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Abstract. For decades, the success of the similarity search has been
based on a detailed quantification of pairwise similarity of objects. Cur-
rently, the search features have become much more precise but also
bulkier, and the similarity computations more time-consuming. While
the k nearest neighbours (kNN) search dominates the real-life applica-
tions, we claim that it is principally free of a need for precise similarity
quantifications. Based on the well-known fact that a selection of the
most similar alternative out of several options is a much easier task than
deciding the absolute similarity scores, we propose the search based on
an epistemologically simpler concept of relational similarity. Having arbi-
trary objects q, o1, o2 from the search domain, the kNN search is solvable
just by the ability to choose the more similar object to q out of o1, o2 – the
decision can also contain a neutral option. We formalise such searching
and discuss its advantages concerning similarity quantifications, namely
its efficiency and robustness. We also propose a pioneering implemen-
tation of the relational similarity search for the Euclidean spaces and
report its extreme filtering power in comparison with 3 contemporary
techniques.

Keywords: Efficient similarity search · Relational similarity ·
Similarity comparisons · Effective similarity search

1 Introduction and Preliminaries

Efficient similarity search in complex objects, actions, and events is a central
problem of many data processing tasks [1,13,15]. Geometric models of similar-
ity are established as a basic and practically the only approach to an efficient
similarity search [17]. They assume a domain of the searched objects D and
a distance function d : D × D �→ R+

0 that quantifies the dissimilarity of two
objects. Two basic types of similarity queries are the kNN(q) and range(q, r)
queries, where q ∈ D, k ∈ N, r ∈ R+

0 . Having a searched dataset X ⊆ D and a
query object q ∈ D, kNN(q) queries search for k most similar objects o ∈ X to q,
and range(q, r) queries search for objects o ∈ X within distance d(q, o) ≤ r. In
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this article, we focus on kNN(q) queries which are more user friendly since set-
ting the k value is intuitive and does not require any knowledge of the searched
space.

Most of the approaches to kNN(q) query executions maintain k distances
d(q, o) between q and k closest objects o found during the query evaluation.
Typically, they require plenty of expensive distance computations [7,10,11]. We
claim that kNN(q) queries do not require most of the dissimilarity quantifications
since they ask just for the ordered list of k objects o ∈ X.

We propose to replace most of the precise dissimilarity quantifications with
possibly much simpler decisions on which of the objects o1, o2 ∈ X is more sim-
ilar to q ∈ D. These decisions can use several independent and domain-specific
views. The similarity/relevance comparisons of 2 objects with respect to the
referent are widely used, e.g., in active learning, and they are well discussed the-
oretically [3]. Yet, they are not directly used to speed up the similarity search,
according to our best knowledge. We discuss advantages of this relational simi-
larity search considering the evaluation efficiency, effectiveness, and robustness
while preserving the applicability. We formalise the relational kNN similarity
search and propose the implementation for high dimensional Euclidean spaces.

The rest of the article is organised as follows. Sect. 2 presents the concept of
relational similarity, Sect. 3 describes the implementation of relational similarity
for Euclidean spaces and the experiments, and Sect. 4 concludes the paper.

2 Similarity Quantifications vs. Relational Similarity

This article focuses on kNN(q) similarity queries, and we start with the simplest
case of the 1NN(q) search for the most similar object o ∈ X to q.

2.1 One Nearest Neighbour Search

Consider an intermediate state of the 1NN(q) query execution, i.e., the objects:

– q: the query object
– otop ∈ X: the most similar object to q found so far
– o ∈ X: object that is checked whether forms a better answer than otop

In this situation, search techniques based on similarity quantifications usually
know the distance d(q, otop) and evaluate d(q, o) to decide the more similar object
to q out of otop and o. Evaluation of d(q, o) is generally expensive [4,14,17], and
the only optimisation related to this paper is applicable to distance functions
which do not decrease during d(q, o) evaluation: Since d(q, otop) is known, object
o is relevant just until d(q, o) is known to be bigger than d(q, otop). Therefore,
d(q, o) evaluation can be interrupted when d(q, o) > d(q, otop) is guaranteed.

