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Preface

This volume contains the papers presented at the 15th International Conference on Sim-
ilarity Search and Applications (SISAP 2022) held in Bologna during October 5–7,
2022. The conference was hosted by the University of Bologna and marked the return
of SISAP as a hybrid event, after the two previous editions were held virtually due to
the COVID-19 pandemic.

Classic domains like datamining,multimedia information retrieval, computer vision,
pattern recognition, computational biology, geography, biometrics, machine learning,
and many others still require novel similarity search modeling and data management
approaches. Hence, SISAP has become a popular annual international conference for
researchers focusing on similarity search challenges and related theoretical/practical
problems, as well as the design of content-based similarity search applications. Many
of the findings and projects have already been shared by the community in a gradually
growing repository, allowing effective progress in many established challenges.

Traditionally, the call for paperswelcomes full/short research papers, position papers,
and demonstration papers, all presenting previously unpublished research contributions.
SISAP 2022 also included the fourth edition of the SISAP Doctoral Symposium, allow-
ing presentation of novel works of PhD students and productive interaction of young
researchers with the international community.

This year, SISAP received 34 submissions from authors based in 18 different coun-
tries. The Program Committee (PC) was composed of 41 members from 16 countries.
Each submission received three reviews, and the papers and reviews were thoroughly
discussed by the chairs and PC members. Based on the reviews and discussions, the PC
chairs accepted 15 full papers and eight short/demo papers, resulting in an acceptance
rate of 48% for the full papers and a cumulative acceptance rate of 74% for full and
short papers. After a separate review by the Doctoral Symposium Program Committee
members, two Doctoral Symposium papers (out of three submitted manuscripts) were
accepted for presentation and included in the program and proceedings.

The proceedings of SISAP are published by Springer in this volume in the Lecture
Notes in Computer Science (LNCS) series. For SISAP 2022, as in previous years, there
were also awards for the Best Paper, Best Student Paper, and Best Doctoral Symposium
Paper, as judged by the PC chairs and the Steering Committee. The authors of selected
excellent papers (based on reviews and presentation) were invited to submit more elab-
orate versions for publication in a special issue of the Information Systems (Elsevier)
journal.

We would like to thank all members of the Program Committee for their effort and
energy given to the conference. Next, we want to acknowledge our gratitude to the
members of the organizing committee for the vast amount of work they have done, and
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to our sponsors and supporters for their generosity. Finally, we thank all the participants
in the event who constitute the unique SISAP community.

August 2022 Tomáš Skopal
Fabrizio Falchi
Jakub Lokoč

Maria Luisa Sapino
Ilaria Bartolini
Marco Patella
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Numerical Data Imputation: Choose kNN
over Deep Learning

Florian Lalande(B) and Kenji Doya

Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son,
Okinawa, Japan

florian.lalande@oist.jp

Abstract. Artificial neural networks (ANNs) are now ubiquitous in data
science. In this respect, Deep-Learning (DL) methods have been devel-
oped to address missing data problems. The present study compares
state-of-the-art DL Generative Adversarial Network (GAN) models with
the well-established kNN algorithm (1951) for numerical data imputa-
tion. Using real-world and generated datasets in various missing data
scenarios, we show that the good old kNN algorithm is still competi-
tive with powerful DL algorithms for numerical data imputation. This
review consolidates the emerging consensus that numerical data impu-
tation does not necessarily require powerful or heavy DL tools.

Keywords: Data imputation · Deep learning · GAN · KNN

1 Introduction

Missing values is a serious issue in data science. Incomplete datasets result from
uncollected, lost, censured or corrupted observations. Most machine learning
(ML) algorithms cannot handle datasets with missing entries, and meticulous
data preprocessing is therefore needed. The standard list-wise deletion (keeping
only complete entries) has two main disadvantages: it greatly reduces the size of
the dataset and induces a bias, which may lead to false positive claims [11]1.

Data imputation is an alternative preprocessing method involving estimation
and replacement of the missing values. It allows to preserve the whole dataset
for analysis but requires careful handling as it can also introduce a bias in the
imputed dataset [6].

Many data imputation algorithms have been proposed: Mean-value substi-
tution [10], C4.5 algorithm [15], CN2 induction algorithm [3], kNN (originally
developed in 1951 [5], later adapted to data imputation [17]) or MissForest [16].
The kNN has shown best imputation quality among these various data imputa-
tion algorithms [1,2,8,9,14].
1 Full code available at: https://github.com/DeltaFloflo/imputation comparison.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-17849-8 1.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Skopal et al. (Eds.): SISAP 2022, LNCS 13590, pp. 3–10, 2022.
https://doi.org/10.1007/978-3-031-17849-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17849-8_1&domain=pdf
http://orcid.org/0000-0001-6676-1484
http://orcid.org/0000-0002-2446-6820
https://github.com/DeltaFloflo/imputation_comparison
https://doi.org/10.1007/978-3-031-17849-8_1
https://doi.org/10.1007/978-3-031-17849-8_1
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But over the last decade, ANNs and DL have transformed the fields of statis-
tics, computer science and data analysis. Notably, GANs have shown spectacular
results at generating new observations from a given data distribution [7]. As such,
GAN models have been developed to tackle the problem of missing values in data
science. GAIN [18] and MisGAN [12] are two new GAN-based data imputation
methods. While GAIN has been specifically developed for numerical data impu-
tation, MisGAN is primarily designed to impute degraded images but can be
adapted to work with tabular numerical data.

This work intends to compare data imputation performances of state-of-the-
art GAN models (GAIN and MisGAN) with the standard and already estab-
lished k-Nearest Neighbors algorithm (kNN). We evaluate the imputation qual-
ity in MCAR, MAR and MNAR scenarios (Sect. 2.1). This study is restricted
to tabular numerical data, that is numerical data we can arrange into rows and
columns in the form of a table with cells.

2 Data Imputation Setup

2.1 Missing Data Settings

Let x denote the complete vector of a given observation and m its missing
value binary mask. Available data is the element-wise product x̃ = x�m. Data
imputation methods seek to estimate the missing values of x̃ by using patterns
in the observed values. The probability distribution of m is referred to as the
missing data mechanism.

Following the classification of Little and Rubin [13], missing data setups
belong to one of the following three settings. Missing Completely At Ran-
dom (MCAR), where the missing data mechanism is assumed to be inde-
pendent of the intrinsic probability distribution of x, and occurs completely
at random, such that p(m|x) = p(m). Missing At Random (MAR), where
the missing data mechanism can be fully explained by the observed data, i.e.
p(m|x) = p(m|x̃). Finally, Missing Not At Random (MNAR) which encom-
passes every other setting: the reason why data is missing depends on unobserved
variables.

2.2 Data Imputation Algorithms

Generative Adversarial Imputation Nets (GAIN) have been proposed
in 2018 as a GAN model specifically designed for numerical data imputation
problems. GAIN generalizes the well-established architecture of GAN models by
looking at individual cells rather than complete rows. The authors report state-
of-the art imputation quality performances [18]. GAIN’s parameters are updated
to minimize the binary cross-entropy loss function for the discriminator on one
hand, and a combination of the binary cross-entropy (for the generated cells)
and the RMSE for the discriminator on the other.

MisGAN has been introduced in 2019 as another GAN model framework
capable of handling complex datasets with missing values. Primarily developed
for image completion, it can be adapted to handle numerical data. MisGAN
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claims state-of-the-art imputation quality for images [12]. MisGAN has three
pairs of generator and discriminator. A first pair (Gx,Dx) attempts to model
the probability distribution of the data, while another pair (Gm,Dm) tries to
model the missing data mechanism. Both generators Gx and Gm are used in
parallel to produce fake deteriorated observations. Finally, a third pair (Gi,Di)
is used to perform the imputation of missing values. When adapted to tabular
data, the missing data mechanism has a multinomial distribution and does not
require DL to be modeled. Instead, we choose to draw missing masks directly
from the dataset distribution.

Finally, the k-Nearest Neighbors (kNN) algorithm is a non-parametric
method, originally developed for classification in 1951 [5]. For data imputation
tasks, the kNN algorithm selects the k nearest neighbors of a given incomplete
observation, and uses available data from the selected neighbors to estimate miss-
ing values [17]. Despite its simplicity and its age, the kNN algorithm has been
shown to outperform traditional data imputation algorithms [1,2,8,9,14]. The
kNN imputes missing values using a weighted average of the selected neighbors.
The most two common weighting systems are uniform and distance, respec-
tively defined by 1

k (where k is the number of neighbors) and 1
dij

(where dij is the
distance between observations i and j. We respectively refer to these algorithms
with the names kNN-uniform and kNN-distance.

2.3 Datasets

Seven real-world (from UCI ML Repository [4]) and two simulated datasets are
used. For reproducibility, we use the same datasets used by authors of GAIN [18].
Two additional datasets have been selected: white wine and red wine datasets.
We have also generated two Gaussian datasets, using random factors to create
correlations. An extensive description of the datasets at play is provided in the
Supplementary Materials. Table 1 shows the size of the nine datasets.

3 Methods

We begin by finding the appropriate hyperparameters for each method – the
number of training epochs for GAIN and MisGAN, and the number of neighbors
for the kNN. Then, we conduct several experiments with varying missing rates,
missing data scenarios and datasets. Throughout the following experiments, we
first inject missing values and immediately scale the datasets in the range [0, 1]
using min-max normalization. After imputation, the performances are computed
using the normalized RMSE between ground truth and imputed missing values.
Each experiment is repeated 20 times, and we report the mean and standard
deviation of the RMSE.

3.1 Hyperparameters Tuning

We use the generated mixture of three Gaussians dataset (mydata2 dataset) in
MCAR scenario with 20% missing rate to select the optimal hyperparameters.
Results are provided in Fig. 1.
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Fig. 1. Hyperparameter selection using the imputation RMSE on mydata2 dataset
in MCAR scenario with 20% missing rate. (left) For GAN models, we choose 5,000
epochs for MisGAN and 20,000 epochs for GAIN. (right) For the KNN algorithms,
the optimal number of neighbors lies close to N = 50 neighbors.

For GAIN and MisGAN, we use from 1, 000 to 20, 000 epochs and choose
the number of epochs that minimizes the imputation RMSE: approximately
20, 000 epochs for GAIN and 5, 000 epochs for MisGAN (see left panel of Fig. 1).
MisGAN becomes unstable after 7, 000 epochs. As the RMSE of GAIN keeps
decreasing, we train for more epochs (from 10, 000 to 100, 000 by steps of 10, 000
epochs) and found no improvement beyond 20, 000 epochs. We decide to fix the
hyperparameter of GAIN at 20, 000 epochs.

For the kNN, we select k = 50 neighbors to minimize the imputation RMSE
for both weight systems (see right panel of Fig. 1).

As these hyperparameters strongly depend on the dataset size and have been
tuned on a dataset with 1, 000 observations, we apply a multiplicative factor to
preserve similar proportions f = n

1000 for the following experiments, where n is
the number of rows in the corresponding dataset. The number of training epochs
accordingly becomes 5000

f for MisGAN and 20000
f for GAIN, and the number of

neighbors is 50f for both kNN algorithms.

3.2 Imputation Experiment Designs

The following experiments are conducted 20. The mean and standard deviation
of the imputation RMSE are provided in the next section.

1. Varying missing rate in MCAR setting from 10% to 80% (by steps of 10%)
with the generated mixture of three Gaussians dataset

2. Real-world datasets in MCAR setting with 20% missing rate
3. All datasets in MAR setting, with overall 20% and 45% missing rates
4. All datasets in MNAR setting, with overall 20% and 45% missing rates

To generate MAR missing values, we subjectively select a column that we
keep untouched throughout the full MAR experiment. We compute the quantiles
of the selected column, scale the quantiles between 0 and 2µ (where µ is the
overall missing rate) and interpret these values as common missing rates for all
other columns. The selected variable for each dataset along with its meaning are
reported in Table 1.
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Table 1. List of the selected variables for MAR settings. Dataset sizes are also provided
as well as the column number of the variable used to generate MAR missing data.

Dataset name Size MAR column Meaning

breast (569, 30) 0 Mean cell radius

credit (30000, 14) 1 Customer age

letter (20000, 16) 4 Total number of black pixels

news (39644, 44) 0 Number of words in the title

spam (4601, 57) 54 Average length of uppercase letter

wine red (1599, 12) 0 Fixed acidity

wine white (4898, 12) 0 Fixed acidity

mydata1 (1000, 5) 0 No meaning

mydata2 (1000, 5) 0 No meaning

To generate MNAR missing values, we compute the quantiles for every indi-
vidual column (in the same way as MAR setting) which we scale in the interval
[0, 2µ]. We interpret these values as the missing probability for every corre-
sponding cell. In MNAR settings, the higher the value of a cell relatively to its
column, the more likely it will be missing.

4 Results and Interpretation

4.1 Varying Missing Rate in MCAR Setting

The imputation results are shown on the left panel of Fig. 2. As the RMSE for
MisGAN is comparatively large, we only display the results of GAIN and kNN
for clarity. We do not show the results of MisGAN for now on. Full results are
available in the Supplementary Materials. Not surprisingly, the performances of
GAIN and kNN deteriorate with increasing missing rates. GAIN and both kNN
algorithms have comparable performances against varying missing rates.

4.2 Real-World Datasets in MCAR Setting

The right panel of Fig. 2 shows the imputation results, for this experiment. We
see that both kNN algorithms perform better than GAIN over all available
datasets. Note that we could not reproduce GAIN performances results.

From now, we also do not report the RMSE for the news dataset since the per-
formances have huge standard deviations regardless of the imputation method.
This arises because of the nature of the news dataset: extremely sparse with few
extreme outliers. The supplementary Materials provide full results.
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Fig. 2. MCAR scenario experiments. (left) Imputation RMSE for the mixture of 3
Gaussians dataset with varying missing rates. (right) Imputation RMSE for all real-
world datasets (except the news dataset).

4.3 MAR Experiments

This paragraph refers to Fig. 3. With a missing rate of 20% in MAR setting,
both kNN algorithms overall perform slightly better than GAIN. With a miss-
ing rate of 45%, the overall imputation quality deteriorates and the performances
of GAIN, kNN-uniform and kNN-distance are now on par, with sometimes one
method significantly performing better. Note that the trends and orders of mag-
nitude do not change across datasets when the missing rate increases (from the
left panel to the right).

Fig. 3. MAR scenario experiments for all datasets. (left) MAR setting with average
missing rate of 20%. (right) MAR setting with average missing rate of 45%.
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4.4 MNAR Experiments

There is no clear best imputation method anymore in MNAR setting with a
missing rate of 20%, c.f. Fig. 4. The RMSE is below 0.15 and close to the RMSE
in MAR setting. With a missing rate of 45%, the RMSE becomes even larger
than with the MAR experiments. GAIN now performs better than kNN.

Fig. 4. MNAR scenario for all datasets. (left) MNAR setting with average missing
rate of 20%. (right) MNAR setting with average missing rate of 45%.

5 Conclusion

The framework of MisGAN (initially designed to impute missing rectangular
pixel blocs in images) do not adapt well for tabular data imputation, with large
confidence intervals in its predictions. GAIN, which has been developed for tab-
ular data imputation, shows good imputation quality especially in MNAR set-
tings with high missing rates. DL architectures can learn complex relationships
between variables, which can explain the good performances of GAIN in MAR
and MNAR settings. But as a GAN model, training GAIN can be challenging
and time consuming (see Supplementary Materials for quantitative results on
training time).

The kNN shows competitive results in the face of DL models in spite of
its simplicity and its age. This review reinforces previous results that massive
DL algorithms do not necessary perform better for numerical data imputation
[1,2,8,9,14]. It also appears that the imputation quality of an algorithm depends
on the dataset itself rather than on the missing data mechanism per se: see the
breast dataset where the kNN systematically performs better than GAIN, and
mydata2 (mixture of three Gaussian dataset) where GAIN performs better than
kNN most of the time.

For its simplicity, its deterministic output (hence unambiguous reproducibil-
ity), and its low computational resources, we recommend to use the kNN for
tabular data imputation when possible.
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Abstract. To alleviate the scarcity of manually annotated data in
Named Entity Recognition (NER) tasks, data augmentation methods
can be applied to automatically generate labeled data and improve per-
formance of existing methods. However, based on manipulations of the
input text, current techniques may generate too many noisy and misla-
beled samples. In this paper we propose COntext SImilarity-based data
augmentation for NER (COSINER), a method for NER data augmenta-
tion based on context similarity, i.e. we replace entity mentions with the
most plausible ones based on the available training data and the con-
texts in which entities usually appear. We conduct experiments on pop-
ular benchmark datasets, showing that our method outperforms current
baselines in various few-shot scenarios, where training data is assumed
to be strongly limited. Experimental results show that not only does
COSINER overcome baselines in terms of NER performances in highly-
limited scenarios (2%, 5%), but also its computing times are comparable
to simplest augmentation methods.

Keywords: Named Entity Recognition · Data augmentation ·
Similarity learning · Few shot learning

1 Introduction

Named Entity Recognition (NER) aims to identify and extract entities of
interest—e.g. diseases, chemical agents and genes in medicine—from unstruc-
tured text data. It is the first and fundamental step of many downstream appli-
cations, such as Q/A agents and knowledge graphs building.

Training NER models usually requires large amounts of manually annotated
data to be used as the ground truth reference, but a high-quality annotation
process is time-consuming and expensive, particularly in specialized domains
such as legal, historical, or biomedical where domain knowledge is needed.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Skopal et al. (Eds.): SISAP 2022, LNCS 13590, pp. 11–24, 2022.
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As a consequence, it is rare that the budget required to make domain experts
annotate large quantities of data is available. Furthermore, domain experts in
specialized areas are often not readily available due to the specialization required
for their work and the important commitments that keep them busy. For these
reasons, current literature has and continues to explore few-shot learning, which
consists in novel ways to deal with data and models to work in scenarios with
limited training datasets.

One common way to deal with the lack of data is data augmentation, which
consists in increasing the size of the available dataset with new samples gen-
erated by means of heuristics or external data sources. Augmentation methods
explored in current literature for natural language processing (NLP) tasks usu-
ally manipulate words in the original sentence by word replacement [1], random
deletion [2], word position swap [3] and generative models [4]. Applying these
transformations to NER input samples is not possible due to the token-level clas-
sification implied by this task (each manipulation impacts labels). Thus, data
augmentation techniques for NER are comparatively less studied [5].

Despite the promising results of data augmentation, currently proposed data
manipulation methods may often generate too many noisy and mislabeled sam-
ples, since new data may be syntactically and/or semantically incorrect.

To alleviate this issue, we propose a COntext SImilarity-based data augmen-
tation for NER (COSINER) approach which exploits similarity metrics for the
generation of augmented examples so as to create sentences which are as plausi-
ble as possible in a real context. Specifically, we define a context-based mention
replacement augmentation technique which replaces mentions appearing in the
input data with mentions in an Entity Lexicon which are likely to appear in the
same context. In Fig. 1 we show an augmentation example for an input sentence.

Fig. 1. Example of NER data augmentation for an input sample. The mention
“Breast cancer” is replaced with mentions from the Entity Lexicon, which is ordered
based on a context-based similarity metric
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We run extensive experiments on three benchmark datasets popular in the
biomedical field to assess the performance of our methods. Specifically, we com-
pare COSINER with a set of baselines from current literature and show that
exploiting similarity to perform data augmentation leads to higher performance.
The chosen domain (i.e., biomedical) is one in which usually there are few data,
however our methodology is general and can be applied to any application con-
cerning NER. We also show that the performance obtained with COSINER is due
to the first-ranked samples, and thus we do not need huge augmented datasets
to improve results, which is a benefit in terms of computing time.

2 Related Work and Theoretical Background

In this section, we examine related work and provide the theoretical background
needed to properly understand the key concepts of our methodology. In particu-
lar, in Sect. 2.1 an overview of the Named Entity Recognition (NER) task is first
given, then an in-depth examination of few-shot learning methods is reported in
Sect. 2.2. Finally in Sect. 2.3 we focus on data augmentation and its applications
on NER.

2.1 Named Entity Recognition

Named Entity Recognition (NER) task falls in the area of Natural Language
Processing (NLP), which is a branch of Artificial Intelligence (AI) focusing on
the understanding and processing of natural language with the aim to complete
a wide variety of tasks, such as sentiment analysis, text classification, machine
translation, and so on.

NER is the first and fundamental task of many applications, such as knowl-
edge graph construction [6], scientific discovery [7], machine translation [8] and
question answering [9]. It is the task of identifying mentions of entities from
unstructured text and classifying their type (e.g. person, organization, disease,
drug).

Formally, the input to a NER model is a sequence of tokens x =
[x1, x2, . . . , xT ] of length T , while the output is a paired sequence of categor-
ical values y = [y1, y2, . . . , yT ], yi ∈ Y indicating the entity type of each token.
NER datasets are collections of pair-wise data D = {(xn,yn)}N

n=1, N being the
number of examples.

Several annotation schemes exist to associate labels to input tokens so as
to individuate entity mentions [10]. Since it is the most widespread in few-shot
NER applications, in this work we will refer to the IOB2 scheme, i.e. we map
each token to its corresponding label which may refer to the beginning, inside or
outside of an entity mention. An example is shown in Fig. 2.

2.2 Few-Shot Learning

Real-world applications often require large amounts of annotated data to reach
comparable results to the current literature. Unfortunately, the annotation pro-
cess is time-consuming and highly expensive, especially in specific fields where
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Fig. 2. Example of NER. Tagging with IOB2 format with 2 entity types (Disease
and Symptom)

domain knowledge is required to produce high-quality datasets. Furthermore,
merging together different datasets has revealed to be unfruitful due to inconsis-
tencies between the different annotation criteria between datasets, even if they
refer to the same context [11]. It is thus necessary to deal with few-shot learning
scenarios, where training data are extremely limited.

Meta learning [12] and transfer learning [13] are training paradigms allowing
model parameters to easily adapt to new tasks, domain or languages. Active
learning [14] aims to select the most informative examples from an unsupervised
data source to be annotated, so as to get the best possible results from model
training. Distant supervision [15] and self learning [16] leverage unsupervised
data sources to increase the size of the training set by using heuristics or the
model itself to annotate examples.

In this work, differently from other approaches, we will increment the size
of the training corpus by relying just on the available data, by performing text
manipulation on input samples.

2.3 Text Data Augmentation

Data augmentation methods based on manipulation of the available corpus have
been deeply explored in tasks for sentence-level classification [2,3], but they are
still understudied for token-level classification tasks, where NER lies. Recent
work shows that data augmentation for NER is a promising research field [5,
17]. Techniques described as follows and exemplified in Table 1 are available in
current literature [5]:

– Mention Replacement (MR): one entity mention from an input sample is
randomly replaced with another mention from the original training set.

– Label-wise token replacement (LwTR): each token from an input sample is
randomly replaced (with a certain probability) with any other word with the
same label within the training dataset.

– Synonym replacement (SR): each word from the input sample is randomly
replaced with a synonym, which could be retrieved by using WordNet [18].

However, the improvements brought by data augmentation techniques dras-
tically decrease in few-shot scenarios [19]. This is due to the fact that these
methods may produce a high quantity of noisy data since text manipulation
could generate grammatically and semantically incorrect samples, and the prob-
lem is exacerbated when the size of augmented data prevails the original corpus.
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Table 1. NER data augmentation examples. Disease entity mentions are in italic, while
manipulated tokens are bolded (they may overlap).

Method Example

Input example Breast cancer can occur in both women and men

MR Diabetes can occur in both women and men

LwTR Breast cancer can complain in both women and men

SR Breast tumor can occur in both women and men

To handle this issue, the pillar idea behind our framework is to generate plausible
augmented samples by employing a similarity-based approach.

To the best of our knowledge, this is the first work to analyze context-based
similarity for data augmentation. Specifically, we manipulate input samples by
replacing entity mentions with similar mentions both syntactically and seman-
tically, i.e. the mentions are likely to appear in the same contexts.

3 COSINER Methodology

In a nutshell, COSINER exploits mention replacement to augment the original
training set. Proposed and studied by Dai et al. [5], this technique consists in
selecting with a binomial distribution the entities of interest within the sentences
of the dataset to replace with another randomly-selected entity of the same
dataset. However, the randomness of this approach leads to the generation of
many noisy or even mislabeled samples which could negatively affect model
performance. Hence, we employ a similarity-based methodological flow to replace
the entity mention with its most similar entities in terms of syntax, semantic
and context. An overview of the proposed methodological flow is shown in Fig. 3
and all the steps are described in the following.

Lexicon Generation. In order to replace mentions, each concept (entity men-
tion) involved in the training set must be collected. A concept may be composed
of a single or multiple words and the number of its occurrences in the training
set Cconcept is also stored. Lexicon will include a variable amount of entities
depending on the number of mentions within the dataset. Note that the exe-
cution time of the similarity values between entity pairs is heavily affected by
the size of the Lexicon. However, in this work we ignore this problem since we
run our experiments in few-shot scenarios, where the available corpus is limited,
thus resulting in small Lexicons.

Embeddings Extraction. To compute similarity between entities of our
dataset we need a numerical representation Vconcept of all the concepts within
the Lexicon. To accomplish this objective, we use a pre-trained language model
[20,21] as a feature extractor. For each mention in the Lexicon, the feature
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Information retrieval

Lexicon
Lexicon generation

Training set

Training set (augmentable sentences)

Training set (augmentable sentences)

Training set

Validation and test sets

Dataset Embeddings
Embeddings

extraction Similarity 
lists

Similarity calculation Augmented set
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Augmented
training set

+

Training model
(NER) Results

Fig. 3. COSINER methodological flow (rounded boxes represent steps). (1) Given
the original training set, a Lexicon with all the entities is generated, (2) then all entities
are mapped to an embedded space extracted from sentences with at least one mention.
(3) Similarity values among embedding pairs are computed so as to link each entity
to a ranked list of its most (least) similar entities. (4) The augmented training set
is thus generated. (5) Finally, a model is trained by exploiting both the original and
augmented training sets.

extractor receives as input each sentence in which that mention appears and
maps every token onto its word embedding Vcontext, i.e. an array of numerical
features that represents the token in the context where it appears. If mentions
are composed of more than one token, Vcontext is retrieved by averaging word
embeddings of all the tokens. After retrieving a Vcontext for an input sentence,
the overall numerical representation of the concept Vconcept is updated as follows:

Vconcept = Vconcept + lr · (1 − sim) · Vcontext, (1)

where lr is a regularization term defined by the reciprocal of the number of times
a mention appears in the whole dataset and sim is the cosine similarity between
Vconcept and Vcontext:

lr =
1

Cconcept
(2)

sim(Vconcept, Vcontext) = max(0,
Vconcept

||Vconcept|| · Vcontext

||Vcontext|| ) (3)

It is worth to note that Vconcept is initialized to the Vcontext value of the first
sentence in which the mention appears.

Similarity Computation. The cosine similarity between the embeddings
Vconcept of every pair of entities in the Lexicon is thus computed. Therefore,
a ranked-list of similarity scores zij = sim(V i

concept, V
j
concept) is linked to each

Lexicon entry. We define two ranking criteria:

– Maximum (descending order): the most similar concepts are in the first posi-
tions. In this way, we can generate plausible augmented samples to retain
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the consistence of the context provided by the sentence, thus increasing the
number of data, but remaining as close as possible to the training distribution;

– Minimum (ascending order): the least similar entities are used to go as far
as possible from the knowledge boundary in order to recognize and correctly
classify extreme cases.

Augmented Set Generation. The augmented set is generated by taking into
consideration all the sentences with at least one mention. Then, to each sentence
will be associated its own similarity value sm computed as the average of the
entity similarity scores zij of the new entities within the phrase. We define two
strategies:

– Local Augmentation: for each sentence, k new samples are generated. The
advantage of this approach is that we generate new samples for each sentence
in the original training set.

– Global Augmentation: for each sentence, k new samples are generated just like
the previous strategy. Then we rank all the new generated sentences in a
single list by their similarity value sm and select the first h element to be
used in the augmented training set. In this way, we focus on samples which
are nearer to the original training distribution, but we may prefer augmenting
some sentences w.r.t. others.

In Fig. 4 we highlight the differences between the two strategies.

NER Model Training. We refer to the IOB2 scheme [22] for NER token-
classification task, each token being thus associated to the B (beginning of an
entity mention), I (inside) or O (outside) label. The original training dataset
and the augmented samples are fed to a Transformer network backbone [20,21]
to extract the contextualized representation of each token xj in an input
sample x, z = fθPLM

(xj), θPLM being the set of PLM parameters. There-
after, a linear layer (a.k.a. classification head) with parameters θL = {W,b}
projects the Transformer-based representation z into the label space, fθL

(z) =
Softmax(Wz + b). The model parameters are then optimized by minimizing
cross-entropy.

4 Experiments

In this section, we evaluate the effectiveness and the efficiency of our method on
three popular benchmark datasets from the biomedical field. Results show that
our method surpasses selected baselines from current literature in most of the
datasets and few-shot scenarios, while guaranteeing computing times comparable
to simplest augmentation methods.
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Fig. 4. COSINER Augmentation strategies. The initial steps of the local and
global strategies are shared. First of all, k augmented sentences for each phrase with at
least one mention are generated starting from similarity lists and the training set via
Mention Replacement (MR), then the sentence similarity value sm is calculated and
assigned to each augmented example. For local strategy all the augmented examples
are used in the new training set. For the global strategy instead, a new list is created
with all the examples ordered by their sm and the first h sentences are selected for the
augmented training set.

4.1 Experimental Setup

Datasets and Few-Shot Scenarios. We train and evaluate our method on
three popular benchmark datasets annotated from biomedical articles. Details
are provided as follows:

– NCBI-Disease [23]: consists of 793 PubMed abstracts, including 6,881 disease
entity mentions;

– BC5CDR [24] consists of 1,500 PubMed articles, including 15,935 chemical
and 12,852 disease mentions. We consider only chemical mentions in our
experiments to add variety to entities, since diseases have already been used
in NCBI. Therefore our approach has been developed to be applied only to
one entity type.

– BC2GM [25] consists of 20,000 sentences from PubMed abstracts, including
20,702 gene entities.

We have established three few-shot scenarios based on the percentage of
samples from the available corpora used to apply our methods: 2%, 5% and
10%, respectively. We report all our experimental results in these three few-
shot scenarios. Statistics of the datasets and few-shot scenarios are shown in
Table 2. The experiments were carried out using a Kaggle notebook that provides
a NVIDIA Tesla P100 GPU with 16 GB of memory and 2-core of Intel Xeon
CPU with 13 GB of RAM in the configuration used.
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Table 2. Statistics of the benchmark datasets used in our experiments.

Dataset Entity type N. annotations Dataset splits Few-shot size

Train Dev Test 2% 5% 10%

NCBI-disease Disease 6881 5425 924 941 108 271 542

BC5CDR Chemical 15411 4561 4582 4798 91 228 456

BC2GM Gene 20703 12575 2520 5039 251 628 1257

Training Details. Based on previous work on few-shot learning [26], we assume
to operate in scenarios where data to tune hyperparameters are not available.
Hence, we choose hyperparameters based on previous work and practical con-
siderations. Specifically, we use a pre-trained biomedical Transformer network
[27] and train all our models for 5 epochs with a learning rate of 5 · 10−5, an
AdamW optimizer [28], a batch size of 8 and a maximum sequence length
of 512. We train each model with five different seeds and report average results
and 95% confidence intervals. We evaluate the quality of methods F1 scores
computed with the seqeval1 Python framework.

4.2 Results

Comparison with Baselines. We compare our best results2 with baselines
from the current literature [5] described as follows:

– No Augmentation: we report results obtained with the original training set.
– Mention replacement (MR): we randomly select a mention from the original

training set with the same entity type for each mention in the instance.
– Label-wise token replacement (LwTR): for each word within a sentence we

randomly chose whether or not to replace it with any other word within the
dataset which has the same label.

– Synonym replacement (SR): for each word within a sentence a binomial distri-
bution chooses whether or not to replace it with a synonym from WordNet
[18].

Examples of generated samples per baseline are shown in Table 1. For each
baseline, we generated one augmented sample per sentence (whenever possible),
thus resulting in training datasets at most twice as large as the original.

Table 3 compares F1 scores of the different baselines with our method. Results
indicate that COSINER, thanks to its effective use of context-based similarities,
surpasses baselines in most of the scenarios and datasets. The high scores of the
SR baseline prove the importance of generating plausible augmented samples

1 https://github.com/chakki-works/seqeval.
2 Our best results are obtained with the maximum similarity and local augmentation

methods for similarity and augmentation set computation, respectively. In Sect. 4.2
we compare all the different approaches.

https://github.com/chakki-works/seqeval
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when transforming input sentences. Random replacements of MR and LwTR
baselines result in too many noisy samples which, in some cases, may even
decrease the performance obtained without applying any augmentation method.

Table 3. Comparative results between the local augmentation strategy with maximum
similarity technique and baselines.

Dataset size Method NCBI-disease BC5CDR BC2GM

2% No augmentation 0.651 ± 0.122 0.792 ± 0.067 0.644 ± 0.031

MR 0.666 ± 0.084 0.813 ± 0.032 0.64 ± 0.02

LwTR 0.677 ± 0.101 0.828 ± 0.019 0.642 ± 0.037

SR 0.692 ± 0.103 0.813 ± 0.032 0.662 ±0.033

COSINER (ours) 0.692± 0.081 0.832± 0.022 0.665± 0.038

5% No augmentation 0.735 ± 0.041 0.85 ± 0.02 0.711 ± 0.012

MR 0.743 ± 0.048 0.849 ± 0.021 0.713 ± 0.006

LwTR 0.743 ± 0.072 0.86 ± 0.039 0.699 ± 0.012

SR 0.758 ± 0.044 0.858 ± 0.03 0.719 ± 0.011

COSINER (ours) 0.765± 0.035 0.863± 0.042 0.726± 0.022

10% No augmentation 0.791 ± 0.028 0.875 ± 0.013 0.759 ± 0.017

MR 0.794 ± 0.018 0.874 ± 0.034 0.754 ± 0.01

LwTR 0.789 ± 0.023 0.882 ± 0.017 0.741 ± 0.012

SR 0.803 ± 0.033 0.883± 0.018 0.763 ± 0.012

COSINER (ours) 0.816± 0.066 0.882 ±0.007 0.767± 0.023

Effects of Increasing the Augmented Set Size. When generating an aug-
mented dataset, the number of augmented samples is generally an important
parameter to consider. Hence, we experimented our method with three different
budgets for the augmented set: small (100 samples), medium (300 samples) and
large (500 samples).

Figure 5 shows the results obtained on the three benchmark datasets. As
expected, since—thanks to the similarity-based approach—the most informative
examples are in the first ranked positions, there is no big difference in using
higher budgets.

Effects of Parameters for Similarity Computation and Augmented Set
Generation. Table 4 shows results obtained with different configurations of
parameters for similarity computation (Maximum vs Minimum) and augmented
set generation (Local vs Global) discussed in Sect. 3. As expected, the use of
Maximum similarity computation leads to higher performance, since augmented
samples are plausible and thus nearer to the test distribution. However, the high
results obtained with the Minimum configuration show that sometimes it may
be beneficial to consider “distant” entities to expand the scope of action of the
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Fig. 5. Comparative results between the small, medium and large budget of local
augmentation strategy with maximum similarity technique

NER model, especially in strongly limited few-shot settings. With regards to
the augmentated set generation, Local criterion is generally better thanks to the
augmentation of all the sentences in the original dataset.

Table 4. Comparative results between COSINER techniques with their best budget.

Dataset size Similarity Strategy NCBI disease BC5CDR BC2GM

2% Maximum Global 0.688 ± 0.077 0.83 ± 0.023 0.658 ± 0.036

Minimum Global 0.683 ± 0.086 0.823 ± 0.032 0.652 ± 0.027

Maximum Local 0.689 ± 0.088 0.832± 0.022 0.665± 0.038

Minimum Local 0.692± 0.081 0.824 ± 0.015 0.659 ± 0.049

5% Maximum Global 0.765 ±0.035 0.858 ± 0.023 0.717 ± 0.007

Minimum Global 0.756 ± 0.028 0.853 ± 0.029 0.713 ± 0.009

Maximum Local 0.76 ± 0.031 0.863± 0.042 0.726± 0.022

Minimum Local 0.764 ± 0.041 0.86 ± 0.031 0.714 ± 0.007

10% Maximum Global 0.807 ± 0.038 0.88 ± 0.018 0.76 ± 0.02

Minimum Global 0.807 ± 0.029 0.873 ± 0.016 0.761 ± 0.012

Maximum Local 0.816± 0.066 0.882± 0.007 0.767± 0.023

Minimum Local 0.807 ± 0.038 0.876 ± 0.016 0.76 ± 0.009

Efficiency of Data Augmentation. We compared the execution time required
to perform data augmentation3 with the different baselines and budgets. Results
listed in Table 5 show that not only does COSINER overcome baselines in terms

3 We have not considered the execution time required to generate Lexicon and embed-
dings, since they are one-time operations that can be performed off-line.
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of NER performance in highly-limited scenarios (2%, 5%), but also its computing
times are comparable to simplest augmentation methods. However, execution
time is highly sensitive to the size of the training corpus, due to the bigger
entity Lexicon and the higher number of pairwise similarities to compute.

Table 5. Run times (s) for data augmentation with 95% confidence intervals. Com-
parison with baselines and budgets.

Dataset size Method NCBI disease BC5CDR BC2GM

2% MR 0.123 ± 0.020 0.117 ± 0.044 0.233 ± 0.040

LwTR 0.149 ± 0.067 0.141 ± 0.066 0.288 ± 0.171

SR 3.271 ± 0.670 3.322 ± 0.293 4.374 ± 0.643

COSINER (small) 0.389 ± 0.218 0.445 ± 0.192 2.859 ± 0.975

COSINER (medium) 0.44 ± 0.472 0.428 ± 0.272 2.975 ± 1.3539

COSINER (big) 0.529 ± 0.491 0.586 ± 0.202 3.415 ± 1.765

5% MR 0.212 ± 0.065 0.198 ± 0.091 0.436 ± 0.204

LwTR 0.287 ± 0.171 0.264 ± 0.111 0.656 ± 0.251

SR 3.703 ± 1.493 4.016 ± 0.893 4.494 ± 1.137

COSINER (small) 1.541 ± 1.002 1.578 ± 0.936 15.555 ± 5.233

COSINER (medium) 1.678 ± 0.811 1.601 ± 1.134 17.257 ± 7.973

COSINER (big) 1.705 ± 0.628 1.717 ± 0.496 16.711 ± 9.581

10% MR 0.329 ± 0.139 0.342 ± 0.054 0.846 ± 0.316

LwTR 0.591 ± 0.264 0.502 ± 0.145 1.206 ± 0.528

SR 4.238 ± 1.362 4.233 ± 1.174 6.069 ± 2.463

COSINER (small) 4.286 ± 1.305 4.367 ± 1.087 60.416 ± 19.012

COSINER (medium) 4.689 ± 1.601 4.553 ± 1.276 60.508 ± 31.661

COSINER (big) 4.864 ± 0.916 4.961 ± 1.841 62.386 ± 22.487

5 Conclusions

In this work, we have applied a context similarity-based methodology to generate
plausible augmented data to boost performance of NER tasks, thus reducing the
deleterious effects of noisy and mislabeled data which are often generated with
current techniques. Our experiments have revealed the appropriateness of our
method, which outperforms several baselines with comparable execution times.
In the future, this approach could be used in combination with other techniques
than Mention Replacement. Further experimentation will be done on different
application contexts and with multiple entity types.
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Abstract. Product similarity search is an important tool for e-com-
merce companies to manage their portfolios of products and to find
competitive prices on large electronic market places. The specific require-
ments for this similarity search application are (i) the similar products
should be competitive products with respect to a given query prod-
uct, (ii) related and just generally similar products should be treated
as not similar products. Thus, the similarity between products should
be learned from data. We propose to use classification models for entity
matching and image classification to learn a multi-modal model for simi-
larity search. Further, we propose a way to construct a meaningful train-
ing data set to learn the relevant similarities between product pairs.
Extensive experiments show that a transformer based language model
combined with Siamese convolutional neural networks outperform com-
petitive baseline models.

Keywords: Learned similarity · Multi-modal similarity · Transformer

1 Introduction

The burgeoning e-commerce industries purvey millions of products on the dom-
inating e-commerce platforms such as Amazon and eBay. Before introducing
a potential new product, these prospering industries carry out a competitive
market analysis to address the following questions:

1. Analyse whether the own company offers similar products.
2. Determine the similar products that are offered by the competitors.

One cannot rely on a simplistic approach: using a search engine of the market
place may turn up some similar products but would fail to provide a thorough
analysis of these products in the marketplace. Collaborative filtering [8,20] is not
applicable as the imperative user-purchase data is inadequate for the e-commerce
companies competing commercially. Hence, employing a content-based similarity
approach would help to gain better insights.
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Product 1 M. Graham Artist Oil Paint Phthalo Green 1.25oz/37ml Tube: Artist
quality oil paint made with walnut oil, solvent free / Increased pigment
loads for stronger more vibrant colors / Colors retain their clarity and
are free from the discoloration associated with drying oils / Lightfast
rating I Excellent; Slow drying time; Transparent / Made in the USA

Product 2 Winsor & Newton Winton Oil Color Paint, 37-ml Tube, Sap Green:
Winsor & Newton Winton Oil Colours are high quality yet affordable,
delivering trusted performance. / Series: 1/Color Code: 599 / Perma-
nence Rating: A - Permanent / Transparency / Opacity: T / Lightfast-
ness Rating: ASTM I - Excellent

Product 3 Uchida Marvy Deco Color Fine Point Paint Marker Art Supplies, Vio-
let: This fine point paint marker is great for writing and detail drawings
on glass, paper, wood, clay, porcelain, stone, metal and mirrors. / The
paint is opaque and xylem based. / Its oil based formula allows for a
gloss finish to any project. / It is acid free, lead free, lightfast, weather-
proof and pigmented. / Great for crafting, home and office use; available
in violet color

Fig. 1. Textual descriptions of three products: product 1 and 2 are quite similar prod-
ucts, namely spice racks, while product 3 is multi-functional turntable.

We propose to compute product similarities by first filtering unrelated prod-
ucts using general descriptions like categories. Later, the remaining set of prod-
ucts is filtered by a combination of trained classifiers. These classifiers determine
the probability of whether a particular product bears similarity to a query prod-
uct. We use a multi-modal approach consisting of two kinds of classifiers: (i)
a pretrained transformer language model that is finetuned to recognize similar
products based on textual descriptions and (ii) a Siamese neural network trained
to judge product similarity based on product images.

Product entity matching, a problem which is closely related to product simi-
larity search, has been experimentally shown to benefit from the language under-
standing capabilities of transformers to distinguish between relevant and non-
relevant parts in the textual descriptions of products [12,13]. Textual descrip-
tions of similar products often describe their identical properties using diverse
words. On the other hand, the textual descriptions of two unrelated products
share a similar narrative style with minute discrepancies. Figure 1 shows three
example products. The first two products are different brands of green oil paints
for artists. Despite the different wording in the descriptions, our used language
model classifies this pair as similar. In contrast, the third product is a pen that
can also be used by artists but has different applications. The baselines clas-
sify product pairs (1, 2) and (1, 3) as similar, while the language model classifies
those pairs as not similar. This is more meaningful in our application as product
1 and 2 are competing while product 3 has related but different use cases. These
example products demonstrate that a certain degree of language understand-
ing is required to construct a meaningful similarity measure for the analysis of
similar e-commerce products.
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In some cases, text descriptions do not fully capture the product, for instance
there is a large variety of oil paints. Images may provide an additional meaning-
ful mode of discrimination between those very similar and just remotely similar
products. In this paper, we demonstrate that images can also be employed as a
useful tool to distinguish products with misleadingly similar text descriptions,
e.g. oil paint, related products like pens or other kinds of paint. In these cases,
high text similarities could be corrected by a second model that measures simi-
larity based on the images of the products.

The two models we use for similarity calculation take pairs of product descrip-
tions as input. Given such pair of product descriptions, both models are trained
to classify the input as cases of similar and not similar pairs. We derived suit-
able training data from a public collection of product descriptions crawled from
the Amazon market place. In many cases, a product page includes beside the
textual description and images of the product a table with similar products that
is compiled by Amazon. These tables are different from other recommendations
on a product page that show related but potentially non-similar products. For
instance products that are brought frequently together with the product on the
current product page and recommendations based on browsing history. However,
not every Amazon product page contains a table of similar products. The prod-
uct pairs for training and testing data are derived from those tables of similar
products.

The model architectures we used for the classifiers are the Ditto model [12,13]
that is originally used for product entity matching based on textual descriptions.
Ditto extends a pretrained transformer language model like BERT [3,14,19] and
is trained to classify pairs of textual product descriptions. For images, we propose
to use a convolutional neural network [9] as building block in a Siamese network
[1,2]. The contributions of our paper include

– We provide a training data set for learning similarities between pairs of prod-
ucts with modern neural network architectures.

– We propose a multi-modal approach to learn similarities between commercial
products based on textual descriptions and images.

– We conduct extensive experiments and compare our approach to realistic
baselines. The experiments show that our learned similarity approach based
on language models and images outperforms competitive baselines.

– We present use case scenarios that demonstrate the applicability of our app-
roach in a setting of an e-commerce company.

The remainder of the paper is organized as follows: next, we discuss related work
in Sect. 2. In Sect. 3, we present our approach for learned similarity. Section 4
details the construction of the training data and baselines and explains the
extensive experiments and use cases. Section 5 concludes the paper.

2 Related Work

Similarity search for e-commerce products has been studied for the case that
products are described by structural data [7]. This approach employs a different
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but straight forward similarity function for each different kind of attribute like
(multi)-categorical, dimensional and numerical.

More recent research investigates entity matching, which can be seen as a spe-
cial case of product similarity search. Entity matching aims at finding all pairs of
product entities from possibly multiple sources that represent the same product.
A machine learning pipeline approach [17] works as follows: first, embeddings
for product images and text features are learned. Second, features from product
descriptions are extracted and then for each pair of products, a vector containing
similarity values is constructed by computing similarity for each feature attribute
in an analogous way as in [7]. Last, a classifier (for e.g. random forest, SVM,
naive Bayes, logistic regression) is trained using the similarity vectors of these
product pairs to identify matching products.

Different neural architectures are evaluated for product matching that have
been proposed for other matching problems in natural language processing [15].
The investigated neural network architectures include RNN, Smooth Inverse
Frequency (SIF) sentence embeddings and early attention-based approaches.
Those neural architectures already show advantages over traditional learning
approaches, especially with respect to robustness on noisy data. The best app-
roach is named DeepMatcher.

In general, entity matching is considered as a classification problem. A prod-
uct pair is input to a neural network. Standard loss functions measure model
performance on given training data and help optimize the model parameters
such that the loss function is minimized. Another option is to train a Siamese
neural network with a triplet loss function using contrastive learning. This loss
function also learns good embeddings that are comparable to those learned by
the pairwise classification approach.

Deep learning approaches such as the deep entity matching model Ditto [12,
13] use blocking and pre-trained transformers like BERT [3] or its variants [14,
19]. The blocking step efficiently filters all pairs that will not match using implicit
comparison. The remaining pairs are candidate matching pairs. Each pair is
transformed into an input sequence that is classified by a transformer neural
network as matching or not matching. This approach treats both structured and
unstructured input data as textual data and outperforms other SOTA entity
matching systems like DeepMatcher and DeepER [5]. In this paper, we utilize
Ditto model as a part of our product similarity search application.

Recently, Ditto was compared to another entity matcher called GTA [4] that
also uses transformers to compute embeddings. However, GTA is designed for
structured data and it employs a relational transformers, which is not pre-trained
for language understanding. Therefore, GTA shows better performance than
Ditto only for structured data. In our application, Ditto is preferred over GTA,
since structured data is usually not available in real-life use cases of product
similarity.

Several approaches use image data in combination with other sources to
improve product similarity search. Embeddings derived by a convolutional neural
network (CNN) could improve the performance of a model based on sentence
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embeddings for entity matching [17]. In this paper, we also investigate options
to use image data to improve product similarity search.

3 Learning Similarities for Products

The key observation for our use case of product similarity search is that simi-
larities between products may depend on subtle differences in the descriptions.
Therefore, it seems not plausible to define a similarity function without using
any data like in [7]. Instead, our approach applies binary classification models to
product pairs that proved already successful for product entity matching. But
in contrast to entity matching, we train these models on pairs of similar but
non-matching products. After training, we can use the classification probability
as a similarity score. This similarity function for ranking products is learned
from the product data.

Since the used classification models in our approach are expensive to apply
to all products in a collection, we use a blocking step first on all possible prod-
uct pairs of an e-commerce catalog. Given a query product, the blocking step
filters out all products that are not in the same category or sub-category. The
remaining products are ranked by the learned similarity function. In the fol-
lowing subsections, we briefly review the applied models and describe a way to
combine the results from models for textual descriptions of products and for
product images to a multi-modal similarity score.

3.1 Similarity of Textual Product Descriptions

A product description consists of three parts, namely the product title, a list of
product features and a short product description in form of free text. We use
the Ditto model [12,13] to compute similarities on these textual informations of
the products. Given a query product q and a product p from the collection of
products, first, the textual parts are concatenated to a single sequence of tokens.
The sequence contains the CLS-, SEP- and END-tokens that are introduced by
the general transformer model, which in turn is the main part of the Ditto model.
Following the Ditto approach, the textual parts of the products are prefixed with
strings that name the particular parts like title, features and description. Names
and values are separated by additional special tokens [COL] and [VAL] that are
introduced by Ditto.
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simtext(q, p) = ditto(seq(q, p)) with (1)
seq(q, p) = [CLS] +

[COL] + ‘title’ + [VAL] + q.title+
[COL] + ‘feature’ + [VAL] + q.features+
[COL] + ‘description’ + [VAL] + q.description+
[SEP] +
[COL] + ‘title’ + [VAL] + p.title+
[COL] + ‘feature’ + [VAL] + p.features+
[COL] + ‘description’ + [VAL] + p.description+
[END]

The respective, textual parts of the query product and the product from the
collection are represented by x.title, x.features and x.description with x ∈ {p, q}.
The sequence is then tokenized in the appropriate way for the used transformer
model and is then input into the transformer. The output of the transformer
is an embedding vector for each token of the input sequence. The Ditto model
extends the transformer model by adding a fully connected linear layer with
dropout that takes the embedding of the CLS-token as input and has two outputs
for the two classes similar and not similar. On top of the linear layer comes a
softmax-function that normalizes the output to probabilities. The probability for
class similar is returned as the similarity score for the pair of textual product
descriptions.

The used transformer is a pre-trained neural network that is finetuned to
classify pairs of products. The finetuning is done by minimizing the cross entropy
loss function using stochastic gradient. During the pre-training step, popular
transformers like BERT use the special token CLS for classification tasks. Hence,
the embedding of CLS-token is also used for the classification of similar products
in our approach.

Following the Ditto approach, we apply data augmentation and summariza-
tion heuristics during the training (finetuning) of the model. Data augmenta-
tion slightly modifies given training data and as a result, the amount as well
as diversity of the training set is increased. The modification operations include
randomly deleting single tokens or whole column-value pairs from the sequences.
Another modification is to swap the order of the two products in a sequence.

Summarization computes term frequency (TF) and inverse document fre-
quency (IDF) scores for each token in the training data. Tokens (except the
special tokens) with low TF-IDF scores are dropped. This step eliminates stop
words and other tokens with low information value. Both heuristics helped to
improve the performance of Ditto for product entity matching. Thus, we also
applied these methods in our application scenario.
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3.2 Similarity of Product Images

Product images are another valuable source to compute a meaningful similarity
score. After converting the images to the same size, each image is transformed
into an embedding vector. Similarity between two images is then measured as
cosine similarity between the respective embedding vectors.

We use a Siamese neural network approach [1], which is very suitable to learn
how to compare multidimensional vectors [2]. A Siamese neural network which
utilizes triplet loss consists of three identical feed forward subnetworks. That
implies that all subnetworks share the same configuration with the same weight.
Hence, the total number of parameters is effectively that of a single one. The
particular Siamese network model we use [9] stacks several convolutional layers
and possesses a fully connected normalization layer at the end that computes
the output embedding vector.

Siamese networks that are trained by minimizing a triplet loss function take
three input images called anchor, positive example and negative example. The
triplet loss forces the network to learn how to embed input images such that
the distance between anchor and positive is minimized and at the same time the
distance between anchor and negative is maximized [10]. Hence, triplet loss can
be defined in terms of a distance function d

L(A,P,N) = max
(
d(A,P ) − d(A,N) + α, 0

)
(2)

with A is the anchor, P the positive and N the negative example. Thus, the
training data for a Siamese network consists of such triplets (A,P,N). During
training, the three networks with shared weights compute the embedding vectors
of the three images. The network weights are adjusted using a back-propagation
process that starts from the triplet loss function. The parameter α > 0 of the loss
function, which is called margin, helps to push not similar image embeddings
farther away and to bring similar image embeddings closer to each other.

3.3 Multi-modal Model

The similarity scores that are output by the (trained) models for pairs of textual
product descriptions and product images are linearly combined to a multi-modal
similarity score. Thus, the score pt from the text model and the score pi from the
image model are weighted and combined to a multi-modal score pm as follows:

pm = β · pt + (1 − β) · pi with 0 ≤ β ≤ 1 (3)

When the similarity score exceeds a threshold the product pair is considered
similar. The parameters α, β and the classification threshold are estimated by
evaluating the F1 values on training data. The parameter settings with the
highest F1-score on the training data are used.
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4 Experiments

In this section, we first explain how the training data set is constructed and how
the models for the learned product similarity function are trained and tested.
Second, we give details about the baselines that we compare with our approach.
Then, we present the result of the main experiments that show how our multi-
modal approach performs with respect to the baselines. In the following ablation
studies, we experimentally verify and discuss the impact and contribution of each
main building block. Last, we show an use case of how to apply the newly learned
similarity measure in an e-commerce application scenario.

4.1 Datasets and Model Training

We constructed the training data using the Amazon review data 2018 [16]. This
data set consists of millions of product metadata and reviews in about 25 differ-
ent product categories. For our experiments, we concentrated on seven particu-
lar categories that are also included in the product catalog of Relaxdays: arts,
home, garden, pet supplies, sports, tools and toys. The product metadata schema
includes 18 product attributes. From those, we used the ASIN (an Amazon prod-
uct identifier), categories and similar (an HTML table of similar products) for
filtering and generation of class labels (similar and not similar). For the training
of the textual similarity models, we used the attributes title, feature and descrip-
tion. The training data for the image similarity model was extracted from the
image attribute, which contains a list of URLs pointing to product images. We
used the first working image URL in each list to retrieve one image for each
product.

Blocking: Similarity functions like Ditto are expensive. Thus, given a query q,
the similarity function should not be executed for every pair (q, p) with p is a
product from the collection. Therefore, blocking is an established pre-filtering
heuristic [12,21]. Products that are not similar are efficiently filtered out. We
use a simple but meaningful heuristic that uses the subcategories as filter. Each
product in the Amazon dataset belongs to a main category and to one or several
subcategories. After the blocking step, products of only the same subcategory are
compared with the expensive learned similarity function. This kind of blocking
step is also applicable to the application data at Relaxdays.

Definition of Labels: Labeled product pairs with class labels similar and not
similar are necessary to train networks like Ditto and the Siamese networks. The
generated labeled data is in line with the used blocking method that means no
similar product pair has products that belong to different product subcategories.
As the first step, for each subcategory, a product graph is created, the nodes of
which correspond to the respective products. Two nodes are connected with
an undirected edge, if and only if one corresponding product appears in the
table of similar products of the other product. In general, those graphs consists
of several connected components. Manual inspection revealed that products in
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the same connected component are similar with respect to product images and
descriptions, while products from different connected components are dissimilar.
Thus, we labeled product pairs that are directly connected with an edge as
similar and product pairs with products in the same subcategory but in different
connected components as not similar.

To improve the quality of the training data, products without title, descrip-
tion or image are removed. Further, connected components with fewer than
15 products are also removed. Product pairs are randomly selected from all
remaining connected components to be included in the training data for a given
subcategory.

The triplets for training with the triplet loss function are generated by first
randomly selecting the anchor product from a given subcategory. Second, a prod-
uct from the same connected component in the subcategory that is directly
connected by an edge with the anchor product is selected as positive example.
Third, another product from a different connected component in the subcate-
gory is selected as negative example. The triplet anchors are uniformly selected
from all categories and connected components.

Training, Validation and Testdata: From each of the seven main categories, 1200
pairs of similar and 3000 pairs of not similar products are randomly selected.
Thus, the union of these data sets consists of 29400 pairs in total. For the train-
ing of the image similarity models, from each main category, 2000 triplets are
randomly selected. The models are trained on a random but fixed subset of 60%
of the data, 20% are used for validation and the remaining 20% are used for
testing. The Data is available at: https://github.com/myle93/similar product.

Parameter Estimation: We used grid search to estimate the best settings for
the parameters α, β and the classification threshold of the different models. The
grid search uses the F1 measure on training data to evaluate the settings of
particular values. For each main product category, a separate grid search is done
and specific values for α, β and the classification threshold are estimated.

4.2 Baselines

We describe competitive baselines for textual similarity search and for image
similarity search. The baseline for textual similarity search is then combined
with the Siamese CNN model to a multi-modal baseline model as described
in Sect. 3.3. The parameter and the threshold of the multi-modal baseline are
estimated in the same way as for the proposed multi-modal model.

Text retrieval and similarity search map documents, which are product
descriptions in our application, to vectors that are compared using cosine sim-
ilarity. We use cosine similarity in combination with a weighting scheme that
multiplies term frequency (TF) with the inverse document frequency (IDF).
The tokenization is based on words, which is in contrast to the Ditto model that
uses subword tokenization. As preprocessing step, stop words and punctuations
are removed. A threshold determines up to which similarity score, product pairs

https://github.com/myle93/similar_product
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are considered as similar. The threshold is estimated experimentally from the
given data.

ResNet [6] is a popular pretrained neural model for image classification. It
takes images with a resolution of 32 by 32 pixels [18]. The resolutions of product
images vary between 28 by 28 and 40 by 40 pixels. Thus, all images are converted
to a resolution of 32 by 32. We use ResNet with pretrained weights and without
any fine-tuning to compute embeddings for the images. Analogous to the baseline
for textual similarity search, we use a threshold to classify images as similar and
not similar.

4.3 Multi-modal Similarity

We compare our proposed multi-modal similarity model with a multi-modal
baseline as well as with the individual parts of the multi-modal models. The lan-
guage models are trained on the union of all training data from all seven main
categories we worked with. The rationale behind this decision is that large pre-
trained transformer models like BERT benefit from more training data. However,
for the image data, we train a separate Siamese CNN model for each category.
Thus, the Siamese CNN models could specialize on properties that are specific
for each category. In the ablation studies, we experimentally analyze various
alternatives to these decisions.

Table 1. Left: F1-Score as metric to evaluate the performance of each model on test
data of each category. Columns from left to right: product categories, text baseline,
image baseline, transformer-based Ditto model for textual product data, multi-modal
baseline tf-idf + Siamese CNN, our proposed model Ditto + Siamese CNN. Right:
weights of the proposed multi-modal model consisting of the Ditto and Siamese CNN
model. Note that the shown weights are not used for the multi-modal baseline model.
For this model, the weights are separately estimated.

Category tf-idf Siamese CNN Ditto multi-modal multi-modal weights

baseline model β 1 − β

(text) (image) (text) (text+image) (text+image) (text) (image)

art 0.880 0.885 0.948 0.965 0.980 0.47 0.53

pet supplies 0.641 0.583 0.744 0.680 0.755 0.84 0.16

home 0.657 0.589 0.841 0.692 0.864 0.66 0.34

garden 0.708 0.586 0.829 0.743 0.825 0.72 0.28

sport 0.795 0.636 0.836 0.830 0.873 0.65 0.35

toys 0.654 0.572 0.809 0.698 0.823 0.67 0.33

tools 0.653 0.536 0.831 0.644 0.841 0.63 0.37

Table 1 (left) shows that our proposed multi-modal model consistently out-
performs all other models with respect to F1 values on test data over all prod-
uct categories. Our proposed multi-modal model has significant gains over the
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Fig. 2. The figures in the columns from left to right show the similarity scores for pairs
of the classes similar and not similar computed by the Ditto model (left), the Siamese
CNN image model (middle) and the combined multi-modal model (right). The top
plots shows the scores for class labels plus a random Gaussian values on the y-axis to
avoid over plotting. The bottom plots show class-specific densities.

multi-modal baseline model that uses the simple td-idf-model for textual prod-
uct descriptions. The gains are much less pronounced with respect to the Ditto
model that uses textual product descriptions as the sole data source. This shows
that the pretrained transformer model that powers the Ditto model contributes
the main part to the performance of the multi-modal model.

The Siamese CNN models for product images are on their own not that
powerful. However, the language model and the Siamese CNN model are not
redundant as there are cases where the image model successfully corrects the
language model. Figure 2 shows that the Ditto model returns similarity scores
that are close to the binary class labels. In most cases, the Ditto model is right
but not in all cases. The Siamese CNN image model returns a distribution of
similarity scores that uses the full range from zero to one. While this blurs the
similarity scores of the combined multi-modal model, the combination is more
helpful than harming the classification rates and the F1 scores.

Last, we looked at the weights of the proposed multi-modal model that are
presented in Table 1 (right) for each product category. Except the art category,
the weights for the language model are consistently higher than the weights for
the image models. This is expected, because the language model has consistently
better F1-Scores in all categories than the image model. However, the weights
for the image model are not close to zero but approximately 0.3 on average. This
shows that the image model contributes a significant part to the overall result.
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4.4 Ablation Studies

In this subsection, we experimentally verify the main design decisions of our
proposed model. We compare the various setting of the components of the
multi-modal model, namely, we compare the performance of different transformer
models as the basis for Ditto as well as different sequence lengths and different
optimization methods. Further, we compare performances of different Siamese
models for image similarity. Here, the hyperparameters are estimated on valida-
tion data, which is in contrast to the estimation of the parameters α and β that
could be evaluated on training data without retraining the transformer models.

First, we evaluated the four different transformer language models Distil-
BERT, BERT, RoBERTa und XLNet that are supported by the implementation
of Ditto. The length of the input sequence is fixed to 64 tokens. Table 2(a) shows
that DistilBERT outperforms the other models with respect to the F1 score,
which is determined on the validation data. Further, this model has 40% less
parameters than BERT [19] and the time for training is 50% less than BERT.

Table 2. Performances of Ditto with respect to different settings on validation data:
(a) transformer language models, (b) token sequence lengths, (c) optimization methods
for Ditto.

(a) (b) (c)

Model Time Training F1

DistillBERT 30 min 87.1

BERT 60 min 82.3

RoBERTa 50 min 74.0

XLNet 75 min 78.1

Seq. len. F1

32 67.8

64 87.1

128 86.3

256 79.8

512 77.4

Model F1

Ditto(plain) 49.1

Ditto(S) 86.8

Ditto(S+DA) 86.9

Ditto(S+KD) 85.1

Ditto(S+DA+KD)87.1

Next, we checked the impact of the length of the token sequence of the input
for the DistilBERT model. Table 2(b) shows that a length of 64 tokens has the
best F1 score. Larger token sequences have better recall but precision gets worse.

Last, we evaluated the impact of the different optimization methods of Ditto,
namely summarization (S), data augmentation (DA) and domain knowledge
(KD). Table 2(c) shows the results of several combinations of the methods. The
combination of all three methods gives the best performance. Summarization
seems to have the largest impact, while data augmentation and domain knowl-
edge have little additional impact. We used Ditto(S+DA+KD) in all the other
experiments and referred as Ditto to this methods.

We also analyzed the pretrained image model ResNet50 as alternative build-
ing block to the CNN network that we used in the Siamese network for image
similarity. In this experiments, both models are trained with the union of the
data from all categories. The margin α is set to 0.2. Contrary to our expectations,
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the popular ResNet50 [11] performs less well that the simpler CNN network, as
shown in Table 3(a). In order to increase the performance of image similarity
models, we trained Siamese CNN models on the data of separate categories.
Due to worse performance and high training costs, we did not further investi-
gate the ResNet50. Table 3(b) shows the F1 performances for different settings
for α and different categories. This modification increased the performance, how-
ever, the image models still perform less well than the Ditto model on textual
product descriptions. We also investigated data augmentation to improve the
image model, however, no improvement was found.

Table 3. Comparison of image models on validation data: (a) F1-Score of ResNet50
and the CNN model as building blocks in a Siamese network for image similarity, (b)
F1-Score of Siamese CNN models for different settings for α and different categories.

