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Abstract. Approximate search for high-dimensional vectors is com-
monly addressed using dedicated techniques often combined with hard-
ware acceleration provided by GPUs, FPGAs, and other custom in-
memory silicon. Despite their effectiveness, harmonizing those optimized
solutions with other types of searches often poses technological diffi-
culties. For example, to implement a combined text+image multimodal
search, we are forced first to query the index of high-dimensional image
descriptors and then filter the results based on the textual query or vice
versa. This paper proposes a text surrogate technique to translate real-
valued vectors into text and index them with a standard textual search
engine such as Elasticsearch or Apache Lucene. This technique allows
us to perform approximate kNN searches of high-dimensional vectors
alongside classical full-text searches natively on a single textual search
engine, enabling multimedia queries without sacrificing scalability. Our
proposal exploits a combination of vector quantization and scalar quan-
tization. We compared our approach to the existing literature in this
field of research, demonstrating a significant improvement in performance
through preliminary experimentation.
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1 Introduction

A key aspect that determined the success of the web was undoubtedly the arrival
on the scene of search engines. Although in the beginning, the technology of the
vector space model on which they are based was not immune to problems such as
spam web pages, they were very efficient, scalable, and flexible. Not surprisingly,
it was relatively easy to enhance and integrate them with other technologies such
as hyperlink analysis (PageRank) and term proximity.

Underlying the power of search engines are inverted indexes, which in turn
exploit the sparseness of the representation of documents to be retrieved. Unfor-
tunately, artificial intelligence models produce learned vectors that are difficult
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to deal with using inverted indexes. Neural networks for image or text representa-
tions, such as GeM [14] or BERT [7] to mention a few, produce high-dimensional
dense vectors that are usually compared with the cosine similarity. This sprouted
the development of solutions to solve maximum inner product search problems
efficiently. Commonly used data structures exploit inverted indexes in combina-
tion with data partitioning techniques, such as Voronoi partition or proximity
graphs, to restrict the search to a fraction of the database. Although existing
solutions for high-dimensional vector search have proven great performance in
terms of speed and accuracy [10–12], they still have drawbacks. Their implemen-
tation is often hardwired to run on main memory as a dense vector search system
and nothing more. Most of them are not a proper database system, so multi-
modal queries such as images and text cannot be resolved. For example, search
for all images similar to a given example image and match certain tags. Other
limitations include extensive use of RAM or a lack of mature and transparent
mechanisms to ensure scalability, such as fault-tolerance or load balancing. In
contrast, NoSQL databases, such as Elasticsearch, can scale horizontally as the
data size grows.

In this work, we tackle the problem of maximum inner product search of high-
dimensional real-valued vectors using full-text search engines and Surrogate Text
Representations (STRs)—a family of transformations to encode metric data into
synthetic texts. We contextualize our work in the area of data structures for sim-
ilarity search of dense vectors in secondary memory. All data structures based
on metric spaces (such as M-Tree [6]) would be suitable in theory for this task.
However, in this work, we focus mainly on those optimized explicitly for working
with dense real-valued vectors. Many efficient vector similarity search approaches
based on data partitioning techniques (such as [10–12]) use dedicated implemen-
tations of access structures such as inverted indexes. STR-based methods, on the
other hand, rely on transformations that sparsify data and encode it as small
sets of codewords indexed on standard text engines [2,4,9]. These approaches
are successfully used to solve multimodal queries for combined text search with
image similarity [1,3].

We propose an improved approach combining Voronoi partitioning and STRs.
Specifically, we associate a posting list to each Voronoi cell and use STRs to gen-
erate the entries of each posting list. Our proposal enables the exploitation of
off-the-shelf text search engines, thus supporting combined text+image multi-
modal search that relies only on text retrieval technologies and platforms with-
out implementing dedicated access methods. Code to reproduce experiments is
available at https://github.com/fabiocarrara/str-encoders.

2 Surrogate Text Representation

As we explained in the introduction, our goal is to index and retrieve feature
vectors by leveraging commercially available search engines.

