is a Du Val K3 surface or an abelian
surface. Then we have the following.

(i) K Xm + Dm � 0.
(ii) 2(K Xm + Dm) ∼ 0.

Proof of Claim. Let X := Xm and D := Dm with a conic bundle φ : X → S. Note
that φD := φ|D is étale in codimension 1 and, if S is an abelian surface, then φD is
étale by the purity of the branch locus.
(i) Suppose that K X + D ∼ 0 and we shall find a contradiction. Since we have the
usual adjunction K X + D|D = K D and OX (K X ) is S2, we obtain an exact sequence

0 → OX (K X ) → OX (K X + D) → OD(K D) → 0.

Since the restriction H 0(X, K X + D) → H 0(D, K D) is surjective, we obtain the
exact sequence
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0 → H 1(X, K X ) → H 1(X,OX )
α−→ H 1(D,OD).

By the Serre duality and the Leray spectral sequence, we obtain

H 1(X, K X ) � H 2(X,OX )∗ � H 2(S,OS)
∗ � C

and H 1(X,OX ) � H 1(S,OS). Note that Riφ∗OX = 0 by the Kawamata-Viehweg
vanishing since −K X is φ-ample. If S is a Du Val K3 surface, then we have
H 1(S,OS) = 0 and this contradicts the above exact sequence. If S is an abelian
surface, then we check that α in the exact sequence is injective. Indeed, α can be
regarded as φ∗

D : H 1(S,OS) → H 1(D,OD) and this is an isomorphism since φD is
étale. This again contradicts the above exact sequence. Thus we see that K X + D is
not trivial.

(ii) Let m ∈ Z>1 be a minimal integer such that m(K X + D) ∼ 0 and let � : X ′ :=
Spec

⊕m−1
i=0 OX (i(K X + D)) → X be the cyclic cover defined by an isomorphism

OX (m(K X + D)) � OX . Then D′ := �−1(D) satisfies that D′ � Spec
⊕m−1

i=0

OX (i(K X + D)|D) � Spec
⊕m−1

i=0 OX (i K D). By K D ∼ 0, we see that D′ is a dis-
joint union of m copies of D. By K X ′ + D′ ∼ 0 and [23, Proposition 4.37 (3)], we
see that m = 2, that is, 2(K X + D) ∼ 0. �

This finishes the proof of Theorem 2.12. �
The case where Dm → S is étale really occurs as follows. We also have examples

where Dm can be any abelian surface, thus gives examples of birationally unbounded
D in Theorem 2.12 by Claim 2.17.

Example 2.14 Let S be anEnriques surface and X := PS(OS ⊕ ωS). Then the linear
system |−K X | = |OP(2)| is free. Indeed, it contains two members 2σ0, 2σ∞ with
disjoint support, where σ0,σ∞ are the sections corresponding to two surjections
O ⊕ ωS � O,O ⊕ ωS � ωS . Then we see that a general member D ∈ |OP(2)| is
irreducible since we have an exact sequence

H 0(OP) → H 0(OD) → H 1(OP(−2))

and obtain H 0(D,OD) � C by

H 1(OP(−2)) = H 1(ωP) � H 2(OP)
∗ � H 2(OS) = 0.

Then, since there is an étale double cover D → S, we see that D is a K3 surface.
It is well-known that Enriques surface has a polarization H such that H 2 = 2, thus
Enriques surfaces form a bounded family.

We can construct a similar example from any abelian surface A and its translation
τ ∈ Aut A by a 2-torsion point on A. Note that the quotientmorphismq : A → A/τ is
étale and Ā := A/τ is also an abelian surface. Let Y := P Ā(O ⊕ L), where q∗OA �
O Ā ⊕ L. Then |OP(2)| is free and contains a smooth member� � A as above. Note
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that −KY = OP(2) ⊗ π∗L, thus −KY ≡ OP(2) but −KY � OP(2). Note also that
A forms a birationally unbounded family by Claim 2.17.

The following gives unbounded examples in the case where Dm → S is étale in
codimension 1 and S is singular.

Example 2.15 Let D be a smooth K3 surface with a Nikulin involution ι ∈ Aut D,
that is, ι is a symplectic involution so that S := D/ι is a Du Val K3 surface with
8 A1-singularities p1, . . . , p8. There are infinitely many components of the moduli
space which parametrize K3 surfaces with Nikulin involutions as in [34, Proposition
2.3]. Let π : D → S be the quotient morphism and S′ := S \ Sing S be the smooth
part. Note that π∗OD � OS ⊕ L for some reflexive sheaf L of rank 1 such that
L[2] := (L⊗2)∗∗ � OS .

We can construct a Q-conic bundle

P := PS( j∗(Sym(OS′ ⊕ L|S′)) → S,

where j : S′ → S is an open immersion and Sym is the symmetric algebra.We check
that P has at most 1/2(1, 1, 1)-singularities by local computation.We also check that
|OP(2)| is a free linear system and contains a smooth irreducible member � as in
Example 2.14. We see that� is a K3 surface which can be isomorphic to the original
D. Then the pair (P,�) is a plt CY pair such that KP + � is 2-torsion. We expect
that the set of D with Nikulin involutions form a birationally unbounded family.

We can do the same construction starting from any abelian surface A and its (−1)-
involution ι ∈ Aut A. That is, we can construct a Q-conic bundle X → T := A/ι
with � ⊂ X so that (X,�) is plt, K X + � ≡ 0 and � � A is an abelian surface.

Remark 2.16 Without the assumption that D is irreducible, the statement is false.
For example, consider the product X = S × P1 of aK3 surface (or an abelian surface)
S and P1. Note that families of K3 surfaces and abelian surfaces are algebraically
unbounded although they are analytically bounded.

We can also show that the collection of projectiveK3 surfaces (or abelian surfaces)
is birationally unbounded as follows. (This may be well-known, but we include the
explanation for the possible convenience of the reader. )

Claim 2.17 Let C := {Sd | d ∈ Z>0} be the collection of smooth projective K3 sur-
faces (or abelian surfaces), where Sd satisfies Pic Sd = Z · Hd and Hd is an ample
line bundle of degree H 2

d = 2d. Then C is birationally unbounded.

Proof of Claim. The argument is similar as that of [27, Sect. 3].
Suppose that C is birationally bounded. Then there exists a projective morphism

of algebraic schemes φ : S → T such that, for d ∈ Z>0, there exist td ∈ T and a
birational map μd : Std ��� Sd from the fiber Std := φ−1(td). Let T ′ := {td | d ∈
Z>0} ⊂ T and Z := T ′ ⊂ T be its closure. Then there exists an irreducible compo-
nent Zi ⊂ Z containing infinitely many td ’s. By considering the base change to Zi ,
we may assume that T is irreducible and that T ′ ⊂ T is dense and contains infinitely
many td ’s.
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Let η ∈ T be the generic point and Sη be the generic fiber of φ. By taking a
resolution of Sη and replacing T by an open subset, we may assume that φ : S → T
is a smooth family of projective surfaces with birational maps μd : Std ��� Sd for
infinitelymany d. By running a KS -MMPover T , wemay assume that KS/T isφ-nef,
thusμd is an isomorphism for d with td ∈ T . LetH be aφ-ample line bundle onS and
M := (Ht )

2 > 0 be its degree. We can take d � 0 such that 2d > M and td ∈ T .
Since Pic Sd = ZHd � Htd and H 2

d = 2d > H2
td = M > 0, this is a contradiction.

Hence we see that C is birationally unbounded. �

Remark 2.18 If we only assume that (X, D) is a log canonical pair such that D
is irreducible and K X + D ∼ 0, then such (X, D) forms an unbounded family. For
example, we can consider a polarized K3 surface (S, L) of any degree and its pro-
jective cone X := C p(S, L).

Remark 2.19 For any d > 0, there exists an abelian variety A of dimension n ≥
2 with a primitive ample divisor L of type (1, . . . , 1, d) such that h0(A, L) = d
(and Ln = n!d). A general abelian variety of type (1, 1, . . . , d) has the Picard rank
1. Hence abelian varieties of dimension ≥ 2 are algebraically unbounded (cf. [6,
8.11(1)]).

The statement inTheorem1.1 does not holdwhendim X ≥ 4.Let Xd := Ad × P2,
where (Ad , Ld) is a general abelian variety with a primitive polarization Ld of type
(1, . . . , 1, d) as above. Then there exists a smoothmember Dd := Ad × C ∈ |−K Xd |
so that (Xd , Dd) is a plt CY pair and Dd is irreducible and reduced, where C ⊂ P2 is
an elliptic curve. Such Dd forms an unbounded family since there is no non-constant
map C → Ad and Pic(Ad × C) � Pic Ad × PicC .

We can also show such Dd forms a birationally unbounded family by a similar
argument as Claim 2.17 using the relative MMP guaranteed by [16, Theorem 1.2]
as follows. Suppose that {Dd | d ∈ Z>0} is birationally bounded. Then, as in Claim
2.17, we can construct a smooth family φ : A → T over a smooth variety T with
infinitelymany points td ∈ T and a birationalmapμd : Atd ��� Dd . By [16, Theorem
1.2], we obtain a birational map A ��� A′ to a good minimal model A′ of A over
T with a morphism φ′ : A′ → T . Since an abelian variety contains no rational curve
and there is no flop on it, we see that A′

td � Dd for td ∈ T . Let H′ be a φ′-ample
line bundle on A′. By considering H′|A′

td
and its pull-back to Ad for sufficiently

large d, we obtain a contradiction as before. Hence we obtain the required birational
unboundedness.

