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Abstract. Given a finite dataset in a metric space, we investigate the
definition of a representative sample. Such a definition is important in
data analysis strategies to seed algorithms (such as k-means) and for
pivot-based data indexing techniques. We discuss the geometrical and
statistical facets of such a definition.

We propose the Hubness Half Space Partitioning (HubHSP) strat-
egy as an effective sampling heuristic that combines both geometric and
statistical constraints. We show that the HubHSP sampling strategy is
sound and stable in non-uniform high-dimensional regimes and compares
favorably with classical sampling techniques.

Keywords: Dataset sampling · Pivot-based indexing · Local intrinsic
dimensionality · Hubness half space partitioning

1 Introduction

Given a dataset in a metric space, the selection of a representative subset of
the dataset is a common operation in data analysis or for data indexing. It is
well known that obtaining a decent approximation of cluster centers prior to
running a clustering algorithm such as k-means improves not only the speed of
convergence but also the quality of the final result [2].

Pivot-based exact and approximate indexing techniques are based on the
prior selection of a pivot set which is used in two main mechanisms. Defining
pivots as landmarks in the metric space allows to precompute and store distance
values from all data to this set and use this information along with the triangle
inequality to build an exclusion criterion [5].

Pivots may also be used as landmarks to represent the data in permutation-
based indexing strategies. The query locates data in its neighborhood by acti-
vating pivots and selecting data with similar activation. In both cases the idea
is to restrict the number of data for which the exact distance computation is
performed [1,3,10]

In the parallel field of data visualization of large data (outside the scope of
this paper) the smart sub-sampling of the dataset into a reduced representative
subset ensures smooth and accurate display.
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In this paper, we first study the approaches for data sampling and the possible
constraints that can be set, namely statistical or geometrical. We then propose
the Hubness Half Space Partitioning (HubHSP) that builds on the Half Space
Partitioning (HSP [4]) to construct a data selector that effectively combines such
geometrical and statistical constraints.

We demonstrate empirically the validity and stability of our proposal in var-
ious experimental conditions.

2 Dataset Sampling Strategies

Given a N -sized dataset X = {xi}i∈[[N ]] of Ω ⊆ R
D, classical data sampling

strategies are generally either based on statistical or geometric constraints.

2.1 Density-Based Sampling

One natural way to approach dataset re-sampling is from a statistical perspec-
tive. Here, the dataset X is supposed to be a N -sized i.i.d sample of a probability
density function (pdf) fX . In other words, {xi}i∈[[N ]] is one realization of a set
of N independent random variables {Xi}i∈[[N ]] identically distributed according
to this pdf (Xi ∼ fX , i ∈ [[N ]]).

Re-sampling dataset X into subset Y = {yj}j∈[[n]] with n ≤ N therefore
amounts to make a selection Y ⊆ X of n data from X into Y. In this case a
subset of indices ij ∈ [[N ]] is chosen so that yj = xij∀j ∈ [[n]]. As shown below, a
uniform sampling of indices from within [[N ]] guarantees that Y is also a sample
of pdf fX (i.e. fY = fX ).

Representation Properties. Maintaining the probability density function of
a sample has specific implications. Statistically, a high value of the pdf at a
location x ∈ Ω makes the likelihood of a sample at this location P(Xi = x)
accordingly high.

Conversely, a crude empirical estimate of the value of the pdf at location
x, f̂X (x) is given by the density of samples from X around x. Classically, the
density is defined as the number of objects of interest per unit of volume. Hence,
we can define

f̂X (x) =
|X ∩ B(x, ρ)|
vol(B(x, ρ))

for some small ρ > 0

where we consider the ball B(x, ρ) = {y ∈ Ω || d(x, y) ≤ ρ} as a unit volume.
In practice, we only have access to the data from X . Hence the estimate is only
non-zero when the ball B(x, ρ)) contains data samples. As a result, we are led
to using the k nearest neighbors of x from X (Vk

X (x)) to estimate the density:

f̂X (x) =
k

vol(Vk
X (x))

for some k > 0 (1)