(a) (b)

Model F1

ResNet50 52.7

CNN 68.1

Category α = 0.2 α = 0.6 α = 0.8 α = 0.9

art 78.4 87.4 84.3 85.9

pet supplies 55.3 58.7 60.8 58.5

home 52.6 54.4 55.6 58.4

garden 50.0 56.0 57.1 54.7

sport 58.8 64.3 63.7 61.3

toys 54.1 57.3 58.3 60.4

tools 48.2 53.6 56.2 54.7

4.5 Use Case

Suppose an employee in the sales department wants to analyze the competing
products of – for example – a steel engineer ruler1, which is in the product subcat-
egory Tool/Home Improvement, Measuring/Layout Tools, Linear Measurement
in order to decide if the product should be included into the companies portfolio
and what a fair product price could be. The similarity search with our proposed
multi-modal approach returns for the given query exclusively other steel engi-
neer rulers as the top 10 similar products2, which are all directly competing
products. In contrast, the multi-modal baseline returns also similar products
like tape measures for construction workers and dress makers as well as feeler
gauges3 that are classified as not similar by our approach. The results of the

1 We specify the Amazon ASIN and embed the full link in the PDF file: B00AG7XYF0.
2 We give the ASINs of the top 5 results: B00449491O, B004490TNQ, B000065CEB,

B0015AQMSS, B0017JW7I6.
3 Generally similar but unrelated products returned by the multi-modal baseline:

B00A6W2AOQ, B00Y73TB1A, B001737NYU, B01AO2KO3Q.

https://www.amazon.com/dp/B00AG7XYF0
https://www.amazon.com/dp/B00449491O
https://www.amazon.com/dp/B004490TNQ
https://www.amazon.com/dp/B000065CEB
https://www.amazon.com/dp/B0015AQMSS
https://www.amazon.com/dp/B0017JW7I6
https://www.amazon.com/dp/B00A6W2AOQ
https://www.amazon.com/dp/B00Y73TB1A
https://www.amazon.com/dp/B001737NYU
https://www.amazon.com/dp/B01AO2KO3Q
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baseline could be explained by terms like steel and measure that appear in the
description of the query as well as in those of the returned results. Relevant for
the application use case are only the steel engineer rulers, because the other
products are not directly competing products with respect to the query.

5 Conclusions

We proposed an effective product similarity search application based on an entity
matching approach that uses transformer language models. This shows that
entity matching technology can be effectively reused to be part of similarity
search methods. Further, we demonstrated that combining a language model
with an image model to a multi-modal improves the performance. The proposed
model can learn the specific needs of our similarity search application. Last, we
published our training data set, which can be used to learn improved models for
product similarity search applications. Future work includes the development of
models that integrate language and text and can learn joint pattern of product
descriptions and product images.
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Abstract. Fashion multi-modal retrieval has been recently addressed
using vision-and-language transformers. However, these models cannot
scale in training time and memory requirements due to the quadratic
attention mechanism. Moreover, they design the retrieval as a classifi-
cation task, assigning a similarity score to pairs of text and images in
input. Each query is thus resolved inefficiently by pairing it, at runtime,
with every text or image in the entire dataset, precluding the scalability
to large-scale datasets. We propose a novel approach for efficient multi-
modal retrieval in the fashion domain that combines self-supervised pre-
training with linear attention and deep metric learning to create a latent
space where spatial proximity among instances translates into a semantic
similarity score. Unlike existing contributions, our approach separately
embeds text and images, decoupling them and allowing to collocate and
search in the space, after training, even for new images with missing text
and vice versa. Experiments show that with a single 12 GB GPU, our
solution outperforms, both in efficacy and efficiency, existing state-of-
the-art contributions on the FashionGen dataset. Our architecture also
enables the adoption of multidimensional indices, with which retrieval
scales in logarithmic time up to millions, and potentially billions, of text
and images.

Keywords: Fashion multi-modal retrieval · Text and images · Metric
learning · Linear attention · Deep learning

1 Introduction

A growing number of deep neural networks have been proposed in informa-
tion retrieval to address the problem of multi-modal retrieval, which involves
matching queries and documents across different modalities. Much studied in
this context are Text-to-Image and Image-to-Text retrieval. These are not triv-
ial tasks, especially if addressed in the fashion domain, where queries can refer
to fine-grained details of clothes and garments (e.g., “Low sneakers in black
polished leather. Round toe. Closure with tone-on-tone laces...”). The precision
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required is higher than in general domain retrieval, where the focus is instead
on coarse-grained objects (e.g., “A yellow fire hydrant in front of a blue wall”).

Recently, state-of-the-art (SOTA) results in fashion multi-modal retrieval
have been obtained by FashionBERT [14] and KaleidoBERT [43] using Vision-
and-Language (V+L) transformers, which are transformers [37] able to process
both text and images in a single architecture. These models are trained with
multiple self-supervised tasks and perform retrieval by assigning a similarity
score to text-image pairs fed to the model as a single, coupled input. Despite
their efficacy, the solutions proposed in [14] and [43] suffer from two main draw-
backs: (i) they are inefficient on large-scale datasets since they perform retrieval
by coupling a query with every document in the dataset at runtime; (ii) the
attention mechanism has a quadratic space-time complexity which precludes self-
supervised pretraining and inference on limited computational resources without
overly reducing the input length.

In this paper, we address both the above limitations and propose a solution
for fashion multi-modal retrieval that is more efficient and effective than previous
approaches. Our contribution is two-fold: (i) we introduce a linear complexity
V+L transformer that can be trained on low-resource regimes and can handle
longer inputs and larger batch sizes with reduced inference and training times;
(ii) we propose a two-stage training that combines self-supervised pretraining
and deep metric learning to generate a joint latent space where, in the end,
text and images can be separately embedded. Our trained model can be used
to output individual latent representations for both texts and images without
having them interact with each other in the inner layers at runtime. This strategy
significantly increases retrieval performance since embeddings can be computed
offline, and multidimensional indices can be used to run a nearest neighbor search
in logarithmic time. We achieve new SOTA Rank@K accuracies for Text-to-
Image and Image-to-Text retrieval on the FashionGen [32] dataset, proving the
efficacy of our approach. Furthermore, we demonstrate the efficiency of our linear
V+L transformer, showing that we can perform self-supervised pretraining on
a single GPU with 12 GB of RAM, unlike previous SOTA solutions that are
trained with a higher number of more powerful computational resources.

2 Related Work

Fashion Retrieval and V+L Transformers. Early solutions toward fashion multi-
modal retrieval with deep learning were proposed in [44] and [21]. Using prob-
abilistic and algebraic methods, the authors combined a bag-of-word model
with convolutional and recurrent neural networks to address the text-image
retrieval task. Despite the effectiveness of recurrent neural networks [10] how-
ever, improvements in fashion multi-modal retrieval have been recently obtained
mainly through the transformer architecture. Many solutions have already been
proposed [23–25,31,34,38] for retrieval with V+L transformers on general-
domain datasets. These rely on pretrained convolutional neural networks (CNN)
to extract Regions of Interest (RoIs) from images and treat them as tokens to be
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fed to the transformer model together with text tokens. Some authors [14,43],
however, claimed that RoIs are not suitable for retrieving fashion products
since they tend to ignore fine-grained details. Instead, they improved retrieval
results by subdividing images into square patches and feeding them to a V+L
transformer as dense vectors extracted with a pretrained image model (i.e.,
ResNet [17]). However, one downside of these transformer-based approaches is
that they cannot be easily adopted on low resource regimes since their self-
attention mechanism has a quadratic space-time complexity. Indeed, many “X-
former” [36] models have been studied to reduce the computational complexity
of the attention layers [2,20,42], but their application on V+L transformers has
not yet been explored. In this work, we propose a linear-complexity V+L trans-
former based on the Fast Attention Via Positive Orthogonal Random Features
(FAVOR+) algorithm [2] that provides a scalable, low-variance and unbiased
estimation of the attention matrix. Our model is thus efficient and lightweight
compared to previously proposed architectures [14,15,43] for Image-to-Text and
Text-to-Image retrieval in the fashion domain.

Representation vs Interaction. Representation learning and deep metric learning
have been applied in many natural language processing tasks [7,8,28]. Some
works regarding multi-modal retrieval [11,13,39] proposed to learn a joint latent
space where text and images representations are embedded and the distance
between vectors represents a measure of similarity. These models can be referred
to as Representation-Focused and are usually trained with ranking losses such as
Contrastive Loss [16] or Triplet Loss [18]. Nevertheless, SOTA results have been
recently obtained by V+L transformers [14,23–25,31,43] trained with multiple
self-supervised tasks to assign a similarity score to text-image pairs. This strategy
has the advantage that texts and images can freely interact in the attention
layers, thus allowing the model to learn deeper relationships between the two
modalities. We refer to these models as Interaction-Focused. One disadvantage
of Interaction-Focused architectures is that they are not trained to generate
a latent representation of images and texts, thus excluding the possibility of
using efficient indexing strategies on embeddings [3,19,29]. As also addressed
in [26], this fact limits the application of these solutions to large-scale datasets,
in which, instead, efficient access methods are essential. Our work aims to keep
the advantages of both Interaction and Representation approaches by combining
a self-supervised pretraining phase and a metric learning fine-tuning for efficient
multi-modal retrieval in the fashion domain.

3 Methodology

3.1 FAVOR+ Linear Attention

Many solutions have been proposed to reduce the computational complexity of
the attention layer. We decided to adopt FAVOR+ since it is one of the most
efficient ones in terms of speed and memory requirements [35].
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Denoting the input length with L and hidden dimensions with d, FAVOR+
reduces time complexity from O(L2d) to O(Lrd) and space complexity from
O(L2 + Ld) to O(Lr + Ld + rd) with r hyperparameter such that r � L.

It starts by formulating classical attention in the following way:

Att(Q,K,V) = D−1AV A = exp(
QK�
√

d
) D = diag(A1L) (1)

where diag(.) is the diagonal matrix with the input vector as the diagonal and
1L is the all-ones vector. Q,K, and V are intermediate projections of the input
obtained with matrices of learnable weights. Their dimension is L × d, therefore
the overall cost of computing A in Eq. 1 is quadratic with respect to L.

The core idea behind FAVOR+ is to define a function φ : Rd → R
r
+ such

that, given two vectors x,y, the product φ(x)�φ(y) approximates exp(x�y).
Equation 1 can be now transformed as follows:

Att(Q,K,V) = D̂−1(Q′((K′)�V)) D̂ = diag(Q′((K′)�1L)) (2)

where Q′,K′ ∈ R
L×r are matrices with rows given as φ(q�

i )� and φ(k�
i )�, with

qi, ki being the i-th row-vector of Q and K respectively.
Ordering computation in Eq. 2 according to the parentheses avoids explic-

itly computing the L2 matrix, hence providing a linear approximation of the
attention mechanism. It can be shown that φ must be of the form: φ(x) =
h(x)√

r
f(Wx)� where h and f are carefully chosen functions and W ∈ R

r×d is a
matrix of r random orthogonal vectors1. The higher r the better the approxi-
mation.

3.2 Pretraining

The model architecture used in this first training phase is shown in Fig. 1. It is a
transformer model where the attention layer is approximated using the FAVOR+
algorithm, and a paired input of the form (text, image) is used to allow multi-
modal semantics.

Each text is split up into tokens using the BERT tokenizer [4]. Two special
tokens ([CLS] and [SEP]) are added at the beginning and the end of the sentence.
Each token is transformed through a text embedding layer into a dense vector
t ∈ R

768. Positional embeddings are added to the representation obtained and
segmentation embeddings are employed to differentiate it from visual input: we
use an array of zeroes for texts and an array of ones for images. We do not extract
RoIs from images, as they have already proven ineffective in fashion retrieval
[14]. Each image is split instead into a fixed number of square patches (64 in our
experiments), transformed into 2048 dimensional vectors using ResNet50 [17].
Patches are then processed through image, positional, and segmentation embed-
ding layers to get a representation p ∈ R

768. Text and image vectors are then
1 The reader can refer to [2] for further technical details and a rigorous proof of why

this approximation works.
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Fig. 1. Pretraining architecture. Texts are tokenized, masked with a certain probability
and given in input to the embedding layers to extract an intermediate latent repre-
sentation; images are split into patches, transformed into dense vectors, masked, and,
as for texts, processed through image embedding layers. The representations obtained
are then concatenated and fed as input to the linear attention layers. The model is
trained on 3 tasks: Text-Image Alignment, Masked Language Modeling and Masked
Patch Modeling. The three losses are combined using the Adaptive Loss strategy.

concatenated and interact with each other through the linear attention layers2.
The model is trained on three tasks.

Text-Image Alignment (TIA). The output of the [CLS] token is used to predict
whether the input text is describing the given image. Given a text-image pair
(t, p) sampled from the dataset D, and called s(t, p) the score returned by the
classifier, the loss is a binary cross entropy defined as follows

L1(θ) = −E(t,p)∼D[y log sθ(t, p) + (1 − y) log (1 − sθ(t, p))]

where y is the true label of the input and θ denotes the weights of the model.

Masked Language Modeling (MLM). We randomly mask 15% of input text
tokens: 80% of the time they get replaced with a special [MASK] token, 10%
with a random word, and 10% of the time they stay unchanged. Denoting with
t\i = {t1, ..., [MASK]i, . . . , tn} the input sentence in which the i-th token has
been masked, the following loss is minimized for all masked tokens ti

L2(θ) = −E(t,p)∼D[logPθ(ti|t\i, p)]

2 The total input length L is therefore the sum of both text tokens and image patches.
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Fig. 2. Architecture for Triplet Loss training. The product description is used as the
anchor element, and the corresponding image and a random image are used as positive
and negative elements, respectively. When a text is given in input, the image processing
channel is disabled, and, in the same way, if an image is given, the text processing
channel is not used. In both cases the final representation is given by the output vector
relative to the CLS token.

where Pθ(ti|t\i, p) denotes the probability assigned by the model to the masked-
out token ti given its surrounding text t\i and image patches p.

Masked Patch Modeling (MPP). For this task, image patches are masked instead
of text tokens. Given input patches p = {p1, . . . , pm}, we denote with p\i =
{p1, . . . ,0i, . . . , pm} the sequence in which the i-th patch has been masked and
replaced with a zero vector (we mask five patches per image). The model must
reconstruct the image by learning a continuous distribution over the values of
the masked patches. If Distr(pi) is the real distribution and Distrθ(pi|p\i, t) is
the one predicted by the network given its surrounding patches and the text t,
we want to minimize their Kullback-Leibler divergence

L3(θ) = E(t,p)∼D[KL(Distrθ(pi|p\i, t)||Distr(pi))]

The final loss is the weighted sum of the three losses with optimal weights com-
puted dynamically during training according to the Adaptive loss algorithm [14]:

L(θ) =
3∑

i=1

wiLi(θ) wi =
(L − ∇L2

i )
−1

∑3
i=1(L − ∇L2

i )−1

3.3 Metric Learning

After the first self-supervised training phase, the model has learned semantic
relationships between text and images. Starting from the weights obtained, we
can perform a second training with metric learning to generate a latent space
where texts and images can be separately embedded and their distance in this



46 G. Moro and S. Salvatori

space translates into semantic similarity. However, training with metric learning
is not immediately possible since the model requires both a textual description
and an image in input. As shown in Fig. 1, though, there are two distinct channels
in which visual and textual inputs get processed; therefore, we can change the
architecture in the following way: when a text is provided, the image channel is
disabled, and in the same way, when we have an image in input the text channel
is not used (Fig. 2). We take the vector x ∈ R

768 obtained from the [CLS] token
as a latent representation for both text and images. We then train the network
using Triplet Loss, which is defined as:

L = max(0, d(xa, xp) − d(xa, xn) + m)

xa is called the anchor element and, in our case, is the embedding obtained from
the description of a product in the dataset. xp and xn are called positive and
negative samples. xp is the embedding of the photo associated with the given
description and xn is the embedding of a random image from the dataset. d is
the euclidean distance and m is an hyperparameter called margin.

After this training phase terminates, we can efficiently perform multi-modal
retrieval using the nearest neighbor search (k-NN) strategy: we compute the dis-
tances between the query embedding and the text or image embeddings extracted
with our model and use them to sort the results from closest to farthest.

4 Experiments

4.1 Dataset

We run experiments on the FashionGen dataset [32], which contains 293,008
images (256 × 256 size) of fashion products, subdivided in categories and sub-
categories, paired with textual descriptions provided by professional stylists. It
includes 67,666 products that appear in the dataset photographed several times
at different angles up to a maximum of 6. The dataset is split up into 260,480
records for training and 32,528 for validation.

For pretraining, we extracted two records for each product: one positive (text,
image) pair, in which the description of the product is paired with its correspond-
ing image, and one negative (text, image) pair in which the same description is
paired with a random image taken from the same subcategory. We set the max-
imum description length to 512 and split images into 64 (8× 8) patches.

For metric learning, we considered each product description as an anchor
element. Positive elements are selected among the images of that product taken
at different angles, and negative elements are images selected from other random
products in the dataset.

4.2 Implementation and Training Details

We implemented our model in pytorch with the HuggingFace’s Transformers
library [41]. The Transformer architecture consists of 12 layers with 768 hid-
den size, 12 self-attention heads, and 3072 intermediate size. We used gelu
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Table 1. Results obtained by our model compared to previous solutions proposed in
literature tested on the FashionGen dataset.

Tasks VSE VSE++ SCAN PFAN ViLBERT VLBERT Image Bert OSCAR Fashion Bert Kaleido Bert Our

ITR R@1 4.01% 4.59% 4.59% 4.29% 20.97% 19.26% 22.76% 23.39% 23.96% 27.99% 34.70%

R@5 11.03% 14.99% 16.50% 14.90% 40.49% 39.90% 41.89% 44.67% 46.31% 60.09% 70.50%

R@10 22.14% 24.10% 26.60% 24.20% 48.21% 46.05% 50.77% 52.55% 52.12% 68.37% 83.70%

TIR R@1 4.35% 4.60% 4.30% 6.20% 21.12% 22.63% 24.78% 25.10% 26.75% 33.88% 35.80%

R@5 12.76% 16.89% 13.00% 20.79% 37.23% 36.48% 45.20% 49.14% 46.48% 60.60% 70.20%

R@10 20.91% 28.99% 22.30% 31.52% 50.11% 48.52% 55.90% 56.68% 55.74% 68.59% 83.30%

as activation function and a 0.1 dropout factor. We loaded pretrained weights
from bert-base-uncased. The Masked Patch Modeling head and the image pro-
cessing layers, which are not available in the classic BERT architecture, were
randomly initialized from a 0 mean, 0.2 standard deviation normal distri-
bution. For the FAVOR+ algorithm we used the following hyperparameters:
r = 64, orthogonal features=True and redraw features=True. The model
was trained using a single Titan XP GPU with 12 GB of available RAM. Adam
optimizer was used, with parameters β1 = 0.95, β2 = 0.999, and weight decay
1e−4. Pre-training run for 20 epochs with a base learning rate of 2e−5 warmed
up for the first 5000 steps and then reduced with cosine scheduling strategy. We
used a batch size of 16 records, the largest size available in our GPU. For Triplet
Loss training, we reduced to 10 the number of epochs and changed the learning
rate to a constant value of 5e−6. We used the hard mining technique to train
on triplets that satisfied the condition d(xa, xn) < d(xa, xp) (more experiments
on triplet mining are reported in Sect. 6). We set the margin hyperparameter
m = 1.03.

4.3 Results

We evaluated our model on two multi-modal retrieval tasks in the fashion
domain: Text-to-Image and Image-to-Text retrieval. For a fair comparison, we
adopted the same evaluation methods used in [14] and [43]:

– Text-to-Image Retrieval (TIR): Given a description of a product, the
model must find the corresponding image among 100 other random images
of products from the same subcategory.

– Image-to-Text Retrieval (ITR): Given an image of a product, the model
must find the corresponding description among 100 other random descriptions
of products from the same subcategory.

Model performances are evaluated using the Rank@K metric (with K = {1, 5,
10}), that measures how many times the correct image or text appears in the first
K retrieved documents. We report the results in Table 1 compared with other
models proposed in the literature that employ different approaches, in particu-
lar: VSE [13] and VSE++ [11] do not use any attention mechanism and directly
3 In some of our preliminary experiments we also tested m = 0.1 but we found no

substantial differences (the results were slightly worse in that case).
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Fig. 3. Time required to retrieve rel-
evant documents as the dataset size
varies. We compare our solution with
FashionBERT. For our model, we also
test the performance gained by using a
multidimensional index.

Fig. 4. Comparison between our model
and FashionBERT in terms of backward
pass speed and maximum input length
allowed. Plots are shown up to when each
model produces an out-of-memory error.

projects text and images into a joint latent space using an LSTM and a CNN
model trained with metric learning; SCAN [22] and PFAN [40] combine RoIs
with some attention mechanisms but without employing a complete transformer
architecture; ImageBERT [31], ViLBERT [25], VLBERT [34], and OSCAR [24]
are all Interaction-Focused V+L transformers that jointly process RoIs and text
tokens; FashionBERT [14] and KaleidoBERT [43] are patch-based V+L trans-
former models that represent the current SOTA for multi-modal retrieval in the
fashion domain. As shown in Table 1, our model outperforms previous solutions
improving all Rank@K accuracies. We believe that the main reason for this
improvement lies in using the two training phases to generate a latent space
that better encodes text and image similarities. Our solution is thus effective
and efficient since multidimensional indexing strategies can be employed on pre-
computed embeddings to improve performance. We further examine this claim
in the next section, where we also show the advantages of our linear V+L trans-
former.

5 Efficiency and Scalability

Retrieval Efficiency. We generated sample databases of different sizes and col-
lected, for each of them, the time required to find the top 100 results for a given
query. We compared our model with FashionBERT to show the advantages of
our solution compared to the SOTA ones (note that the results we obtained for
FashionBERT would be equal for KaleidoBERT since they share an equivalent
architecture). We tested two retrieval strategies for our model: (i) näıve k-NN
search and (ii) indexed k-NN search using a Ball-Tree [30] index. For Fashion-
BERT, all the text-image alignment scores are computed on the GPU, and the
results are ordered on the CPU. For our model, the query embedding is gener-
ated using a GPU while the k-NN is performed on the CPU. Figure 3 shows that
FashionBERT requires more than a second to perform retrieval on 1000 docu-
ments. Our model, instead, using a multidimensional index, manages to perform
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better even on a dataset containing 106 products. Tests up to a million records
are, in this case, sufficient to prove the advantages of our solution compared
to the SOTA ones. However, if one is willing to trade off accuracy for higher
efficiency, our solution enables the use of approximate k-NN strategies to scale
up to datasets with billions of products.

Training Efficiency. To test the advantages of our linear V+L transformer, we
compared the time required for a backward pass with our model and Fashion-
BERT, which uses quadratic attention. As we can see from Fig. 4, our model can
handle bigger batch sizes for each input length, and if we fix the batch size, it can
process longer sequences. Using bigger batch sizes also reduces the overall train-
ing time since it allows to process more records on each iteration4. Furthermore,
we could train the model with bigger images, splitting them into more patches
or with longer descriptions even with limited computation resources. This allows
our model to be used in much broader real-world applications.

6 Ablation Studies

Contributions of the Training Phases. To test the effectiveness of our train-
ing procedure and study the contribution of each training phase, we conducted
the following ablations studies: (i) we performed retrieval using the Text-Image
Alignment score returned by our pretrained model, as in [14,43], and (ii) we
trained the model starting directly from metric learning, skipping the self-
supervised pretraining phase. The results obtained are reported in Table 2. We
can see that our model, trained with both pretraining and metric learning,
obtains better results then the ones that use only one of the two training phases.
This confirms that both pretraining and metric learning are required to obtain
SOTA accuracies. Moreover, this proves that the semantic relationships between
texts and images learned during the self-supervised pretraining are used in the
second phase to generate a better latent semantic space.

Selecting Triplets. Triplet mining involves selecting a specific subset of triplets
with certain characteristics during training. One of the most effective techniques
studied in literature is hard negative mining [1,11], which selects only hard
instances for which d(xa, xn) < d(xa, xp). To test the effect of this strategy
in our solution, we conducted two experiments: one with hard mining and one
using all triplets. As shown in Table 3, the model obtains better results with
hard negative mining than with the näıve approach, which uses all triplets dur-
ing training. We believe that this way of exploiting informative triplets, combined
with more sophisticated ranking losses, could be a promising line of research for
future works.

4 Pretraining with our linear attention model took ∼72 h to complete, and metric
learning required ∼15 h. Using a quadratic Transformer, pretraining would have
ended in ∼100 h and metric learning in ∼24 h.
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Table 2. Contribution of each train-
ing phase to downstream results.
ML = model trained with metric learn-
ing only; P = pretrained model using the
TIA score.

Tasks ML P Our

ITR R@1 22.00% 27.80% 34.70%

R@5 54.80% 60.40% 70.50%

R@10 71.30% 76.60% 83.70%

TIR R@1 25.30% 26.70% 35.80%

R@5 58.20% 59.10% 70.20%

R@10 73.30% 76.00% 83.30%

Table 3. Results obtained with and
without the hard triplet mining tech-
nique during the metric learning phase.

Tasks All triplets Hard triplets

ITR R@1 22.00% 34.70%

R@5 48.80% 70.50%

R@10 65.50% 83.70%

TIR R@1 20.70% 35.80%

R@5 51.60% 70.20%

R@10 67.90% 83.30%

Fig. 5. t-SNE visualization of the FashionGen validation set using image embeddings
extracted with our model. 4 sample captions are also embedded to show that they are
placed near images they describe. Best viewed in color at high resolution. (Color figure
online)

7 Visualization

In Fig. 5 we provide a low-dimensional representation of the latent space learned
by our model. We projected the 768-dimensional image embeddings into a 2-
dimensional space using t-SNE. We also embedded 4 sample captions to show
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that semantic relationships between text and images are preserved and each text
is indeed placed near images that it describes.

8 Conclusions

Current SOTA solutions for fashion multi-modal retrieval use V+L transformers
that model an image and its textual caption as a coupled representation, pro-
viding poor performance on large-scale datasets. We presented a novel approach
for retrieval in the fashion domain that decouples the image and its caption
with separated embeddings. Our solution combines self-supervised pretraining
and deep metric learning to generate a multi-modal latent space where the spa-
tial proximity among text and images corresponds to their semantic similarity.
We improved all Rank@K metrics on the FashionGen dataset and showed that
our solution could efficiently scale up to millions of records thanks to multidi-
mensional indices. We also incorporated a kernelized linear attention method
(i.e., FAVOR+) to approximate the quadratic attention matrices and reduce the
memory and time required to train our model. Our linear V+L transformer is
promising to be extended to other domains and datasets as it allows for longer
descriptions and higher resolution images in input. Since we do not use RoIs
in the architecture, we believe the proposed solution is suitable for applications
in which fine-grained details are more important than coarse-grained objects
(e.g., medical and biomedical domain [5,6,9]). Further improvements could be
made by also introducing structured information to the input such as visual seg-
mentation graphs [33] or semantic parsing graphs [12]. Retrieval from external
knowledge [27] could also be used to further improve model accuracies.
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Abstract. We define an anchor as a small sample representing a point
cloud. Weighted or labeled point clouds are amenable for a stable anchor
extraction, a sampling method ensuring a consistent selection of points
across realizations of the same point cloud. In this work, we present a
heuristic to extract a stable anchor from unlabeled point clouds when the
points have no weights and are indistinguishable. This problem arises
when we need to query an extensive collection of point clouds and want
to avoid a sequential comparison with all members of the collection. Our
method consists in assigning as weight a centrality measure. We show
that our approach preserves several times the bare minimum required to
identify point clouds under similarity transformations.

Keywords: Point clouds · Stable anchors · Centrality measures

1 Introduction

A point cloud is a collection of points in R
d. They come from a variety of sources

such as stars in a sensor [9], invariants in images [5], high energy in selected bands
of audio [8], LIDAR readings [6], fingerprints, iris scans and other biometrics
[1,3]. Acquisition of points is subject to noise and artifacts. Noise comes from
sensor outputs, and artifacts create insertions and deletions to the point cloud.
The main problem is determining if two are readings of the same object. We
call each reading a realization of an object. This work will consider points in
the plane or R

2. Two-dimensional point clouds cover many applications, from
audio matching to star navigation or fingerprint recognition, and are interesting
enough to be studied by themselves.

The core problem regarding point clouds is matching. There are two versions
of the matching problem, the online version where two point clouds P and Q
and a parametric transformation f are given simultaneously, and the objective is
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Fig. 1. Robust constellation extracted from a FOV, by selecting the stars with higher
apparent brightness

to find the transformation parameters, which in turn gives the correspondence.
There are two canonical algorithms to solve the online problem, namely RAn-
dom SAmpling Consensus (RANSAC) [4] and Iterative Closest Point (ICP) [7].
Vanilla RANSAC, and countless variations with heuristic improvements, are the
gold standard for the general problem. In contrast, ICP and its variations are
more restrictive, applying only to congruences in dense 3D point clouds.

We are interested in the offline point cloud matching version. That is, given
{P1, P2, . . . , PM} point clouds, determine if Q matches f(Pi) with f a congru-
ence or similarity transformation. One example is matching an audio excerpt
of a few seconds against every track ever recorded, as in the popular Shazam
application [8]. Another example is autonomous star identification, matching the
image captured in a sensor against every star in the sky [9].

In the Shazam approach, the spectrograms of audio tracks are processed by
extracting unique high-energy spots at a certain time/frequency combination [8].
For the star identification, something similar is performed. All the stars within
the FOV are filtered by apparent brightness, luminosity, or color to identify
the central star; only those stars passing the filter will be compared with the
corresponding patterns in a star catalog. In Fig. 1 we illustrate this process in a
simulated FOV in a starfield.

Both examples described share a common characteristic; points have a label,
the energy at a time/frequency in the Shazam algorithm, and the apparent
brightness in the autonomous star identification. This motivates our definition of
a stable anchor. In both cases, the idea is to obtain a robust sample of points with
a high probability of being selected across object representations. Low energy
points or dim stars will be subject to noise more easily.

When points are indistinguishable, selecting a robust constellation is not
straightforward. Randomly selecting a sample is not reproducible across realiza-
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tions of the same point cloud. We must resort to an external measure to distin-
guish points for unlabeled point clouds. In this work, we investigate heuristics to
obtain stable anchors for unlabeled point clouds; we want to select stable points,
increasing the probability of obtaining the same points in the constellation for
different realizations of the same point cloud.

1.1 Using Geometric Graphs

We will consider the point cloud as a geometric graph. Nodes of the graph
corresponds to points and edge weights to distances. We hypothesize that central
points are robust across realizations of point clouds. Our objective is to produce
results similar to that of a labeled point cloud.

(a) Realization A (b) Realization B

Fig. 2. Two realizations of the same point cloud. Black points are common in both
realizations. Gray points appear only in one of the realizations. (Color figure online)

Figure 2 illustrates the problem. We have two realizations of the same point
cloud: the points match up to a certain amount of noise, and gray points illustrate
insertions and deletions. The objective is to obtain a stable anchor from the point
cloud by only inputting the point configuration. Notice that without labels, e.g.,
energy levels, we cannot use the same technique as in Shazam.

The proposed solution is illustrated in Fig. 3. The point cloud is enriched by
assigning each point a centrality measure. In the example, we used Betweenness
centrality, discussed below in the manuscript. Heaviness represents centrality;
heavier points are more central. Notice that heavy points could be gray or black.
Gray heavy points will not be reproducible because they are artifacts from the
realization. We believe this procedure will produce enough robust or stable points
to identify a point cloud correctly. We will analyze this in the experimental
section.
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(a) Betweenness centrality in Realiza-
tion A

(b) Betweenness centrality in Realiza-
tion B

Fig. 3. Centrality in two realizations of the same point cloud. Black points are common
in both realizations. Gray points appear only in one of the realizations. (Color figure
online)

2 Measures of Centrality

In this section, we describe the centrality measures studied in this work. In par-
ticular, we focused our attention on the Tukey depth, the Betweenness centrality,
and three approaches based on the Half-Space Proximal Graph (HSP).

2.1 Tukey Depth

Let S ⊂ R
d be a finite set of n points. The Tukey depth of a point p ∈ S is

defined as the minimum number of points of S contained in any closed half-space
containing p. Notice that points in the boundary of S will have smaller depth
values compared to those in the inner regions.

2.2 Betweenness Centrality

Betweenness centrality is a general measure of centrality in a graph based on
shortest paths. There is at least one shortest path between every pair of nodes
in a connected graph. For unweighted graphs, the shortest path minimizes the
number of edges in the path, and for weighted graphs, it minimizes the sum
of the weights of the edges. The betweenness centrality of a node is defined as
the number of shortest paths that pass through that node, and the following
expression gives it

g(u) =
∑

s �=u�=t

σst(u)
σst

(1)

where σst is the total number of shortest paths from s to t and σst(u) the
number of those paths passing through u (the ones having u as end-node are not
considered).
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Algorithm 1: HSP Test (to be applied to each node in the graph)
Input: a node u of a geometric graph and a list L1 of edges incident to u
Output: a list of directed edges L2 which are retained for the HSP graph

1 Set the forbidden area F(u) to be ∅
2 while L1 is not empty do
3 Remove from L1 the shortest edge, say (u, v) (any tie is broken by smaller

end-node label) and insert into L2 the directed edge (u, v) with u being the
initial node

4 Add to F (u) the open half-plane determined by the line perpendicular to
the edge (u, v) in the middle of the edge and containing the vertex v

5 Scan the list L1 and remove from it any edge whose end-node is in F (u)

2.3 Half-Space Proximal Graph

Chavez et al. proposed the Half-Space Proximal (HSP) graph in [2]. This graph
has many desirable properties for network applications. In particular, ad-hoc
networks are represented by Unit Disk Graphs (UDG), where the nodes rep-
resent network hosts. An edge connects two nodes if the Euclidean distance
between them is less than a given unit, where the unit represents the common
transmission range of the hosts. The HSP test determines the neighbors retained
within each node’s range for constructing a geometric sub-graph of the UDG.
That sub-graph is referred to as the HSP graph, and it is a sparse directed or
undirected sub-graph of the UDG. Using a sub-graph of the UDG is useful in
many network tasks like power optimization or routing.

The HSP is conjectured to be t-spanner with a finite stretch factor; it is
invariant under similarity transformations, the max out-degree of the HSP ele-
ments depends on the intrinsic dimensionality of the data, and it corresponds to
the kissing number of that dimension. For dimensions 1, 2, 3, and 4 it is known
that the max out-degree is 2, 6, 12 and 24, respectively. For higher dimensions,
only lower and upper bounds are known. In this work, we will make use of those
results.

Let S be a point set in the Euclidean plane. The HSP test is performed at
each point pi ∈ S, and it partitions S using a set of representative points based
on the neighbors of pi. Those representative points are connected to pi in the
HSP graph. For constructing the HSP graph, in this work, we assume we have
a geometric graph G = (V,E) with coordinates (ux, uy) for each node u in the
Euclidean plane. Each vertex has a unique integer label. The method for selecting
the neighbors for each node in the HSP graph is described in Algorithm1 and
an example is shown in Fig. 4. That figure illustrates the process of discarding
elements in the forbidden half-space represented by a shaded area. An edge
(u,w) is forbidden by an edge (u, v) if the Euclidean distance between w and v
is smaller than the one between w and u. An important feature of the HSP test
is that there is no explicit use of the nodes’ coordinates, and each node chooses
its neighbors without setting parameters.
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Fig. 4. An illustration of the HSP test for a point in the Euclidean plane.

The HSP degree is a good centrality estimation of each element in a point
set. One can observe that nodes in the HSP graph with higher out-degree, for
example, ≥4 in the Euclidean plane, are located in the central regions. With the
above, we can compute a candidate solution to our problem.

2.4 HSP Depth

The HSP test can be used to compute an approximation of the Tukey depth of
a point p. Each point of that set and p define a half-space in this work. Thus,
we count the number of points in each of those half-spaces containing p, and
the minimum value is used to approximate the Tukey depth. We denote this
approach as HSP Depth.

2.5 HSP* Degree

Notice that HSP is defined for any metric space. In particular in the above defini-
tions we used the euclidean distance between two dimensional points. Changing
the metric will produce a different graph for the same set of vertices. If we can
assign a set to each point in the cloud, then we can use a distance between sets
as a metric. There are several candidates to set distances, one of them is the
Dice coefficient defined as D(X,Y ) = 2|X∩Y |

|X∪Y | . We can still use the HSP test
Algorithm 1 to build the graph, just changing the appropriate line. In the HSP*
we first compute the reverse k-nearest neighbors of each point in the cloud. This
set will be used as a proxy for the point and the distance between vertices will
be now the Dice coefficient between the corresponding sets. Essentially we are
counting the number of common reverse k-nearest neighbors, for a large k, for
any given pair of points. We denote this variant as HSP*.

3 Experiments

This section presents an experimental evaluation of the previous approaches to
compute a candidate set of points that are more likely to be identified again if
the original cloud is subject to perturbations.
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3.1 One Concrete Example

Before obtaining the average performance over a large population of point clouds,
let us illustrate the heuristic. Figure 5 shows the main idea graphically. Realiza-
tion A (left) and realization B (right), were processed independently. We com-
puted the corresponding centrality and retained only the 20% of the most central
points. We need only three points in each point cloud for a similarity transfor-
mation to determine the parameters and identity. We can observe that we obtain
more than the bare minimum with this procedure. Notice also that realization A
and realization B are noisy versions of each other, plus insertions and deletions.

3.2 Experimental Setup

We created a database of 1000 point clouds in R2. Each point cloud Pi has
100 points randomly generated in [0, 1024] × [0, 1024]. We studied the perfor-
mance of each approach under two types of perturbations: noise and insert/delete
operations. The goal of each experiment was to quantify how many candidates
obtained in the original clouds persist in the perturbed versions of the clouds.

Note that the Betweenness centrality requires a graph; thus, in our case, the
k-nearest neighbor graph of each Pi with k = 50 is used. Additionally, the HSP*
requires the reverse nearest neighbors of each point. In that case, we computed
them employing the k-nearest graph of each Pi with k = 20.

For both experiments, first, we computed the cardinality of the set of points
in Pi having an out-degree ≥4, using the HSP test. We denote that value as
ci, and it is the number of points retrieved after each approach is executed.
We ranked the points according to the corresponding criteria for each centrality
test. For example, when the Tukey depth is considered, we sort the results in
descending order; thus, the most central points are the top. Then, we selected
a set of cardinality ci containing the points with the highest rank; those points
are used for the comparisons. The sets obtained for each centrality measure in
the original clouds correspond to the baseline.

In the experiments, we report both the precision and the average cardinality
of the intersection between the baseline and the results obtained under pertur-
bations. Note that in some applications, like computing an affine transformation
between point clouds, retrieving a minimum number of stable points is more
important than achieving perfect precision.

3.3 Noise

For this experiment, we perturbed a subset of points in each Pi with random
uniform noise in [0, 100] before applying the centrality tests. Some results of
the experiment are shown in Fig. 6b. That figure reports the precision of each
approach vs. the fraction of points perturbed with noise. Support of 1.0 indicates
that none of the points in the original cloud were perturbed, and a value of 0.7
than 70% of the points remain clean, and 30% of them were perturbed with
noise. Figure 6d shows the average cardinality of the intersection vs. the fraction
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(a) Realization A - HSP (b) Realization B - HSP

(c) Realization A - HSP Depth (d) Realization B - HSP Depth

(e) Realization A - Betweenness (f) Realization B - Betweenness

(g) Realization A - Tukey (h) Realization B - Tukey

Fig. 5. For a fixed point cloud and two realizations (A and B), we show the preserved
points after applying several centrality tests. We selected the 20 most central points,
black points correspond to the points preserved across realizations. (Color figure online)
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of points. In both figures, we can observe that the Tukey depth, the HSP Depth,
and the Betweenness centrality test achieve the best performance under noise
conditions. The dashed line in Fig. 6b indicates the minimum number of stable
points needed to compute an affine transformation between two clouds.

(a) Precision (b) Intersection

Fig. 6. Performance under noise conditions

3.4 Deletions and Insertions

In this experiment, a subset of points in each Pi was replaced by another subset
(with the same cardinality) of randomly generated points. The precision is shown
in Fig. 7a and the average cardinality of the intersection in Fig. 7b. Support of
1.0 indicates that none of the points in the original cloud were removed, and a
value of 0.7 indicates that 30% of them were replaced. Again, in both figures,
we can observe that the Tukey depth, the HSP Depth, and the betweenness
centrality achieve better performance.

(a) Precision (b) Intersection

Fig. 7. Performance under insert/delete operations
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4 Conclusions and Future Work

We showed experimentally that it is possible to extract a robust constellation
from unlabeled point clouds using the notion of centrality. The upper bound
of Tukey centrality we propose is the most stable centrality for constellation
extraction.

The method shown can be easily generalized to higher dimensions, given that
we used only the distance between points to compute the centralities.
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Abstract. Human motion data are beginning to appear in many appli-
cation domains, which brings a need to develop user-friendly motion
processing applications. One of important open challenges is the presen-
tation of high-dimensional spatio-temporal motion data to end users in a
way that is easy to understand and allows fast browsing and exploration
of the motion datasets. For many applications such as computer-assisted
rehabilitation or motion learning, it is also very desirable to visualize the
differences between two motion sequences. In this paper, we present a
publicly available software tool that provides the visualization function-
ality for individual motion sequences, comparison of two motions, and
exploration of large motion datasets.

Keywords: Human motion data · Skeleton sequences · Visualization ·
Multimedia exploration · Explainability of similarity

1 Motivation

Human motion can be described by a sequence of skeleton poses, where each pose
keeps 2D/3D coordinates of important body joints in a specific time moment.
Such spatio-temporal skeleton data can be utilized in a number of applica-
tion domains, ranging from gaming and sports to healthcare and security [12].
With the recent advances in human pose estimation from ordinary videos [4],
a huge explosion of motion processing application can be expected in the near
future. Consequently, efficient and effective tools are needed for different phases
of motion data processing.

In this paper, we study the problem of motion data understanding from the
user point of view. Motion data are a rich source of information, but in their
raw form they are represented by long vectors of float numbers, which are com-
pletely uninteligible to humans. This is typically solved by displaying the source
video recordings, when available, or creating animations of the skeleton data [13].
However, viewing the videos or animations is time-consuming and therefore not
suitable for situations where users desire to quickly grasp the content of multiple
motion sequences, e.g., when browsing or querying collections of motion data.
Therefore, we propose to represent each motion by a single static image that
captures the most significant poses and can be read at a glance. We focus espe-
cially on the visualization of so-called motion actions, which are short motions
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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with a clear semantic meaning, e.g. a jump, throw, or a cartwheel. While the
motion data can be captured as a long unsegmented sequence, users are typi-
cally interested in retrieving and viewing only the short segments that contain
some activity of interest. If needed, the longer motions can be represented as
sequences of images for individual segments.

Apart from the motion data itself, it is also difficult to understand, and
explain, how the similarity between two motion actions is measured. The concept
of similarity is instrumental to all motion processing tasks, ranging from query-
by-example searching to action classification, event detection, or computer-aided
rehabilitation [12]. Although the similarity is often hidden in complex machine
learning models such as neural networks, we need to understand it to be able to
interpret, analyze, and optimize the machine learning techniques, and to improve
our own movements in computer-assisted motion learning. Therefore, evaluations
of motion similarity are another area that calls for easy-to-understand visualiza-
tions.

Yet another set of challenges appears when we extend our focus to large
collections motion data. Let us consider some popular motion datasets, such as
HDM05 [10], PKU-MMD [5], or NTU [6]. These contain thousands or tens of
thousands of motion actions, accompanied by metadata that determine their
semantic categories. After downloading such dataset, it is possible to find out
the number of categories, their frequencies, and view the videos of some random
samples. However, there is no efficient way to gain insight into what really hap-
pens in the individual motion sequences, how diverse the categories are, if there
are any natural clusters, etc. Yet all this information is essential for designing
the motion processing applications.

To answer all these challenges, we have created a new JavaScript library for
motion data visualization and exploration. The MocapViz library1 offers three
mutually cooperating modules: visualization of individual short motions, visual
explanation of differences between two motion sequences, and effective explo-
ration of large motion data collections. The first two modules can be integrated
within an arbitrary web presentation that utilizes motion data. The exploration
module produces a complete web presentation of a given motion dataset, which
allows interactive data browsing as well as detailed inspection of selected motions
and their relationships. The functionality of all modules is demonstrated in two
public web interfaces for the exploration of HDM05 and PKU-MMD datasets.

2 Preliminaries: Processing of Human Motion Data

Human motion is recorded as sequence S = (P1, . . . , Pl) of skeleton poses Pi

(1 ≤ i ≤ l), where each pose Pi ∈ R
j·dim represents the skeleton configuration

estimated in time moment i and consists of dim ∈ {2, 3} coordinates of j tracked
joints. The number and position of the body joints and the dimensionality dim
depends on the hardware or software tools used to acquire the data. We denote
this as the body model and take it as one of the visualization inputs.
1 http://disa.fi.muni.cz/research-directions/motion-data/mocapviz/.

http://disa.fi.muni.cz/research-directions/motion-data/mocapviz/
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The raw skeleton sequences are spatio-temporal data, which can be com-
pared by sequence alignment methods. In particular, the Dynamic Time Warping
(DTW) algorithm [9] is usually applied, since it takes into account the possible
differences in speed of the compared movements. The algorithm finds optimal
matching between the poses of the two compared motions, and computes the
overall distance as the sum of distances of the mapped poses. However, the pro-
cessing of raw skeleton sequences with DTW is rather expensive due to the high
dimensionality of the skeleton data and the quadratic computation time of the
DTW. Moreover, some complex relationships between motions may not be dis-
covered by the DTW. Therefore, state-of-the-art motion processing techniques
often represent motions by some derived features and learn complex similar-
ity models by machine learning techniques, especially the neural networks [12].
These approaches provide very good application results, but the similarity com-
putation is embedded in the learned model and cannot be easily explained.

The objective of our work is to visualize motion data and explain their simi-
larity in a way that is easily understandable to humans. For the visualization of
individual movements, the raw skeleton data representation is the most suitable,
since it is the most detailed and semantically clear. For the comparison of two
motion sequences, we utilize sequence alignment methods that can be intuitively
explained over visualizations of the skeleton sequences.

3 Visualization of Single Motion Sequence

As discussed earlier, motion data are usually surveyed by watching the source
video, if available, or watching the animated skeleton sequences. Sequences of
stick figures are routinely used to represent motions in research papers, but
these are created manually. In [3], the technique of MotionCues is proposed,
which creates a single 3D figure representing the whole motion, with arrows
expressing the movement of individual body parts. This visualization is compact
and well understandable, but only suitable for very simple actions. The Motion
Belts technique [15] is the most similar to ours: it draws selected key-poses
on a timeline and uses pose coloring to express their orientation. However, the
poses are sometimes clumped together, making it difficult to determine what is
happening, and the use of moving viewpoint is not very intuitive.

The MocapViz motion visualization module represents each action by a single
static image, which contains the most representative poses placed on a timeline
(Fig. 1). The keyposes are selected by a curve simplification algorithm and ren-
dered as 2D stick figures. A few poses preceding each keypose are also drawn with
a low opacity, which provides a better feeling of the movement. For each motion,
a static camera position is chosen so that maximum information is shown; the
camera is typically placed orthogonally to the motion direction. To make the
poses easier to read, we use different colors for left/right body parts, and add
artificial “nose” line that expresses the direction where the skeleton is looking.
Furthermore, we also provide a bird-eye view of the motion in space, to allow
better understanding of the spatial dimension that is lost in the 2D image.
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Fig. 1. Cartwheel motion from the HDM05 dataset visualized in a single image. The
bird-eye view map on the left shows how much the person moved in space.

The MocapViz library can visualize any type of skeleton-based human motion
data, provided that the appropriate body model is supplied. The most popular
Vicon and Kinect body models are already included in the library. Noticeably,
the visualizations are only able to display the movement of a single person. Inter-
actions between several people are more difficult to depict because of the spatial
relationships between the skeletons, and would require a different approach.

4 Understanding Motion Similarity

The evaluation of similarity between two motion sequences is the core concept
of all motion processing tasks, and its explanation is vital for both researchers
and common users who work with motion processing applications. A superficial
understanding of motion similarity can be obtained by visually comparing the
motion images presented in the previous section, but much more insight can be
gained from a detailed analysis of the sequence mapping found by the sequence
alignment methods.

The visualization of the DTW mapping over skeleton sequences is studied
in several existing research works. Malmstrom et al. [7] focus on angles of the
joints making up individual body parts and visualize their differences in several
graphs, which are detailed but difficult to understand for common users. In [2],
color-coded bars are used to depict the development of motion in time. Urribarri
et al. [14] focus on the visualization of time differences between the two com-
pared motions. However, none of these techniques combines the visualizations of
mapping with visualization of individual skeleton sequences, nor do they provide
a combination of multiple views on the sequence differences.

In MocapViz, on the other hand, we strive to provide a comprehensive view
on the dissimilarity of two movements. Therefore, we have designed several new
visualizations that focus on different aspects of the motion data. The first two are
shown in Fig. 2, the other two examples are not included due to space restrictions
but can be found on the web-page of the MocapViz library.

– Overall similarity of motion sequences (Fig. 2-A): To visualize the complete
pose-to-pose mapping of the compared sequences, we first represent each
motion by the motion image presented earlier. To be able to draw the mapping
among all poses and not just the key-poses depicted in the motion image, we
add a time-line of dots representing all the poses. The dots are connected by
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Fig. 2. Two views on the differences between two clapping motions from the HDM05
dataset. We can observe that the main differences occur when the actors move their
hands apart – one of them claps faster and doesn’t move hands far apart, the other
one spreads his hands more.

lines that express the optimal pose-to-pose mapping, colored on the red-green
scale to express the closeness of individual mapped poses. Depending on user
settings, the closeness of pose matching can be evaluated in the context of the
specific two actions (thus highlighting even small differences in two similar
motions) or in the context of the whole dataset (to better distinguish between
minor and major differences).

– Differences of matched poses in individual body parts (Fig. 2-B): Some pairs
of motions may only differ e.g. in the movement of hands, while the legs are
static or move in the same way. To highlight such situations, we visualize the
closeness of pose mapping for individual body parts.

– Detailed view on the matched poses : For any two mapped poses, it is possi-
ble to view the detailed drawing of the poses and the computed differences
between individual body parts.

– Visualization of time alignment : In this view, we detect and visualize the
changes of speed in the compared motions, using the algorithm of [14].

In the current implementation, the optimal mapping between two skeleton
sequences is determined by the DTW algorithm. However, the implementation is
extensible, so the DTW distance can be seamlessly replaced by other sequence
alignment algorithms. The only input required by the MocapViz module for
visualization of movement differences are the two motion sequences to be com-
pared, normalized according to user preferences. Data normalization is not part
of the visualization procedure, since different approaches to position or orienta-
tion normalization may be suitable for individual use cases.
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5 Exploration of Human Motion Datasets

The aim of multimedia exploration is to reveal the content of a whole multimedia
collection, often totally unknown to the users who access the data. The explo-
ration principles are mostly studied in the domain of image retrieval [8,11]. To
the best of our knowledge, only one similar technique exist for motion data [2].
However, this approach focuses on the level of individual poses, which is useful
for understanding detailed variations of a small collection of movements (e.g.
for gaming and animation applications) but not for the browsing of large collec-
tions. Therefore, we took inspiration from the image exploration interfaces and
combined them with our methods for motion data visualization.

The construction of exploration systems for large datasets usually comprises
two steps. First, the large input collection has to be organized into a hierarchical
tree structure, so that individual nodes of the tree can be visualized on a single
screen. Next, the actual visualization needs to be designed, allowing intuitive
browsing through the hierarchy and presenting each node in a way that conveys
the maximum information about the relationships between individual objects
within the node. For collections of motion sequences, we further find it important
to incorporate the information about semantic categories of individual motions
into the exploration interface. Let us recall that motion collections such as the
HDM05, PKU-MMD, or NTU datasets contain short motion sequences sorted
into semantic categories that determine the type of the motion (jump, run, etc.).
For people who want to familiarize themselves with the dataset, it is also very
relevant to see to what extent the semantic categories agree with the natural
clustering of data as provided by the content-based distance measures (e.g., the
DTW algorithm). Therefore, the additional objective of our exploration interface
is to allow browsing by both the semantic categories and the content-based
clusters, and to provide information about the semantic diversity of the content-
based clusters.

Preparation of the Hierarchical Structure. We process the input dataset in a top-
down manner, gradually breaking the collection into smaller clusters of mutu-
ally similar objects. Sufficiently small clusters become the leaf nodes of the tree
hierarchy, larger clusters give rise to subtrees. In particular, we utilize the hier-
archical k-medoid clustering, which allows us to limit the number of subtrees
for each internal node of the hierarchy. The parameter k was set to 10, with
the maximum size of the leaf nodes being 20. During the construction of the
hierarchical tree, we also collect some interesting statistics, such as the sizes of
individual subtrees or the number of different semantic categories contained in
each subtree. A separate hierarchy is also computed for each semantic category
that contains more than 20 objects.

The computation of the hierarchical structures is performed off-line, using
the MESSIF library for content-based data management [1], and the results are
saved as a JSON file. If preferred, users can employ their own tools to produce the
hierarchies in the defined format and submit them to the exploration interface.
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Fig. 3. Visual exploration of the HDM05 dataset.

Exploration Interface. The exploration interface is the third module of the
MocapViz library. It was designed to allow easy orientation and browsing in
the collection, and to provide rich information about individual motion objects
and their relationships. The interface consists of three main parts (see Fig. 3).

In the central part, users can browse the hierarchical tree structure (either
complete or for a selected semantic category) and display individual nodes. In
case of leaf nodes, all objects in the node are shown, whereas for inner nodes
of the hierarchical tree, we show the medoids of the subtrees. The next level of
the hierarchy is accessed by double-clicking on the subtree representative. The
nodes are displayed using the force-based layout [8], which places the objects on
the screen in such way that the more similar ones are close to each other and the
more distant objects are placed further apart. Individual objects are represented
by the motion images, edges between them are color-coded to express the level of
similarity and upon clicking reveal the full visualization of the similarity between
the two connected motions. The motion images representing subtrees of the
hierarchy also contain information about the size of the respective subtree and
a pictogram that expresses the subtree diversity in terms of semantic categories.

The left and right panels of the exploration interface contain additional
details about the selected action and cluster, respectively. The action details
include a full motion image of the given action, its animation, and information
about related actions. For clusters, we provide more detailed information about
the distribution of semantic categories within the cluster.

6 Conclusions

Visualization of human motion data is an important part of creating insightful
and user-friendly motion processing applications. The MocapViz library pre-
sented in this paper provides a unique set of techniques for visualizing human
motion data, explaining their relationships, and exploration of large motion
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datasets. Its functionality is demonstrated in two public interfaces for the explo-
ration of the HDM05 and PKU-MMD datasets. The exploration interfaces as
well as the MocapViz library are available at http://disa.fi.muni.cz/research-
directions/motion-data/mocapviz/.
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Abstract. The merit of projecting data onto linear subspaces is well
known from, e.g., dimension reduction. One key aspect of subspace pro-
jections, the maximum preservation of variance (principal component
analysis), has been thoroughly researched and the effect of random lin-
ear projections on measures such as intrinsic dimensionality still is an
ongoing effort. In this paper, we investigate the less explored depths of
linear projections onto explicit subspaces of varying dimensionality and
the expectations of variance that ensue. The result is a new family of
bounds for Euclidean distances and inner products. We showcase the
quality of these bounds as well as investigate the intimate relation to
intrinsic dimensionality estimation.

1 Introduction

The probably most important research on linear subspace projections was writ-
ten by Pearson in his 1901 paper on Principal Component Analysis (PCA). The
concept of PCA explains how the variance of a data set can be decomposed into
orthogonal components, each of which covers the maximum amount of variance.
This fundamental result has been employed in many fields including dimension-
ality reduction, clustering [1], intrinsic dimensionality estimation [5], and many
more. The decomposition also implies linear projections that preserve the least
amount of variance. Yet, it yields little information on the less tangible middle
ground of random projections. The Johnson-Lindenstrauss lemma shows that
random projections can preserve distances well, and the effect of random pro-
jections on, e.g., intrinsic dimensionality [6] has also been explored in the past.
But we could not find literature on the effect of random projections on the vari-
ance itself. In this paper, we investigate the effect on a projected point’s squared
norm which entails effects on the variance of the data set. The arising bounds for
the Euclidean distance as well as for inner products are explored in Sect. 2. The
projections required for these bounds rely on the normal vectors of the linear
subspace on which we project, which are drawn from the data set itself. Using
measures based on points from the data set to assess boundaries on norms is a
concept already employed in, e.g., spatial indexing. Methods like LAESA [7] use
so-called pivot/reference/prototype points and the triangle inequality to prune
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the data set during spatial queries. Tree-based methods like the Balltree [8] use
the triangle inequality to exclude entire subtrees, while permutation based index-
ing [3,14] uses the relative closeness to reference points to partition the data.
The central points in these approaches fulfill a role equivalent to pivots. Using
pivots for random projections, however, yields fundamentally stronger pruning
capabilities, as discussed in Sect. 2. In Sect. 3, we analyze the expected values of
variance preserved by random projections. These expectations are closely related
to PCA, yet costly to compute exactly. To compensate for the computational
cost and fathom the relation to eigenvalues we propose an approximation of
the expected values in terms of eigenvalues. The expected values are related
to the Angle-Based Intrinsic Dimensionality (ABID) estimator [13]. We explore
the relationship in Sect. 4, which leads to a tangible link between indexing com-
plexity and intrinsic dimensionality. To highlight the practical implications as
well as showcase the efficacy of the introduced bounds we propose a very simple
index and our empirical results in Sect. 5. Lastly, we close with a summary of
this paper and a short outlook on future research in Sect. 6.

In this paper, we denote the i-th eigenvalue of some matrix M with λ
(M)
i .

We do not care about the specific order of eigenvalues but assume that corre-
sponding eigenvalues of matrices that admit the same eigenvectors are in the
same order. We write M c as an abbreviation for V ΛcV T where V is the matrix
containing the eigenvectors of M as columns and Λc is the diagonal matrix con-
taining (λ(M)

i )c on the diagonal. We write C(X) for the covariance matrix of
data sets X where we assume X to be origin-centered unless otherwise speci-
fied. We denote the normalizations of vectors x and data sets X with x̃ and ˜X,
respectively. Whenever Euclidean spaces and distances are discussed, the dot
product is implied by the inner product.

2 Pivotal Bounds in Euclidean Spaces

We consider linear subspace projections of query points onto the linear subspace
spanned by (not necessarily orthogonal) pivots or reference points {r1, . . . , rk},
k ≤ d drawn from the same distribution as the analyzed data set, e.g., by choosing
them from the data set itself. In the case of affine subspace projections, both the
query and reference points are shifted by a center point c. We assume all (shifted)
reference points to be linearly independent. Otherwise, we discard reference
points until linear independence holds. The projection π(x−c; r1−c, . . . , rk−c)
of some shifted query point x−c onto the affine subspace (shortened to π(x−c)
whenever the choice of reference points is clear) is then given by

π(x − c) =
∑k

i=1
〈x − c, r̂i〉 r̂i (1)

where the r̂i are the normalized orthogonal vectors obtained from the Gram-
Schmidt process applied to the ri−c. These can be recursively computed from

r̂1 =
r1 − c

‖r1 − c‖ r̂i =
(ri − c) − ∑i−1

j=1 〈ri − c, r̂j〉 r̂j
∥

∥

∥(ri − c) − ∑i−1
j=1 〈ri − c, r̂j〉 r̂j

∥

∥

∥

(2)
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where ‖x‖ is shorthand for 〈x, x〉1/2. In the following, we will repeatedly require
the evaluation of 〈·, r̂i〉 and ‖π(·; ·)‖. Although (1) and (2) can be evaluated
explicitly every time, it can be more convenient to represent the (squared) norm
after projection in terms of inner products (especially in kernel spaces):

‖π(x − c)‖2 =
∑k

i=1
〈x − c, r̂i〉2 (3)

since all r̂i are normalized and pairwise orthogonal. We can reduce 〈·, r̂i〉 to

〈x − c, r̂i〉 =
〈c,c〉−〈c,x〉−〈c,ri〉+〈x,ri〉−

∑i−1
j=1〈x−c,r̂j〉〈ri−c,r̂j〉

(〈c,c〉−2〈c,ri〉+〈ri,ri〉−
∑i−1

j=1〈ri−c,r̂j〉2)
1/2 (4)

which can also be used recursively to compute the 〈ri − c, r̂j〉 in (4). In the
non-affine case, c = 0, (4) simplifies to

〈x, r̂i〉 =
〈x,ri〉−

∑i−1
j=1〈x,r̂j〉〈ri,r̂j〉

(〈ri,ri〉−
∑i−1

j=1〈ri,r̂j〉2)
1/2 (5)

Note that the denominator and parts of the nominator need to be computed
just once. Further, we omit the explicit computation of any r̂i which would be
infeasible in, e.g., RBF kernel and general inner product spaces. With dynamic
programming, ‖π(x − c)‖2 can be computed in Θ(pk2) time, where p is the effort
required to compute an inner product.

In spatial indexing, pivots have been successfully used to bound distances
via the triangle inequality [7,8]. We propose to bound distances in terms of a
decomposition of the squared Euclidean norm into dot products given by

dEuc(x, y)2 = ‖x − y‖2 = 〈x − y, x − y〉 = 〈x, x〉 + 〈y, y〉 − 2 〈x, y〉 (6)

From this we can derive bounds for the Euclidean distance between two points
given a bound on the dot product 〈x, y〉, assuming 〈x, x〉 and 〈y, y〉 are known.
Let r̂1, . . . , r̂k be pivot points previously orthogonalized by the Gram-Schmidt
process as defined in Sect. 3. We can decompose x−c and y−c into k components
aligned along the r̂i and one orthogonal remainder. We will call this (k + 1)-th
component x⊥ and y⊥, respectively. It then follows that

〈x − c, y − c〉 = 〈x⊥, y⊥〉 +
∑k

i=1
〈〈x − c, r̂i〉 r̂i, 〈y − c, r̂i〉 r̂i〉 (7)

Because the r̂i are pairwise orthogonal, this decomposition is uniquely defined.
Since all r̂i have a unit norm, we can rewrite this equation to

〈x, y〉 = 〈x⊥, y⊥〉 + 〈c, x〉 + 〈c, y〉 − 〈c, c〉 +
∑k

i=1
〈x − c, r̂i〉 〈y − c, r̂i〉 (8)

All of the terms on the right-hand side then either depend on x or y, but not
on both, except for 〈x⊥, y⊥〉. In the semantics of Euclidean spaces, both x⊥
and y⊥ lie in the same (d−k)-dimensional linear subspace. We can compute both
as x⊥ = (x − c) − π(x − c) and y⊥ = (y − c) − π(y − c), respectively, but do not
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(a) Combined center and pivot
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(b) Intersection of triangle inequality

Fig. 1. Eligible search spaces around a query point q after filtering with the lower
bounds obtained from one, two, or three centers and/or pivots.

know their relative orientation. Yet, we can bound their inner product using
the Cauchy-Schwarz inequality resulting in the bounds ±(〈x⊥, x⊥〉 · 〈y⊥, y⊥〉)1/2.
By orthogonality of x⊥ and π(x − c) we know ‖x⊥‖2 = ‖x − c‖2 − ‖π(x − c)‖2.
The bounds for the inner product 〈x − c, y − c〉 then follow as

〈c, x〉 + 〈c, y〉 − 〈c, c〉 +
∑k

i=1 〈x − c, r̂i〉 〈y − c, r̂i〉

±
⎛

⎝

(

〈x, x〉 + 〈c, c〉 − 2 〈c, x〉 − ∑k
i=1 〈x − c, r̂i〉2

)

·
(

〈y, y〉 + 〈c, c〉 − 2 〈c, y〉 − ∑k
i=1 〈y − c, r̂i〉2

)

⎞

⎠

1/2

(9)

which in the non-affine case, c = 0, becomes

k
∑

i=1

〈x, r̂i〉 〈y, r̂i〉 ±
((

〈x, x〉 −
k

∑

i=1

〈x, r̂i〉2
)

·
(

〈y, y〉 −
k

∑

i=1

〈y, r̂i〉2
))1/2

(10)

Inserting both of these values into (6) gives bounds on the squared Euclidean
distance and, consequentially, on the Euclidean distance. These bounds are a
generalization of at least two bounds known from the literature. When we assume
the affine case and k = 0 pivots, the bounds derived from (6) and (10) reduce to

〈x, x〉 + 〈y, y〉 − 2 〈c, x〉 − 2 〈c, y〉 + 2 〈c, c〉 ± 2 ‖x − c‖ ‖y − c‖ (11)

= (‖x − c‖ ± ‖y − c‖)2 (12)

which are the bounds easily derivable from the triangle inequality. For the
non-affine case with k = 1 pivots and normalized x and y, the inner product
bounds (10) reduce to

〈x, r̂1〉 〈y, r̂1〉 ±
((

1 − 〈x, r̂1〉2
) (

1 − 〈y, r̂1〉2
))1/2

(13)

which is the triangle inequality for cosines introduced in [10]. Triangle-inequality-
based bounds have been used in spatial indexing in methods like, e.g., LAESA [7].
For multiple pivots, these approaches take the minimum or maximum of the
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bounds obtained separately for each pivot. In our terminology, we refer to such
pivots as centers c. Those are fundamentally different from the term pivots intro-
duced here: When performing an ε-range query for a query point y, the eligible
search space for vectors x according to the upper bound in (12) is a hyperspheri-
cal shell centered at c. This geometric shape can be described as the sumset (the
set of all sums of pairs in the cartesian product) of a (d−1)-sphere of radius ‖y−c‖
centered at c and a d-ball of radius ε. When using pivots as per our definition,
each pivot induces a hyperplane orthogonal to the r̂i which intersects with the
hypersphere. Consequentially, the resulting eligible search space is the sumset
of a (d−1−k)-sphere of radius (‖y−c‖2 − ‖π(y−c)‖2)1/2 and a d-ball of radius ε.
This is illustrated in two dimensions in Fig. 1. Each of the pivots eliminates an
entire dimension from the sphere-part of the search space whereas the minimum
lower bounds obtained from multiple centers produce an intersection of multiple
hyperspherical shells. While d−1 pivots can reduce the search space to the sum-
set of at most 2 points and an ε-ball, the intersection of even d hyperspherical
shells in the best case produces a volume that can be roughly described as a
distorted hypercube with an “edge length” of about 2ε. The resulting volume
can be exponentially larger in d than the search volume using d−1 pivots. As
the volumes of regular shapes in Euclidean space expand exponentially in dimen-
sions, one would expect an approximately exponential reduction in search space
over an increasing number of pivots, whereas using the minimum upper bound
over multiple centers does not induce such a reduction in search space volume. It
is, therefore, of little surprise that the cosine bounds introduced in [10] (k = 1),
produced tighter bounds empirically than the triangle inequality (k = 0), and
were successfully applied to improve the performance of spherical k-means clus-
tering [11]. Qualitatively, there is a clear argument for using a larger amount of
pivots. However, the reduction in search space comes at the price of increased
computational cost as the evaluation of 〈y, r̂i〉 is quadratic and the evaluation
of the bounds is linear in k. Blindly increasing k is not universally advantageous
for the computational cost of spatial indexing queries. But how many pivots
tighten the bounds enough to counterweigh the overhead? More precisely, how
much more of a point’s squared norm does the k-th randomly drawn pivot drawn
cover on average? Although the answer does not refer to an optimal pivot choice,
by arguing over expectations of underlying distributions, this conservative argu-
ment likely holds for previously unknown query points.

