
On Projections to Linear Subspaces

Erik Thordsen(B) and Erich Schubert

TU Dortmund University, Otto-Hahn-Straße 14, 44227 Dortmund, Germany
{erik.thordsen,erich.schubert}@tu-dortmund.de

Abstract. The merit of projecting data onto linear subspaces is well
known from, e.g., dimension reduction. One key aspect of subspace pro-
jections, the maximum preservation of variance (principal component
analysis), has been thoroughly researched and the effect of random lin-
ear projections on measures such as intrinsic dimensionality still is an
ongoing effort. In this paper, we investigate the less explored depths of
linear projections onto explicit subspaces of varying dimensionality and
the expectations of variance that ensue. The result is a new family of
bounds for Euclidean distances and inner products. We showcase the
quality of these bounds as well as investigate the intimate relation to
intrinsic dimensionality estimation.

1 Introduction

The probably most important research on linear subspace projections was writ-
ten by Pearson in his 1901 paper on Principal Component Analysis (PCA). The
concept of PCA explains how the variance of a data set can be decomposed into
orthogonal components, each of which covers the maximum amount of variance.
This fundamental result has been employed in many fields including dimension-
ality reduction, clustering [1], intrinsic dimensionality estimation [5], and many
more. The decomposition also implies linear projections that preserve the least
amount of variance. Yet, it yields little information on the less tangible middle
ground of random projections. The Johnson-Lindenstrauss lemma shows that
random projections can preserve distances well, and the effect of random pro-
jections on, e.g., intrinsic dimensionality [6] has also been explored in the past.
But we could not find literature on the effect of random projections on the vari-
ance itself. In this paper, we investigate the effect on a projected point’s squared
norm which entails effects on the variance of the data set. The arising bounds for
the Euclidean distance as well as for inner products are explored in Sect. 2. The
projections required for these bounds rely on the normal vectors of the linear
subspace on which we project, which are drawn from the data set itself. Using
measures based on points from the data set to assess boundaries on norms is a
concept already employed in, e.g., spatial indexing. Methods like LAESA [7] use
so-called pivot/reference/prototype points and the triangle inequality to prune

Part of the work on this paper has been supported by Deutsche Forschungsgemeinschaft
(DFG), project number 124020371, within the Collaborative Research Center SFB 876
“Providing Information by Resource-Constrained Analysis”, project A2.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Skopal et al. (Eds.): SISAP 2022, LNCS 13590, pp. 75–88, 2022.
https://doi.org/10.1007/978-3-031-17849-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17849-8_7&domain=pdf
http://orcid.org/0000-0003-1639-3534
http://orcid.org/0000-0001-9143-4880
https://doi.org/10.1007/978-3-031-17849-8_7

76 E. Thordsen and E. Schubert

the data set during spatial queries. Tree-based methods like the Balltree [8] use
the triangle inequality to exclude entire subtrees, while permutation based index-
ing [3,14] uses the relative closeness to reference points to partition the data.
The central points in these approaches fulfill a role equivalent to pivots. Using
pivots for random projections, however, yields fundamentally stronger pruning
capabilities, as discussed in Sect. 2. In Sect. 3, we analyze the expected values of
variance preserved by random projections. These expectations are closely related
to PCA, yet costly to compute exactly. To compensate for the computational
cost and fathom the relation to eigenvalues we propose an approximation of
the expected values in terms of eigenvalues. The expected values are related
to the Angle-Based Intrinsic Dimensionality (ABID) estimator [13]. We explore
the relationship in Sect. 4, which leads to a tangible link between indexing com-
plexity and intrinsic dimensionality. To highlight the practical implications as
well as showcase the efficacy of the introduced bounds we propose a very simple
index and our empirical results in Sect. 5. Lastly, we close with a summary of
this paper and a short outlook on future research in Sect. 6.

In this paper, we denote the i-th eigenvalue of some matrix M with λ
(M)
i .

We do not care about the specific order of eigenvalues but assume that corre-
sponding eigenvalues of matrices that admit the same eigenvectors are in the
same order. We write M c as an abbreviation for V ΛcV T where V is the matrix
containing the eigenvectors of M as columns and Λc is the diagonal matrix con-
taining (λ(M)

i)c on the diagonal. We write C(X) for the covariance matrix of
data sets X where we assume X to be origin-centered unless otherwise speci-
fied. We denote the normalizations of vectors x and data sets X with x̃ and ˜X,
respectively. Whenever Euclidean spaces and distances are discussed, the dot
product is implied by the inner product.

2 Pivotal Bounds in Euclidean Spaces

We consider linear subspace projections of query points onto the linear subspace
spanned by (not necessarily orthogonal) pivots or reference points {r1, . . . , rk},
k ≤ d drawn from the same distribution as the analyzed data set, e.g., by choosing
them from the data set itself. In the case of affine subspace projections, both the
query and reference points are shifted by a center point c. We assume all (shifted)
reference points to be linearly independent. Otherwise, we discard reference
points until linear independence holds. The projection π(x−c; r1−c, . . . , rk−c)
of some shifted query point x−c onto the affine subspace (shortened to π(x−c)
whenever the choice of reference points is clear) is then given by