Nevertheless, the question whether o provides a better query answer than otop

is often much simpler than d(q, o) evaluation, as illustrated by Fig. 1. Here, we
consider the image similarity search, though our ideas are applicable to various
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Fig. 1. Three images during the 1NN(q) search: query image q, the answer candidate
otop, and image o from the dataset. Despite distances d(q, otop) ≈ d(q, o), approaches
to efficiently discard o as irrelevant to q exist and are used by humans. In this case, it
is checking the contours of q, otop, o, for instance.

domains. Distances d(q, otop) = 79.8 and d(q, o) = 80.5 provided in Fig. 1 are the
actual distances of corresponding image visual descriptors DeCAF described in
Sect. 3.1. The distances suggest that d(q, o) evaluation cannot be cut much before
its end since the difference d(q, o) − d(q, otop) is small. At the same time, image
o with the bird is obviously irrelevant to the query image q, and this is quickly
realised by humans. By an analogy, an efficient formal approach to choose the
1NN(q) query answer from otop and o should exist.

We inspire our thoughts by humans, who typically give a quick glimpse at
each of the images q, otop, o, trying to make a quick decision on which of otop, o
is more similar to q. If the first glimpse is insufficient to decide, the human gives
another glimpse at images q, otop, o trying to choose the more similar image
to q, and then continues (if necessary) in this iterative process until making the
decision. The conclusion can also be “I do not know” or “the similarities of otop

and o to q are (almost) the same”.
To illustrate this iterative approach, we again consider Fig. 1 and a human

who first focuses on the colours in the images, for instance. Colours of images
q, otop, o in Fig. 1 cannot efficiently distinguish the suitability of otop and o as
the 1NN(q) answer, so after no success with the first glimpse, the considered
human gives another glimpse at all objects q, otop, o. Let us assume that the
humans’ second glimpse reveals o displaying a different object than q and otop

since he/she focuses on the image contours. Therefore, he/she decides that otop

forms a better 1NN(q) answer than o.
The iterative process of the human deciding on which of otop, o forms a better

1NN(q) answer is in a principal contrast with the similarity quantifications per-
formed by contemporary similarity search techniques. Most of the data domains
are nowadays associated with an expensive similarity function d, and both dis-
tances d(q, o) and d(q, otop) are evaluated (with the possible early termination
of d(q, o) evaluation) whenever the relevance of o ∈ X and otop with respect to
q must be decided. Different approaches of humans and contemporary search
engines motivate us to formalise the concept of the relational similarity search
that follows the humans’ attitude.
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Algorithm 1. Approach to the simRel(q, o1, o2) evaluation
Input: q, o1, o2 ∈ D
Input: maxIt ∈ N � max number of iterations
Output: 0, 1 or 2 describing the similarity relation of q, o1, o2 defined by Equation 1
for i = 0; i < maxIt; inc(i) do

Give a quick glimpse at q, o1, o2 (*) � (efficiently) extract additional (small)

piece of information from q, o1, o2
if similarity of q, o1 is bigger than the similarity of q, o2, for sure then

return 1
if similarity of q, o1 is lower than the similarity of q, o2, for sure then

return 2
return 0
(*) Information extracted from q and o1 must be cached, otherwise it is extracted
many times during the kNN(q) search.

2.2 Relational Similarity Search

Beside of the pairwise similarity quantification d : D × D �→ R+
0 , we define

function (the similarity relation) simRel : D × D × D �→ {0, 1, 2}:

simRel(q, o1, o2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 similarity of q, o1 is bigger than the similarity of q, o2

2 similarity of q, o1 is lower than the similarity of q, o2

0 similarity of q, o1 is the same as the similarity of q, o2,

or the difference in the similarities is as small as its
proper investigation does not pay-off, and similarities
can be treated arbitrarily

(1)
We propose the simRel evaluations according to the informal concept

sketched by Algorithm 1. The actual simRel implementations should be depen-
dent on the data domain as well as on the application, which is well captured
by the doubled semantic of the equality 0 = simRel(q, o1, o2). The applications
preferring the search efficiency should implement the simRel in an approximate
manner and return 0 in more cases than the applications requiring high search
effectiveness. We have shown that the simRel captures the core of the 1NN(q)
search. In the following, we propose an algorithm for the kNN(q) search.