3 Expected Variance of Random Projections

The analysis of squared norms after projection is closely related to spectral
analysis. If we chose any normalized vector v, Ex∈X [‖π(x − Ey∈X [y] ; v)‖2] is
simply the variance of X in direction v. Consequentially, for any pair of a
normalized eigenvector ei and the corresponding eigenvalue λ

(C(X))
i , we know

that Ex∈X [‖π(x; ei)‖2] =λ
(C(X))
i for any origin-centered X. By orthogonality of

the eigenvectors, this argument can be extended to any number of eigenvectors
e1, . . . , en as



80 E. Thordsen and E. Schubert

E
x∈X

[

‖π(x; e1, . . . , en)‖2
]

=
∑n

i=1
λ
(C(X))
i (14)

Pearson [9] showed that the eigenvectors of the covariance matrix are precisely
the maximizers of this term, i.e. they are the solution to

arg max
e1,...,en

E
x∈X

[

‖π(x; e1, . . . , en)‖2
]

(15)

If one intended to evaluate how much of the squared norm of any point is
remaining after the projection onto k directions maximally, the answer imme-
diately follows from the sum of the k largest eigenvalues. Employing the cor-
responding eigenvectors as r̂i would then be a reasonable approach. Yet, both
eigenvectors and eigenvalues can be sensitive to noise in limited data sets [4].
They may not be an optimal choice when new and unknown data arises. We,
hence, focus on the expectation of these values for a random set of reference
points drawn from the data. More precisely we inspect

EΣ
k (X) := E

r1,...,rk∈X
∀i�=j:ri �=rj

[

E
x∈X

[

‖π(x − c; r1 − c, . . . , rn − c)‖2
]

]

(16)

As with the eigenvectors and eigenvalues of the covariance matrix, this expected
value is the sum of components introduced by each additional reference point
taken into consideration. This naturally sums up the total variance of the data
set for k = d. Through varying k we can obtain a cumulative description of how
much variance an arbitrary linear projection within the data set can explain
and the difference of neighboring values gives the amount of variance explained
at random by the k-th component. We will write this difference as Ek(X) :=
EΣ

k (X) − EΣ
k−1(X) where EΣ

0 (X) = 0. It follows that EΣ
k (X) =

∑k
i=1 Ek(X).

Practically evaluating the expected value from any data set X for any k � 1 is
infeasible, as it involves

(|X|
k

)

possible sets of reference points. It is much easier
to estimate the value by the Monte Carlo method (i.e. choosing a fixed number
of random sets of reference points) or to approximate it from the covariance
matrix if it well describes the data set’s distribution.

We will only consider the non-affine case of c = 0, as the affine case is anal-
ogous and introduces numerous subtractions hindering readability. We will also
omit the constraint that the reference points must not be linearly dependent to
improve readability. Starting from (16) we can deduce

Ek(X) = EΣ
k (X) − EΣ

k−1(X) = E
x∈X,

r1,...,rk∈X̃

[

〈

x, rk−π(rk;r1,...,rk−1)
‖rk−π(rk;r1,...,rk−1)‖

〉2
]

(17)

Here the term rk − π(rk; r1, . . . , rk−1) is the projection of rk onto the linear
subspace orthogonal to all r1, . . . , rk−1. We can represent this projection by a
matrix multiplication with a matrix, which we will call Ak−1.

= E
x∈X,

r1,...,rk∈X̃

[

〈x,Ak−1rk〉2
〈Ak−1rk,Ak−1rk〉

]

= E
x∈X,

r1,...,rk∈X̃

[

xT Ak−1rkrT
k AT

k−1

tr(Ak−1rkrT
k AT

k−1)
x

]

(18)
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By rewriting rir
T
i as Ri this further simplifies to

= E
x∈X,

r1,...,rk∈X̃

[

xT Ak−1RkAT
k−1

tr(Ak−1RkAT
k−1)

x

]

(19)

= tr

(

E
r1,...,rk−1∈X̃

[

E
rk∈X

[

Ak−1RkAT
k−1

tr(Ak−1RkAT
k−1)

]]

E
x∈X

[

xxT
]

)

(20)

By replacing Ex∈X

[

xxT
]

with the covariance matrix C(X) and renaming the
innermost expected value to Ck(X) we then obtain

= E
r1,...,rk−1∈X̃

[tr (Ck(X)C(X))] (21)

A0 is the identity matrix Id, as the linear subspace orthogonal to an empty set
of vectors is the entire space. Consequentially, we can define Ak recursively as

Ak = Ak−1 − Ak−1RkAT
k−1

tr(Ak−1RkAT
k−1)

= Ak−1 − Ak−1RkAk−1
tr(Ak−1RkAk−1)

(22)

As all Ri are symmetric, all Ai are symmetric as well. The expected value
over rk of Ak−1RkAk−1

tr(Ak−1RkAk−1)
now (approximately) equals the covariance matrix of

X after being projected to the linear subspace orthogonal to r1, . . . , rk−1 and
normalized. It follows immediately that C1(X)= C( ˜X) and thereby E1(X) =
tr (C( ˜X)C(X)). However, Ek(X) for k > 1 is much less easily defined because
the Ai are dependent on the effective values of all rj , j ≤ i, and not only on ri.
To circumvent the problem we assume that all Ai are aggregate matrices just like
C(X) and sufficiently independent of each other to evaluate the Ck(X) recur-
sively. To highlight this assumption we will denote the approximated Ai as a
function of X as Ai(X). We further assume that all Ai(X), Ci(X), and C(X)
admit the same eigenvectors, whereby

Ek(X) = E
r1,...,rk−1∈X̃

[tr (Ck(X)C(X))] =
∑d

i=1
λ
(Ck(X))
i λ

(C(X))
i (23)

We will hereafter omit the (X) in superscripts of eigenvalues for readability.
Although the resulting values are no longer exact due to these two assumptions,
they allow us to approximate the expected value by deriving the value of λ

(Ck )
i .

Assuming that X is multivariate normally distributed, we can extract this value
from the definition of Ck(X) using the corresponding eigenvector ei:

λ
(Ck)
i = eT

i Ck(X)ei = tr
(

eie
T
i Ck(X)

)

(24)

= E
rk∈X

[

rT
k Ak−1(X)eie

T
i Ak−1(X)rk

rT
k Ak−1(X)2rk

]

(25)

= E
rk∈N0d,Id

[

rT
k C(X)

1/2Ak−1(X)eie
T
i Ak−1(X)C(X)

1/2rk

rT
k C(X)1/2Ak−1(X)2C(X)1/2rk

]

(26)

= E
rk∈N0d,Id

[

rT
k eie

T
i C(X)Ak−1(X)2rk

rT
k C(X)Ak−1(X)2rk

]

(27)
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We now substitute C(X)Ak−1(X)2 with Dk−1(X) which entails λ
(C)
j

(

λ
(Ak−1 )
j

)2

is equal to λ
(Dk−1 )
j . In favor of brevity we will omit the exponent (Dk−1) from

here on. As per Proposition 2 in Kan and Bao [2], λ
(Ck )
i then equals

=
∫ ∞

0

tr
(

eie
T
i Dk−1(X)(Id + 2tDk−1(X))−1

)

|Id + 2tDk−1(X)|1/2 dt (28)

=
∫ ∞

0

λi

(1 + 2tλi)
1/2 ∏d

j=1 (1 + 2tλj)
1/2

dt (29)

This integral is closely related to elliptic integrals and we do not provide a
simple and closed-form solution. Solving the integral numerically would again
involve too much computational effort. We instead propose to substitute the λj

in the denominator with (λ2
i

∏d
j=1 λj)

1/(d+2) whereby the integral takes the form
of a scaled beta prime distribution:

λ
(Ck)
i ≈ λiB(α, β)

∫ ∞

0

tα−1
(

1+2(λ2
i

∏d
j=1 λj)

1
d+2 t

)−α−β

B(α,β) dt (30)

where α = 1, β = d
2 , and B(α, β) is the beta function. The integral over the

scaled beta distribution is known to equal the scaling factor, whereby

λ
(Ck)
i ≈ λiB(α,β)

2(λ2
i

∏d
j=1 λj)

1
d+2

∝ λ
d

d+2
i (31)

As the λ
(Ck)
i are eigenvalues of a normalized distribution, their sum must equal 1.

Using this constraint, we can drop all factors independent of λi and derive

λ
(Ck)
i ≈ λ

d
d+2
i

/

∑d

j=1
λ

d
d+2
j (32)

As the λj are dependent on λ
(C)
j and λ

(Ak−1)
j , this leads to the recursive definition

λ
(Ck)
i ≈

(

λ
(C)
i

(

λ
(Ak−1 )
i

)2) d
d+2

∑d
j=1

(

λ
(C)
j

(

λ
(Ak−1 )
j

)2) d
d+2

λ
(Ak)
i ≈ λ

(Ak−1)
i − λ

(Ck−1)
i (33)

This recursion terminates at λ
(A0)
i = 1 and λ

(C0)
i = 0. These approximations

can be computed efficiently in Θ(dk) and inserted in (23) to give an approxima-
tion of Ek(X). Since the approximations are based on the assumption that X
is distributed according to some multivariate normal distribution they need not
be accurate. Since all occurrences of any rk in the formulae involve some sort
of normalization, this approximation extends to any distribution of X for which
{C(X)−1/2x | x ∈ X} is spherically symmetrically distributed, which includes
cases like, e.g., d-balls. We also did not compensate for the requirement that
all rk must be pairwise different, as these arguments are based on distributions
rather than point sets. In empirical tests the sample size, however, did not con-
tribute to approximation quality. The biggest issue with this approximation is
the fact, that while the Ai as variables in r1 through ri must have eigenvalues in
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{0, 1}, the approximated eigenvalues λ
(Ak )
i can become negative whereby latter

Ek can be vastly overestimated. As we know that the EΣ
k (X) must sum to the

total variance of X, we propose to cut off any excess in EΣ
k (X) and determine

the Ek(X) based on these cut values. To summarize, the approximation proceeds
as follows: For all 1≤k≤d compute the λ

(Ck )
i values using the recursive formula-

tions (33). Use these values to compute Ei(X) values and reduce Ei(X) values
for larger k to not have their sum exceed the total variance of X, which com-
pensates for negative λ

(Ak )
i . Even though this approximation from a theoretical

point makes the wrong assumptions that the rk are pairwise different and that
the Ci(X) are statistically independent, the approximation in our experiments
gave close enough results to have it worth considering, especially as the exact
computation of values has an enormous computational cost. The approximation
via the Monte Carlo method is known to converge on the exact values, yet, might
require enormous samples.

While (23) requires the covariance matrix of a mean-centered data set, the
approach via Monte Carlo sampling applies directly to inner product values and,
hence, to kernel spaces. The approximation in (23) can then be used in black-
box optimization to obtain an approximate spectral analysis of the kernel space.
The obtained spectrum is neglecting the scale of the eigenvalues of the covari-
ance matrix as the Ei(X) are invariant under the scaling of these values. In this
manner, we can perform approximate spectral analysis even in spaces that do
not allow for a direct approach, such as the RBF kernel space which has infinitely
many dimensions. Naturally, the method must be applied in a truncated fash-
ion for infinite dimensions, for which we here propose two solutions: Firstly,
one can estimate E1(X) through Ek(X) for some fixed k using the Monte Carlo
method and rescale these values to sum to 1. This implies neglecting the remain-
ing d−k dimensions and assuming the data to have 0 variance along with these
directions. The d−k smallest eigenvalues of the covariance of such a data set
must then be 0, too. Finding any set of k eigenvalues that leads to these E1(X)
through Ek(X) values then solves the truncated case. Secondly, one can assume
that the remaining variance not explained by EΣ

k (X) is distributed over the
remaining d−k values according to some user-defined distribution. Assuming a
uniform distribution, for example, would explain the remaining variance as noise
in the embedding space which might be a reasonable assumption.

A special case can further be made on the evaluation of Ek(X) values on
normalized data. When working on ˜X instead of X, which can be achieved in
kernel space by dividing the occurrences of x in the formulae by 〈x, x〉1/2, we
immediately obtain that E1( ˜X) equals the sum of squared eigenvalues of C( ˜X).
While this equality does not hold for the approximation via eigenvalues of C( ˜X),
it is approximately obtained from the Monte Carlo method or precisely for an
exhaustive evaluation of E1( ˜X). Just as the constraint of the sum of eigenvalues
of C( ˜X) equalling 1, this additional constraint can be used in the black-box opti-
mization for retrieving the original eigenvalues from Ek( ˜X) values. Using (31),
these eigenvalues can be approximately translated into the relative eigenvalues
of the non-normalized data whenever the data can be assumed to obey the dis-
tributional constraints of the approximation.
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4 Random Projections and ID Estimation

As stated in the previous section, E1( ˜X) equals the sum of squared eigenvalues of
C( ˜X). The reciprocal of this specific value has been introduced as an estimator
for intrinsic dimensionality named ABID [13], that is

IDABID(X) = E1( ˜X)−1 = EΣ
1 ( ˜X)−1 (34)

For one, this observation adds additional semantics to the meaning of ABID as
the number of basis vectors of a random projection to fully explain the vari-
ance in a data set. Yet, it also implies the applicability of the Ek values in the
realm of ID estimation. Although E1 gives the part of total variance a random
projection based on in-distribution basis vectors can explain, not all Ek val-
ues are necessarily equal. That is, the projection onto two random directions
does not necessarily cover twice the variance covered by projecting onto one
random direction. This linearity is exclusively true for spherically symmetrical
distributions such as d-balls and for all other distributions we would certainly
expect EΣ

2 (X) < 2EΣ
1 (X). Ultimately, we are looking for the smallest k such

that EΣ
k (X) ≥ tr (C(X)), that is, the number of random projections required to

explain the entire variance of X. Unfortunately, we only have formulae for inte-
ger k but we can generalize the approach of ABID in the sense of extrapolating
from a fixed Ek which results in a parameterized ID estimator which we name
the Thresholded Random In-distribution Projections (TRIP) Estimator:

IDTRIP(X, k, η) = k +
(1 − η) tr (C(X)) − EΣ

k (X)
Ek(X)

(35)

where k is the number of considered projections and η ∈ [0, 1] is a fraction
describing how much of the variance we attribute to noise. Semantically this
answers the question “How many random projections are required to explain
(1−η) of the total variance if every further projection covers as much variance
as the last one?”. In the linear case of spherically symmetrical distributions
as above, this estimator is ideally constant for η = 0 and all 1 ≤ k ≤ d. On
other distributions with η = 0, we would expect a curve that starts at (approx-
imately, dependent on implementation) IDABID(X) for k = 1 and approaches k
for increasing k as the Ei(X) are monotonically falling. Equality is likely only
reached for k = d, as this requires zero variance after k projections, which is
unlikely in presence of high-dimensional noise. The factor η is intended to com-
pensate for this. For η > 0, the curve again starts at approximately IDABID(X),
approaches k, and after some k drops below it. As for parameter choice, η is
application dependent whereas k can either be chosen empirically, or we can
inspect values 1 ≤ k ≤ d to find the k at which IDTRIP(X, k, η) is closest to k.
The latter is likely not feasible in a local ID fashion when using the Monte Carlo
or exhaustive methods but can be done when using the approximation intro-
duced in Sect. 3. When using a fixed k, obtaining an ID below this k is a strong
indicator of having chosen k too large. In addition, the curve of IDTRIP(X, k, η)
over varying k, just like the curve of Ei(X), gives insights into the local dis-
tribution characteristics of the data set that goes beyond ID estimation. These
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curves can theoretically help distinguish different subspaces, even when they
share similar local ID.

Referring back to the discussions of indexing with linear projections in
Sect. 2, we can now state a clear connection between indexing with random
in-distribution pivots and intrinsic dimensionality measures. The EΣ

k (X) values
answer how much variance on average is covered by a set of k random pivots. The
expected covered variance is – in an idealized case of, e.g., uniformly distributed
hyperballs – reciprocally related to intrinsic dimensionality. This is most explic-
itly stated in the relation to ABID and gives rise to the TRIP estimator above.
Using this geometric concept of ID estimation, we can argue on an on-average
appropriate number of pivots in spatial indexing. In Sect. 2 we observed that
the eligible search space for range queries when using k pivots is the sumset of
a (d − 1 − k)-sphere and an ε-ball. The radius of the hypersphere is equal to
the norm of the component orthogonal to all pivots, and roughly describes how
close the bounds derived in Sect. 2 are to the true distances. But there is a clear
limit as to how much precision one needs in a finite data set. If this radius drops
below the distance between nearest points, removing this slack from the distance
estimates does not improve the discriminability. By choosing η = δ2/ tr (C(X))
where δ is the, e.g., mean/median/p-percentile of nearest neighbor distances,
we can use the TRIP estimator to evaluate just how many random projections
exhaust the discriminative potential of pivoted indexing on average.

5 Pivot Filtering Linear Scan

For quality evaluation of the bounds as well as to validate the theoretical claims,
we embed the bounds in a simple and easy-to-implement index. During the ini-
tialization, we choose k random pivots. As mentioned in Sect. 2, we pre-compute
all parts of the equations that are independent of query points such as 〈x, r̂i〉
or the denominators in (4). Range and n-nearest neighbor queries were then
implemented according to Algorithms 1 and 2. The algorithms are quite similar
to LAESA [7] but do not require aggregation of multiple bounds as discussed in
Sect. 2. Both algorithms are at least linear in |X|, which should be accounted for
when comparing the performance with tree-based indices. Integrating the bounds
into a tree-based index is a nearby extension but out of the scope of this paper.
Both Algorithms 1 and 2 are trivially adaptable to search for the largest instead
of the smallest distances. This index is also trivially adaptable to work on inner
products instead of distances by exchanging the bounds. For our experiments,
we implemented the index in the Rust language and called the functions from
a Python wrapper to compare them to the cKDTree and BallTree implementa-
tions of SciPy [15]. The source code is publicly available at https://github.com/
eth42/pfls. Using this very simple index we investigated the theoretical claims
and the quality of the bounds. Figure 2 displays the results of applying the index
to the MNIST training data set. All queries were 100-nearest-neighbor queries
for 1000 query points drawn from the same data set. We performed 100 queries
for each set of parameters and instantiated a new index for each query. As seen

https://github.com/eth42/pfls
https://github.com/eth42/pfls
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Algorithm 1 n-nearest neighbor query for distances
function query(y ∈ R

d, n ≥ 1)
ls ← lower bounds of d(x, y) for all x ∈ X as per (6) and (10)
h ← empty max heap
sort X by ascending ls[x]
for x ∈ X do

if |h| < n or (ls[x] < h.max.key and d(x, y) < h.max.key) then
push x onto h with key d(x, y)
if |h| > n then remove entry with largest key from h
else if ls[x] ≥ h.max.key then break

return h as array/list

Algorithm 2 range query for distances
function query-range(y ∈ R

d, ε ∈ R)
ls, hs ← lower and upper bounds of d(x, y) for all x ∈ X as per (6) and (10)
v ← empty list
for x ∈ X do

if ls[x] < ε and (hs[x] < ε or d(x, y) < ε) then Push x into v

return v

in Fig. 2a, the number of distance computations initially drops exponentially as
we increase the number of pivots, which supports the theoretical claim that each
pivot effectively eliminates one dimension from the data set and reduces the
remaining search space exponentially. For increasing k, the descent in distance
computations diminishes as the bounds become tight enough to sufficiently dis-
criminate on neighboring points, and the query time eventually increases due to
the cost of computing the bounds. In Sect. 4, we argued that the bounds only
need to be as tight as to differentiate between nearest neighbors. To validate this
claim, we investigated the IDTRIP values using an η equal to the 10-percentile
of squared 1-nearest-neighbor distances divided by the total variance of the dis-
tribution. The smallest k for which IDTRIP(X, k, η) ≤ k is around 150 as can
be seen in Fig. 2c. The minimum computation time in Fig. 2b is around 100
but the query time at k = 150 is not that much larger than at k = 100. The
exact percentile is an educated guess and could be supported by inspecting the
histogram of nearest-neighbor distances. Yet, the region of k that provides low
query times is wide enough that rough estimates and educated guesses are likely
to give good results. We conclude that IDTRIP can be used to estimate a proper
value for k by deriving η from a percentile of 1-nearest neighbor distances. To
estimate a proper k efficiently, the approximation introduced in Sect. 3 can be
used, which practically is sufficiently similar to the values obtained from Monte
Carlo sampling as displayed in Fig. 2c. Lastly, we compared query times on HSV
color histograms of the ALOI data set with varying numbers of dimensions [12].
The considered variants consist of 110250 instances with 27, 126, and 350 dimen-
sions, respectively. As can be seen in Fig. 3 the query performance of our index is
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Fig. 2. Experimental results on varying numbers of pivots. Additional pivots exponen-
tially reduce the distance computations, but the query time stagnates once the average
discriminative power of the bounds has been exploited. A suitable number of pivots is
suggested at the crossing point of IDTRIP with the diagonal. Lines are average values,
shaded area indicates the minimum and maximum.

(a) 3× 3× 3 dim. (b) 14× 3× 3 dim. (c) 14× 5× 5 dim.

Fig. 3. Query times for ALOI color histograms with varying dimensionality.

mostly unaffected by increasing dimensionality. Due to our index using a linear
scan, the tree-based reference implementations were faster on low dimensional-
ity. For sufficiently high dimensional or small enough data sets, our index can
outperform these reference implementations. For larger data sets, extending the
approach to a tree-based structure appears promising.

6 Conclusion

In this paper, we introduced new bounds for Euclidean distances and inner prod-
ucts using a pivot-based approach. We showed that these bounds generalize the
well-known bounds based on the triangle inequality. We argued why an increased
number of pivots exponentially reduces the eligible search space of certain queries
and derived an approach to estimate a reasonable number of pivots for practical
purposes. We further showed how this number of pivots is intimately related
to intrinsic dimensionality estimation. Lastly, we implemented the bounds in a
simple and easily reproducible index that operates on both inner products and
their induced distances and allows queries for the smallest and largest values.
The empirical data presented aligns with the theoretical considerations and high-
lights the qualitative performance of implementing the bounds. Further research
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should be invested in integrating these bounds into more sophisticated indices
or constructing a tree-based index using these bounds.
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Abstract. For decades, the success of the similarity search has been
based on a detailed quantification of pairwise similarity of objects. Cur-
rently, the search features have become much more precise but also
bulkier, and the similarity computations more time-consuming. While
the k nearest neighbours (kNN) search dominates the real-life applica-
tions, we claim that it is principally free of a need for precise similarity
quantifications. Based on the well-known fact that a selection of the
most similar alternative out of several options is a much easier task than
deciding the absolute similarity scores, we propose the search based on
an epistemologically simpler concept of relational similarity. Having arbi-
trary objects q, o1, o2 from the search domain, the kNN search is solvable
just by the ability to choose the more similar object to q out of o1, o2 – the
decision can also contain a neutral option. We formalise such searching
and discuss its advantages concerning similarity quantifications, namely
its efficiency and robustness. We also propose a pioneering implemen-
tation of the relational similarity search for the Euclidean spaces and
report its extreme filtering power in comparison with 3 contemporary
techniques.

Keywords: Efficient similarity search · Relational similarity ·
Similarity comparisons · Effective similarity search

1 Introduction and Preliminaries

Efficient similarity search in complex objects, actions, and events is a central
problem of many data processing tasks [1,13,15]. Geometric models of similar-
ity are established as a basic and practically the only approach to an efficient
similarity search [17]. They assume a domain of the searched objects D and
a distance function d : D × D �→ R+

0 that quantifies the dissimilarity of two
objects. Two basic types of similarity queries are the kNN(q) and range(q, r)
queries, where q ∈ D, k ∈ N, r ∈ R+

0 . Having a searched dataset X ⊆ D and a
query object q ∈ D, kNN(q) queries search for k most similar objects o ∈ X to q,
and range(q, r) queries search for objects o ∈ X within distance d(q, o) ≤ r. In
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this article, we focus on kNN(q) queries which are more user friendly since set-
ting the k value is intuitive and does not require any knowledge of the searched
space.

Most of the approaches to kNN(q) query executions maintain k distances
d(q, o) between q and k closest objects o found during the query evaluation.
Typically, they require plenty of expensive distance computations [7,10,11]. We
claim that kNN(q) queries do not require most of the dissimilarity quantifications
since they ask just for the ordered list of k objects o ∈ X.

We propose to replace most of the precise dissimilarity quantifications with
possibly much simpler decisions on which of the objects o1, o2 ∈ X is more sim-
ilar to q ∈ D. These decisions can use several independent and domain-specific
views. The similarity/relevance comparisons of 2 objects with respect to the
referent are widely used, e.g., in active learning, and they are well discussed the-
oretically [3]. Yet, they are not directly used to speed up the similarity search,
according to our best knowledge. We discuss advantages of this relational simi-
larity search considering the evaluation efficiency, effectiveness, and robustness
while preserving the applicability. We formalise the relational kNN similarity
search and propose the implementation for high dimensional Euclidean spaces.

The rest of the article is organised as follows. Sect. 2 presents the concept of
relational similarity, Sect. 3 describes the implementation of relational similarity
for Euclidean spaces and the experiments, and Sect. 4 concludes the paper.

2 Similarity Quantifications vs. Relational Similarity

This article focuses on kNN(q) similarity queries, and we start with the simplest
case of the 1NN(q) search for the most similar object o ∈ X to q.

2.1 One Nearest Neighbour Search

Consider an intermediate state of the 1NN(q) query execution, i.e., the objects:

– q: the query object
– otop ∈ X: the most similar object to q found so far
– o ∈ X: object that is checked whether forms a better answer than otop

In this situation, search techniques based on similarity quantifications usually
know the distance d(q, otop) and evaluate d(q, o) to decide the more similar object
to q out of otop and o. Evaluation of d(q, o) is generally expensive [4,14,17], and
the only optimisation related to this paper is applicable to distance functions
which do not decrease during d(q, o) evaluation: Since d(q, otop) is known, object
o is relevant just until d(q, o) is known to be bigger than d(q, otop). Therefore,
d(q, o) evaluation can be interrupted when d(q, o) > d(q, otop) is guaranteed.

Nevertheless, the question whether o provides a better query answer than otop

is often much simpler than d(q, o) evaluation, as illustrated by Fig. 1. Here, we
consider the image similarity search, though our ideas are applicable to various
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Fig. 1. Three images during the 1NN(q) search: query image q, the answer candidate
otop, and image o from the dataset. Despite distances d(q, otop) ≈ d(q, o), approaches
to efficiently discard o as irrelevant to q exist and are used by humans. In this case, it
is checking the contours of q, otop, o, for instance.

domains. Distances d(q, otop) = 79.8 and d(q, o) = 80.5 provided in Fig. 1 are the
actual distances of corresponding image visual descriptors DeCAF described in
Sect. 3.1. The distances suggest that d(q, o) evaluation cannot be cut much before
its end since the difference d(q, o) − d(q, otop) is small. At the same time, image
o with the bird is obviously irrelevant to the query image q, and this is quickly
realised by humans. By an analogy, an efficient formal approach to choose the
1NN(q) query answer from otop and o should exist.

We inspire our thoughts by humans, who typically give a quick glimpse at
each of the images q, otop, o, trying to make a quick decision on which of otop, o
is more similar to q. If the first glimpse is insufficient to decide, the human gives
another glimpse at images q, otop, o trying to choose the more similar image
to q, and then continues (if necessary) in this iterative process until making the
decision. The conclusion can also be “I do not know” or “the similarities of otop

and o to q are (almost) the same”.
To illustrate this iterative approach, we again consider Fig. 1 and a human

who first focuses on the colours in the images, for instance. Colours of images
q, otop, o in Fig. 1 cannot efficiently distinguish the suitability of otop and o as
the 1NN(q) answer, so after no success with the first glimpse, the considered
human gives another glimpse at all objects q, otop, o. Let us assume that the
humans’ second glimpse reveals o displaying a different object than q and otop

since he/she focuses on the image contours. Therefore, he/she decides that otop

forms a better 1NN(q) answer than o.
The iterative process of the human deciding on which of otop, o forms a better

1NN(q) answer is in a principal contrast with the similarity quantifications per-
formed by contemporary similarity search techniques. Most of the data domains
are nowadays associated with an expensive similarity function d, and both dis-
tances d(q, o) and d(q, otop) are evaluated (with the possible early termination
of d(q, o) evaluation) whenever the relevance of o ∈ X and otop with respect to
q must be decided. Different approaches of humans and contemporary search
engines motivate us to formalise the concept of the relational similarity search
that follows the humans’ attitude.
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Algorithm 1. Approach to the simRel(q, o1, o2) evaluation
Input: q, o1, o2 ∈ D
Input: maxIt ∈ N � max number of iterations
Output: 0, 1 or 2 describing the similarity relation of q, o1, o2 defined by Equation 1
for i = 0; i < maxIt; inc(i) do

Give a quick glimpse at q, o1, o2 (*) � (efficiently) extract additional (small)

piece of information from q, o1, o2
if similarity of q, o1 is bigger than the similarity of q, o2, for sure then

return 1
if similarity of q, o1 is lower than the similarity of q, o2, for sure then

return 2
return 0
(*) Information extracted from q and o1 must be cached, otherwise it is extracted
many times during the kNN(q) search.

2.2 Relational Similarity Search

Beside of the pairwise similarity quantification d : D × D �→ R+
0 , we define

function (the similarity relation) simRel : D × D × D �→ {0, 1, 2}:

simRel(q, o1, o2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 similarity of q, o1 is bigger than the similarity of q, o2

2 similarity of q, o1 is lower than the similarity of q, o2

0 similarity of q, o1 is the same as the similarity of q, o2,

or the difference in the similarities is as small as its
proper investigation does not pay-off, and similarities
can be treated arbitrarily

(1)
We propose the simRel evaluations according to the informal concept

sketched by Algorithm 1. The actual simRel implementations should be depen-
dent on the data domain as well as on the application, which is well captured
by the doubled semantic of the equality 0 = simRel(q, o1, o2). The applications
preferring the search efficiency should implement the simRel in an approximate
manner and return 0 in more cases than the applications requiring high search
effectiveness. We have shown that the simRel captures the core of the 1NN(q)
search. In the following, we propose an algorithm for the kNN(q) search.

2.3 The k Nearest Neighbour Search with the Relational Similarity

To achieve the best search efficiency, we assume an abstract simRel implemen-
tation and discuss the kNN search algorithm, first. Let us consider q ∈ D, and
o1, o2, o3 ∈ X such that 0 = simRel(q, o1, o2) = simRel(q, o2, o3). In other words,
o1 and o2 are interchangeable in their similarity to q, and so do objects o2 and
o3. Notation suggests the transitivity of these equations, i.e., the deduction of
the equality simRel(q, o1, o3) = 0. Still, it does not hold, in general, so the kNN
search algorithms have to deal with this non-transitivity.
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Algorithm 2. The kNN(q) search with the simRel function
Input: query object q ∈ D
Input: k ∈ N � the minimum size of the answer
Input: the searched dataset X ⊆ D
Output: candSet(q) � at least k objects candSet(q) ⊆ X likely to be similar to q
ans ← X.first
objUnknownRelation ← ∅
for each o ∈ X \ X.first do

addOToAnswer(q, o, k, ans, objUnknownRelation) � procedure defined below

return ans ∪ objUnknownRelation � optionally return ans for extreme efficiency

procedure addOToAnswer(q, o, k, ans, objUnknownRelation)
idxWhereAdd ← ∞ � position in ans where add o
indexesToRemove ← ∅ � positions of objects in ans to remove
for i = ans.size − 1; i >= 0; decrement(i) do

sim ← simRel(q, ans[i], o)
if sim = 1 then � ans[i] is more similar object to q than o

if i < k − 1 then
for each i ∈ indexesToRemove do

if ans.size < k then break

ans.remove(i)

ans.add(i + 1, o) � add o to ans just after ans[i]
return

if sim = 2 then � o is more similar object to q than ans[i]
idxWhereAdd ← i
indexesToRemove.add(i)

if idxWhereAdd 	= ∞ then � the lowest position where to add o
for each i ∈ indexesToRemove do

if ans.size < k then break

ans.remove(i)

ans.add(idxWhereAdd, o)
return

objUnknownRelation.add(o) � simRel(q, ans[i], o) is 0 for all ans[i] ∈ ans
end procedure

We propose the search algorithm which starts to build the query answer
ans(kNN(q)) as a list of the most similar objects o ∈ X found during the query
execution. When o ∈ X is asked whether it is one the k nearest neighbours of q,
the non-transitivity of the equalities 0 = simRel(q, o1, o2) motivates us to focus
on objects oa ∈ ans(kNN(q)) such that simRel(q, oa, o) �= 0. We start to check
ans(kNN(q)) from its end:

– If we find o1 ∈ ans(kNN(q)) such that simRel(q, o1, o) = 2, i.e., o matches the
query object q better than o1, we mark o1 to be removed from ans(kNN(q)).

– We remember the lowest position i of o1 ∈ ans(kNN(q)) : simRel(q, o1, o) = 2.
If ans(kNN(q)) does not contain o2 : simRel(q, o2, o) = 1, i.e., o2 matches q
better than o, then o is inserted to ans(kNN(q)) at position i.
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– If ans(kNN(q)) contains o2 such that simRel(q, o2, o) = 1 and o2 is at the posi-
tion i < k−1 (numbering from 0) of ans(kNN(q)), we add o into ans(kNN(q))
just after o2.

– Finally, we delete as many of marked objects o1 from the answer ans(kNN(q))
as the answer size does not decrease below k.

An important case remains: If ans(kNN(q)) contains just objects oa such
that simRel(q, oa, o) = 0, we add o into list objsUnknown(q) of objects with an
unknown relation to q. The way of objsUnknown(q) processing is application
dependent, and we consider two variants. The search algorithm returns either
candSet(q) = ans(kNN(q))∪objsUnknown(q), or candSet(q) = ans(kNN(q)). The
second option which ignores list objsUnknown(q) is suitable for the applications
oriented on a high efficiency and just the relevance of query answers. In both
cases, candSet(q) is processed sequentially, i.e., distances d(q, o), o ∈ candSet(q)
are evaluated to return k most similar objects from candSet(q) as a query answer.
It can be just an approximation of the precise answer. The whole relational kNN
search is formalised by Algorithm 2.

3 Proof of Concept for Euclidean Spaces

The only goal of the simRel implementations is to algorithmize Eq. 1 for a specific
application and domain D to provide a suitable trade-off between the evaluation
efficiency, correctness, and the number of equalities simRel(q, o1, o2) = 0. We
assume that the simRel implementations should follow the humans’ behaviour,
i.e., the smaller the difference in the similarities of q, o1 and q, o2, the longer time
to decide the simRel(q, o1, o2) correctly, or return 0 to save time.

The concept of relational similarity has potential to improve various aspects
of the similarity search. We present a simRel implementation to efficiently search
high-dimensional Euclidean spaces with a low memory consumption and just a
small decrease in the search effectiveness.

No ambition to improve the search effectiveness enables us to implement the
simRel which approximates the search space (Rλ, �2) – here �2 is the Euclidean
distance function and λ is the length of vectors. Motivated by the humans’
abilities, we want to implement simRel(q, o1, o2) in a way that the bigger the
difference |�2(q, o1) − �2(q, o2)|, the more efficient simRel(q, o1, o2) evaluation.
Consequently, we want to capture as much information about each o ∈ X in
one number, then capture as much of the remaining information in the second
number, etc. This informal description sufficiently fits the Principal component
analysis (PCA) [12,16], i.e., the transformation of vectors o ∈ X of length λ to
the vectors oPCA(L) ∈ RL of length L < λ such that the variance of values in
coordinates of oPCA(L) decreases with the coordinates’ index, and the shortened
vector oPCA(L) preserves as much of the information about o as possible. First
coordinates of vectors qPCA(L), o

PCA(L)
1 , o

PCA(L)
2 thus often contain sufficient

information to decide simRel(q, o1, o2).
Our simRel(q, o1, o2) implementation starts to evaluate �2(qPCA(L), o

PCA(L)
1 )

and �2(qPCA(L), o
PCA(L)
2 ) distances in parallel. During the evaluation, it checks
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Algorithm 3. Concept of simRel(q, o1, o2) = simRel(qPCA(L), o
PCA(L)
1 , o

PCA(L)
2 )

implementation for a high dimensional Euclidean space

Input: qPCA(L), o
PCA(L)
1 , o

PCA(L)
2 � vectors q, o1, o2 shortened by the PCA

Input: thresholds t(Ω) defined for each 0 ≤ Ω < L � learned by Algs. 2 and 4
Output: 0, 1, or 2 � result of simRel(q, o1, o2) – see Eq. 1
for Ω = 0; Ω < L; inc(i) do

diff ← difSqPref(qPCA(L), o
PCA(L)
1 , o

PCA(L)
2 , Ω) � function defined by Eq. 2

if diff > t(Ω) then
return 2

if diff < −t(Ω) then
return 1

return 0

which of the vectors o
PCA(L)
1 and o

PCA(L)
2 is currently closer to qPCA(L) and how

much. If one of the vectors o
PCA(L)
1 , o

PCA(L)
2 is sufficiently closer to qPCA(L) than

the second one, we claim the result of simRel(qPCA(L), o
PCA(L)
1 , o

PCA(L)
2 ). We use

this result as the estimation of simRel(q, o1, o2).
Formally, we denote oPCA(L)[i] the value in the ith coordinate of oPCA(L),

and define:

difSqPref(qPCA(L), o
PCA(L)
1 , o

PCA(L)
2 , Ω) =

Ω∑

i=0

(
qPCA(L)[i] − o

PCA(L)
1 [i]

)2

−
Ω∑

i=0

(
qPCA(L)[i] − o

PCA(L)
2 [i]

)2 (2)

We evaluate this function for each integer Ω : 0 ≤ Ω < L, and consider thresh-
olds t(Ω) ∈ R+

0 which determine the stop conditions for the simRel(q, o1, o2)
evaluation: we start with Ω = 0 and use Eq. 2 as follows:

– If difSqPref(qPCA(L), o
PCA(L)
1 , o

PCA(L)
2 , Ω) > t(Ω), then simRel(q, o1, o2) = 2

– If difSqPref(qPCA(L), o
PCA(L)
1 , o

PCA(L)
2 , Ω) < −t(Ω), then simRel(q, o1, o2) =

1
– If Ω = L − 1, then simRel(q, o1, o2) = 0, else increment Ω

The (non-optimised) simRel implementation which takes t(Ω) thresholds as an
input is formalised by Algorithm 3.

We learn thresholds t(Ω) using Algorithm 2 which evaluates kNN(q) queries
with random query objects on a sample of the dataset X and use the simRel
implementation formalised by Algorithm 4. This simRel implementation does
not use the thresholds t(Ω) but learns them instead. First, it evaluates dis-
tances �2(qPCA(L), o

PCA(L)
1 ) and �2(qPCA(L), o

PCA(L)
2 ). Let us assume inequality

�2(qPCA(L), o
PCA(L)
1 ) ≤ �2(qPCA(L), o

PCA(L)
2 ) – if it does not hold, the notation

of o1 and o2 is swapped. For each Ω : 0 ≤ Ω < L, the simRel algorithm stores a
list wit [Ω] of observed positive values difSqPref (qPCA(L), o

PCA(L)
1 , o

PCA(L)
2 , Ω).

These values wit [Ω] are witnesses of the insufficiency of prefix of length Ω: while
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Algorithm 4. simRel implementation to learn thresholds t(Ω), 0 ≤ Ω < L

Input: qPCA(L), o
PCA(L)
1 , o

PCA(L)
2 � vectors q, o1, o2 shortened by the PCA

Input: perc � Percentile 0 < perc < 1
Output: thresholds t(Ω) defined for each 0 ≤ Ω < L
Output: 0, 1, or 2 � the result of simRel(q, o1, o2) – see Equation 1

d1 ← �2(q
PCA(L), o

PCA(L)
1 )

d2 ← �2(q
PCA(L), o

PCA(L)
2 )

diffQO1 ← 0; diffQO2 ← 0
order ← d1 < d2
wit � static array of length L
for i = 0; i < L; inc(i) do

diffQO1 += (qPCA(L)[i] − o
PCA(L)
1 [i])2

diffQO2 += (qPCA(L)[i] − o
PCA(L)
2 [i])2

orderCurr ← diffQO1 < diffQO2
if order 	= orderCurr then

wit[i].add(|diffQO1 − diffQO2|) � the absolute values of the difference

if diffQO1 = diffQO2 then
return 0

diffQO1 < diffQO2 ? return 1 : return 2
define t[Ω] as percentile perc of wit [Ω] � when sample queries evaluated by Alg. 2

first Ω coordinates of vectors (i.e. function difSqPref ) suggests the inequality
�2(qPCA(L), o

PCA(L)
1 ) > �2(qPCA(L), o

PCA(L)
2 ), the last coordinates i : Ω < i < L

of vectors change the relation to the final inequality �2(qPCA(L), o
PCA(L)
1 ) ≤

�2(qPCA(L), o
PCA(L)
2 ). When all the queries are evaluated, each wit[Ω] is sorted

and t(Ω) is defined as a given percentile perc of wit [Ω]. The percentile defines
the trade-off between the simRel correctness, evaluation times and the num-
ber of the equalities 0 = simRel(q, o1, o2): the bigger the perc, the longer and
the more precise the simRel decisions with possibly more neutral assessments
0 = simRel(q, o1, o2). In the experiments, we use the perc = 0.85. The whole
approach to determine thresholds t(Ω) is formalised by Algorithm 4, and a Java
implementation of this article is provided upon request.

3.1 Test Data

We examine the DeCAF image visual descriptors [5] extracted from the Profiset
image collection1 to verify the simRel implementation. We use a subset of 1 mil-
lion descriptors that are derived from the Alexnet convolutional neural net-
work [6] as the data from the second-last fully connected layer (FC7). Each
descriptor consists of a 4,096-dimensional vector of floating-point values that
describes characteristic image features, so there is a correspondence 1 to 1
between images and descriptors. Pairwise similarities of the DeCAF descriptors
are expressed by Euclidean distances.
1 http://disa.fi.muni.cz/profiset/.

http://disa.fi.muni.cz/profiset/
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Table 1. Median accuracy of the 30NN(q) search in DeCAF descriptors shortened by
the PCA to length L: k′ vectors are pre-selected in a shrunk space and refined

Length L Size k′

30 50 100 1,000 5,000 10,000 15,000 20,000

8 3.3% 73.3 % 86.7 % 93.3 % 96.7 %

10 3.3 % 86.7 % 96.7 % 100 %

12 6.7 % 60.0 % 93.3 % 98.3 % 100%

24 23.3 % 33.3 % 46.7 % 93.3 % 100%

68 53.3 % 66.6 % 86.7 % 100 %

256 70 % 86.7 % 100 %

670 80 % 96.7 % 100 %

1,540 86.7% 100%

3.2 PCA and Relational Similarity Search Implementation

The PCA defines vectors with the most of information in their first coordinates.
The relational similarity simRel(q, o1, o2) is thus decided just by a short pre-
fix of vectors qPCA(L), o

PCA(L)
1 , o

PCA(L)
2 in most of the cases, and we propose

to store just prefixes of oPCA(L), o ∈ X in the main memory while the long
descriptors o can be in the secondary storage. If the prefixes are insufficient to
decide simRel(q, o1, o2), zero is returned. The proposed simRel implementation
contains several sources of approximation errors, and we address the setting
of parameters one by one to mitigate them. We consider 30NN(q) queries on
4,096-dimensional DeCAF descriptors. Reported statistics are the medians over
1,000 query evaluations with different query objects q selected in random. The
ground-truth consists of 30 closest objects oNN ∈ X to q as defined by �2 distance
function.

The first parameter to be fixed is length L of vectors shortened by the PCA,
and we set it experimentally using the filter & refine paradigm: Having an object
q ∈ D, we select k′ closest vectors oPCA(L) to qPCA(L) using the �2 distances,
find the corresponding vectors o ∈ X to form c(q) ⊆ X, and re-rank these o
according to �2(q, o). Finally, we consider just 30 closest objects o ∈ c(q) and
check how many of them are the true nearest neighbours from the ground-truth.

Table 1 provides the median search2 accuracy for various L and k′. For
instance, vectors shortened to just 24 dimensions are of a quality that the set
c(q) of size 1,000 vectors (0.1 % of the dataset) contains 28 out of 30 (93.3 %)
true nearest neighbours per median query object q. Since the proposed simRel
implementation speeds up the search by efficient and quite accurate similarity
comparisons, we use the simRel together with a high-quality approximation of
DeCAF descriptors given by L = 256. Having L = 256, the candSet(q) of 100

2 Diploma thesis [2] provides a rich experimental analysis of the PCA applied to the
same dataset of the DeCAF descriptors.
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Fig. 2. Early terminations of simRel evaluations. The first coordinate of vectors short-
ened by the PCA decides 511,850 simRel evaluations per median query (Color figure
online)

vectors contains all 30 true nearest neighbours per median query, so in the fol-
lowing, we address 100NN(q) search in vectors oPCA(L), o ∈ X,L = 256.

3.3 Experimental Verification of the Relation Similarity Search

The simRel evaluations must be efficient to pay-off. We use just first 24 coordi-
nates of vectors oPCA(L), o ∈ X with 4B precision per coordinate stored in the
main memory. The memory occupation is thus 24 ·4B = 96B plus ID per o ∈ X.
We learn thresholds t[Ω] by Algorithms 2 and 4 evaluating a hundred 30NN(q)
queries with different q than 1,000 tested and a sample of 100K objects o ∈ X.

Number of simRel evaluations during kNN(q) execution by Algorithm 2 can
be almost k · |X|, but this happens just if simRel(q, o1, o2) = 0 for nearly
all examined triplets. Figure 4a reports numbers of simRel evaluations during
100NN(qPCA(L)) search in the prefixes of 1M vectors oPCA(L). All box plots in
this paper depict the distribution of values over 1,000 randomly selected query
objects. The simRel evaluation counts are from 1.027M to 35.23M with the quar-
tiles 1.2M, 1.47M and 2.37M, respectively. The results are thus much better than
the theoretical worst case of almost 100 · 1M = 100M simRel evaluations.

The simRel implementation given by Algorithm 3 adaptively decides how
many out of 24 coordinates to use for an efficient simRel decision. Figure 2
presents numbers of simRel terminations just after checking the ith coordinate
of vectors qPCA(L), o

PCA(L)
1 , o

PCA(L)
2 . Indexes i are on the x-axis, and y-axis

depicts the number of simRel terminations. The only exception is the last grey
box plot which represents the last stored coordinate of oPCA(L): Since we are
interested in the simRel result, we use two box plots here. The red right-most box
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Fig. 3. Relative numbers early terminations of the simRel evaluations during the query
execution after checking the ith coordinate of vectors (Color figure online)

plot, as well as the last grey box plot depict the numbers of simRel evaluations
which use all 24 coordinates – the red box plot depicts the zero results of simRel
computations, and the last grey box plot depicts non-zero results. The first
coordinate of qPCA(L), o

PCA(L)
1 , o

PCA(L)
2 is sufficient to decide 513,133 simRel

comparisons per median query – see the first box plot in Fig. 2. The first and
third quartiles are 439,776 and 645,781, respectively, the minimum is 324,425 and
the maximum is 999,756. Value simRel = 0 is returned in 456,929 evaluations
per median query, as depicted by the red box plot. This statistic has a large
variance over q: the first and third quartiles are 192,897 and 1.35M, respectively,
the minimum is 4,272, and the maximum is 34.2M.

Figure 3 also reports the simRel terminations after checking the ith coordi-
nate of vectors, but expressed relatively with respect to the number of simRel
evaluations during the query execution. The first box plot depicts that 33.68 %
of simRel evaluations performed during the median query execution are termi-
nated just after the check of the first coordinate of qPCA(L), o

PCA(L)
1 , o

PCA(L)
2 .

This statistic also have a large variance, and ranges from 1.91 % to 93.74 % with
the quartiles 21.65 %, 33.64 %, and 43.08 %. The relative number of equalities
0 = simRel(q, o1, o2) during the query execution ranges from 0.42 % to 97.18 %
with the quartiles 15.94 %, 31.04 %, and 57.30 % – see the red box plot in Fig. 3.
We suppose that query objects with a large number of simRel = 0 are probably
outlying objects, and we postpone their investigation for the future work. We
emphasise that the prevalent early termination of simRel evaluations leading to
flexible evaluation times figure the key advantage of the simRel in comparison
with most of the traditional search techniques based on, for example, dimension-
ality reduction or hashing.
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(a)
simRel evaluation
counts per query

(b)
Accuracy of
30NN(q) search

(c)
Number of candidates identified
by simRel in 1M DeCAF descriptors

Fig. 4. Statistics gathered during 100NN search in 1M dataset, distributions over 1,000
query objects q

Table 2. Comparison of the filtering power

simRel GHP 50 256 [8] GHP 80 256 [9] PPP-Codes [11]

candSet(q) size 1,076 (0.11%) 3,214 (0.32%) 3,368 (0.37%) 10,546 (1.05%)

Memory per o ∈ X 96 B 32 B 32 B 96 B

Finally, we chain all steps and report results of Algorithm 2 evaluating 30NN
queries in the original space of 4,096-dimensional DeCAF descriptors. The simRel
implementation uses the first 24 coordinates of oPCA(L), L = 256. First, we
evaluate Algorithm 2 to return candSet(q) = ans(kNN(q)) ∪ objsUnknown(q),
i.e., we also refine the objects with an unknown relation to q. Figure 4b illustrates
that Algorithm 2 correctly finds 28 out of 30 true nearest neighbours per median
query. Figure 4c reports candSet(q) sizes which express the only number of 4,096-
dimensional descriptors from X that we access during the query execution and
evaluate their �2 distances to q. It ranges from 101 to 19,643, i.e., from 0.01 % to
1.96 % of the dataset, with the quartiles 524; 1,076; and 2,477. The median thus
expresses that the simRel filters out 99.89 % of the 1M dataset, 1,076 objects
remains, and 28 out of them are in the set of 30 true nearest neighbours – all
for a median query object q.

Table 2 compares3 the filtering power of the simRel with 3 most powerful
filtering techniques we have ever tried. The GHP 50 256 [8] and GHP 80 256 [9]

3 This data are adopted from Table 4.3 in the thesis [7]. The experiments in the thesis
are conducted on the same data as this paper, including the query objects q.
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techniques transform DeCAF descriptors to the bit-strings of length 256 bits in
the Hamming space. In this space, they identify the candSet(q) which they re-
rank to return 30 most similar objects o ∈ candSet(q). The pivot permutation
based index PPP-codes [11] stores distances to 24 reference objects (pivots) which
is the only information used to identify the candSet(q) before its refinement. We
set parameters of all examined techniques to produce candSet(q) with the median
accuracy 28/30. However, the results of all techniques except of the simRel are
simulations describing the minimum candSet(q) size implying this accuracy. The
candSet(q) size must be set in advance in case of GHP 50 256, GHP 80 256,
and PPP-codes, and no support for an estimation of a suitable candSet(q) size
is provided. The numbers presented for these 3 techniques thus form just a
theoretical optimum. On the contrary, the result of the simRel describes a real
usage which requires no hidden knowledge. Having the same memory overhead
as the PPP-codes and 3 times bigger overhead than the bit-strings, the filtering
with the simRel is 3 times, 3.1 times, and 9.8 times more powerful than the
filtering with GHP 50 256, GHP 80 256, and PPP-codes, respectively.

Proposed simRel implementation has an advantage of automatic adapting
to particular query objects q, which causes a significant variance in the simRel
evaluation times and numbers of simRel evaluations during the query execution.
Conversely, plenty of search techniques execute the similarity queries with fixed
parameters and no adaptation to particular query objects. It leads to wasting
computational sources in case of easy-to-evaluate query objects, or a low-quality
evaluation of difficult queries [10].

Finally, we examine the 30NN search with Algorithm 2 ignoring objects
objsUnknown(q) with an unknown relation to q. The search accuracy of such
search has median 10/30 and the third quartile 14/30, but the candSet(q) is
pretty small with just 252 objects (0.0252 % of X) per median q. We visualise
online4 the answer of typical quality to one 30NN query evaluated in this way.
Its accuracy is 12/30 and it requires just 250 �2(q, o) evaluations to re-rank the
candSet(q). We emphasise that the order of the images is given by full �2 dis-
tances of the DeCAF descriptors depicted below each image. All answer images
are relevant to q.

4 Conclusions

The content preserving features of contemporary digital data objects become
more precise but also more voluminous and their similarity quantifications more
computationally demanding. The partitioning techniques are not able to con-
strain the query response set sufficiently, and many distance computations are
needed to get the result. We have proposed the relational similarity search to
reduce the number of distance computations. In general, a large number of not
necessary distance computations is eliminated by an efficient selection of a more
similar data object out of two to the referent. We exemplify the approach by
the search in a challenging high-dimensional Euclidean space and demonstrate
4 https://disa.fi.muni.cz/∼xmic/2022SISAP/SimRelJustKnown.png.

https://disa.fi.muni.cz/~xmic/2022SISAP/SimRelJustKnown.png
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the savings of 99.89 % distance computations per median query when finding
28 out of 30 nearest neighbours. The search algorithm can also be set to pre-
fer the search efficiency at the cost of accuracy. In that case, we have observed
the filtering of 99.9748 % of the dataset with the search accuracy of 33.3 % per
median query, but still achieving a good answer relevance. In the future, we plan
to implement the simRel in other domains, and combine the approach with the
similarity indexes to efficiently search large datasets.
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olytics: system for data analytics of video streams. In: ACM International Confer-
ence on Information and Knowledge Management (CIKM), Australia, pp. 4794–
4798. ACM (2021)

https://is.muni.cz/th/v9xlg/
https://is.muni.cz/th/v9xlg/
https://doi.org/10.1007/978-3-642-00234-2
https://is.muni.cz/th/m14as/
https://doi.org/10.1007/978-3-319-68474-1_4


Concept of Relational Similarity Search 103

16. Wall, M.E., Rechtsteiner, A., Rocha, L.M.: Singular value decomposition and prin-
cipal component analysis. In: Berrar, D.P., Dubitzky, W., Granzow, M. (eds.) A
Practical Approach to Microarray Data Analysis, pp. 91–109. Springer, Heidelberg
(2003). https://doi.org/10.1007/0-306-47815-3 5

17. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search - The Metric Space
Approach, vol. 32 (2006). https://doi.org/10.1007/0-387-29151-2

https://doi.org/10.1007/0-306-47815-3_5
https://doi.org/10.1007/0-387-29151-2


On the Expected Exclusion Power
of Binary Partitions for Metric Search

Lucia Vadicamo1(B) , Alan Dearle2 , and Richard Connor2

1 Institute of Information Science and Technologies (ISTI), CNR, Pisa, Italy
lucia.vadicamo@isti.cnr.it

2 University of St Andrews, St Andrews, Scotland, UK
{al,rchc}@st-andrews.ac.uk

Abstract. The entire history and, we dare say, future of similarity
search is governed by the underlying notion of partition. A partition
is an equivalence relation defined over the space, therefore each element
of the space is contained within precisely one of the equivalence classes
of the partition. All attempts to search a finite space efficiently, whether
exactly or approximately, rely on some set of principles which imply that
if the query is within one equivalence class, then one or more other classes
either cannot, or probably do not, contain any of its solutions.

In most early research, partitions relied only on the metric postulates,
and logarithmic search time could be obtained on low dimensional spaces.
In these cases, it was straightforward to identify multiple partitions,
each of which gave a relatively high probability of identifying subsets
of the space which could not contain solutions. Over time the datasets
being searched have become more complex, leading to higher dimensional
spaces. It is now understood that even an approximate search in a very
high-dimensional space is destined to require O(n) time and space.

Almost entirely missing from the research literature however is any
analysis of exactly when this effect takes over. In this paper, we make
a start on tackling this important issue. Using a quantitative approach,
we aim to shed some light on the notion of the exclusion power of par-
titions, in an attempt to better understand their nature with respect to
increasing dimensionality.

Keywords: Metric search · Binary partitioning · Exclusion power ·
Curse of dimensionality

1 Introduction

We are interested in similarity search spaces of the form (U, d) where U is some
universe of objects and d is a distance function d : U × U → R

+
satisfying the

metric postulates [16]. The function d is typically the only meaningful defined
operation over U . The task is normally to search a finite (but typically very
large) set S ⊂ U for a small set of objects which are similar to a query object
q ∈ U , i.e. to find some small subset Q(q, t) = {s ∈ S | d(q, s) ≤ t} for some
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appropriate t. We refer to t as the query threshold. In this paper this definition
suffices to encompass both range and nearest neighbour queries and we do not
distinguish between them1.

We use the term partition to refer to an equivalence relation defined over U ,
such that each element is contained in precisely one of the equivalence classes
defined by the relation. In the domain of metric search, since d is the only
operation available over elements of U , such partitions must be defined in terms
of distances to objects identified within the set. For example, for a distinguished
value p ∈ U , a simple ball partition may be defined as F = {F0, F1}

F0 = {u ∈ U | d(p, u) > τ}
F1 = {u ∈ U | d(p, u) ≤ τ } (1)

for some constant value τ .
The processing of similarity queries normally takes place in two distinct

phases. In a first pre-processing phase, a set of partitions is defined over U .
Each element of S is analysed with respect to a number of these, and informa-
tion about the inclusion of each element within the defined equivalence classes
is noted.

In the second query phase, the query is analysed with respect to the same set
of partitions, at which point deductions may be made about whether solutions
to the query are likely to be present in the defined equivalence classes. With
reference to the previous example, if q ∈ F1, it may be possible to reason that
any solution to q is more likely to be in F1 than F0. The more similar q is to
p, the higher the likelihood that this is true. If the space in question is a metric
space, and d(q, p) ≤ τ − t, then it is impossible for F0 to contain any values
within distance t of the query.

In general, the set of partitions identified at pre-processing time contains
the only information which can be used in order to avoid a full scan of the
database. In all cases, the choice of partitions is thus critical to the efficacy of
the mechanism.

1.1 Binary Partitions

To simplify the domain, we restrict our analysis to binary partitions used in
a simplified exact search mechanism. To avoid committing the discussion to a
particular search mechanism, we consider a notional metric search framework
with the following properties:

– A finite set of n binary partitions {Fj}nj=1, where Fj = {F j
0 , F j

1 } is made of
two classes, is established at pre-processing time, with respect to a fixed set
of m reference objects p1, . . . , pm ∈ U

1 A nearest neighbour query can be formulated as a range query where the query
threshold is not known in advance but it is set iteratively as the distance to the
current k-th nearest neighbour [16].
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– At query time, the distances from the query q to all reference objects are
calculated

– A set of classes which cannot contain any solution to the query is thus estab-
lished

– All objects which cannot be thus excluded comprise a candidate result set
whose objects must be tested individually against the query.

Note that many different indexing and filtering mechanisms fall within this
general description. In the most general sense, the success of search for solutions
to an individual query is related to the following properties of the set of partitions
used during the process:

1. the number of available partitions;
2. for each partition, the probability of the distances between the query and the

reference objects allowing exclusion of one of the classes of the partition;
3. for any such partition and query, the size of the class which can be thus

excluded, and
4. the independence of the set of classes which can be excluded for a given query.

For example if all the excluded classes have a common intersection, the value
of each one is diminished.

In this article, we address only properties (2) and (3). They are clearly in
tension with each other: for example, a partition class which defines only a very
small volume of the infinite space is likely to have a high probability of exclusion
for an arbitrary query, but is likely to contain only a small number of objects
from the finite set. Similarly, a class defining a relatively large volume of the
space, thus likely to contain many objects, is less likely to be excluded.

The main contribution of this article is a quantified study of this effect in
various metric spaces of different dimensionality.

2 Related Work

Chávez et al. [2] proposed a unifying model to analyse existing indexing algo-
rithms for proximity search by observing that all indexing algorithms for prox-
imity searching consist of building a set of equivalence classes. They remark that
every partition of a space induces an equivalence relation, and conversely, every
equivalence relation induces a data partitioning. At query time some classes are
discarded and the others form a candidate results set that should be exhaus-
tively searched for query solutions. Therefore, the most important tradeoff when
designing the data partitioning is to balance the cost of finding the candidate
results set (internal complexity) and the cost of refining it (external complexity).
The internal complexity is evaluated as the number of distance calculations d
needed to compute the candidate result set C and the external complexity is |C|
distance computations. They defined the discriminative power of a search algo-
rithm as the ratio of internal complexity to external complexity, which serves
as an indicator of the performance fitness of the equivalence relation. Moreover,
they observed that two classes of techniques exist based on equivalence relations,
namely, pivoting and compact partitions.
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Pivoting based techniques rely on building a relation based on the distances
between an element and a number of preselected pivots (also called reference
points, vantage points, keys). The distances between elements and pivots and
between the query q and the pivots are used together with the triangle inequality
to filter out elements of the database without actually measuring their distance
to q. For example, using ball pivoting the equivalence classes correspond to a
family of “rings” or “sphere shells” centered on a pivot. Points within the same
sphere shell (i.e., at the same distance from a pivot) are in the same equivalence
class. In [3] Chávez points out that in this class of algorithms generally improve
as more pivots are added.

Compact partitions are based on the class of the points that have some
preselected object as their closest center. Thus the partitions induced using this
technique correspond to a Delaunay tessellation over the space. Thus using this
approach, the universe is divided into a set of spatial zones and complete zones
may be discarded by performing a few distance evaluations. Chávez demonstrates
that compact partitioning algorithms deal better with high dimensional metric
spaces.

In [8,9] Hetland describes the problem of metric indexing as storing the
points from a dataset in some data structure which is later traversed to efficiently
extract those points relevant to some query. This data structure is described as a
bipartite digraph of points and regions which he defines as a sprawl. Each region
is defined with respect to a set of source points, called foci or pivots p1, .., pm.
Region membership is defined in terms of distances x = [d(u, p1), . . . , d(u, pm)].
Hetland also defines an ambit to be a function f(x) (remoteness map) and a
threshold or radius r, that describe a partition region (i.e., a partition class).
Such ambits are equivalent to the partition functions described in this paper,
which also correspond to the certification functions introduced by Pestov and
Stojmirović [11]. In [8] Hetland describes a number of different bifocal linear
ambits which include ball and hyperboloid remoteness. Using Hetland’s classifi-
cation the 4-point hyperplane partitioning (defined below) is a nonlinear ambit
based on a non-metric-preserving power transform. In [8] he gives other exam-
ples of nonlinear ambits including those based on a Hamacher product and a
Cantor function.