π(x − c) =
∑k

i=1
〈x − c, r̂i〉 r̂i (1)

where the r̂i are the normalized orthogonal vectors obtained from the Gram-
Schmidt process applied to the ri−c. These can be recursively computed from

r̂1 =
r1 − c

‖r1 − c‖ r̂i =
(ri − c) − ∑i−1

j=1 〈ri − c, r̂j〉 r̂j
∥

∥

∥(ri − c) − ∑i−1
j=1 〈ri − c, r̂j〉 r̂j

∥

∥

∥

(2)

On Projections to Linear Subspaces 77

where ‖x‖ is shorthand for 〈x, x〉1/2. In the following, we will repeatedly require
the evaluation of 〈·, r̂i〉 and ‖π(·; ·)‖. Although (1) and (2) can be evaluated
explicitly every time, it can be more convenient to represent the (squared) norm
after projection in terms of inner products (especially in kernel spaces):

‖π(x − c)‖2 =
∑k

i=1
〈x − c, r̂i〉2 (3)

since all r̂i are normalized and pairwise orthogonal. We can reduce 〈·, r̂i〉 to

〈x − c, r̂i〉 =
〈c,c〉−〈c,x〉−〈c,ri〉+〈x,ri〉−

∑i−1
j=1〈x−c,r̂j〉〈ri−c,r̂j〉

(〈c,c〉−2〈c,ri〉+〈ri,ri〉−
∑i−1

j=1〈ri−c,r̂j〉2)
1/2 (4)

which can also be used recursively to compute the 〈ri − c, r̂j〉 in (4). In the
non-affine case, c = 0, (4) simplifies to

〈x, r̂i〉 =
〈x,ri〉−

∑i−1
j=1〈x,r̂j〉〈ri,r̂j〉

(〈ri,ri〉−
∑i−1

j=1〈ri,r̂j〉2)
1/2 (5)

Note that the denominator and parts of the nominator need to be computed
just once. Further, we omit the explicit computation of any r̂i which would be
infeasible in, e.g., RBF kernel and general inner product spaces. With dynamic
programming, ‖π(x − c)‖2 can be computed in Θ(pk2) time, where p is the effort
required to compute an inner product.

In spatial indexing, pivots have been successfully used to bound distances
via the triangle inequality [7,8]. We propose to bound distances in terms of a
decomposition of the squared Euclidean norm into dot products given by

dEuc(x, y)2 = ‖x − y‖2 = 〈x − y, x − y〉 = 〈x, x〉 + 〈y, y〉 − 2 〈x, y〉 (6)

From this we can derive bounds for the Euclidean distance between two points
given a bound on the dot product 〈x, y〉, assuming 〈x, x〉 and 〈y, y〉 are known.
Let r̂1, . . . , r̂k be pivot points previously orthogonalized by the Gram-Schmidt
process as defined in Sect. 3. We can decompose x−c and y−c into k components
aligned along the r̂i and one orthogonal remainder. We will call this (k + 1)-th
component x⊥ and y⊥, respectively. It then follows that

〈x − c, y − c〉 = 〈x⊥, y⊥〉 +
∑k

i=1
〈〈x − c, r̂i〉 r̂i, 〈y − c, r̂i〉 r̂i〉 (7)

Because the r̂i are pairwise orthogonal, this decomposition is uniquely defined.
Since all r̂i have a unit norm, we can rewrite this equation to

〈x, y〉 = 〈x⊥, y⊥〉 + 〈c, x〉 + 〈c, y〉 − 〈c, c〉 +
∑k

i=1
〈x − c, r̂i〉 〈y − c, r̂i〉 (8)

All of the terms on the right-hand side then either depend on x or y, but not
on both, except for 〈x⊥, y⊥〉. In the semantics of Euclidean spaces, both x⊥
and y⊥ lie in the same (d−k)-dimensional linear subspace. We can compute both
as x⊥ = (x − c) − π(x − c) and y⊥ = (y − c) − π(y − c), respectively, but do not

78 E. Thordsen and E. Schubert

c

q

r̃1
r̃2 ε

(a) Combined center and pivot

q

c1

c2

c3

ε

(b) Intersection of triangle inequality

Fig. 1. Eligible search spaces around a query point q after filtering with the lower
bounds obtained from one, two, or three centers and/or pivots.

know their relative orientation. Yet, we can bound their inner product using
the Cauchy-Schwarz inequality resulting in the bounds ±(〈x⊥, x⊥〉 · 〈y⊥, y⊥〉)1/2.
By orthogonality of x⊥ and π(x − c) we know ‖x⊥‖2 = ‖x − c‖2 − ‖π(x − c)‖2.
The bounds for the inner product 〈x − c, y − c〉 then follow as

〈c, x〉 + 〈c, y〉 − 〈c, c〉 +
∑k

i=1 〈x − c, r̂i〉 〈y − c, r̂i〉

±
⎛

⎝

(

〈x, x〉 + 〈c, c〉 − 2 〈c, x〉 − ∑k
i=1 〈x − c, r̂i〉2

)

·
(

〈y, y〉 + 〈c, c〉 − 2 〈c, y〉 − ∑k
i=1 〈y − c, r̂i〉2

)

⎞

⎠

1/2

(9)

which in the non-affine case, c = 0, becomes

k
∑

i=1

〈x, r̂i〉 〈y, r̂i〉 ±
((

〈x, x〉 −
k

∑

i=1

〈x, r̂i〉2
)