Our primary objective is to define a family of transformations that map
a feature vector into a textual representation. Of course, we also require that

https://github.com/fabiocarrara/str-encoders
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such transformations preserve the proximity relations between the data as much
as possible, i.e., maps similar feature vectors to similar textual documents. To
achieve this, we need a transformation f : Rd → N

m that maps each original
vector y into a vector y whose components are integer-valued. Indeed, the core
idea is then interpreting y as a term frequency vector with respect to a codebook
C = {τ1, . . . , τm} of m terms. The text document associated with the vector y will
be a space-separated concatenation of the codebook terms so that τi is repeated a
number of times equal to yi. We indicate with Tf,C(·) the overall transformation
from the original vectors to the text documents, which depends on both the
function f and the used codebook C. For example if f(y) = y = [2, 0, 1, 3]
and C = {“A”, “B”, “C”, “D”} then the text document associated to y will be
Tf,C(y) =“A A C D D D”. The rationale of this approach is that a full-text search
engine based on the vector space model [15] will generate a vector representation
of the text by counting the number of occurrences of the words in it, i.e., the
term frequencies (TF). Therefore, the abstract transformation f represents a
function that exactly generates the vectors that are internally represented by
the search engine in the case of the simple TF-weighting scheme.

Since this approach is based on transforming the components of a vector y
into the term frequencies of a synthetic text document, the employed transfor-
mation f should output a vector y with positive components (no search engine
admits negative TFs even though this in principle would be possible). More-
over, it should provide sparse vectors to ensure having a large number of zero
components in the TF vectors and thus a good inverted index efficiency.

These assumptions form the basis of a family of approaches based on what
is known as Surrogate Text Representation (STR) [4,9]. STR approaches dif-
fer primarily in the steps used to deal with negative values, sparsification, and
the final real-to-integer discretization. Moreover, it is worth noting that these
approaches are designed to solve Maximum Inner Product Searches, where the
cosine similarity or the inner product is used to assess the similarity of the origi-
nal feature vectors. Indeed, this similarity is approximated by the inner product
between the associated TF vectors in the vector space model employed by the
text search engine.

3 Voronoi Partitioning STR

In this work, we propose a STR technique that employs a Voronoi partitioning
of the original features space and a specific codebook for each Voronoi cell. In a
nutshell, we use a k-means data partitioning to assign feature vectors to Voronoi
cells corresponding to a set of centroids {c1, . . . , ck}, and then we use a different
STR transformation for each Voronoi cell. Specifically, we build a codebook
Ci = {τi,1, . . . , τi,m} for the i-th cell, and we transforms the vectors in that cell
using Tf,Ci

.
As space transformation f , we employed modified versions of two state-of-the-

art STR approaches: the Deep Permutation STR [2] and the Scalar Quantization
STR [4] that we briefly review below.
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Fig. 1. Overview of the proposed VP-SQ surrogate text representation method. (A)
The database is Voronoi-partitioned using k-means, and (B) elements of each partition
are encoded into sparse term-frequency vectors using a surrogate text representation
technique (SQ in this case, that produces 2d-dimensional vectors with n non-zero com-
ponents). (C) Surrogate documents are created by repeating tokens of partition-specific
codebooks. (D) Documents are indexed using a full-text search engine; all the code-
books form a vocabulary of 2kd terms, and each database element is present in exactly
n posting lists among the 2d ones related to the Voronoi cell containing the element.

Deep Permutation (DP) STR. The term frequency vector y = fDP(y) is
obtained from the original vector y by assigning an integer importance value
from 1 to n to the top-n components of y and dropping (setting to zero)
all other components. Formally, yi = max(ri − d + n, 0), where ri is the 1-
based rank of yi when sorting the components of y in ascending order (e.g.,
r = 1 for the minimum-valued component, and r = d for the maximum-valued
one), and d is the dimensionality of the vector. For example, given a real-
valued vector y = [0.5,−0.7, 2.45,−1.2], the vector with the ranks in ascend-
ing order is r = [3, 1, 4, 2], thus for n = 2, y1 = max(3 − 4 + 2, 0) = 1,
y2 = max(1 − 4 + 2, 0) = 0, and so on, finally getting fDP(y) = [1, 0, 2, 0].
This formulation was initially thought for non-negative (post-ReLU) neural net-
work activations and assigns less importance to negative values that, however,
contribute to informativeness in the general case. Thus, Amato et al. [2] proposed
to apply the Concatenated Rectified Linear Unit (CReLU) transformation [16],
which simply makes an identical copy of vector elements, negates it, concatenates
both the original vector and its negation, and then applies ReLU altogether.
Formally, y+ = CReLU(y) = ReLU([y,−y]), where the ReLU(·) = max(·, 0)
is applied element-wise. For example, given y = [0.5,−0.7, 2.49,−1.2], its
transformed version is y+ = [0.5, 0, 2.49, 0, 0, 0.7, 0, 1.2]. To avoid the imbal-
ance towards positive activations at the expense of negative ones, we use the
CReLU transformation before applying fDP. Following the previous example,
fDP(y+) = [0, 0, 2, 0, 0, 0, 0, 1] for n = 2.