3 Quantifying the Value of a Partition Set

3.1 Unifying Partition Functions

To unify the quantitative treatment of different kinds of binary partition with
their associated distance constraints, we recently introduced [6] the concept of a
binary partition F = {F0, F1} characterised by a partition function f : U → R

and a balancing factor τ ∈ R with the following properties:

1. F0 = {s ∈ U | f(s) > τ} and F1 = {s ∈ U | f(s) ≤ τ}
2. d(s1, s2) ≥ |f(s1) − f(s2)| for all s1, s2 ∈ U (distance lower-bound property)
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Note that if f(s) = τ , then s is on the partition boundary and by convention
we include the partition boundary in F1. Moreover f should be defined in a way
so that it both determines the classes F0, F1 and provides a rule to estimate a
lower-bound of the actual distance between two data points. The lower-bound is
used to derive the exclusion rules used at query time. Specifically, given a query
q and a query threshold t, then we have that

– if f(q) ≤ τ − t then F0 can be excluded
– if f(q) > τ + t then F1 can be excluded

This characterisation provides us with a unified framework to describe
the most common metric binary partitioning principles, namely ball partition-
ing [13,16], generalised hyperplane partitioning [13,16], and 4-point hyperplane
partitioning [4,7], together with their exclusion rules. Specifically, as proved
in [6], we have that

– a ball partitioning given a pivot p and a radius r is characterised by the
function

fBall(s) = d(s, p), ∀ s ∈ U

and the balancing factor τ = r;
– a generalised hyperplane partitioning of the form

F0 = {s ∈ U |d(s, p1) − d(s, p0) > α}
F1 = {s ∈ U |d(s, p1) − d(s, p0) ≤ α} (2)

for two given pivots p0 and p1 and offset α, is characterised by the function

fHyp(s) =
d(s, p1) − d(s, p0)

2
, ∀ s ∈ U (3)

and balancing factor τ = α/2;
– a 4-point hyperplane partitioning

F0 = {s ∈ U |d(s, p1)2 − d(s, p0)2 > α}
F1 = {s ∈ U |d(s, p1)2 − d(s, p0)2 ≤ α} (4)

that can be characterised by the function

f4pHyp(s) =
d(s, p1)2 − d(s, p0)2

2d(p0, p1)
, ∀ s ∈ U (5)

and balancing factor τ = α/2d(p0, p1). This kind of partition is valid only
on the large class of Supermetric Spaces meeting the 4-point property [7].
The partition boundary can be visualised as a hyperplane in a 2D Euclidean
space obtained using the nSimplex projection [5] to transform the data; with
the hyperplane being orthogonal to the line containing the two pivots in the
2D Euclidean space. Moreover, if τ = α = 0 then the classes F0 and F1 are
exactly the same as the generalised hyperplane partitioning above, but the 4-
point property [4,7], rather than the triangle inequality, is used for estimating
the distance lower-bound.
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(a) Query threshold distances (b) Exclusion power (c) Expected exclusion power

Fig. 1. 8-dimensional Euclidean dataset : Example of typical query threshold distances
(a), power graphs for a 8-dimensional Euclidean dataset (b), and expected exclusion
power (c). The left-hand figure shows the distribution of the fifth nearest neighbour
distances for a set of 5000 queries. The middle figure show the exclusion power graphs
over τ for five representative t values (0.05, 0.25, 0.5, 0.75, 0.95-th percentiles of the
query threshold distribution) in the case of a generalised hyperplane partitioning. The
right-hand figure shows the Expected exclusion power over τ (Color figure online)

We define the balance ratio of a binary partition {F0, F1} of the finite search
set S as the ratio of the smaller of |F0| or |F1| to |S|, giving a value in the
range [0, 0.5] where a higher value means a more even balance ratio. Note that
when changing the balancing factor τ , the partition boundary moves and thus
its balance ratio changes as well.

This unification (f, τ) allows the characterisation of the balance ratio and
power of a partition as the value of τ is altered, as shown in the next Section.

3.2 Partition Exclusion Power

We introduce the notion of partition exclusion power to represent the amount
of exclusion possible for a partition characterised by some given value of τ and a
function f . In essence, the power of a partition is an estimate of the probability of
being able to deduce that d(q, s) > t, for some distance t, for arbitrarily selected
q ∈ U and s ∈ S.

For the remainder of this article, we use the assumption that the distribution
of query and data within the sampled spaces are equivalent. This is probably
a reasonable assumption in most metric query scenarios, although there are
likely to be specialist examples where it is not the case. The same analysis
may be performed whenever the distribution of both query and data can be
characterised, whether they are equivalent or not.

In [6], for a range query Q(q, t), we defined the exclusion power of the parti-
tion F = {F0, F1} as the probability of excluding one element s on the basis of
the data partition to which it belongs:

P (s ∈ F0) · P (Q(q, t) ⊂ F1) + P (s ∈ F1) · P (Q(q, t) ⊂ F0) (6)

which can be rewritten in terms of f and τ as

P (f(s) > τ) · P (f(q) ≤ τ − t) + P (f(s) ≤ τ) · P (f(q) > τ + t) (7)
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If CDF(x) is the cumulative distribution function of f(s) for s ∈ S (assuming that
the distribution is the same for data and query points, as noted above) then the
exclusion power can be expressed as

g(τ, t) = (1 − CDF(τ)) · CDF(τ − t) + CDF(τ) · (1 − CDF(τ + t)) (8)

This provides a mechanism for estimating exclusion power of a partition for
a fixed τ and query threshold t. Therefore, to understand the effect of different
values of τ an exclusion power graph may be constructed which is plotted across
the range of τ for a fixed value of t. This allows the optimum value of τ to
be deduced for a range query with threshold t. The exclusion power graph is
dependent on the query threshold. Thus queries with different thresholds will
result in different power graphs. Figure 1b shows the resultant power graphs
for various thresholds over eight dimensional euclidean data as described in the
caption.

To define a general exclusion power measure independent from the specific
query threshold, in this paper we propose to use the expected partition power :

ep(τ) =
∫

g(τ, t)h(t)dt (9)

where h(t) is the probability density function associated with the query threshold
distribution (e.g., the red curve in Fig. 1a). In Fig. 1c, we show the expected
partition power graph for the same 8-dimensional Euclidean data used above.

The exclusion power defined here is closely related to the concept of dis-
criminative power (i.e., the ratio of internal complexity to external complexity)
defined by Chávez in [2]. Adjusting the τ values thus changes the discriminative
power. In this paper we show how exclusion power may be used to optimise τ so
that for the same internal complexity we minimise the external complexity i.e.
we find the τ that optimises the discriminative power.

4 Power Analysis in High(er) Dimensional Data

It is clear that if a partition has a balance ratio of 0 (i.e., all the data objects are
in the same partition class) then it is of no value in terms of exclusion, whereas a
value of 0.5 is unlikely to be optimal in a high dimensional space. In fact, it has
long been known, if only as a rule of thumb, that balanced tree-structured indexes
lose their performance as dimensionality increases, and unbalanced structures
perform better. For example, the List of Clusters [1,12] is known to perform
better than a Balanced Vantage Point Tree [15] in higher dimensions, although
we lack a formal definition of the meaning of higher in this context. Here, we
investigate this phenomenon from a new point of view by using the expected
exclusion power estimation.

For a partition {F0, F1}, defined by a pair (f, τ), a set of witness data values
may be used to calculate approximations of the different values of balance ratio
and expected partition power (Eq. 9) varying τ . Note that if τ is selected as the



On the Expected Exclusion Power of Binary Partitions for Metric Search 111

(a) Ball, 5 dim (b) Gen. Hyperplane, 5 dims (c) 4p Hyperplane, 5 dims

(d) Ball, 10 dims (e) Gen. Hyperplane, 10 dims (f) 4p Hyperplane, 10 dims

(g) Ball, 15 dims (h) Gen. Hyperplane, 15 dims (i) 4p Hyperplane, 15 dims

(j) Ball, 20 dims (k) Gen. Hyperplane, 20 dims (l) 4p Hyperplane, 20 dims

Fig. 2. Expected powers for Euclidean data at dimensions 5, 10, 15, 20, for ball parti-
tioning (left), generalised hyperplane partitioning (middle), 4p hyperplane partitioning
(right). The expected power was evaluated using 100 queries over 10K witness data
points. Two pivots p1, p2 were randomly selected for each dataset; p1 is used to build
the ball partition, both p1 and p2 are used for the hyperplane partitions.

median of {f(s), s ∈ S} then the partition classes are balanced (i.e., the balance
ratio is 0.5). Therefore, if an exclusion occurs, half of the dataset will be excluded.
Moving τ from the median value will produce partitions with a different balance
ratio. To understand the effect of different values of τ the expected exclusion
power graph may be constructed and optimum value(s) of τ can be deduced.
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Figure 2 shows the change in the power graphs as dimensionality increases for
a ball partitioning, a generalised hyperplane partitioning and a 4p hyperplane
partitioning. The plots are for Euclidean data of dimensions 5, 10, 15, 202. In the
low dimensional settings we can observe that the maximum power is achieved
when the partition is balanced, i.e. τ is equal to the median of the f(s) values.
By contrast, as the dimension of data increases, choosing the median value will
work very badly. As can be seen in Fig. 2l such a value is unlikely to result in any
successful exclusions. Therefore, for high(er) dimensions a better strategy is to
pick two values for τ corresponding to the two peaks in the power distributions. It
also interesting to note that as dimension increases, we expect that no exclusion
is possible using ball and generalised hyperplane partitioning whatever τ value
is chosen, confirming the well know curse of dimensionality phenomenon [10,14].
This effect is also visible in the case of 4p hyperplane partitioning with Euclidean
dimensions bigger than 20.

These diagrams explain behaviour observed by many researchers into met-
ric search, that choosing unbalanced indexing structures often works better
for higher dimensional data. Moreover, it also confirms the observations made
in [4,7] regarding the better distance bounds that can be obtained using the
4-point property instead of the triangle inequality.

5 Experimental Validation

In this section we confirm the observations deduced from the analysis of the
expected power graph experimentally. To illustrate we report the results for 15
dimensional Euclidean data using 10K data points and 100 random pivots. For
each pivot pair (pi, pj) we build a 4point hyperplane partition Fij characterised
by the function fij = d(s,pj)

2−d(s,pi)
2

2d(pi,pj)
and balancing factor τij . At query time, a

candidate result set is build by considering the intersection of all the partition
classes that cannot be excluded from the search on the basis of the distance
lower-bound property only (see Sect. 3.1). Lastly the candidate set is refined
using the actual distance function d to establish the final (exact) result set.
Therefore the size of the candidate result set is equivalent to the percentage of
the data that must be accessed to answer a query.

Figure 3a plots the size of the candidate set as a proportion of the entire
dataset using different approaches to select the τij values. The top (blue) curve
shows the performance when all the partitions are balanced, i.e., for each parti-
tion defined by the pair (fij , τij) the τij is set to be the median of fij(s) values.
The bottom (orange) curve shows τij set to maximise the expected power (see
Eq. 9) estimated on a small set of 2,000 witness points using 100 random queries
(different from those used at test time). The x-axis shows all the

(
100
2

)
parti-

tions Fij even although a small subset of these take part in the exclusions. In

2 All results in this article are derived using randomly generated uniformly distributed
Euclidean data in different dimensions as stated. All code is available on request from
the authors.
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(a) 4p Hyperplane Partitioning (b) Generalised Hyperplane Partitioning

Fig. 3. Size of candidate set as proportion of whole for τij set to the median of fij(s)
values and the τij values that maximises the expected partition powers (15D Euclidean
data). (Color figure online)

both cases 500 test queries were considered and the average percentage of data
accessed to answer a single query was computed and plotted in the y-axis. From
this plot a clear difference can be seen in the exclusion power with τij set to
have balanced partitions and that with the τij values set to maximise the parti-
tion powers. The balanced version manages to exclude very little data whereas
the powered version excludes more than the 85% of the data. For completeness,
in Fig. 3b we shows the results also for generalised hyperplane partitioning, i.e.
using fij = (d(s, pj) − d(s, pi))/2. Note that it does not result in any exclu-
sions - i.e. the candidate set size is about 100% of the dataset being queried, as
predicted by the expected power graph in Fig. 2h.

Figure 3a only shows the exclusion for a single maximum power for each pivot
pair. However, as shown in Fig. 2h, the expected power graph for 15 dimensional
data results in two power peaks (and consequently two different optimal τij can
be selected). In practice this results in two partitions being created for each
pivot pair in the case of hyperplane partitioning. The plot shows the exclusions
possible when a single optimal value and both optimal values are used. With 100
pivots and using one or two optimal τij values for each pivot pair results in 4,950
and 9,900 partitions respectively. Figure 4 shows the size of the candidate set as
proportion of whole when partitions derived from a single and both the optimal
τij values are used. In this plot the exclusions derived from the common parti-
tions are in plotted corresponding to the leftmost part of the x-axis resulting in
a common exclusion curve. As can be seen, the 4,950 extra partitions available
when two peaks are used result in (some) more exclusion. The size of the can-
didate set as a fraction of the total data when the partitions derived from both
power peaks are used is 10.37%, in other words 89.63% exclusion is achieved.
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Fig. 4. Size of candidate set as proportion of whole when one optimal τ or two optimal
τ values for each pivot pair are selected to maximise the expected partition powers
(15D Euclidean data).

Table 1. Average percentage of partitions activated and candidate set size for 5, 10,
15 and 20 dimensional Euclidean data, 100 pivots and 500 queries over 10,000 data
points

Dims Balanced Partitions Maxpower Partitions

Part. Activated Candidates Part. Activated Candidates

5 44.62% 1.43% 44.63% 1.25%

10 3.11% 6.53% 13.76% 2.37%

15 0.05% 65.80% 6.57% 14.15%

20 0.0002% 99.60% 3.00% 49.63%

5.1 The Relationship Between Activated Partitions and Exclusions

We say that a partition is “activated” for a query if using the distance lower-
bound property is possible to exclude one of the classes of the partition.

Table 1 shows the percentage of partitions that are activated for queries over
5, 10, 15 and 20 dimensional data. In each experiment 500 queries are executed
with 100 pivots (4,950 partitions) over 10,000 data points. As before, the two
columns correspond to the cases when all τij have been set to have balanced
partitions (left) and that with the τij values set to maximise the expected power
(right). The data shown is the average over the queries. Two numbers are pre-
sented for each experiment: the percentage of partitions that are activated and
the size of the candidate set as a proportion of the dataset being queried.

As can be seen in the table, the number of partitions that are activated at
query time are considerably different both in terms of the dimension of the data
and the techniques used to select all the τ values.

In general, balanced partitions perform noticeably worse than the powered
partitions and the number of partitions that are activated drops dramatically
as the Euclidean dimension increases. Whilst the number of partitions activated
also drops when the power is maximised, enough partitions are activated to
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Fig. 5. Balance ratio for increasing dimensions using τij values that maximise the
expected power

permit approximately 50% of the data to be excluded in the case of 20 dimension
and the partitions set to maximise the expected power even when a single power
peak is employed.

We also observed, as shown in Fig. 5, that choosing the best τ values results in
increasingly un-balanced partitions. Moreover, adding more partitions often does
not serve to substantially increase the number of exclusions. We believe that this
effect is caused by a lack of independence of the objects in the activated partition
classes.

6 Conclusions

In this paper we have presented a generalised treatment of exclusion power for
binary partitions. The model abstracts over the partition type and we have
shown its application to ball partitions, generalised hyperplane partitions and
4-point partitions.

Exclusion power explains the well known differences in the number of exclu-
sions that are possible with respect to both the dimensionality of the data and
partition balance ratio.

In addition understanding how to maximise the possibility of exclusion, power
diagrams also serve to indicate the probability of exclusions occurring. The
understanding the probability of exclusion power determines if a dataset can
be usefully queried at all using an exact metric search, i.e. if the size of candi-
date set is a small fraction of the size of the total dataset. This is useful in its
own right since it may be applied independently of any particular algorithm to
establish the amount of exclusion that is potentially possible.
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In the cases where a reasonable exclusion rate can be achieved it can be used
to give an indication of the number of exclusions zones that are necessary to
achieve exclusion.

Additionally we have shown that by adjusting the f function and the τ
values, the exclusion power may be dramatically increased in some cases. When
combined with 4-point exclusion we have observed that sometimes exclusion
rates rise from zero to a respectable percentage of the overall dataset.

7 Future Directions

In this paper we have attempted to shed some light on the notion of partitions
in general in order to better understand their nature with respect to increasing
dimensionality and their ability to exclude. Although this paper has established
some general mechanisms to permit reasoning about the nature of partitions and
how their construction contributes to exclusion in metric search there is clearly
much more work to be done. In particular, we have only touched on the nature of
the independence of partitions. Clearly the amount of exclusion that is possible,
the independence of the partitions and their power are linked. We are currently
investigating this issue but the work is at an early stage.
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Abstract. The metric space model of similarity has become a stan-
dard formal paradigm of generic similarity search engine implementa-
tions. However, the constraints of identity and symmetry prevent from
expressing the subjectivity and dependence on the context perceived by
humans. In this paper, we study the suitability of the Distance density
model of similarity for searching. First, we use the Local Outlier Fac-
tor (LOF) to estimate a data density in search collections and evaluate
plenty of queries using the standard geometric model and its extension
respecting the densities. We let 200 people assess the search effectiveness
of the two alternatives using the web interface. Encouraged by the posi-
tive effects of the Distance density model, we propose an alternative way
to estimate the data densities to avoid the quadratic LOF computation
complexity with respect to the dataset size. The sketches with unbal-
anced bits are clarified to be in correlation with LOFs, which opens a
possibility for an efficient implementation of large-scale similarity search
systems based on the Distance density model.

Keywords: Metric space similarity model · Perceived similarity ·
Data-dependent similarity · Distance density model · Effective and
efficient similarity search

1 Introduction

Similarity search in complex domains such as multimedia relies on formal models
of similarity perceived by humans. Current search is dominated by geometric
models, mostly by metric spaces. Metric space (D, d) is given by a domain D of
searched objects and the distance function d : D×D �→ R+

0 which quantifies the
dissimilarity of objects. While the domain D can be an arbitrary set, function d
must meet the metric postulates: non-negativity, identity, symmetry, and triangle
inequality [17]. The goal of the similarity search is to efficiently find the most
similar objects o from a given dataset X ⊆ D to an arbitrary query object q ∈ D.

While the metric postulates facilitate the efficient searching, their veracity
with respect to the perceived similarity sim(., .) has been disputed [10,15]. Please
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notice that while we introduce a notation sim(o1, o2) to denote the perceived
similarity of o1, o2 ∈ D, this sim(o1, o2) cannot be formalised by a function and
it is just approximated by similarity models.

The identity and non-negativity of function d assume that the similarity
sim(o, o) is the same for all o ∈ D. This is sort of inconsistent [15] with real-
life experiments, according to which some objects o – typically those with less
significant features – are confused with others more often than objects with
strong features. The experience also reveal [14,15] that the perceived similarity
sim(o1, o2) is not always symmetric. Due to the prototypicality or the centrality
property, the statement “o1 is similar to o2” can be perceived differently than its
inverse “o2 is similar to o1”. For instance, more tourists in Bologna are likely to
say “the tower in Bologna is similar to the Leaning tower in Pisa” than tourists
in Pisa who say “the Leaning tower in Pisa is similar to the tower in Bologna”.

This paper extends the thesis [8] and elaborates on discrepancies between
the perceived similarity and its geometric approximation. Specifically, we focus
on the influence of a context in which the similarity is assessed. Such problem
has been formalised in [10] as a matter of a density around objects o ∈ X.
We refer to the models of sim(o1, o2) which respect the local density of objects
o ∈ X around o1, o2 as the “data-dependent similarity models”. On the contrary,
the similarity models (D, d) that do not take the local densities of o ∈ X into
account are denoted as “the geometric similarity models”, and corresponding d
is the “geometric distance function”. The notation used throughout the article
is summarised in Table 1.

The influence of local densities around o1, o2 ∈ D on sim(o1, o2) was pointed
out by Krumhansl [10], who proposed to enhance geometric distance functions
d with these densities. Her proposal from the late 70s could not be experimen-
tally verified for decades due to a lack of the data amount and their insufficient
descriptive quality. Current situation is the opposite one: the scalability of the
search in data-dependent similarity models is crucial.

Aryal et al. [1,2] propose the Mp-Dissimilarity. Having solid analytical
foundations that well follow the Krumhansl’s proposal, the Mp-Dissimilarity
is expensive to evaluate in current high dimensional data and big datasets.
Effectiveness of several data-dependent models is compared in [3], where Mp-
Dissimilarity is illustrated to provide better classification accuracy and retrieval
results than the Euclidean and Cosine distance functions.

In this article, we focus on both, the effectiveness and efficiency of the simi-
larity search in data-dependent similarity models.

– We verify the veracity of 2 implementations of the Krumhansl’s similarity
model with respect to sim(., .). First, we use the Local Outlier Factor (LOF)
to estimate the object density. Then, we let people to assess which of two
images is more similar to the query image q, and compare these assessments
of various triplets of images q, o1, o2 with both implementations.

– Second, we propose a scalable implementation of the Krumhansl’s similarity
model. We use binary sketches of objects o ∈ X to estimate the local densities.
The sketches are not only effective but also efficient to create and use.
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Table 1. Notation used throughout this paper

(D, d) The metric space similarity model: domain D and distance function d

sim(o1, o2) Perceived similarity of objects o1, o2 ∈ D (as perceived by people)

q ∈ D Query object

X ⊆ D The searched dataset

o, o1, o2 Objects from the domain D or the searched dataset X (always
specified)

k-NN(q) k nearest neighbours to query object q

d̄(o1, o2) Data-dependent distance of o1, o2 ∈ D

δ(o) Spatial density of o ∈ D

LOF (o) The local outlier factor of o ∈ D

d̄LOF (o1, o2) Data-dependent distance of o1, o2 ∈ D using LOF (o1) and LOF (o2) to
compute objects o1 and o2 densities

sk(o), Binary sketch of o ∈ D

λ The length of sketches sk(o) in bits

card(sk(o)) Cardinality of sketch sk(o), i.e., number of bits set to 1

d̄sk(o1, o2) Data-dependent distance of o1, o2 ∈ D using card(sk(o1)) and
card(sk(o2)) to compute objects o1 and o2 densities

d(q10) The ranking of 10NN to q from X defined by the distance function d

d̄LOF (q10) The ranking of 10NN to q from X defined by the distance function
d̄LOF

d̄sk(q
10) The ranking of 10NN to q from X defined by the distance function d̄sk

The rest of the paper is organised as follows. Section 2 introduces the Dis-
tance density model and the LOF function. Section 3 describes the gathering of
information about the similarities of images using the crowd-sourcing. Section 4
provides results of searching with the data-dependent distance function based
on LOF(o) values. Section 5 describes the Distance density model implementa-
tion that uses the binary sketches of objects, and Sect. 6 provides the results of
searching with this implementation. Section 7 concludes the paper.

2 Data-Dependent Similarity Search

Figure 1 illustrates that the perceived similarity sim(o1, o2) is also inferred by
other objects o ∈ X. Specifically, Fig. 1a suggests that “Church 1” and “Church
2” are likely to be perceived as quite similar when we search the dataset X of
generic buildings. On the other hand, the same churches do not seem to be so
similar when searching the dataset X of only churches, as illustrated by Fig. 1b,
since “Church 1” is more similar to “Church 3” than to “Church 2”, and “Church
2” is more similar to “Church 4” than to “Church 1”. The perceived similarity
sim(o1, o2) of “Church 1” and “Church 2” is thus inferred by other objects
o ∈ X, but the geometric distance d(o1, o2) that quantifies the similarity of the
churches does not reflect this. Conversely, it is always the same.
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(a) Dataset of generic buildings
(b) Dataset of churches

Fig. 1. Example of the data-dependent perception of similarity: Churches 1 and 2 are
likely perceived as similar when compared with general buildings (Fig. (a)), but they
are rather dissimilar when searching the dataset of churches (Fig. (b))

Krumhansl [10] defines her data-dependent similarity model called the Dis-
tance density model. She formalises the similarity of o1, o2 ∈ D using the metric
space (D, d) and densities of objects o ∈ X around o1, o2. Her central observation
is that objects o1, o2 located in a relatively dense region are perceived less similar
than other objects o3, o4 within the same geometric distance d(o3, o4) = d(o1, o2)
but in less dense regions of space (D, d).

Formally, the Krumhansl’s model uses the data-dependent distance function:

d̄(o1, o2) = d(o1, o2) + α · δ(o1) + β · δ(o2) (1)

where δ(oi) ∈ R+ is a density of objects o ∈ X around oi ∈ D, and α, β ∈ R+
0

are constants to adjust the range of δ. In general, function d̄(., .) can violate the
axioms of the identity and the symmetry due to the influence of δ(o1) and δ(o2),
but it always satisfies the triangle inequality rule [10].

There are several approaches to computing the spatial density δ(o) [3,10].
We first use the Local outlier factor (LOF ) [5], similarly as Aryal et al. in [4].

2.1 Local Outlier Factor Expressing the Local Density

Breunig et al. [5] define the Local outlier factor (LOF) of o ∈ D to express
how much o is an outlier in the searched space according to the density of its
neighbourhood. The larger the LOF(o), the more outlier the object o within the
dataset X. LOF(o) is evaluated by comparing the density of o1 ∈ X around o
with the densities of o1 ∈ X around the k nearest neighbours of o from X. For
details, please see [5].

We define the spatial density δ(o) of o ∈ D as an inverse of LOF(o), similarly
as Aryal et al. in [4]:

δ(o) = 1/LOF(o) (2)
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Fig. 2. Euclidean distance distribution for the DeCAF descriptors

We denote d̄LOF the data-dependent distance function made by the substitu-
tion of Eq. 2 to Eq. 1. Evaluation of LOF(o) values for all o ∈ X has the time
complexity O(|X|2) [5] which makes it infeasible for most of the contemporary
datasets. In the following, we set reasonable environment to verify the veracity
of d̄LOF with respect to sim(., .).

We collect information about the perceived similarities sim(q, o1), sim(q, o2)
for selected triplets q, o1, o2 ∈ D using the crowd-sourcing. We then compare
the perceived similarities with the geometric distances d(q, o1), d(q, o2), and the
data dependent distances d̄LOF (q, o1), d̄LOF (q, o2), respectively, to discuss the
contribution of LOF(o) values to the similarity search effectiveness.

2.2 Test Data

The data examined in this article are the DeCAF image visual descriptors [7]
extracted from the Profiset image collection1 which consists of 20 million images.
The DeCAF descriptors are derived from the Alexnet convolutional neural net-
work [9] as the data from the second-last fully connected layer (FC7). Each
descriptor consist of a 4,096-dimensional vector of floating-point values that
describes characteristic image features, so there is a correspondence 1 to 1
between images and their descriptors. Pairwise similarities of descriptors are
expressed by the Euclidean distances and their distribution over the searched
dataset is depicted in Fig. 2.

2.3 Setting Experiments with d̄LOF Function

Setting α and β for the Data-dependent Distance Function. To be able
to evaluate d̄LOF , Eq. 1 requires to set values α and β. Having a query object
q, the effect of α · δ(q) is the same for all distances d̄(q, o), o ∈ X, and thus α
does not matter and can be 0 for the evaluation simplicity. Suitable value of β
depends on a range and distribution of the distances d(o1, o2), o1, o2 ∈ X, and
we perform a simple experiment to find a suitable β for our dataset.

We select 10 query images q in random, and find 10 nearest neighbours in
the dataset X for each q using the Euclidean function d and the data-dependent
function d̄LOF with various β values. If β = 0, the nearest neighbours given by d

1 http://disa.fi.muni.cz/profiset/.

http://disa.fi.muni.cz/profiset/
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and d̄LOF for each q are the same. The differences increase with increasing β, and
we assume a global optimum βopt such that the influence of local densities β ·δ(o)
in the function d̄LOF is counter-productive for β > βopt. We have visualised and
inspected all query answers for β : 2 ≤ β ≤ 10 ∧ β divisible by 0.25. We have
observed the expected results: the global optimum βopt ≈ 7, and if β 	 7,
irrelevant images dissimilar to q qualifies to the 10NN answers. Therefore, we
use β = 7 for d̄LOF searching our dataset.

Dataset to Test d̄LOF . Due to the LOF (o) evaluation complexity, we select
a subset of 10,000 descriptors and 150 query objects q in random from all 20
million descriptors for the experiments with d̄LOF . Moreover, we have to ensure
a presence of descriptors similar to query descriptors q in the tested dataset.
Therefore, we found 100 nearest neighbours oNN for each q in a set of 20 million
DeCAF descriptors using the Euclidean distances, and added these near neigh-
bours to the tested dataset of 10,000 descriptors. The overall size of the dataset
is thus |X| ≈ 10, 000+ |Q| ·100, i.e., almost 25,000 descriptors: In fact, 7 nearest
neighbours are present in 10,000 random descriptors, so we have |X| = 24,993
descriptors. The distance distribution of the DeCAF descriptors (see Fig. 2) sug-
gests that the separation of the clusters in X is limited, i.e., it is meaningful to
search for semantically better near neighbours to q than those artificially added.
We have also verified this assumption manually.

d̄LOF (q10) and d(q10) Rankings. Having the dataset X of 24,993 descriptors,
we have found 10 nearest neighbours for all 150 query objects q using d̄LOF and
d, respectively, to get:

1. the d̄LOF (q10) rankings, and
2. the d(q10) rankings, respectively.

Since our goal is to verify the contribution of d̄LOF to the searching effectiveness
in comparison with the Euclidean function d, we further select 45 query objects q
out of all 150 with maximum differences in d̄LOF (q10) and d(q10) rankings.

3 Crowd-Sourcing to Examine the Perceived Similarity

We use the crowd-sourcing to collect the information about the perceived simi-
larities of images. We have implemented a web application in which respondents
select a more similar image out of o1, o2 to a given query image q.

We prepared triplets q, o1, o2 to emphasise differences between d̄LOF (q10) and
d(q10) rankings. Specifically, we made all triplets (q, ōi, oi) such that image ōi is
in the ith position of the d̄LOF (q10) ranking, oi is the image in the ith position
of d(q10) ranking and ōi 
= oi. In total, we used 150 triplets of images (q, ōi, oi)
in the crowd-sourcing.

The triplets of images are visualised in the web application as illustrated in
Fig. 3. Respondents are asked to select a value on the slider to assess which of
images ōi, oi is more similar to a query image q above them and how much. The
slider offers all integer values from 0 to 100 with an implicit neutral value 50.
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Fig. 3. A screenshot from the web application to collect information about the per-
ceived similarities

Users are provided with no information about any of the distances nor rankings.
In total, we have collected approximately 4,000 answers from 200 respondents,
so we have approximately 27 answers on average for each triplet of images.

3.1 Discussion on the Crowd-Sourced Information

We analyse the collected information about the perceived similarities of images to
define the ground-truth. We start with the removing a minimum and a maximum
assessment for each triplet q, ōi, oi. Numbers of respondents are published after
removing these extreme assessments. We then analyse the mean and the standard
deviation of the answers for each triplet.

We observe even extreme triplets q, ōi, oi such that the respondents have
very different opinions. The maximum standard deviation is 32.7 in case of the
triplet with an average answer 53.9 and assessed by 30 respondents. This is not
surprising, considering the way of the triplet creation, i.e., the focus on differ-
ent objects ōi, oi placed at the same position of d̄LOF (q10) and d(q10) ranking,
respectively. Another example of a triplet assessed with a large variance is visu-
alised in Fig. 4a. We have visualised all triplets assessed with a large variance and
found the assessments quite natural as the similarities sim(q, ōi) and sim(q, oi)
are quite subjective in all these cases.

Another extreme is figured by a triplet assessed by 24 people who all returned
the answer 50, i.e., that both images ōi, oi are equally similar to q even though
ōi 
= oi. We have revealed that images ōi, oi in the triplets assessed with low
variance and an average answer close to 50 are always the near duplicates which
make the crowd-sourced information natural as well.
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(a) 3 images assessed with a big vari-
ance (b) 3 images assessed consistently

Fig. 4. Examples of images assessed in an extreme ways by the respondents

All triplets q, ōi, oi with no clear preference of people on a more similar image
to q out of ōi, oi can hardly be used to improve the similarity models. From this
point of view, the more interesting are triplets assessed by respondents clearly
and with rather a low standard deviation. The most extreme triplet out of 150
examined was assessed by 29 people with an average answer 0.6 and a standard
deviation 2. Similar case of triplet is visualised in Fig. 4b. These triplets suggest
a suitable space to investigate the reasons for the differences in d̄LOF (q10) and
d(q10) rankings.

3.2 Ground-Truth Deriving

We use 2 different approaches to determine which of the images ōi, oi is more
similar to q using the crowd-sourced data.

First, we summarise the number of answers smaller than 50, bigger than 50,
and equal to 50, for each triplet q, ōi, oi. The more similar image to q out of ōi, oi
is determined as the one preferred by more of the respondents. In other words,
this ground-truth takes into account just the side to which the respondents
shifted the slider in the web application and ignores the scale of how much
they shifted it. If both images ōi, oi are assessed as more similar to q by the
same number of respondents or the most of the answers are 50, both images are
marked as equally similar to q in this ground-truth which we denote GTcount.

The second type of the ground-truth uses the average assessment over the
answers, and we remind 2 extreme assessments were already removed. If the
average is smaller than 50, the left-hand image is labelled as more similar to q,
and if it is bigger than 50, the right-hand image is labelled as more similar to q.
If the average answer is 50, both images are marked as equally similar to q in
this ground-truth which we denote GTavg.

Having GTcount and GTavg ground-truths, we also consider their enhance-
ment by incorporating a degree of compliance over the respondent answers.
Specifically, if the standard deviation σ(q, ōi, oi) of answers on a triplet q, ōi, oi
is small, it is more important to have a similarity model that selects the more
similar image out of ōi, oi to q in compliance with the ground-truth. Conversely,
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the error of the similarity model is not so serious in case of triplets assessed with
a high degree of a subjectivity. Weight w(q, ōi, oi) of triplet q, ōi, oi is assigned:

w(q, ōi, oi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if σ(q, ōi, oi) < 10
0.8 if σ(q, ōi, oi) < 20
0.6 if σ(q, ōi, oi) < 30
0.4 otherwise

(3)

In total, we have 15 triplets with weight 1; 70 triplets with weight 0.8; 61 triplets
with weight 0.6, and 4 triplets with weight 0.4.

In total, we have 4 ground-truths: GTcount, GTavg, and their variants with
the weighted importance of the triplets: GTcount-weighted and GTavg-weighted.

4 Contribution of d̄LOF to the Search Effectiveness

Let us consider a triplet of images q, o1, o2 such that the similarity sim(q, o1) is
bigger than sim(q, o2) according to a specific ground-truth.

We first analyse the rankings d(q10) and d̄LOF (q10) and compute the number
of correct orders of o1, o2 according to the GTcount. Since the GTcount marks 17
pairs of objects o1, o2 equally similar to q, we use 133 triplets out of 150 prepared.
The Euclidean function d orders correctly just 54 out of 133 pairs o1, o2 with
respect to q, i.e., 41%. Conversely, the data-dependent function d̄LOF orders
correctly 85 out of 133 pairs o1, o2, i.e., 64%. This is a reasonable result since
we have prepared the triplets of images with a focus on differences in the d(q10)
and d̄LOF (q10) rankings. The result thus well illustrates a positive contribution
of the LOF values to the search effectiveness.

We also evaluate the second experiment in which we focus on image o1 more
similar to q out of o1, o2, and we find its position in d̄LOF (q10) and d(q10) ranking,
respectively. If the ranking does not contain the image, ∞ is considered. The
way of the triplet creation ensures that the positions of o1 in both rankings
are not the same, and we give a point to the ranking that contains o1 at the
lower position. This approach is motivated by a fact that the similar images
to q should be generally at the lower positions of the ranking than those less
similar. The normalised score of the rankings is summarised in Table 2. The
d̄LOF (q10) ranking contains more similar images at lower positions than d(q10)
ranking in case of comparisons with all 4 types of the ground-truth. The biggest
contribution of d̄LOF function is observed with respect to the GTcount-weighted:
ranking d̄LOF (q10) contains o1 at a lower position in 63% of (the weighted) cases.

Finally, we move from the analysis of 150 triplets q, o1, o2 to the comparison of
whole 45 rankings d̄LOF (q10) and d(q10) made for 45 query objects (see Sect. 2.3).
The average Levenshtein distance of 45 rankings d̄LOF (q10) and d(q10) is 3.34
with the standard deviation 1.97. The average Spearman distance is 11.53 with
the standard deviation 7.5. To verify which of the rankings d̄LOF (q10) and d(q10)
fits better the human perception, we have selected 30 pairs of rankings in random
and let people to select the more satisfying one. Option of the equal satisfaction
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Table 2. Scores of the ranking d̄LOF (q10) given by data-dependent distance function
and scores of the d(q10) ranking given by the Euclidean distance function, considering
all types of the ground-truth

Ground-truth Score of d̄LOF (q10) ranking (%) Score of d(q10) ranking (%)

GTcount 60 40

GTcount-weighted 63 37

GTavg 57 43

GTavg-weighted 58 42

was included as well. We have collected answers about each ranking pair from
10 respondents. The d̄LOF (q10) ranking is picked as the better one in case of
19 query objects out of 30 (63%). The d(q10) ranking is better assessed 7 times
(23%), and both rankings are assessed equally in 4 cases (13%). We have also
observed much stronger consensus of the respondents who agreed that d̄LOF (q10)
ranking is better. On the contrary, if d(q10) ranking is preferred, it is usually a
tight preference.

Figure 5 and 6 visualise the first 8NN from the d(q10) and d̄LOF (q10) ranking
in the second and third rows, respectively. In both cases, d̄LOF (q10) is assessed
as a better one by the respondents.

5 Scalable Data-Dependent Distance Based on Sketches

Distance function d̄LOF cannot be used to search most of the contemporary
datasets due to the quadratic complexity of LOF(o), o ∈ X evaluation. Moreover,
LOF(o) values should be recomputed when the dataset X is modified.

We propose a different approach to estimate spatial densities δ(o) used in the
Krumhansl’s data-dependent distance function d̄(., .). Our approach is based on
the binary sketches of o ∈ X which are the bit-strings of length λ approximating
the search space. While many sketching transformations exist [6,11,13,16] and
sketches compared by the Hamming distance are successfully used to speed up
the similarity search, we use a specific sketching technique to express δ(o).

We use sketching technique [12] that defines sketches using λ instances of
the Generalised hyperplane partitioning (GHP) [17] illustrated in Fig. 7a. Each
instance of the GHP defines one bit i : 0 ≤ i < λ of all sketches sk(o), o ∈ X as
it splits the dataset X into 2 parts: objects o ∈ X closer to the pivoting object
pi1 ∈ D have the bit i set to 1, and objects o closer to the pivoting object pi2 ∈ D
have the bit i set to 0. The geometric distance function d(., .) is utilised here.
Pivoting objects pi1, p

i
2 are selected for each bit i : 0 ≤ i < λ so that:

1. Each bit i splits the dataset X into unbalanced parts such that approximately
b · |X| objects for a fixed b ∈ (0.5, 1) are closer to pi1 than to pi2.

2. GHP instances defining sketches are as much independent as possible, i.e.,
pairwise Pearson correlations of bits of sketches sk(o), o ∈ X are close to 0.
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Fig. 5. Example of 8NN defined by the Euclidean distance function d (1st row), and
data-dependent functions d̄LOF and d̄sk, respectively (the 2nd and 3rd row)

The heuristic to define sketches sk(o), o ∈ D with these properties is adopted
from [12]. We emphasise that once the sketching transformation is learned, the
object to sketch transformation requires just 2λ distance d(., .) computations
where λ is the length of sketches. This is usually by several orders of magnitude
less than O(|X|) distance computations required to evaluate LOF(o).

The sketches with unbalanced bits [12] are strongly related to the density
δ(o): Each bit i of sketches defines the smaller part of the dataset |X| by means
of the GHP. The minority of o ∈ X has the bit i set to 0. Also, the bits of
sketches are (almost) uncorrelated [12], i.e., statistically independent. Each 0 in
sketch sk(o) of o ∈ X thus expresses that o is in a minor part of the dataset
according to an instance of the GHP which is almost independent on the other
bits. Objects o ∈ X with many zeros in their sketch sk(o) thus tend to be
outliers within X. This phenomenon is illustrated in Fig. 7b where the dataset
of 35 objects is depicted with several instances of the GHP splitting it to the
parts of size 7 and 28 objects (i.e., b = 0.8). Two instances of the GHP producing
bits i, j with the Pearson correlation −0.07 are emphasised. Just one outlying
object in the blue area is separated by these two GHP instances.
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Fig. 6. Example of 8NN defined by the Euclidean distance function d (1st row), and
data-dependent functions d̄LOF and d̄sk, respectively (the 2nd and 3rd row)

We define the cardinality card(sk(o)) of sk(o) as a number of bits set to 1
in the sketch. Further, we assume that the lower the cardinality of sk(o), the
less dense region around the object o as a consequence of its outlierness. This
assumption is reasonable for data with the Gaussian distance density as well as
for the most of the other real-life datasets.

To set suitable parameters λ and b, we evaluate the Pearson correlation
coefficient of the LOF(o) and card(sk(o)) values for a sample of 10,000 ran-
domly selected descriptors o ∈ X using all 12 combinations of parameters
λ ∈ {128, 192, 256} ∧ b ∈ {0.8, 0.85, 0.9, 0.95}. The most significant correlation
−0.69 is observed for λ = 256 ∧ b = 0.9, so we adopt these parameters.

We express the density δ(o) using the sketch cardinality as follows, for the
numerical reasons. Please notice that 230.4 is the mean cardinality over sketches
with λ = 256 ∧ b = 0.9 since 256 · 0.9 = 230.4.

δ(o) = card(sk(o)) − 230.4 (4)

The substitution of Eq. 4 to Eq. 1 defines the data-dependent distance function
d̄sk. We set β in Eq. 1 in the same way as described in Sect. 2.3 and we get value
β = 0.4.

6 Contribution of Efficient d̄sk to the Search Effectiveness

We conduct the main experiments with d̄sk analogically to those reported for
d̄LOF . We denote d̄sk(q10) a list of 10NN of q defined by d̄sk function. We first
inspect the ranking given by d̄sk function to compute the number of correct
orders of o1, o2 according to their similarity to q defined by the GTcount. We just
have to use a rank of 100 nearest neighbours here since d̄sk(q10) often does not
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(a) Two objects p1, p2 ∈ D defining an instance of
the generalised hyperplane partitioning (GHP), and
thus a bit of sketches sk(o), o ∈ D

(b) Unbalanced (b = 0.8) low cor-
related bits tend to separate out-
liers fromX. Colours emphasize an
example of 1 outlier. Pearson cor-
relation of bits i and j is ≈ -0.07

Fig. 7. Definition of bits of sketches sk(o), o ∈ D to identify outliers within the dataset
X. Notice that many (λ) instances of the GHP is used.

contain none of the objects o1, o2. The d̄sk function correctly orders 79 out of
133 pairs o1, o2 (59%). We remind that d(q10) and d̄LOF (q10) rankings correctly
order 54 (41%) and 85 (64%) out of 133 pairs o1, o2, respectively.

We also compare the whole rankings d̄sk(q10) and d(q10). The average Leven-
shtein distance of d(q10) and d̄sk(q10) rankings is 9.23, and the mean Spearman
distance of the rankings is 74.17. Both distances are much larger than in case of
d(q10) and d̄LOF (q10) comparison where they are 3.34 and 11.53, respectively.

Examples of d̄sk(q10) are visualised in the last rows of Fig. 5 and 6. These
rankings seem to provide even better order than d̄LOF (q10) rankings provided
in the second rows.

7 Conclusion

We studied the Krumhansl’s Distance density model [10] to better estimate the
similarity perceived by humans, compared to the traditional geometric similar-
ity models. We gathered 4 thousand assessments of the image similarities and
investigated the veracity of two implementations of the Distance density model:
one based on the Local Outlier Factor (LOF), and our proposal that uses the
bit-string sketches with unbalanced bits. We have observed significant contribu-
tions to the similarity search effectiveness in case of both implementations. The
similarity search with the LOF values requires a pre-processing of the searched
dataset that has a quadratic time complexity, which is infeasible for most of the
current datasets. Conversely, the sketch-based implementation requires an effi-
cient linear dataset pre-processing. Usage of the sketches in this way also opens
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a space for the future work. While we use them to improve the similarity search
effectiveness, they have been proposed to speed up the search. The natural con-
tinuation is thus a development of a sketch-based search technique that would
improve both, the search effectiveness as well as the efficiency. Also, other den-
sity estimation techniques such as Hubness and intrinsic dimensionality can be
considered for a comparison with the sketches and LOFs in future.
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8. Křenková M.: Probability of outliers and its effects on effectiveness of similarity
searching (2021). https://is.muni.cz/th/ssb4c/. Bachelor’s thesis, Masaryk Univer-
sity, Faculty of Informatics, Brno, supervisor Pavel Zezula

9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, vol. 25, pp. 1097–1105. Curran Associates, Inc. (2012)

10. Krumhansl, C.L.: Concerning the applicability of geometric models to similarity
data: the interrelationship between similarity and spatial density. Psychol. Rev.
85(5), 445–463 (1978)

11. Mic, V., Novak, D., Zezula, P.: Designing sketches for similarity filtering. In: 2016
IEEE 16th International Conference on Data Mining Workshops (ICDMW), pp.
655–662 (2016)

12. Mic, V., Novak, D., Zezula, P.: Sketches with unbalanced bits for similarity search.
In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds.) SISAP 2017. LNCS,
vol. 10609, pp. 53–63. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68474-1 4

13. Muller-Molina, A.J., Shinohara, T.: Efficient similarity search by reducing I/O
with compressed sketches. In: Proceedings of the 2nd International Workshop on
Similarity Search and Applications, pp. 30–38 (2009)

https://doi.org/10.1007/978-3-319-06605-9_42
https://is.muni.cz/th/ssb4c/
https://doi.org/10.1007/978-3-319-68474-1_4
https://doi.org/10.1007/978-3-319-68474-1_4
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Abstract. Similarity search for information retrieval on a variety of
datasets relies on a notion of neighborhood, frequently using binary rela-
tionships such as the kNN approach. We suggest, however, that the
notion of a neighbor must recognize higher-order relationship, to cap-
ture neighbors in all directions. Proximity graphs, such as the Relative
Neighbor Graphs (RNG), use trinary relationships which capture the
notion of direction and have been successfully used in a number of appli-
cations. However, the current algorithms for computing the RNG, despite
widespread use, are approximate and not scalable. This paper proposes
a hierarchical approach and novel type of graph, the Generalized Rel-
ative Neighborhood Graph (GRNG) for use in a pivot layer that then
guides the efficient and exact construction of the RNG of a set of exem-
plars. It also shows how to extend this to a multi-layer hierarchy which
significantly improves over the state-of-the-art methods which can only
construct an approximate RNG.

Keywords: Generalized relative neighborhood graph · Incremental
index construction · Scalable search

1 Introduction

The vast majority of generated data in our society is now in digital form. The
data representation has evolved beyond numbers and strings to complex objects.
Organization and retrieval have likewise evolved from cosine similarity in vector
spaces through inverted files (Google, Yahoo, Microsoft, etc.), to either embed-
ding complex objects in Euclidean spaces or to the use of similarity metrics.
The task of similarity search, namely, finding the “neighbors” of a given query
based on similarity, is a fundamental building block in application domains such
as information retrieval (web search engines, e-commerce, museum collections,
medical image processing), pattern recognition, data mining, machine learning,
and recommendation systems.

Formally, consider the set of all objects of interest X , hereby referred to as
points, data points, or exemplars, and let S ⊂ X be a dataset containing N such
objects. Let d (x, y) denote a metric that captures the distance, or the extent
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of dissimilarity, between x, y ∈ X . The focus of this work is search in a metric
space, i.e., where the metric satisfies d(x, y) = 0 ⇔ x = y, d(x, y) = d(y, x), and
d(x, z) ≤ d(x, y) + d(y, z). Some approaches first embed the metric space in a
Euclidean space, such as hashing, quantization, CNN, etc., but this can distort
relative distances. We define a hierarchical index structure for similarity search
in a metric space.

In absence of an embedding space, notions of proximity, neighborhood, and
topology are constructed through a graph. The two most popular graphs are
the kNN graph [4], where each element is connected to its k nearest neighbors,
and the Minimum Spanning Tree (MST) which is the spanning tree (connected
tree involving all nodes) that has the least cumulative sum of distances over
all links. However, the kNN graph is not necessarily connected: in clustered
data, the k closest neighbors may be to one side of an element so that the
kNN may not faithfully represent the spatial neighborhood, Fig. 1(c), in that
only connections to one side are represented. Connectivity can be achieved with
a sufficiently high choice of k, but that is at the expense of over-representing
neighboring connections elsewhere, Fig. 2(a, b). A much better choice that cap-
tures the spatial layout in all “directions” is using a class of proximity graphs,
which define a spatial neighborhood for every pair of points x1 and x2, and
a connection is made if this spatial neighborhood does not contain any other
points (also referred to as empty-neighborhood graphs). For example, a Gabriel
Graph (GG) [8] connects two points x1, x2 ∈ S if the sphere with diameter x1x2

is empty, or d2 (x3, x1) + d2 (x3, x2) ≥ d2 (x1, x2) , ∀x3 ∈ S. Another important
example is the Relative Neighborhood Graph (RNG) [12,21] which connects x1

and x2 ∈ S if the lune(x1, x2), namely, the intersection of the two spheres of
radius x1x2 through centers x1 and x2, is empty, i.e., if

max (d (x3, x1) , d (x3, x2)) ≥ d (x1, x2) , ∀x3 ∈ S. (1)

Other proximity graphs of interest include the Half-Space Graph (HSG), which
is a superset of RNG and a t-spanner [1], the Delaunay Triangulation (DT)
graph [3], and the β-skeleton graph [14]. Proximity graphs generally require
consideration of all members x3 of S for each pair (x1, x2) of S, and as such
require O(N3) for naive construction. Note that 1NN ⊂ MST ⊂ RNG ⊂ GG ⊂
DT. See Fig. 1.

We adopt the use of RNG not only because (i) it is connected, but also
because (ii) it is parameter free, in contrast to kNN, where k has to be specified,
Tellez [20] where “b” and “t” have to be defined, and NSG [7] where “R” has
to be defined, and also (iii) the RNG is a relatively sparse graph, unlike other
choices presented in Fig. 1. Figure 9(e) shows the out degree of RNG grows very
slowly with intrinsic dimension.
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Fig. 1. (a) (top) Two points have an RNG connection if the “lune” between them does
not contain other points. (bottom) Two points have a Gabriel Graph (GG) connection if
the circle with the line segment between the points as diameter is empty. A comparison
of graphs for representing both uniformly distributed points in R2 (top) and clustered
data (bottom). (b) Points in 2D, (c) kNN, k = 8, (d) Tellez [20] b = 4, t = 4, (e) NSG
[7], R = 8, (f) RNG, and (f) GG.
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Fig. 2. The kNN connectivity is only based on distance between two elements and not
on geometric distribution, (a) k = 5 and (b) k = 8. In contrast, the RNG (c) captures
local geometry without regard to distance and requires no parameters. (d) Pivots (red
dots) and associated radii define a pivot domain (red discs). (Color figure online)

There are a large number of applications that use the RNG. In graph-based
visualization of large image datasets for browsing and interactive exploration,
the RNG captures the local structure of the manifold [15–17]. In urban planning
theory, RNGs have been used to model topographical arrangements of cities
and the road networks. In internet networks, Escalante et al. [5] found that
broadcasting over the RNG network is superior to blind flooding. De Vries et
al. [22] propose to use the RNG to reveal related dynamics of page-level social
media metrics. Han et al. [11] aims to improve the efficiency of a Support Vector
Machine (SVM) classifier by using the RNG to extract probable support vectors
from all the training samples. Goto et al. [9] use the RNG to reduce a training
dataset consisting of handwritten digits to 10% of its original size. A related
and more recent area is the selection of training data for Convolutional Neural
Networks (CNNs) where the RNG is used to reduce the underlying redundancy
of the dataset [18].

Despite such widespread use of RNG, there is not a large literature on effi-
cient construction of the RNG in metric spaces. In Euclidean spaces, the notions
of angle and direction allow for an efficient implementation, e.g., an O(N log N)
for N points in R2 [19], an O(N) for uniformly distributed points in a rect-
angle [13], and an O(N2) for higher dimensions [19]. The construction of the
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RNG for general metric spaces is limited to two groups of papers. First, Hacid
et al. [10] propose an approximate incremental RNG construction algorithm for
data mining and visualization purposes. This approximate construction defines
the set of potential RNG neighbors and the set of potentially invalidated RNG
links by only considering dataset items that fall within a hypersphere around the
query’s nearest neighbor, where its radius is proportional to the distance from
the query to its nearest neighbor plus the distance from the nearest neighbor to
its furthest RNG neighbor. Second, Rayar et al. [15] proposed an improvement
over Hacid’s algorithm by defining the set of potentially invalidated RNG links
by the Lth edge neighbors of the query. While both these methods work in any
metric space and provide significant speed-up over naive construction, they are
approximate and thus lose all guarantees provided by the RNG, and make a
significant number of errors, as will be shown by Table 1.

The main computational challenge in searching metric spaces is to reduce
the number of distance computations which are expensive, in contrast to vec-
tor spaces where the aim is to reduce I/O. The general approach is to build an
index which effectively builds a set of equivalence classes so that some classes
can be discarded leaving others to be exhaustively searched, either through
compact partitioning or through pivoting [2]. The notion of a pivot arises as
a way to capture a group of exemplars. Define the pivot domain, Fig. 2(d), D
of pivot pi and domain radius ri as, D(pi, ri) = {x ∈ S | d (x, pi) ≤ ri}. While
pivots do not necessarily need to be members of S, in a metric space which
cannot generate new members a pivot is also an exemplar/data point. A suffi-
cient number of pivots P = {p1, p2, ..., pM} ⊂ S are required to cover S, i.e.,
S =

⋃M
i=1 D(pi, ri). Observe that the knowledge of d(x, pi) bounds d(x, y) for

y ∈ Si as d(y, pi) − ri ≤ d(x, y) ≤ d(y, pi) + ri using the triangle inequality.
In the absence of an embedding Euclidean structure the triangle inequality is
the only constraint available for relative ranking of distances between triplets of
points. For simplicity we take ri = r in this paper.

The key aim of this paper is to design a hierarchical index that allows for the
construction of the exact RNG and allows for efficient search of RNG neighbors
of a given query Q. The contribution of the paper is to show that in a two-layer
configuration of pivots and exemplars (data points) a novel graph structure,
the Generalized Relative Neighborhood Graph (GRNG), allows for efficient and
exact construction of RNG of the data points. Note that the RNG is a special case
of GRNG when its parameter r = 0. In addition, we also show that the GRNG
of any coarse-layer of pivots can guide the exact construction of the GRNG
of any fine-layer pivots. This allows for a highly efficient, scalable, hierarchical
construction involving multiple layers (for a dataset of 26 million points in R2 ten
layers is optimal [6]). Observe that construction is incremental so that the index
can be dynamically updated. Given a query, a search process locates it in the
hierarchy by examining the coarsest layers, discarding all the exemplar domains
for a majority of the pivots and then moving on to the next layers where finer-
scale pivot children of a few select coarse-scale pivots need to be considered.
This process is then repeated to the lowest layer, the exemplar domain. The
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query is then located in the RNG and its RNG neighbors are identified. The
search process is highly efficient and logarithmic in the number of exemplars in
all dimensions, Fig. 9(b, d).

The incremental construction of the index relies on the search component
described above to locate the query in each layer, but in addition, in each layer
new connections must be made and existing connections must be validated. The
construction is done off-line in contrast to search which is typically done on-
line. While the construction is exponential in both the number of exemplars and
dimensions for uniformly distributed data, for practical applications where the
data is clustered, the construction cost behaves much better. The experimen-
tal results summarized in Table 1 show that while our method gives the exact
RNG neighbors, it is substantially faster in both constructing the RNG and in
searching it.

2 Incremental Construction of the RNG

The incremental approach to constructing RNG assumes that RNG(S) is avail-
able and computes RNG(S ∪ Q) from it. The query Q is the newest element: (i)
Localize Q within S: finding the RNG Neighbors of Q. The naive approach would
consider for all xi ∈ S whether ∃xj ∈ lune(Q,xi); all xi with empty lunes are
RNG neighbors of Q. Note that this involves O(N2) operations where N = |S|,
and this is clearly not scalable, and (ii) Adding Q to the dataset: When the
task is search, the first step finds the RNG neighbors. If Q needs to be added,
additionally all pairs of existing links between xi and xj need to be validated,
whether Q ∈ lune(xi, xj) in which case xi and xj are no longer RNG neighbors.
This operation is on the order of O(αN) where α is the average out degree of
the RNG, typically a small number. Thus, the localization step is significantly
more computationally intensive than the validation step.

The remedy to indexing complexity is organization. Specifically, when exem-
plar groups are represented by pivots, many inferences can take place at the level
of pivot domains without computing distances between Q and exemplars. The
basic idea in this paper is to construct conditions on pivots that have implications
for efficient incremental construction of RNG of exemplars. This is organized in
seven stages: i) In Stages I, II, and III entire pivot domains D(pi, ri) or a sig-
nificant number of exemplars xi are discarded from considering RNG neighbor
relations with Q by just measuring d(Q, pi); ii) Stages IV, V, and VI: pivots
are used in invalidating potential RNG links with the remaining exemplars; iii)
Stage VII: pivots are used to exclude entire domains during the RNG validation
process of existing links. What relationship between pi and pj can prevent the
formation of a RNG link between xi and xj?

Theorem 1. Consider exemplars xi ∈ D(pi, ri) and xj ∈ D(pj , rj). Then
{

d (pk, pi) < d (pi, pj) − (2ri + rj)
d (pk, pj) < d (pi, pj) − (ri + 2rj)

⇒ max(d(pk, xi), d(pk, xj)) < d(xi, xj)

(2)
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This theorem, whose proof is in the full paper [6], states that a pivot pk
that falls in a lune defined by the intersection of the sphere at pi with radius
d (pi, pj) − (2ri + rj) and the sphere at pj with radius d (pi, pj) − (ri + 2rj) also
falls in the RNG lune of xi and xj , thereby invalidating the potential RNG
link between xi and xj , without computing d(pk, xi) and d(pk, xj)! This is a
proximity relationship between pi, pj , and pk, which effectively defines a novel
type of graph.

Definition 1. (Generalized Relative Neighborhood Graph (GRNG)): Two pivots
pi, pj ∈ P have a GRNG link iff no pivots pk ∈ P can be found inside the
generalized lune defined by,

{
d (pk, pi) < d (pi, pj) − (2ri + rj) (3a)
d (pk, pj) < d (pi, pj) − (ri + 2rj) . (3b)

Observe that GRNG(P) is just the RNG when ri = 0, ∀i, thus it is a gen-
eralization of it, Fig. 3. Also, note that GRNG(P) is a superset of RNG(P)
since lune(pi, pj) is larger than the generalized-lune(pi, pj), abbreviated as G-
lune(pi, pj). This implies that the larger ri and rj are, the denser the graph is,
until it is effectively the complete graph. This places a constraint on how large
ri and rj can be. Furthermore, it is easy to show that GRNG(P) is a connected
graph. In practice, all pivots share the same uniform radius, i.e., ri = r,∀i. The
single parameter r is the minimum for which the union of all pivot domains cover
S. Thus, the number of pivots M and r are inversely related. In what follows
d(Q, pi), i = 1, 2, . . . ,M is computed.

Stage I: Pivot-Pivot Interaction: The most important implication of the
GRNG(P) via Theorem 1, is that a lack of a GRNG link between pi and pj
invalidates all potential links between their constituents. Stage I therefore begins
by locating the pivot parents of Q in P. If Q has no parents, Q is added to the
set of pivots P and GRNG(P) is updated. Otherwise, Q can only have RNG
links with the common GRNG neighbors of all of Q’s parents. See Fig. 4.

Stage II: Query-Pivot Interaction: Stage I removes entire pivot domains
from interacting with Q, namely, those exemplars in the domain of pivots that
do not have GRNG links to all parents of Q. Note, however, that the GRNG
lune is significantly reduced in size due to the increased radii, in comparison
with RNG, i.e., by 2ri + rj , ri +2rj on each side. This stage enlarges the G-lune
by considering Q itself as a virtual parent pivot with rQ = 0.

Fig. 3. GRNG of a set of 200 points in [−1, 1]2 where all ri = r and for different
selection of r: (a) r = 0, (b) r = 0.01, (c) r = 0.02, (d) r = 0.04, and (e) r = 0.419.
When r exceeds 1

6
the maximum distance between points it is the complete graph (e).
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Proposition 1. If pk is in the G-lune of (pi, ri) and (Q, rQ = 0), i.e.,
{

d (Q, pk) < d (Q, pi) − ri (4a)
d (pi, pk) < d (Q, pi) − 2ri. (4b)

Then, pk is also in the RNG lune(Q,xi) ∀xi ∈ D(pi, ri), thereby invalidating it,
i.e., max (d (pk, Q) , d (pk, xi)) < d (Q,xi).

This proof is in the full paper [6]. Note that since Q is not really a pivot, we
cannot simply lookup GRNG neighbors of it. Rather, Eqs. 4 must be explicitly
checked for all pivots pi that survive the elimination round of Stage I. Thus,
additional entire pivot domains are eliminated, Fig. 4.

Stage III: Pivot-Exemplar Interaction: This stage is symmetric with Stage
II by enlarging the G-lune, but instead of using Q as a virtual pivot, an exem-
plar is used a virtual, zero-radius pivot. These exemplar are constituents xj of
surviving pivots pj .

Proposition 2. If a pivot pk falls in the G-lune of a parent (pi, ri) of Q and
(xj , rj = 0), i.e.,

{
d (pk, pi) < d (pi, xj) − 2ri (5a)
d (pk, xj) < d (pi, xj) − ri, (5b)

then max (d (pk, Q) , d (pk, xj)) < d (Q,xj) and Q cannot have a RNG link with
xj.

Fig. 4. The savings achieved by Stages I–VI for a GRNG-RNG Hierarchy with M = 200
pivots on a dataset of N = 10, 000 uniformly distributed points in [−1, 1]2 where the
green area shows remaining exemplars after each stage. (f), (g), (i), and (j) are zoomed
in. (Color figure online)
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This proof is in the full paper [6]. In Stage III, then, for all parents of Q,
(pi, ri), and each exemplar xj of the remaining pivots pj , Eqs. 5 are checked which
if valid rule out the exemplar xj . Note that once a pk is found that eliminates
xj , the process stops, so it is judicious to pick pk in order of distance to pi as
closer pivots are more likely to fall in the G-lune of pi and xj , Fig. 4.

Stage IV: Pivot-Mediated Exemplar-Exemplar Interactions: The aim
of the next three stages is to prevent brute-force examination of all exemplars
xk potentially invalidating RNG link(Q,xi) by falling in lune(Q,xi). In Stage IV
only pivots are checked, i.e., whether pivot pk satisfies

max (d (pk, Q) , d (pk, xi)) < d (Q,xi) , k = 1, 2, ...,M . (6)

Observe that only pk for which d(pk, Q) < d(Q,xi) need to be considered, and for
those d(pk, xi) < d(Q,xi) is checked. Note that if one pk satisfies this, link(Q,xj)
is invalidated and the process is stopped, Fig. 4.

Stage V: Exemplar-Mediated Exemplar-Exemplar Interactions: In this
stage, all the exemplars xk which may invalidate the potential RNG link between
Q and xi are explored by checking

max (d (Q,xk) , d (xi, xk)) < d (Q,xi) . (7)

Observe that since the process stops if one xk falls in the lune, so it is judicious
to begin with a select group of xk that would more likely fall in the lune(Q,xi).
First, the closest neighbors of xi can be found by consulting the RNG neighbors
of xi and neighbors of neighbors, and so on until d(xi, xk) exceeds d(Q,xi).
Second, since some distances d(Q,xk) have been computed and cached for other
purposes, these can be rank-ordered and these xk can be explored until d(Q,xk)
exceeds d(Q,xj), Fig. 4.