166 S. Marchand-Maillet and E. Chávez

Note that following the above, the volume vol(Vk
X (x)) can be the volume of

the enclosing ball (vol(Vk
X (x)) = vol(B(x, ρ)) with ρ the distance to the kth

neighbor).
This view justifies that f̂X (x) = f̂Y(x) as follows [11]:

Let P(xj ∈ Vk
X (xi)) = pj|i

then P(xj ∈ Vk
Y(xi)) = P(xj ∈ Vk

X (xi), xj ∈ Y) ⊥⊥= pj|i P(xj ∈ Y).
If we sample uniformly n indices j ∈ [[N ]] then P(xj ∈ Y) = n

N . As a
result, P(xj ∈ Vk

Y(xi)) ∝ pj|i and the normalization ensures that f̂X and f̂Y
are estimates of the same original density fX . 	


This also pinpoints the fact that since Y ⊆ X preserves the original density
fX then X can be uniformly partitioned into equivalence classes whose repre-
sentative centers are points xj ∈ Y and the respective radii depend on the local
density.

From (1), for a fixed k, f̂X varies according to the value of vol(Vk
X (x)). The

larger the volume is required to hold the kNN, the lower the density. Hence,
based on kNN, the radii of Dirichlet domains1 in X centered at Y adapt to
the local density. In that respect, density-based sampling corresponds to nearest
neighbor queries with fixed k (i.e. kNN queries).

The direct implication of the above properties is that, if an indexing technique
uses the above-defined Y as representative (pivot) set, then the inverted lists Lj

associated with pivots xj and defined by2

Lj = {xi ∈ X | d(xi, xj) ≤ d(xi, xk) ∀xk ∈ Y}

are of constant size (EI |Lj | � N/n). Such a strategy is therefore profitable for
indexing where obtaining short inverted lists is desirable for performance and a
uniform partition of X into inverted lists guarantees this minimum.

However, preserving the density of representative samples and therefore cre-
ating a non-uniform geometrical partition of the data space is adverse at time
of (geometrically) locating the query with respect to the dataset. At the time
of locating the query, the relevance of a pivot xj ∈ Y is related to its covering
radius (e.g. vol(B(xj , ρ)).

Further, given a fixed representation budget of pivots, the highest value for
the lower bound for the distance from any query to any pivot is given by a
geometrically uniform partition of the space. Emphasizing geometry (rather than
density) therefore supports a more robust exclusion mechanism. For the same
reason, it is also known that permutation-based indexing schemes that locate
data by pivot activation benefit from a uniform partition of the data space by
pivots [1].

1 A Dirichlet domain is the generalization of a Voronoi region for high-dimensional
spaces. Here, we look at subsets of data from X closer to a given point in Y than to
any other point in Y.

2 Here, we allow xj ∈ Lj since generically Y ⊆ X .
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2.2 Geometry-Based Sampling

We therefore investigate the construction of a set of representatives Y based on
geometric constraints. Dataset X is typically embedded into a domain Ω ⊂ R

D

that can be sampled using a D-dimensional regular lattice. Should any element
from X fall into a simplex from the lattice, the center of that simplex (or the
closest data from X ) may be taken as a representative. Basic examples of such a
sampling include regular quantization of the coordinates of the original domain,
or after applying some analysis such as PCA to discover (and potentially deci-
mate) uncorrelated coordinates.

Representation Properties. Such a sampling strategy offers the advantage
that the representative set Y lies close to a regular lattice and this regular
structure may be exploited by the indexing.

To ensure geometric representation properties for X , the criterion can be
expressed as “Y covers uniformly the convex hull of X”, where the covering can
be quantified by the k-center criterion:

Y = argmin
S⊂X
|S|=k

max
x∈X

d(x,S)

where, d(x,S) = minx′∈S d(x, x′). It is ensuring that data in X is never far from
a sample in Y. This is equivalent to minimizing the diameter of the Dirichlet
domains built from Y of size k in X . In that respect, geometric sampling cor-
responds to nearest neighbor queries with fixed range ε (i.e. range queries to
uncover the εNN ). In that case, pivots are associated to a fixed covering radius
and inverted lists have lengths adapting to the local density.