·
(

〈y, y〉 −
k

∑

i=1

〈y, r̂i〉2
))1/2

(10)

Inserting both of these values into (6) gives bounds on the squared Euclidean
distance and, consequentially, on the Euclidean distance. These bounds are a
generalization of at least two bounds known from the literature. When we assume
the affine case and k = 0 pivots, the bounds derived from (6) and (10) reduce to

〈x, x〉 + 〈y, y〉 − 2 〈c, x〉 − 2 〈c, y〉 + 2 〈c, c〉 ± 2 ‖x − c‖ ‖y − c‖ (11)

= (‖x − c‖ ± ‖y − c‖)2 (12)

which are the bounds easily derivable from the triangle inequality. For the
non-affine case with k = 1 pivots and normalized x and y, the inner product
bounds (10) reduce to

〈x, r̂1〉 〈y, r̂1〉 ±
((

1 − 〈x, r̂1〉2
) (

1 − 〈y, r̂1〉2
))1/2

(13)

which is the triangle inequality for cosines introduced in [10]. Triangle-inequality-
based bounds have been used in spatial indexing in methods like, e.g., LAESA [7].
For multiple pivots, these approaches take the minimum or maximum of the

On Projections to Linear Subspaces 79

bounds obtained separately for each pivot. In our terminology, we refer to such
pivots as centers c. Those are fundamentally different from the term pivots intro-
duced here: When performing an ε-range query for a query point y, the eligible
search space for vectors x according to the upper bound in (12) is a hyperspheri-
cal shell centered at c. This geometric shape can be described as the sumset (the
set of all sums of pairs in the cartesian product) of a (d−1)-sphere of radius ‖y−c‖
centered at c and a d-ball of radius ε. When using pivots as per our definition,
each pivot induces a hyperplane orthogonal to the r̂i which intersects with the
hypersphere. Consequentially, the resulting eligible search space is the sumset
of a (d−1−k)-sphere of radius (‖y−c‖2 − ‖π(y−c)‖2)1/2 and a d-ball of radius ε.
This is illustrated in two dimensions in Fig. 1. Each of the pivots eliminates an
entire dimension from the sphere-part of the search space whereas the minimum
lower bounds obtained from multiple centers produce an intersection of multiple
hyperspherical shells. While d−1 pivots can reduce the search space to the sum-
set of at most 2 points and an ε-ball, the intersection of even d hyperspherical
shells in the best case produces a volume that can be roughly described as a
distorted hypercube with an “edge length” of about 2ε. The resulting volume
can be exponentially larger in d than the search volume using d−1 pivots. As
the volumes of regular shapes in Euclidean space expand exponentially in dimen-
sions, one would expect an approximately exponential reduction in search space
over an increasing number of pivots, whereas using the minimum upper bound
over multiple centers does not induce such a reduction in search space volume. It
is, therefore, of little surprise that the cosine bounds introduced in [10] (k = 1),
produced tighter bounds empirically than the triangle inequality (k = 0), and
were successfully applied to improve the performance of spherical k-means clus-
tering [11]. Qualitatively, there is a clear argument for using a larger amount of
pivots. However, the reduction in search space comes at the price of increased
computational cost as the evaluation of 〈y, r̂i〉 is quadratic and the evaluation
of the bounds is linear in k. Blindly increasing k is not universally advantageous
for the computational cost of spatial indexing queries. But how many pivots
tighten the bounds enough to counterweigh the overhead? More precisely, how
much more of a point’s squared norm does the k-th randomly drawn pivot drawn
cover on average? Although the answer does not refer to an optimal pivot choice,
by arguing over expectations of underlying distributions, this conservative argu-
ment likely holds for previously unknown query points.

3 Expected Variance of Random Projections

The analysis of squared norms after projection is closely related to spectral
analysis. If we chose any normalized vector v, Ex∈X [‖π(x − Ey∈X [y] ; v)‖2] is
simply the variance of X in direction v. Consequentially, for any pair of a
normalized eigenvector ei and the corresponding eigenvalue λ

(C(X))
i , we know

that Ex∈X [‖π(x; ei)‖2] =λ
(C(X))
i for any origin-centered X. By orthogonality of

the eigenvectors, this argument can be extended to any number of eigenvectors
e1, . . . , en as

80 E. Thordsen and E. Schubert

E
x∈X

[

‖π(x; e1, . . . , en)‖2
]

=
∑n

i=1
λ
(C(X))
i (14)

Pearson [9] showed that the eigenvectors of the covariance matrix are precisely
the maximizers of this term, i.e. they are the solution to

arg max
e1,...,en

E
x∈X

[

‖π(x; e1, . . . , en)‖2
]

(15)

If one intended to evaluate how much of the squared norm of any point is
remaining after the projection onto k directions maximally, the answer imme-
diately follows from the sum of the k largest eigenvalues. Employing the cor-
responding eigenvectors as r̂i would then be a reasonable approach. Yet, both
eigenvectors and eigenvalues can be sensitive to noise in limited data sets [4].
They may not be an optimal choice when new and unknown data arises. We,
hence, focus on the expectation of these values for a random set of reference
points drawn from the data. More precisely we inspect

EΣ
k (X) := E

r1,...,rk∈X
∀i�=j:ri �=rj

[

E
x∈X

[

‖π(x − c; r1 − c, . . . , rn − c)‖2
]

]

(16)

As with the eigenvectors and eigenvalues of the covariance matrix, this expected
value is the sum of components introduced by each additional reference point
taken into consideration. This naturally sums up the total variance of the data
set for k = d. Through varying k we can obtain a cumulative description of how
much variance an arbitrary linear projection within the data set can explain
and the difference of neighboring values gives the amount of variance explained
at random by the k-th component. We will write this difference as Ek(X) :=
EΣ

k (X) − EΣ
k−1(X) where EΣ

0 (X) = 0. It follows that EΣ
k (X) =

∑k
i=1 Ek(X).