Scalar Quantization (SQ) STR. The DP method transforms real-valued compo-
nents into integer-valued ones but completely disregards the value of the orig-
inal component and how much it contributes to the inner product computa-
tion. On the other hand, the SQ method can retain this information. The SQ
STR simply applies Scalar Quantization to vector components to store them
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as integers. Formally, the Scalar Quantization is a transformation of the form
z → floor(s · z), where s is a scalar scaling factor and the floor operation is
applied element-wise. As mentioned earlier, STR-based approaches must output
positive TF vectors. Nonetheless, both negative and positive elements of the
original feature vectors contribute to informativeness. The CReLU transforma-
tion is applied in the SQ approach as a first step to coping with negative values.
To avoid storing all the components, vector sparsification is achieved similarly
to DP by zeroing out the least significant components, i.e., keeping the first-n
largest components of CReLU(y). For example, for n = 2 the sparsified version
of the CReLU(y) considered above will be [0, 0, 2.49, 0, 0, 0, 0, 1.2]. Then, the
final term frequency vector is obtained after scaling and truncation (zero values
are left untouched); for s = 10, the corresponding SQ of the vector y would be
fSQ(y) = [0, 0, 24, 0, 0, 0, 0, 12].

Note that DP and SQ only differ in the definition of the function f used
to associate term frequency vectors to the original feature vectors. However,
both these approaches are limited by construction to using a codebook that
contains exactly m = 2d terms if using the CReLU, d if using the ReLU, where
d is the dimension of the original feature vectors. This means that the total
number of posting lists in the inverted index is limited by the dimensionality
d as well, which may compromise the efficiency of the search (e.g., if d is too
small compared to the size of the dataset, then the inverted index may have
few posting lists, but each contains a large fraction of the original dataset).
For example, dimensionality reduction techniques (e.g., PCA) are often used
to reduce high-dimensional vectors without a considerable loss of effectiveness.
However, we may have no advantage in using the DP and SQ STR techniques
to index and search these reduced vectors on a large scale.

We propose to use Voronoi Partitioning (VP) on top of the DP and SQ
approaches, allowing the disentanglement of the cardinality of the codebook from
d and hence the tuning of the number of posting lists. Indeed, our extension of
DP and SQ approaches, which we named VP-DP and VP-SQ, allow producing
an inverted index with m = k∗2d posting lists, where the number of partitions k
can be tuned to guarantee a higher level of efficiency. We obtain k centroids in the
original vector space using k-means clustering. Each data vector y is transformed
as Tf,Ci

(y), where i is the index of its closest centroid, Ci = {τi,1, . . . , τi,m} is a
specific codebook associated to the centroid ci, and f is either fSQ or fDP. Note
that each object will be stored in exactly n posting lists related to its closest
centroid. Figure 1 shows an example for VP-SQ.

To process a query x, we first compute its P closest centroids, ci1 , . . . , ciP ,
and then we transform the query vector into the text document obtained by con-
catenating the texts Tf,Cih

(x) for all h = 1, . . . , P . This corresponds to accessing
nP posting lists, i.e., n posting lists for the P Voronoi cells closest to the query.
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4 Experiments

(a) GloVe (100 dims)

(b) NYTimes (256 dims)

Fig. 2. Time (Query per seconds, left column, top-right is better) and Space Efficiency
(n. of elements, right column, bottom-right is better) versus Effectiveness (Recall@10).
We only plot configurations belonging to the Pareto frontier.

Datasets. We adopt the GloVe-100 and NYTimes-256 benchmarks for maximum
inner product search prepared by Aumüller et al. [5] for a preliminary evaluation
of the proposed methods. GloVe-100 [13] is a collection of more than one million
100-dimensional real-valued vectors representing word embeddings learned in an
unsupervised fashion. NYTimes-256 [8] is a collection of 280k 256-dimensional
real-valued vectors containing bag-of-word-derived document representations of
NYTimes news articles. Both datasets provide a set of 10k test queries and the
corresponding 100 nearest neighbors for each query. We normalize all vectors to
the unitary L2 norm to implement the intended scoring function (cosine simi-
larity) as the inner product between vectors.