3 Homogeneous Space Partitioning

3.1 Half Space Partitioning

In [7,9], we demonstrated that the local degree of the neighborhood graph built
using the Half Space Partitioning (HSP) strategy [4] is an accurate proxy for the
measurement of local intrinsic dimensionality. This is an important property for
designing a geometrically efficient sampling strategy.

Algorithm 1 recalls the construction of the HSP, illustrated for the 2D case in
Fig. 1. The HSP strategy partitions the hypersphere around every xi into cones
(see green dashed lines). In the HSP graph, each data point is connected (red
edge) with its HSP neighbors and their mutual arrangement and the relationship
with the Kissing number correlates their degree with the local dimensionality of
the data [9]. Note that there is no upper bound for the distance value from xi

to the next selected HSP neighbor.
The construction of the HSP graph is highly parallel since the neighborhood

of every point is computed independently of the rest. While this is a clear com-
putational benefit and makes the HSP graph reproducible however the dataset
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xi

xj

xk

Fig. 1. HSP construction and discarding strategy. The (red) center data xi chooses its
closest (green) neighbor xj as HSP neighbor and discards all data closer to xj than to
itself (shaded half-space). xk will be selected as next closest neighbor (as symbolized
by the dashed circle) and the next half-space (below the blue dashed line) discarded,
until no neighbor of xi remains (Color figure online)

Algorithm 1. HSP graph construction
1: procedure HSP(X ) � Half-space partitioning
2: for every point xi ∈ X do
3: while not all data in X is discarded do
4: Select the next nearest neighbor xj ∈ X not already discarded
5: Add xj as HSP-neighbor of xi

6: Discard any data xk from X that is closer to xj than to xi

is given, it makes the structure of the HSP graph unpredictable, apart from its
properties arising from sphere packing.

In particular, no control is applied over the indegree of every node (the num-
ber of edges pointing to every node). As a result, there is no guarantee for a
strong overlap of the HSP neighborhoods of 2 close points. Further, the specific
structure of the HSP graph is sensitive to any data perturbation that would flip
the order in which data appears as nearest neighbors of each other. In a setting
where we use a point neighborhood as its representative, we would rather like
to introduce correlation between neighborhoods of close points so as to:

– ensure that 2 close points share representatives (geometric consistency)
– obtain a compact, stable and sound representative sample of the data (sta-

tistical consistency)
– minimize the overall number of representatives

Here, we propose the “Hubness-HSP” (HubHSP for short) as a graph spanner
over X supporting the selection of a representative set Y. We first propose the
rationale for its construction and then derive the actual construction algorithm.
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We finally study and experimentally investigate the properties of the resulting
HubHSP spanner for dataset sampling.

We wish to define the HubHSP as a structure that supports the selection
of a representative set, while maintaining the favorable geometric properties of
the HSP: xj being selected as a neighbor of xi means that xj represents the
vicinity of xi and we wish to concentrate this representation into a given budget
of representatives Y. The base adaptation is therefore to install a control over
the indegree of the nodes in the HubHSP. By enforcing nodes with high indegree,
we create “centrality hubs3” that can be used to define representatives Y from
the full set X .

We therefore define a “hubness factor” hj at every node xj , which corresponds
to its indegree during construction. Hence

∑
j hj = N and the challenge is to

allocate hj values so as to obtain concentrated hubs.
We build the graph following the aggregative compounding principle (see

Fig. 2): a new data is matched with its HubHSP neighbors (line 9 in Algorithm
2) according to the HSP geometry while maintaining the most concentrated
hubness by privileging existing hubs. Hence, at an intermediate stage, a data
xi is connected to the strongest current hub xj from within its vicinity, and
activates the HSP half-plane point discarding strategy.