3 Birational Bounded Family of Du Val K3 Surfaces which
are Unbounded

We consider the following problem in this section.

Problem 3.1 Let S be a smooth K3 surface with an ample line bundle L with L2 =
2d for a fixed d > 0. Let S → S′ be a birational morphism onto a normal surface S′
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(which is a Du Val K3 surface). Does there exist an ample line bundle L ′ on S′ with
L ′2 ≤ Nd for some Nd determined by d?

The following example in the e-mail from Keiji Oguiso is a counterexample to
the problem and shows that a birational bounded family of Du Val K3 surfaces can
be unbounded.

Example 3.2 Let d, m be any positive integers. Let S be a polarized K3 surface of
degree 2d of Picard number 2 such that Pic (S) = ZH ⊕ ZC with intersection form

(H 2) = 2d , (H.C) = m , (C2) = −2

which is constructed in [30, Theorem 3] (The d = 2 case is treated in [29]).We know
that H is very ample when d ≥ 2 and C is a (−2)-curve by [30, Lemma 1.2].

We have a contraction π : S → T of C to the rational double point of type A1.
Let L be an ample Cartier divisor on T . (Note that the local class group of A1 is Z/2
so that 2L ′ is Cartier for any Weil divisor L ′ on T ). Then

π∗L = aH + bC,

where a and b are integers and moreover a > 0, as π∗L is a nef and big Cartier
divisor. Since π is the contraction of C , it follows that (π∗L .C) = 0. Hence, by
π∗L = aH + bC , we have

a(H.C) + b(C2) = 0.

Substituting (H.C) = m and (C2) = −2 into the equation above, it follows that

b = am

2
.

Also, from π∗L − bC = aH with (π∗L .C) = 0, (C2) = −2 and (π∗L)2 = (L2) (as
π is a birational morphism), we have

(L2) − 2b2 = (π∗L − bC)2 = a2(H 2) = 2da2.

Hence, for any ample Cartier divisor on T , we have

(L2) = 2da2 + 2b2 = a2(2d + m2

2
) ≥ 2d + m2

2
.

Sincem canbe taken anypositive integer, it follows that the degree of the polarizations
on the birational contractions of polarized K3 surfaces of degree 2d is unbounded.
Hence contractions of polarized K3 surfaces of a fixed degree do not necessarily
form a bounded projective family.
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Remark 3.3 In this remark, we ask whether the surface S and T in Example 3.2
can be embedded in a rationally connected 3-fold when d = 2.

We have an embedding S ⊂ P3 as a quartic surface. When m = 2l is even, we
can construct a 3-fold X̄ which contains T as an anticanonical hypersurface so that
(X̄ , T ) is a plt CY pair as follows.

Assume that m = 2l is even. By the above consideration, the effective cone
NE(S) ⊂ Pic(S) ⊗ Rof S is generated by (−2)-curves by [25,Theorem2].Hencewe
can write NE(S) = R≥0[C] + R≥0[�] for some (−2)-curve �. Note that l H − C is
effective since (l H − C)2 = −2 and (l H − C) · H = 2l > 0. Note that such classes
can be reducible in general.

We show that � ∼ l H − C as follows. Note that we can write � = aH − bC for
some a, b ∈ Z>0. Since we have

−2 = (aH − bC)2 = 4a2 − 2mba − 2b2,

we obtain a(2a − mb) = 2a2 − mba = b2 − 1 = (b − 1)(b + 1). If b > 1, then we
have 2a − mb = 2(a − lb) > 0 and

aH − bC = (a − lb)H + b(l H − C) ∈ R>0C + R>0(l H − C) ⊂ NE(S).

Hence aH − bC is not on the boundary of NE(S). Thus we see that b = 1 and a = l,
that is, � ∼ l H − C .

Now letμ : X → P3 be the blow-up along�. Let E� := μ−1(�) be the exceptional
divisor and S̃ ⊂ X be the strict transform of S. Let

L := μ∗OP3(l2 + 1) − l E�.

We see that the restriction L|S̃ = (l2 + 1)H − l(l H − C) = H + lC is the line bun-
dle which induces the birational contraction π : S → T in Example 3.2.

Now assume that l > 4. We see that L is base point free and induces a birational
morphism as follows. Note that

L = μ∗O(1) + l(μ∗O(l) − E�) (2)

and the linear system |μ∗O(l) − E�| contains S̃ + Sl−4 for all Sl−4 ∈ |μ∗O(l − 4)|.
Hence the base locus Bs L of |L| is contained in S̃. Since L|S̃ is base point free, we
see that L is nef. By (2), we see that L is big. Finally, we have an exact sequence

H 0(X, L) → H 0(S̃, L|S̃) → H 1(X, L − S) = 0

by the Kawamata-Viehweg vanishing since S̃ ∈ |−K X |, L − S̃ = K X + L and L is
nef and big. This implies that |L| is base point free and induces a birational contraction
�L : X → X̄ . We see that �L(S̃) � T .

We see that (X̄ , T ) is a plt CY pair although X̄ is not Q-Gorenstein.
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Remark 3.4 Let S ⊂ P3 be as in Remark 3.3 for an odd m ≥ 3. As in Remark 3.3,
we see that NE(S) is generated by C and another −2-curve �. However, it seems
difficult to describe � explicitly. In order to find such a class, we need to find an
integer solution (a, b) of the quadratic equation

4a2 − 2mab − 2b2 = −2

with a, b > 0 . By a computer program in [28], we find solutions for an explicit m.
For m = 15, the solutions are (a, b) = (2G, F − 15G), where

F + G
√
233 = (2144801346/2 + 140510608/2

√
233)n for n ≥ 0.

4 Some Results in Higher Dimensional Case

We consider the following problem in this section.

Problem 4.1 Let n > 0 and X be a normal projective rationally connected n-fold
with an irreducible D ∈ |−K X | such that (X, D) is a plt pair (and D is a strict CY
variety with only canonical singularities). Does such D form a birationally bounded
family?

Remark 4.2 If dim X = 4, then D is a CY 3-fold. By taking a small Q-factorial
modification and running K X -MMP as before, we may assume that there is a Mori
fiber space φ : X → S which induces a surjective morphism φD := φ|D : D → S.
The problem is to bound this D.

If dim S = 0, then X is a Q-Fano 4-fold with canonical singularities and it is
bounded (cf. [5]), thus D is also bounded. If dim S = 2, then φD : D → S is an
elliptic fibration. Indeed, we check this as in the proof of Proposition 2.6 since
its general fiber is an anticanonical member of the general fiber of φ which is a
log del Pezzo surface. Hence D is birationally bounded by Gross’ theorem [14]. If
dim S = 3, then D → S is a generically 2:1-cover and D → S is branched along
a divisor R ⊂ S since S is rationally connected. Thus (S, 1

2 R) is a klt CY pair and
R ∈ |−2KS|. S is birationally bounded by [7, Theorem 1.6] and D is also birationally
bounded.

Hence the problem is reduced to the case dim S = 1. However, we don’t know
how to show the boundedness in these cases.

Chen Jiang also pointed out the following.

Proposition 4.3 Let n, m > 0. Let (X, D) be a n-dimensional reduced plt CY pair
such that X is of Fano type. Assume that there exists a Q-divisor B �= D such that
m B is integral, K X + B ≡ 0 and (X, B) is lc.

Then the pair (X, D) is log bounded.
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Proof We see that (X, D) is ε-plt for some ε > 0 by Proposition 2.5(i). Then we see
that (X, 1

2 (B + D)) is ε′-lc for ε′ := min{1/2m, ε/2}. By [17, Theorem 1.3], we see
that (X, D) forms a log bounded family. �

Remark 4.4 The following is pointed out by Yoshinori Gongyo and Roberto Svaldi
after the submission to arXiv.

Proposition 4.5 Let (X, D) be a reduced plt CY pair such that X is of Fano type.

(i) Then (X, D) is log bitarionally bounded.
(ii) Assume that X is Q-factorial. Then (X, D) is log bounded.

Proof (i) By taking a small Q-factorial modification, we may assume that X is Q-
factorial. Let μ : X ��� X ′ be a birational map induced by a (−K X )-MMP which
exists since X is aMori dream space by [3]. Thenwe see that−K X ′ is nef and big. Let
D′ := μ∗ D. Note that μ does not contract D since D is big. Then the pair (X ′, D′)
is also a plt CY and ε-plt for some ε > 0 by Proposition 2.5. By these, we see that
X ′ is an ε-lc weak Fano variety, thus it is bounded by [5]. Hence D′ ≡ −K X ′ is also
bounded.