2.3 The k Nearest Neighbour Search with the Relational Similarity

To achieve the best search efficiency, we assume an abstract simRel implemen-
tation and discuss the kNN search algorithm, first. Let us consider q ∈ D, and
o1, o2, o3 ∈ X such that 0 = simRel(q, o1, o2) = simRel(q, o2, o3). In other words,
o1 and o2 are interchangeable in their similarity to q, and so do objects o2 and
o3. Notation suggests the transitivity of these equations, i.e., the deduction of
the equality simRel(q, o1, o3) = 0. Still, it does not hold, in general, so the kNN
search algorithms have to deal with this non-transitivity.
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Algorithm 2. The kNN(q) search with the simRel function
Input: query object q ∈ D
Input: k ∈ N � the minimum size of the answer
Input: the searched dataset X ⊆ D
Output: candSet(q) � at least k objects candSet(q) ⊆ X likely to be similar to q
ans ← X.first
objUnknownRelation ← ∅
for each o ∈ X \ X.first do

addOToAnswer(q, o, k, ans, objUnknownRelation) � procedure defined below

return ans ∪ objUnknownRelation � optionally return ans for extreme efficiency

procedure addOToAnswer(q, o, k, ans, objUnknownRelation)
idxWhereAdd ← ∞ � position in ans where add o
indexesToRemove ← ∅ � positions of objects in ans to remove
for i = ans.size − 1; i >= 0; decrement(i) do

sim ← simRel(q, ans[i], o)
if sim = 1 then � ans[i] is more similar object to q than o

if i < k − 1 then
for each i ∈ indexesToRemove do

if ans.size < k then break

ans.remove(i)

ans.add(i + 1, o) � add o to ans just after ans[i]
return

if sim = 2 then � o is more similar object to q than ans[i]
idxWhereAdd ← i
indexesToRemove.add(i)

if idxWhereAdd 	= ∞ then � the lowest position where to add o
for each i ∈ indexesToRemove do

if ans.size < k then break

ans.remove(i)

ans.add(idxWhereAdd, o)
return

objUnknownRelation.add(o) � simRel(q, ans[i], o) is 0 for all ans[i] ∈ ans
end procedure

We propose the search algorithm which starts to build the query answer
ans(kNN(q)) as a list of the most similar objects o ∈ X found during the query
execution. When o ∈ X is asked whether it is one the k nearest neighbours of q,
the non-transitivity of the equalities 0 = simRel(q, o1, o2) motivates us to focus
on objects oa ∈ ans(kNN(q)) such that simRel(q, oa, o) �= 0. We start to check
ans(kNN(q)) from its end:

– If we find o1 ∈ ans(kNN(q)) such that simRel(q, o1, o) = 2, i.e., o matches the
query object q better than o1, we mark o1 to be removed from ans(kNN(q)).

– We remember the lowest position i of o1 ∈ ans(kNN(q)) : simRel(q, o1, o) = 2.
If ans(kNN(q)) does not contain o2 : simRel(q, o2, o) = 1, i.e., o2 matches q
better than o, then o is inserted to ans(kNN(q)) at position i.
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– If ans(kNN(q)) contains o2 such that simRel(q, o2, o) = 1 and o2 is at the posi-
tion i < k−1 (numbering from 0) of ans(kNN(q)), we add o into ans(kNN(q))
just after o2.

– Finally, we delete as many of marked objects o1 from the answer ans(kNN(q))
as the answer size does not decrease below k.

An important case remains: If ans(kNN(q)) contains just objects oa such
that simRel(q, oa, o) = 0, we add o into list objsUnknown(q) of objects with an
unknown relation to q. The way of objsUnknown(q) processing is application
dependent, and we consider two variants. The search algorithm returns either
candSet(q) = ans(kNN(q))∪objsUnknown(q), or candSet(q) = ans(kNN(q)). The
second option which ignores list objsUnknown(q) is suitable for the applications
oriented on a high efficiency and just the relevance of query answers. In both
cases, candSet(q) is processed sequentially, i.e., distances d(q, o), o ∈ candSet(q)
are evaluated to return k most similar objects from candSet(q) as a query answer.
It can be just an approximation of the precise answer. The whole relational kNN
search is formalised by Algorithm 2.