Practically evaluating the expected value from any data set X for any k � 1 is
infeasible, as it involves

(|X|
k

)

possible sets of reference points. It is much easier
to estimate the value by the Monte Carlo method (i.e. choosing a fixed number
of random sets of reference points) or to approximate it from the covariance
matrix if it well describes the data set’s distribution.

We will only consider the non-affine case of c = 0, as the affine case is anal-
ogous and introduces numerous subtractions hindering readability. We will also
omit the constraint that the reference points must not be linearly dependent to
improve readability. Starting from (16) we can deduce

Ek(X) = EΣ
k (X) − EΣ

k−1(X) = E
x∈X,

r1,...,rk∈X̃

[

〈

x, rk−π(rk;r1,...,rk−1)
‖rk−π(rk;r1,...,rk−1)‖

〉2
]

(17)

Here the term rk − π(rk; r1, . . . , rk−1) is the projection of rk onto the linear
subspace orthogonal to all r1, . . . , rk−1. We can represent this projection by a
matrix multiplication with a matrix, which we will call Ak−1.

= E
x∈X,

r1,...,rk∈X̃

[

〈x,Ak−1rk〉2
〈Ak−1rk,Ak−1rk〉

]

= E
x∈X,

r1,...,rk∈X̃

[

xT Ak−1rkrT
k AT

k−1

tr(Ak−1rkrT
k AT

k−1)
x

]

(18)

On Projections to Linear Subspaces 81

By rewriting rir
T
i as Ri this further simplifies to

= E
x∈X,

r1,...,rk∈X̃

[

xT Ak−1RkAT
k−1

tr(Ak−1RkAT
k−1)

x

]

(19)

= tr

(

E
r1,...,rk−1∈X̃

[

E
rk∈X

[

Ak−1RkAT
k−1

tr(Ak−1RkAT
k−1)

]]

E
x∈X

[

xxT
]

)

(20)

By replacing Ex∈X

[

xxT
]

with the covariance matrix C(X) and renaming the
innermost expected value to Ck(X) we then obtain

= E
r1,...,rk−1∈X̃

[tr (Ck(X)C(X))] (21)

A0 is the identity matrix Id, as the linear subspace orthogonal to an empty set
of vectors is the entire space. Consequentially, we can define Ak recursively as

Ak = Ak−1 − Ak−1RkAT
k−1

tr(Ak−1RkAT
k−1)

= Ak−1 − Ak−1RkAk−1
tr(Ak−1RkAk−1)

(22)

As all Ri are symmetric, all Ai are symmetric as well. The expected value
over rk of Ak−1RkAk−1

tr(Ak−1RkAk−1)
now (approximately) equals the covariance matrix of

X after being projected to the linear subspace orthogonal to r1, . . . , rk−1 and
normalized. It follows immediately that C1(X)= C(˜X) and thereby E1(X) =
tr (C(˜X)C(X)). However, Ek(X) for k > 1 is much less easily defined because
the Ai are dependent on the effective values of all rj , j ≤ i, and not only on ri.
To circumvent the problem we assume that all Ai are aggregate matrices just like
C(X) and sufficiently independent of each other to evaluate the Ck(X) recur-
sively. To highlight this assumption we will denote the approximated Ai as a
function of X as Ai(X). We further assume that all Ai(X), Ci(X), and C(X)
admit the same eigenvectors, whereby

Ek(X) = E
r1,...,rk−1∈X̃

[tr (Ck(X)C(X))] =
∑d

i=1
λ
(Ck(X))
i λ

(C(X))
i (23)

We will hereafter omit the (X) in superscripts of eigenvalues for readability.
Although the resulting values are no longer exact due to these two assumptions,
they allow us to approximate the expected value by deriving the value of λ

(Ck)
i .

Assuming that X is multivariate normally distributed, we can extract this value
from the definition of Ck(X) using the corresponding eigenvector ei:

λ
(Ck)
i = eT

i Ck(X)ei = tr
(

eie
T
i Ck(X)

)

(24)

= E
rk∈X

[

rT
k Ak−1(X)eie

T
i Ak−1(X)rk

rT
k Ak−1(X)2rk

]

(25)

= E
rk∈N0d,Id

[

rT
k C(X)

1/2Ak−1(X)eie
T
i Ak−1(X)C(X)

1/2rk

rT
k C(X)1/2Ak−1(X)2C(X)1/2rk

]

(26)

= E
rk∈N0d,Id

[

rT
k eie

T
i C(X)Ak−1(X)2rk

rT
k C(X)Ak−1(X)2rk

]

(27)