(ii) We also use the notation in (i). Then (X ′, D′) is ε-plt and −K X ′ is nef and big.
Thus we can take a positive integer m determined by dim X such that−mK X ′ is base
point free. Then, by taking a general member of A′ ∈ |−mK X ′ | and putting B ′ :=
1
m A′, we obtain a 1

m -lc CY pair (X ′, B ′). Moreover, K X ′ + B ′ is an m-complement
(cf. [4, 2.18]). Then we obtain an m-complement K X + B as in [4, 6.1(3)], where
B is the sum of the strict transform of B ′ and some effective divisor supported on
the μ-exceptional divisors. Hence, by Proposition 4.3, we see that (X, D) is log
bounded. �

Johnson–Kollár [20] proved that there are only finitely many quasismooth
weighted CY hypersurfaces of fixed dimension. Chen [8] proved that there are only
finitely many families of CY weighted complete intersections. CY varieties in toric
varieties are often considered in mirror symmetry and so on. Although toric varieties
are unbounded, we can show the following.

Corollary 4.6 Let X be a normal projective toric variety with D ∈ |−K X | with only
canonical singularities. Then (X, D) form a log bounded family. (Thus both X and
D are bounded. )

Proof Note that, since X is toric and Q-Gorenstein in codimension 2, we see that
X has only canonical singularities in codimension 2 by [33, Theorem 5]. Thus D
is Cartier in codimension 2 and (X, D) is plt by inversion of adjunction (cf. [22,
Theorem 5.50]).

Let � ⊂ X be the union of toric divisors. Then we see that (X,�) is lc. By
applying Proposition 4.3, we obtain the claim. �
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Abelian Varieties, Quaternion Trick and
Endomorphisms

Yuri G. Zarhin

Abstract The quaternion trick is an explicit construction that associates to a polar-
ized abelian variety X a principal polarization of (X × Xt )4. The aim of this note is
to show that this construction is compatible with endomorphisms of X and Xt . See
Theorem 1.1 for a precise statement.

Keywords Abelian varieties · Quaternion trick · Endomorphisms

1 Introduction

Throughout this paper, K is a field. If X is an abelian variety over K then we write
End(X) for the ring of all K -endomorphisms of X . If m is an integer then we write
m X for themultiplication bym in X ; in particular, 1X is the identity map. (Sometimes
we will use notation m instead of m X .)

If Y is an abelian variety over K then we write Hom(X, Y ) for the group of all
K -homomorphisms X → Y .

Let X be an abelian variety over a field K and let Xt be its dual. If u is an endomor-
phism of X then we write ut for the dual endomorphism of Xt . The corresponding
map of the endomorphism rings

End(X) → End(Xt ), u �→ ut

is an antiisomorphism of rings. If m is a positive integer then there are the natural
“diagonal” ring embeddings
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�m,X : End(X) ↪→ Matm(End(X)) = End(Xm),

�m,Xt : End(Xt ) ↪→ Matm(End(Xt )) = End((Xt )m) = End((Xm)t ),

which send 1X (resp. 1Xt ) to the identity automorphism of Xm (resp. of (Xt )m).
Namely, if u is an endomorphism of X (resp. of Xt ) then �m(u) sends (x1, . . . xm)

to (ux1, . . . , uxm) for all (x1, . . . , xm) in Xm (resp. in (Xt )m). Clearly, the subring
�m,X (End(X)) of End(Xm) commutes with the subring

Matm(Z) ⊂ Matm(End(X)) = End(Xm).

Let λ : X → Xt be a polarization on X that is defined over K . For every positive
integer m we consider the polarization

λm : Xm → (Xm)t = (Xt )m, (x1, . . . , xm) �→ (λ(x1), . . . ,λ(xm)) (1)

of Xm that is also defined over K . We have

dim(Xm) = m · dim(X), deg(λm) = deg(λ)m, ker(λm) = ker(λ)m ⊂ Xm . (2)

The aim of this note is to prove the following assertion.

Theorem 1.1 Let λ : X → Xt be a polarization on X that is defined over K . Let O
be an associative ring with 1 endowed with an involutive antiautomorphism

O → O, e �→ e∗.

Suppose that we are given a ring embedding ι : O → End(X) that sends 1 to 1X

and such that in Hom(X, Xt )

λ ◦ ι(e) = ι(e∗)t ◦ λ, ∀e ∈ O. (3)

Then:

(i) The map
ι∗ : O → End(Xt ), e �→ (

ι(e∗)
)t

(4)

is a ring embedding that sends 1 to 1Xt .
(ii) Let us consider the ring embeding

κ4 = �4,Xt ◦ ι∗ ⊕ �4,X ◦ ι : O ↪→ End((Xt )4) ⊕ End(X4) ⊂ End
(
(Xt )4 × X4) = End((X × Xt )4),

(5)

e �→ (
�4,Xt (ι∗(e)),�4,X (ι(e)

) ∈ End((Xt )4) ⊕ End(X4) ⊂ End
(
(Xt )4 × X4

)
.
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Then there exists a principal polarization μ on X4 × (Xt )4 = (X × Xt )4 that is
defined over K and enjoys the following properties.

μ ◦ κ4(u) = κ4(u
∗)t ◦ μ ∀u ∈ O. (6)

Remark 1.2 Clearly, (1X )t = 1Xt . Since both maps

End(X) → End(Xt ), u �→ ut and O → O, e �→ e∗

are ring antiisomorphisms, and ι : O → End(X) is a ring embedding that sends 1 to
1X , the composition

O → End(Xt ), e �→ (
ι(e∗)

)t

is obviously a ring embedding that sends 1 to 1Xt , which proves Theorem 1.1(i). The
rest of the paper is devoted to the proof of Theorem 1.1(ii).

Remarks 1.3 We keep the notation and assumptions of Theorem 1.1.

• Formula (3) implies that for every positive integer m

λm ◦ �m,X (ι(e)) = (�m,Xt (ι(e∗))t ◦ λm ∀e ∈ O. (7)

• It is well known [4] that the additive group of End(X) is a free Z-module of finite
rank. Since ι is an embedding, the additive group of O is also a free Z-module of
finite rank.

Remark 1.4 When O = Z, the assertion of Theorem 1.1 is a well known quaternion
trick [9, Lemma 2.5], [10, Sect. 5], [11, Sect. 1.13 and 7] (See [3, Chap. IX, Sect. 1]
where Deligne’s proof is given).

This note may be viewed as a natural continuation of [11]. In particular, we freely
use a (more or less) standard notation from [11].

The paper is organized as follows. Section 2 contains auxiliary results that deal
with interrelations between polarizations, isogenies and endomorphisms of abelian
varieties. In Sect. 3 we compare the situation over K and over its fixed algebraic
closure K̄ . We prove Theorem 1.1 (ii) in Sect. 4.

2 Polarizations and Isogenies

Proposition 2.1 Let (Y,λ) be a polarized abelian variety over K . Let π : Y → Z
be a K -isogeny of abelian varieties over K . Suppose that there exists a polarization
μ : Z → Zt that is defined over K and such that

λ = πt ◦ μ ◦ π. (8)
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Let D be an associative ring with 1 endowed with an involutive antiautomorphism

D → D, e �→ e∗.

Suppose that we are given an injective ring embedding j : D → End(Y ) that sends
1 to 1Y and such that in Hom(Y, Y t )

λ ◦ j (e) = j (e∗)t ◦ λ ∀e ∈ D. (9)

Suppose that there exists a ring embedding jπ : D ↪→ End(Z) that sends 1 to 1Z and
such that

jπ(e) ◦ π = π ◦ j (e) ∀e ∈ D. (10)

Then
μ ◦ jπ(e) = jπ(e

∗)t ◦ μ ∀e ∈ D. (11)

Proof Let u ∈ D. Plugging in formula (8) for λ into (9), we obtain

πt ◦ μ ◦ π ◦ j (e) = j (e∗)t ◦ πt ◦ μ ◦ π.

Formula (10) allows us to replace π ◦ j (e) by jπ(e) ◦ π and get

πt ◦ μ ◦ jπ(e) ◦ π = j (e∗)t ◦ πt ◦ μ ◦ π.

Dividing both sides by isogeny π from the right, we get

πt ◦ μ ◦ jπ(e) = j (e∗)t ◦ πt ◦ μ.

Taking into account that j (e∗)t ◦ πt = (π ◦ j (e∗))t , we get

πt ◦ μ ◦ jπ(e) = (π ◦ j (e∗))t ◦ μ. (12)

Applying (10) to e∗ instead of e, we get jπ(e∗) ◦ π = π ◦ j (e∗). Combining this with
(12), we obtain

πt ◦ μ ◦ jπ(e) = ( jπ(e
∗) ◦ π)t ◦ μ = πt ◦ jπ(e

∗)t ◦ μ

and therefore
πt ◦ μ ◦ jπ(e) = πt ◦ jπ(e

∗)t ◦ μ.

Dividing both sides by isogeny πt from the left, we get

μ ◦ jπ(e) = jπ(e
∗)t ◦ μ,

which proves the desired formula (11). �
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3 Base Change

In what follows, K̄ stands for a fixed algebraic closure of K . If X (resp. W ) is an
algebraic variety (resp. group scheme) over K then we write X̄ (resp. W̄ ) for the
corresponding algebraic variety (resp. group scheme) over K̄ . Similarly, if f is a
morphism of K -varieties (resp. group schemes) then we write f̄ for the correspond-
ing morphism of algebraic varieties (resp. group schemes) over K̄ . In particular, if
X is an abelian variety with K -polarization λ : X → Xt then

λ̄ : X̄ → Xt = X̄ t (13)

is a polarization of X̄ , and

deg(λ̄) = deg(λ), ker(λ̄) = ker(λ), (14)

Xm = X̄m, Xm t = (Xt )m, λm = λ̄m

for all positive integers m.