3 Proof of Concept for Euclidean Spaces

The only goal of the simRel implementations is to algorithmize Eq. 1 for a specific
application and domain D to provide a suitable trade-off between the evaluation
efficiency, correctness, and the number of equalities simRel(q, o1, o2) = 0. We
assume that the simRel implementations should follow the humans’ behaviour,
i.e., the smaller the difference in the similarities of q, o1 and q, o2, the longer time
to decide the simRel(q, o1, o2) correctly, or return 0 to save time.

The concept of relational similarity has potential to improve various aspects
of the similarity search. We present a simRel implementation to efficiently search
high-dimensional Euclidean spaces with a low memory consumption and just a
small decrease in the search effectiveness.

No ambition to improve the search effectiveness enables us to implement the
simRel which approximates the search space (Rλ, �2) – here �2 is the Euclidean
distance function and λ is the length of vectors. Motivated by the humans’
abilities, we want to implement simRel(q, o1, o2) in a way that the bigger the
difference |�2(q, o1) − �2(q, o2)|, the more efficient simRel(q, o1, o2) evaluation.
Consequently, we want to capture as much information about each o ∈ X in
one number, then capture as much of the remaining information in the second
number, etc. This informal description sufficiently fits the Principal component
analysis (PCA) [12,16], i.e., the transformation of vectors o ∈ X of length λ to
the vectors oPCA(L) ∈ RL of length L < λ such that the variance of values in
coordinates of oPCA(L) decreases with the coordinates’ index, and the shortened
vector oPCA(L) preserves as much of the information about o as possible. First
coordinates of vectors qPCA(L), o

PCA(L)
1 , o

PCA(L)
2 thus often contain sufficient

information to decide simRel(q, o1, o2).
Our simRel(q, o1, o2) implementation starts to evaluate �2(qPCA(L), o

PCA(L)
1 )

and �2(qPCA(L), o
PCA(L)
2 ) distances in parallel. During the evaluation, it checks
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Algorithm 3. Concept of simRel(q, o1, o2) = simRel(qPCA(L), o
PCA(L)
1 , o

PCA(L)
2 )

implementation for a high dimensional Euclidean space

Input: qPCA(L), o
PCA(L)
1 , o

PCA(L)
2 � vectors q, o1, o2 shortened by the PCA

Input: thresholds t(Ω) defined for each 0 ≤ Ω < L � learned by Algs. 2 and 4
Output: 0, 1, or 2 � result of simRel(q, o1, o2) – see Eq. 1
for Ω = 0; Ω < L; inc(i) do

diff ← difSqPref(qPCA(L), o
PCA(L)
1 , o

PCA(L)
2 , Ω) � function defined by Eq. 2

if diff > t(Ω) then
return 2

if diff < −t(Ω) then
return 1

return 0

which of the vectors o
PCA(L)
1 and o

PCA(L)
2 is currently closer to qPCA(L) and how

much. If one of the vectors o
PCA(L)
1 , o

PCA(L)
2 is sufficiently closer to qPCA(L) than

the second one, we claim the result of simRel(qPCA(L), o
PCA(L)
1 , o

PCA(L)
2 ). We use

this result as the estimation of simRel(q, o1, o2).
Formally, we denote oPCA(L)[i] the value in the ith coordinate of oPCA(L),

and define:

difSqPref(qPCA(L), o
PCA(L)
1 , o

PCA(L)
2 , Ω) =

Ω∑

i=0

(
qPCA(L)[i] − o

PCA(L)
1 [i]

)2

−
Ω∑

i=0

(
qPCA(L)[i] − o

PCA(L)
2 [i]

)2 (2)

We evaluate this function for each integer Ω : 0 ≤ Ω < L, and consider thresh-
olds t(Ω) ∈ R+