82 E. Thordsen and E. Schubert

We now substitute C(X)Ak−1(X)2 with Dk−1(X) which entails λ
(C)
j

(

λ
(Ak−1)
j

)2

is equal to λ
(Dk−1)
j . In favor of brevity we will omit the exponent (Dk−1) from

here on. As per Proposition 2 in Kan and Bao [2], λ
(Ck)
i then equals

=
∫ ∞

0

tr
(

eie
T
i Dk−1(X)(Id + 2tDk−1(X))−1

)

|Id + 2tDk−1(X)|1/2 dt (28)

=
∫ ∞

0

λi

(1 + 2tλi)
1/2 ∏d

j=1 (1 + 2tλj)
1/2

dt (29)

This integral is closely related to elliptic integrals and we do not provide a
simple and closed-form solution. Solving the integral numerically would again
involve too much computational effort. We instead propose to substitute the λj

in the denominator with (λ2
i

∏d
j=1 λj)

1/(d+2) whereby the integral takes the form
of a scaled beta prime distribution:

λ
(Ck)
i ≈ λiB(α, β)

∫ ∞

0

tα−1
(

1+2(λ2
i

∏d
j=1 λj)

1
d+2 t

)−α−β

B(α,β) dt (30)

where α = 1, β = d
2 , and B(α, β) is the beta function. The integral over the

scaled beta distribution is known to equal the scaling factor, whereby

λ
(Ck)
i ≈ λiB(α,β)

2(λ2
i

∏d
j=1 λj)

1
d+2

∝ λ
d

d+2
i (31)

As the λ
(Ck)
i are eigenvalues of a normalized distribution, their sum must equal 1.

Using this constraint, we can drop all factors independent of λi and derive

λ
(Ck)
i ≈ λ

d
d+2
i

/

∑d

j=1
λ

d
d+2
j (32)

As the λj are dependent on λ
(C)
j and λ

(Ak−1)
j , this leads to the recursive definition

λ
(Ck)
i ≈

(

λ
(C)
i

(

λ
(Ak−1)
i

)2) d
d+2

∑d
j=1

(

λ
(C)
j

(

λ
(Ak−1)
j

)2) d
d+2

λ
(Ak)
i ≈ λ

(Ak−1)
i − λ

(Ck−1)
i (33)

This recursion terminates at λ
(A0)
i = 1 and λ

(C0)
i = 0. These approximations

can be computed efficiently in Θ(dk) and inserted in (23) to give an approxima-
tion of Ek(X). Since the approximations are based on the assumption that X
is distributed according to some multivariate normal distribution they need not
be accurate. Since all occurrences of any rk in the formulae involve some sort
of normalization, this approximation extends to any distribution of X for which
{C(X)−1/2x | x ∈ X} is spherically symmetrically distributed, which includes
cases like, e.g., d-balls. We also did not compensate for the requirement that
all rk must be pairwise different, as these arguments are based on distributions
rather than point sets. In empirical tests the sample size, however, did not con-
tribute to approximation quality. The biggest issue with this approximation is
the fact, that while the Ai as variables in r1 through ri must have eigenvalues in

On Projections to Linear Subspaces 83

{0, 1}, the approximated eigenvalues λ
(Ak)
i can become negative whereby latter

Ek can be vastly overestimated. As we know that the EΣ
k (X) must sum to the

total variance of X, we propose to cut off any excess in EΣ
k (X) and determine

the Ek(X) based on these cut values. To summarize, the approximation proceeds
as follows: For all 1≤k≤d compute the λ

(Ck)
i values using the recursive formula-

tions (33). Use these values to compute Ei(X) values and reduce Ei(X) values
for larger k to not have their sum exceed the total variance of X, which com-
pensates for negative λ

(Ak)
i . Even though this approximation from a theoretical

point makes the wrong assumptions that the rk are pairwise different and that
the Ci(X) are statistically independent, the approximation in our experiments
gave close enough results to have it worth considering, especially as the exact
computation of values has an enormous computational cost. The approximation
via the Monte Carlo method is known to converge on the exact values, yet, might
require enormous samples.

While (23) requires the covariance matrix of a mean-centered data set, the
approach via Monte Carlo sampling applies directly to inner product values and,
hence, to kernel spaces. The approximation in (23) can then be used in black-
box optimization to obtain an approximate spectral analysis of the kernel space.
The obtained spectrum is neglecting the scale of the eigenvalues of the covari-
ance matrix as the Ei(X) are invariant under the scaling of these values. In this
manner, we can perform approximate spectral analysis even in spaces that do
not allow for a direct approach, such as the RBF kernel space which has infinitely
many dimensions. Naturally, the method must be applied in a truncated fash-
ion for infinite dimensions, for which we here propose two solutions: Firstly,
one can estimate E1(X) through Ek(X) for some fixed k using the Monte Carlo
method and rescale these values to sum to 1. This implies neglecting the remain-
ing d−k dimensions and assuming the data to have 0 variance along with these
directions. The d−k smallest eigenvalues of the covariance of such a data set
must then be 0, too. Finding any set of k eigenvalues that leads to these E1(X)
through Ek(X) values then solves the truncated case. Secondly, one can assume
that the remaining variance not explained by EΣ

k (X) is distributed over the
remaining d−k values according to some user-defined distribution. Assuming a
uniform distribution, for example, would explain the remaining variance as noise
in the embedding space which might be a reasonable assumption.