Stage VI: RNG Link Verification: If the potential RNG link(Q,xi) is not
invalidated by the select group of exemplars xk, the entire remaining set of xk

must exhaustively be considered to complete the verification. Note, however,
that exemplars xk in pivot domain pk can be excluded from this consideration
and without the costly computation of d(Q,xk) if the entire pivot domain is fully
outside the lune(Q,xi):

Proposition 3. No exemplar xk of pivot domain pk can fall in lune(Q,xi) if

max(d (Q, pk) − δmax(pk), d (xi, pk) − δmax(pk)) ≥ d(Q,xi), (8)

where δmax(pk) = max∀xk,d(xk,pk)≤rk d (pk, xk) is the maximum distance of exem-
plar xk ∈ D(pk, rk) from pk.

This proof can be found in the full paper [6]. For the remaining pivot domains,
the computation of d(Q,xk) can still be avoided for some exemplar xk:
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Algorithm 1. RNG Localization for Query Q in GRNG-RNG Hierarchy.
Input: Query Q, pivots P, radius ri for pi ∈ P, GRNG(P), children C(pi) for

pi ∈ P, max child distance δmax(pi) for pi ∈ P, exemplar X , RNG(X),
parents P (xi) for xi ∈ X , GRNG neighbors GRNG(xi) for xi ∈ X .

Output: RNG neighbors of Q, Parents of Q, GRNG neighbors of Q.
1 begin
2 Stage 1: Find parents P (Q) = {pi ∈ P : d(Q, pi) ≤ ri}. Collect potential

GRNG neighbors of Q as A(P) =
⋃

pi∈P (Q) GRNG(pi). If |P (Q)| = 0,

A(P) = P.
3 Stage 2: Find GRNG(Q) by validating all potential neighbors pj ∈ A(P).

If no pk ∈ P satisfies both d(Q, pk) < d(Q, pj) − rj and
d(pj , pk) < d(Q, pj) − 2rj , then pj is added to GRNG(Q).

4 Stage 3: Collect potential RNG neighbors of Q as A(X ) =
⋃

pi∈P (Q) C(pi).

Remove xj ∈ A(X ) if any pj ∈ P (xj) is not in GRNG(Q). Remove
xj ∈ A(X ) if any pi ∈ P (Q) is not in GRNG(xj).

5 Stage 4: Consider invalidation of link(Q, xj) for xj ∈ A(X ) by checking
pk ∈ GRNG(Q) for interference. If any pk satisfies both d(Q, pk) < d(Q, xj)
and d(xj , pk) < d(Q, xj), then xj is removed from A(X ).

6 Stage 5: Consider invalidation of link(Q, xj) for xj ∈ A(X ) by checking
xk ∈ A(X ) for interference. If any xk satisfies both d(Q, xk) < d(Q, xj) and
d(xj , xk) < d(Q, xj), then xj is removed from A(X ).

7 Stage 6: Consider invalidation of link(Q, xj) for xj ∈ A(X ) by performing
exhaustive check for interference. Use δmax(pk) and C(pk) for pk ∈ P with
Propositions 3 and 4 to narrow down the set of potentially interfering points
xk. If no xk satisfies both d(Q, xk) < d(Q, xj) and d(xj , xk) < d(Q, xj), then
xj is added to RNG(Q).

8 end

Proposition 4. Any exemplar xk in the pivot domain of pk for which

max(d (Q, pk) − d (xk, pk) , d (xi, pk) − d (xk, pk)) ≥ d(Q,xi) (9)

falls outside lune(Q,xi).

The proof is in the full paper [6]. Any exemplar xk which is not ruled out
by Proposition 3 and 4 must now be explicitly considered. If none are in the
lune(Q,xi), then link(Q,xi) is validated.

Stage VII: Existing RNG Link Validation: The above six stages locate Q
in the RNG and identify its RNG neighbors. This is sufficient for a RNG search
query. However, if the dataset S is to be augmented with Q, a final check must
be made as to which existing RNG links would be removed by the presence of Q.
While this is a brute force O(αN) operation, it is important to avoid computing
d(Q,xi) for all xi ∈ S. Observe that Q does not threaten links that are “too far”
from it. This notion can be implemented if two parameters are maintained, one
for exemplars and one for pivots:



142 C. Foster et al.

μ̄max (xi) = max
xj∈RNG(xi)

d (xi, xj) , μmax (pi) = max
d(xi,pi)≤ri

[μ̄max (xi) + d(xi, pi)] .

(10)

Proposition 5. A query Q does not invalidate RNG links at xi if d(Q,xi) ≥
μ̄max(xi). A query Q does not invalidate any RNG link of any exemplars xi ∈
D(pi, ri), if d(Q, pi) > μmax(pi).

The proof is in the full paper [6]. This proposition suggests a three-step pro-
cedure: (i) remove entire pivot domains if d(Q, pi) ≥ μmax(pi); (ii) remove all
exemplars in the remaining pivot domains for which d(Q,xi) ≥ μ̄max(xi); (iii)
check the RNG condition explicitly for the remaining xi and any xj it links to.
This completes the incremental update of S to S ∪ {Q}.

Experimental Results. The improvements due to this two-layer GRNG-RNG
configuration are examined in experiments by varying dimensions and number
of exemplars. Figure 5 examines the number of distance computations required
for construction and search per stage as a function of the number of pivots.
Observe that the first stage cost increases linearly while the remaining stages
experience an exponential drop. This is also observed for search distances per
query. The total cost thus has an optimum for each. Since construction is offline
while search is online, the number of pivots is optimized for the latter. Figure 5(c)
examines the search costs for different dimensions. It is clear that search time
rises exponentially with increasing dimension. Observe from Fig. 5(b) that addi-
tional pivots would have enjoyed the exponential drop in all stages except for
Stage I which involves GRNG Construction. If the cost of this stage as a func-
tion of M can be lowered, the overall cost will be decreased dramatically. The
next section proposes a two-layer scheme for constructing GRNG using a coarser
GRNG in the same way the RNG construction was guided by a GRNG.
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Fig. 5. Stage-by-stage distance computations for construction (a) and search (b) across
different numbers of pivots M for N = 102,400 exemplars uniformly distributed in 2D.
Comparison of our GRNG-RNG hierarchy for RNG construction (c) and search (d) to
a Brute Force RNG algorithm that precomputes all distances.
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3 Incremental Construction of the GRNG

The question naturally arises whether the construction of the GRNG of the pivot
layer itself can benefit from a two-layer pivot-based indexing approach similar
to the construction of the same for the RNG of the exemplars. Formally, let P̄ ={
(p̄ī, r̄ī)|i = 1, 2, . . . , M̄

}
denote pivots obtained from the previous section; refer

to these as fine-scale pivots to distinguish them from the coarse-scale pivots P =
{(Pi, ri)|i = 1, 2, . . . ,M}. The idea is for each coarse-scale pivot pi to represent
a number of fine-scale pivots p̄ī. Define the Relative Pivot Domain D(pi, ri)
as the set of all fine-scale domain pivots (p̄ī, r̄ī) whose entire exemplar domain
is within a radius of ri, i.e., d(pi, p̄ī) ≤ ri − r̄ī. In this scenario, a query Q
is either a fine-scale pivot for now with rQ matching that of other fine-scale
pivots, or it can be considered a fine-scale pivot with zero radius. The query
computes d(Q, pi), i = 1, 2, . . . ,M and if d(Q, pi) < ri − rQ, pi is a parent of Q.
The question then arises as to what kind of graph structure for the coarse-scale
pivots can efficiently locate a query in the GRNG of the fine-scale pivots. The
following shows that the GRNG of coarse-scale pivots can accomplish this:

Stage I: “Coarse-Scale Pivot” - “Coarse-Scale Pivot” Interactions:

Theorem 2. Consider two fine-scale pivots (p̄ī, r̄ī) ∈ D(pi, ri) and (p̄j̄ , r̄j̄) ∈
D(pj , rj). Then, if (pi, ri) and (pj , rj) do not share a GRNG link, (p̄ī, r̄ī) and
(p̄j̄ , r̄j̄) cannot have a GRNG link either.

The proof is in the full paper [6]. This theorem, in analogy to Theorem 1 of
the previous section, allows for the efficient localization of a query Q for search
in stating that the fine-scale GRNG neighbors of Q are only among children
of coarse-scale GRNG neighbors of Q’s parents, thus, removing entire pivot
domains of non-neighbors, see Fig. 6.

Stage II: Query - “Coarse-Scale Pivot” Interactions: In this stage, (Q, rQ)
is considered as a virtual pivot.

Proposition 6. The query Q does not form GRNG links with any children
(p̄ī, r̄ī) of those coarse-scale pivots (pi, ri) that do not form a GRNG link with Q
when considered as a virtual pivot with rQ = 0. The proof is in the full paper [6].

Stage III: “Coarse-Scale Pivot” - “Fine-Scale Pivot” Interactions: This
stage is mirror symmetric to Stage II, except that instead of treating Q as a
virtual coarse-scale pivot, a specific fine-scale pivot (p̄j̄ , r̄j̄) is considered a virtual
pivot.

Proposition 7. If (p̄j̄ , r̄j̄) does not form a coarse-scale GRNG link with a parent
(pi, ri) of Q, then (p̄j̄ , r̄j̄) does not form a fine-scale GRNG link with (Q, rQ).

The proof is simply an application of Theorem (2) with (p̄j̄ , r̄j̄) considered as
both a fine-scale and a coarse-scale pivot. This third stage rules out all the
remaining fine-scale pivots which are not a GRNG neighbor of all Q’s parents,
Fig. 6 (Fig. 7).
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Fig. 6. The savings achieved by Stages I–VI for a GRNG-GRNG Hierarchy of M = 200
pivots with radius r = 0.005 on a dataset of 10,000 uniformly distributed points in
[−1, 1]2 where the green area shows remaining exemplars after each stage. (f), (g), (i),
and (j) are zoomed in. (Color figure online)

Fig. 7. Stage by stage analysis for GRNG-GRNG hierarchy for M̄ = 102, 400 uniformly
distributed fine-scale pivots in 2D as a function of M , the number of coarse-scale pivots.
The number of distance computations for construction (a) and search (b) show Stage I
is increasing with M while other stages exponentially decay with an optimum for each
in total. The improvements of GRNG-GRNG with respect to brute-force as a function
of M for construction (c) and search (d) distances is significant. (e) The monotonically
increasing Stage I in (a–b) suggest using a multi-layer hierarchy.

Stage IV: “Coarse-Scale Pivot”–Mediated “Fine-Scale Pivot” Inter-
actions: All the GRNG links between the remaining fine-scale pivots and Q
must now be investigated. In Stage IV only coarse-scale pivots are considered as
potential occupiers of the G-lune by probing

{
d (pk, Q) < d

(
Q, p̄j̄

) − (
2r̄Q + r̄j̄

)
(11a)

d
(
pk, p̄j̄

)
< d

(
Q, p̄j̄

) − (
r̄Q + 2r̄j̄

)
. (11b)
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Since d(Q, p̄j̄) − (2rQ + r̄j̄) is a known value, only pivots pk closer to Q than
this value need to be considered. Similarly, for d(p̄j̄ , r̄j̄) ∈ D(pj , rj), observe that
d(pk, p̄j̄) ≥ d(pk, pj) − (rj − r̄j̄), so that if d(pk, pj) ≥ d(Q, p̄j̄) − (rQ + 2r̄j̄) +
(rj − r̄j̄), then Eq. (11b) does not hold and there is no need to consider such pk.
Thus, very few pk are actually considered, Fig. 6.

Stage V: “Fine-Scale Pivot” – Mediated “Fine-Scale Pivot” Interac-
tions: Those links between Q and p̄j̄ that survive the pivot test must now test
against occupancy of G-lune(Q, p̄j̄) by exemplars p̄k̄. In this stage, a select group
of p̄k̄, namely those close to Q and p̄j̄ which are more likely to be in G-lune(Q, p̄j̄)
are considered, leaving the rest to Stage VI. Specifically, these are the k = 25
nearest neighbors of Q and p̄j̄ , Fig. 6.

Stage VI: “Fine-Scale Pivot” “Fine-Scale Pivot” Interactions: Very few
fine-scale pivots p̄j̄ remain at this stage. These need to be validated with all other
fine-scale pivots p̄k̄. However, the following proposition prevents consideration
of a majority of them. Define

δmax (pk) = max
∀p̄k̄, d(pk,p̄k̄)≤(rk−r̄k̄)

d(pk, p̄k̄). (12)

Proposition 8. All fine-scale pivots (p̄k̄, r̄k̄) ∈ D(pk, rk) satisfying

{
d (Q, pk) − δmax(pk) ≥ d

(
Q, p̄j̄

) − (
2r̄Q + r̄j̄

)
(13a)

d
(
p̄j̄ , pk

) − δmax(pk) ≥ d
(
Q, p̄j̄

) − (
2r̄j̄ + r̄Q

)
(13b)

fall outside the G-lune(Q, p̄j̄), for a query (Q, r̄Q) and a fine-scale pivot (p̄j̄ , r̄j̄).

The proof is in the full paper [6]. This proposition excludes entire pivot domains
from the validation process. The following proposition further restricts the
remaining sets.

Proposition 9. All fine-scale pivots (p̄k̄, r̄k̄) ∈ D(pk, rk) satisfying
{

d (Q, pk) − d (pk, p̄k̄) ≥ d
(
Q, p̄j̄

) − (2r̄Q + r̄j̄) (14a)

d
(
p̄j̄ , pk

) − d (pk, p̄k̄) ≥ d
(
Q, p̄j̄

) − (r̄Q + 2r̄j̄), (14b)

falls outside the GRNG-lune(Q, p̄j̄) for a query (Q, r̄Q) and a fine-scale pivot
(p̄j̄ , r̄j̄).

The proof is in the full paper [6]. After the majority of fine-scale pivots (p̄k̄, r̄k̄)
have been eliminated, the remaining ones must test the two GRNG conditions.
For efficiency, if first condition d(Q, p̄k̄) < d(Q, p̄j̄ − (2r̄Q + r̄j̄) does not hold,
the second condition d(p̄j̄ , p̄k̄) < d(Q, p̄j̄ − (r̄Q + 2r̄j̄) need not be tested, Fig. 6.

Stage VII: “Coarse-Scale Pivot” – “Fine-Scale Pivot” Validations: The
incremental construction requires checking which existing GRNG links may be
invalidated by the addition of Q. Define first,
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⎧
⎪⎨

⎪⎩

μ̄max (p̄ī) = max
p̄j̄ ,GRNG(p̄ī)

[
d

(
p̄ī, p̄j̄

) − (2r̄ī + r̄j̄)
]

(15a)

μmax (pi) = max
∀(p̄ī,r̄ī)∈D(pi,ri)

[μ̄max (p̄ī) + d(pi, p̄ī)] . (15b)

Proposition 10. The insertion of Q does not invalidate any GRNG links
involving fine-scale pivot p̄ī for which

d(Q, p̄ī) ≥ μ̄max(p̄ī). (16)

Furthermore, the insertion of Q does not interfere with the GRNG link involving
fine-scale pivots (p̄ī, r̄ī) ∈ D(pi, ri) if

d(Q, pi) ≥ μmax(pi). (17)

The proof is in the full paper [6]. The proposition suggests a three-step app-
roach to examining existing links: (i) Remove all coarse-scale pivot domains
pi satisfying Eq. 17; (ii) Remove all fine-scale pivot domains (p̄ī, r̄ī) satisfying
Eq. 16; (iii) For any remaining fine-scale pivot (p̄ī, r̄ī) connecting with (p̄j̄ , r̄j̄),
if Q is in the G-lune(p̄ī, p̄j̄), then the link needs to be removed.

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
N 10 5

5

6

7

8

9

10

11

lo
g

10
[In

de
x 

C
on

st
ru

ct
io

n 
D

is
ta

nc
e 

C
om

pu
ta

tio
ns

]

Brute Force
2-Layer
3-Layer
4-Layer
5-Layer

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4
N 10 5

2

2.5

3

3.5

4

4.5

5

5.5

6

lo
g

10
[S

ea
rc

h 
D

is
ta

nc
e 

C
om

pu
ta

tio
ns

]

Brute Force
2-Layer
3-Layer
4-Layer
5-Layer

(c)

6 8 10 12 14 16 18
log 2[N/100]

0

2000

4000

6000

8000

10000

12000

14000

S
av

in
gs

 R
at

io
 o

f B
ru

te
 F

or
ce

 to
 G

R
N

G

2-Layer Construction
3-Layer Construction
4-Layer Construction
5-Layer Construction
2-Layer Search
3-Layer Search
4-Layer Search
5-Layer Search

Fig. 8. Comparing the efficiency of multi-layer GRNG hierarchies on 2D uniformly dis-
tributed data to a Brute Force algorithm that would precompute all pairwise distances
(a) for RNG construction or precompute all N distances to dataset members (b) for
search. (c) The ratio of distance computation savings across N and number of layers.
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Fig. 9. The distance computations for index construction (a) and search (b) increases
as a function of number of exemplars and dimensions. However, with clustered data (c)
(d), even with outliers, both construction costs and search distances increase much less
rapidly. (e) The average degree of the RNG is related to the intrinsic dimensionality.
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Table 1. Results for real world datasets. (top) Corel, N = 68, 040 in 57D, (middle)
MNIST, N = 60, 000 instances with 64D embeddings obtained through a neural net-
work, and (bottom) LA, N = 1, 073, 727 instances in 2D. Accuracy is established by
comparison to the brute-force construction for the first two datasets, but for the last
dataset, both the brute-force method and the algorithm by Hacid et al. are impractical
to run on a dataset of such size. The accuracy of Rayar et al. in this case is found by
comparing to our method. The last 100 data points are reserved as a test set for search.

Dataset Algorithm Total links Extra (+) & Missing (−) Links Average degree Search distances Index construction distances

Corel N = 68k Hacid et al. 212,211 +21,802/−4 6.2378 177,972.36 9,823,840,198,726

Rayar et al. 190,908 +535/−40 5.6116 169,575.08 6,432,673,175

Ours 190,413 +0/−0 5.5971 43,729.20 1,611,369,217

MNIST N = 60k Hacid et al. 118,248 +3,778/−3 3.9416 87,713.10 1,430,022,984,523

Rayar et al. 114,893 +865/−445 3.8298 88,172.04 2,639,416,420

Ours 114,473 +0/−0 3.8158 10,058.90 407,689,553

LA N = 1M Hacid et al. Impractical

Rayar et al. 1,277,369 +3,254/−33,706 2.3793 2,147,498.42 1,153,035,099,784

Ours 1,307,821 - 2.4360 1,020.71 1,042,175,220

4 Experiments

Experiments on uniformly distributed and clustered synthetic data in Rd show
the effectiveness of the proposed approach. Note that for all datasets where brute-
force is possible, the RNG has been validated for exactness. Figure 8(a) shows
that our method is effective in uniformly distributed data and a hierarchy helps,
although the optimal number of layers depends on N . Figure Fig. 8(b) shows
that search is extremely efficient and is essentially logarithmic in N . Figure 9
shows that construction costs are exponential in N and dimension d for uniform
data (but search remains logarithmic), in contrast to clustered data where both
construction and search costs are well-behaved, Fig. 9(c, d). Figure 9(e) shows
that the connectivity of RNG is effectively linear in intrinsic dimension of the
data. Experiments on several real-world datasets, namely, COREL, MNIST, and
LA. For MNIST, a neural network trained using triplet loss was used to reduce
the 784D Euclidean representation into 64D. The results are shown in Table 1.
These results show that our method is significantly more efficient while also
producing the exact RNG.
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5. Escalante, O., Pérez, T., Solano, J., Stojmenovic, I.: RNG-based searching and
broadcasting algorithms over internet graphs and peer-to-peer computing systems.
In: The 3rd ACS/IEEE International Conference on Computer Systems and Appli-
cations, p. 17. IEEE (2005)

6. Foster, C., Sevilmis, B., Kimia, B.: Generalized Relative Neighborhood Graph
(GRNG) for Similarity Search. arXiv preprint (2022)

7. Fu, C., Xiang, C., Wang, C., Cai, D.: Fast approximate nearest neighbor search
with the navigating spreading-out graph. Proc. VLDB Endow. 12(5), 461–474
(2019)

8. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation
analysis. Syst. Zool. 18(3), 259–278 (1969)

9. Goto, M., Ishida, R., Uchida, S.: Preselection of support vector candidates by
relative neighborhood graph for large-scale character recognition. In: 2015 13th
International Conference on Document Analysis and Recognition (ICDAR), pp.
306–310 (2015)

10. Hacid, H., Yoshida, T.: Incremental neighborhood graphs construction for multidi-
mensional databases indexing. In: Kobti, Z., Wu, D. (eds.) AI 2007. LNCS (LNAI),
vol. 4509, pp. 405–416. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-72665-4 35

11. Han, D., Han, C., Yang, Y., Liu, Y., Mao, W.: Pre-extracting method for SVM
classification based on the non-parametric K-NN rule. In: 2008 19th International
Conference on Pattern Recognition, pp. 1–4. IEEE (2008)

12. Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their rela-
tives. Proc. IEEE 80(9), 1502–1517 (1992)

13. Katajainen, J., Nevalainen, O., Teuhola, J.: A linear expected-time algorithm for
computing planar relative neighbourhood graphs. Inf. Process. Lett. 25(2), 77–86
(1987)

14. Kirkpatrick, D.G., Radke, J.D.: A framework for computational morphology. In:
Machine Intelligence and Pattern Recognition, vol. 2, pp. 217–248. Elsevier (1985)

15. Rayar, F., Barrat, S., Bouali, F., Venturini, G.: An approximate proximity graph
incremental construction for large image collections indexing. In: Esposito, F.,
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Abstract. For many years, exact metric search relied upon the property
of triangle inequality to give a lower bound on uncalculated distances.
Two exclusion mechanisms derive from this property, generally known
as pivot exclusion and hyperplane exclusion. These mechanisms work
in any proper metric space and are the basis of many metric indexing
mechanisms. More recently, the Ptolemaic and four-point lower bound
properties have been shown to give tighter bounds in some subclasses of
metric space.

Both triangle inequality and the four-point lower bound directly imply
straightforward partitioning mechanisms: that is, a method of dividing
a finite space according to a fixed partition, in order that one or more
classes of the partition can be eliminated from a search at query time.
However, up to now, no partitioning principle has been identified for
the Ptolemaic inequality, which has been used only as a filtering mech-
anism. Here, a novel partitioning mechanism for the Ptolemaic lower
bound is presented. It is always better than either pivot or hyperplane
partitioning. While the exclusion condition itself is weaker than Hilbert
(four-point) exclusion, its calculation is cheaper. Furthermore, it can be
combined with Hilbert exclusion to give a new maximum for exclusion
power with respect to the number of distances measured per query.

Keywords: Metric search · Partitioning · Ptolemaic inequality ·
Supermetric space

1 Background and Related Work

The context of interest is querying a large finite space (S, d) which is a subset
of an infinite metric space (U, d).

In most general terms, querying the space (S, d) with query q ∈ U is the
task of finding a subset {s ← S | d(q, s) ≤ t}, for some value t which gives a
suitable size of solution set. It is generally assumed that |S| is large or the cost
of applying the function d is high, and so the simple solution of applying d(q, s)
to all s ∈ S is intractable [1,10].

Table 1 gives a summary of these and other notations used throughout the
article.
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Table 1. Notation used throughout

Symbols Meaning

(U, d) An infinite metric space with domain U and distance d

(S, d) A large finite space S ⊂ U over which search is performed

P A small reference set P ⊂ U , usually P ⊂ S

u, u0, u1, . . . Elements of the infinite domain U

s, s0, s1, . . . Elements of the finite domain S

p, p0, p1, . . . Elements of the reference set P

M A fixed radius used to define a partition with a given p ∈ P

q, t A query q ∈ U associated with a numeric query threshold t

P A partition of S defined according to distances to P

S A class of P which may be excluded given a particular q, t

Q A subset of U defined according to a particular q, t

R
n An n-dimensional real domain

�2 The Euclidean distance metric

τ A numeric parameter of the Ptolemaic partitioning
mechanism (τ ≥ 0.5, typically τ ≈ 1)

1.1 Filtering and Partitioning

All metric search solutions rely upon algebraic properties of (U, d). A relatively
small set of distinguished reference points P = {p0, . . . , pm} (typically, P ⊂ S) is
used to avoid direct calculation of d(q, s), after the distances d(s, P ) and d(q, P )
have been calculated. d(s, P ) is calculated ahead of query time, during a pre-
processing phase. Two types of usage are distinguished as follows:

filtering: given a query q ∈ U , a specific datum s ∈ S, and the distances
d(q, P ) and d(s, P ), it may be possible to determine that d(q, s) > t for some
t without having to calculate d(q, s).

partitioning: given a partition P of S determined at pre-processing time with
respect to d(S, P ), and the distances d(q, P ), it may be possible to determine
that some classes of P do not contain any elements s such that d(q, s) ≤ t.

Both types of mechanism have their place in metric search, see [1,10] for many
examples. Filtering approaches however imply linear-time solutions, whereas par-
titioning can be used to construct an indexing mechanism, typically where a very
large data set is recursively partitioned, in order to achieve a sub-linear search
time.

For filtering, the algebraic properties are required to give a lower-bound on
the distance d(q, s) with reference to the sets of distances d(q, P ) and d(s, P ).
For partitioning, a further requirement is to identify a partition that can be
determined at pre-processing time, of which one or more classes may be excluded
at query time according to d(q, P ).
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Table 2 shows partitioning mechanisms which derive from various known
lower-bound properties. The contribution of this paper is a novel partitioning
mechanism for Ptolemaic inequality, shown in bold type in the table. Until now,
such a partitioning mechanism has been missing from the literature.

Table 2. Five different partition functions and their corresponding exclusion condi-
tions. In all cases the partition criterion is used to form a distinguished subset of S at
pre-processing time, for all s ∈ S. The exclusion condition is evaluated with respect
to the query q and a query radius t. Row 5 summarises the novel contribution of this
paper.

Underlying property Partition criterion Exclusion condition

1 triangle inequality d(s, p) ≤ M d(q, p) > M + t

2 triangle inequality d(s, p) ≥ M d(q, p) < M − t

3 triangle inequality d(s, p0) ≤ d(s, p1) d(q, p0) − d(q, p1) > 2t

4 four-point lower bound d(s, p0) ≤ d(s, p1)
d(q,p0)

2−d(q,p1)
2

d(p0,p1)
> 2t

5 Ptolemaic inequality d(s, p0) ≤ d(s, p1)
∧ d(s, p1) ≥ τd(p0, p1)

d(q, p0)− d(q, p1) > t/τ

The remainder of this section introduces some necessary preliminaries. In
Sect. 2 the underlying geometry of the partition mechanism is given, and Sect. 3
gives its formal definition. Section 4 gives a quantitative analysis of its value.

1.2 Subclasses of Metric Space

Properties (1–3) listed in Table 2 are possessed by all proper metric spaces.
Property (4) is found only in supermetric spaces [2], which include all spaces
which are isometrically embeddable in Hilbert space1, while property (5) is found
in any Hadamard space2.

Any Hilbert-embeddable space is also a Hadamard space; although
Hadamard spaces are a little more general, it is not clear that any practical
non-Hilbert spaces fall in this category. Details of Hilbert spaces are elabo-
rated in [4]; in this context it is sufficient to know that the following classes of
metric space are members of both classes: Euclidean, Cosine, Jensen-Shannon,
Quadratic Form, Triangular, and Mahalanobis spaces3. Furthermore, the square
root of any proper metric gives a space in both classes. The partition mechanism
described here is thus applicable to any of these spaces.

1 See e.g. https://en.wikipedia.org/wiki/Hilbert space.
2 See e.g. https://en.wikipedia.org/wiki/Hadamard space.
3 For appropriate formulations; see [4].

https://en.wikipedia.org/wiki/Hilbert_space
https://en.wikipedia.org/wiki/Hadamard_space
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1.3 Ptolemaic and Four-Point Lower Bounds

The Ptolemaic inequality was identified for use as a distance lower-bound for
certain metric spaces in [6], and used further in a number of studies for example
[7,8]. For any four objects u0, u1, u2, u3 ∈ U , the Ptolemaic inequality states:

d(u0, u2) · d(u1, u3) ≤ d(u0, u1) · d(u2, u3) + d(u1, u2) · d(u3, u0)

In (Rn, �2) this is more simply stated as the product of the lengths of the diag-
onals of any quadrilateral being no greater than the sum of the products of the
pairs of opposing sides. Given this property, a lower bound on the distance d(q, s)
can be determined whenever, for two reference values p0, p1, all the distances
d(s, p0), d(s, p1), d(q, p0), d(q, p1) and d(p0, p1) are known. This lower bound is
much tighter than those available via simple triangle inequality, and has been
used to great effect for filtering objects during search, particularly in the context
of a very expensive distance function [8]. The mechanisms used to incorporate
this lower bound into metric search techniques include the Ptolemaic pivot table,
the Ptolemaic PM-Tree, and the Ptolemaic M-Index [7]. In all cases, the inequal-
ity is used as an extra filtering mechanism superimposed onto an existing filtering
or partitioning structure.

The four-point lower bound property, and the Hilbert exclusion mechanism,
were first identified in [2], and investigated further in [4,5]. Any supermetric
space (U, d) has the four-point property: for any four objects u0, u1, u2, u3 ∈ U ,
there exists a tetrahedron with vertices u′

0, u
′
1, u

′
2, u

′
3 ∈ R

3 where the distances
between pairs of points are preserved, i.e. d(ui, uj) = �2(u′

i, u
′
j).

The four-point property thus implies the Ptolemaic property, but not vice-
versa.

The four-point lower-bound property applies to the case where five of the
six edge lengths of a tetrahedron are known. In this case, two adjacent faces of
the tetrahedron can be constructed. A lower bound of the unknown distance is
obtained by notionally rotating these faces around their common edge to min-
imise the final edge length, which occurs when a planar tetrahedron is formed.

1.4 Projection into 2-Dimensional Space

Together these properties imply that if the Ptolemaic inequality is applied to
a quadrilateral in two dimensions, when that quadrilateral has been formed
according to five distances measured among four objects in a supermetric space,
then the inequality applies also to the original space. Figure 1 shows an example
of this.

The figure shows a projection in (R2, �2) of four objects p0, p1, s0 and s1
selected from a supermetric space (U, d). All distances other than d(s0, s1) have
been calculated in (U, d). The projections of objects p0 and p1 are plotted at
the points (0, 0) and (0, d(p0, p1)) respectively4. The projections of objects s0
and s1 are plotted at the unique points above the X-axis which preserve their
4 This choice is arbitrary, any two points which preserve d(p0, p1) could be used.
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Fig. 1. Four objects p0, p1, s0, s1 selected from a supermetric space are projected onto
a 2D plane according to the known distances K, A, B, C, D. Although d(s0, s1) is not
known, it is known that a tetrahedron with these four vertices exists in 3 dimensions.
By the four-point lower bound, d(s0, s1) ≥ X. By the Ptolemaic lower bound in 2
dimensions, X ≥ AD−BC

K

distances from p0 and p1. The supermetric properties imply that the tetrahedron
p0, p1, s0, s1 must exist in (R3, �2), therefore the unknown distance d(s0, s1) is
lower-bounded by the sixth edge of the planar tetrahedron plotted in (R2, �2).

By the four-point lower bound property, d(s0, s1) ≥ X. By the Ptolemaic
lower-bound property, X ≥ AD−BC

K . Therefore, in the original supermetric
space, d(s0, s1) ≥ AD−BC

K . For the rest of this article, only 2D projections like
these are considered, where two distinguished reference objects p0, p1 are used
to form a planar projection of the rest of the data set, and rely on the Ptolemaic
property with the context of planar quadrilaterals. This restricts the outcome to
Hilbert-embeddable spaces, although as noted this is not a significant practical
restriction.

It is worth noting that while the derivation and correctness of the mechanism
rely upon the existence of the 2D projection, the projection itself does not require
to be calculated. As shown in Table 2, the calculations required are restricted to
simple calculations over distances measured in the original space.

2 The Underlying Geometry

Partitioning mechanisms differ from filtering in that, for each possibility of exclu-
sion, it is necessary to identify two subsets of the universal space:

1. a static subset S, which can be identified and indexed during the pre-
processing of the finite data set, and

2. a dynamic subset Q, which is identified only after the query and (typically)
its associated search radius become apparent.
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Exclusion of S can be performed when every element of Q is separated by at
least the search radius from every element of S. In the following section objects
denoted by s and q are referred to, representing elements of S and Q respectively.

2.1 2D Geometry

(a) Four points p0, p1, s, q on a 2D
plane.

(b) For any q′ in the shaded area, d(q′, s) ≥
τ |A − B|.

Fig. 2. In (a), line segments among the points are annotated by their lengths. s is chosen
according to the parameter τ = C/K, and q is a point on the circle defined by p0, p1 and
s. q is the unique point with X = τ(B − A). The regions shown in the figure represent
regions of the original, potentially non-Euclidean, space; the inequalities established
are generally applicable to the original space.

Figure 2a shows four points p0, p1, q and s drawn on a plane. These points rep-
resent the 2D projections of two reference (or pivot) values p0, p1, a query value
q and a potential solution value s. The figure is annotated with line segments
labelled A − D, K and X, where the labels represent the lengths of the respec-
tive lines. K is the inter-pivot distance, and X is a lower bound of the unknown
distance d(q, s).

For the moment, values have been chosen such that

– C = D
– the parameter τ defines the ratio C/K
– point q lies on the same circle as p0, p1 and s

The Ptolemaic inequality states

BC ≤ AD + KX

so in this case:
X ≥ τ(B − A)
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The boundary of this region defines a hyperbola with foci p0, p1 and semi-
major axis X/2τ , as shown in Fig. 2b. It follows that any point within the shaded
region is at least distance X from the point s.

As q, p0, p1 and s are co-circular, q is the unique closest point on the (left-
hand) hyperbola to s and X = τ(B − A). The line segment sq is therefore
perpendicular to the tangent of the hyperbola at q. As the gradient of the tangent
is negative, it follows that any point above and to the right of s is further than
X from any point to the left of the hyperbola, as illustrated in Fig. 3a.

(a) The shaded area to the right of the
central axis contains points which are
at least d(q, s) from that on the left.

(b) The shaded area here also con-
tains contains points which are at least
d(q, s) from that on the left.

Fig. 3. The shaded area to the left of each central axis denotes the locus defined by
d(q′, p0) − d(q′, p1) > τt for any q′ ∈ U . In both cases, for any s′ ∈ S in the shaded
area to the right of the central axis, d(q′, s′) > t.

However, the static partition can be extended to include more of the finite
search space, by including any value s′ ∈ S to the right of the central axis where
also d(s′, p0) ≥ d(s, p0), as illustrated in Fig. 3b. This not only increases the
cardinality of the potentially excluded subset, but also avoids the requirement
to calculate the 2D projection.

The static and dynamic classes represented in Fig. 3b are now formally
defined as

S = {s′ ← S | d(s′, p0) ≥ d(s′, p1) ∧ d(s′, p0) ≥ τd(p0, p1)}
Q = {q′ ← U | d(q′, p1) − d(q′, p0) > t/τ}

with the property that it is impossible for any element q′ ∈ Q to be within
distance t of any element s′ ∈ S.

The validity of this extension seems evident from the illustration in Fig. 3b,
but this needs to be demonstrated for the general case. A full justification of its
correctness is included in an extended version of this paper available at [3].
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3 The Partition Mechanism

The addition of the criterion d(s′, p0) ≥ τd(p0, p1) to the static partition allows
further exclusion potential relying on the normal triangle inequality method, i.e.
if d(q, p0) < τd(p0, p1)− t. This extension to the exclusion criterion is illustrated
in Fig. 4a.

(a) The locus d(p0, q) < d(p0, s)− t can
be included in Q.

(b) The locus d(s, p{0,1}) < τd(p0, p1)
forms the final partition class.

Fig. 4. Extending the exclusion criteria, and the final partition

Furthermore, when also including the symmetric opposite criteria, the static
partition now defines three subclasses as shown in Fig. 4b. It may further be
noted that the third of these subclasses may also independently excluded if
d(q, p0) or d(q, p1) ≥ τK + t, again relying only on triangle inequality.

So finally, according to the geometry established in Sect. 2.1, a static partition
{S1,S2,S3} of S can be established for a pair of reference points p0, p1 with
K = d(p0, p1) and a given value of τ as follows:

S1 = {s ← S | d(s, p0) ≥ d(s, p1) ∧ d(s, p0) ≥ τK}
S2 = {s ← S | d(s, p0) < d(s, p1) ∧ d(s, p1) ≥ τK}
S3 = {s ← S | d(s, p0) < τK ∧ d(s, p1) < τK}

These static regions are illustrated on the 2D plane in Fig. 4b.
For a given query object q with threshold t, where A = d(q, p0) and B =

d(q, p1), these classes can be excluded from a search as follows:

S1 : B − A > t/τ ∨ A < τK − t

S2 : A − B ≥ t/τ ∨ B < τK − t

S3 : A ≥ τK + t ∨ B ≥ τK + t

Note that it is possible for the exclusion of region S3 to occur in conjunction
with that of S1 or S2. The mechanism resulting from these definitions is now
evaluated in Sect. 4.



158 R. Connor

4 Evaluation

Before proceeding with a full quantitative evaluation, it is interesting to view
graphical representations based on a sample from a particular data set, in order
to give a more pragmatic view of the Ptolemaic partition mechanism in compari-
son with hyperplane (hyperbolic) and Hilbert (four-point) partition mechanisms.

(a) A scatter plot based on randomly
selected reference points. p0 is plotted
at (0, 0) and p1 at (0, d(p0, p1)). The
data set is plotted according to the dis-
tance of each value from p0 and p1.

(b) The boundary of the class S1 is
plotted in red. Values lying to the right
of this boundary can be excluded for
queries lying to the left of either black
boundary.

Fig. 5. Graphical view of the Ptolemaic partition mechanism based on a 2D projection.
τ = 1.3 and the query threshold is 0.3.

Figure 5a shows a scatter plot of 1,000 values randomly generated in a 10-
dimensional Euclidean space, each projected onto a 2D plane according to their
distances from two randomly generated pivot values.

Figure 5b shows the same projection superimposed with one of the partition
boundaries of the Ptolemaic partition mechanism with a τ value of 1.3, and
a query threshold of 0.3, which is the mean nearest-neighbour distance. The
boundary of the static region S1 is shown in red; those points lying to the right
of the red boundary are thus subset to exclusion when either d(q, p1)−d(q, p0) >
1.3 · 0.3, or if d(q, p1) < 1.3 · d(p0, p1) − 0.3. The boundaries of these regions are
shown by solid and dotted black lines respectively; every point to the left of
either boundary represents a value for q′ ∈ Q which allows exclusion of the
static class.

Figure 6 shows the same plot with boundaries for standard hyperplane and
Hilbert exclusion, in 6a and 6b respectively.

It is clear, at least in this case, that the Ptolemaic mechanism always excludes
a smaller subset, while the probability of the exclusion being possible is higher.
From Fig. 6a it is evident that the dimensionality of the data set challenges
hyperplane exclusion, while both Ptolemaic and Hilbert mechanisms continue
to remain effective. Finally, while it is not possible to judge the relative efficacy
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Fig. 6. Equivalent graphical views of hyperplane and Hilbert partition mechanisms. In
each case, queries falling to the left of the black line can be used to exclude the subset
of data falling to the right of the red line. Again a query threshold of 0.3 has been
used. (Color figure online)

of Ptolemaic vs. Hilbert from these diagrams, it can be observed that neither is
a proper subset of the other, and it is therefore possible to use both Ptolemaic
and Hilbert with respect to the same pair of reference points. This would allow
a hybrid mechanism, more effective that either in isolation, based on the same
dynamic measurements of d(q, p0) and d(q, p1).

4.1 Quantitative Evaluation

Quantitative evaluation is performed over sets of uniformly generated Euclidean
data, from between 8 and 20 dimensions. 50k data objects are used and 1k non-
intersecting queries are evaluated. The threshold used for each query corresponds
to the 5nn distance as pre-calculated over the data.

Experiments were performed over Ptolemaic, Hilbert, and hyperplane mech-
anisms. For each experiment, a fixed number of reference points was used, and
each of the

(
n
2

)
pairs of reference points was used to construct a partition over the

space. The single outcome is the mean proportion per query of values that were
successfully excluded, this value being between 0 and 1. For the majority of the
experiments 10 reference points used, this giving 45 different partitions. Thus all
results given correspond to the proportion of the data that can be successfully
excluded at cost of only 10 distance calculations per query.

All experiments were performed using MatLab and the code is available5.

4.2 Choosing τ

First, different values for τ are examined. As mentioned, when τ = 0.5 the
mechanism reverts to simple hyperplane exclusion; while a value of less than
0.5 is technically possible, there is no value in such a choice. As τ gets large,

5 https://bitbucket.org/richardconnor/partitions.

https://bitbucket.org/richardconnor/partitions


160 R. Connor

Fig. 7. Probability of successful exclusion for differing values of τ in different dimen-
sions. Note that when τ = 0.5 the mechanism is identical to traditional hyperplane
(Hyperbolic) exclusion.

then ever fewer data will be present in the partition which may be excluded,
and again the mechanism will become useless. Early tests showed that a value
somewhere around 1 is usually close to optimal, although for specific reference
point pairs an optimum values of between around 0.8 and 1.2 were observed.

It would in fact be possible to optimise τ based on each particular pair of ref-
erence points, which we have not yet investigated thoroughly. In this experiment
a fixed value of τ is applied to all partitions, which is possibly more realistic for
many scenarios.

Figure 7 shows the results of various values of τ when applied to data of
between 8 and 20 dimensions. As can be seen there is a general trend of larger
values being better as dimensions increase, but only within quite a small margin;
while there is clearly an element of noise in this experiment, the best value in
each case is either 1.0 or 1.1, although further investigation is warranted. For
further experiments described over the data of different dimensions, the best
value of τ found in this experiment was used.

4.3 Evaluation over High Dimensional Data

Having picked a value for τ , outcomes for some different mechanisms over data
ranging from 8 to 20 dimensions are given. Four mechanisms are used: Hyper-
plane (Hyperbolic) exclusion; Hilbert exclusion; Ptolemaic exclusion, and finally
a combination of Hilbert and Ptolemaic exclusion.

For this combination, each pair of reference points was used to construct
both Ptolemaic and Hilbert partitions, and the union of non-excluded data was
calculated. The observation here is that it is possible for different data to be
excluded by each mechanism. As the essential query-time cost of performing the
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Fig. 8. Performance of different exclusion mechanisms as dimensionality increases,
measured as the probability of a non-solution being excluded based on the distances
among query and reference values.

exclusions is the cost of the two distance operations and some relatively cheap
arithmetic, taking the union of all possible exclusions makes practical sense as the
distance calculations are amortised. As Hilbert exclusion always allows exclusion
from a superset of queries identified by Hyperbolic exclusion, there is no point
in combining that mechanism also.

Figure 8 shows the outcome. As can be seen, while the performance of Hyper-
bolic exclusion falls rapidly away after around 8–10 dimensions, both Ptolemaic
and Hilbert perform much better into the higher dimensional range. Hilbert
always performs better than Ptolemaic, which is not very surprising as the four-
point lower bound property is stronger then the Ptolemaic inequality, and tech-
nically applies to a smaller subset of metric spaces. What is more interesting,
however, is that the combination of Ptolemaic and Hilbert gives a strictly better
result than Hilbert alone; that is, the data sets identified for exclusion by the
two mechanisms are not in a strict subset relation. Again it is noted that the
inherent query-time cost of the joint mechanism is very similar to the cost of
just one, as in all cases the query to pivot distances calculated are reused in both
mechanisms.

The final plots in the graph show the use of 20 and 50 pivot values for
the combination mechanism. Although only doubling the number of query-to-
pivot distances required, 20 pivots gives

(
20
2

)
i.e. 190 partitions to apply, and as

can be seen the increase makes for a much higher exclusion ratio. Similarly, 50
pivots gives 1,225 partitions. The important observation however is that there
is a clear degree of orthogonality in the randomly selected partitions, allowing
almost perfect exclusion in 12 and 16 dimensions respectively.
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5 Conclusions and Future Work

This paper fills a significant gap in the literature, that is a set partition that can
be used as an exclusion mechanism for the Ptolemaic inequality; for some years,
other distance lower-bounds have had known mechanisms and in this sense the
Ptolemaic inequality has been an outlier.

In its simplest form, the mechanism is quantitatively much better than tra-
ditional hyperplane partitioning, and not quite as good as Hilbert partitioning.
This is almost inevitable, as the class of spaces to which the inequalities can be
applied are in a strict subset relation. Should this mechanism have been identified
before Hilbert exclusion it would have been deserving of significant excitement,
but this is nowadays tempered by the existence of the more effective Hilbert
exclusion over essentially the same subclass of metric spaces.

However, it is the case that the individual data objects which the new mech-
anism excludes are not a proper subset of those identified by Hilbert exclusion,
and as shown the two mechanisms may operate in conjunction to give a unified
mechanism which, for the same cost of distance calculations against reference
points, gives a better exclusion outcome than either in isolation. Particularly
in high-dimensional spaces, this therefore gives a further increment in the limit
of dimensionality for which exact search can be effective. While the “rule of
thumb” used to be that 8–10 dimensions was the effective limit for exact search
[9], with the combined mechanism 16 dimensions can be effectively searched
while avoiding almost all explicit distance calculations.

Some further avenues are worth exploring. First, it is feasible to calculate
individual τ values customised to each particular pair of pivot points, rather
than to choose a single value for the whole set. This would be expected to give
significant, if incremental, improvement in performance.

Finally, there are many other contexts beyond a simple recursive decompo-
sition of a large data set where such mechanisms can be used. It is therefore of
potential value in its own right for this previous gap in knowledge to be filled.
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Abstract. Given a finite dataset in a metric space, we investigate the
definition of a representative sample. Such a definition is important in
data analysis strategies to seed algorithms (such as k-means) and for
pivot-based data indexing techniques. We discuss the geometrical and
statistical facets of such a definition.

We propose the Hubness Half Space Partitioning (HubHSP) strat-
egy as an effective sampling heuristic that combines both geometric and
statistical constraints. We show that the HubHSP sampling strategy is
sound and stable in non-uniform high-dimensional regimes and compares
favorably with classical sampling techniques.

Keywords: Dataset sampling · Pivot-based indexing · Local intrinsic
dimensionality · Hubness half space partitioning

1 Introduction

Given a dataset in a metric space, the selection of a representative subset of
the dataset is a common operation in data analysis or for data indexing. It is
well known that obtaining a decent approximation of cluster centers prior to
running a clustering algorithm such as k-means improves not only the speed of
convergence but also the quality of the final result [2].

Pivot-based exact and approximate indexing techniques are based on the
prior selection of a pivot set which is used in two main mechanisms. Defining
pivots as landmarks in the metric space allows to precompute and store distance
values from all data to this set and use this information along with the triangle
inequality to build an exclusion criterion [5].

Pivots may also be used as landmarks to represent the data in permutation-
based indexing strategies. The query locates data in its neighborhood by acti-
vating pivots and selecting data with similar activation. In both cases the idea
is to restrict the number of data for which the exact distance computation is
performed [1,3,10]

In the parallel field of data visualization of large data (outside the scope of
this paper) the smart sub-sampling of the dataset into a reduced representative
subset ensures smooth and accurate display.
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In this paper, we first study the approaches for data sampling and the possible
constraints that can be set, namely statistical or geometrical. We then propose
the Hubness Half Space Partitioning (HubHSP) that builds on the Half Space
Partitioning (HSP [4]) to construct a data selector that effectively combines such
geometrical and statistical constraints.

We demonstrate empirically the validity and stability of our proposal in var-
ious experimental conditions.

2 Dataset Sampling Strategies

Given a N -sized dataset X = {xi}i∈[[N ]] of Ω ⊆ R
D, classical data sampling

strategies are generally either based on statistical or geometric constraints.

2.1 Density-Based Sampling

One natural way to approach dataset re-sampling is from a statistical perspec-
tive. Here, the dataset X is supposed to be a N -sized i.i.d sample of a probability
density function (pdf) fX . In other words, {xi}i∈[[N ]] is one realization of a set
of N independent random variables {Xi}i∈[[N ]] identically distributed according
to this pdf (Xi ∼ fX , i ∈ [[N ]]).

Re-sampling dataset X into subset Y = {yj}j∈[[n]] with n ≤ N therefore
amounts to make a selection Y ⊆ X of n data from X into Y. In this case a
subset of indices ij ∈ [[N ]] is chosen so that yj = xij∀j ∈ [[n]]. As shown below, a
uniform sampling of indices from within [[N ]] guarantees that Y is also a sample
of pdf fX (i.e. fY = fX ).

Representation Properties. Maintaining the probability density function of
a sample has specific implications. Statistically, a high value of the pdf at a
location x ∈ Ω makes the likelihood of a sample at this location P(Xi = x)
accordingly high.

Conversely, a crude empirical estimate of the value of the pdf at location
x, f̂X (x) is given by the density of samples from X around x. Classically, the
density is defined as the number of objects of interest per unit of volume. Hence,
we can define

f̂X (x) =
|X ∩ B(x, ρ)|
vol(B(x, ρ))

for some small ρ > 0

where we consider the ball B(x, ρ) = {y ∈ Ω || d(x, y) ≤ ρ} as a unit volume.
In practice, we only have access to the data from X . Hence the estimate is only
non-zero when the ball B(x, ρ)) contains data samples. As a result, we are led
to using the k nearest neighbors of x from X (Vk

X (x)) to estimate the density:

f̂X (x) =
k

vol(Vk
X (x))

for some k > 0 (1)
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Note that following the above, the volume vol(Vk
X (x)) can be the volume of

the enclosing ball (vol(Vk
X (x)) = vol(B(x, ρ)) with ρ the distance to the kth

neighbor).
This view justifies that f̂X (x) = f̂Y(x) as follows [11]:

Let P(xj ∈ Vk
X (xi)) = pj|i

then P(xj ∈ Vk
Y(xi)) = P(xj ∈ Vk

X (xi), xj ∈ Y) ⊥⊥= pj|i P(xj ∈ Y).
If we sample uniformly n indices j ∈ [[N ]] then P(xj ∈ Y) = n

N . As a
result, P(xj ∈ Vk

Y(xi)) ∝ pj|i and the normalization ensures that f̂X and f̂Y
are estimates of the same original density fX . 	


This also pinpoints the fact that since Y ⊆ X preserves the original density
fX then X can be uniformly partitioned into equivalence classes whose repre-
sentative centers are points xj ∈ Y and the respective radii depend on the local
density.

From (1), for a fixed k, f̂X varies according to the value of vol(Vk
X (x)). The

larger the volume is required to hold the kNN, the lower the density. Hence,
based on kNN, the radii of Dirichlet domains1 in X centered at Y adapt to
the local density. In that respect, density-based sampling corresponds to nearest
neighbor queries with fixed k (i.e. kNN queries).

The direct implication of the above properties is that, if an indexing technique
uses the above-defined Y as representative (pivot) set, then the inverted lists Lj

associated with pivots xj and defined by2

Lj = {xi ∈ X | d(xi, xj) ≤ d(xi, xk) ∀xk ∈ Y}

are of constant size (EI |Lj | � N/n). Such a strategy is therefore profitable for
indexing where obtaining short inverted lists is desirable for performance and a
uniform partition of X into inverted lists guarantees this minimum.

However, preserving the density of representative samples and therefore cre-
ating a non-uniform geometrical partition of the data space is adverse at time
of (geometrically) locating the query with respect to the dataset. At the time
of locating the query, the relevance of a pivot xj ∈ Y is related to its covering
radius (e.g. vol(B(xj , ρ)).

Further, given a fixed representation budget of pivots, the highest value for
the lower bound for the distance from any query to any pivot is given by a
geometrically uniform partition of the space. Emphasizing geometry (rather than
density) therefore supports a more robust exclusion mechanism. For the same
reason, it is also known that permutation-based indexing schemes that locate
data by pivot activation benefit from a uniform partition of the data space by
pivots [1].

1 A Dirichlet domain is the generalization of a Voronoi region for high-dimensional
spaces. Here, we look at subsets of data from X closer to a given point in Y than to
any other point in Y.

2 Here, we allow xj ∈ Lj since generically Y ⊆ X .
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2.2 Geometry-Based Sampling

We therefore investigate the construction of a set of representatives Y based on
geometric constraints. Dataset X is typically embedded into a domain Ω ⊂ R

D

that can be sampled using a D-dimensional regular lattice. Should any element
from X fall into a simplex from the lattice, the center of that simplex (or the
closest data from X ) may be taken as a representative. Basic examples of such a
sampling include regular quantization of the coordinates of the original domain,
or after applying some analysis such as PCA to discover (and potentially deci-
mate) uncorrelated coordinates.

Representation Properties. Such a sampling strategy offers the advantage
that the representative set Y lies close to a regular lattice and this regular
structure may be exploited by the indexing.

To ensure geometric representation properties for X , the criterion can be
expressed as “Y covers uniformly the convex hull of X”, where the covering can
be quantified by the k-center criterion:

Y = argmin
S⊂X
|S|=k

max
x∈X

d(x,S)

where, d(x,S) = minx′∈S d(x, x′). It is ensuring that data in X is never far from
a sample in Y. This is equivalent to minimizing the diameter of the Dirichlet
domains built from Y of size k in X . In that respect, geometric sampling cor-
responds to nearest neighbor queries with fixed range ε (i.e. range queries to
uncover the εNN ). In that case, pivots are associated to a fixed covering radius
and inverted lists have lengths adapting to the local density.

3 Homogeneous Space Partitioning

3.1 Half Space Partitioning

In [7,9], we demonstrated that the local degree of the neighborhood graph built
using the Half Space Partitioning (HSP) strategy [4] is an accurate proxy for the
measurement of local intrinsic dimensionality. This is an important property for
designing a geometrically efficient sampling strategy.

Algorithm 1 recalls the construction of the HSP, illustrated for the 2D case in
Fig. 1. The HSP strategy partitions the hypersphere around every xi into cones
(see green dashed lines). In the HSP graph, each data point is connected (red
edge) with its HSP neighbors and their mutual arrangement and the relationship
with the Kissing number correlates their degree with the local dimensionality of
the data [9]. Note that there is no upper bound for the distance value from xi

to the next selected HSP neighbor.
The construction of the HSP graph is highly parallel since the neighborhood

of every point is computed independently of the rest. While this is a clear com-
putational benefit and makes the HSP graph reproducible however the dataset
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xi

xj

xk

Fig. 1. HSP construction and discarding strategy. The (red) center data xi chooses its
closest (green) neighbor xj as HSP neighbor and discards all data closer to xj than to
itself (shaded half-space). xk will be selected as next closest neighbor (as symbolized
by the dashed circle) and the next half-space (below the blue dashed line) discarded,
until no neighbor of xi remains (Color figure online)

Algorithm 1. HSP graph construction
1: procedure HSP(X ) � Half-space partitioning
2: for every point xi ∈ X do
3: while not all data in X is discarded do
4: Select the next nearest neighbor xj ∈ X not already discarded
5: Add xj as HSP-neighbor of xi

6: Discard any data xk from X that is closer to xj than to xi

is given, it makes the structure of the HSP graph unpredictable, apart from its
properties arising from sphere packing.

In particular, no control is applied over the indegree of every node (the num-
ber of edges pointing to every node). As a result, there is no guarantee for a
strong overlap of the HSP neighborhoods of 2 close points. Further, the specific
structure of the HSP graph is sensitive to any data perturbation that would flip
the order in which data appears as nearest neighbors of each other. In a setting
where we use a point neighborhood as its representative, we would rather like
to introduce correlation between neighborhoods of close points so as to:

– ensure that 2 close points share representatives (geometric consistency)
– obtain a compact, stable and sound representative sample of the data (sta-

tistical consistency)
– minimize the overall number of representatives

Here, we propose the “Hubness-HSP” (HubHSP for short) as a graph spanner
over X supporting the selection of a representative set Y. We first propose the
rationale for its construction and then derive the actual construction algorithm.
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We finally study and experimentally investigate the properties of the resulting
HubHSP spanner for dataset sampling.

We wish to define the HubHSP as a structure that supports the selection
of a representative set, while maintaining the favorable geometric properties of
the HSP: xj being selected as a neighbor of xi means that xj represents the
vicinity of xi and we wish to concentrate this representation into a given budget
of representatives Y. The base adaptation is therefore to install a control over
the indegree of the nodes in the HubHSP. By enforcing nodes with high indegree,
we create “centrality hubs3” that can be used to define representatives Y from
the full set X .

We therefore define a “hubness factor” hj at every node xj , which corresponds
to its indegree during construction. Hence

∑
j hj = N and the challenge is to

allocate hj values so as to obtain concentrated hubs.
We build the graph following the aggregative compounding principle (see

Fig. 2): a new data is matched with its HubHSP neighbors (line 9 in Algorithm
2) according to the HSP geometry while maintaining the most concentrated
hubness by privileging existing hubs. Hence, at an intermediate stage, a data
xi is connected to the strongest current hub xj from within its vicinity, and
activates the HSP half-plane point discarding strategy.

Algorithm 2. Hubness HSP graph construction
1: procedure HubHSP(X )
2: hi ← 0 ∀i � Initialize hubness to 0
3: Q. push(xstart) � Initialize Q with xstart

4: while Q is not empty do
5: xi ← Q. pop() � Next data point in the chain
6: Q. push(V(xi)) � Next data to consider in the chain
7: Ci is the circle centered at xi through its closest neighbor
8: while not all data in X is discarded do
9: Select the neighbor xj of xi with maximum current hubness

10: Add xj as HSP-neighbor of xi

11: hj ← hj + 1 � Increase hubness of xj

12: x̃j ← ProjCi
(xj) � Project xj onto Ci

13: Discard any data xl from X that is closer to x̃j than to xi

We comment the main lines of Algorithm 2:

– Line 9: the current data xi inspects a given vicinity V(xi) (e.g. its 100-
NN neighborhood) and finds the data xj of current maximal hubness hj =
maxxk∈V(xi) hk.

– Lines 10–11: xj is added as neighbor to xi by creating an edge (xi, xj) and
therefore increasing the hubness (indegree) hj of xj .

3 Here, centrality relates mainly to notion of degree centrality.
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– Line 12: The natural distance-based selection in the HSP guarantees geomet-
rical consistency [4]. This is not used anymore and to restore consistency,
selected neighbors are projected onto the sphere Ci centered at xi and con-
taining the closest neighbor of xi (blue circle in Fig. 2). In practice, this is
done by proper normalization of vector [xi, xj ] into vector [xi, x̃j ] (see Annex).

xi

xj

x̃j = ProjCi
(xj)

xk

x̃k

Ci

Fig. 2. HubHSP construction and discarding strategy. The current (red) center data xi

chooses its (green) neighbor xj of highest hubness (size of the data point) as HubHSP
neighbor from its vicinity V(xi) (red dashed circle). It projects this data onto x̃j on the
largest empty circle (blue circle) and discards all data closest to x̃j than to itself (shaded
half-space). xk will then be selected as next non-discarded neighbor of highest hubness
and the next half-space (left to the blue dashed line, bisector of [xi, x̃k]) discarded,
until no neighbor of xi remains non-discarded (Color figure online)

The main practical adaptations from the HSP construction strategy are:

1. data is selected by decreasing hubness rather than increasing distance
2. because of 1. above, the selection of neighbors for xi (line 4 in Algorithm 1)

has to happen within the pre-defined vicinity V(xi)
3. because of 1. above, to maintain geometric consistency, points are projected

onto a sphere of minimal radius around xi before selection
4. since we now create a chain during the construction of the HubHSP (using

Q), a starting point has to be defined.
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The first and main benefit of this adaptation is the creation of a hubness index hj

per datum (node in the HubHSP graph). The hubness index hj is the indegree of
node xj in the HubHSP graph. hj counts how many data xi have xj as HubHSP
neighbor. A node with high hubness is therefore an interesting candidate for
the representative subset. This provides a sound and natural strategy for the
selection of Y by simply selecting nodes in decreasing order of their indegree.

As a result, the HubHSP graph combines two properties. From its inheritance
from the HSP process, the outdegree of every node reflects the local geometry
(intrinsic dimensionality) of the data [9]. Through the hubness, the indegree of
each node is now correlated with the statistical properties of the data.

Since in practice we need to define (limit) the vicinity V(xi) from where the
HubHSP neighbors are selected (line 9 in Algorithm 2), the construction of this
set impacts the resulting properties of the HubHSP graph.

– if V(xi) = Vk
X (xi), the kNN neighborhood of xi in X , the span of this set

is driven by the local density, as discussed above. Hence, the kNN-based
HubHSP graph reflects the local density of data via arc lengths, on top of
reflecting its geometry via outdegree.

– if V(xi) = Vε
X (xi), the εNN neighborhood of xi in X , the span of this set is

immune from the local density and it is the indegree of every neighbor that
reflects this density.

Hence, the HubHSP graph adds to the HSP graph the encoding of the local
density either via arc lengths (kNN) or indegree (εNN).

3.2 Complexity

The base complexity of the HubHSP construction algorithm is O(N2D). It mim-
ics that of the computation of any neighborhood graph as it is dominated by
selection of candidate neighbors (line 9 in Algorithm 2). Such a complexity may
classically be reduced by a pre-indexing of these neighborhoods. In Sect. 4, we
present results against baselines whose base complexities are of the same order.

3.3 Generic Metric Spaces

Our discussion and illustration have been concerned with metric space (Ω, d)
where Ω ⊂ R

D and d(., .) is the Euclidean distance function. All definitions
provided here rely on the existence of a proper distance function and therefore
do generalize to other metric spaces. The precise study of the properties obtained
when constructing the HubHSP in these metric spaces is out of the scope of this
paper and is left for an extension.

4 Experiments

We now experiment under various conditions and compare to relevant baselines.
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4.1 Dataset

To highlight the properties of our proposal, we use data with various properties in
terms of density and dimension D. As a base reference, we generate 2 artificial
dataset with uniform distribution U100K×2 and U100K×10, containing 100’000
data of dimension D = 2 and D = 10, respectively. Note that in this case, the
dataset of dimension 10 with 100’000 data is rather sparse.

To depart from the uniform distribution, we generate 2 dataset N 100K×2 and
N 100K×10 with the same parameters but from a centered normal distribution.
While uniformity makes the density of the data the same at every point in space,
the Normal distribution induces an exponential variation of the density across
the space.

As a more realistic dataset, we use the 500’000 first data of the ANN SIFT
(base set) benchmark [8]. In this case D = 128, inducing a very sparse set.
We also use a dataset of Flow Cytometry data containing N = 470′995 D = 18-
dimensional data. This data is known by definition to aggregate in dense localized
clusters (see Fig. 3 for a 2D glance). Its distribution is therefore far from uniform
with large unpopulated parts of the space.

In all cases, we set the size n of the sample to 1% of the original size N . We
fixed k = 1000 and ε = 20 to create the base neighborhoods (Vk

X (xi) and Vε
X (xi)

respectively) over which the HubHSP graph is built.

4.2 Baselines

Random. As discussed above, a uniform sampling of the data indices ensures the
preservation of the statistical properties (density) of the data into the sample.

Farthest First Traversal (FFT). In contrast, this geometrical strategy aims at
spreading the representative set across the dataset by approximating the k-center
problem [6]. Using this strategy it is expected that the representative samples
lie close to a regular grid.

Note that due to the concentration of distance phenomenon, this strategy
loses its rationale in high dimensions.

k-means ++ [2] adds a random component to the above FFT strategy by mak-
ing it most likely but not a strict choice, depending on the density of the data.
k-means ++ is therefore interesting since it offers theoretical bounds in rep-
resentation and mixes geometrical and statistical constraints, as we aim to do
here.

4.3 Measures and Results

We use the following measures to assess the characteristics of our proposed
sampling. Results are reported in Table 1.
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The empty sphere measure (top section) quantifies the uniformity of the sam-
pling by measuring the diameter of the largest empty sphere lying between sam-
ples. In practice it is the maximum distance between 2 neighboring samples.

Since we wish an equipartition of the space by samples, the smaller this
value is, the better the quality of the sample. We report the mean and also mea-
sure uniformity of this allocation by reporting the standard deviation (between
parenthesis).

We see that in the most basic conditions (U100K×2) all sampling strate-
gies perform similarly. When the dimension increases (e.g. U100K×10), the data
becomes sparser and geometrical techniques (such as FFT) fail. Our proposal is
able to consistently reduce the value of the measure while keeping the variance
at a comparable level.

The length of inverted lists (middle section) is an indicator of the uniformity of
the allocation of representative to the data. In practice, since we use Dirichlet
domains to define the lists, the average list length is simply the ratio between the
size of the data and the sample (EI |Lj | = N/n) so only the standard deviation
is reported. The smaller this value, the more uniform the partition is.