0 which determine the stop conditions for the simRel(q, o1, o2)
evaluation: we start with Ω = 0 and use Eq. 2 as follows:

– If difSqPref(qPCA(L), o
PCA(L)
1 , o

PCA(L)
2 , Ω) > t(Ω), then simRel(q, o1, o2) = 2

– If difSqPref(qPCA(L), o
PCA(L)
1 , o

PCA(L)
2 , Ω) < −t(Ω), then simRel(q, o1, o2) =

1
– If Ω = L − 1, then simRel(q, o1, o2) = 0, else increment Ω

The (non-optimised) simRel implementation which takes t(Ω) thresholds as an
input is formalised by Algorithm 3.

We learn thresholds t(Ω) using Algorithm 2 which evaluates kNN(q) queries
with random query objects on a sample of the dataset X and use the simRel
implementation formalised by Algorithm 4. This simRel implementation does
not use the thresholds t(Ω) but learns them instead. First, it evaluates dis-
tances �2(qPCA(L), o

PCA(L)
1 ) and �2(qPCA(L), o

PCA(L)
2 ). Let us assume inequality

�2(qPCA(L), o
PCA(L)
1 ) ≤ �2(qPCA(L), o

PCA(L)
2 ) – if it does not hold, the notation

of o1 and o2 is swapped. For each Ω : 0 ≤ Ω < L, the simRel algorithm stores a
list wit [Ω] of observed positive values difSqPref (qPCA(L), o

PCA(L)
1 , o

PCA(L)
2 , Ω).

These values wit [Ω] are witnesses of the insufficiency of prefix of length Ω: while
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Algorithm 4. simRel implementation to learn thresholds t(Ω), 0 ≤ Ω < L

Input: qPCA(L), o
PCA(L)
1 , o

PCA(L)
2 � vectors q, o1, o2 shortened by the PCA

Input: perc � Percentile 0 < perc < 1
Output: thresholds t(Ω) defined for each 0 ≤ Ω < L
Output: 0, 1, or 2 � the result of simRel(q, o1, o2) – see Equation 1

d1 ← �2(q
PCA(L), o

PCA(L)
1 )

d2 ← �2(q
PCA(L), o

PCA(L)
2 )

diffQO1 ← 0; diffQO2 ← 0
order ← d1 < d2
wit � static array of length L
for i = 0; i < L; inc(i) do

diffQO1 += (qPCA(L)[i] − o
PCA(L)
1 [i])2

diffQO2 += (qPCA(L)[i] − o
PCA(L)
2 [i])2

orderCurr ← diffQO1 < diffQO2
if order 	= orderCurr then

wit[i].add(|diffQO1 − diffQO2|) � the absolute values of the difference

if diffQO1 = diffQO2 then
return 0

diffQO1 < diffQO2 ? return 1 : return 2
define t[Ω] as percentile perc of wit [Ω] � when sample queries evaluated by Alg. 2

first Ω coordinates of vectors (i.e. function difSqPref ) suggests the inequality
�2(qPCA(L), o

PCA(L)
1 ) > �2(qPCA(L), o

PCA(L)
2 ), the last coordinates i : Ω < i < L

of vectors change the relation to the final inequality �2(qPCA(L), o
PCA(L)
1 ) ≤

�2(qPCA(L), o
PCA(L)
2 ). When all the queries are evaluated, each wit[Ω] is sorted

and t(Ω) is defined as a given percentile perc of wit [Ω]. The percentile defines
the trade-off between the simRel correctness, evaluation times and the num-
ber of the equalities 0 = simRel(q, o1, o2): the bigger the perc, the longer and
the more precise the simRel decisions with possibly more neutral assessments
0 = simRel(q, o1, o2). In the experiments, we use the perc = 0.85. The whole
approach to determine thresholds t(Ω) is formalised by Algorithm 4, and a Java
implementation of this article is provided upon request.