Algorithm 2. Hubness HSP graph construction
1: procedure HubHSP(X )
2: hi ← 0 ∀i � Initialize hubness to 0
3: Q. push(xstart) � Initialize Q with xstart

4: while Q is not empty do
5: xi ← Q. pop() � Next data point in the chain
6: Q. push(V(xi)) � Next data to consider in the chain
7: Ci is the circle centered at xi through its closest neighbor
8: while not all data in X is discarded do
9: Select the neighbor xj of xi with maximum current hubness

10: Add xj as HSP-neighbor of xi

11: hj ← hj + 1 � Increase hubness of xj

12: x̃j ← ProjCi
(xj) � Project xj onto Ci

13: Discard any data xl from X that is closer to x̃j than to xi

We comment the main lines of Algorithm 2:

– Line 9: the current data xi inspects a given vicinity V(xi) (e.g. its 100-
NN neighborhood) and finds the data xj of current maximal hubness hj =
maxxk∈V(xi) hk.

– Lines 10–11: xj is added as neighbor to xi by creating an edge (xi, xj) and
therefore increasing the hubness (indegree) hj of xj .

3 Here, centrality relates mainly to notion of degree centrality.
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– Line 12: The natural distance-based selection in the HSP guarantees geomet-
rical consistency [4]. This is not used anymore and to restore consistency,
selected neighbors are projected onto the sphere Ci centered at xi and con-
taining the closest neighbor of xi (blue circle in Fig. 2). In practice, this is
done by proper normalization of vector [xi, xj ] into vector [xi, x̃j ] (see Annex).

xi

xj

x̃j = ProjCi
(xj)

xk

x̃k

Ci

Fig. 2. HubHSP construction and discarding strategy. The current (red) center data xi

chooses its (green) neighbor xj of highest hubness (size of the data point) as HubHSP
neighbor from its vicinity V(xi) (red dashed circle). It projects this data onto x̃j on the
largest empty circle (blue circle) and discards all data closest to x̃j than to itself (shaded
half-space). xk will then be selected as next non-discarded neighbor of highest hubness
and the next half-space (left to the blue dashed line, bisector of [xi, x̃k]) discarded,
until no neighbor of xi remains non-discarded (Color figure online)

The main practical adaptations from the HSP construction strategy are:

1. data is selected by decreasing hubness rather than increasing distance
2. because of 1. above, the selection of neighbors for xi (line 4 in Algorithm 1)

has to happen within the pre-defined vicinity V(xi)
3. because of 1. above, to maintain geometric consistency, points are projected

onto a sphere of minimal radius around xi before selection
4. since we now create a chain during the construction of the HubHSP (using

Q), a starting point has to be defined.
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The first and main benefit of this adaptation is the creation of a hubness index hj

per datum (node in the HubHSP graph). The hubness index hj is the indegree of
node xj in the HubHSP graph. hj counts how many data xi have xj as HubHSP
neighbor. A node with high hubness is therefore an interesting candidate for
the representative subset. This provides a sound and natural strategy for the
selection of Y by simply selecting nodes in decreasing order of their indegree.

As a result, the HubHSP graph combines two properties. From its inheritance
from the HSP process, the outdegree of every node reflects the local geometry
(intrinsic dimensionality) of the data [9]. Through the hubness, the indegree of
each node is now correlated with the statistical properties of the data.

Since in practice we need to define (limit) the vicinity V(xi) from where the
HubHSP neighbors are selected (line 9 in Algorithm 2), the construction of this
set impacts the resulting properties of the HubHSP graph.

– if V(xi) = Vk
X (xi), the kNN neighborhood of xi in X , the span of this set

is driven by the local density, as discussed above. Hence, the kNN-based
HubHSP graph reflects the local density of data via arc lengths, on top of
reflecting its geometry via outdegree.

– if V(xi) = Vε
X (xi), the εNN neighborhood of xi in X , the span of this set is

immune from the local density and it is the indegree of every neighbor that
reflects this density.

Hence, the HubHSP graph adds to the HSP graph the encoding of the local
density either via arc lengths (kNN) or indegree (εNN).

3.2 Complexity

The base complexity of the HubHSP construction algorithm is O(N2D). It mim-
ics that of the computation of any neighborhood graph as it is dominated by
selection of candidate neighbors (line 9 in Algorithm 2). Such a complexity may
classically be reduced by a pre-indexing of these neighborhoods. In Sect. 4, we
present results against baselines whose base complexities are of the same order.