We clearly see the same trend of lower variance in the length of inverted lists
and therefore more stability in the allocation of representative data.

The maximum distance (bottom section) between a data and its representative
is rather based on the data. It is a geometric indicator of how well every data is
represented by the sample. Ideally, every data should find a representative in its
vicinity so again, the smaller this value is, the better. We report the mean and
also measure uniformity of this allocation by reporting the standard deviation
(between parenthesis).

This measure shows that the HubHSP hubness allocates representatives
closer to each data than other strategies. This is understood by the ability of
the HubHSP to exploit better the statistical and geometrical properties of the
data to allocate better a fixed budget of n representative data. This is made
clear in the most adverse setting of high-dimensional non-uniform data (which
corresponds to real dataset).

Figure 3 proposes a visual intuition of the allocation of representatives in low-
dimensional non-uniform data. The resulting samples (red points) are shown over
the data (green points) for all baselines and for the HubHSP. An ideal sampling
should show regularity (to avoid redundancy) and respect the data density.

Whereas random sampling (top left) is inefficient by allocating redundant
representative samples, the FFT (top right) is inefficient by being blind to the
local density. k-means ++ (lower left) proposes an adequate mix of statistical
and geometrical sampling but clearly the HubHSP (lower right) adds a form
of regularity that removes local density artifacts due to random sampling and
explains the effectiveness in terms of geometrical partitioning (Dirichlet domains)
of the data.

Finally, Fig. 4 shows an histogram of the corresponding hubness values hj .
A very large majority of these values are zero, which demonstrates the ability
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Fig. 3. Sampling strategies by the baselines and the HubHSP over a 2D slice of the
FlowCyto dataset (FlowCyto471k×2) as a low-dimensional non-uniform example. In
each scatter plot, the dataset is shown in green and selected representatives are shown
in red. [top left] Random uniform, [Top right] FFT, [Lower left] k-means ++, [Lower
right] HubHSP (ours) (Color figure online)

of the HubHSP to concentrate its indegree into only a minority of large values
(since

∑
j hj = N). This indicates that only a small percentage of data in X

then compete for entering Y.

5 Conclusion

Subsampling a finite dataset may be considered from either a statistical or geo-
metrical perspectives. Classical strategies focus on either of these. Based on the
capability of the HSP graph to correlate with the local intrinsic dimensionality
we proposed the HubHSP to generate a sound data selection criterion combining
geometrical and statistical properties.

We demonstrate the ability of the HubHSP graph construction algorithm
as a modification of the HSP graph construction to indicate a sound and stable
selection of data as representative. We compare with classical selection algorithm
and show that the HubHSP is able to create a more robust and effective sampling
by a better exploitation of geometrical constraints on top of statistical sampling.

More generally, this work relates the ability of graph spanners to mirror and
combine geometrical and statistical properties of non-uniform point clouds in
high dimensions. In [9] diffusion over neighborhood graphs was used to exhibit
that structure exploiting the link between connectivity (resp degree) and cen-
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460844

Fig. 4. Hubness for the 2D slice of the FlowCyto dataset (FlowCyto471k×2) shown in
Fig. 2 [Lower right]. Only about 2.2% of the values are non-zero.

trality. There is much to explore in this interplay of data analysis methods and
data modeling techniques to particularize subsets of dataset.

Acknowledgments. This work is partly funded by the Swiss National Science Foun-
dation under grant number 207509 “Structural Intrinsic Dimensionality”.

Annexes

HubHSP Projection. The HSP selects its neighbors based on increasing dis-
tance after discarding half-planes. Since the neighbors selected by the HubHSP
can occur in random order of their distance values from the central point xi, it
is critical to consider them as projected over a common sphere centered at xi.

The most canonical choice is the sphere Ci including the first neighbor xl

of xi. Note ρi = d(xl, xi) its radius (the distance between xi and its closest
neighbor), then a point xj is projected as x̃j onto Ci by:

x̃j = ProjCi
(xj) = argmin

x∈Ci

d(x, xj) = xi + ρi
xj − xi

d(xj , xi)

Main Mathematical Symbols

Ω Ambient space
X , Y Main dataset, representative

set
[[N ]] Set of indices {1 · · · N}

d(., .) distance function
B(x, ρ) Ball centered at x of radius

ρ
ProjC(x) Projection of x onto C

fX True pdf of the dataset
f̂X Empirical density of the

dataset
Vk

X (x) k-closest neighbors of x in X
Vε

X (x) ε-neighbors of x (= B(x, ε)∩
X )

Lj Inverted list for xj

EI X Expectation of variable X
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Abstract. We propose two methods to compact the used search tree
during the graph edit distance (GED) computation. The first maps the
node information and encodes the different edit operations by numbers
and the needed remaining vertices and edges by BitSets. The second rep-
resents the tree succinctly by bit-vectors. The proposed methods require
24 to 250 times less memory than traditional versions without negatively
influencing the running time.

Keywords: Graph Edit Distance (GED) · Compacted GED search
space

1 Introduction

The Graph Edit Distance (GED) is a well-known metric used to compute the
degree of dissimilarity between two graphs g1 and g2. It is generally used in pattern
recognition [12], such as handwriting recognition [9] and document analysis [4].
The GED is defined as the minimum-cost sequence of edit operations needed to
transform graph g1 into graph g2 [3]. The allowed operations are insertion, dele-
tion, and substitution, which are applied on vertices and their corresponding edges.
The GED computation is an NP-hard problem [13]. It has an exponential time
complexity due to the exponential size of the generated search tree.

Bunke andAllermannwere the precursors for solving theGEDproblem [3]. The
authors used an A* based algorithm where the search tree is generated dynami-
cally. In [8], the authors proposed an approximation for the GED problem called
A*-Beamsearch. By limiting the size of the A* priority queue to a certain size s.
To speed up the A* search process, [10] presents an effective heuristic that gives
the estimated cost h and concludes a lower bound. This heuristic, called bipar-
tite heuristic [9], has been discussed and improved in [11] and [2] to compute a
more accurate lower bound. Authors in [1] proposed an approach called (DF GED)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Skopal et al. (Eds.): SISAP 2022, LNCS 13590, pp. 181–189, 2022.
https://doi.org/10.1007/978-3-031-17849-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17849-8_14&domain=pdf
https://doi.org/10.1007/978-3-031-17849-8_14


182 I. Chegrane et al.

based on the Depth-First Search (DFS) to reduce the amount of used memory
space. It proposes an alternative to theA* algorithmwithout addressing the under-
lying data structure and data representation. In [6], a tree-based approximate app-
roach that gives near-optimal results is proposed. Gouda and Hassaan in [7] pro-
posed an edge-based DFS method called CSI GED.

Existing methods [1,6,10] mainly focus on reducing the time complexity by
using parallel techniques or heuristics which provide approximate results without
addressing the used data structure. In this work we attempt to reduce the mem-
ory space inherent to the GED computation by proposing two methods to com-
pact the GED search tree. First, we compact each field used in its nodes based
on an efficient mapping to encode the information of the different edit operations.
A single number encodes the hole edit operation including its type and involved
vertices, and a BitSet encodes the needed remaining vertices and edges. This map-
ping allows us to represent each path as a sequence of numbers. Second, the search
tree is represented succinctly by bit-vectors where only the active nodes are stored
and all the ancestor parents are deleted. Our work is independent of the search tree
algorithms. Therefore, the proposed approach represents a general framework that
can be used with both algorithms based on best first search (A*) or on depth-first
search (B&B). Experiments on well-known benchmarks show the efficiency of our
proposed methods. It confirms that our methods reduce the memory used by a fac-
tor of 24x to 250x. Moreover, they do not negatively influence the running time. It
generally gets the same processing time as traditional algorithms, and may achieve
twice faster times with some benchmarks.

The rest of this paper is organized as follows. In Sect. 2, we present the
search tree used to solve the GED problem. In Sect. 3, we describe our methods.
Section 4 outlines the obtained results. Finally, conclusions are given in Sect. 5.

2 The Data Structure Used to Solve the GED Problem

Root

(v1,u1)V1

V2

Vn

(v1,um) (v1,ε)

(v2,ε).....

(v1,u2) 

(v2,u1) (v2,u3) 

.....

.....

Insert : Rg2={uj1,uj2,...,ujk}      / if Rg2 exist.

Fig. 1. Vertex edit operations in the search tree.

The GED search tree represents
the mapping of the vertices of
the first graph g1 with the ver-
tices of the second graph g2 using
the three edit operations: substi-
tution, deletion and insertion. It
generates for each vertex vi ∈
V1 all the possible substitutions
with other vertices uj ∈ V2, and
also the deletion of vi. At the
end, if there are still vertices in
V2, we insert them in one single
operation. In addition to the list
OPEN that is used in the tree
exploration process.
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The following information is associated with each node:

1. A pointer to keep relationships with its parent (to construct the edit path).
2. The vertex edit operation: The two involved vertex from g1 and g2; (vi, uj),

(vi, ε) or (ε, uj). The vertex information may contain a weight or labels.
3. The implied edges operation which are either added or calculated directly.
4. The real cost g: the sum of costs from the root to this intermediate node.
5. The estimated cost h from this intermediate node to the leaf.
6. The remaining vertices of g1: At each level l, each outgoing path has the

same vertex vl from g1 and a different wj from g2 plus one deletion node. So
it suffices to store the last index of the processed vertex (See Fig. 1).

7. The remaining vertices of g2: We keep a list of non-processed vertices.
8. The remaining edges of g1 and g2: If we compute them, the processing time

will increase. In contrast, we increase memory space needed if we store them.

3 Compacted Search Tree for the GED Problem

To compact the data structure presented in Sect. 2, we present two methods:

3.1 Compacted Method 1: GED Compacted Search Tree ( CT)

The idea is to compact each separate field needed (the vertex edit operations).
Our work is inspired by a cost matrix proposed in [9,10]. The cost matrix rep-
resents all the combinations of edit operations between the vertices of the two
graphs g1 and g2. Using this matrix model, we propose the Edit Operations
Matrix to index all possible operations. The proposed matrix is divided into
four regions (See Table 1). The top left region represents substitutions between
g1 and g2. The far-right column represents the deletions from g1, while the bot-
tom line represents the insertions in g2. The last region of the bottom-right cell is
useless. We assign to each cell a unique number. We begin from the top left of the
matrix by 0 and, each time, we increment by 1 till we finish at the bottom right
of the matrix. Therefore, instead of manipulating the vertex edit operations, we
use the unique id assigned to each edit operation (See Table 1). Each node in
the tree uses the ids from the edit operation matrix. This avoids manipulating
the entire vertices of edit operations. We do not need to store this matrix. We
only generate each vertex edit operation id based on the indices of the vertices
from g1 and g2.

Table 1. Vertex operation matrix id.

0 1 2 . . . (m-1) m

0 0 1 2 . . . m-1 m

1 (1 ×m) + 1 (1 ×m) + 2 (1 ×m) + 3 . . . (1 ×m) + m (1 ×m) + (m + 1)

2 (2 ×m) + 2 (2 ×m) + 3 (2 ×m) + 4 (2 ×m) + (m + 1) (2 ×m) + (m + 2)

. . .

. . .

. . .

(n-1) ((n− 1) ×m) + (n− 1) ((n− 1) ×m) + (n− 1) + 1 ((n− 1) ×m) + (n− 1) + 2 . . . ((n− 1) ×m) + m + (n− 1) − 1 ((n− 1) ×m) + m + (n− 1)

n (n×m) + (n) (n×m) + (n) + 1 (n×m) + (n) + 2 . . . (n×m) + m + (n) − 1 (n×m) + m + (n)
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The ids in the Edit Operations Matrix: Let n,m be the number of vertices of g1,
g2 respectively. The id of an edit operation that involves the vertex i form g1
and the vertex j from g2 (the indices begin from 0) can be given by the following
equation: id(i, j) = (i × m) + (i + j), so we can write it in the following form:
id(i, j) = (m + 1) × i + j. In Table 1, it is clear that the column m concerns
operations of the deletion, and the row n concerns those of the insertion. Hence,
in the case of deletion a vertex vi, we set j = m. In contrast, we set i = n if we
insert a given vj . Therefore, the vertex edit operations are given as follow:

– Substitution: get id sub(i, j) = (m + 1) × i + j
– Deletion: get id del(i) = (m + 1) × i + m
– Insertion: get id ins(j) = (m + 1) × n + j

Get i and j the Involved Vertices form the Edit Operation id(i, j): From
the id of a given edit operation, we need to find the type of that operation and
its involved vertices. Note that, we only have the following three values: id, n
and m. The index i of the vertex in g1 is given by:

i =
⌊

id(i, j)
(m + 1)

⌋
=

⌊
(m + 1) × i + j

(m + 1)

⌋

The index j of a vertex in g2 is given by:

j = id(i, j) mod (m + 1) = ((m + 1) × i + j) mod (m + 1)

After getting i and j values, we deduct the edit operation by checking if:

– i < n & j < m, then it is a substitution between vi from g1 and uj from g2.
– i < n & j = m, then it is a deletion of the vertex vi from g1.
– i = n & j < m, then it is an insertion of the vertex uj in g2.

Get the Complete Edit Path: When the search process finds a solution,
we need to reconstruct the whole path of edit operations including vertices and
edges. For each edit operation id in the edit path λ(g1, g2) = {ide1, ide2, ..., idek},
we retrieve the type of the edit operation and the involved vertices. Then, we
extract the implied edges and add them to the final path solution.

The List of the Remaining Vertices and Edges: The remaining vertices
and edges at each node are represented by a separate BitSet. A bitvector is
created for each remaining list. Initially, all the bits are set to 1. Each node is
assigned a copy of its parent BitSet with a 0 in the processed node position.

3.2 Compacted Method 2: Path Representation Using BitSets
( CB)

We benefit from the mapping of the first method where paths are represented
by suits of numbers. We represent these paths by BitSets. Each path will be
compacted. Moreover, we keep only the active nodes in the search tree, and
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we delete all the ancestor parents. A path is the succession of nodes related by
pointers that contain ids. Assuming that b the size of the pointer equals the size
of the edit operation id, we need 2b × k bits to represent a path of k operations.
This can be reduced to only a few bits when representing a path by a BitSet.

In the first method, each path is represented as follows λ(g1, g2) =
{ide1, ide2, ..., idek}. For example, path(g1, g2) = {2, 6, 8, ...}. We encode this
path by a BitSet, where each edit operation id is represented in the BitSet by 1
in its position. For the ids (2, 6, 8), in the BitSet we put 1 at the 2nd,6th, and 8th

positions; and all other bits are set to 0. Hence, the path(g1, g2) = {2, 6, 8, ...} is
represented as BitSets like path(g1, g2) = [0, 0, 1, 0, 0, 0, 1, 0, 1, ...]. Each partial
or complete path (at inner or leaf node) is represented by its own BitSet.

During the searching process, we keep only the nodes (paths) that are not
treated yet. We do not need the ancestor nodes from the root to the final treated
node (inner or leaf node), because all the ids of the edit operations are in the
BitSet of the final treated node. Figure 2 illustrates the search tree using BitSets.

Fig. 2. The search tree using bites array.

The BitSet Size Needed
by Nodes at Each Level of
the Tree: Each node in the
search tree generates at most
m + 1 child (m is the num-
ber of vertices of g2), where
the outgoing are composed by
only one vertex from g1 com-
bined with the other vertices
of g2 plus its own deletion (see
Fig. 1). As shown in Table 1,
in each row of the edit oper-
ations matrix, one vertex vi
from g1 is substituted with all
the vertices of g2, and deleted
at last. The first row contains
the ids from 0 to m, the sec-
ond from m+1 to 2m+1, etc.

At the first level of the tree, each node, can so be represented by a BitSet
having the same size as the first column in the matrix which is m + 1. At the
second level, each node, requires the size of the second column of the matrix
(m + 1) that allows to index the ids of the second vertex from g1, combined
with the rest of vertices from g2 (m) plus one deletion. We also need to keep
all the path in the second level. Thus, we add the BitSet of the first level. As
a result, the size is 2 × (m + 1). As a general rule, each node has to keep the
information of its previous parents. Therefore, we need a BitSet of l × (m + 1)
bits in each node at the level l. We should notice that we have a sparse BitSet.
All the positions contain the value 0, except the one representing the id of the
edit operation associated with the node. Hence, if desired, one can compress the
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Table 2. Setting cost for vertex and
edge edit operations.

Vertex Edge

Sub Del Ins Sub Del Ins

Setting 1 2 4 4 1 1 1

Setting 2 2 4 4 1 2 2

Setting 3 6 2 2 3 1 1

Table 3. Datasets information.

Dataset NB
graphs

mean
#nodes

mean
degree

min
#nodes

max
#nodes

PAH 94 20.7 20.4 10 28

Mao 68 18.4 2.1 11 27

BitSet [5]. The other information needed during the searching process, such as
g, h values and remaining vertices and edges, are kept at each node.

4 Tests and Experiments

In this section, we investigate the ability of our methods to efficiently reduce
the used memory space, and see their impact on the running time. Our program
is written in JAVA 1.8. Our tests are conducted using one core of one comput-
ing node of IBNBADIS Cluster, with a RAM memory limited to 16 GB. The
two proposed methods implemented with A*GED and ASBB (based on B&B)
approaches are compared using the datasets1 given in Table 3. We have a total
of 8 methods. Each basic algorithm (A*GED and ASBB) is implemented: (1)
computing the implied edges (A*), (2) storing the implied edges (A*Edge), (3)
using compacting method 1 on A* (A* CT), and (4) using compacting method
2 on A* (A* CB). The same goes for ASBB method. We have used three cost
settings2 (Table 2).

Time Processing Results: The processing time is relatively close for different
methods tested for A*, ASBB and, for their variants. Figure 3 illustrates results
for Mao and Grec20 benchmarks. It is clear that the compaction does not neg-
atively influence the processing time. Since the PAH Benchmark is difficult to
solve, we do our experiment with only ASBB algorithm using only setting 1.
The results are in hours as follow: basic ASBB: 42.50 h, ASBB CT: 21.92 h and
ASBB CB: 20.98 h. We notice clearly that the compacted methods speed up
the processing time to twice because they manipulate only ids with elementary
operations (number and bits).

Memory Space Results: To measure the space used by the program, we use
the open source MemoryMeter3. Figure 4 illustrates the memory space used by
A*, ASBB and their four implementations with compaction to solve the problem
of exact GED for Mao and Grec20 datasets. Storing the implied edges (A*/ASBB

1 Download from https://gdc2016.greyc.fr/#ged.
2 These settings were used in the competition https://gdc2016.greyc.fr/#ged.
3 MemoryMeter: https://github.com/jbellis/jamm.

https://gdc2016.greyc.fr/#ged
https://gdc2016.greyc.fr/#ged
https://github.com/jbellis/jamm


Graph Edit Distance Compacted Search Tree 187

Fig. 3. The running time for A*, ASBB with compaction on Mao, and Grec20.

Edge), as expected, increases a little bit the used memory space. It is very clear
that the compaction improves the used memory space. Our first method A* CT
achieves an average gain of 4.33, 3.57 less memory with respectively Mao and
Grec20. Whereas, ASBB CT method gets an average gain of 1.73, 164 for the
same datasets. Our second method (A*/ASBB) CB achieves remarkable good
results. We clearly see the power of this method to reduce the memory space
better than basic algorithms, where it gains an average of 24 less memory with
A* CB, and 250x less with ASBB CB. Figure 5 illustrates the gain factor of the
used memory space between basic and compacted algorithms.

Fig. 4. The memory space occupied by each method on the used datasets.
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Fig. 5. The ratio of used memory space between basic and compacted algorithms.

5 Conclusion

The exact GED problem has exponential space and time complexity. This work
focuses on the memory space of the search tree used to solve this problem. We
proposed to compact this tree using an intelligent mapping to represent the dif-
ferent edit operations, and BitSets to represent the needed remaining vertices
and edges. Moreover, instead of storing the traditional search tree, we repre-
sent it succinctly by bit-vectors. The experiments on several datasets show that
these methods decrease significantly the search space about 24 to 250 times com-
pared to the A*GED and ASBB algorithms. This allows solving larger instances
compared to the reference algorithm without influencing the running time.
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Abstract. The evaluation of clustering results is difficult, highly depen-
dent on the evaluated data set and the perspective of the beholder. There
are many different clustering quality measures, which try to provide a
general measure to validate clustering results. A very popular measure
is the Silhouette. We discuss the efficient medoid-based variant of the
Silhouette, perform a theoretical analysis of its properties, and provide
two fast versions for the direct optimization. We combine ideas from the
original Silhouette with the well-known PAM algorithm and its latest
improvements FasterPAM. One of the versions guarantees equal results
to the original variant and provides a run speedup of O(k2). In exper-
iments on real data with 30000 samples and k = 100, we observed a
10464× speedup compared to the original PAMMEDSIL algorithm.

1 Introduction

In cluster analysis, the user is interested in discovering previously unknown struc-
ture in the data, as opposed to classification where one predicts the known struc-
ture (labels) for new data points. Sometimes, clustering can also be interpreted
as data quantization and approximation, for example k-means which aims at
minimizing the sum of squared errors when approximating the data with k aver-
age vectors, spherical k-means which aims to maximize the cosine similarities
to the k centers, and k-medoids which minimizes the sum of distances when
approximating the data by k data points. Other clustering approaches such as
DBSCAN [6,15] cannot easily be interpreted this way, but discover structure
related to connected components and density-based minimal spanning trees [16].

The evaluation of clusterings is a challenge, as there are no labels available.
While many internal (“unsupervised”, not relying on external labels) evaluation
measures were proposed such as the Silhouette [14], Davies-Bouldin index, the
Variance-Ratio criterion, the Dunn index, and many more, using these indexes
for evaluation suffers from inherent problems. Bonner [4] noted that “none of the
many specific definitions [...] seems best in any general sense”, and results are
subjective “in the eye of the beholder” as noted by Estivill-Castro [7]. While these
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claims refer to clustering methods, not evaluation methods, we argue that these
do not differ substantially: each internal cluster evaluation method implies a
clustering algorithm obtained by enumeration of all candidate clusterings, keep-
ing the best. The main difference between clustering algorithms and internal
evaluation then is whether or not we know an efficient optimization strategy.
K-means is an optimization strategy for the sum of squares evaluation measure,
while the k-medoids algorithms PAM, and Alternating are different strategies
for optimizing the sum of deviations from a set of k representatives.

In this article, we focus on the evaluation measure known as Silhouette [14],
and discuss an efficient algorithm to optimize a variant of this measure, inspired
by the well-known PAM algorithm [8,9] and FasterPAM [18,19].

2 Silhouette and Medoid Silhouette

The Silhouette [14] is a popular measure to evaluate clustering validity, and per-
forms very well in empirical studies [2,5]. For the given samples X = {x1, . . . , xn},
a dissimilarity measure d : X×X �→ R, and the cluster labels L= {l1, . . . , ln},
the Silhouette for a single element i is calculated based on the average distance
to its own cluster ai and the smallest average distance to another cluster bi as:

si(X, d, L) = bi−ai

max(ai,bi)
, where

ai = mean {d(xi, xj) | lj = li}
bi = mink �=li mean {d(xi, xj) | lj = k} .

The motivation is that ideally, each point is much closer to the cluster it is
assigned to, than to another “second closest” cluster. For bi � ai, the Silhouette
approaches 1, while for points with ai = bi we obtain a Silhouette of 0, and
negative values can arise if there is another closer cluster and hence bi < ai. The
Silhouette values si can then be used to visualize the cluster quality by sorting
objects by label li first, and then by descending si, to obtain the Silhouette plot.
However, visually inspecting the Silhouette plot is only feasible for small data
sets, and hence it is also common to aggregate the values into a single statistic,
often referred to as the Average Silhouette Width (ASW):

S(X, d, L) = 1
n

∑n
i=1 si(X, d, L).

Hence, this is a function that maps a data set, dissimilarity, and cluster labeling
to a real number, and this measure has been shown to satisfy desirable properties
for clustering quality measures (CQM) by Ackerman and Ben-David [1].

A key limitation of the Silhouette is its computational cost. It is easy to
see that it requires all pairwise dissimilarities, and hence takes O(N2) time to
compute – much more than popular clustering algorithms such as k-means.

For algorithms such as k-means and k-medoids, a simple approximation to
the Silhouette is possible by using the distance to the cluster center respectively
medoids M = {M1, . . . ,Mk} instead of the average distance. For this “simplified
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Silhouette” (which can be computed in O(Nk) time, and which Van der Laan
et al. [20] called medoid-based Silhouette) we use

s′
i(X, d,M) = b′

i−a′
i

max(a′
i,b

′
i)

, where

a′
i = d(xi,Mli)

b′
i = mink �=li d(xi,Mk).

If each point is assigned to the closest cluster center (optimal for k-medoids
and the Silhouette), we further know that a′

i ≤ b′
i and si ≥ 0, and hence this

can further be simplified to the Medoid Silhouette

s̃i(X, d,M) = d2(i)−d1(i)
d2(i)

= 1 − d1(i)
d2(i)

.

where d1 is the distance to the closest and d2 to the second closest center in M .
For d1(i) = d2(i) = 0, we add a small ε to d2(i) to get s̃ = 1. The Average
Medoid Silhouette (AMS) then is defined as the average

S̃(X, d,M) = 1
n

∑n
i=1 s̃i(X, d,M).

It can easily be seen that the optimum clustering is the (assignment of points to
the) set of medoids such that we minimize an “average relative loss”:

arg maxM S̃(X, d,M) = arg minM meani
d1(i)
d2(i)

.

For clustering around medoids, we impose the restriction M ⊆ X; which has the
benefit of not restricting the input data to be numerical (e.g., X ⊂ R

d, as in
k-means), and allowing non-metric dissimilarity functions d.

3 Related Work

The Silhouette [14] was originally proposed along with Partitioning Around
Medoids (PAM, [8,9]), and indeed k-medoids already does a decent job at find-
ing a good solution, although it does optimize a different criterion (the sum of
total deviations). Van der Laan et al. [20] proposed to optimize the Silhouette
by substituting the Silhouette evaluation measure into the PAM SWAP proce-
dure (calling this PAMSIL). Because they recompute the loss function each time
(as opposed to PAM, which computes the change), the complexity of PAMSIL
is O(k(N − k)N2), since for each of k · (N − k) possible swaps, the Silhouette
is computed in O(N2). Because this yields a very slow clustering method, they
also considered the Medoid Silhouette instead (PAMMEDSIL), which only needs
O(k2(N − k)N) time (but still considerably more than PAM).

Schubert and Rousseeuw [18,19] recently improved the PAM method, and
their FastPAM approach reduces the cost of PAM by a factor of O(k), making the
method O(N2) by the use of a shared accumulator to avoid the innermost loop.
In this work, we will combine ideas from this algorithm with the PAMMEDSIL
approach above, to optimize the Medoid Silhouette with a swap-based local
search, but a run time comparable to FastPAM. But we will first perform a
theoretical analysis of the properties of the Medoid Silhouette, to show that it
is worth exploring as an alternative to the original Silhouette.
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4 Axiomatic Characterization of Medoid Clustering

We follow the axiomatic approach of Ackerman and Ben-David [1], to prove
the value of using the Average Medoid Silhouette (AMS) as a clustering quality
measure (CQM). Kleinberg [11] defined three axioms for clustering functions and
argued that no clustering algorithm can satisfy these desirable properties at the
same time, as they contradict. Because of this, Ackermann and Ben-David [1]
weaken the original Consistency Axiom and extract four axioms for clustering
quality measures: Scale Invariance and Richness are defined analogously to the
Kleinberg Axioms. We redefine the CQM axioms [1] for medoid-based clustering.

Definition 1. For given data points X = {x1, . . . , xn} with a set of k medoids
M = {m1, . . . ,mk} and a dissimilarity d, we write xi ∼M xi′ whenever xi

and xi′ have the same nearest medoid n1(i) ⊆ M , otherwise xi 
∼M xi′ .

Definition 2. Dissimilarity d′ is an M-consistent variant of d, if d′(xi, xi′) ≤
d(xi, xi′) for xi ∼M xi′ , and d′(xi, xi′) ≥ d(xi, xi′) for xi 
∼M xi′ .

Definition 3. Two sets of medoids M,M ′ ⊆ X with a distance function d
over X, are isomorphic, if there exists a distance-preserving isomorphism φ :
X → X, such that for all xi, xi′ ∈ X, xi ∼M xi′ if and only if φ(xi) ∼M ′ φ(xi′).

Axiom 1 (Scale Invariance). A medoid-based clustering quality measure f
satisfies scale invariance if for every set of medoids M ⊆ X for d, and every
positive λ, f(X, d,M) = f(X,λd,M).

Axiom 2 (Consistency). A medoid-based clustering quality measure f sat-
isfies consistency if for a set of medoids M ⊆ X for d, whenever d′ is an
M-consistent variant of d, then f(X, d′,M) ≥ f(X, d,M).

Axiom 3 (Richness). A medoid-based clustering quality measure f satisfies
richness if for each set of medoids M ⊆ X, there exists a distance function d
over X such that M = arg maxM f(X, d,M).

Axiom 4 (Isomorphism Invariance). A medoid-based clustering quality
measure f is isomorphism-invariant if for all sets of medoids M,M ′ ⊆ X with
distance d over X where M and M ′ are isomorphic, f(X, d,M) = f(X, d,M ′).

Batool and Hennig [3] prove that the ASW satisfies the original CQM axioms.
We prove the first three adapted axioms for the Average Medoid Silhouette. The
fourth, Isomorphism Invariance, is obviously fulfilled, since AMS is based only
on dissimilarites, just as the ASW [3].

Theorem 1. The AMS is a scale invariant clustering quality measure.

Proof. If we replace d with λd, both d1(i) and d2(i) are multiplied by λ, and the
term will cancel out. Hence, s̃i does not change for any i:

S̃(X,λd,M) = 1
n

∑n
i=1 s̃i(X,λd,M) = 1

n

∑n
i=1

λd2(i)−λd1(i)
λd2(i)

= 1
n

∑n
i=1

d2(i)−d1(i)
d2(i)

= 1
n

∑n
i=1 s̃i(X, d,M) = S̃(X, d,M).
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Theorem 2. The AMS is a consistent clustering quality measure.

Proof. Let dissimilarity d′ be a M-consistent variant of d. By Definition 2:
d′(xi, xi′) ≤ d(xi, xi′) for all xi ∼M xi′ , and minxi �∼Mxi′ d′(xi, xi′) ≥
minxi �∼Mxi′ d(xi, xi′). This implies for all i ∈ N: d′

1(i) ≤ d1(i), d′
2(i) ≥ d2(i)

and it follows:

d1(i)
d2(i)

− d′
1(i)

d′
2(i)

≥ 0 ⇔ d′
2(i)−d′

1(i)
d′
2(i)

− d2(i)−d1(i)
d2(i)

≥ 0

which is equivalent to ∀i s̃i(X, d′,M) ≥ s̃i(X, d,M), hence S̃(X, d′,M) ≥
S̃(X, d,M), i.e., AMS is a consistent clustering quality measure.

Theorem 3. The AMS is a rich clustering quality measure.

Proof. We can simply encode the desired set of medoids M in our dissimilarity d.
We define d(xi, xj) such that it is 0 if trivially i = j, or if xi or xj is the first
medoid m1 and the other is not a medoid itself. Otherwise, let the distance be 1.

For M we then obtain S̃(X, d,M) = 1, because d1(i) = 0 for all objects, as
either xi is a medoid itself, or can be assigned to the first medoid m1. This is the
maximum possible Average Medoid Silhouette. Let M ′ 
= M be any other set
of medoids. Then there exists at least one missing xi ∈ M\M ′. For this object
s̃i(X, d,M) = 0 (as its distance to all other objects is 1, and it is not in M ′),
and hence S̃(X, d,M ′) < 1 = S̃(X, d,M).

5 Direct Optimization of Medoid Silhouette

PAMSIL [20] is a modification of PAM [8,9] to optimize the ASW. For PAMSIL,
Van der Laan [20] adjusts the SWAP phase of PAM by always performing the
SWAP that provides the best increase in the ASW. When no further improve-
ment is found, a (local) maximum of the ASW has been achieved. However, where
the original PAM efficiently computes only the change in its loss (in O(N − k)
time for each of (N − k)k swap candidates), PAMSIL computes the entire ASW
in O(N2) for every candidate, and hence the run time per iteration increases to
O(k(N −k)N2). For a small k, this yields a run time that is cubic in the number
of objects N , and the algorithm may need several iterations to converge.

5.1 Naive Medoid Silhouette Clustering

PAMMEDSIL [20] uses the Average Medoid Silhouette (AMS) instead, which
can be evaluated in only O(Nk) time. This yields a SWAP run time of O(k2(N −
k)N) (for small k � N only quadratic in N). As Schubert and Rousseeuw [18,19]
were able to reduce the run time of PAM to O(N2) per iteration, we modify the
PAMMEDSIL approach accordingly to obtain a similar speedup. The SWAP
algorithm of PAMMEDSIL is shown in Algorithm 1.
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Algorithm 1: PAMMEDSIL SWAP: Iterative improvement
1 S′ ← Simplified Silhouette sum of the initial solution M
2 repeat
3 (S′

∗, M∗) ← (0,null)
4 foreach mi ∈ M = {m1, . . . , mk} do // each medoid

5 foreach xj /∈ {m1, . . . , mk} do // each non-medoid

6 (S′, M ′) ← (0, M\{mi} ∪ {xj})
7 foreach xo ∈ X = {x1, . . . , xn} do
8 S′ ← S′ + s′

o(X, d, M ′) // Simplified Silhouette

9 if S′ > S′
∗ then (S′

∗, M∗) ← (S′, M ′) // keep best swap found

10 if S′
∗ ≥ S′ then break

11 (S′, M) ← (S′
∗, M∗) // perform swap

12 return (S′/N, M)

5.2 Finding the Best Swap

We first bring PAMMEDSIL up to par with regular PAM. The trick introduced
with PAM is to compute the change in loss instead of recomputing the loss, which
can be done in O(N − k) instead of O(k(N − k)) time if we store the distance
to the nearest and second centers, as the latter allows us to compute the change
if the current nearest center is removed efficiently. In the following, we omit
the constant parameters X and d for brevity. We denote the previously nearest
medoid of i as n1(i), and d1(i) is the (cached) distance to it. We similarly define
n2(i), d2(i), and d3(i) with respect to the second and third nearest medoid.
We briefly use d′

1 and d′
2 to denote the new distances for a candidate swap.

For the Medoid Silhouette, we can compute the change when swapping medoids
mi ∈ {m1, . . . ,mk} with non-medoids xj /∈ {m1, . . . ,mk}:

ΔS̃ = 1
n

∑n
o=1 Δs̃o(M,mi, xj)

Δs̃o(M,mi, xj) = s̃o(M\{mi} ∪ {xj}) − s̃o(M)

= d′
2(i)−d′

1(i)
d′
2(i)

− d2(i)−d1(i)
d2(i)

= d1(i)
d2(i)

− d′
1(i)

d′
2(i)

.

Clearly, we only need the distances to the closest and second closest center,
before and after the swap. Instead of recomputing them, we exploit that only
one medoid can change in a swap. By determining the new values of d′

1 and d′
2

using cached values only, we can save a factor of O(k) on the run time.
In the PAM algorithm (where the change would be simply d′

1 − d1), the
distance to the second nearest is cached in order to compute the loss change
if the current medoid is removed, without having to consider all k − 1 other
medoids: the point is then either assigned to the new medoid, or its former
second closest. To efficiently compute the change in Medoid Silhouette, we have
to take this one step further, and additionally need to cache the identity of the
second closest center and the distance to the third closest center (denoted d3).
This is beneficial if, e.g., the nearest medoid is replaced. Then we may have, e.g.,
d′
1 = d2 and d′

2 = d3, if we can distinguish these cases.
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Algorithm 2: Change in Medoid Silhouette, Δs̃o(M,mi, xj)
1 if mi = n1(o) then // nearest is replaced

2 if d(o, j) < d2(o) then return d1(o)
d2(o)

− d(o,j)
d2(o)

// xj is new nearest

3 if d(o, j) < d2(o) then return d1(o)
d2(o)

− d2(o)
d(o,j)

// xj is new second

4 else return d1(o)
d2(o)

− d2(o)
d3(o)

5 else if mi = n2(o) then // second nearest is replaced

6 if d(o, j) < d1(o) then return d1(o)
d2(o)

− d(o,j)
d1(o)

// xj is new nearest

7 if d(o, j) < d3(o) then return d1(o)
d2(o)

− d1(o)
d(o,j)

// xj is new second

8 else return d1(o)
d2(o)

− d1(o)
d3(o)

9 else
10 if d(o, j) < d1(o) then return d1(o)

d2(o)
− d(o,j)

d1(o)
// xj is new nearest

11 if d(o, j) < d2(o) then return d1(o)
d2(o)

− d1(o)
d(o,j)

// xj is new second

12 else return 0

The change in Medoid Silhouette is then computed roughly as follows: (1) If
the new medoid is the new closest, the second closest is either the former nearest,
or the second nearest (if the first was replaced). (2) If the new medoid is the
new second closest, the closest either remains the former nearest, or the second
nearest (if the first was replaced). (3) If the new medoid is neither, we may still
have replaced the closest or second closest; in which case the distance to the
third nearest is necessary to compute the new Silhouette. Putting all the cases
(and sub-cases) into one equation becomes a bit messy, and hence we opt to
use pseudocode in Algorithm 2 instead of an equivalent mathematical notation.
Note that the first term is always the same (the previous loss), except for the
last case, where it canceled out via 0 = d1(o)

d2(o)
− d1(o)

d2(o)
. As this is a frequent case,

it is beneficial to not have further computations here (and hence, to compute
the change instead of computing the loss). Clearly, this algorithm runs in O(1)
if n1(o), n2(o), d1(o), d2(o), and d3(o) are known. We also only compute d(o, j)
once. Modifying PAMMEDSIL (Algorithm 1) to use this computation yields a
run time of O(k(N − k)N) to find the best swap, i.e., already O(k) times faster.
But we can further improve this approach.

5.3 Fast Medoid Silhouette Clustering

We now integrate an acceleration added to the PAM algorithm by Schubert and
Rousseeuw [18,19], that exploits redundancy among the loop over the k medoids
to replace. For this, the loss change ΔS̃(mi, xj) is split into multiple components:
(1) the change by removing medoid mi (without choosing a replacement), (2) the
change by adding xj as an additional medoid, and (3) a correction term if both
operations occur at the same time. The first factors can be computed in O(kN),
the second in O(N(N − k)), and the last factor is 0 if the removed medoid
is neither of the two closest, and hence is also in O(N2). This then yields an
algorithm that finds the best swap in O(N2), again O(k) times faster.
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The first terms (the removal of each medoid mi ∈ M) are computed as:

ΔS̃−mi =
∑

n1(o)=i

d1(o)
d2(o)

− d2(o)
d3(o)

+
∑

n2(o)=i

d1(o)
d2(o)

− d1(o)
d3(o)

, (1)

while for the second we compute the addition of a new medoid xj 
∈ M

ΔS̃+xj =
n∑

o=1

⎧
⎪⎨

⎪⎩

d1(o)
d2(o)

− d(o,j)
d1(o)

if d(o, j) < d1(o)
d1(o)
d2(o)

− d1(o)
d(o,j) else if d(o, j) < d2(o)

0 otherwise.

Combining these yields the change:

ΔS̃(mi, xj) = ΔS̃+xj + ΔS̃−mi

+
∑

o with
n1(o)=i

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d(o,j)
d1(o)

+ d2(o)
d3(o)

− d1(o)+d(o,j)
d2(o)

if d(o, j) < d1(o)
d1(o)
d(o,j) + d2(o)

d3(o)
− d1(o)+d(o,j)

d2(o)
else if d(o, j) < d2(o)

d2(o)
d3(o)

− d2(o)
d(o,j) else if d(o, j) < d3(o)

0 otherwise

+
∑

o with
n2(o)=i

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d1(o)
d3(o)

− d1(o)
d2(o)

if d(o, j) < d1(o)
d1(o)
d3(o)

− d1(o)
d2(o)

else if d(o, j) < d2(o)
d1(o)
d3(o)

− d1(o)
d(o,j) else if d(o, j) < d3(o)

0 otherwise.

It is easy to see that the additional summands can be computed by iterating
over all objects xo, and adding their contributions to accumulators for n1(o)
and n2(o). As each object o contributes to exactly two cases, the run time is
O(N). This then gives Algorithm 3, which computes ΔS̃+xj along with the sum
of ΔS̃−mi and these correction terms in an accumulator array. The algorithm
needs O(k) memory for the accumulators in the loop, and O(N) additional
memory to store the cached n1, n2, d1, d2, and d3 for each object.

This algorithm gives the same result,but FastMSC (“Fast Medoid Silhouette
Clustering”) is O(k2) faster than the naive PAMMEDSIL.

5.4 Eager Swapping and Random Initialization

We can now integrate further improvements by Schubert and Rousseeuw [19].
Because doing the best swap (steepest descent) does not appear to guarantee
finding better solutions, but requires a pass over the entire data set for each
step, we can converge to local optima much faster if we perform every swap that
yields an improvement, even though this means we may repeatedly replacing
the same medoid. For PAM they called this eager swapping, and named the
variant FasterPAM. This does not improve theoretical run time (the last iteration
will always require a pass over the entire data set to detect convergence), but
empirically reduces the number of iterations substantially. It will no longer find
the same results, but there is no evidence that a steepest descent is beneficial over
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Algorithm 3: FastMSC: Improved SWAP algorithm
1 repeat
2 foreach xo do compute n1(o), n2(o), d1(o), d2(o), d3(o)

3 ΔS̃−m1 , . . . , ΔS̃−mi ← compute loss change removing mi using (1)

4 (ΔS̃∗, m∗, x∗) ← (0,null,null)
5 foreach xj /∈ {m1, . . . , mk} do // each non-medoid

6 ΔS̃i, . . . , ΔS̃k ← (ΔS̃−m1 , . . . , ΔS̃−mi) // use removal loss

7 ΔS̃+xj ← 0 // initialize shared accumulator

8 foreach xo ∈ {x1, . . . , xn} do
9 doj ← d(xo, xj) // distance to new medoid

10 if doj < d1(o) then // new closest

11 ΔS̃+xj ← ΔS̃+xj + d1(o)/d2(o) − doj/d1(o)

12 ΔS̃n1(o) ← ΔS̃n1(o) + doj/d1(o) + d2(o)/d3(o) − d1(o)+doj
d2(o)

13 ΔS̃n2(o) ← ΔS̃n2(o) + d1(o)/d3(o) − d1(o)/d2(o)

14 else if doj < d2(o) then // new first/second closest

15 ΔS̃+xj ← ΔS̃+xj + d1(o)/d2(o) − d1(o)/doj

16 ΔS̃n1(o) ← ΔS̃n1(o) + d1(o)/doj + d2(o)/d3(o) − d1(o)+doj
d2(o)

17 ΔS̃n2(o) ← ΔS̃n2(o) + d1(o)/d3(o) − d1(o)/d2(o)

18 else if doj < d3(o) then // new second/third closest

19 ΔS̃n1(o) ← ΔS̃n1(o) + d2(o)/d3(o) − d2(o)/doj

20 ΔS̃n2(o) ← ΔS̃n2(o) + d1(o)/d3(o) − d1(o)/doj

21 i ← argmaxΔS̃i

22 ΔS̃i ← ΔS̃i + ΔS̃+xj

23 if ΔS̃i > ΔS̃∗ then (ΔS̃∗, m∗, x∗) ← (ΔS̃, mi, xj)

24 break outer loop if ΔS̃∗ ≤ 0
25 swap roles of medoid m∗ and non-medoid x∗ // perform swap

26 S̃ ← S̃ + ΔS̃∗

27 return S̃, M

choosing the first descent found. The main downside to this is, that it increases
the dependency on the data ordering, and hence is best used on shuffled data
when run repeatedly. Similarly, we will study a variant that eagerly performs
the first swap that improves the AMS as FasterMSC (“Fast and Eager Medoid
Silhouette Clustering”).

Also, the classic initialization with PAM BUILD now becomes the perfor-
mance bottleneck, and Schubert and Rousseeuw [19] showed that random ini-
tialization in combination with eager swapping works very well.

6 Experiments

We next evaluate clustering quality, to show the benefits of optimizing AMS. We
report both AMS and ASW, as well as the supervised measures Adjusted Random
Index (ARI) and Normalized Mutual Information (NMI). Afterward, we study the
scalability, to verify the expected speedup for our algorithm FastMSC.
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(b) Klein et al. [10]

Fig. 1. Different kind of mouse embryonic stem cells (mESCs). For both datasets we
have done PCA and plot the first two principal components. (a) shows 704 mESCs
grown in three different conditions and (b) 2717 mESCs at the moment of LIF with-
drawal, 2 days after, 4 days after, and 7 days after.

6.1 Data Sets

Since it became possible to map gene expression at the single-cell level by RNA
sequencing, clustering on these has become a popular task, and Silhouette is a
popular evaluation measure there. Single-cell RNA sequencing (scRNA-seq) pro-
vides high-dimensional data that requires appropriate preprocessing to extract
information. After extraction of significant genes, these marker genes are vali-
dated by clustering of proper cells.

We explore two larger sample size (by scRNA standards) scRNA-
sequencing data sets of mouse embryonic stem cells (mESCs) publicly available.
Kolodziejczyk et al. [12] studied 704 mESCs with 38561 genes grown in three
different conditions (2i, a2i and serum). Klein et al. [10] worked on the influence
leukemia inhibitory factor (LIF) withdrawal on mESCs. For this, he studied a
total of 2717 mESCs with 24175 genes. The data included 933 cells after LIF-
withdrawal, 303 cells two days after, 683 cells 4 days after, and 798 cells 7 days
after. We normalize each cell by total counts over all genes, so that every cell
has a total count equal to the median of total counts for observations (cells)
before normalization, then we perform principal component analysis (PCA) and
use the first three principal components for clustering. Fig. 1 visualizes the first
two principal components of these data sets and the obtained labels. To test the
scalability of our new variants, we need larger data sets. We use the well-known
MNIST data set, with 784 features and 60000 samples (PAMSIL will not be
able to handle this size in reasonable time). We implemented our algorithms in
Rust, extending the kmedoids package [17], wrapped with Python, and we make
our source code available in this package. We perform all computations in the
same package, to avoid side effects caused by comparing too different implemen-
tations [13]. We run 10 restarts on an AMD EPYC 7302 processor using a single
thread, and evaluate the average values.
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Table 1. Clustering results for the scRNA-seq data sets of Kolodziejczyk et al. [12]
for PAM, PAMSIL, and all variants of PAMMEDSIL. All methods are evaluated for
BUILD and Random initialization, and true known k = 3.

Algorithm Initialization AMS ASW ARI NMI Run time (ms)

PAM BUILD 0.66 0.64 0.69 0.65 18.26

PAM Random 0.66 0.64 0.69 0.65 22.67

PAMMEDSIL BUILD 0.67 0.65 0.72 0.70 62.63

PAMMEDSIL Random 0.67 0.65 0.72 0.70 61.91

FastMSC BUILD 0.67 0.65 0.72 0.70 25.09

FastMSC Random 0.67 0.65 0.72 0.70 24.67

FasterMSC BUILD 0.67 0.65 0.72 0.70 9.95

FasterMSC Random 0.67 0.65 0.72 0.70 10.95

PAMSIL BUILD 0.61 0.66 0.72 0.71 12493.86

PAMSIL Random 0.61 0.66 0.72 0.71 16045.47

6.2 Clustering Quality

We evaluated all methods with PAM BUILD initialization and a random ini-
tialization. To evaluate the relevancy of the Average Silhouette Width and the
Average Medoid Silhouette, we compare true labels using the Adjusted Rand
Index (ARI) and Normalized Mutual Information (NMI), two common mea-
sures in clustering. On the data set from Kolodziejczyk shown in Table 1, the
highest ARI is achieved by the direct optimization methods for AMS and ASW.
The different initialization provide the same results for all methods. We get a
much faster run time for the AMS variants compared to the ASW optimization.
For FasterMSC, we obtain the same ARI as for PAMSIL with 1255× faster run
time and only a 0.01 lower NMI. As expected, AMS and ASW are optimal by
those algorithms, that optimize for this measure, but because the measures are
correlated, those that optimize AMS only score 0.01 worse on the ASW. Inter-
estingly the total deviation used by PAM appears to be slightly more correlated
to AMS than ASW in this experiment. Given the small difference, we argue that
AMS is a suitable approximation for ASW, at a much reduced run time.

Since there were no variations in the resulting medoids for the different
restarts of the experiment, we can easily compare single results visually. Figure 2b
compares the results of PAMMEDSIL and PAMSIL, showing which points are
clustered differently than in the given labels. Both clusters are similar, with class
1 captured better in one, classes 2 and 3 better in the other result. Table 2 shows
the clustering results for the scRNA-seq data sets of Klein et al. [10]. In contrast
to Kolodziejczyk’s data set, we here obtain a higher ARI for PAMSIL than for
the AMS optimization methods. We get only the same high ARI and NMI for
AMS optimization as for PAM, but a slightly higher ASW. However, FasterMSC
is 16521× faster than PAMSIL.
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(a) Results for PAMMEDSIL (BUILD)
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Fig. 2. Clustering results for the scRNA-seq data sets of Kolodziejczyk et al. [12] for
PAMMEDSIL and PAMSIL. All correctly predicted labels are colored by the corre-
sponding cluster and all errors are marked as black. (Color figure online)
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Fig. 3. Run time on MNIST data (time out 24 h)

6.3 Scalability

To evaluate the scalability of our methods, we use the well-known MNIST data,
which has 784 variables (28 × 28 pixels) and 60000 samples. We use the first
n = 1000, . . . , 30000 samples and compare k = 10 and k = 100. Due to its
high run time, PAMSIL is not able to handle this size in a reasonable time. In
addition to the methods for direct AMS optimization, we evaluate the FastPAM1
and FasterPAM implementation. For all methods we use random initialization.
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Table 2. Clustering results for the scRNA-seq data sets of Klein et al. [10] for PAM,
PAMSIL and all variants of PAMMEDSIL. All methods are evaluated for BUILD and
Random initialization and true known k = 4.

Algorithm Initialization AMS ASW ARI NMI Run time (ms)

PAM BUILD 0.75 0.82 0.84 0.87 355.55

PAM Random 0.74 0.82 0.78 0.80 476.18

PAMMEDSIL BUILD 0.77 0.83 0.84 0.87 2076.15

PAMMEDSIL Random 0.77 0.83 0.84 0.87 3088.77

FastMSC BUILD 0.77 0.83 0.84 0.87 212.01

FastMSC Random 0.77 0.83 0.84 0.87 305.00

FasterMSC BUILD 0.77 0.83 0.84 0.87 163.74

FasterMSC Random 0.77 0.83 0.84 0.87 122.63

PAMSIL BUILD 0.67 0.84 0.95 0.92 2026025.10

PAMSIL Random 0.67 0.84 0.93 0.91 1490354.10

As expected, all methods scale approximately quadratic in the sample size n.
The run times on this data set are visualized in Fig. 3. FastMSC is on average
50.66x faster than PAMMEDSIL for k = 10 and 10464.23× faster for k = 100,
supporting the expected O(k2) improvement by removing the nested loop and
caching the distances to the nearest centers. For FasterMSC we achieve even
639.34× faster run time than for PAMMEDSIL for k=10 and 78035.01× faster
run time for k=100. We expect FastPAM1 and FastMSC and also FasterPAM
and FasterMSC to have similar scalability; but since MSC needs additional
bounds it needs to maintain more data and access more memory. We observe
that FastPAM1 is 2.50× faster than FastMSC for k = 10 and 1.57× faster for
k = 100, which is larger than expected and due to more iterations necessary for
convergence in the MSC methods: FastPAM1 needs on average 14.86 iterations
while FastMSC needs 33.48. In contrast, FasterMSC is even 1.65× faster than
FasterPAM for k = 10 and 1.96× faster for k = 100.

7 Conclusions

We showed that the Average Medoid Silhouette satisfies desirable theoretical
properties for clustering quality measures, and as an approximation of the Aver-
age Silhouette Width yields desirable results on real problems from gene expres-
sion analysis. We propose a new algorithm for optimizing the Average Medoid
Silhouette, which provides a run time speedup of O(k2) compared to the ear-
lier PAMMEDSIL algorithm by avoiding unnecessary distance computations via
caching of the distances to the nearest centers and of partial results based on
FasterPAM. This makes clustering by optimizing the Medoid Silhouette possible
on much larger data sets than before. The ability to optimize a variant of the
popular Silhouette measure directly demonstrates the underlying problem that
any internal cluster evaluation measure specifies a clustering itself.
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Abstract. Many data mining algorithms are distance-based and may
benefit from using a database index accelerating the similarity search.
Examples include clustering algorithms such as DBSCAN, nearest-
neighbor classification, and the local outlier factor (LOF). However,
choosing the appropriate index requires some knowledge and experience,
so it commonly is left to the user, or there is a default value known
to work for many. In this article, we discuss a system that contains a
query optimizer for such queries that can automatically choose and cre-
ate an appropriate index. It can reuse suitable indexes that are already
present, and it comes with memory management that can also automat-
ically drop an unused auto-created index when memory is scarce. The
system is integrated into the ELKI data mining framework version 0.8.0,
released along with this paper, and will be used automatically by many
algorithms in the toolkit.

1 Introduction

Distance-based data mining algorithms often involve some search of relevant
neighbors, either for all objects in a given radius (e.g., DBSCAN [7,9]) or for the
k nearest neighbors (e.g., kNN classification, kNN outlier, LOF [6], and many
other local outlier detectors [12]). Such algorithms can benefit substantially from
index acceleration [8]. A more rare search is priority search, where the nearest
neighbors are to be returned in ascending order, but there is no fixed threshold
on either how many neighbors are needed, or the maximum radius. Incremental
priority search is a generalization of both (if we stop at a particular radius, we
have the result of a radius search; if we stop after k elements, we have a k nearest
neighbor search). But it usually is more costly than the other two because it has
to manage more open search paths that the other searches with given thresholds
can discard early. Priority search is also useful for implementing filter and filter-
refinement strategies; for example, we can use it to find the k nearest objects
that additionally satisfy some constraint, or we can use priority search with a
distance lower bound, and perform a more expensive distance computation for
the candidates found this way. By the lower bounding property, the distance
to the kth farthest refined object can be used to terminate the priority search
while guaranteeing exact results (for details on this search strategy, see Seidl and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Skopal et al. (Eds.): SISAP 2022, LNCS 13590, pp. 205–213, 2022.
https://doi.org/10.1007/978-3-031-17849-8_16
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Kriegel [13]). For example, we can use a cheap lower bound to find candidate
graphs, then use graph edit distance for refinement in post-processing until the
desired number of exact results are below the lower bound of the remainder [2].

2 Queries Supported

In this work, we focus on three particular queries (although ELKI also has sup-
port for, e.g., reverse k-nearest neighbor search), each for a query object q and
a distance function d:

Range Search: given ε, return all database objects x that satisfy d(x, q) ≤ ε. In
particular, for Euclidean distance, this may also be called a radius search and
should not be confused with rectangular interval searches, which sometimes may
also be called range searches in literature.

k-nearest Neighbor Search: given k, return all database objects x that satisfy
d(x, q) ≤ k-dist(q), where k-dist(q) is the smallest distance such that at least k
results are returned. In the case of ties, all results are to be included. Hence the
result may contain more than k objects.

Incremental Priority Search: return an iterator that allows incrementally
retrieving neighbor objects, ordered increasingly by d(x, q), without having to
specify neither the radius ε nor the number of results k beforehand.

Since the last is a less commonly used query (albeit it can answer both
of the above query types), it warrants additional discussion. To illustrate the
challenges of priority search, consider that we may even be further interested in
approximate priority search, where objects are returned only in approximately
increasing order. The exact distance to the candidate may still be unknown, but
the searcher may have an upper and lower bound and further a lower bound for
all objects not yet returned. E.g., in the cover tree, a set of points is represented
by a ball cover. The distance to the ball center and the radius imply a lower
and upper bound for the ball contents; the radius yields an accuracy estimate.
The smallest lower bound of the open candidates lower bounds all remaining
results. In a filter-refinement search, this may allow us to guarantee that we
have found all results and hence stop the search early. In other cases, we may
use this to find filtered k-nearest neighbors, skipping over candidates that do
not have the desired property, e.g., to find the nearest open shops when indexed
only by distance, omitting closed locations.

For such complicated searches, the ELKI API PrioritySearcher for priority
search includes the following methods:
advance() advance the search to the next object
getApproximateDistance() to get a distance approximation
getApproximateAccuracy() to get an accuracy of the approximation
getLowerBound() to get a lower bound for the current candidate
getUpperBound() to get an upper bound for the current candidate
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computeExactDistance() to get or compute the exact distance to a candidate
allLowerBound() to get a lower bound to all remaining results
decreaseCutoff(radius) to allow the searcher to drop candidates

Unfortunately (and this adds to the complexity of using this API), many of
these values may be unknown (then returning “not a number”), depending on
the index used. The cover tree is a nice example that provides all of these bounds,
but for example, the vantage point tree will often not have upper bounds.

Above API uses the iterator pattern, with the searcher object always pointing
to the current candidate instead of returning candidate objects. This design
reduces the number of object allocations, which considerably improves runtime
for Java due to the cost of object initialization and garbage collection. A similar
design is employed by many libraries for primitive collections for the same reason.
When implemented in a language that can return more complex structures on
the stack, a different design may be possible – or when Java gets value types.

An example of using this API can be found in the ELKI CFSFDP tutorial1

to find the nearest point of higher density is as follows:

double dist = Double.POSITIVE_INFINITY, tmp;
for(searcher.search(q); searcher.valid(); searcher.advance()) {

if(density.intValue(searcher) > dens
&& (tmp = searcher.computeExactDistance()) < dist) {

nearest.set(searcher.decreaseCutoff(dist = tmp));
} }

We begin searching at object q and process candidates by their approximated
increasing distance. Whenever finding an object of higher density, we update the
cutoff distance until the search stops. At this point, no unprocessed object may
be closer to the candidate stored in nearest. But in contrast to regular nearest
neighbor search we were able to skip over neighbors, and in contrast to range
search we did not have to know the search radius beforehand.

3 Automatic Index Acceleration

The key to automatic index acceleration is the need to plan. As it is technically
impossible to know the future, we have to rely on the developer to declare what
is needed. For example, a developer may need the k nearest neighbors only of a
single point (in which case it will likely not be beneficial to construct an index
automatically). In other cases he may need all pairwise distances later (and
hence, computing a full distance matrix would be reasonable), and in another
case, he may need the k nearest neighbors for each data sample and for each
k in a particular range (in which case it is likely best to compute the nearest
neighbors for the largest k of interest and store them).

Current commercial databases rarely support such queries, nor much acceler-
ated data mining, but are primarily useful for selecting, extracting, and preparing
1 The full tutorial is at https://elki-project.github.io/tutorial/cfsfdp.

https://elki-project.github.io/tutorial/cfsfdp
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data. Much more index acceleration for similarity search is found in open-source
systems such as the widely known scikit-learn and the less known Smile. But
in scikit-learn, for example, distance-based methods have to actively create the
index (either by instantiating a nearest neighbor searcher or by inheriting from
it), and then perform a bulk query for best performance. The user has little
control over the index search, besides some pass-through options. Because of
this rather poor architecture, the DBSCAN class of scikit-learn has the options
algorithm (ball tree, kd tree, or brute) and leaf size that control the index
(and not DBSCAN); and an extension to the neighbor searcher requires adding
new options to DBSCAN. The index is not reused across multiple invocations.

For ELKI, we wanted a better decoupling of database indexes and algo-
rithms. In the earlier versions of ELKI [11], there would be a Database object
that allows the developer to obtain query searchers, and that would be responsi-
ble for creating all indexes before invoking the algorithm. In this version of ELKI,
we add automatic index generation, and the developer interacts with a special-
ized class, the QueryBuilder, which follows the known builder design pattern.
The API requires the developer to specify the necessary parameters (distance
function, query type, but also additional constraints), the system then either
chooses an available index of the database that supports this query, or invokes
the QueryOptimizer that is responsible for creating a suitable index automati-
cally. This split into two is desirable separation of concerns. At the same time,
it gives more control to the user, who can either (1) add suitably optimized
indexes to the database before calling the algorithm, (2) control or replace the
query optimizer and define a custom optimization strategy without having to
touch the algorithm classes. An algorithm developer, on the other hand, does not
have to take care of indexing parameters to pass on to the searcher. The devel-
oper can provide additional needs to the query builder, useful, e.g., to verify
the correctness a new index, or to fall back to alternative strategies and manual
index selection. For example, the developer can (1) explicitly request a linear
scan, (2) request exact results even when an approximate index is available,
(3) accept only optimized queries, (4) asking for all answers to be precomputed
and cached (for multiple uses), or (5) ask for cheap optimizations only if only
a few points will be queried. For distance queries, algorithms can declare that
they (6) will need almost all pairwise distances but also (7) request to not cache
a distance matrix if they – as in hierarchical clustering – are going to keep a
working copy.

For example, the ELKI implementation of DBSCAN uses a very simple call:

new QueryBuilder<>(relation, distance).rangeByDBID(epsilon)

to obtain a searcher for the ε range neighbors of database objects. When expan-
ing clusters in DBSCAN, we search for neighbors using:

rangeQuery.getRange(startObjectID, epsilon, neighbors.clear())

where we recycle the output array neighbors to reduce garbage collection costs.
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The following is the query builder call in the LOF algorithm:

new QueryBuilder<>(relation, distance).precomputed().kNNByDBID(k)

which indicates that we need a k-nearest neighbor search by object ID, and
that the results are to be precomputed and cached (#4 above, because the
LOF algorithm also uses the k-distance of neighbors to compare local densities).
Neighbors of an object are then simply obtained (from the cache) by

KNNList neighbors = knnSearcher.getKNN(curr, k);

Searches in ELKI are strongly typed – the above examples query by object ID
which allows the system to precompute results, for example, which is not possible
if we had requested a search by objects (e.g., by a coordinate).

4 Choosing the Index Automatically

Depending on the parameters, distances, and data dimensionality, the ELKI
optimizer will currently choose between a k-d-tree [4], a cover tree [5], or a
vp-tree [14], and can automatically precompute nearest neighbors or add a full
distance matrix. Details can be found in the class EmpiricalQueryOptimizer,
which may be updated as new benchmarks lead to better heuristics.

For Euclidean distance, other Minkowski norms, and squared Euclidean dis-
tance, the k-d-tree usually performed best in low-dimensional data (we use a
lightweight implementation that does not store bounding boxes, but by keeping
an array of bounds per dimension still uses multidimensional bounds as sug-
gested by Arya and Mount [1]. For priority search, the performance is much
worse (as these bounds need to be copied for each branch, rather than updated
via the stack), and other indexes may outperform the k-d-tree.

For other metrics, the vantage point tree (vp-tree, [14]) usually outperformed
the cover tree in our current experiments, so it will usually take precedence.

For distances that are not metric (besides the squared Euclidean distance
mentioned above), we currently do not have an automatic solution. But other
functionality such as precomputation remains active.

5 Automatic Garbage Collection

It would be possible to have the index disappear when the searcher is no longer
in use; either automatic by the Java garbage collector, or even more explicitly
by implementing the AutoCloseable interface and the Java try-with-resources
mechanism, as used for closing files. But in data mining, it is very common that
we want to run an algorithm multiple times with different parameters or random
restarts. In such cases, we want to be able to reuse the index. Hence we decided to
use the WeakReference API of Java, and keep a weak reference to the index. This
allows the Java system to garbage collect unused indexes when memory is low



210 E. Schubert

while keeping reusable indexes around across multiple restarts of an algorithm
in many cases. In ELKI, this is handled by the Hierarchy API, which allows
to attach objects to others in a hierarchy without polluting the objects’ API,
and without requiring the objects to implement a particular API. This method
is also used to, for example, attach evaluation results to an algorithm result, or
to attach metadata. For automatic indexing, we (weakly) attach the automatic
indexes to the indexed data by

Metadata.hierarchyOf(relation).addWeakChild(index);

so they can easily be rediscovered; or deleted if the indexed relation is deleted.

Table 1. Best average query performance per index. Note that many data sets are
high-dimensional and hence difficult for the k-d-tree.