3.1 Test Data

We examine the DeCAF image visual descriptors [5] extracted from the Profiset
image collection1 to verify the simRel implementation. We use a subset of 1 mil-
lion descriptors that are derived from the Alexnet convolutional neural net-
work [6] as the data from the second-last fully connected layer (FC7). Each
descriptor consists of a 4,096-dimensional vector of floating-point values that
describes characteristic image features, so there is a correspondence 1 to 1
between images and descriptors. Pairwise similarities of the DeCAF descriptors
are expressed by Euclidean distances.
1 http://disa.fi.muni.cz/profiset/.

http://disa.fi.muni.cz/profiset/
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Table 1. Median accuracy of the 30NN(q) search in DeCAF descriptors shortened by
the PCA to length L: k′ vectors are pre-selected in a shrunk space and refined

Length L Size k′

30 50 100 1,000 5,000 10,000 15,000 20,000

8 3.3% 73.3 % 86.7 % 93.3 % 96.7 %

10 3.3 % 86.7 % 96.7 % 100 %

12 6.7 % 60.0 % 93.3 % 98.3 % 100%

24 23.3 % 33.3 % 46.7 % 93.3 % 100%

68 53.3 % 66.6 % 86.7 % 100 %

256 70 % 86.7 % 100 %

670 80 % 96.7 % 100 %

1,540 86.7% 100%

3.2 PCA and Relational Similarity Search Implementation

The PCA defines vectors with the most of information in their first coordinates.
The relational similarity simRel(q, o1, o2) is thus decided just by a short pre-
fix of vectors qPCA(L), o

PCA(L)
1 , o

PCA(L)
2 in most of the cases, and we propose

to store just prefixes of oPCA(L), o ∈ X in the main memory while the long
descriptors o can be in the secondary storage. If the prefixes are insufficient to
decide simRel(q, o1, o2), zero is returned. The proposed simRel implementation
contains several sources of approximation errors, and we address the setting
of parameters one by one to mitigate them. We consider 30NN(q) queries on
4,096-dimensional DeCAF descriptors. Reported statistics are the medians over
1,000 query evaluations with different query objects q selected in random. The
ground-truth consists of 30 closest objects oNN ∈ X to q as defined by �2 distance
function.

The first parameter to be fixed is length L of vectors shortened by the PCA,
and we set it experimentally using the filter & refine paradigm: Having an object
q ∈ D, we select k′ closest vectors oPCA(L) to qPCA(L) using the �2 distances,
find the corresponding vectors o ∈ X to form c(q) ⊆ X, and re-rank these o
according to �2(q, o). Finally, we consider just 30 closest objects o ∈ c(q) and
check how many of them are the true nearest neighbours from the ground-truth.

Table 1 provides the median search2 accuracy for various L and k′. For
instance, vectors shortened to just 24 dimensions are of a quality that the set
c(q) of size 1,000 vectors (0.1 % of the dataset) contains 28 out of 30 (93.3 %)
true nearest neighbours per median query object q. Since the proposed simRel
implementation speeds up the search by efficient and quite accurate similarity
comparisons, we use the simRel together with a high-quality approximation of
DeCAF descriptors given by L = 256. Having L = 256, the candSet(q) of 100

2 Diploma thesis [2] provides a rich experimental analysis of the PCA applied to the
same dataset of the DeCAF descriptors.
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Fig. 2. Early terminations of simRel evaluations. The first coordinate of vectors short-
ened by the PCA decides 511,850 simRel evaluations per median query (Color figure
online)

vectors contains all 30 true nearest neighbours per median query, so in the fol-
lowing, we address 100NN(q) search in vectors oPCA(L), o ∈ X,L = 256.

3.3 Experimental Verification of the Relation Similarity Search

The simRel evaluations must be efficient to pay-off. We use just first 24 coordi-
nates of vectors oPCA(L), o ∈ X with 4B precision per coordinate stored in the
main memory. The memory occupation is thus 24 ·4B = 96B plus ID per o ∈ X.
We learn thresholds t[Ω] by Algorithms 2 and 4 evaluating a hundred 30NN(q)
queries with different q than 1,000 tested and a sample of 100K objects o ∈ X.