If W is a finite commutative group scheme then W̄ is a finite commutative group
scheme over K̄ and the orders of W and W̄ coincide. We have

W̄ m = W m ∀m. (15)

In addition, if d is the order of W then the orders of W̄ m and W m both equal dm . (See
[1, 2, 5, 7, 8, 11] for a furher discussion of commutative finite group schemes over
fields.)

4 Quaternion Trick

In what follows, we freely use the notation and assertions of Sect. 3.

Proof of Theorem 1.1 Let us put g := dim(X). We may assume that g ≥ 1. Recall
that λ is an isogeny and therefore ker(λ) is a finite group subscheme in X . Let
n := deg(λ). Then ker(λ) has order n and therefore is killed by multiplication by n,
see [6].

Choose a quadruple of integers a, b, c, d such that

s := a2 + b2 + c2 + d2

is congruent to−1modulo n. (In particular, s �= 0.)We denote by I the “quaternion"
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I =

⎛

⎜⎜
⎝

a −b −c −d
b a d −c
c −d a b
d c −b a

⎞

⎟⎟
⎠ ∈ Mat4(Z) ⊂ Mat4(End(X)) = End(X4).

Following [11, pp. 330–331], let us consider a finite group subscheme

V ⊂ ker(λ4) × ker(λ4) ⊂ X4 × X4 = X8

that is the graph of
I : ker(λ4) → ker(λ4).

In particular,V and ker(λ4) are isomorphic finite group schemes over K and therefore
have the same order, namely, n4. Clearly,

V̄ ⊂ ker(λ̄4) × ker(λ̄4) = ker(λ̄8),

the orders of isomorphic finite group K̄ -schemes V̄ and ker(λ̄4) coincide and also
equal n4. It is checked in [11, pp. 330–331] that V̄ is an isotropic finite group
subscheme in ker(λ̄8) with respect to the Riemann form [4, Sect. 23]

eλ̄8 : ker(λ̄8) × ker(λ̄8) → Gm

attached to the polarization
λ̄8 : X̄8 → (

X̄8
)t

of X̄8 = X8. (Here Gm is the multiplicative group scheme over K̄ .) Since the order
of V̄ is n4 = √

n8, it is the square root of the order of ker(λ̄8). This means that V̄ is
a maximal isotropic finite group subscheme of ker(λ̄8).

Let us consider a K -morphism of 8g-dimensional abelian varieties

π : X8 = X4 × X4 → (Xt )4 × X4, (x4, y4) �→ (λ4(x4), I(x4) − y4) ∀x4, y4 ∈ X4.

(16)
Clearly, ker(π) = V , which is a finite group scheme, hence π is an isogeny and

X4 × (Xt )4 ∼= X8/V .

In light of descent theory [11, Sect. 1.13] (applied to X8,λ8, (Xt )4 × X4 instead of
X,λ, Y ), the maximal isotropy of V̄ implies that there exists a principal polarization

μ : (Xt )4 × X4 → (
(Xt )4 × X4)t

on (Xt )4 × X4 that is defined over K and such that
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πt ◦ μ ◦ π = λ8 : X8 → (X8)t = (Xt )8. (17)

Let us consider the ring embeddings

j = �8,X ◦ ι : O → End(X8) = Mat2(End(X4)), e �→
(

�4,X (ι(e)) 0
0 �4,X (ι(e))

)

and

jπ = κ4 : O → Mat4(End(Xt ) ⊕ Mat4(End(X)) = End
(
(Xt )4

)
⊕ End(X4) ⊂ End

(
(Xt )4 × X4

)
,

e �→ (
�4,Xt (ι∗(e)), �4(ι(e))

) =
(

�4,Xt (ι∗(e)) 0
0 �4,X (ι(e))

)
.

Let us put Y = X8, Z = (Xt )4 × X4, D = O , m = 4 and check that j and jπ enjoy
property (10). First, notice that the matrix

I ∈ Mat4(Z) ⊂ Mat4(End(X)) = End(X4)

commutes with the “scalar” matrix

�4,X (ι(e)) =

⎛

⎜
⎜
⎝

ι(e) 0 0 0
0 ι(e) 0 0
0 0 ι(e) 0
0 0 0 ι(e)

⎞

⎟
⎟
⎠ ∈ Mat4 (End(X)) = End

(
X4

)
,

i.e.,
I ◦ �4,X (ι(e)) = �4,X (ι(e)) ◦ I. (18)

Second, plugging m = 4 in (7), we get

λ4 ◦ �4,X (ι(e)) = �4,Xt (ι∗(e)) ◦ λ4 ∀e ∈ O. (19)

Third, if
e ∈ O, (x4, y4) ∈ X4(K̄ ) × X4(K̄ ) = X8(K̄ )

then
π ◦ j (e)(x4, y4) = π

(
�4,X (ι(e))(x4),�4,X (ι(e))(y4)

) =
(
λ4 ◦ �4,X (ι(e))(x4), I ◦ �4,X (ι(e))(x4) − �4,X (ι(e))(y4)

)
.
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Taking into account equalities (19) and (18), we obtain that

π ◦ j (e)(x4, y4) = (
�4,Xt (ι∗(e)) ◦ λ4(x4),�4,X (ι(e))I(x4) − �4,X (ι(e))(y4)

)

=
(

�4,Xt (ι∗(e)) 0
0 �4,X (ι(e))

) (
λ4(x4), I(x4) − y4

)
=

(
�4,Xt (ι∗(e)) 0

0 �4,X (ι(e))

)
◦ π (x4, y4)

= jπ(e) ◦ π (x4, y4) .

This means that
jπ(e) ◦ π = π ◦ j (e) ∀e ∈ O.

Now the desired result follows from (17) combined with Proposition 2.1 applied to
λ8 (instead of λ). �

Acknowledgements I am grateful to Yujie Xu for an interesting question; this note is a result of
my attempts to answer it. My special thanks go to both referees, whose comments helped to improve
the exposition.

References

1. Demazure, M., Gabriel, P.: Groupes algébriques. Tome I. North Holland, Amsterdam (1970)
2. Hoobler, R., Magid, A.: Finite group schemes over fields. Proc. Am. Math. Soc. 33, 310–312

(1972)
3. Moret-Bailly, L.: Pinceaux de variétés abéliennes, Astérisque, vol. 129 (1985)
4. Mumford, D.: Abelian Varieties, 2nd edn. Oxford University Press (1974)
5. Oort, F., Strooker, J.R.: The category of finite groups over a field. Indag. Math. 29, 163–169

(1967)
6. Oort, F., Tate, J.: Group schemes of prime order. Ann. Sci. École Norm. Sup. 4e série, 3, 1–21

(1970)
7. Pink, R.: Finite group schemes. Lecture course in WS 2004/05 ETH Zürich. http://www.math.

ethz.ch/~pink/ftp/FGS/CompleteNotes.pdf
8. Shatz, S.S.: Group schemes, Formal groups and p-divisible groups. In: Cornell, G., Silverman,

J.H. (eds.), Chapter III In: Arithmetic Geometry. Springer, New York (1986)
9. Zarhin, Y.G.: Endomorphisms of abelian varieties and points of finite order in characteristic P.

Mat. Zametki, 21, 737–744. Math. Notes. 21(1978), 415–419 (1977)
10. Zarhin, Yu.G.: A finiteness theorem for unpolarized Abelian varieties over number fields with

prescribed places of bad reduction. Invent. Math. 79, 309–321 (1985)
11. Zarhin, Y.G.: Homomorphisms of abelian varieties over finite fields. In: Kaledin, D., Tschinkel,

Y. (eds.), Higher-dimensional Geometry Over Finite Fields, pp. 315–343. IOS Press, Amster-
dam (2008). arXiv:0711.1615v5 [math.AG]

http://www.math.ethz.ch/~pink/ftp/FGS/CompleteNotes.pdf
http://www.math.ethz.ch/~pink/ftp/FGS/CompleteNotes.pdf
http://arxiv.org/abs/0711.1615v5


On the Cheltsov–Rubinstein Conjecture

Kento Fujita, Yuchen Liu, Hendrik Süss, Kewei Zhang, and Ziquan Zhuang

Abstract In this note we investigate the Cheltsov–Rubinstein conjecture. We show
that this conjecture does not hold in general and some counterexamples will be
presented.

Keywords K-stability · Asymptotically log Fano vartieties · Asymptotically log
del Pezzo surfaces

1 Introduction

In the studyof canonicalmetrics onFano typemanifolds,Kähler-Einstein edge (KEE)
metrics are a natural generalization of Kähler-Einstein metrics: they are smooth met-
rics on the complement of a divisor, and have a conical singularity of angle 2πβ
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transverse to that complex edge (see [21] for a survey, precise definition and refer-
ences). Considerable amount of work on KEE metrics in recent years has concerned
the behavior of such metrics when the cone angle is relatively large (e.g., close
to 2π).

In 2013, Cheltsov–Rubinstein [4] initiated a systematic study of the behavior in
the other extreme when the cone angle β goes to zero. To explore this small cone
angle world, it is natural to work on asymptotically log Fano varieties, a class of
varieties introduced in op. cit.