3.3 Generic Metric Spaces

Our discussion and illustration have been concerned with metric space (Ω, d)
where Ω ⊂ R

D and d(., .) is the Euclidean distance function. All definitions
provided here rely on the existence of a proper distance function and therefore
do generalize to other metric spaces. The precise study of the properties obtained
when constructing the HubHSP in these metric spaces is out of the scope of this
paper and is left for an extension.

4 Experiments

We now experiment under various conditions and compare to relevant baselines.
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4.1 Dataset

To highlight the properties of our proposal, we use data with various properties in
terms of density and dimension D. As a base reference, we generate 2 artificial
dataset with uniform distribution U100K×2 and U100K×10, containing 100’000
data of dimension D = 2 and D = 10, respectively. Note that in this case, the
dataset of dimension 10 with 100’000 data is rather sparse.

To depart from the uniform distribution, we generate 2 dataset N 100K×2 and
N 100K×10 with the same parameters but from a centered normal distribution.
While uniformity makes the density of the data the same at every point in space,
the Normal distribution induces an exponential variation of the density across
the space.

As a more realistic dataset, we use the 500’000 first data of the ANN SIFT
(base set) benchmark [8]. In this case D = 128, inducing a very sparse set.
We also use a dataset of Flow Cytometry data containing N = 470′995 D = 18-
dimensional data. This data is known by definition to aggregate in dense localized
clusters (see Fig. 3 for a 2D glance). Its distribution is therefore far from uniform
with large unpopulated parts of the space.

In all cases, we set the size n of the sample to 1% of the original size N . We
fixed k = 1000 and ε = 20 to create the base neighborhoods (Vk

X (xi) and Vε
X (xi)

respectively) over which the HubHSP graph is built.

4.2 Baselines

Random. As discussed above, a uniform sampling of the data indices ensures the
preservation of the statistical properties (density) of the data into the sample.

Farthest First Traversal (FFT). In contrast, this geometrical strategy aims at
spreading the representative set across the dataset by approximating the k-center
problem [6]. Using this strategy it is expected that the representative samples
lie close to a regular grid.

Note that due to the concentration of distance phenomenon, this strategy
loses its rationale in high dimensions.

k-means ++ [2] adds a random component to the above FFT strategy by mak-
ing it most likely but not a strict choice, depending on the density of the data.
k-means ++ is therefore interesting since it offers theoretical bounds in rep-
resentation and mixes geometrical and statistical constraints, as we aim to do
here.

4.3 Measures and Results

We use the following measures to assess the characteristics of our proposed
sampling. Results are reported in Table 1.
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The empty sphere measure (top section) quantifies the uniformity of the sam-
pling by measuring the diameter of the largest empty sphere lying between sam-
ples. In practice it is the maximum distance between 2 neighboring samples.

Since we wish an equipartition of the space by samples, the smaller this
value is, the better the quality of the sample. We report the mean and also mea-
sure uniformity of this allocation by reporting the standard deviation (between
parenthesis).

We see that in the most basic conditions (U100K×2) all sampling strate-
gies perform similarly. When the dimension increases (e.g. U100K×10), the data
becomes sparser and geometrical techniques (such as FFT) fail. Our proposal is
able to consistently reduce the value of the measure while keeping the variance
at a comparable level.

The length of inverted lists (middle section) is an indicator of the uniformity of
the allocation of representative to the data. In practice, since we use Dirichlet
domains to define the lists, the average list length is simply the ratio between the
size of the data and the sample (EI |Lj | = N/n) so only the standard deviation
is reported. The smaller this value, the more uniform the partition is.

We clearly see the same trend of lower variance in the length of inverted lists
and therefore more stability in the allocation of representative data.

The maximum distance (bottom section) between a data and its representative
is rather based on the data. It is a geometric indicator of how well every data is
represented by the sample. Ideally, every data should find a representative in its
vicinity so again, the smaller this value is, the better. We report the mean and
also measure uniformity of this allocation by reporting the standard deviation
(between parenthesis).