Number of simRel evaluations during kNN(q) execution by Algorithm 2 can
be almost k · |X|, but this happens just if simRel(q, o1, o2) = 0 for nearly
all examined triplets. Figure 4a reports numbers of simRel evaluations during
100NN(qPCA(L)) search in the prefixes of 1M vectors oPCA(L). All box plots in
this paper depict the distribution of values over 1,000 randomly selected query
objects. The simRel evaluation counts are from 1.027M to 35.23M with the quar-
tiles 1.2M, 1.47M and 2.37M, respectively. The results are thus much better than
the theoretical worst case of almost 100 · 1M = 100M simRel evaluations.

The simRel implementation given by Algorithm 3 adaptively decides how
many out of 24 coordinates to use for an efficient simRel decision. Figure 2
presents numbers of simRel terminations just after checking the ith coordinate
of vectors qPCA(L), o

PCA(L)
1 , o

PCA(L)
2 . Indexes i are on the x-axis, and y-axis

depicts the number of simRel terminations. The only exception is the last grey
box plot which represents the last stored coordinate of oPCA(L): Since we are
interested in the simRel result, we use two box plots here. The red right-most box
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Fig. 3. Relative numbers early terminations of the simRel evaluations during the query
execution after checking the ith coordinate of vectors (Color figure online)

plot, as well as the last grey box plot depict the numbers of simRel evaluations
which use all 24 coordinates – the red box plot depicts the zero results of simRel
computations, and the last grey box plot depicts non-zero results. The first
coordinate of qPCA(L), o

PCA(L)
1 , o

PCA(L)
2 is sufficient to decide 513,133 simRel

comparisons per median query – see the first box plot in Fig. 2. The first and
third quartiles are 439,776 and 645,781, respectively, the minimum is 324,425 and
the maximum is 999,756. Value simRel = 0 is returned in 456,929 evaluations
per median query, as depicted by the red box plot. This statistic has a large
variance over q: the first and third quartiles are 192,897 and 1.35M, respectively,
the minimum is 4,272, and the maximum is 34.2M.

Figure 3 also reports the simRel terminations after checking the ith coordi-
nate of vectors, but expressed relatively with respect to the number of simRel
evaluations during the query execution. The first box plot depicts that 33.68 %
of simRel evaluations performed during the median query execution are termi-
nated just after the check of the first coordinate of qPCA(L), o

PCA(L)
1 , o

PCA(L)
2 .

This statistic also have a large variance, and ranges from 1.91 % to 93.74 % with
the quartiles 21.65 %, 33.64 %, and 43.08 %. The relative number of equalities
0 = simRel(q, o1, o2) during the query execution ranges from 0.42 % to 97.18 %
with the quartiles 15.94 %, 31.04 %, and 57.30 % – see the red box plot in Fig. 3.
We suppose that query objects with a large number of simRel = 0 are probably
outlying objects, and we postpone their investigation for the future work. We
emphasise that the prevalent early termination of simRel evaluations leading to
flexible evaluation times figure the key advantage of the simRel in comparison
with most of the traditional search techniques based on, for example, dimension-
ality reduction or hashing.
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(a)
simRel evaluation
counts per query

(b)
Accuracy of
30NN(q) search

(c)
Number of candidates identified
by simRel in 1M DeCAF descriptors

Fig. 4. Statistics gathered during 100NN search in 1M dataset, distributions over 1,000
query objects q

Table 2. Comparison of the filtering power

simRel GHP 50 256 [8] GHP 80 256 [9] PPP-Codes [11]

candSet(q) size 1,076 (0.11%) 3,214 (0.32%) 3,368 (0.37%) 10,546 (1.05%)

Memory per o ∈ X 96 B 32 B 32 B 96 B

Finally, we chain all steps and report results of Algorithm 2 evaluating 30NN
queries in the original space of 4,096-dimensional DeCAF descriptors. The simRel
implementation uses the first 24 coordinates of oPCA(L), L = 256. First, we
evaluate Algorithm 2 to return candSet(q) = ans(kNN(q)) ∪ objsUnknown(q),
i.e., we also refine the objects with an unknown relation to q. Figure 4b illustrates
that Algorithm 2 correctly finds 28 out of 30 true nearest neighbours per median
query. Figure 4c reports candSet(q) sizes which express the only number of 4,096-
dimensional descriptors from X that we access during the query execution and
evaluate their �2 distances to q. It ranges from 101 to 19,643, i.e., from 0.01 % to
1.96 % of the dataset, with the quartiles 524; 1,076; and 2,477. The median thus
expresses that the simRel filters out 99.89 % of the 1M dataset, 1,076 objects
remains, and 28 out of them are in the set of 30 true nearest neighbours – all
for a median query object q.