A special case can further be made on the evaluation of Ek(X) values on
normalized data. When working on ˜X instead of X, which can be achieved in
kernel space by dividing the occurrences of x in the formulae by 〈x, x〉1/2, we
immediately obtain that E1(˜X) equals the sum of squared eigenvalues of C(˜X).
While this equality does not hold for the approximation via eigenvalues of C(˜X),
it is approximately obtained from the Monte Carlo method or precisely for an
exhaustive evaluation of E1(˜X). Just as the constraint of the sum of eigenvalues
of C(˜X) equalling 1, this additional constraint can be used in the black-box opti-
mization for retrieving the original eigenvalues from Ek(˜X) values. Using (31),
these eigenvalues can be approximately translated into the relative eigenvalues
of the non-normalized data whenever the data can be assumed to obey the dis-
tributional constraints of the approximation.

84 E. Thordsen and E. Schubert

4 Random Projections and ID Estimation

As stated in the previous section, E1(˜X) equals the sum of squared eigenvalues of
C(˜X). The reciprocal of this specific value has been introduced as an estimator
for intrinsic dimensionality named ABID [13], that is

IDABID(X) = E1(˜X)−1 = EΣ
1 (˜X)−1 (34)

For one, this observation adds additional semantics to the meaning of ABID as
the number of basis vectors of a random projection to fully explain the vari-
ance in a data set. Yet, it also implies the applicability of the Ek values in the
realm of ID estimation. Although E1 gives the part of total variance a random
projection based on in-distribution basis vectors can explain, not all Ek val-
ues are necessarily equal. That is, the projection onto two random directions
does not necessarily cover twice the variance covered by projecting onto one
random direction. This linearity is exclusively true for spherically symmetrical
distributions such as d-balls and for all other distributions we would certainly
expect EΣ

2 (X) < 2EΣ
1 (X). Ultimately, we are looking for the smallest k such

that EΣ
k (X) ≥ tr (C(X)), that is, the number of random projections required to

explain the entire variance of X. Unfortunately, we only have formulae for inte-
ger k but we can generalize the approach of ABID in the sense of extrapolating
from a fixed Ek which results in a parameterized ID estimator which we name
the Thresholded Random In-distribution Projections (TRIP) Estimator:

IDTRIP(X, k, η) = k +
(1 − η) tr (C(X)) − EΣ

k (X)
Ek(X)

(35)

where k is the number of considered projections and η ∈ [0, 1] is a fraction
describing how much of the variance we attribute to noise. Semantically this
answers the question “How many random projections are required to explain
(1−η) of the total variance if every further projection covers as much variance
as the last one?”. In the linear case of spherically symmetrical distributions
as above, this estimator is ideally constant for η = 0 and all 1 ≤ k ≤ d. On
other distributions with η = 0, we would expect a curve that starts at (approx-
imately, dependent on implementation) IDABID(X) for k = 1 and approaches k
for increasing k as the Ei(X) are monotonically falling. Equality is likely only
reached for k = d, as this requires zero variance after k projections, which is
unlikely in presence of high-dimensional noise. The factor η is intended to com-
pensate for this. For η > 0, the curve again starts at approximately IDABID(X),
approaches k, and after some k drops below it. As for parameter choice, η is
application dependent whereas k can either be chosen empirically, or we can
inspect values 1 ≤ k ≤ d to find the k at which IDTRIP(X, k, η) is closest to k.
The latter is likely not feasible in a local ID fashion when using the Monte Carlo
or exhaustive methods but can be done when using the approximation intro-
duced in Sect. 3. When using a fixed k, obtaining an ID below this k is a strong
indicator of having chosen k too large. In addition, the curve of IDTRIP(X, k, η)
over varying k, just like the curve of Ei(X), gives insights into the local dis-
tribution characteristics of the data set that goes beyond ID estimation. These

On Projections to Linear Subspaces 85

curves can theoretically help distinguish different subspaces, even when they
share similar local ID.

Referring back to the discussions of indexing with linear projections in
Sect. 2, we can now state a clear connection between indexing with random
in-distribution pivots and intrinsic dimensionality measures. The EΣ

k (X) values
answer how much variance on average is covered by a set of k random pivots. The
expected covered variance is – in an idealized case of, e.g., uniformly distributed
hyperballs – reciprocally related to intrinsic dimensionality. This is most explic-
itly stated in the relation to ABID and gives rise to the TRIP estimator above.
Using this geometric concept of ID estimation, we can argue on an on-average
appropriate number of pivots in spatial indexing. In Sect. 2 we observed that
the eligible search space for range queries when using k pivots is the sumset of
a (d − 1 − k)-sphere and an ε-ball. The radius of the hypersphere is equal to
the norm of the component orthogonal to all pivots, and roughly describes how
close the bounds derived in Sect. 2 are to the true distances. But there is a clear
limit as to how much precision one needs in a finite data set. If this radius drops
below the distance between nearest points, removing this slack from the distance
estimates does not improve the discriminability. By choosing η = δ2/ tr (C(X))
where δ is the, e.g., mean/median/p-percentile of nearest neighbor distances,
we can use the TRIP estimator to evaluate just how many random projections
exhaust the discriminative potential of pivoted indexing on average.