This measure shows that the HubHSP hubness allocates representatives
closer to each data than other strategies. This is understood by the ability of
the HubHSP to exploit better the statistical and geometrical properties of the
data to allocate better a fixed budget of n representative data. This is made
clear in the most adverse setting of high-dimensional non-uniform data (which
corresponds to real dataset).

Figure 3 proposes a visual intuition of the allocation of representatives in low-
dimensional non-uniform data. The resulting samples (red points) are shown over
the data (green points) for all baselines and for the HubHSP. An ideal sampling
should show regularity (to avoid redundancy) and respect the data density.

Whereas random sampling (top left) is inefficient by allocating redundant
representative samples, the FFT (top right) is inefficient by being blind to the
local density. k-means ++ (lower left) proposes an adequate mix of statistical
and geometrical sampling but clearly the HubHSP (lower right) adds a form
of regularity that removes local density artifacts due to random sampling and
explains the effectiveness in terms of geometrical partitioning (Dirichlet domains)
of the data.

Finally, Fig. 4 shows an histogram of the corresponding hubness values hj .
A very large majority of these values are zero, which demonstrates the ability
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Fig. 3. Sampling strategies by the baselines and the HubHSP over a 2D slice of the
FlowCyto dataset (FlowCyto471k×2) as a low-dimensional non-uniform example. In
each scatter plot, the dataset is shown in green and selected representatives are shown
in red. [top left] Random uniform, [Top right] FFT, [Lower left] k-means ++, [Lower
right] HubHSP (ours) (Color figure online)

of the HubHSP to concentrate its indegree into only a minority of large values
(since

∑
j hj = N). This indicates that only a small percentage of data in X

then compete for entering Y.

5 Conclusion

Subsampling a finite dataset may be considered from either a statistical or geo-
metrical perspectives. Classical strategies focus on either of these. Based on the
capability of the HSP graph to correlate with the local intrinsic dimensionality
we proposed the HubHSP to generate a sound data selection criterion combining
geometrical and statistical properties.

We demonstrate the ability of the HubHSP graph construction algorithm
as a modification of the HSP graph construction to indicate a sound and stable
selection of data as representative. We compare with classical selection algorithm
and show that the HubHSP is able to create a more robust and effective sampling
by a better exploitation of geometrical constraints on top of statistical sampling.

More generally, this work relates the ability of graph spanners to mirror and
combine geometrical and statistical properties of non-uniform point clouds in
high dimensions. In [9] diffusion over neighborhood graphs was used to exhibit
that structure exploiting the link between connectivity (resp degree) and cen-
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Fig. 4. Hubness for the 2D slice of the FlowCyto dataset (FlowCyto471k×2) shown in
Fig. 2 [Lower right]. Only about 2.2% of the values are non-zero.

trality. There is much to explore in this interplay of data analysis methods and
data modeling techniques to particularize subsets of dataset.
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dation under grant number 207509 “Structural Intrinsic Dimensionality”.

Annexes

HubHSP Projection. The HSP selects its neighbors based on increasing dis-
tance after discarding half-planes. Since the neighbors selected by the HubHSP
can occur in random order of their distance values from the central point xi, it
is critical to consider them as projected over a common sphere centered at xi.

The most canonical choice is the sphere Ci including the first neighbor xl

of xi. Note ρi = d(xl, xi) its radius (the distance between xi and its closest
neighbor), then a point xj is projected as x̃j onto Ci by:

x̃j = ProjCi
(xj) = argmin

x∈Ci

d(x, xj) = xi + ρi
xj − xi

d(xj , xi)

Main Mathematical Symbols

Ω Ambient space
X , Y Main dataset, representative

set
[[N ]] Set of indices {1 · · · N}

d(., .) distance function
B(x, ρ) Ball centered at x of radius

ρ
ProjC(x) Projection of x onto C

fX True pdf of the dataset
f̂X Empirical density of the

dataset
Vk

X (x) k-closest neighbors of x in X
Vε

X (x) ε-neighbors of x (= B(x, ε)∩
X )

Lj Inverted list for xj

EI X Expectation of variable X
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