Table 2 compares3 the filtering power of the simRel with 3 most powerful
filtering techniques we have ever tried. The GHP 50 256 [8] and GHP 80 256 [9]

3 This data are adopted from Table 4.3 in the thesis [7]. The experiments in the thesis
are conducted on the same data as this paper, including the query objects q.
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techniques transform DeCAF descriptors to the bit-strings of length 256 bits in
the Hamming space. In this space, they identify the candSet(q) which they re-
rank to return 30 most similar objects o ∈ candSet(q). The pivot permutation
based index PPP-codes [11] stores distances to 24 reference objects (pivots) which
is the only information used to identify the candSet(q) before its refinement. We
set parameters of all examined techniques to produce candSet(q) with the median
accuracy 28/30. However, the results of all techniques except of the simRel are
simulations describing the minimum candSet(q) size implying this accuracy. The
candSet(q) size must be set in advance in case of GHP 50 256, GHP 80 256,
and PPP-codes, and no support for an estimation of a suitable candSet(q) size
is provided. The numbers presented for these 3 techniques thus form just a
theoretical optimum. On the contrary, the result of the simRel describes a real
usage which requires no hidden knowledge. Having the same memory overhead
as the PPP-codes and 3 times bigger overhead than the bit-strings, the filtering
with the simRel is 3 times, 3.1 times, and 9.8 times more powerful than the
filtering with GHP 50 256, GHP 80 256, and PPP-codes, respectively.

Proposed simRel implementation has an advantage of automatic adapting
to particular query objects q, which causes a significant variance in the simRel
evaluation times and numbers of simRel evaluations during the query execution.
Conversely, plenty of search techniques execute the similarity queries with fixed
parameters and no adaptation to particular query objects. It leads to wasting
computational sources in case of easy-to-evaluate query objects, or a low-quality
evaluation of difficult queries [10].

Finally, we examine the 30NN search with Algorithm 2 ignoring objects
objsUnknown(q) with an unknown relation to q. The search accuracy of such
search has median 10/30 and the third quartile 14/30, but the candSet(q) is
pretty small with just 252 objects (0.0252 % of X) per median q. We visualise
online4 the answer of typical quality to one 30NN query evaluated in this way.
Its accuracy is 12/30 and it requires just 250 �2(q, o) evaluations to re-rank the
candSet(q). We emphasise that the order of the images is given by full �2 dis-
tances of the DeCAF descriptors depicted below each image. All answer images
are relevant to q.

4 Conclusions

The content preserving features of contemporary digital data objects become
more precise but also more voluminous and their similarity quantifications more
computationally demanding. The partitioning techniques are not able to con-
strain the query response set sufficiently, and many distance computations are
needed to get the result. We have proposed the relational similarity search to
reduce the number of distance computations. In general, a large number of not
necessary distance computations is eliminated by an efficient selection of a more
similar data object out of two to the referent. We exemplify the approach by
the search in a challenging high-dimensional Euclidean space and demonstrate
4 https://disa.fi.muni.cz/∼xmic/2022SISAP/SimRelJustKnown.png.

https://disa.fi.muni.cz/~xmic/2022SISAP/SimRelJustKnown.png


102 V. Mic and P. Zezula

the savings of 99.89 % distance computations per median query when finding
28 out of 30 nearest neighbours. The search algorithm can also be set to pre-
fer the search efficiency at the cost of accuracy. In that case, we have observed
the filtering of 99.9748 % of the dataset with the search accuracy of 33.3 % per
median query, but still achieving a good answer relevance. In the future, we plan
to implement the simRel in other domains, and combine the approach with the
similarity indexes to efficiently search large datasets.
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