5 Pivot Filtering Linear Scan

For quality evaluation of the bounds as well as to validate the theoretical claims,
we embed the bounds in a simple and easy-to-implement index. During the ini-
tialization, we choose k random pivots. As mentioned in Sect. 2, we pre-compute
all parts of the equations that are independent of query points such as 〈x, r̂i〉
or the denominators in (4). Range and n-nearest neighbor queries were then
implemented according to Algorithms 1 and 2. The algorithms are quite similar
to LAESA [7] but do not require aggregation of multiple bounds as discussed in
Sect. 2. Both algorithms are at least linear in |X|, which should be accounted for
when comparing the performance with tree-based indices. Integrating the bounds
into a tree-based index is a nearby extension but out of the scope of this paper.
Both Algorithms 1 and 2 are trivially adaptable to search for the largest instead
of the smallest distances. This index is also trivially adaptable to work on inner
products instead of distances by exchanging the bounds. For our experiments,
we implemented the index in the Rust language and called the functions from
a Python wrapper to compare them to the cKDTree and BallTree implementa-
tions of SciPy [15]. The source code is publicly available at https://github.com/
eth42/pfls. Using this very simple index we investigated the theoretical claims
and the quality of the bounds. Figure 2 displays the results of applying the index
to the MNIST training data set. All queries were 100-nearest-neighbor queries
for 1000 query points drawn from the same data set. We performed 100 queries
for each set of parameters and instantiated a new index for each query. As seen

https://github.com/eth42/pfls
https://github.com/eth42/pfls

86 E. Thordsen and E. Schubert

Algorithm 1 n-nearest neighbor query for distances
function query(y ∈ R

d, n ≥ 1)
ls ← lower bounds of d(x, y) for all x ∈ X as per (6) and (10)
h ← empty max heap
sort X by ascending ls[x]
for x ∈ X do

if |h| < n or (ls[x] < h.max.key and d(x, y) < h.max.key) then
push x onto h with key d(x, y)
if |h| > n then remove entry with largest key from h
else if ls[x] ≥ h.max.key then break

return h as array/list

Algorithm 2 range query for distances
function query-range(y ∈ R

d, ε ∈ R)
ls, hs ← lower and upper bounds of d(x, y) for all x ∈ X as per (6) and (10)
v ← empty list
for x ∈ X do

if ls[x] < ε and (hs[x] < ε or d(x, y) < ε) then Push x into v

return v

in Fig. 2a, the number of distance computations initially drops exponentially as
we increase the number of pivots, which supports the theoretical claim that each
pivot effectively eliminates one dimension from the data set and reduces the
remaining search space exponentially. For increasing k, the descent in distance
computations diminishes as the bounds become tight enough to sufficiently dis-
criminate on neighboring points, and the query time eventually increases due to
the cost of computing the bounds. In Sect. 4, we argued that the bounds only
need to be as tight as to differentiate between nearest neighbors. To validate this
claim, we investigated the IDTRIP values using an η equal to the 10-percentile
of squared 1-nearest-neighbor distances divided by the total variance of the dis-
tribution. The smallest k for which IDTRIP(X, k, η) ≤ k is around 150 as can
be seen in Fig. 2c. The minimum computation time in Fig. 2b is around 100
but the query time at k = 150 is not that much larger than at k = 100. The
exact percentile is an educated guess and could be supported by inspecting the
histogram of nearest-neighbor distances. Yet, the region of k that provides low
query times is wide enough that rough estimates and educated guesses are likely
to give good results. We conclude that IDTRIP can be used to estimate a proper
value for k by deriving η from a percentile of 1-nearest neighbor distances. To
estimate a proper k efficiently, the approximation introduced in Sect. 3 can be
used, which practically is sufficiently similar to the values obtained from Monte
Carlo sampling as displayed in Fig. 2c. Lastly, we compared query times on HSV
color histograms of the ALOI data set with varying numbers of dimensions [12].
The considered variants consist of 110250 instances with 27, 126, and 350 dimen-
sions, respectively. As can be seen in Fig. 3 the query performance of our index is

On Projections to Linear Subspaces 87

0 50 100 150 200

5

1M
2

5

10M
2

5

k

D
is

t.
 C

om
p.

 (
qu

er
y)

(a) Distance comp.

0 50 100 150 200
9

10

2

3
4
5
6
7
89

100

k

Q
ue

ry
 t

im
e

[s
]

BallTree cKDTree PFLS (Ours)

(b) Computation times

0 50 100 150 200
0

50

100

150

200 Monte Carlo
Approximation

k

TR
IP

(c) IDTRIP with η > 0

Fig. 2. Experimental results on varying numbers of pivots. Additional pivots exponen-
tially reduce the distance computations, but the query time stagnates once the average
discriminative power of the bounds has been exploited. A suitable number of pivots is
suggested at the crossing point of IDTRIP with the diagonal. Lines are average values,
shaded area indicates the minimum and maximum.

(a) 3× 3× 3 dim. (b) 14× 3× 3 dim. (c) 14× 5× 5 dim.

Fig. 3. Query times for ALOI color histograms with varying dimensionality.

mostly unaffected by increasing dimensionality. Due to our index using a linear
scan, the tree-based reference implementations were faster on low dimensional-
ity. For sufficiently high dimensional or small enough data sets, our index can
outperform these reference implementations. For larger data sets, extending the
approach to a tree-based structure appears promising.