Index Parameters Runtime relative to best

Average Median Maximum

k-nearest-neighbor search

k-d leafsize = 2 split = midpoint 18.50 1.83 148.07

cover leafsize = 20 2.92 1.81 12.04

vp leafsize = 1 samples = 10 1.55 1.17 3.41

auto 1.48 1.12 3.55

Range search

cover leafsize = 40 24.82 14.84 90.78

k-d leafsize = 1 split = midpoint 2.17 1.11 12.77

auto 1.87 1.61 4.79

vp leafsize = 1 samples = 10 1.79 1.66 4.41

Incremental priority search

k-d leafsize = 10 split = midpoint 33.83 4.26 268.47

auto 1.25 1.83 1.83

cover leafsize = 10 1.23 1.06 1.88

vp leafsize = 10 samples = 10 1.21 1.12 1.77

6 Experiments

In Table 1 we show the results of some benchmarks using data sets from the
MultiView [10] data collection. We use ALOI color histograms of 27, 63, 77, and
216 dimensions. Additionally, we include a dataset of US zip codes, projected
to Euclidean space. We measure the average run time of 5 restarts, different k,
different query radii, and Euclidean and Manhattan distance (no other distances
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yet). Scores are normalized by the best (average) performance on each data set.
We report the average relative performance, median relative performance, as well
as worst relative performance. We report only the best performance (by average)
for each index across the parameter sweep included. These results need to be
carefully interpreted because we used the same data sets to choose the heuristics
of the query optimizer (before this benchmark, and we also incorporated our
own experience – otherwise the automatic index would likely always win this
benchmark if we had used these exact results). We would like to point out that
the automatic indexer will also use the k-d-tree, despite it not scoring very well
in this benchmark; the main reason why the k-d-tree does not look good appears
to be the high dimensionality. Had we only used the 2 dimensional ZIP code data
set, the k-d-tree would have won. Furthermore, the k-d-tree is the only index
that directly works with squared Euclidean distance; the metric indexes would
need to run with Euclidean distance instead, then re-square the results. A second
caveat is that the parameter sweeps may be unfair to methods such as the cover
tree that have fewer parameters than others.

We observe that the heuristic implemented in ELKI appears to do a decent
job at automatically choosing a suitable index, at least on the data sets inves-
tigated so far. Nevertheless, careful tuning of the index can still lead to a 1.8
to 4.8× speedup if a particularly poor configuration is hit (there may also be
some measurement noise included here). Looking at the median instead gives
the impression that most of the time, most indexes work comparatively well (we
included only well-performing indexes, the R*-tree [3] for example performed
much worse, but it also is designed as a page-oriented on-disk index, and we are
benchmarking in-memory performance here). There are a few exceptions to this
rule: as we can see, our implementation of the cover tree appears to have issues
with range searching; this will need further investigation. The k-d-tree performs
significantly worse in priority search, for the state-keeping reason explained above
along with the dimensionality of the data. We do not yet have a bounding-box
k-d-tree included here, which may be beneficial in this case. Overall, it appears
that the incremental priority search is the most challenging search scenario here,
and worth further research.

7 Limitations

Not all algorithms benefit from this automatic indexing. For example, the stan-
dard k-means algorithm needs to find the closest centers for each data point, but
there are rather few centers (k � N usually), and they change every iteration.
Index-accelerated techniques for k-means, for example using the k-d-tree, exist;
but require modification of the indexes to store additional aggregates.

Last but not least, when benchmarking algorithms, the user may want to
disable automatic indexing and take manual control. In many cases, this will be
trivially possible by simply pre-creating the desired indexes, as ELKI will then
use them. But it is possible to globally disable automatic indexing by setting the
elki.optimizer environment variable to an optimizer that never adds indexes,
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(e.g., by passing -Delki.optimizer=no on the command line; where no here
is an alias for the class DisableQueryOptimizer). Similarly, a developer can
plug in a custom optimizer class and explore other mechanisms by providing an
own implementation of the QueryOptimizer interface, or extending the existing
classes to override part of the functionality.

8 Conclusion

In this paper we discuss various aspects of implementing automatic indexing
in a data mining toolkit, beginning with the need to support different queries,
complex query types such as an approximate incremental priority search, and the
need to design a suitable API for these queries that expose the partially missing
information to the developer. We demonstrate that with some simple heuristics
we may be able to select indexes that work well enough for many use cases. The
source code of ELKI is developed as open-source on Github, at https://github.
com/elki-project/elki.
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Abstract. Approximate search for high-dimensional vectors is com-
monly addressed using dedicated techniques often combined with hard-
ware acceleration provided by GPUs, FPGAs, and other custom in-
memory silicon. Despite their effectiveness, harmonizing those optimized
solutions with other types of searches often poses technological diffi-
culties. For example, to implement a combined text+image multimodal
search, we are forced first to query the index of high-dimensional image
descriptors and then filter the results based on the textual query or vice
versa. This paper proposes a text surrogate technique to translate real-
valued vectors into text and index them with a standard textual search
engine such as Elasticsearch or Apache Lucene. This technique allows
us to perform approximate kNN searches of high-dimensional vectors
alongside classical full-text searches natively on a single textual search
engine, enabling multimedia queries without sacrificing scalability. Our
proposal exploits a combination of vector quantization and scalar quan-
tization. We compared our approach to the existing literature in this
field of research, demonstrating a significant improvement in performance
through preliminary experimentation.

Keywords: Surrogate text representation · Inverted index ·
Approximate search · High-dimensional indexing · Very large databases

1 Introduction

A key aspect that determined the success of the web was undoubtedly the arrival
on the scene of search engines. Although in the beginning, the technology of the
vector space model on which they are based was not immune to problems such as
spam web pages, they were very efficient, scalable, and flexible. Not surprisingly,
it was relatively easy to enhance and integrate them with other technologies such
as hyperlink analysis (PageRank) and term proximity.

Underlying the power of search engines are inverted indexes, which in turn
exploit the sparseness of the representation of documents to be retrieved. Unfor-
tunately, artificial intelligence models produce learned vectors that are difficult
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to deal with using inverted indexes. Neural networks for image or text representa-
tions, such as GeM [14] or BERT [7] to mention a few, produce high-dimensional
dense vectors that are usually compared with the cosine similarity. This sprouted
the development of solutions to solve maximum inner product search problems
efficiently. Commonly used data structures exploit inverted indexes in combina-
tion with data partitioning techniques, such as Voronoi partition or proximity
graphs, to restrict the search to a fraction of the database. Although existing
solutions for high-dimensional vector search have proven great performance in
terms of speed and accuracy [10–12], they still have drawbacks. Their implemen-
tation is often hardwired to run on main memory as a dense vector search system
and nothing more. Most of them are not a proper database system, so multi-
modal queries such as images and text cannot be resolved. For example, search
for all images similar to a given example image and match certain tags. Other
limitations include extensive use of RAM or a lack of mature and transparent
mechanisms to ensure scalability, such as fault-tolerance or load balancing. In
contrast, NoSQL databases, such as Elasticsearch, can scale horizontally as the
data size grows.

In this work, we tackle the problem of maximum inner product search of high-
dimensional real-valued vectors using full-text search engines and Surrogate Text
Representations (STRs)—a family of transformations to encode metric data into
synthetic texts. We contextualize our work in the area of data structures for sim-
ilarity search of dense vectors in secondary memory. All data structures based
on metric spaces (such as M-Tree [6]) would be suitable in theory for this task.
However, in this work, we focus mainly on those optimized explicitly for working
with dense real-valued vectors. Many efficient vector similarity search approaches
based on data partitioning techniques (such as [10–12]) use dedicated implemen-
tations of access structures such as inverted indexes. STR-based methods, on the
other hand, rely on transformations that sparsify data and encode it as small
sets of codewords indexed on standard text engines [2,4,9]. These approaches
are successfully used to solve multimodal queries for combined text search with
image similarity [1,3].

We propose an improved approach combining Voronoi partitioning and STRs.
Specifically, we associate a posting list to each Voronoi cell and use STRs to gen-
erate the entries of each posting list. Our proposal enables the exploitation of
off-the-shelf text search engines, thus supporting combined text+image multi-
modal search that relies only on text retrieval technologies and platforms with-
out implementing dedicated access methods. Code to reproduce experiments is
available at https://github.com/fabiocarrara/str-encoders.

2 Surrogate Text Representation

As we explained in the introduction, our goal is to index and retrieve feature
vectors by leveraging commercially available search engines.

Our primary objective is to define a family of transformations that map
a feature vector into a textual representation. Of course, we also require that

https://github.com/fabiocarrara/str-encoders
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such transformations preserve the proximity relations between the data as much
as possible, i.e., maps similar feature vectors to similar textual documents. To
achieve this, we need a transformation f : Rd → N

m that maps each original
vector y into a vector y whose components are integer-valued. Indeed, the core
idea is then interpreting y as a term frequency vector with respect to a codebook
C = {τ1, . . . , τm} of m terms. The text document associated with the vector y will
be a space-separated concatenation of the codebook terms so that τi is repeated a
number of times equal to yi. We indicate with Tf,C(·) the overall transformation
from the original vectors to the text documents, which depends on both the
function f and the used codebook C. For example if f(y) = y = [2, 0, 1, 3]
and C = {“A”, “B”, “C”, “D”} then the text document associated to y will be
Tf,C(y) =“A A C D D D”. The rationale of this approach is that a full-text search
engine based on the vector space model [15] will generate a vector representation
of the text by counting the number of occurrences of the words in it, i.e., the
term frequencies (TF). Therefore, the abstract transformation f represents a
function that exactly generates the vectors that are internally represented by
the search engine in the case of the simple TF-weighting scheme.

Since this approach is based on transforming the components of a vector y
into the term frequencies of a synthetic text document, the employed transfor-
mation f should output a vector y with positive components (no search engine
admits negative TFs even though this in principle would be possible). More-
over, it should provide sparse vectors to ensure having a large number of zero
components in the TF vectors and thus a good inverted index efficiency.

These assumptions form the basis of a family of approaches based on what
is known as Surrogate Text Representation (STR) [4,9]. STR approaches dif-
fer primarily in the steps used to deal with negative values, sparsification, and
the final real-to-integer discretization. Moreover, it is worth noting that these
approaches are designed to solve Maximum Inner Product Searches, where the
cosine similarity or the inner product is used to assess the similarity of the origi-
nal feature vectors. Indeed, this similarity is approximated by the inner product
between the associated TF vectors in the vector space model employed by the
text search engine.

3 Voronoi Partitioning STR

In this work, we propose a STR technique that employs a Voronoi partitioning
of the original features space and a specific codebook for each Voronoi cell. In a
nutshell, we use a k-means data partitioning to assign feature vectors to Voronoi
cells corresponding to a set of centroids {c1, . . . , ck}, and then we use a different
STR transformation for each Voronoi cell. Specifically, we build a codebook
Ci = {τi,1, . . . , τi,m} for the i-th cell, and we transforms the vectors in that cell
using Tf,Ci

.
As space transformation f , we employed modified versions of two state-of-the-

art STR approaches: the Deep Permutation STR [2] and the Scalar Quantization
STR [4] that we briefly review below.
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Fig. 1. Overview of the proposed VP-SQ surrogate text representation method. (A)
The database is Voronoi-partitioned using k-means, and (B) elements of each partition
are encoded into sparse term-frequency vectors using a surrogate text representation
technique (SQ in this case, that produces 2d-dimensional vectors with n non-zero com-
ponents). (C) Surrogate documents are created by repeating tokens of partition-specific
codebooks. (D) Documents are indexed using a full-text search engine; all the code-
books form a vocabulary of 2kd terms, and each database element is present in exactly
n posting lists among the 2d ones related to the Voronoi cell containing the element.

Deep Permutation (DP) STR. The term frequency vector y = fDP(y) is
obtained from the original vector y by assigning an integer importance value
from 1 to n to the top-n components of y and dropping (setting to zero)
all other components. Formally, yi = max(ri − d + n, 0), where ri is the 1-
based rank of yi when sorting the components of y in ascending order (e.g.,
r = 1 for the minimum-valued component, and r = d for the maximum-valued
one), and d is the dimensionality of the vector. For example, given a real-
valued vector y = [0.5,−0.7, 2.45,−1.2], the vector with the ranks in ascend-
ing order is r = [3, 1, 4, 2], thus for n = 2, y1 = max(3 − 4 + 2, 0) = 1,
y2 = max(1 − 4 + 2, 0) = 0, and so on, finally getting fDP(y) = [1, 0, 2, 0].
This formulation was initially thought for non-negative (post-ReLU) neural net-
work activations and assigns less importance to negative values that, however,
contribute to informativeness in the general case. Thus, Amato et al. [2] proposed
to apply the Concatenated Rectified Linear Unit (CReLU) transformation [16],
which simply makes an identical copy of vector elements, negates it, concatenates
both the original vector and its negation, and then applies ReLU altogether.
Formally, y+ = CReLU(y) = ReLU([y,−y]), where the ReLU(·) = max(·, 0)
is applied element-wise. For example, given y = [0.5,−0.7, 2.49,−1.2], its
transformed version is y+ = [0.5, 0, 2.49, 0, 0, 0.7, 0, 1.2]. To avoid the imbal-
ance towards positive activations at the expense of negative ones, we use the
CReLU transformation before applying fDP. Following the previous example,
fDP(y+) = [0, 0, 2, 0, 0, 0, 0, 1] for n = 2.

Scalar Quantization (SQ) STR. The DP method transforms real-valued compo-
nents into integer-valued ones but completely disregards the value of the orig-
inal component and how much it contributes to the inner product computa-
tion. On the other hand, the SQ method can retain this information. The SQ
STR simply applies Scalar Quantization to vector components to store them
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as integers. Formally, the Scalar Quantization is a transformation of the form
z → floor(s · z), where s is a scalar scaling factor and the floor operation is
applied element-wise. As mentioned earlier, STR-based approaches must output
positive TF vectors. Nonetheless, both negative and positive elements of the
original feature vectors contribute to informativeness. The CReLU transforma-
tion is applied in the SQ approach as a first step to coping with negative values.
To avoid storing all the components, vector sparsification is achieved similarly
to DP by zeroing out the least significant components, i.e., keeping the first-n
largest components of CReLU(y). For example, for n = 2 the sparsified version
of the CReLU(y) considered above will be [0, 0, 2.49, 0, 0, 0, 0, 1.2]. Then, the
final term frequency vector is obtained after scaling and truncation (zero values
are left untouched); for s = 10, the corresponding SQ of the vector y would be
fSQ(y) = [0, 0, 24, 0, 0, 0, 0, 12].

Note that DP and SQ only differ in the definition of the function f used
to associate term frequency vectors to the original feature vectors. However,
both these approaches are limited by construction to using a codebook that
contains exactly m = 2d terms if using the CReLU, d if using the ReLU, where
d is the dimension of the original feature vectors. This means that the total
number of posting lists in the inverted index is limited by the dimensionality
d as well, which may compromise the efficiency of the search (e.g., if d is too
small compared to the size of the dataset, then the inverted index may have
few posting lists, but each contains a large fraction of the original dataset).
For example, dimensionality reduction techniques (e.g., PCA) are often used
to reduce high-dimensional vectors without a considerable loss of effectiveness.
However, we may have no advantage in using the DP and SQ STR techniques
to index and search these reduced vectors on a large scale.

We propose to use Voronoi Partitioning (VP) on top of the DP and SQ
approaches, allowing the disentanglement of the cardinality of the codebook from
d and hence the tuning of the number of posting lists. Indeed, our extension of
DP and SQ approaches, which we named VP-DP and VP-SQ, allow producing
an inverted index with m = k∗2d posting lists, where the number of partitions k
can be tuned to guarantee a higher level of efficiency. We obtain k centroids in the
original vector space using k-means clustering. Each data vector y is transformed
as Tf,Ci

(y), where i is the index of its closest centroid, Ci = {τi,1, . . . , τi,m} is a
specific codebook associated to the centroid ci, and f is either fSQ or fDP. Note
that each object will be stored in exactly n posting lists related to its closest
centroid. Figure 1 shows an example for VP-SQ.

To process a query x, we first compute its P closest centroids, ci1 , . . . , ciP ,
and then we transform the query vector into the text document obtained by con-
catenating the texts Tf,Cih

(x) for all h = 1, . . . , P . This corresponds to accessing
nP posting lists, i.e., n posting lists for the P Voronoi cells closest to the query.
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4 Experiments

(a) GloVe (100 dims)

(b) NYTimes (256 dims)

Fig. 2. Time (Query per seconds, left column, top-right is better) and Space Efficiency
(n. of elements, right column, bottom-right is better) versus Effectiveness (Recall@10).
We only plot configurations belonging to the Pareto frontier.

Datasets. We adopt the GloVe-100 and NYTimes-256 benchmarks for maximum
inner product search prepared by Aumüller et al. [5] for a preliminary evaluation
of the proposed methods. GloVe-100 [13] is a collection of more than one million
100-dimensional real-valued vectors representing word embeddings learned in an
unsupervised fashion. NYTimes-256 [8] is a collection of 280k 256-dimensional
real-valued vectors containing bag-of-word-derived document representations of
NYTimes news articles. Both datasets provide a set of 10k test queries and the
corresponding 100 nearest neighbors for each query. We normalize all vectors to
the unitary L2 norm to implement the intended scoring function (cosine simi-
larity) as the inner product between vectors.

Tested Configurations. We encoded all vectors (data and queries) using DP,
SQ, VP-DP, and VP-SQ, obtaining surrogate term-frequencies vectors as sparse
integer matrices. For VP-SQ and VP-DP, we vary the number of k-means cen-
troids k ∈ {128, 256, 512, 1024, 2048, 4096, 8192} and the number of voronoi cells
accessed at query-time P ∈ {1, 2, 5, 10, 25, 50}. For SQ and VP-SQ, we use a
scalar quantization factor s = 105. For all methods, we vary the number of kept
elements n for each vector from 1% to 100% of the original vector dimensionality
d. For simplicity, we skip the configurations providing a query throughput lower
than ten queries per second (query time > 100 ms).
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Implementation Details. We perform experiments on a Ubuntu 20.04 server
with Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz and 64GB of RAM. To
isolate the evaluation of our proposal from the specifics of a particular textual
search engine, we simulated the full-text search on surrogate texts by using SciPy
sparse matrix multiplication on encoded vectors. This is only possible as long
as all encoded vectors fit in RAM; despite being feasible given the scale of these
preliminary benchmarks and our hardware, we suggest using fully-featured disk-
based textual search engines, such as Elasticsearch or Apache Solr, to implement
larger-scale and more efficient searches. The results of our simulated search can
be interpreted as lower bounds to search and storage efficiency that can be
boosted using dedicated software.

Results and Discussion. Figure 2 reports the query times (as the number of
queries per second, left column) and index storage occupation (as the number of
non-zero elements of encoded vectors, right column) as a function of the search
effectiveness measured by the Recall@10. For each method, we report only the
configurations that belong to the Pareto frontier. We note that VP-SQ domi-
nates the other methods in the time-effectiveness trade-off. Both VP methods
improve on their non-VP variants, with VP-SQ deriving a more significant bene-
fit than VP-DP. Concerning the space-effectiveness trade-off, we observe a slight
improvement of VP-SQ with respect to non-VP methods in the NYTimes bench-
mark for low recall regimes, whereas VP-DP usually needs more space to reach
higher recalls.

5 Conclusions

In this paper, we proposed a new method for out-of-core similarity search of
dense vectors. We mainly target those who need to scale over large amounts of
data using an integrated search framework based on a standard search engine.
Compared to the state of the art, we improved the performance of surrogate
text-based techniques that had the major limitation of working with codebooks
constrained by the dimensionality of the dense vectors to be searched.

A key aspect of our approach entails the combination of vector partitioning
technique with existing approaches allowing us to expand the codebook used for
indexing and thus better fine-tune performance. In the near future, we plan to
try to improve our technique by using artificial intelligence-based approaches to
learn vector sparsification without sacrificing too much search accuracy.
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Abstract. Data generated by everyday applications may appear in dif-
ferent forms. Various important and frequently used machine learning
and data mining techniques have been designed assuming the tabular
data form. To apply those techniques to graph structured data, it neces-
sary to form graph embeddings. The crucial moment in creating a graph
embedding is to choose the best embedding technique that preserves all
the vital information when converting a graph into its tabular represen-
tation. Determining the best approach requires some form of evaluation
of the internal qualities of potential embeddings and their utility in con-
crete applications. In this paper, we present a comparative evaluation of
graph embeddings when used to cluster graph nodes in the embedded
space. The examined graph embedding methods are node2vec and two
recently proposed extensions of this algorithm based on local intrinsic
dimensionality. The results of both intrinsic and external clustering eval-
uation on real-world graphs indicate that LID-aware extensions improve
node clustering, especially when detecting a small number of clusters.

Keywords: Clustering · Graph embedding · LID-aware node2vec

1 Introduction

In the era of big data large amounts of information are produced that require
analysis and data mining (DM). Information from sources such as social media
and sensors from IoT devices can be used to identify patterns, trends, and new
insights that can help with evidence-based decision making and strategic plan-
ning. This data can also be used to train predictive models with machine learning
(ML) algorithms. There is a variety of ways to organize and store large-scale data:
tables, graphs, time series, etc. Numerous data processing techniques developed
in the last decades in the research communities of ML and DM usually require
input data in tabular form. In the case of graph-structured data, this requirement
necessitates transformation of the original data into a suitable format.

The main task of graph embedding methods is to transform graph data into
tabular data without losing essential information, but also without explicitly
specifying which two nodes are connected by an edge in the produced embedding.
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It is expected that the application of a graph embedding method before applying
ML or DM algorithms produces equal or better results than algorithms natively
designed for graphs. The process of graph analysis is then conditioned by the
quality of the produced embedding. It should be emphasized that this approach
may also face potential problems characteristic for tabular data forms such as
the curse of dimensionality.

Tabular data is represented by rows and columns. Columns are features used
to describe objects of interest that correspond to rows in the table. The number
of columns is the dimensionality of the space in which data is located. When
creating the tabular representation in the form of a graph embedding, one of
the main problems is to select the suitable value for dimensionality. The mea-
sure used to represent the minimal number of features required to describe a
point of information in the space is called intrinsic dimensionality (ID). Intrinsic
dimensionality is usually viewed as a concept related to the entire dataset, and
corresponding ID measures are typically used in dimensionality reduction algo-
rithms. The use of such global ID measures is not always suitable because data
dimensionality may vary locally for different parts of a dataset. Local intrinsic
dimensionality (LID) was introduced by shifting the focus of ID estimation from
the global data view to the data space around a data point [1,6]. A recent paper
by Savić et al. [16] addresses the issue of using LID-related measures in the
context of graph embedding generation. The authors proposed NC-LID, a LID-
related measure for quantifying the discriminative power of the shortest path
distance with respect to natural communities of nodes as their intrinsic locali-
ties. Based on this measure, new extensions of the node2vec [4] graph embedding
algorithm have been introduced and evaluated by examining to what extent the
produced embeddings preserve the structure of input graphs. This paper expands
the evaluation given in [16], with the main motivation to analyze the proposed
node2vec extensions for the particular application to node clustering.

Clustering is the task of dividing data points into a number of groups (clus-
ters) where similar data points are in the same cluster, and more distant points
reside in separate clusters. In terms of graph analysis we use nodes as data
points. In other words, clusters in a graph are groups of similar nodes (sim-
ilar by the shortest-path distance or some other node similarity metric). By
performing clustering validation over identified clusters, it is possible to com-
pare the quality of the used embedding methods. The clustering method used
in this paper is KMeans [11] which is the most commonly used algorithms to
cluster tabular data. KMeans belongs to the group of partitional clustering algo-
rithms in the sense that it generates a single partition with a specified number
of non-overlapping clusters. Clustering validation can be intrinsic and external.
Intrinsic evaluation focuses on the cohesion of identified clusters based on a
distance measure. In our analysis the Silhouette score [15] is used to measure
cluster cohesiveness. In external evaluation, identified clusters are compared to
explicitly stated node groups determined by labels assigned to nodes. For this
purpose we use Normalized Mutual Information [9].
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The rest of the paper is structured as follows. A brief summary of analyzed
graph embedding methods is given in Sect. 2. In the following Sect. 3 we describe
methods and measures used to evaluate graph embeddings in the context of
node clustering. The obtained results are presented in Sect. 4. The last section
concludes the paper and gives directions for future work.

2 Graph Embedding Methods

The embedding algorithms we analyze belong to the class of random walk algo-
rithms. The random walk approach has become a common technique for the
graph embedding problem in recent studies [3]. The main idea of random walk
based graph embedding algorithms is to sample a certain number of random
walks emanating from each node in a graph. In the case of the node2vec algo-
rithm, the random walks are treated as ordinary sets over the alphabet of node
identifiers. This means that the problem of generating graph embeddings is essen-
tially reduced to the problem of generating text embeddings.

The node2vec algorithm is an improvement of DeepWalk [14] with the
main idea to use biased random walks. The algorithm is based on finding the
best neighborhood selection strategy that allows seamless interpolation between
depth first search (DFS) and breadth first search (BFS) when creating a random
walk. Node2vec depends on two parameters: p and q. These parameters control
how fast the algorithm explores and exits the neighborhood of a given starting
node. The p parameter (return parameter) controls the probability of returning
to the previous node in the walk. The q parameter (in-out parameter) controls
how closely the walk resembles the DFS or BFS exploration strategy. The gen-
erated walks are then passed to the Word2Vec algorithm [12], which creates the
desired graph embedding.

The aforementioned paper by Savić et al. [16] has raised the question of
a different direction to graph embedding generation in which hyperparameters
controlling random walk sampling are not globally fixed, but personalized per
node and edge with automatic adjustments from initially stated base values.
Inspired by the LID model introduced by Houle [6–8], the authors first defined
the NC-LID measure for quantifying the discriminatory power of the shortest-
path distance considering natural communities [10] of nodes as their intrinsic
localities. The lowest possible value of NC-LID is equal to zero and corresponds
to the case in which the shortest-path distance perfectly separates the natural
community of a node from the rest of the graph. Higher NC-LID values imply
more structurally complex natural communities. The authors then proposed two
LID-aware node2vec variants (lid-n2v-rw and lid-n2v-rwpq) in which personal-
ized hyperparameters are adjusted according to NC-LID values.

Lid-n2v-rw is the first LID-aware node2vec modification that is focused on
the personalization of the number of random walks sampled per node, and the
length of random walks. The number of random walks for an arbitrary node
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n is computed by the equation �(1 + NC-LID(n)) · B�, where B is the base
number of random walks (by default B = 10). Additionally, the length of random
walks sampled for n is equal to �W/(1 + NC-LID(n))� (by default W = 80).
This means that more random walks are sampled for nodes with more complex
natural communities. Additionally, random walks for such nodes are shorter in
order to keep the computational budget approximately constant and to lower
the probability of “escaping” from their natural communities.

Lid-n2v-rwpq is the second variant of LID-aware node2vec and it considers
a more biased approach to graph embedding construction. The main idea is
to personalize p and q parameters controlling biases during the random walk
sampling. The base values of p and q are pb = 1, and qb = 1, by default. The
lid-n2v-rwpq variant incorporates the following adjustments of p and q for a pair
of nodes x and y, denoted by p(x, y) and q(x, y), respectively, where x is the node
on which the random walk currently resides and y is one of its neighbors:

1. If x is in the natural community of y then p(x, y) = pb, otherwise p(x, y) = pb+
NC-LID(y). This adjustment lowers the probability of transitioning between
different natural communities.

2. If y is in the natural community of x then q(x, y) = qb, otherwise q(x, y) =
qb + NC-LID(x). This rule increases the probability of staying within more
complex natural communities.

3 Evaluation Methods

The evaluation of clustering algorithms applied to graph embeddings can be
done in two ways depending on whether nodes have explicit labels indicating
cluster assignments (external evaluation) or not (intrinsic evaluation). Let O
denote the partitioning of nodes into clusters according to explicit labels and
let C be the partitioning of nodes obtained by a clustering algorithm applied to
a graph. Then, the similarity between O and C can be obtained by computing
partitioning similarity metrics such as normalized mutual information (NMI).
Additionally, clustering algorithms can be intrinsically evaluated without having
explicit labels by computing metrics reflecting cohesiveness of obtained clusters,
such as the Silhouette score.

The Silhouette score indicates how similar data point d (node in our case)
is to its own cluster c compared to other identified clusters. It calculates the
average distance of d to data points in c and the average distance of d to data
points in all other clusters. Its values range from −1 to 1. In our evaluation, the
Silhouette score is used as the measure of intrinsic clustering validation being
one of the most commonly used indices for assessing clustering quality. Higher
Silhouette scores indicate better clustering quality suggesting a more adequate
graph embedding for the purpose of clustering, which enables us to examine the
impact of graph embedding algorithms in this particular task.

NMI is the normalized variant of the mutual information measure. It is cal-
culated for two partitions of data points into clusters and its value varies from 0,
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meaning that sets have no mutual information, to 1 which denotes perfect cor-
relation between sets. The value of NMI does not depend on the label naming
scheme. Clustering partitions we compare by computing NMI are the following:

– the partition induced by explicit labels present in graph data,
– partitions obtained by community detection on original graphs, and
– partitions identified by KMeans clustering of graph embeddings.

The KMeans algorithm requires parameter K which is the number of non-
overlapping clusters that will be detected in the given dataset. In particular,
we use the number of detected communities and the number of explicitly stated
labels in the original graph. Additionally, we include fixed values for K from
{2, 3, 4, 5, 10}. In our evaluation we rely on the implementation of KMeans
from the scikit-learn library [13]. The greedy modularity clustering algorithm [2]
implemented in the NetworkX library [5] is used for detecting communities.

4 Results

This section describes the results of the comparison between clustering on graph
embeddings obtained by node2vec and its two LID-aware variants. The experi-
mental corpus of datasets used for the evaluation is the same as in [16] and con-
sists of five citation networks (Cora, Cora ML, Citeseer, DBLP and Pubmed),
two Amazon datasets (Amazon electronics computers and Amazon electronics
photo), and one small social network (Zachary karate club). All datasets from
the corpus are explicitly labeled.

The results of our analysis indicate that the best results, in terms of NMI
and Silhouette scores, are obtained when embeddings are generated for dimen-
sionality equal to 10. Other parameters can be seen in Table 1. These node2vec
parameters are determined by reconstructing graphs from embeddings according
to Euclidean distance and comparing reconstructed graphs to original ones. It
should be emphasized that we use the same values of hyperparameters for our
LID-elastic node2vec extensions (base values of p and q as in Table 1) in order to
have an unbiased comparison to node2vec. The best value of K in KMeans varies
between datasets. In case of Zachary karate club the best K is 2, for Cora ML
K = 7, Citeseer K = 6, Amazon electronics photo K = 8, Amazon electronics
computers K = 10, DBLP K = 4, Pubmed K = 3, and Cora K = 70.

4.1 Intrinsic Evaluation

Figure 1 shows Silhouette scores for node2vec, lid-n2v-rw and lid-n2v-rwpq for
KMeans when K values (K ≤ 10) are chosen such that the Silhouette score
is maximal possible. It can be seen that the highest Silhouette score for the
majority of datasets is obtained for embeddings generated by lid-n2v-rw. The
largest difference in the Silhouette score can be observed for Cora ML where LID-
aware node2vec variants have significantly higher values compared to node2vec.
Lid-n2v-rwpq is the best performing embedding algorithm for Zachary karate
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Table 1. The best values of embedding parameters p and q for node2vec and its LID-
aware variants.

Dataset node2vec lid-n2v-rw lid-n2v-rwpq

p q p q p q

Zachary karate club 0.25 2 0.25 2 0.25 2

Cora 4 0.25 4 0.25 4 0.25

Cora ML 4 0.25 4 0.25 4 0.25

Citeseer 0.5 0.25 0.5 0.25 0.5 0.25

Amazon electronics computers 4 0.5 4 0.5 4 0.5

Amazon electronics photo 4 0.5 4 0.5 4 0.5

DBLP 4 1 4 1 4 1

Pubmed 2 0.5 2 0.5 2 0.5

club and Pubmed. The original node2vec is the best option only for one dataset
(Cora). Thus, it can be concluded that clusters obtained from LID-aware variants
of node2vec are more cohesive suggesting that LID-aware extensions improve the
node clustering process.

Fig. 1. The best Silhouette scores for KMeans clustering when K ≤ 10.

Values of Silhouette scores for KMeans clustering when K is equal to the
number of communities detected by the greedy modularity optimization (GMO)
are shown in Fig. 2. For 6 datasets from our experimental corpus, Silhouette
scores for different graph embedding methods are very similar. Only for 2
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datasets (Zachary and Citesser) we have that node2vec performs slightly better
than its LID-aware variants. The number of detected communities is larger than
100 for all datasets except Zacahary where GMO detected 3 clusters. With a
larger number of smaller clusters, Silhouette scores tend to have higher values.
Consequently, it can be concluded that the intrinsic evaluation for the best K
that is lower than or equal to 10 is more reliable than the same evaluation when
K > 100 for to two reasons: (1) it is hard to expect an extremely large number
of clusters in our datasets considering their size, and (2) for large K the obtained
Silhouette scores are almost equal indicating that the clustering results do not
depend on the used graph embedding method.

Fig. 2. Silhouette score for KMeans clustering when K is equal to the number of
detected communities.

4.2 External Evaluation

In the external evaluation we compute NMI scores between explicitly stated
labels in datasets and labelling assignments resulting from KMeans for different
K values. The obtained results are summarized in Tables 2 and 3. Table 2 shows
the best NMI scores when K ≤ 10. It can observed that on only two datasets
(DBLP and Cora) node2vec has higher NMI scores than its LID-aware variants.
For other datasets one of the LID-aware variants is the best performing algo-
rithm. Considerable improvements in the NMI score are present for 3 graphs
(Pubmed, Citeseer and Zachary) where NMI of LID-aware variants is higher by
0.1 than NMI of node2vec.

NMI scores when K is equal to the number of clusters detected by GMO
are given in Table 3. The largest NMI for Amazon electronics photo is achieved
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Table 2. NMI scores for explicit labels and labeling assignments obtained from KMeans
for the best K ≤ 10.

Dataset node2vec lid-n2v-rw lid-n2v-rwpq

Zachary karate club 0.693 0.826 0.727

Cora 0.545 0.523 0.418

Cora ML 0.548 0.583 0.597

Citeseer 0.489 0.577 0.572

Amazon electronics computers 0.554 0.554 0.569

Amazon electronics photo 0.649 0.675 0.657

DBLP 0.557 0.478 0.471

Pubmed 0.368 0.479 0.483

by two algorithms, node2vec and lid-n2v-rw. However, on the same dataset lid-
n2v-rwpq has slightly lower NMI indicating that all three algorithms perform
similarly. The situation is similar for other datasets where NMI of the best per-
forming algorithm is not considerably higher than NMI of two other alternatives.
For 2 datasets (DBLP, Pubmed) node2vec achieves the highest NMI, lid-n2v-rw
is also the best option for 2 datasets (Cora and Amazon electronics computers),
whereas lid-n2v-rwpq reaches the highest NMI for 3 datasets. The best NMI
score per dataset considering both cases (when K ≤ 10 and K equal to the
number of detected clusters) is indicated in Table 4, where it can be seen that
for 6 out of 8 datasets LID-elastic node2vec extensions outperform the original
node2vec.

Table 3. NMI scores for explicit labels and labeling assignments from KMeans when
K is equal to the number of detected communities.

Dataset node2vec lid-n2v-rw lid-n2v-rwpq

Zachary karate club 0.727 0.826 0.861

Cora 0.546 0.548 0.545

Cora ML 0.640 0.639 0.651

Citeseer 0.857 0.855 0.858

Amazon electronics computers 0.403 0.404 0.401

Amazon electronics photo 0.489 0.489 0.486

DBLP 0.574 0.557 0.557

Pubmed 0.574 0.529 0.523

We also examined the correlation between Silhouette and NMI scores for
LID-aware node2vec variants. Figure 3 shows the highest Silhouette and NMI
across all datasets from our experimental corpus. It can be seen that those
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Table 4. The best NMI score per dataset.

Dataset Best NMI score Method

Zachary karate club 0.861 lid-n2v-rwpq

Cora 0.548 lid-n2v-rw

Cora ML 0.651 lid-n2v-rwpq

Citeseer 0.858 lid-n2v-rwpq

Amazon electronics computers 0.569 lid-n2v-rwpq

Amazon electronics photo 0.675 lid-n2v-rw

DBLP 0.574 node2vec

Pubmed 0.574 node2vec

(a) lid-n2v-rw (b) lid-n2v-rwpq

Fig. 3. Comparison of maximal Silhouette and NMI scores across all datasets.

two metrics are perfectly correlated, i.e. larger Silhouette score implies larger
NMI. Consequently, it can be concluded that the metric we selected for intrinsic
evaluation is consistent with the metric used for external evaluation. This is also
evident in the results of the evaluation itself:
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1. for a small number of detected clusters (K ≤ 10) LID-aware node2vec variants
perform better than pure node2vec according to both intrinsic and external
evaluation, while

2. for a large number of detected clusters corresponding to the number of com-
munities detected by GMO all three algorithms achieve similar performance.

5 Conclusion and Future Work

The main focus of this paper was on the evaluation of LID-aware graph embed-
ding methods when they are used prior to node clustering. Both intrinsic and
external evaluation of KMeans were conducted on embeddings produced by pure
node2vec and two its LID-aware extensions that personalize hyperparameters
controlling random walk sampling. For the purpose of intrinsic evaluation we
selected the Silhouette score to quantify cohesiveness of clusters. The external
evaluation was based on NMI considering labels explicitly given in datasets and
label assignments obtained by KMeans for different K values.

The obtained results indicate that LID-aware node2vec extensions in general
achieve better intrinsic and external evaluation scores, especially when detecting
a small number of clusters (equal to or less than 10). In the case of a large num-
ber of clusters, corresponding to the number of communities detected by greedy
modularity optimization applied directly to graphs, all three examined graph
embedding algorithms achieve comparable evaluation scores. The intrinsic eval-
uation should be considered more reliable since external evaluation depends on
explicitly assigned labels that do not necessarily represent natural clusters. How-
ever, it was shown that the selection of metrics in different evaluation methods
gives consistent results.

Regarding future work, our evaluation could be expanded by including addi-
tional datasets, community detection algorithms and other clustering algorithms
designed for tabular data (e.g., agglomerative hierarchical clustering, DBSCAN,
etc.). LID-aware extensions evaluated in this paper are based on local commu-
nity detection, but in addition we could also detect communities globally. For
example, an additional parameter controlling the probability of a random walk
leaving a global community could be incorporated into LID-aware extensions of
node2vec. In this way we force random walks to stay within the global commu-
nity of a starting node. Furthermore, this idea might as well be expanded to
overlapping communities where special attention is given to nodes belonging to
multiple communities.
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Abstract. The evaluation of unsupervised algorithm results is one of
the most challenging tasks in data mining research. Where labeled data
are not available, one has to use in practice the so-called internal evalu-
ation, which is based solely on the data and the assessed solutions them-
selves. In unsupervised cluster analysis, indices for internal evaluation
of clustering solutions have been studied for decades, with a multitude
of indices available, based on different criteria. In unsupervised outlier
detection, however, this problem has only recently received some atten-
tion, and still very few indices are available. In this paper, we provide
a new internal index based on criteria different from the ones available
in the literature. The index is based on a (generic) similarity measure to
efficiently evaluate candidate outlier detection solutions in a completely
unsupervised way. We evaluate and compare this index against existing
indices in terms of quality and run time performance using collections of
both real and synthetic datasets.

Keywords: Outlier detection · Unsupervised evaluation · Validation ·
Model selection

1 Introduction

Outlier detection is one of the central tasks of data mining. This task aims to
identify observations that are considered exceptional in some sense. In many
applications, such observations deserve much more attention than those consid-
ered normal, as they might reveal important phenomena, such as traffic accidents
[13], network intrusion attacks [2], credit card frauds [1], sensor failures [33], or
diseases affecting human health [3].

The techniques for outlier detection can be categorized into supervised, semi-
supervised, and unsupervised techniques. Supervised techniques assume that
enough observations labeled as inliers and outliers are available to describe both
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classes using a classifier. In the semi-supervised scenario, a few labeled outliers
might even be available, but they are not sufficient to describe the outlier class.
In this scenario, also referred to as “novelty detection”, the techniques assume
that only inlier observations are available, and these previously known inliers are
used to obtain a model using one-class classification techniques [39]. When no
labeled data are available at all, one has to use unsupervised techniques, which
do not assume any prior knowledge or examples of outliers and inliers [10].

In this work, we focus on unsupervised outlier detection scenarios. In this
scenario it is difficult to precisely and generally define a notion of “outlierness”.
Some definitions in the literature seek to capture the broader idea of what con-
stitutes an outlier. For example, the classical definition by Barnett and Lewis [6]
describes an outlier as “an observation (or subset of observations) which appears
to be inconsistent with the remainder of that set of data”. However, how and
when an observation qualifies as “inconsistent” is subjective and depends on the
application scenario and the algorithm used.

Due to the inherent subjectivity of the unsupervised outlier detection sce-
nario, a wide variety of algorithms have emerged to capture the different possible
notions of outlier. Each of these algorithms, naturally, is more or less appropri-
ate depending on the application scenario. The selection of an algorithm for a
particular application should be guided based on the quality of its results in that
application. However, with no precise definition of outliers nor labeled examples
to compare with the algorithms’ results, it is far from trivial to make a qual-
ity assessment. This problem is inherent to unsupervised learning. It has been
investigated for decades in the data clustering domain [21,22,43], but has only
recently received some attention in outlier detection [29,30,46].

In practical applications of data clustering the related problem of unsuper-
vised evaluation of the results is tackled by using some kind of quantitative index,
called internal validation indices [22]. These indices are called internal as they
do not make use of any external information (such as class labels). The quality
assessment of a clustering solution is based solely on the solution and the data
themselves. Most of these indices are also relative as they can compare different
clustering solutions and point out which one is better in relative terms. The pos-
sible applications for such indices go far beyond only providing an unsupervised
quality estimate for the solutions. The most basic application is model selection,
i.e., to use the quality estimates provided by the index to select the most suitable
algorithm and/or choosing the appropriate configuration of parameters for the
algorithm. Due to the variety of indices that have been proposed over the past
few decades in the clustering literature [42], these indices can also be employed
in more sophisticated applications, for example, to build ensembles of validation
indices [23,43].

Although internal indices have been extensively studied and shown to be
effective and useful tools in the unsupervised clustering domain, they are still
in their infancy in outlier detection. The lack of diversity of indices is especially
critical in this scenario. Due to the natural subjectivity of this context, no single
index can capture all possible facets of the unsupervised outlier detection prob-
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lem. Therefore, relying on multiple indices can be very important. Furthermore,
the low diversity of indices available makes it very difficult to employ them in
more sophisticated applications, restricting their application mostly to the fun-
damental tasks of model selection and unsupervised evaluation. In fact, the lack
of internal indices for unsupervised outlier detection has already been acknowl-
edged in the literature as an obstacle to the development of advanced ensemble
selection methods [46]. Therefore, the development of indices supported on dif-
ferent grounds is essential also to unlock the full potential of applications for
these indices. In this paper, we aim to aid in bridging this gap by proposing a
new internal, relative evaluation measure for unsupervised outlier detection. The
index uses the similarity of the observations as the basis to formulate its crite-
rion, relying on the common intuition that outliers are dissimilar from the other
observations. The use of similarities is very in line with most unsupervised out-
lier detection algorithms that detect outliers based on distances involving their
neighbors. The use of a similarity measure also makes the index very convenient
for applications in unstructured data (e.g., texts, images, and graphs), where it
is often tricky to explicit the data in a good feature set. At the same time, our
proposed index is more computationally efficient than existing ones.

We organize the remainder of this paper as follows. In Sect. 2, we discuss
the typical approaches in the literature for the evaluation of the results in unsu-
pervised outlier detection, including the external evaluation and other indices
in the literature for internal evaluation. In Sect. 3, we introduce our similarity-
based index for internal evaluation, SIREOS. Finally, we evaluate this index in
Sect. 4 and conclude the paper in Sect. 5.

2 Related Work

In the literature on unsupervised outlier detection, the common procedure for
the evaluation of the results makes use of previously labeled datasets. In this sce-
nario, referred to as external evaluation or validation, the labels are not used by
the algorithms themselves, but rather merely to assess their results. The labeling
or ranking produced by the algorithm is compared with the correct and previ-
ously known labeling (ground truth) using quality measures, such as precision-
at-n and ROC AUC curve [10,36]. These external evaluation procedures have
been essential in the outlier detection literature. Comparative studies have taken
advantage of them to evaluate how algorithms compare to each other [10,16].
Such procedures are fundamental to assess the current state of the art in the
area. However, they make sense only in controlled experiments, as in the afore-
mentioned comparative studies. The premise of a fully labeled dataset makes it
entirely unsuitable for practical applications of unsupervised learning.

Internal evaluation, which is the focus of this paper, provides a quality esti-
mate of the results without the requirement of a fully labeled dataset. This
subject, however, has been neglected for a long time in outlier detection and was
brought to the community’s attention only in 2013 [46]. Shortly after, Marques
et al. [30] proposed IREOS, the first index for the internal evaluation of outlier
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detection results. The index takes advantage of maximum margin classifiers (e.g.,
SVM and KLR [17]) to formulate a criterion based on the separability of the
observations labeled as outliers in the candidate solution. Although the publica-
tion of IREOS was a breakthrough in the area, in its first version the index was
only able to evaluate top-n (binary) solutions, i.e., solutions in which a subset
of n observations are labeled as outliers, while the remaining N −n observations
are labeled as inliers. Most algorithms, however, do not label observations as
outliers or inliers, but assign scores to each observation representing its degree
of outlierness. Another major limitation of the index was its inability to scale
on large datasets. These limitations have been addressed in the fuller developed
version of IREOS [29], where it was extended to the more general scenario of
the evaluation of outlier detection scorings. In addition, the authors introduced
speedup techniques to compute an approximation of the index in a small fraction
of the original runtime.

In the same paper [29], the authors also introduced a baseline measure, the
“Laplacian Score”. This baseline measure was originally proposed as a filter
method for feature selection [19]. The authors took advantage of the fact that
this feature selection method ranks the features according to their importance.
They treated the candidate solutions as a set of features (each candidate outlier
detection solution corresponds to one feature), such that the method can rank
the candidate solutions according to their importance. Note that the authors
used this measure only as a baseline to evaluate IREOS. Laplacian Score is not
a fully developed and explored index and is not based on a solid theoretical basis.

Two additional indices were proposed by Goix [14]. The indices are based
on existing Excess-Mass (EM) [15] and Mass-Volume (MV) [11] curves. These
statistical tools are used to measure the quality of a scoring function in terms of
level sets. The main idea behind the index assumes that the level sets of a scoring
function are estimates of the level sets of the density. Therefore, the collection
of level sets of an optimal scoring function coincides with that related to the
underlying density distribution of the data. This distribution, however, is gener-
ally unknown in practice, and the MV and EM curves need to be estimated using
Monte-Carlo approximations. A major drawback is that Monte-Carlo approxi-
mations make good estimates only on datasets with low dimensionality (d ≤ 8).
The authors extend these criteria to high-dimensional datasets by applying fea-
ture bagging on the dataset. They sample small subsets of the features, evaluate
the results produced in each feature sampling individually and aggregate these
individual evaluations. This approach, however, has the inconvenience of the
need to re-execute the algorithm/parameter in the different feature samplings
to evaluate the candidate solution provided by that algorithm.

3 Internal Evaluation of Outlier Detection

3.1 Problem Statement

The problem of internal evaluation of outlier detection has already been formal-
ized in [29,30]. Here, we revise this formulation as we use the same notation
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in the remaining of this paper. Let X = {x1, · · · ,xN} be an unlabeled dataset
containing N d-dimensional feature vectors, xi, and assume that one or more
unsupervised outlier detection algorithms will produce, for this dataset, a col-
lection Ω of nΩ candidate outlier detection solutions, Ω = {ω1, · · · , ωnΩ}, which
one wants to evaluate in the absence of labels. Solutions ω(·) produced by unsu-
pervised outlier detection algorithms can be given in different formats. The most
common format is a scoring y = {y1, · · · , yN}, yi ∈ R

+, where yi represents the
outlier score associated with the observation xi, which reflects the degree of out-
lierness of xi. This type of solution allows objects xi to be sorted and ranked
according to their degree of outlierness yi. When the number of outliers n is
known, one can establish a threshold in the ranking in order to select a subset
S ⊂ X, |S| = n, containing the top-n objects that are labeled as outliers. When
represented in this format, we refer to ω(·) as binary, top-n solutions. In this
particular case of binary top-n solutions, the number of different possible solu-
tions is finite. The set containing all possible labeling realizations Uω contains(
N
n

)
solutions.

Given a collection Ω of candidate solutions ωi, whether they are scoring solu-
tions or top-n solutions, we want to independently and quantitatively measure
the quality of each individual candidate solution, e.g., (i) to assess their statisti-
cal significance when compared to the null hypothesis of a random solution; or
(ii) to compare them in relative terms so that the best candidates, corresponding
to more suitable models (algorithms, parameters), can be selected.

3.2 Internal Evaluation of Top-n Outlier Detection

In the seminal work on internal evaluation of outlier detection [30], the authors
introduced a framework for Internal, Relative Evaluation of Outlier Solutions
(IREOS). IREOS is based on a measure of separability p(·) given by a maximum
margin classifier. In order to quantify the quality of a candidate solution S, the
index computes the average separability of the observations xi labeled as outliers
in that solution:

I(S) =
1
n

∑

xi∈S

p(xi), (1)

The intuition behind the index is that outliers are observations with a higher
degree of separability. Therefore, the higher the average degree of separability of
the candidate outliers, the better the solution.

The labeling of a subset of n observations as outliers, given by a candidate
solution S, can be viewed as a sample of size n from the dataset. Therefore,
the mean of the separability of these n observations, I(S), can be seen as a
sample mean. The Central Limit Theorem (CLT) guarantees that the sampling
distribution of the sample mean is normally distributed, as long as the sample
size, n, is not critically small. For this reason, we can assume that the distribution
of IREOS follows, at least approximately, a Normal distribution:

I ∼ N (E{I},Var{I}) (2)
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We can also evoke the CLT to derive the mean and variance of the distribu-
tion of IREOS, for example, to assess the statistical significance of a candidate
solution when compared to the null hypothesis of a random solution. The mean
E{I} of the distribution is computed as:

E{I} =
1

|Uω|
∑

S∈Uω

I(S), (3)

and the variance Var{I} as:

Var{I} =
1

n2|Uω|
∑

S∈Uω

∑

xi∈S

(p(xi) − E{I})2 (4)

Note, however, that although Uω is finite for binary top-n solutions, the num-
ber of p(·) computations required to calculate these statistics becomes computa-
tionally prohibitive even for moderate datasets. In practice, the index statistics
are estimated using Monte-Carlo simulations.

3.3 Internal Evaluation of Outlier Detection Scorings

As most unsupervised outlier detection algorithms provide the solution ω in the
format of outlier scoring y, instead of a binary, top-n solution S, weights are
introduced in the original formulation of the index (Eq. (1)) to make it suitable
for the evaluation of outlier scorings [29]:

IREOS (ω) =
∑N

i=1 p(xi)wi
∑N

i=1 wi

, (5)

The intuition behind using weights in the index is that these weights wi are
associated with the outlier scorings of the observations xi, such that solutions
assigning higher (lower) outlier scores to observations with higher (lower) separa-
bilities result in larger values of index, indicating that these are better solutions.
However, the fact that various outlier detection algorithms produce scores on
completely different scales requires some kind of normalization to compare solu-
tions provided by different algorithms. By using the framework for outlier scoring
normalization proposed by Kriegel et al. [26], the original outlier scores (y) can
be transformed into the interval [0, 1] in a way that they can be interpreted as
outlier probabilities. The resulting normalized outlier scores, w(·), can then be
used in Eq. (5).

3.4 Similarity-Based Internal Evaluation of Outlier Detection

The framework IREOS [30] was originally proposed to perform the internal eval-
uation of outlier detection solutions using maximum margin classifiers. The use
of classifiers other than the maximum margin classifiers to compute the separa-
bilities p(·) was acknowledged by the authors [29] as a possible topic for future



240 H. O. Marques et al.

research. Here, however, we propose the use of other measures in the framework
that are not tied to classifiers. In fact, the separability measure p(·) provided by
classifiers has been acknowledged in the literature as the main criticism of the
index [10,29,47], as it can be computationally very demanding to compute the
separability by training classifiers. Similarity is a less complex (both in terms
of computational requirements and in terms of expressiveness) measure. In this
paper, we explore the usefulness of this simpler measure to evaluate candidate
outlier detection solutions with a Similarity-based Internal, Relative Evaluation
of Outlier Solutions (SIREOS). The use of similarity relies on the common intu-
ition that outliers are observations somehow dissimilar from the others. There-
fore, we expect that in a good solution, a suitable measure of the similarity of the
observations labeled as outliers to the rest of the dataset will be low, whereas,
in a poor solution, this similarity should be higher.

In order to evaluate the candidate solutions, we define the similarity-based
measure to be used in the place of p(·) as:

s(xi) =
1

(N − 1)

∑

xj∈(X\xi)

K(xi,xj), (6)

where K(xi,xj) measures the similarity between xi and xj . The possibilities
for the function K(xi,xj) are diverse, and the choice depends on the nature
of the data and the application scenario. In the literature, there are several
similarity measures designed for the different pattern of data, e.g., cosine for
high-dimensional datasets [40], dynamic time warping (DTW) for time series
[31], simple matching coefficient (SMC) for categorical data [40], graph edit
distance (GED) for graphs [35], structural similarity (SSIM) for images [44], and
so on. In the context of unstructured data, modern machine learning techniques
(e.g., deep learning) have shown an advantage over traditional techniques [34]
as they can internally learn representations without the need of crafted feature
engineering. In this context, where it is often tricky to explicitly represent the
data by a good feature set in advance, these well-established similarity measures
make the index computation possible without needing to map the data into a
feature space (including latent spaces learned as part of models to be evaluated).

Given a similarity function K(xi,xj), the measure s(xi) presented in Eq. (6)
can be readily plugged into Eq. (5), resulting in the new index proposed here:

SIREOS (ω) =
∑N

i=1 s(xi)wi
∑N

i=1 wi

, (7)

Note that in contrast to the original index, where the larger the index (better
separabilities), the better the solution, here, as we use a similarity-based measure
and we expect outliers to have low similarity to the other observations, the lower
the index, the better the solution.
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4 Evaluation

In our experiments, we evaluate our index in terms of quality and runtime against
other competitors, namely, IREOS [29], Laplacian Score [29], Excess-Mass (EM)
[14], and Mass-Volume (MV) [14] curves. In order to measure the quality of
the index, we performed an experiment involving model selection. Using the
quality assessments of the solutions computed by indices, we selected the best
solution of each dataset according to their respective scores. The quality of these
solutions is then independently assessed with respect to the ground truth, i.e., in
a supervised way. We compute the Area Under the ROC Curve (ROC AUC) of
the outlier scores in the selected solutions against the labels in the ground truth.
The objective is to compare the assessments of the solutions with respect to the
ground truth and the quality assessments of the solutions provided by the indices.
We expect good indices to have a positive correlation with the assessments with
respect to the ground truth, i.e., good solutions according to the index should
also be considered good according to the ground truth.

For runtime experiments, we measure the total running time of each index to
evaluate a single solution, and report the average runtime over 5 experiments.
The experiments were performed in a machine with 16 GB RAM and processor
Quad-Core Intel Core i7, 2.7 GHz. All the implementations used in our experi-
ments had the source code provided by the own authors of the indices. In order
to perform a fair runtime comparison involving codes in the same language, we
implemented our own Python version of IREOS, which was originally available
in Java. All our codes, as well as pointers to the third-party codes, are available
in a repository at https://github.com/homarques/SIREOS.

4.1 Datasets

In our experiments, we use a collection of 24 real-world datasets previously
used for internal evaluation of outlier detection results [29]. This collection is
composed of 23 datasets from a publicly available outlier detection repository
[10], with the addition of 4 datasets as used in the IREOS study [30], namely,
Isolet, Multiple Features, Optical Digits, and Vowel. We excluded those datasets
for which none of the outlier detection algorithms could find at least one solution
with at least 0.75 of ROC AUC, namely Annthyroid, Wilt, and WPBC. The
inclusion of these datasets in the previous studies [10,29] was important because
the authors were also evaluating the suitability of datasets for outlier detection
benchmarking. As none of these datasets seemed suitable for outlier detection,
their inclusion would only lead to noise in the evaluation of our experiments.

For each dataset, we selected 10 candidate solutions from a vast collection of
results produced by varying the parameter neighborhood size k (between 1 and
100) of 13 different algorithms, namely: COF [41], FastABOD [27], INFLO [24],
KDEOS [37], KNN [32], KNNW [4,5], LDOF [45], LDF [28], LOF [8], LoOP
[25], ODIN [18], SimplifiedLOF [38], and GLOSH [9]. The selection was made
by ensuring that the selected solutions keep an interval as equally spaced as
possible between solutions in terms of their ROC AUC values.

https://github.com/homarques/SIREOS
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In addition to the collection of real-world datasets, we also use a collection
of synthetic datasets to measure the total run time of the indices evaluated.
The datasets were obtained using the generator proposed in [20], varying the
number of dimensions from 2 to 128 {2, 4, 8, 16, 32, 64, 128} and the number of
points from 2,000 to 128,000 using the same progression of dimensionality. When
varying the number of dimensions, the dataset size is fixed with 4,000 objects.
For the different sizes of the datasets, we set the dimension to 8.

4.2 Parameters

For the similarity function used in our experiments, we choose the Radial Basis
Function (RBF), as it is one of the most effective and popular similarity func-
tions:

K(xi,xj) = e− ||xi−xj ||2
2t , (8)

using t equal to the 0.01 quantile of the pairwise distances, based on preliminary
experiments. This empirical rule of thumb was applied across all the data sets.

Since for many of the datasets the computation of the exact IREOS is pro-
hibitive, we adopt the authors’ approximation with k = 250, as it provided a
good trade-off between speed and accuracy in their experiments in [29]. For the
optional mechanism for modeling clumps in IREOS, we use mcl =

√
5% · N , as

recommend by the authors in fully unsupervised scenarios when domain-specific
information about whether/how clumps should be modeled is not available.

As the datasets used in our experiments are not low dimensional and EM/MV
curves can only be computed in low dimensional data (d ≤ 8), we use the feature
bagging algorithm proposed by the authors with their suggested parameters,
m = 50 and d = 5, i.e., 50 draws of 5 features. The volume in spaces of dimension
5 was estimated using 30,000 Monte-Carlo approximations.

4.3 Results

The results of the experiment involving model selection are summarized in Fig. 1,
showing the average ranking of the different indices according to their selected

2 3 4 5

CD

IREOS

SIREOS

MV

LS

EM

Fig. 1. Average ranking of the indices according to the solutions selected by them.



Similarity-Based Unsupervised Evaluation of Outlier Detection 243

solutions. The length of the upper bar (CD) indicates the critical difference of the
well-known Friedman/Nemenyi statistical test [12] at significance level α = 0.05.
The CD diagram shows that, on average, IREOS, SIREOS and MV select the
best solutions, with no statistically significant difference between them. By using
IREOS or SIREOS to select the best solution, one would choose the best solution
according to the ground truth in 12 out of the 24 datasets. In comparison, MV
makes the best recommendation in only 8 of the 24 datasets.

It is interesting to note that the top performers (SIREOS, IREOS, and MV)
appear to be complementary in that they often don’t elect the same solution
as best, indicating an interesting path for an ensemble of validation indices. In
order to get a better sense of these results, we show box plots of the distribution
of the ROC AUC values for all candidate solutions for each dataset in Fig. 2.
The position of the solutions selected by the top performing indices are indicated
by special symbols in the plots. An overlapping of symbols involving the best
solution chosen by these indexes occurs only in 12 out of 24 datasets. In the
other 12 times, one of the indices selected alone a solution that is superior.

In the second group in terms of performance, with a significant difference from
the first, LS and EM select the best solution w.r.t. the ground truth, respectively,
in 5 and 6 times out of the 24 datasets.

Figure 3a shows the total runtime as a function of the (synthetic) dataset
size. In the smaller datasets (N ≤ 16, 000), most of the indices have similar
runtime. The exceptions are the EM and MV curves due to the runtime of the
Monte-Carlo simulations dominating the total runtime on small datasets. As
expected, as the number of points increases, the difference in the runtime of the
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Fig. 3. Runtime as a function of the dataset size and dataset dimensionality.

indices becomes clearer. The two top-performers in terms of runtime are LS and
SIREOS, with LS having the advantage of working in the 1-dimensional space
of the outlier scoring instead of the 8-dimensional space of the dataset. Also, as
the size of the dataset increases, the gap between the runtimes of EM and MV
and the runtimes of the other indices becomes larger.

Figure 3b shows the total runtime as a function of the dimensionality. EM
and MV show a competitive runtime for small dimensions (d < 8), faster than
IREOS, since feature sampling is not required for small dimensional datasets.
However, the runtime dramatically increases as the dimensionality exceeds the
threshold that triggers the feature sampling procedure. Beyond this point, run-
time is invariant to dimensionality because feature sampling forces the index to
work in a space of constant dimensionality. The invariance in the dimensionality
is also present in LS, due to the index working in the outlier scoring space. When
measuring the runtime as a function of the dimensionality, LS and SIREOS are
the top performers again, with LS having the advantage of being invariant to it.

It is important to highlight that EM, MV, and IREOS are estimates of the
real indices. Therefore, they have parameters that control the trade-off between
the accuracy in the index calculation and the runtime: in the case of EM and MV
curves, the number of Monte-Carlo simulations and the number of draws in the
feature bagging, and for IREOS, the number of neighbors used to compute the
separability. The parameters used to compare the runtime were the same used
to compare the effectiveness in the model selection experiment. In addition, for
EM and MV, the outlier detection algorithm needs to be re-executed in the
different feature samplings to evaluate the candidate solution provided by that
algorithm. In our runtime experiment above, we used the KNN algorithm [32], as
it is one of the simplest and most used algorithms in the literature. However, the
runtime for the EM and MV indices can increase (decrease) in case of a different
choice. Also, all the indices/algorithms followed standard implementations. They
all could benefit from using appropriate data structures, such as a Kd-Tree [7].
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5 Conclusions

In this paper, we presented SIREOS, a similarity-based index for the internal
evaluation of outlier detection solutions. The index is built on the framework for
Internal, Relative Evaluation of Outlier Solutions (IREOS), addressing a major
issue of the original index proposed within this framework, its computational
cost. In our experiments, we compared SIREOS against the original IREOS as
well as against other indices from the literature w.r.t. quality and runtime per-
formance. In terms of quality, SIREOS exhibited top performance, statistically
tied with IREOS and MV. In terms of runtime, however, SIREOS performed
much better than both indices, regardless of dimensionality or dataset size.

We can see similarity as a proxy to separability, but it should also be noted
that separability is more complex not only computationally but also in expres-
siveness. It is easy to imagine two examples where an outlier is equally far away
from its neighbors in both cases, but the separability would be evaluated as dif-
ferent, e.g., as the outlier can be separated from other observations by a linear
boundary in one case while requiring a non-linear boundary in the other. The
experiments showed that the two indices do not always agree, but do not differ
significantly in quality over many datasets. Hence SIREOS is adding variation
to the portfolio of existing indices. On the other hand, the generic similarity-
based index proposed here is ready to use with a variety of similarity measures
and thus can incorporate rich semantics itself. However, this would require an
extended study with different data types.

It is important to remember that the evaluated indices are supported on dif-
ferent grounds. Although some perform better than others, they are rather com-
plementary and all of them can still be important. Relying on multiple indices
can be an important tool to deal with the many facets of the unsupervised outlier
detection problem. Furthermore, combining these indices may be another inter-
esting topic for future work, where we can explore more sophisticated applica-
tions of such indices, such as ensemble selection for outlier detection ensembles,
or building ensembles of validation indices.

Acknowledgement. This work has partly been funded by NSERC Canada, and the
Independent Research Fund Denmark in the project “Reliable Outlier Detection”.
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Abstract. Learning algorithms for Deep Neural Networks are typi-
cally based on supervised end-to-end Stochastic Gradient Descent (SGD)
training with error backpropagation (backprop). Backprop algorithms
require a large number of labelled training samples to achieve high per-
formance. However, in many realistic applications, even if there is plenty
of image samples, very few of them are labelled, and semi-supervised
sample-efficient training strategies have to be used. Hebbian learning
represents a possible approach towards sample efficient training; how-
ever, in current solutions, it does not scale well to large datasets. In this
paper, we present FastHebb, an efficient and scalable solution for Hebbian
learning which achieves higher efficiency by 1) merging together update
computation and aggregation over a batch of inputs, and 2) leverag-
ing efficient matrix multiplication algorithms on GPU. We validate our
approach on different computer vision benchmarks, in a semi-supervised
learning scenario. FastHebb outperforms previous solutions by up to 50
times in terms of training speed, and notably, for the first time, we are
able to bring Hebbian algorithms to ImageNet scale.