Tested Configurations. We encoded all vectors (data and queries) using DP,
SQ, VP-DP, and VP-SQ, obtaining surrogate term-frequencies vectors as sparse
integer matrices. For VP-SQ and VP-DP, we vary the number of k-means cen-
troids k ∈ {128, 256, 512, 1024, 2048, 4096, 8192} and the number of voronoi cells
accessed at query-time P ∈ {1, 2, 5, 10, 25, 50}. For SQ and VP-SQ, we use a
scalar quantization factor s = 105. For all methods, we vary the number of kept
elements n for each vector from 1% to 100% of the original vector dimensionality
d. For simplicity, we skip the configurations providing a query throughput lower
than ten queries per second (query time > 100 ms).
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Implementation Details. We perform experiments on a Ubuntu 20.04 server
with Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz and 64GB of RAM. To
isolate the evaluation of our proposal from the specifics of a particular textual
search engine, we simulated the full-text search on surrogate texts by using SciPy
sparse matrix multiplication on encoded vectors. This is only possible as long
as all encoded vectors fit in RAM; despite being feasible given the scale of these
preliminary benchmarks and our hardware, we suggest using fully-featured disk-
based textual search engines, such as Elasticsearch or Apache Solr, to implement
larger-scale and more efficient searches. The results of our simulated search can
be interpreted as lower bounds to search and storage efficiency that can be
boosted using dedicated software.

Results and Discussion. Figure 2 reports the query times (as the number of
queries per second, left column) and index storage occupation (as the number of
non-zero elements of encoded vectors, right column) as a function of the search
effectiveness measured by the Recall@10. For each method, we report only the
configurations that belong to the Pareto frontier. We note that VP-SQ domi-
nates the other methods in the time-effectiveness trade-off. Both VP methods
improve on their non-VP variants, with VP-SQ deriving a more significant bene-
fit than VP-DP. Concerning the space-effectiveness trade-off, we observe a slight
improvement of VP-SQ with respect to non-VP methods in the NYTimes bench-
mark for low recall regimes, whereas VP-DP usually needs more space to reach
higher recalls.

5 Conclusions

In this paper, we proposed a new method for out-of-core similarity search of
dense vectors. We mainly target those who need to scale over large amounts of
data using an integrated search framework based on a standard search engine.
Compared to the state of the art, we improved the performance of surrogate
text-based techniques that had the major limitation of working with codebooks
constrained by the dimensionality of the dense vectors to be searched.

A key aspect of our approach entails the combination of vector partitioning
technique with existing approaches allowing us to expand the codebook used for
indexing and thus better fine-tune performance. In the near future, we plan to
try to improve our technique by using artificial intelligence-based approaches to
learn vector sparsification without sacrificing too much search accuracy.
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B., et al. (eds.) MMM 2022. LNCS, vol. 13142, pp. 543–548. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-98355-0 52

4. Amato, G., Carrara, F., Falchi, F., Gennaro, C., Vadicamo, L.: Large-scale
instance-level image retrieval. Inf. Process. Manage. 57(6), 102100 (2020)

5. Aumüller, M., Bernhardsson, E., Faithfull, A.: ANN-benchmarks: a benchmarking
tool for approximate nearest neighbor algorithms. Inf. Syst. 87, 101374 (2020)

6. Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity
search in metric spaces. In: Vldb, vol. 97, pp. 426–435 (1997)

7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol. 1 (Long and Short Papers), pp.
4171–4186 (2019)

8. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

9. Gennaro, C., Amato, G., Bolettieri, P., Savino, P.: An approach to content-based
image retrieval based on the Lucene search engine library. In: Lalmas, M., Jose,
J., Rauber, A., Sebastiani, F., Frommholz, I. (eds.) ECDL 2010. LNCS, vol. 6273,
pp. 55–66. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15464-
5 8

10. Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor
search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2010)

11. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE
Trans. Big Data 7(3), 535–547 (2019)

12. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs. IEEE Trans. Pattern Anal.
Mach. Intell. 42(4), 824–836 (2018)

13. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP), pp.
1532–1543 (2014)

14. Revaud, J., Almazan, J., Rezende, R., de Souza, C.: Learning with average preci-
sion: training image retrieval with a listwise loss. In: International Conference on
Computer Vision, pp. 5106–5115. IEEE (2019)

15. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-
Hill Inc, New York (1986)

16. Shang, W., Sohn, K., Almeida, D., Lee, H.: Understanding and improving convo-
lutional neural networks via concatenated rectified linear units. In: Proceedings of
the 33rd International Conference on Machine Learning. ICML 2016, vol. 48, pp.
2217–2225. JMLR.org (2016)

https://doi.org/10.1007/978-3-030-98355-0_52
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-642-15464-5_8
https://doi.org/10.1007/978-3-642-15464-5_8

	Approximate Nearest Neighbor Search on Standard Search Engines
	1 Introduction
	2 Surrogate Text Representation
	3 Voronoi Partitioning STR
	4 Experiments
	5 Conclusions
	References