Definition 1.1 ([4]) Let X be a normal projective variety over C. Let D = ∑
Di be

an effective divisor on X , where each Di is a prime divisor. We say the pair (X, D)

is (strongly) asymptotically log Fano if the log pair (X,
∑

(1 − βi )Di ) is log Fano
for (all) sufficiently small βi ∈ (0, 1].

In dimension 2, we also use log del Pezzo to stand for log Fano. Note that, if
D has only one component, then (X, D) being (strongly) asymptotically log Fano
just means that (X, (1 − β)D) is log Fano for sufficiently small β. Regarding the
existence of KEEmetrics on such pairs, Cheltsov–Rubinstein proposed the following
conjecture.

Conjecture 1.2 ([4]) Let (X, D) be a smooth asymptotically log Fano pair where
D is a smooth divisor. Then (X, (1 − β)D) admits a KEE metric with sufficiently
small cone angle β along D if and only if (K X + D)dim X = 0.

One direction of this conjecture (the necessary part) has been verified byCheltsov–
Rubinstein [5] (for dimension 2) and subsequently by Fujita [11] (for higher dimen-
sions).Moreover, Cheltsov–Rubinstein [4, 5] confirmed the conjecture for all pairs in
dimension 2 except one infinite family of pairs, and recently Cheltsov–Rubinstein–
Zhang [6] confirmed the conjecture for all but 6 of these pairs. In this note, byfocus-
ing on K-stability of the pairs (X, (1 − β)D), we show that some of these remaining
cases provide counterexamples to Conjecture 1.2 (see Sect. 2). In additionwe provide
other counterexamples in higher dimensions and investigate the subtlety involved (see
Sect. 3). Here is one of the main results in the paper:

Theorem 1.3 (see Remark 2.10) Let C̄ ⊂ P1 × P1 be a smooth curve of bi-degree

(1, 2), let 0 ∈ C̄ be a ramification point of the double cover C̄ ↪→ P1 × P1 pr1−→
P1. Let S → P1 × P1 be the blowup at 0 ∈ P1 × P1 and let C ⊂ S be the proper
transform of C̄. Then the pair (S, C) is an asymptotically log del Pezzo pair with
(S + C)2 = 0 such that (S, (1 − β)C) does not admit KEE metric with sufficiently
small cone angle β along C.
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2 Examples and Counterexamples in Dimension 2

2.1 Preliminaries

In this section,we let (S, C) be an asymptotically log del Pezzo pairwith both S andC
are smooth. Assume that (KS + C)2 = 0. For the sufficient part, in dimension 2, it is
useful to divide into two cases: when KS + C ∼ 0 and when KS + C � 0. In the first
case existence (and hence the Conjecture 1.2) follows from [14, Corollary 1] which
resolved a conjecture of Donaldson [9]. In the second case, Cheltsov–Rubinstein’s
classification of asymptotically log del Pezzo surfaces [4, Theorem 2.1] reduces
the task to (F1, C) with C ∈ |2Z1 + 2F | or (Sr , Cr ), where F1 = PP1(O ⊕ O(1)),
Z1 ⊂ F1 is the (−1)-curve, F ⊂ F1 is a fiber ofF1/P1, and Sr the blow-up ofP1 × P1

at r -points on a bi-degree (2, 1) curvewith no two on the same (0, 1) curve andCr the
proper transform of the bi-degree (2, 1) curve on P1 × P1. The surface (S0, C0) and
(F1, C)were successfully treated usingα-invariant techniques in [4, Propositions 4.4
and 4.5]. And in a recent article [6] all but 6 of the pairs (Sr , Cr ) were handled using
δ-invariant techniques (see [6, Theorem 1.3]). Thus the conjecture seemed plausible,
at least in dimension 2. Somewhat surprisingly, we show that nevertheless some of
(S1, C1) and (S2, C2) provide subtle counterexamples to Conjecture 1.2.

More precisely, we will show in Sects. 2.3 and 2.4 that, for r = 1 and r = 2, some
special configurations of (Sr , Cr ) are not uniformly K-stable. Here by ‘special’ we
mean that the blown up points on the (1, 2) curve are chosen in a specific way.

To do this, we make use of the delta invariant defined by Fujita–Odaka [10] and
we will show that, for some special (S, C) from above, one has

δ
(
S, (1 − β)C

) ≤ 1, for sufficiently smallβ.

This means that (S, (1 − β)C) is not uniformly K-stable by [1]. Then some fur-
ther argument will imply the non-existence of small cone angle KEE metrics (see
Remarks 2.10 and 2.11).

To bound δ-invariants from above, we use the following characterization of δ-
invariant (see [1, 10]):

δ
(
S, (1 − β)C

) = inf
Z

AS,(1−β)C (Z)

SS,(1−β)C (Z)
. (2.1)

Here Z runs through all the prime divisors over the surface S, i.e., there is a bira-
tional morphism σ : S̃ → S with S̃ smooth such that Z is a prime divisor on S̃, and
AS,(1−β)C (Z) denotes the log discrepancy of Z , that is,

AS,(1−β)C (Z) := 1 + ordZ (KS̃ − σ∗(KS + (1 − β)C)).
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For simplicity, we will write A(Z) := AS,(1−β)C (Z) in the following. Moreover, the
quantity S(Z) := SS,(1−β)C (Z) is called the expected vanishing order of −KS −
(1 − β)C along Z , which is defined by

S(Z) := 1

(−KS − (1 − β)C)2

∫ τ (Z)

0
Vol(−KS − (1 − β)C − x Z)dx,

where τ (Z) denotes the pseudo-effective threshold of−KS − (1 − β)C with respect
to Z , i.e.,

τ (Z) := sup{τ ∈ R>0 | Vol(−KS − τ Z) > 0}.

And as we will see, in some cases, the infimum in (2.1) is obtained by some specific
Z over S.

2.2 Basic Setup and Notation

In this subsection, we fix some notation, which will be used throughout this section.
Set

S := P1 × P1, C := a smooth curve of bi-degree (1, 2) ⊂ S.

Denote by F a general vertical line of bi-degree (1, 0) and by H a general horizontal
(with respects to the first projection pr1 : P1 × P1 → P1) line of bi-degree (0, 1).

Let ([s : t], [u : v]) be the bi-homogeneous coordinate system on S. Then, up to
a linear change of coordinates, we may assume that C is cut out by the equation
sv2 = tu2.

The linear system |F | contains exactly two curves that are tangent to C . Denote
them by F0, F∞, and let

p0 := (F0 ∩ C)red, p∞ := (F∞ ∩ C)red.

In ([s : t], [u : v]) coordinates, one simply has

F0 = {t = 0}, F∞ = {s = 0}, p0 = ([1 : 0], [1; 0]) and p∞ = ([0 : 1], [0 : 1]).

Wealso put H 0 and H∞ to be the horizontal (0, 1) curves that intersectC transversely
at p0 and p∞ respectively. So H 0 = {v = 0} and H∞ = {u = 0} (Fig. 1).

Choose some r ∈ N and let F1, . . . , Fr be distinct bi-degree (1, 0) curves in S
that are all different from the curves F0 and F∞. Then each intersection Fi ∩ C
consists of two points. For each i = 1, . . . r , let

pi ∈ Fi ∩ C

be one of these two points.
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Fig. 1

Set
I := {i1, . . . , ir } ⊂ {0, 1, ..., r,∞},

and let S := SI denote the blow-upof S at the r points {pi }i∈I ⊂ {p0, p1, ..., pr , p∞},
with π : S → S being the blowup morphism. Let us denote by

E j := π−1(p j ), j ∈ I,

the exceptional curves of π. To be precise, we note that we are blowing-up r of the
r + 2 points {p0, p1, ..., pr , p∞}. Denote by

F0, F1, . . . , Fr , F∞

the proper transform on the surface S of the curves F0, F1, . . . , Fr , F∞ (note that
exactly r of these are−1-curves and the remaining two are 0-curves). We also set Hi

to be the horizontal (0, 1) curve passing through pi and let Hi be its proper transform
on S.

Let C be the proper transform of the curve C , so

C = π∗C −
∑

j∈I

E j ∼ π∗(F + 2H) −
∑

j∈I

E j .

For any sufficiently small rational number β > 0, we put

Lβ := −KS − (1 − β)C .
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Then we have
Lβ ∼Q (1 + β)F + 2βH ∼Q F + βC .

Let
Lβ := −KS − (1 − β)C.

Then we have

Lβ ∼Q π∗Lβ − β
∑

j∈I

E j ∼Q π∗((1 + β)F + 2βH
) − β

∑

j∈I

E j ∼Q π∗F + βC.

Note that Lβ is an ampleQ-line bundle for sufficiently small β, so that the pair (S, C)

is asymptotically log del Pezzo.

2.3 Blowing up Two Special Points

In this part we set r = 2 and I = {0,∞}. So (S, C) is obtained by blowing up p0 and
p∞. In this case, Lβ is ample for any β ∈ (0, 1]. The main result is the following.

Proposition 2.2 (S, (1 − β)C) admits a KEE metric with cone angle β along C for
β ∈ (0, 1]

To show this, we use Tian’s αG-invariant, where we take

G := C∗ � Z2.