6 Conclusion

In this paper, we introduced new bounds for Euclidean distances and inner prod-
ucts using a pivot-based approach. We showed that these bounds generalize the
well-known bounds based on the triangle inequality. We argued why an increased
number of pivots exponentially reduces the eligible search space of certain queries
and derived an approach to estimate a reasonable number of pivots for practical
purposes. We further showed how this number of pivots is intimately related
to intrinsic dimensionality estimation. Lastly, we implemented the bounds in a
simple and easily reproducible index that operates on both inner products and
their induced distances and allows queries for the smallest and largest values.
The empirical data presented aligns with the theoretical considerations and high-
lights the qualitative performance of implementing the bounds. Further research

88 E. Thordsen and E. Schubert

should be invested in integrating these bounds into more sophisticated indices
or constructing a tree-based index using these bounds.

References

1. Achtert, E., Böhm, C., Kriegel, H., Kröger, P., Zimek, A.: Robust, complete, and
efficient correlation clustering. In: SIAM International Conference on Data Mining
(SDM), pp. 413–418 (2007). https://doi.org/10.1137/1.9781611972771.37

2. Bao, Y., Kan, R.: On the moments of ratios of quadratic forms in normal random
variables. J. Multivar. Anal. 117, 229–245 (2013). https://doi.org/10.1016/j.jmva.
2013.03.002

3. Chávez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering
permutations. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1647–1658 (2008).
https://doi.org/10.1109/TPAMI.2007.70815

4. Everson, R.M., Roberts, S.J.: Inferring the eigenvalues of covariance matrices from
limited, noisy data. IEEE Trans. Signal Process. 48(7), 2083–2091 (2000). https://
doi.org/10.1109/78.847792

5. Fukunaga, K., Olsen, D.R.: An algorithm for finding intrinsic dimensionality of
data. IEEE Trans. Comput. 20(2), 176–183 (1971). https://doi.org/10.1109/T-C.
1971.223208

6. Houle, M.E., Kawarabayashi, K.: The effect of random projection on local intrinsic
dimensionality. In: Reyes, N., et al. (eds.) SISAP 2021. LNCS, vol. 13058, pp.
201–214. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89657-7 16

7. Micó, L., Oncina, J., Vidal, E.: A new version of the nearest-neighbour approxi-
mating and eliminating search algorithm (AESA) with linear preprocessing time
and memory requirements. Pattern Recognit. Lett. 15(1), 9–17 (1994). https://
doi.org/10.1016/0167-8655(94)90095-7

8. Omohundro, S.M.: Five Balltree Construction Algorithms. International Computer
Science Institute Berkeley, Berkeley (1989)

9. Pearson, K.: On lines and planes of closest fit to systems of points in space. London,
Edinb. Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

10. Schubert, E.: A triangle inequality for cosine similarity. In: Reyes, N., et al. (eds.)
SISAP 2021. LNCS, vol. 13058, pp. 32–44. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-89657-7 3

11. Schubert, E., Lang, A., Feher, G.: Accelerating spherical k -means. In: Reyes, N.,
et al. (eds.) SISAP 2021. LNCS, vol. 13058, pp. 217–231. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-89657-7 17

12. Schubert, E., Zimek, A.: ELKI multi-view clustering data sets based on the Ams-
terdam library of object images (ALOI). Zenodo (2010). https://doi.org/10.5281/
zenodo.6355684

13. Thordsen, E., Schubert, E.: ABID: angle based intrinsic dimensionality. In: Satoh,
S., et al. (eds.) SISAP 2020. LNCS, vol. 12440, pp. 218–232. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-60936-8 17

14. Vadicamo, L., Gennaro, C., Amato, G.: On generalizing permutation-based repre-
sentations for approximate search. In: Reyes, N., et al. (eds.) SISAP 2021. LNCS,
vol. 13058, pp. 66–80. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
89657-7 6

15. Virtanen, P., et al.: SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nat. Methods, 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-
0686-2

https://doi.org/10.1137/1.9781611972771.37
https://doi.org/10.1016/j.jmva.2013.03.002
https://doi.org/10.1016/j.jmva.2013.03.002
https://doi.org/10.1109/TPAMI.2007.70815
https://doi.org/10.1109/78.847792
https://doi.org/10.1109/78.847792
https://doi.org/10.1109/T-C.1971.223208
https://doi.org/10.1109/T-C.1971.223208
https://doi.org/10.1007/978-3-030-89657-7_16
https://doi.org/10.1016/0167-8655(94)90095-7
https://doi.org/10.1016/0167-8655(94)90095-7
https://doi.org/10.1007/978-3-030-89657-7_3
https://doi.org/10.1007/978-3-030-89657-7_3
https://doi.org/10.1007/978-3-030-89657-7_17
https://doi.org/10.5281/zenodo.6355684
https://doi.org/10.5281/zenodo.6355684
https://doi.org/10.1007/978-3-030-60936-8_17
https://doi.org/10.1007/978-3-030-89657-7_6
https://doi.org/10.1007/978-3-030-89657-7_6
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

	On Projections to Linear Subspaces
	1 Introduction
	2 Pivotal Bounds in Euclidean Spaces
	3 Expected Variance of Random Projections
	4 Random Projections and ID Estimation
	5 Pivot Filtering Linear Scan
	6 Conclusion
	References