Note that G ⊂ Aut(P1). The action is simply given by multiplication and invo-
lution. If we embed P1 into S = P1 × P1 as the (1, 2) curve C (the map is given
by [x : y] �→ ([x2 : y2], [x : y])), then the G-action extends to (S, C). Namely,
G ⊂ Aut(S, C). More specifically, for any (λ, ι) ∈ G and ([s : t], [u : v]) ∈ S, the
induced action is given by

λ · ([s : t], [u : v]) = ([s : λ2t], [u : λv]), ι · ([s : t], [u : v]) = ([t : s], [v : u]).

This G-action lifts to (S, C) since we are blowing up p0 and p∞. (Note that G ·
{ p̄0, p̄∞} = { p̄0, p̄∞}.) In particular, the curves F0, E0, H0, F∞, E∞, H∞ and C are
all C∗-invariant and (Fig. 2)

ι(F0) = F∞, ι(E0) = E∞, ι(H0) = H∞, ι(C) = C.

Remark 2.3 As G is positive dimensional, the pair (S, (1 − β)C) is not K-stable.
Proposition 2.2 implies that the log Fano pair

(
S, (1 − β)C

)
is log K-polystable. See

[24] for example. Moreover, when β = 1, this recovers the well-known existence of
KE metrics on Bl3P2.
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Fig. 2

To prove Proposition 2.2, it is enough (see [14, Theorem 2, Lemma 6.11]) to show
the following:

Proposition 2.4 One has αG
(
S, (1 − β)C

) = 1 for β ∈ (0, 1].
Here αG

(
S, (1 − β)C

)
is defined as

αG
(
S, (1 − β)C

) := sup

{

λ ∈ Q

∣
∣
∣
∣
the log pair (S, (1 − β)C + λD) is log canonical

for every G-invariantQ − linear system D ∼Q Lβ

}

.

(See [7, (1.2)] for example.)

Remark 2.5 In fact, to compute our αG , it suffices to consider G-invariant divisors.
Indeed, asC∗ is abelian, so anyC∗-invariant linear systemmust contain aC∗-invariant
divisor D by Borel’s fixed point theorem. Then it is enough to look at 1

2 (D + ι(D)),
as in [7, Sect. 7]. Indeed, {D + ι(D)} ⊂ 2D is a G-invariant Q-sublinear system.

Proof of Proposition 2.4 We will show that for any effective G-invariant divisor
D ∼Q Lβ the pair (S, (1 − β)C + D) is log canonical, but (S, (1 − β)C + λD) is
not for λ > 1. The Picard group of S has basis [H ] := [π∗ H 0], [F] := [π∗F0], [E0]
and [E∞]. In this basis we have [F0] = [F] − [E0], [F∞] = [F] − [E∞], [H0] =
[H ] − [E0] and [H∞] = [H ] − [E∞]. An anti-canonical divisor is given by

− KS = 2H + 2F − E0 − E∞. (2.6)

We claim that the C∗-invariant curves on S are given by E0, E∞, F0, F∞, H0, H∞
and the strict transforms C[α:β] of the curves C [α:β] = [αsv2 = βtu2] ⊂ S for [α :
β] ∈ P1 \ {0,∞}. Indeed, all C∗-invariant curves on S are given by the closures of
1-dimensional C∗-orbits. The curves C[α:β] are all linearly equivalent to 2H + F −
E0 − E∞ and each of them passes through the intersection points p0 = E0 ∩ F0

and p∞ = E∞ ∩ F∞ intersecting all four curves transversely. The curves C[α:β] also
intersect each other pairwise transversely in these two points.
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Being G-invariant the divisor (1 − β)C + D ∼ −KS has to have the form

e(E0 + E∞) + f (F0 + F∞) + h(H0 + H∞) +
∑

γi C[αi :βi ].

Since (1 − β)C + D is effective, we have e, f, h, γi ≥ 0.We set γ := ∑
i γi . Passing

to the classes in the Picard group of S we get

[(1 − β)C + D] = (e − f − h − γ)([E0] + [E∞]) + (2 f + γ) · [F] + (2h + 2γ) · [H ].

Comparing coefficient with −KS in (2.6) gives h = 1 − γ, f = 1 − γ/2 and e =
f + h + γ − 1 = 1 − γ/2. Therefore all coefficients of (1 − β)C + D are less or
equal to 1. A log resolution of

(
S, (1 − β)C + D

)
is given by further blowing up S

in p0 and p∞. The multiplicity of (1 − β)C + D in these points is γ + e + f = 2.
By applying inversion of adjunction for the exceptional curves of the blowups of S
in p0 and p∞, the pair (S, (1 − β)C + D) is log canonical, since γ, e, f ≤ 1. �

2.4 Counterexamples

In this part we carry out some explicit computation and give upper bounds for
δ
(
S, (1 − β)C

)
. This will give us some counterexamples to Conjecture 1.2 (see

Remarks 2.10 and 2.11).
Recall that, for any prime divisor Z over the surface S, we have the expected

vanishing order

S(Z) := Sβ(Z) := 1

(Lβ)2

∫ τ (Z)

0
Vol(Lβ − x Z)dx .

Proposition 2.7 For any r ≥ 1, one has

S(Z) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
2 + 6−r

8 β + O(β2), Z = Ei , i ∈ I ;
1
2 + 6−r

8 β + O(β2), Z = Fi , i ∈ I ;
β
2 + r−4

24 β2 + O(β3), Z = C;
1
2 + 4−r

8 β + O(β2), Z ∈ |π∗F |.

This follows from explicit computation; see [6, Lemma 4.5] for more details. Note
that, in the above proposition, the prime divisor Z is on the surface S. We can also
consider Z over S.
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Proposition 2.8 We have the following

(1) Suppose that p ∈ C is away from any Fi or Ei , where i ∈ I . Let S̃
σ−→ S be the

blow-up of p and let Z be the exceptional curve of σ. Then

S(Z) = 1

2
+ 12 − r

8
β + O(β2), r ≥ 0.

(2) Suppose that 0 ∈ I , i.e. p0 is blown up. Put p0 = E0 ∩ C. Let S̃
σ−→ S be the

blow-up of p0 and let Z be the exceptional curve of σ. Then

S(Z) = 1 + 6 − r

4
β + O(β2), r ≥ 1.

Moreover, for r = 2, we have exactly

S(Z) = 1 + β;

(3) Suppose that p = Ei ∩ C or p = Fi ∩ C for some i ∈ I and i = 0 or ∞. Let
S̃

σ−→ S be the blow-up of p and let Z be the exceptional curve of σ. Then

S(Z) = 1

2
+ 14 − r

8
β + O(β2), r ≥ 1;

(4) Suppose 0 /∈ I . Let p0 = F0 ∩ C. Let S̃
σ−→ S be the blow-up of p0 and let G

be the exceptional curve of σ. Let C̃ be the proper transform of C on S̃. Put
q0 = G ∩ C̃. Let Ŝ

τ−→ S̃ be the blow-up of q0 and let Z be the exceptional curve
of τ . Then we have

S(Z) =
{
1 + 2β, r = 0,

1 + 8−r
4 β + O(β2), r ≥ 1.

Again, this follows from elementary computation. For the reader’s convenience,
we include the proof of case (2)with r = 2.The computation for other cases is similar.

Proof of Proposition 2.8(2) with r = 2 In this case, S is obtained by blowing up p0
and another point pi (possibly p∞) on C . Then we have

Lβ ∼Q π∗(
(1 + β)F0 + βH0 + βHi

) − βE0 − βEi = (1 + β)(F0 + E0) + β(H0 + Hi ).

Now let S̃
σ−→ S be the blow-up of p0 = E0 ∩ C with Z being the exceptional curve

of σ. Let F̃0, Ẽ0, H̃0 and H̃i be the proper transforms of F0, E0, H0 and Hi on S̃
respectively. Then we have

σ∗Lβ − x Z ∼Q (1 + β)(F̃0 + Ẽ0) + β(H̃0 + H̃i ) + (2 + 2β − x)Z .
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Note that ⎧
⎪⎨

⎪⎩

(σ∗Lβ − x Z) · F̃0 = (σ∗Lβ − x Z) · Ẽ0 = β − x,

(σ∗Lβ − x Z) · H̃0 = (σ∗Lβ − x Z) · H̃i = 1,

(σ∗Lβ − x Z) · Z = x .

So σ∗Lβ − x Z is nef for x ∈ [0,β]. Thus we have

Vol
(
σ∗Lβ − x Z

) = (
σ∗Lβ − x Z

)2 = 4β + 2β2 − x2, x ∈ [0,β].

And for x ≥ β, [8, Corollary 2.8] implies

Vol
(
σ∗Lβ − x Z

) = Vol

(

σ∗Lβ − x Z − x − β

2
(F̃0 + Ẽ0)

)

.

Note that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
σ∗Lβ − x Z − x−β

2 (F̃0 + Ẽ0)
) · F̃0 = (

σ∗Lβ − x Z − x−β
2 (F̃0 + Ẽ0)

) · Ẽ0 = 0,
(
σ∗Lβ − x Z − x−β

2 (F̃0 + Ẽ0)
) · H̃0 = (

σ∗Lβ − x Z − x−β
2 (F̃0 + Ẽ0)

) · H̃i = 1 − x−β
2 ,

(
σ∗Lβ − x Z − x−β

2 (F̃0 + Ẽ0)
) · Z = β.

So σ∗Lβ − x Z − x−β
2 (F̃0 + Ẽ0) is nef for x ∈ [β, 2 + β]. Thus for x ∈ [β, 2 + β]

we have

Vol
(
σ∗Lβ − x Z

) =
(

σ∗Lβ − x Z − x − β

2
(F̃0 + Ẽ0)

)2

= 4β + 3β2 − 2βx .

Now for x ≥ 2 + β, we use Zariski decomposition [8, Corollary 2.7]. Solve the
following equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
aF̃0 + bẼ0 + cH̃0 + d H̃i + (2 + 2β − x)Z

) · F̃0 = 0
(
aF̃0 + bẼ0 + cH̃0 + d H̃i + (2 + 2β − x)Z

) · Ẽ0 = 0
(
aF̃0 + bẼ0 + cH̃0 + d H̃i + (2 + 2β − x)Z

) · H̃0 = 0
(
aF̃0 + bẼ0 + cH̃0 + d H̃i + (2 + 2β − x)Z

) · H̃i = 0

We get
a = b = c = d = 2 + 2β − x .

This implies, for x ∈ [2 + β, 2 + 2β], we have
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Vol
(
σ∗Lβ − x Z

) = Vol
(
(2 + 2β − x)(F̃0 + Ẽ0 + H̃0 + H̃i + Z)

)

= (2 + 2β − x)2
(
F̃0 + Ẽ0 + H̃0 + H̃i + Z

)2

= (2 + 2β − x)2.

So we can compute

∫ τ (Z)

0
Vol(σ∗Lβ − x Z

)
dx =

∫ 2+2β

0
Vol(σ∗Lβ − x Z

)
dx

=
∫ β

0
(4β + 2β2 − x2)dx +

∫ 2+β

β
(4β + 3β2 − 2βx)dx+

+
∫ 2+2β

2+β
(2 + 2β − x)2dx

= 4β + 6β2 + 2β3.

Thus we get

S(Z) = 1

L2
β

∫ τ (Z)

0
Vol(σ∗Lβ − x Z

)
dx = 4β + 6β2 + 2β3

4β + 2β2
= 1 + β.

�
Note that Proposition 2.8 has the following consequence.

Corollary 2.9 We have the following upper bound for δ-invariant.

(1) If 0 ∈ I , then

δ
(
S, (1 − β)C

) ≤ 1 + r − 2

4
β + O(β2), r ≥ 1.

Moreover, when r = 2, we have exactly

δ
(
S, (1 − β)C

) = 1,

and the infimum of (2.1) is obtained by the Z in Proposition 2.7(2).
(2) If 0 /∈ I , then

δ
(
S, (1 − β)C

) ≤ 1 + rβ + O(β2), r ≥ 0.

Moreover, when r = 0, we have exactly

δ
(
S, (1 − β)C

) = 1,

and the infimum of (2.1) is obtained by the Z in Proposition 2.7(4).
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Proof (1) Let Z be the divisor in Proposition 2.8(2). Then we have

A(Z) = 2 − (1 − β) = 1 + β.

Using (2.1), for r ≥ 1 we get

δ
(
S, (1 − β)C

) ≤ A(Z)

S(Z)
= 1 + β

1 + 6−r
4 β + O(β2)

= 1 + r − 2

4
β + O(β2).

When r = 2, we have

δ
(
S, (1 − β)C

) ≤ A(Z)

S(Z)
= 1 + β

1 + β
= 1.

To see this is actually an equality, we need to use some deeper results. Suppose
that ∞ ∈ I , so (S, C) is obtained by blowing up p0 and p∞. Then Proposition 2.2
implies that (S, (1 − β)C) is K-polystable, so [1, 10] imply that we have the other
direction:

δ
(
S, (1 − β)C

) ≥ 1.

If ∞ /∈ I , then the C∗-action on (S, C) (see Sect. 2.3 for details about this action)
induces a K-polystable degeneration of the log Fano pair (S, (1 − β)C). To be more
precise, we are blowing up p0 and another point pi on the (1, 2) curve C . Then
C∗-action on (S, C) fixes p0 but moves pi towards p∞. So this action induces a
degeneration from (S, C) towards the above K-polystable pair obtained by blowing
up p0 and p∞. By the lower semi-continuity of δ-invariant (cf. [2]), we again obtain

δ
(
S, (1 − β)C

) ≥ 1.

(2) Let Z be the divisor in Proposition 2.8(4). Then we clearly have

A(Z) = AS(Z) − (1 − β) ord(τ ∗σ∗C) = 3 − 2(1 − β) = 1 + 2β.

Using (2.1), for r ≥ 0 we get

δ
(
S, (1 − β)C

) ≤ A(Z)

S(Z)
= 1 + 2β

1 + 8−r
4 β + O(β2)

= 1 + rβ + O(β2).

When r = 0, we have

δ
(
S, (1 − β)C

) ≤ A(Z)

S(Z)
= 1 + 2β

1 + 2β
= 1.
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To see this is actually an equality, we use [4, Proposition 7.4], which implies that
(S, (1 − β)C) is K-polystable, so we have the other direction:

δ
(
S, (1 − β)C

) ≥ 1.

�

Remark 2.10 Suppose that I = {0}, then Corollary 2.9(1) implies that

δ
(
S, (1 − β)C

)
< 1

for sufficiently small β. This means that (S, (1 − β)C) does not admit a KEE met-
ric with sufficiently small cone angle β. So Conjecture 1.2 fails in this case. Note
that there is another way to obtain δ

(
S, (1 − β)C

)
< 1, which relies on the toric

calculation in [1, Sect. 7]. Indeed, if I = {0}, then S ∼= Bl2P2 is a toric surface. One
can determine the polytope Pβ of Lβ and its barycenter bcβ . Let Z be the divisor in
Proposition 2.8(2). Then by [1, Corollary 7.7], S(Z) can be explicitly computed as
Z gives rise to a toric valuation vZ . More specifically, following the notation therein,
we have

S(Z) = 〈bcβ, vZ 〉 − ψ(vZ ) = 4(1 + β)2

4 + 3β
,

where bcβ =
(−(4β2+9β+6)

3(4+3β)
,

−(7β2+12β)

3(4+3β)

)
, vZ = (2, 1) and ψ(vZ ) = −(2 + 3β). So

that

δ
(
S, (1 − β)C

) ≤ A(Z)

S(Z)
= 4 + 3β

4 + 4β
< 1,

where A(Z) := AS,(1−β)C (Z) (Fig. 3).

Remark 2.11 Let us take a closer look at the case when I = {0, i} with i = ∞.
Then Aut(S, C) is discrete. We claim that (S, (1 − β)C) does not admit a KEE
metric with sufficiently small cone angle. If this is not the case, then the existence of
a KEE metric implies the properness of K-energy, and hence the pair (S, (1 − β)C)

Fig. 3 The fan of S and the polytope Pβ of Lβ
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Table 1 K-stability for (SI , C)

I K-stability

{i1} ⊂ {0,∞} K-unstable (Corollary 2.9)

{i1} ⊂ {0,∞} ?

{i1, i2} = {0,∞} Strictly K-polystable (Proposition 2.2)

∅ = {i1, i2} ∩ {0,∞} = {0,∞} Strictly K-semistable (Remark 2.11)

{i1, i2} ∩ {0,∞} = ∅ ?

3 ≤ #I ≤ 6 ?

#I ≥ 7 K-stable ([6, Theorem 1.3])

is uniformly K-stable (see [19, Corollary 1.2] for example). So we should have
δ
(
S, (1 − β)C

)
> 1, contradicting Corollary 2.9(1). So Conjecture 1.2 fails in this

case as well. There is another way to see this. Indeed, as we have seen in the proof of
Corollary 2.9(1), (S, (1 − β)C) admits a K-polystable degeneration, which implies
that (S, (1 − β)C) cannot be K-stable. So (S, (1 − β)C) is strictly K-semistable
and it cannot admit a KEE metric. In other words, we get a family of strictly K-
semistable log Fano surfaces degenerating to a K-polystable log Fano surface. This
can be thought of as a 2-dimensional log version of Tian’sMukai-Umemura example
(see [22]).

In the following table we summarize what is known about the K-stability of
the asymptotically log del Pezzo surfaces (S, C) = (SI , C), where “strictly K-
polystable” (resp., “strictly K-semistable”) stands for “K-polystable but not K-
semistable” (resp., “K-semistable but not K-polystable”).

Remark 2.12 In the cases where we know the answer according to Table 1, it turns
out that K-(semi/poly-)stability coincides with the GIT-(semi/poly-)stability of the
point configuration on C ∼= P1 consisting of the blowup centers and the two special
points p0 and p∞. More precisely, we consider (p0, p∞, (pi )i∈I ) ∈ (P1)#I+2 and
ask for the stability in the GIT sense of this point with respect to the diagonal
SL(2)-action on (P1)#I+2 and the unique SL(2)-linearization ofO(1, . . . , 1). By [20,
Chapt. 4, Sect. 1], a point configuration (p0, p∞, (pi )i∈I ) of P1 is GIT stable (resp.
GIT semistable) if and only if at most � #I+1

2 � (resp. at most � #I+2
2 �) points from the

configuration coincide. In the light of this observation it is natural to expect that the
remaining cases should all be K-stable, as the corresponding point configurations
are indeed GIT-stable.

Postscript Remark. After the appearance of this work on arXiv, the Cheltsov–
Rubinstein conjecture in dimension 2 has been completely settled by K. Fujita [12]
and the previous expectation on the relation between K-stability and GIT stability
has been verified affirmatively.
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3 Higher Dimensional Counterexamples and Further
Discussion

In this sectionwe investigate theCheltsov–Rubinstein program in higher dimensions.

3.1 Product Spaces

There are also simple counterexamples to Conjecture 1.2 by taking products of log
Fano pairs. Let X1 and X2 be two smooth Fano varieties. Suppose that F ∈ | − K X |
is a smooth divisor. Put

X := X1 × X2, D := F × X2.

Then in particular, −K X = p∗
1(−K X1) + p∗

1(−K X2) and D ∈ | − p∗
1 K X1 |, where p1

and p2 are the natural projections from X to X1 and X2 respectively. It is clear that
(X, D) is an asymptotically log Fano pair, as for any β ∈ (0, 1],

−K X − (1 − β)D ∼Q β · p∗
1(−K X1) + p∗

2(−K X2)

is ample.Moreover,−(K X + D) = p∗
2(−K X2) is a nef divisor with (K X + D)n = 0.

On the other hand, from the definition of δ-invariant, we clearly have

δ
(
X, (1 − β)D

) ≤ min{δ(X1, (1 − β)F
)
, δ(X2)} (3.1)

(see Remark 3.3). So in particular, if X2 is a K-unstable Fano manifold with δ(X2) <

1, then δ
(
X, (1 − β)D

)
< 1 as well. So in this case the pair

(
X, (1 − β)D

)
cannot

admit any KEE metric.

Example 3.2 Take X1 = P2 and X2 = BlpP2. Let F be a smooth cubic curve on
X1. Then the pair (X, D) we constructed above is asymptotically log Fano with
(K X + D)4 = 0. And the log pair

(
X, (1 − β)D

)
does not admit any KEE metric

for β ∈ (0, 1]. So Conjecture 1.2 fails in this case.

Remark 3.3 (3.1) is actually an equality by the recent work [23].

3.2 K-stability of the Base

By Shokurov’s base-point-free theorem [15, Theorem 3.3], it is easy to see that if
(X, D) is asymptotically log Fano, then the divisor −(K X + D) is semi-ample and
we let φ : X → Y be its corresponding ample model (i.e. φ has connected fibers
and −(K X + D) = φ∗L for some ample divisor L on Y ). Since −(K X + D) is not
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big by assumption, we have dim X > dim Y and in particular, φ is not birational.
As K X + D ∼φ.Q 0 and (X, D) is lc, we can write K X + D ∼Q φ∗(KY + B + M)

for some effective divisor B (the boundary part) and some pseudo-effective divisor
M (the moduli part) by the canonical bundle formula [16, Theorem 8.5.1]. Note
that (Y, B + M) is a generalized pair, i.e., M = π∗M ′ for some nef divisor M ′ on
some log resolution π : Y ′ → Y and B is an effective Q-divisor on Y such that
KY + B + M is Q-Cartier (see [3, Sect. 4]). The example of product varieties above
suggests that in order for Conjecture 1.2 to be true, we may need to impose some
conditions on the K-stability of the generalized pair (Y, B + M). Here we give a
definition of uniform K-stability and K-semistability of a generalized klt log Fano
pair similar to the valuative criterion of Fujita [13] and Li [17].

Definition 3.4 Let (Y, B + M)be a projective generalized klt pair such that−(KY +
B + M) is ample.

(1) For any prime divisor E over Y , We define

SY,B+M(E) := 1

Vol(−KY − B − M)

∫ ∞

0
Vol(−KY − B − M − t E)dt.

(2) We say that (Y, B + M) is K-semistable if for any prime divisor E over Y , we
have AY,B+M(E) ≥ SY,B+M(E).

(3) We say that (Y, B + M) is uniformly K-stable if there exists ε > 0 such that for
any prime divisor E over Y , we have AY,B+M(E) ≥ (1 + ε)SY,B+M(E).

In the following proposition we show that K-semistability of the base (Y, B + M)

is necessary for Conjecture 1.2 to hold for (X, D).

Proposition 3.5 Notation as above. Assume that (X, (1 − β)D) admits KEE metric
for all sufficiently small cone angle β > 0. Then (Y, B + M) is K-semistable.

Proof Let E be a prime divisor over Y . Let πY : Y ′ → Y be a proper birational
morphism that extracts E as a Cartier divisor. Let X ′ be the normalization of the
main component of X ×Y Y ′ with projections πX : X ′ → X and φ′ : X ′ → Y ′. Let
L ′ = π∗

Y L and D′ = π∗
X D. Then or any ample line bundle L X on X , we set

Vol(L X − t E) := Vol(π∗
X L X − tφ′∗(E))

where n = dim X . We define the expected vanishing order SX,(1−β)D(E) of the log
Fano pair (X, (1 − β)D) along E by

SX,(1−β)D(E) = 1

Vol(−K X − (1 − β)D)

∫ ∞

0
Vol(−K X − (1 − β)D) − t E)dt.

We claim that
lim inf
β→0+

SX,(1−β)D(E) ≥ SY,B+M(E). (3.6)
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Let r = dim X − dim Y ≥ 1, letC = (n
r

)
and let F be a general fiber of φ. As (X, D)

is asymptotically log Fano, βD ∼φ.Q −(K X + (1 − β)D) = φ∗L + βD is φ-ample
for some 0 < β � 1 and we have

Vol(−K X − (1 − β)D) = (
(−K X − (1 − β)D)n) = Cβr ((φ∗L)n−r · Dr ) + O(βr+1)

since φ has relative dimension r . As L is ample and D is φ-ample, it is easy to see
that ((φ∗L)n−r · Dr ) = (Ln−r )(Dr · F) > 0, hence

Vol(−K X − (1 − β)D) = Cβr (Ln−r )(Dr · F) + O(βr+1). (3.7)

For any t ≥ 0 such thatVol(L − t E) > 0 andany ε > 0, byFujita’s approximation
theorem (see e.g. [18, Theorem D]) we may assume that (after possibly replacing πY

by another birational morphism) there existsQ-divisors A and N on Y ′ such that A is
ample, N is effective, L ′ − t E = A + N and Vol(A) = (An−r ) > Vol(L − t E) − ε.
As D is φ-ample, D′ is φ′-ample, thus φ′∗ A + βD′ is ample for sufficiently small
β > 0. It follows that

Vol(−K X − (1 − β)D − t E) ≥ Vol(φ′∗(L ′ − t E) + βD′)
≥ Vol(φ′∗ A + βD′)

= (
(φ′∗ A + βD′)n

) = Cβr (An−r )(Dr · F) + O(β2)

where the last equality follows from the projection formula and the ampleness (resp.
φ-ampleness) of A (resp. D′) as before. In particular, we have

lim inf
β→0+

β−rVol(−K X − (1 − β)D − t E) ≥ C · (An−r )(Dr · F)

> C · (Vol(L − t E) − ε) (Dr · F).

As this holds for all ε > 0, we obtain

lim inf
β→0+

β−1Vol(−K X − (1 − β)D − t E) ≥ C · Vol(L − t E) · (Dr · F).

Therefore by Fatou’s lemma we see that

lim inf
β→0+

1

βr

∫ ∞
0

Vol(−K X − (1 − β)D − t E)dt ≥ C · (Dr · F)

∫ ∞
0

Vol(L − t E)dt.

(3.8)
The claimed inequality (3.6) then follows by combining (3.7) and (3.8) as L ∼Q

−(KY + B + M).
We now proceed to show that (Y, B + M) is K-semistable, i.e. AY,B+M(E) ≥

SY,B+M(E) for all prime divisors E over Y . We keep the notation as above. By
construction (see [16]), after possibly replacing the birational morphism πY : Y ′ →
Y , we may assume that if we write KY ′ + B ′ + M ′ ∼Q π∗

Y (KY + B + M), then M ′
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is nef and the coefficient of E in B ′ is 1 − lctE (X ′, G;φ′∗E) where (X ′, G) is the
crepant pullback of (X, D) and the lct is taken only over the generic point of E .
In particular, AY,B+M(E) = lctE (X ′, G;φ′∗E). Since (X, (1 − β)D) admits KEE
metric for all sufficiently small cone angle β > 0, we have δ(X, (1 − β)D) ≥ 1.
In particular, if (X ′, Gβ) is the crepant pullback of (X, (1 − β)D), then (X ′, Gβ +
SX,(1−β)D(E) · φ′∗E) is lc. Letting β → 0 and using (3.6), we deduce that (X ′, G +
SY,B+M(E) · φ′∗E) is lc, hence SY,B+M(E) ≤ lctE (X ′, G;φ′∗E) = AY,B+M(E) and
we obtain βY,B+M(E) ≥ 0 as desired. �

Unfortunately, the example from Remark 2.10 shows that only assuming K-
semistability of the base is still not enough for Conjecture 1.2 to be true: in that exam-
ple Y = P1, B = 1

2 ([0] + [∞]) and M = 0 by a direct calculation using the formula
from [16]. So it seems to to the authors that the existence of KEEmetrics on a asymp-
totically log Fano pair is a subtle problem and the condition (K X + D)dim X = 0 is
only necessary.More complicated structures, such as the fibration to the amplemodel
of −(K X + D), should be taken into consideration.
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