Keywords: Hebbian learning · Deep learning · Neural networks ·
Semi-supervised · Sample efficiency · Content-Based Image Retrieval

1 Introduction

In the past few years, Deep Neural Networks (DNNs) have emerged as a power-
ful technology in the domain of computer vision [10,19]. DNNs started gaining
popularity also in the domain of large scale multimedia Content-Based Image
Retrieval (CBIR), replacing handcrafted feature extractors [2,36] and using
activations of internal layers as feature vectors for similarity search. Learning
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algorithms for DNNs are typically based on supervised end-to-end Stochastic
Gradient Descent (SGD) training with error backpropagation (backprop). This
approach is considered biologically implausible by neuroscientists [32]. Instead,
they propose Hebbian learning as a biological alternative to model synaptic plas-
ticity [9].

Moreover, backprop-based algorithms need a large number of labeled train-
ing samples in order to achieve high results, which are expensive to gather, as
opposed to unlabeled samples. Therefore, researchers started to investigate semi-
supervised learning strategies, which aim to exploit large amounts of unlabeled
data, in addition to the fewer labeled data, for sample efficient learning [5,28]. In
this context, a possible direction that has been proposed is to perform an unsu-
pervised pre-training stage on all the available samples, which is then followed
by a supervised fine-tuning stage on the few labeled samples only [16,38].

In recent work, Hebbian learning has begun to gain attention from the com-
puter science community as an effective method for unsupervised pre-training,
since Hebbian algorithms do not require supervision, achieving promising results
in scenarios with scarce labeled data [22,24]. However, current solutions for Heb-
bian training (such as [3,20,23,25,26,35]) are still limited in terms of computa-
tional efficiency, making it difficult to scale to large datasets such as ImageNet
[6].

In order to address this issue, we present FastHebb, a novel solution for Heb-
bian training that achieves enhanced efficiency by leveraging two observations.
First, when a mini-batch of inputs has to be processed, the weight update cor-
responding to each input is first computed, and then the various updates are
aggregated over the mini-batch; however, update computation and aggregation
can be merged together with a significant speedup. Second, Hebbian learning
rules can be reformulated in terms of matrix multiplications, which enables to
exploit efficient matrix multiplication algorithms on GPU.

We validate our method on various computer vision benchmarks. Since Heb-
bian algorithms are unsupervised, we consider a semi-supervised training sce-
nario, in which Hebbian learning is used to perform unsupervised network pre-
training, followed by fine-tuning with traditional backprop-based supervised
learning. We also consider sample efficiency scenarios, in which we assume that
only a small fraction of the training data is labeled, in order to study the effective-
ness of Hebbian pre-training in scenarios with scarce data. In order to make com-
parisons with backprop-based methods, we consider Variational Auto-Encoder
(VAE) [15,16] pre-training as a baseline for comparisons. We show that our app-
roach achieves comparable results, but with a significant speed-up both in terms
of number of epochs, as well as total training time. In particular, our method
achieves up to 50x speed-up w.r.t. previous Hebbian learning solutions, allowing
to scale up our experiments to ImageNet level. To the best of our knowledge,
this is the first time that Hebbian algorithms are applied at such scale.

In summary, our contribution is twofold:

1. We propose a novel efficient solution to Hebbian learning algorithms, with
code available online1;

1 https://github.com/GabrieleLagani/HebbianLearning/tree/fasthebb.

https://github.com/GabrieleLagani/HebbianLearning/tree/fasthebb
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2. We performed extensive experimental evaluation of the performance of our
solution on various computer vision benchmarks. In particular, for the first
time (to the best of our knowledge) results of Hebbian algorithms on Ima-
geNet are provided.

The remainder of this paper is structured as follows: Sect. 2 introduces some
background and related work on Hebbian learning; Sect. 3 presents our FastHebb
method; Sect. 4 provides the details of our experimental setup; Sect. 5 presents
the results of our experiments; Finally, Sect. 6 outlines some concluding remarks
and hints for future work.

2 Background and Related Work

In this section, we illustrate some of the Hebbian learning rules from literature
that recently provided promising results, and we describe some related work
focusing on the application of such rules on computer vision tasks, in particular in
semi-supervised training scenarios. Since a thorough explanation of the Hebbian
rules would be outside the scope of this paper, here we just give the update
equations of interest, referring the interested reader to the vast literature on the
topic [7,9,25–27].

Let us start by considering a neuron, identified by an index i, with weight
vector wi, which receives as input a vector x, and produces a corresponding
output yi. One of the Hebbian approaches that we focus on is the soft Winner-
Takes-All (SWTA) competitive learning rule [8,25,29], which can be expressed
as follows:

Δwi = η ri (x − wi) (1)

where η is the learning rate, and the coefficient ri is a score computed as the
softmax of the neural activations: ri = eyi/T

∑
j eyj/T

. Here, T is the temperature

parameter of the softmax, which serves to cope with the variance of the activa-
tions (the name comes from statistical mechanics, where this operation was first
defined). The effect of such a defined score is to allow each neuron to specialize
on a different cluster of input patterns.

The other learning rule that we consider is Hebbian Principal Component
Analysis (HPCA) [4,14,24,26]:

Δwi = η yi

(
x −

i∑
j=1

yjwj

)
(2)

WTA competition was studied in past work as a possible approach for train-
ing relatively shallow neural networks [20,35] (with up to 2–3 hidden layers).
The investigation was further extended to deeper networks, and to hybrid archi-
tectures where some layers were trained by backprop and others by Hebbian
learning [1,26]. Experimental results on CNNs showed promises of HPCA-like
learning mechanisms initially with shallow networks [3], and then with deeper
networks as well [23,24,26].
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Since the HPCA and SWTA learning rules are unsupervised, they have found
application in the context of semi-supervised neural network training, in order
to perform an unsupervised pre-training stage [22–25]. In particular, they were
found to be particularly useful in sample efficient learning scenarios, i.e. situa-
tions with scarce availability of labeled data. Related approaches for unsuper-
vised pre-training are based on autoencoding architectures [5,16,28,38]. Results
on various computer vision benchmarks suggest that Hebbian pre-training allows
to significantly improve performance on such scenarios compared to other unsu-
pervised pre-training methods such as Variational Auto-Encoder (VAE) pre-
training [15,16]. Application of Hebbian learning to semi-supervised settings
seems a promising direction. Other approaches to semi-supervised learning are
based on pseudo-labeling/consistency-based methods [13,34]. However, these
methods are not in contrast with unsupervised pre-training, and they could
actually be integrated together. This possible future direction will also be high-
lighted in Sect. 6.

The problem with current Hebbian learning solutions is that they do not scale
well to large datasets. Note that, the learning rules mentioned above describe
the weight update for a single input x. When there is a batch of inputs to be pro-
cessed, the weight updates are aggregated over the batch dimension, typically
by averaging (or weighted averaging, for SWTA, the weights being the com-
petition scores ri, check [1,21] for details). Similarly, in a convolutional layer,
x would correspond to a patch extracted from an input at a given offset, and
weight updates computed at different offsets need to be aggregated over all the
extracted patches. In this contribution, we notice that these two phases (update
computation and aggregation) can be merged together, which allows to reformu-
late Hebbian learning rules more efficiently in terms of matrix multiplications,
which are particularly suitable for GPU computation. We show that our solution
is able to scale well to large datasets such as ImageNet.

3 Efficient Hebbian Learning with FastHebb Method

Let us start by introducing some preliminary information about the multi-
dimensional tensor data that we need to work with, and the notation that will
be used in the following.

Fig. 1. Types of tensor objects involved in our scenario.
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We define a tensor simply as a multi-dimensional array of data. In particular,
our tensors are three-dimensional. We denote such tensors with capital letters,
followed by as many indices as dimensions (three in our case). A dimension of size
1, also known as a singleton dimension, is denoted with the symbol 1 as index.
Moreover, we adopt the following convention: index b = 1...B denotes the batch
dimension, index n = 1...N denotes the neuron dimension, and index s = 1...S
denotes the size dimension. Note that the meaning of an index is inferred by the
corresponding letter and not by its position. With reference to Fig. 1, the first
tensor (from left to right) is a typical input tensor, consisting of a mini-batch of
B inputs, each being a vector of size S. The second tensor represents a typical
weight matrix, consisting of one weight vector for each of the N neurons, each of
size S. The third is a typical output tensor, with each output being a vector on
N elements, one for each neuron, and there is one such vector for each of the B
elements in the batch. The last is a typical reconstruction tensor, which extends
over all the dimensions.

Finally, in order to make the use of matrix multiplication explicit in our
formulas, we will use the notation matmul(·, ·) as follows:

Cd,e,g =
∑
f

Ad,e,fBd,g,f =
∑
f

Ad,e,fBd,f,g := matmul(Ad,e,f , Bd,f,g) (3)

Note that we are taking the tensor product between tensors A and B, iden-
tifying index d and contracting index f . This corresponds to a batch matrix
multiplication over index d, i.e. mapping d pairs of matrices with indices (e, f)
and (f, g), to d matrices with indices (e, g): (e, f) × (f, g) → (e, g). If more that
three dimensions are present, then the last two denote height and width of the
matrices, and all the previous dimensions are considered as batch dimensions
(and thus identified). If a batch dimension of one of the multiplied tensors hap-
pens to be a singleton, then it undergoes broadcasting to match the other tensor
dimension, as done in common mathematical frameworks. In all the other cases
the corresponding batch dimensions of the two tensors must have the same size
(as well as the contracted f dimension). Sums, subtractions, and multiplications
by constants over tensor are performed component-wise, but all dimensions must
match. Also in this case, a singleton dimension of one tensor undergoes broadcast
to match the corresponding dimension of the other tensor (in case of singleton
dimensions, and only in this case, correspondence is inferred from the position
of the indices).

Using the notation introduced above, we can express the Hebbian rules dis-
cussed in this paper, including the aggregation step, as follows:

ΔW1,n,s =
∑
b

Cb,n,1 ΔWb,n,s = matmul(Cn,1,b,ΔWn,b,s) (4)

Tensor C represents the coefficients for (weighted) averaging during the
update aggregation step. With our notation, we consider the batch index b to run
over all the patches extracted from the inputs, and also over all the inputs in the
mini-batch. In other words, all the patches extracted from all the images in the
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mini-batch are considered as a unique larger mini-batch over which aggregation
is performed.

Notice that, at this point, update computation and aggregation phases are
considered together. In fact, merging these two phases is an essential step towards
achieving the performance improvement addressed in this work, as described
below. In particular, as the dimension associated with index b is very large, since
it runs over all the patches extracted from all the inputs, it would be beneficial
to contract this index as soon as possible in our computations, possibly before
larger tensors such as ΔWb,n,s are obtained. We proceed differently depending
on the Hebbian rule under consideration.

Hebbian Winner-Takes-All. The (soft-)WTA learning rule can be rewritten as
follows:

ΔW1,n,s = η
∑
b

Cb,n,1 Rb,n,1

(
Xb,1,s − W1,n,s

)

= η
∑
b

(C R)b,n,1 (X − W )b,n,s

= η matmul
(
(C R)n,1,b, (X − W )n,b,s

)
(5)

where Cb,n,1 = Rb,n,1∑
b Rb,n,1

.
Note that this formulation requires O(B N S) complexity both in time and

space. In particular, it needs to store a B × N × S tensor. All the elements
are stored simultaneously in order parallelize operations over each dimension
through vectorized or GPU hardware. If the amount of memory required is
prohibitive, it is possible to serialize computations over one or more dimensions.
However, computational performance can be improved by rewriting:

ΔW1,n,s = η
∑
b

Cb,n,1 Rb,n,1

(
Xb,1,s − W1,n,s

)
=

= η
∑
b

(C R)b,n,1 Xb,1,s − η
∑
b

(C R)b,n,1 W1,n,s =

= η matmul
(
(C R)1,n,b,X1,b,s

)
− η

∑
b

(C R)b,n,1 W1,n,s =

= η matmul
(
(C R)1,n,b,X1,b,s

)
− η Q1,n,1 W1,n,s

(6)

where Q1,n,1 =
∑

b(C R)b,n,1.
By contracting index b early, we have obtained a new formulation that

requires only O(N(B+S)) space. The time complexity depends on the algorithm
employed for matrix multiplication, which can be made lower than O(BNS).
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Hebbian Principal Component Analysis. The Hebbian PCA learning rule can be
rewritten as follows:

ΔW1,n,s = η
1
B

∑
b

Yb,n,1

(
Xb,1,s −

n∑
n′=1

Yb,n′,1 W1,n′,s

)

= η
1
B

∑
b

Yb,n,1

(
Xb,1,s −

N∑
n′=1

Ln,n′ Yb,n′,1 W1,n′,s

)

= η
1
B

∑
b

Yb,n,1 Eb,n,s

= η
1
B

matmul
(
Yn,1,b, En,b,s

)

(7)

where Eb,n,s =
(
Xb,1,s−

∑N
n′=1 Ln,n′ Yb,n′,1 W1,n′,s

)
, and Ln,n′ is simply a lower-

triangular matrix with all ones on and below the main diagonal and all zeros
above.

In this case, the computation requires O(BN2S) space and time, but this
can be improved by rewriting:

ΔW1,n,s = η
1

B

∑

b

Yb,n,1

(
Xb,1,s −

N∑

n′=1

Ln,n′ Yb,n′,1 W1,n′,s

)

= η
1

B

∑

b

Yb,n,1 Xb,1,s − η
1

B

∑

b

Yb,n,1

N∑

n′=1

Ln,n′ Yb,n′,1 W1,n′,s

= η
1

B
matmul

(
Y1,n,b, X1,b,s

)
− η

1

B

N∑

n′=1

∑

b

Yb,n,1 Yb,n′,1 Ln,n′ W1,n′,s

= η
1

B
matmul

(
Y1,n,b, X1,b,s

)
− η

1

B

N∑

n′=1

matmul
(
Y1,n,b, Y1,b,n′

)
Ln,n′ W1,n′,s

= η
1

B
matmul

(
Y1,n,b, X1,b,s

)
− η

1

B

N∑

n′=1

P1,n,n′ W1,n′,s

= η
1

B
matmul

(
Y1,n,b, X1,b,s

)
− η

1

B
matmul

(
P1,n,n′ , W1,n′,s

)

(8)

Here, P1,n,n′ = matmul
(
Y1,n,b, Y1,b,n′

)
Ln,n′ .

This computation requires O(N2+NS) space, and at most O(BNS+BN2+
N2S) time.

4 Experimental Setup

In order to validate our method, we performed experiments on various datasets in
the computer vision domain. We evaluated both the computing time required by
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Fig. 2. The neural network used for the experiments.

Hebbian algorithms, with and without the FastHebb optimization, and their per-
formance in sample efficiency scenarios, also making comparisons with backprop-
based learning. In the following, we describe the details of our experiments and
comparisons, discussing the network architecture and the training procedure.

4.1 Datasets and Sample Efficiency Regimes

The datasets that we considered for our experiments are CIFAR10 [18],
CIFAR100, Tiny ImageNet [37], and ImageNet [6]. We performed our experi-
ments in various regimes of label scarcity. We define an s% sample-efficiency
regime as a scenario in which on s% of the training set elements is assumed to
be labeled. We considered 1%, 2%, 3%, 4%, 5%, 10%, 25%, and 100% sample
efficiency regimes.

For each of the above regimes, we run our experiments in a semi-supervised
training fashion: first, an unsupervised pre-training stage was performed, exploit-
ing the Hebbian learning rules, using all the available training samples; this was
followed by a supervised backprop-based fine-tuning stage on the labeled samples
only.

4.2 Network Architecture and Training

We considered a six layer neural network as shown in Fig. 2: five deep layers
plus a final linear classifier. The various layers were interleaved with other pro-
cessing stages (such as ReLU nonlinearities, max-pooling, etc.), and the overall
architecture was inspired by AlexNet [19].

A similar, but bigger model was used for ImageNet classification, which is
shown in Fig. 3.

For each sample efficiency regime, we trained the network with our semi-
supervised approach in a classification task. First, we used Hebbian unsupervised
pre-training rules in the internal layers. This was followed by the fine tuning stage
with SGD training, involving the final classifier as well as the previous layers, in
an end-to-end fashion.
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Fig. 3. The bigger neural network used for the experiments on ImageNet.

For each configuration we also created a baseline for comparison. In this case,
we used another popular unsupervised method, namely the Variational Auto-
Encoder (VAE) [15], for the unsupervised pre-training stage. This was again
followed by the supervised end-to-end fine tuning based on SGD. VAE-based
semi-supervised learning was also the approach considered in [16].

Both classification accuracy and training time were evaluated and used as
metrics for comparisons.

4.3 Details of Training

We implemented our experiments using PyTorch. All the hyperparameters men-
tioned below resulted from a parameter search aimed at maximizing the valida-
tion accuracy on the respective datasets, following the Coordinate Descent (CD)
approach [17].

Training was performed in 20 epochs using mini-batches of size 64. No more
epochs were necessary, since the models had already reached convergence at that
point. Networks were fed input images of size 32× 32 pixels, except for the case
of ImageNet, where images of size 210 × 210 were used.

During Hebbian training, the learning rate was set to 10−3 (10−4 for Ima-
geNet). No L2 regularization or dropout was used, since the learning method
did not present overfitting issues.

For VAE training, the network backbone without the classifier acted as
encoder, with an extra layer mapping the output to 256 gaussian latent variables,
while a specular network branch acted as decoder. VAE training was performed
without supervision, in an end-to-end encoding-decoding task, optimizing the
β-VAE Variational Lower Bound [11], with coefficient β = 0.5.

Both for VAE training and for the supervised training stage, based on SGD,
the initial learning rate was set to 10−3 and kept constant for the first ten epochs,
while it was halved every two epochs for the remaining ten epochs. We also used
momentum coefficient 0.9, and Nesterov correction. During supervised training,
we also used dropout rate 0.5, L2 weight decay penalty coefficient set to 5 · 10−2

for CIFAR10, 10−2 for CIFAR100, 5 · 10−3 for Tiny ImageNet, and 1 · 10−3 for
ImageNet. Cross-entropy loss was used as optimization metric.

To obtain the best possible generalization, early stopping was used in each
training session, i.e. we chose as final trained model the state of the network at
the epoch when the highest validation accuracy was recorded.
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Table 1. Training times on each dataset, for VAE, Hebbian PCA (HPCA), Hebbian
PCA with FastHebb (HPCA-FH), soft-WTA (SWTA), and soft-WTA with FastHebb
(SWTA-FH) methods.

Dataset Method Epoch duration Num. epochs Total duration

CIFAR10 VAE 14 s 17 3 m 58 s

SWTA 4 m 14 s 1 4 m 14 s

SWTA-FH 18 s 1 18 s

HPCA 6 m 23 s 12 1 h 16 m 36 s

HPCA-FH 19 s 12 3 m 48 s

CIFAR100 VAE 15 s 15 3 m 45 s

SWTA 4 m 16 s 1 4 m 16 s

SWTA-FH 18 s 1 18 s

HPCA 6 m 25 s 7 44 m 55 s

HPCA-FH 19 s 7 2 m 13 s

Tiny ImageNet VAE 33 s 20 11 m

SWTA 9 m 41 s 1 9 m 41 s

SWTA-FH 41 s 1 41 s

HPCA 14 m 20 s 14 3 h 20 m 40 s

HPCA-FH 43 s 14 10 m 2 s

ImageNet VAE 2 h 59 m 19 s 16 47 h 49 m 4 s

SWTA 105 h 13 m 24 s 3 315 h 40 m 12 s

SWTA-FH 3 h 38 m 6 s 3 10 h 54 m 18 s

HPCA 155 h 41 m 39 s 3 467 h 4 m 57 s

HPCA-FH 3 h 39 m 18 s 3 10 h 57 m 54 s

Experiments were performed on an Ubuntu 20.4 machine, with Intel Core I7
10700K Processor, 32 GB Ram, and NVidia Geforce 3060 GPU with 12 GB ded-
icated memory. The experiments were implemented using the Pytorch package,
version 1.8, and Python 3.7.

5 Results and Discussion

In this section, the experimental results obtained with each dataset are pre-
sented and analyzed. We report the training times on each dataset, for all the
approaches explored. Moreover, we report the classification accuracy in the semi-
supervised task, in the various sample efficiency regimes. Experiment results
from five independent iterations were averaged, and the differences between
methods were tested for statistical significance with a p value of 0.05.

5.1 Training Time Performance Evaluation

Table 1 shows the training time measured on the various datasets, for each of
the considered approaches. We measured the average epoch duration, the total
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Table 2. Accuracy results on each dataset (top-1 for CIFAR10, and top-5 for the other
datasets, since they have many more classes), for the various approaches explored.

Regime Method CIFAR10 CIFAR100 Tiny ImageNet ImageNet

1% VAE 22.54 12.28 5.55 2.72

SWTA 30.23 15.30 6.20 6.69

HPCA 39.75 22.63 11.38 8.65

2% VAE 26.78 15.25 6.74 6.14

SWTA 36.59 20.76 8.56 11.52

HPCA 45.51 30.83 15.71 13.64

3% VAE 29.00 16.44 7.74 15.35

SWTA 41.54 23.69 10.26 15.67

HPCA 48.80 35.04 18.23 17.28

4% VAE 31.15 17.89 8.45 23.97

SWTA 45.31 26.91 11.52 19.95

HPCA 51.28 38.89 20.55 20.39

5% VAE 32.75 18.48 9.29 29.04

SWTA 48.35 29.57 12.55 24.87

HPCA 52.20 41.42 22.46 23.28

10% VAE 45.67 23.80 13.51 43.73

SWTA 58.00 38.26 16.70 41.54

HPCA 57.35 48.93 28.13 34.27

25% VAE 68.70 52.59 37.89 61.33

SWTA 69.85 56.26 24.96 59.34

HPCA 64.77 58.70 37.10 56.92

100% VAE 85.23 79.97 60.23 76.84

SWTA 85.37 79.80 54.94 76.10

HPCA 84.38 74.42 53.96 77.28

number of training epochs required by each method, and the total training time.
The number of epochs is counted by considering the training over when the net-
work performance stops improving. The reported number of epochs refers to the
pre-training phase only, and not to the successive fine-tuning, as we observed no
statistically significant difference in the duration of the latter phase for different
pre-training methods. Training time of FastHebb methods are compared to the
previous respective best known solutions for Hebbian learning, that were also
based on GPU [26].

We can see that, in terms of total training time, Hebbian methods are almost
five times faster than VAE on ImageNet. Among the Hebbian approaches, soft-
WTA is faster, thanks to its lower time complexity. Most importantly, as shown
form the ImageNet performance results, thanks to the novel optimization, Fas-
tHebb algorithms scale gracefully also to large scale datasets.
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5.2 Semi-supervised, Sample Efficiency Scenario

Table 2 shows the classification accuracy results obtained on the various dataset,
for each of the considered approaches. Top-1 accuracy was used for CIFAR10,
and top-5 for all the other datasets, since they have many more classes. Note
that, in this case, we show the results for HPCA and soft-WTA, but these are
the same with or without the FastHebb optimization. In fact, the optimization
does not change the update rule itself.

We can observe that Hebbian approaches perform better than VAE in sample
efficiency regimes with very scarce label availability, below 4–5%. In particular,
we can observe performance improvements of HPCA of almost 20% in the 5%
regime for the CIFAR10 dataset. On the other hand VAE-based pre-training
only improves when the available number of labeled training samples for the
successive supervised fine-tuning phase becomes larger. When scaling up to Ima-
geNet dataset, we still have a slight advantage of Hebbian methods in scarce data
regimes (from 2 to 6%, depending on the regime). However, when higher regimes
are considered, the performance of Hebbian pre-training is slightly lower than
VAE, but this is compensated, as shown before, by a significant advantage in
terms of training time.

6 Conclusions and Future Work

We have shown how the FastHebb approach can be leveraged to optimize run-
ning times of Hebbian learning algorithms for DNN training. Thanks to this
optimization, we were able to scale Hebbian learning experiments to ImageNet
level. To the best of our knowledge, this is the first solution able to bring Heb-
bian learning to such scale. Experiments in semi-supervised scenarios show the
efficacy of Hebbian approaches for unsupervised network pre-training, compared
to backprop-based VAE pre-training, both in terms of classification accuracy and
training time, especially in sample efficiency scenarios where the labeled data for
supervised fine tuning are scarce (less than 4–5% of the overall available data).

As possible future work directions, we suggest to perform further studies
of FastHebb on other large-scale application scenarios, such as Content Based
Image Retrieval (CBIR) to evaluate the quality of deep features extracted by this
method. Preliminary work in this direction is promising [22]. Moreover, further
Hebbian rules can also be derived, for example from Independent Component
Analysis (ICA) [12] and sparse coding [30,31,33]. Finally, in the context of semi-
supervised learning, Hebbian approaches can also be combined with pseudo-
labeling and consistency-based methods mentioned in Sect. 2 [13,34].
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Abstract. Recommender systems suffer from biases that may misguide
the system when learning user preferences. Under the causal lens, the
user’s exposure to items can be seen as the treatment assignment, the
ratings of the items are the observed outcome, and the different biases act
as confounding factors. Therefore, to infer debiased preferences and to
capture the causal relationship between exposure and the observed rat-
ings, it is essential to account for any hidden confounders. To this end,
we propose a novel causal disentanglement framework that decomposes
latent representations into three independent factors, responsible for (a)
modeling the exposure of an item, (b) predicting ratings, and (c) control-
ling for hidden confounders. Experiments on real-world datasets validate
the effectiveness of the proposed Causal Disentanglement for DeBiased
Recommendations (D2Rec) model in debiasing recommendations.

Keywords: Causal disentanglement · Social recommendation ·
Confounders

1 Introduction

Recommender systems recommend new items by inferring user preference from
historical interactions. Explicit feedback-based recommender systems, for exam-
ple, first expose the user to an item and then record their feedback in terms of
explicit preference signals, such as ratings. Recent studies, however, have shown
that even such explicit feedback-based systems suffer from various biases [19]
which misguide the systems to infer inaccurate preferences. For instance, when
a recommender system suffers from popularity bias, popular items are more likely
to be recommended (or ranked higher) than less popular ones. This type of bias
exerts adverse effects on the user and provider’s engagement [23]. Effective user
and provider engagement necessitates the debiasing of recommender systems.

Causal View of Recommender Systems. In this paper, we argue that an
effective approach to address biases may be to look at the recommender system
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 1. A social recommender systems from a causal perspective. The figure shows
disentangled factors – those for modeling exposure, those for modeling ratings, and
those serving as hidden confounders

problem from a causal perspective. Notably, one can consider the exposure mech-
anism to represent a treatment assignment. The observed ratings can be consid-
ered analogous to outcomes [19,21] and actions that influence exposure and the
rating mechanisms are similar to confounders. Consequently, we need to control
for the effects of unobserved confounders to infer debiased preferences. Since
users of a recommender system do not interact with items randomly, we rely on
an alternative approach that uses proxies to control for confounders [19,21].

Networks as Proxies for Confounders. In this paper, we argue that user-
item interaction and social networks are rich information sources that could act
as a suitable proxy to account for confounders. Moreover, as suggested by social
influence theory [14], users’ existing social relations can influence their future
behaviors, for example, by nudging connected users to converge towards similar
preferences making networks suitable source for de-confounding.

Need for Disentangled Network Information. Utilizing network informa-
tion in its entangled may lead the model to learn biased preferences. For instance,
herd mentality indicates that a user-item interaction may arise due to an item’s
popularity. Although the interaction is caused due to the item popularity (a con-
founding factor), the model may infer this as user preference and recommend
similar items to the user [1]. Thus, utilizing network information in entangled
form to learn user and item latent representations [18,20] or to account for con-
founders [11] may result in inaccurate inferences (Fig. 1).

Causal Disentanglement for DeBiased Recommendations (D2Rec). In
this paper, we propose a causal disentanglement model for social recommender
systems with explicit feedback, coined Causal Disentanglement for DeBiased
Recommendations (D2Rec)1. In particular, D2Rec aims to disentangle the user
and item latent representations into three independent factor: confounding fac-

1 Code is available at https://github.com/paras2612/D2Rec.

https://github.com/paras2612/D2Rec
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Fig. 2. An overview of the architecture of the proposed D2Rec model.

tors, exposure (treatment) factors, and ratings (outcome) factors. By seperately
accounting for the confounders‘ contribution in the rating and exposure predic-
tion tasks, D2Rec aims to mitigate the confounding bias. The main contributions
of this paper can be summarized as

– investigating a novel setting of mitigating confounding bias in social recom-
mender systems with explicit feedback,

– proposing a principled framework that disentangles the latent representations
into various factors to mitigate confounding bias in social recommenders,

– demonstrating the effectiveness of the proposed framework on various real-
world datasets with comparative analysis.

2 Related Work

Disentangling Representations for Recommendation. To better under-
stand user preferences and identify system defects, the authors of [13] proposed to
generate explainable recommendations with the help of a framework that brings
transparency to the representation learning process. Another line of work focuses
on disentangling latent user representations for news recommendations [9]. The
authors of [16] proposed a model for disentangling user and item latent rep-
resentations into conformity influence and personal interest factors to improve
recommendations. Another piece of work [22] focuses on leveraging the user’s
social relations in learning disentangled representations.

Causal Recommender Systems. Recent work proposed in [11] utilized user’s
social relations to estimate the exposure along with propensity score and utilized
this estimated exposure to mitigate selection bias. Some works, including [21]
proposed to leverage the good aspects of popularity bias and deconfound the bad
aspects for improving recommendations. Compared to earlier works, our work
focuses on leveraging disentanglement to learn a representation of the hidden
confounders in the latent space based on all the observed information, including
the user’s social connections and an item’s popularity in the explicit feedback
setting, which is more descriptive of a user’s preference.
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3 Causal Disentanglement for Debiased
Recommendations (D2Rec)

The primary goal of this work is to mitigate confounding bias in the social
recommender systems with explicit feedback by leveraging auxiliary network
information. The proposed model Causal Disentanglement for DeBiased Rec-
ommendations (D2Rec), learns three independent disentangled factors from the
user and item‘s latent representations and control for the confounding bias. An
overview of the proposed D2Rec can be found in Fig. 2. The approach consists of
two key components. First, the representation learning module that learns the
initial user and item embeddings from the networks. Second, we propose a novel
module, namely, causal disentanglement module with rating and exposure predic-
tion that disentangles the previously obtained embeddings into factors used to
predict the rating and the exposure for a given user-item pair.

3.1 Representation Learning Module

As mentioned earlier, the auxiliary network information sources contain infor-
mation about various factors that result in an observed user-item interaction. To
capture this information, the first component of D2Rec aims to learn the initial
user and item embeddings from the network information.

The representation learning module follows an architecture similar to the
Node2Vec [6] architecture. Since the learned representations should capture the
neighborhood information, the objective function aims to maximize the log prob-
ability of observing a network neighborhood NS(k) given the node k’s latent
representation. Thus, the initial embeddings are obtained as:

pu = max
φ

∑

u∈U

log Pr (NS(u) | φ(u)) , qi = max
φ

∑

i∈I

log Pr (NS(i) | φ(i)) . (1)

where NS(u)(NS(i)) represents the network neighborhood for user u (item i),
φ(u)(φ(i)) represents the feature representation for the user u (item i), U (I)
denotes the set of all users (items). This module enables pu and qi to success-
fully learn continuous feature representations of the nodes in the corresponding
network. In our model, Node2Vec helps in capturing network features from the
corresponding networks to transform each user (or item) into a vector.

3.2 Causal Disentanglement with Rating and Exposure Prediction

Causal Disentanglement. The initial embeddings obtained from Eq. 1 are
highly entangled. Thus, the model can learn biased user preferences by utilizing
these representations in their current state. To overcome this problem, we pro-
pose to use causality-guided disentanglement to learn independent factors with
unique functions. In particular, we disentangle the user and item latent repre-
sentations (pu and qi) into three underlying factors α, γ, Δ where α is partially
responsible for modeling the exposure (treatment), Δ is partially responsible
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for predicting the ratings (outcomes), and γ is responsible for the confounding
factors that causally affect both the exposure and the ratings. The causal disen-
tanglement module consists of six independent feedfoward neural networks that
facilitate the learning of the disentangled factors from the obtained user and
item representations, pu and qi , respectively. They are αu , αi , γu , γi , Δu , and
Δi , denoting the underlying factors for exposure prediction (α), confounders
(γ), and rating prediction (Δ). Formally:

αu = ReLU(fθ1(pu )); αi = ReLU(fθ2(qi)); γu = ReLU(fθ3(pu ));
γi = ReLU(fθ4(qi)); Δu = ReLU(fθ5(pu )); Δi = ReLU(fθ6(qi)).

(2)

where ReLU represents the nonlinear ReLU activation function, fθk
, k = 1, ..., 6

denote feedforward neural networks. To enforce independence among the factors,
we use an Integral Probability Metric – Maximum Mean Discrepancy (MMD) [5],
which is a statistical test to determine whether two samples are from the same
distribution. The discrepancy loss [7] is given by:

Ldisc =
∑

{e1,e2}∈E
MMD(e1, e2) (3)

where E = {(αu ,γu ), (αu ,Δu ), (γu ,Δu ), (αi ,γi), (γi ,Δi), (αi ,Δi)}. We
leverage the disentangled factors for users and items obtained from Eq. (2) for
rating prediction and exposure modeling for user-item pairs. We take each dis-
entangled user factor and perform a Hadamard product (�) to its counterpart
in the item factors to generate a joint user-item representation. We obtain the
combined factors, αu,i , γu,i , and Δu,i as follows:

αu,i = αu � αi ; γu,i = γu � γi ; Δu,i = Δu � Δi . (4)

We then group αu,i , γu,i , and Δu,i into the following categories: the factors
αu,i and γu,i are collectively used for modelling the exposure, and factors γu,i

and Δu,i are collectively used for modelling the ratings.

Rating Prediction. With the aid of disentanglement, we learn factors from
the user and item latent representations that only affect the ratings and are
independent of the exposure mechanism and vice versa (since Δu,i and αu,i are
independent of each other) which helps the rating prediction model to generate
debiased recommendations. Also, by explicitly accounting for confounders as
inputs to the rating prediction function we adjust for the confounding bias.
Given the disentangled representations, we compute the exposure and rating as:

êu,i = σ(αu,i · γu,i), ŷu,i = ReLU(γu,i · Δu,i), (5)

where · is the dot product, σ is the sigmoid activation function. Given the pre-
dicted exposure and ratings from Eq. (5), the overall objective function is:

J(ŷu,i, êu,i) = κ · Ldisc + L(yu,i, ŷu,i) + Le(eu,i, êu,i), (6)
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where we aim to minimize L(yu,i, ŷu,i), which represents the mean squared error
in predicting the rating L =

∑
u,i(yu,i − ŷu,i)2.

We also aim to minimize Le(eu,i, êu,i), which represents the binary cross-
entropy loss formulated as Le = −∑

u,i(eu,i · log(êu,i)+ (1− eu,i) · log(1− êu,i)).
where eu,i denotes the true exposure for user u and item i, êu,i represents the
predicted exposure learned from Eq. (5). To ensure independence among factors
we maximize the discrepancy loss and use κ to control the effect of discrepancy
loss on the overall objective function.

4 Experiments

We conducted a series of experiments to understand whether disentangling the
user and item latent features learned from auxiliary network information can
help adjust for the confounding bias and result in social recommendations.
Ideally, a causal method is evaluated on a test set where treatments are ran-
domly assigned [17]. However, there are no real-world social recommender sys-
tem datasets for a similar setting. To solve this problem, we follow the standard
protocol introduced by [2,12] to generate pseudo test sets that are debiased in
terms of the item popularity. We aim to answer the following research questions:

– RQ.1 Can disentangling the user and item embeddings with network infor-
mation help debias recommendations?

– RQ.2 What are the roles played by the network information and by the
disentanglement module concerning the performance of D2Rec, respectively?

4.1 Experimental Setup

Datasets and Evaluation Protocol. For our experiments, we use two rep-
resentative real-world datasets Ciao2 and Epinions3. Both these datasets are
derived from popular social networking websites Ciao and Epinions. These web-
sites allow users to rate multiple items, browse/write reviews, and formulate
trust relations among users. Since, we aim to create pesudo debiased test sets,
we split each dataset into training and test sets as follows. First, the training
samples are randomly sampled from the original data (thus biased). Then, from
the rest of the dataset, we create subsets as the debiased test sets by condi-
tioning on item popularity to make each pseudo debiased test set have an equal
number of ratings per items. For the evaluation protocol, we employ the widely
used Mean Squared Error (MSE) and Mean Absolute Error (MAE) to mea-
sure the prediction performance of models. MAE and MSE measure the error in
predicting the rating scores. Thus, a lower value of these metrics is preferred.

Baselines. We consider the following representative baselines:

– NeuMF [8] utilizes embedding layers and a multi-layer perceptron to learn
the user and item latent features.

2 https://www.cse.msu.edu/∼tangjili/Ciao.rar.
3 https://www.cse.msu.edu/∼tangjili/Epinions.rar.

https://www.cse.msu.edu/~tangjili/Ciao.rar
https://www.cse.msu.edu/~tangjili/Epinions.rar
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Table 1. Comparing the prediction performance of D2Rec with different baselines
across 10 runs. Bold represent best results and underlined is the second best.

Dataset Model Popularity de-biased test sets

Popularity = 2 Popularity = 3 Popularity = 5 Popularity = 10

MAE MSE MAE MSE MAE MSE MAE MSE

Epinions NeuMF [8] 1.30 ± 0.02 2.74 ± 0.02 1.25 ± 0.02 2.60 ± 0.01 1.23 ± 0.02 2.52 ± 0.01 1.22 ± 0.01 2.47 ± 0.01

PMF [15] 1.23 ± 0.02 2.91 ± 0.02 1.02 ± 0.01 2.00 ± 0.02 0.91 ± 0.01 1.61 ± 0.02 0.93 ± 0.01 1.55 ± 0.01

SocialMF [10] 1.37 ± 0.01 3.87 ± 0.02 1.03 ± 0.02 2.30 ± 0.02 0.90 ± 0.02 1.60 ± 0.01 0.86 ± 0.01 1.46 ± 0.01

GraphRec [4] 0.62 ± 0.02 0.87 ± 0.02 0.65 ± 0.03 0.89 ± 0.02 0.71 ± 0.01 0.96 ± 0.02 0.74 ± 0.01 1.03 ± 0.02

ConsisRec [20] 0.62± 0.02 0.83± 0.03 0.59 ± 0.01 0.83 ± 0.01 0.54 ± 0.02 0.76 ± 0.02 0.51 ± 0.01 0.71 ± 0.01

IPS-MF [12] 0.99 ± 0.03 1.66 ± 0.02 0.97 ± 0.02 1.57 ± 0.01 0.95 ± 0.02 1.55 ± 0.02 0.94 ± 0.01 1.53 ± 0.01

CIRS [19] 1.06 ± 0.03 3.34 ± 0.03 0.72 ± 0.02 1.89 ± 0.02 0.48 ± 0.01 0.92 ± 0.01 0.33 ± 0.02 0.54 ± 0.01

D2Rec (ours) 0.70 ± 0.02 1.47 ± 0.02 0.48± 0.02 0.81± 0.01 0.31± 0.02 0.43± 0.01 0.20± 0.01 0.24± 0.01

Ciao NeuMF [8] 1.21 ± 0.02 2.40 ± 0.03 1.18 ± 0.02 2.29 ± 0.02 1.15 ± 0.01 2.13 ± 0.02 1.14 ± 0.01 2.07 ± 0.02

PMF [15] 1.21 ± 0.02 2.77 ± 0.02 0.96 ± 0.03 1.71 ± 0.01 0.80 ± 0.02 1.13 ± 0.01 0.78 ± 0.01 1.08 ± 0.01

SocialMF [10] 1.40 ± 0.02 4.24 ± 0.04 1.01 ± 0.01 2.23 ± 0.03 0.78 ± 0.02 1.12 ± 0.02 0.74 ± 0.02 0.96 ± 0.01

GraphRec [4] 0.59 ± 0.03 0.71 ± 0.02 0.65 ± 0.02 0.79 ± 0.01 0.68 ± 0.03 0.82 ± 0.02 0.73 ± 0.01 0.90 ± 0.02

ConsisRec [20] 0.57 ± 0.03 0.61± 0.02 0.52 ± 0.02 0.57 ± 0.01 0.51 ± 0.02 0.55 ± 0.01 0.41 ± 0.02 0.33 ± 0.02

IPS-MF [12] 1.08 ± 0.04 2.00 ± 0.02 1.07 ± 0.02 1.92 ± 0.03 1.04 ± 0.01 1.78 ± 0.02 1.02 ± 0.01 1.71 ± 0.01

CIRS [19] 0.90 ± 0.03 3.07 ± 0.03 0.51 ± 0.03 1.42 ± 0.02 0.27 ± 0.01 0.55 ± 0.01 0.15 ± 0.02 0.23 ± 0.01

D2Rec (ours) 0.43± 0.02 0.72 ± 0.04 0.23± 0.03 0.30± 0.03 0.11± 0.01 0.08± 0.01 0.05± 0.01 0.03± 0.01

– PMF [15] models the user preference matrix using low-rank user and item
matrices generated with Gaussian priors.

– SocialMF [10] uses social networks to model user preferences by adding prop-
agation of each relation into matrix factorization.

– Graphrec [4] models the networks (social and interaction) with a GNN.
– ConsisRec [20] uses sampling-based attention techniques to solve the social

inconsistency problem.
– IPS-MF [12] uses inverse propensity scores to alleviate the confounding bias.
– CIRS [19] This work uses the predicted exposure as a substitute for con-

foundersing factors during rating prediction.

4.2 Performance Comparison (RQ.1)

We compare the different baseline models with D2Rec on two real-world datasets
Epinions and Ciao as shown in Table 1. We observe the following for RQ.1:

– Overall, D2Rec mostly yields the best performance across all datasets. We
attribute the effectiveness of D2Rec to the following reasons: (1) By leveraging
rich sources of network information D2Rec can capture multiple aspects of
confounding including item popularity. (2) By disentangling the user and item
representations into three factors D2Rec is effective in learning unbiased user
preferences, resulting in better recommendation performance. (3) By utilizing
the contribution of the disentangled confounding factors in rating prediction,
D2Rec controls for the confounding bias.

– Among the three types of baselines, the causal recommender systems serve as
the strongest baselines in most cases, justifying that accounting for the under-
lying causal model is effective in mitigating confounding bias for debiasing
recommender systems with explicit feedback.
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– We believe the discrepancy in error rate of GraphRec occurs due to the over-
smoothing issue [3] in GNNs. Over-smoothing can make GraphRec overfit to
the unpopular items as they dominate the population.

5 Conclusion and Future Work

This work aims to leverage various sources of network information to debias
social recommendations with the aid of causal disentanglement. Under the
causal setting, the network information acts as a suitable proxy for the hidden
confounders. With the aid of causal disentanglement D2Rec captures multiple
aspects of confounding present in the network information which unravels the
learned representations into three independent factors. Empirical evaluations on
two real-world datasets corroborate the effectiveness of D2Rec. A meaningful
direction for future work is extending D2Rec to consider particular aspects of
confounding, such as user conformity and item popularity factors.

Acknowledgements. This material is based upon work supported by, or in part by
the National Science Foundation (NSF) grants 1909555 and 2200140.
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Botanická 68a, 602 00 Brno, Czech Republic

{olha,xslanin,492606,dohnal}@mail.muni.cz, antol@muni.cz

Abstract. Despite the constant evolution of similarity searching
research, it continues to face challenges stemming from the complex-
ity of the data, such as the curse of dimensionality and computationally
expensive distance functions. Various machine learning techniques have
proven capable of replacing elaborate mathematical models with simple
linear functions, often gaining speed and simplicity at the cost of formal
guarantees of accuracy and correctness of querying.

The authors explore the potential of this research trend by presenting
a lightweight solution for the complex problem of 3D protein structure
search. The solution consists of three steps – (i) transformation of 3D
protein structural information into very compact vectors, (ii) use of a
probabilistic model to group these vectors and respond to queries by
returning a given number of similar objects, and (iii) a final filtering
step which applies basic vector distance functions to refine the result.

Keywords: Protein database · Embedding non-vector data · Learned
metric index · Similarity search · Machine learning for indexing

1 Introduction

The methods and approaches developed by the similarity searching community
are used by a wide range of scientific fields, both within computer science and
beyond. While some applications require provable accuracy guarantees, verifiable
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algorithms, or support for complex similarity functions, many of the similarity
searching problems emerging in various areas of research do not have such strict
formal constraints.

There are multiple similarity search indexes, falling under the umbrella of
approximate searching, capable of adjusting to such use cases by lowering their
accuracy thresholds or returning partial results. However, in recent years, an
entirely new approach has begun to gain traction – the area of data retrieval has
started to incorporate various machine learning approaches. Notably, in 2018,
Kraska et al. [8] suggested that all conventional index structures could be viewed
as models of data distributions, implying that machine and deep learning models
could be used in their place. Even though the idea was originally proposed and
tested on structured data, this reframing of the problem has already inspired
similar work in the realm of unstructured datasets [1,6,12].

To investigate the potential of these approaches further, we have chosen to
examine the problem of 3D protein structure similarity search. This is an impor-
tant open problem in biochemical and medical research, which can be viewed
as an instance of similarity searching in non-vector datasets, because similar-
ity between a pair of protein structures is usually calculated using a series of
non-trivial, computationally expensive operations.

In this paper, we demonstrate that even a relatively complex interdisciplinary
problem such as 3D protein structure retrieval can be tackled with fast and
lightweight solutions. We present a simple pipeline where protein structures are
first transformed into short vectors and used to train multiple partitioning and
classification models – these are linked together to form a learned index structure.
The index then answers queries by returning several candidate leaf nodes, and
filtering the objects stored therein using basic vector (similarity) functions.

2 Related Work

Learned indexing was first introduced in [8] with the core idea of learning a
cumulative distribution function (CDF) to map a key to a record position. This
proposition challenged the long-standing paradigm of building indexes solely
with classic data structures such as B-trees and allowed for reduction in searching
costs. To allow for indexing of large data collections, the authors introduced
Recursive model index (RMI) – a hierarchical tree index structure of simple
interconnected machine learning models, each learning the mapping on a subset
of the dataset. RMI is, however, limited to sorted datasets of structured data,
and cannot accommodate multi-dimensional data.

The generalization of the learned indexing concept to spatial and low-dimen-
sional data was explored primarily by the Z-order model [13], which makes use
of the space-filling curve encoding to produce 1D representation of the original
data, and ML-index [5] which achieves the same with the use of iDistance.

Following the architectural design of RMI, we proposed the Learned metric
index (LMI) [1], which can use a series of arbitrary machine learning models to
solve the classification problem by learning a pre-defined partitioning scheme.
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This was later extended to a fully unsupervised (data-driven) version introduced
in [11], which is utilized in this work.

Protein Representation

To enable computational approaches to the problem of uncovering functional
properties of proteins, a great amount of research attention has been directed
to creating representative (numerical) embeddings of protein structures. There
are two distinct categories of embeddings based on the input data – those that
operate with sequences and those working with 3D structures. Sequence embed-
dings use techniques such as hidden Markov models or various natural language
processing methods [2] to derive meaning from protein sequences, treating them
as encoded sequences of characters, which is not applicable to our research.

Embeddings representing protein 3D structures are generally less elaborate,
since the information content is more robust to begin with. The most common
encoding is a protein distance map, which produces a symmetric 2D matrix of
pairwise distances between either atoms, groups of atoms or amino acid residues.
This distance map can be transformed into a protein contact map, which is a
binary image where each pixel indicates whether two residues are within a certain
distance from one another or not. Contact maps have been used in conjunction
with machine learning techniques for prediction of protein structure [4]. While
these techniques are related to our own approach, we produce embeddings that
are considerably more compact and reflective of our similarity searching use case,
as will be shown in the following sections.

3 Data Domain

We have chosen to test our approach on 3D protein structures for several reasons.
First, while protein structure data is very widely used, and the study of this data
is vital for almost every area of biochemical research, the issue of efficient search
and comparison of protein structures is still unresolved to some extent, with
many databases still relying on time-consuming brute-force linear search [10].

Just as importantly, it is clear that the issue of efficient search within this
data will only become more crucial and challenging in the next few years – the
common dataset of empirically solved protein structures continues to grow expo-
nentially [3], and the computational prediction of protein structures from their
sequences has recently seen rapid improvement with the release of AlphaFold 2
in 2021 [7], which has resulted in the publication of hundreds of millions of new
reliable 3D protein structures a year later.

Protein structures are sometimes cited as a typical example of complex
unstructured data, since they cannot be meaningfully ordered according to any
objective criteria (any search method needs to rely on pairwise similarity), and
the similarity of two protein structures often cannot be determined by a single
vector operation. Typically, protein molecule data are stored using the three-
dimensional coordinates of each of their atoms, with the protein randomly ori-
ented in space. In order to compare a pair of protein structures, they first need to
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Fig. 1. A diagram of the proposed solution.

Table 1. File size of the protein dataset (518,576 protein chains, database size 8.2 GB)
stored using protein embeddings, and build times of two different LMI architectures.

Embedding size (N ×N) File size Index build time (256-64) Index build time (128–128)

5 × 5 16 MB 246 s 184 s

10 × 10 51 MB 350 s 270 s

30 × 30 456 MB 927 s 655 s

50 × 50 1275 MB 2391 s 1814 s

be properly spatially aligned in terms of translation and rotation, and a subset
of atoms must be selected for alignment. This typically involves gradual opti-
mization of a spatial distance metric (such as the root-mean-square deviation
of all the atom coordinates), which is a computationally expensive process that
cannot be directly mapped to a simple vector operation.

Once aligned, the similarity of the proteins can be measured. One commonly
used measure of protein similarity is the Qscore [9], which is calculated by divid-
ing the number of aligned amino acids in both protein chains by the spatial
deviation of this alignment and the total number of amino acids in both chains.
Even though this measure is imperfect and not appropriate for all use cases, it is
used in several prominent applications, including the PDB’s own search engine.

Note that two identical structures have a Qscore of 1, and completely different
structures have a Q-score of 0: as a result, the score needs to be inverted in order
to be used as a distance metric (d(x, y) = 1 − Qscore(x, y)). In the following
sections, we will refer to this inverted value as Qdistance.

4 Fast Searching in Proteins

We present a pipeline (visualized in Fig. 1) consisting of three separate compo-
nents: (i) a simple embedding technique for protein data in the PDB format,
(ii) the use of a machine-learning-based index – Learned Metric Index (LMI) –
to locate a candidate set of similar protein structures, and (iii) fast filtering to
produce the final query answer1.

The embedding we propose divides the protein sequence into N consecutive
sections – the positions of the atoms within each section are averaged, and the
section is subsequently treated as a single point in space. We then calculate
1 Publicly available prototype at https://disa.fi.muni.cz/demos/lmi-app-protein/.

https://disa.fi.muni.cz/demos/lmi-app-protein/
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distances between each pair of these sections, creating an incidence matrix. In
this matrix, we prune all the values exceeding a cutoff, and normalize the rest.
The matrix is symmetrical and all the diagonal values are 0. The half of this
matrix (omitting the main diagonal) is then reduced into a single row in a
M × (N

2−N
2 ) matrix, where M is the number of proteins in the entire dataset

(see Fig. 1).
This produces a very compact embedding for all the proteins, and the entire

dataset can be represented by a file that is up to two orders of magnitude smaller
than the original database – see Table 1.

To reduce the search space to a small number of candidate protein structures,
we used the Learned Metric Index (LMI), a tree index structure where each
internal node is a learned model trained on a sub-section of data assigned to it
by its parent node [1]. Specifically, we used the data-driven version of LMI, where
the partitioning is determined in an unsupervised manner. We explored different
architectural setups – both in terms of the number of nodes at each level (index
breadth), as well as the number of levels (index depth). As the learned models,
we explored K-Means, Gaussian Mixture Models, and K-Means in combination
with Logistic regression (see [11] for details regarding the model setups). For the
sake of compactness, in the experimental evaluation we only present the results
achieved with the best-performing setup – a two-level LMI structure with arity
of 256 on level 1 and 64 on level 2 (i.e., 256 root descendants, each of them with
64 child nodes), with K-Means chosen as the partitioning algorithm. After LMI
is built, we search within it using a query protein structure and return target
candidate sets; the size of the candidate sets is determined by a pre-selected
stop condition (for instance, a stop condition of 1% of the dataset corresponds
to ∼5, 000 candidate answers per query).

In the final step, we filter the candidate set according to a particular distance
function. In our experiments, we have examined filtering based on the Euclidean
distance as well as the cosine distance of the vector embeddings, but the filtering
step could theoretically be performed using any distance metric, or even the
original Qscore similarity of the full protein structures. The filtering step returns
a subset of the candidate set based on the specified criteria (i.e., kNN or range).

5 Experimental Evaluation

We evaluated our approach using range queries, with 512 randomly chosen pro-
tein chains from the dataset used as query objects. In order to compare our
results against the ground truth, we needed to know the Qdistances (based on
Qscore) between the 512 protein chains and all the other chains in the database
– these distances were kindly provided by the researchers behind [10], where the
same 512 objects were used as the pivots for their search engine. The objects
were chosen uniformly randomly with respect to protein chain length, which
ensures that even very long proteins are represented among our queries (despite
constituting a relatively small portion of the dataset).
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Fig. 2. Evaluation of range queries after LMI search and before filtering, using K-Means
and a 256-64 LMI architecture with ranges: 0.1 (left), 0.3 (middle), 0.5 (right).

Fig. 3. Effects of filtering on the recall and precision of the candidate set of objects
(relative to the ground truth answer).

We expected the performance of our method to deteriorate as the range of
the queries expands, since a wider search range would require the method to
correctly identify more objects which are less similar. To examine this effect, we
have chosen three representative query ranges of 0.1, 0.3 and 0.5 – in a real use
case, the range would be chosen by a domain expert based on the particular use
case. As a rule of thumb, a range of 0.1 represents a high degree of similarity,
while a range of 0.5 represents low (but still biologically significant) similarity;
the biological relevance of answers drops sharply beyond this range [10].

First, we evaluated the performance of the LMI, before the filtering step. The
recall shown in Fig. 2 pertains to the entire candidate set of objects (i.e. how
much of the ground truth answer is contained in the 1%/5%/10% of the dataset
returned by the LMI for further filtering).

This figure presents us with two important pieces of information – firstly, it
is clear that LMI can reach very high recall even when trained on the smaller
10× 10 embedding – this makes the embedding a natural choice for further
evaluation, since it is efficient while significantly reducing the memory and CPU
costs of training compared with the larger embeddings. It can also be seen that,
especially in the lower query ranges which are of most interest to us, the 1% stop
condition represents a sensible trade-off between recall and search time, returning
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Table 2. Overall evaluation of protein range queries: the average values, as well as the
median values (in parentheses) are shown.

Range 0.1 Range 0.3 Range 0.5

Mean # of objects: 83 Mean # of objects: 236 Mean # of objects: 519

LMI recall 0.973 (1.000) 0.895 (0.999) 0.755 (0.867)

Recall after filtering 0.742 (0.878) 0.649 (0.711) 0.530 (0.637)

F1 after filtering 0.712 (0.855) 0.669 (0.766) 0.592 (0.673)

Table 3. The accuracy, search times, and memory requirements of 30NN protein search
queries with a maximum distance radius of 0.5.

LMI + Filtering Sketch-based method PDB Engine

Accuracy (median) 0.660 1.0 1.0

Accuracy (mean) 0.626 0.937 1.0

Time (median) 0.094 s 2.5 s 183 s

Time (max) 0.145 s 6109 s 14321 s

Index size 87 MB 178 MB N/A

relatively few candidate objects (∼5, 000) while minimizing the amount of false
negatives.

During the filtering step (see Fig. 3), recall naturally decreases over time
(since the method occasionally filters out relevant answers), while precision
improves as the portion of relevant objects in the candidate set increases.

Table 2 shows the final results of the range queries with the best-performing
configuration of parameters: embedding size N= 10, the K-means clustering
model, 256-64 LMI architecture, and filtering after the 1% stop condition using
the Euclidean distance metric. The results, especially in the lower query ranges,
are very encouraging, although the filtering stage seems to introduce a surpris-
ingly large amount of false negatives by filtering out parts of the correct answer.
It is likely that the filtering metric we have chosen was slightly too näıve, and the
filtering step could have benefited from a different distance function, or at least a
different weighting of the vectors before calculating their Euclidean distance. In
the future, this presents a natural point of focus to further improve our results.

Finally, to provide broader context for the pipeline’s performance, we have
evaluated it against a more conventional, recently-published approach which
uses a three-stage search engine comparing bit-strings in the Hamming space
(“sketches”) to approximate the distance of protein chains [10]. Note that since
the sketch-based paper mainly used 30-NN queries limited by the range 0.5, our
method needed to be modified in order to perform the same type of query, which
resulted in slightly suboptimal results. We have also included the performance of
the linear search of the PDB database, as presented in the sketch-based paper.
All of these results can be found in Table 3 – while our method clearly does not
match the high accuracy of the sketch-based method in this experimental setup,
it is faster by at least an order of magnitude, occasionally exceeding 4 orders of
magnitude since it does not suffer from an extreme “tail” of worst-case search
times caused by evaluation of long proteins.
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6 Summary and Conclusions

In an effort to investigate the potential of new data retrieval techniques in the
field of similarity searching, we have developed and evaluated a novel approach
to the problem of protein structure search, resulting in a short pipeline consist-
ing of a concise vector embedding, learned indexing, and distance-based answer
filtering. By successfully applying this approach on a well-established database
of 3D protein structures, we have shown that even in a domain that may, at first,
seem poorly suited to simple vector-based transformations, a surprising amount
of information can be discerned by learned models.

One advantage of our modular approach is that every part of the pipeline
can be evaluated separately, allowing experts to identify the weakest spots and
alter them based on the current use case and dataset. The experiments presented
in this paper serve as a good example – after evaluating each part of our own
pipeline, it is clear that we have chosen an overly simplistic filtering method for
our data. In the future, we plan to investigate more sophisticated options for
vector-based filtering, as well as a completely different approach to reducing the
size of query answers.

While it is difficult to compare our work with the state of the art (since there
are no direct analogues to our method in the chosen data domain), we have
made an effort to modify our method for the fairest possible comparison with a
recent, more conventional similarity searching approach in the same domain. In
this comparison, our solution, although coming up short in terms of accuracy, is
consistently faster by multiple orders of magnitude, and maintains much lower
memory requirements.
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metric index: an unsupervised approach. In: Reyes, N., et al. (eds.) SISAP 2021.
LNCS, vol. 13058, pp. 81–94. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-89657-7 7

12. Tian, Y., Yan, T., Zhao, X., Huang, K., Zhou, X.: A learned index for exact
similarity search in metric spaces. arXiv preprint arXiv:2204.10028 (2022)

13. Wang, H., Fu, X., Xu, J., Lu, H.: Learned index for spatial queries. In: 2019 20th
IEEE International Conference on Mobile Data Management (MDM), pp. 569–574.
IEEE (2019)

https://doi.org/10.1007/978-3-030-89657-7_20
https://doi.org/10.1007/978-3-030-89657-7_20
https://doi.org/10.1007/978-3-030-89657-7_7
https://doi.org/10.1007/978-3-030-89657-7_7
http://arxiv.org/abs/2204.10028


Self-supervised Information Retrieval Trained
from Self-generated Sets of Queries

and Relevant Documents

Gianluca Moro1 , Lorenzo Valgimigli1(B) , Alex Rossi1, Cristiano Casadei2,
and Andrea Montefiori2

1 Department of Computer Science and Engineering (DISI), University of Bologna,
Cesena (FC), Via dell’Università 50, Bologna, Italy
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Abstract. Large corpora of textual data such as scientific papers, patents, legal
documents, reviews, etc., represent precious unstructured knowledge that needs
semantic information retrieval engines to be extracted. Current best informa-
tion retrieval solutions use supervised deep learning approaches, requiring large
labelled training sets of queries and corresponding relevant documents, often
unavailable, or their preparation is economically infeasible for most organiza-
tions. In this work, we present a new self-supervised method to train a neural
solution to model and efficiently search large corpora of documents against arbi-
trary queries without requiring labelled dataset of queries and associated relevant
papers. The core points of our self-supervised approach are (i) a method to self-
generate the training set of queries and their relevant documents from the corpus
itself, without any kind of human supervision, (ii) a deep metric learning app-
roach to model their semantic space of relationships, and (iii) the incorporation
of a multi-dimensional index for this neural semantic space over which running
queries efficiently. To better stress the performance of the approach, we applied
it to a totally unsupervised corpus with complex contents of over half a million
Italian legal documents.

Keywords: Semantic search · Self-supervised learning · Large italian dataset

1 Introduction

One of today’s most crucial challenges is exploiting the implicitly conserved knowl-
edge within massive textual collections [14]. Textual information retrieval (IR) systems,
which aim to retrieve semantically related documents against a human query leveraging
semantic representation [7,28,33], are the core of many everyday applications such as
search engines, recommendation systems, and chatbots.

Language models based on deep neural networks got unprecedented success
[13,15,26] thanks to their ability to create high-quality semantic representations of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Skopal et al. (Eds.): SISAP 2022, LNCS 13590, pp. 283–290, 2022.
https://doi.org/10.1007/978-3-031-17849-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17849-8_23&domain=pdf
http://orcid.org/0000-0002-3663-7877
http://orcid.org/0000-0003-0309-771X
https://doi.org/10.1007/978-3-031-17849-8_23


284 G. Moro et al.

text, named embedding [39], with no prior feature engineering. However, their qual-
ity depends on a priori labelled datasets for the train, namely a set of hand-crafted
queries and related documents for each, often missing or unfeasible to craft for many
domains. To this end, self-supervised learning methods leverage intrinsic relationships
of the dataset to automatically create artificial labels for the train, allowing deep neural
networks that need supervision to be deployed on not-supervised domains.

We propose a novel self-supervised method to produce a self-generated artificial
labelled dataset for IR, upon which to train a self-supervised neural model. It automat-
ically generates for each textual passage three types of queries to use for the train: (1)
non-fluent queries created with tf-idf, (2) fluent queries created using a summarizer, and
(3) entity-based queries created using a Named-Entity Recognition (NER) model. We
apply our solution to a large collection (half a million) of Italian legal documents1 with
two main issues: (i) the high domain complexity due to the Italian Jurisprudence that
counts more than 350000 laws, protocols, policies, and (ii) the lack of labels or direct
relationships to exploit. We incorporate in the solution an optimized multi-dimensional
index, named Faiss [18], to efficiently retrieve items from the latent space. Extensive
results show the ability of our self-supervised IR to model Italian legal documents and
retrieve the right ones according to an arbitrary input query, beating the state-of-the-art
pretrained model for multilingual semantic search on an unseen test set2.

2 Related Works

First IR solutions, such as TFiDF [29] or BM25Okapi [31], study words frequencies to
score textual similarity [11]. With the arrival of transformers, novel powerful language
models [5,30,35,38] showed their ability to represent the semantic of a text with no
prior feature engineering [2,27] becoming the neural engine of many state-of-the-art IR
systems [1,3] and replacing the RNN [12]. Novel training losses, named deep metric
losses [19], were proposed to leverage relationships between a given item (anchor or
a), a semantic similar one (positive or p) and a different one (negative or n). Contrastive
Loss [20] trains a model to minimize the distance between a positive pair (a, p) and
maximize it between a negative one (a, n). Triplet Loss [10] improves the contrastive
loss, turning the two pairs into a triplet (a, p, n) and forcing the model to place a and
p closer than a and n. Many more complex and sophisticated functions have been pro-
posed, leveraging different numbers of positives and negatives, and different grades of
positiveness (e.g. soft positive [36]) or negativeness (e.g. hard negative [37])

One drawback is the need of labelled data to define relationships among documents.
Several self-supervised training techniques try to address such issue, generating labels
automatically from intrinsic relationships of the data [8,9,21,22,34].

In our particular case we do not have any relationships to exploit (e., g., bibliogra-
phy, citations, references), thus we create artificial queries, using different techniques,
as positive items from each sequence of text (anchor), to be represented as similar as
possible to their source sequences. Thanks to them, we train a deep metric neural IR in
a self-supervised learning otherwise impossible to train.

1 Kindly provided by Gruppo Maggioli s.p.a https://www.maggioli.com/en-us.
2 Web App and appendix at https://disi-unibo-nlp.github.io/projects/SelfIRSisap2022/.

https://www.maggioli.com/en-us
https://disi-unibo-nlp.github.io/projects/SelfIRSisap2022/
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3 Methods

3.1 Self-supervised Query Generation

The text corpus is supplied by Gruppo Maggioli3 and consists of a dump of 543838
Italian legal documents. Documents have a great variability in length depending on
the type (“Doctrine”, “Jurisprudence”, “Legislation”, “Praxis”, “Maximaries”) and the
category (“Balance”, “Police”, “Contract”, ...) they belong to, with an average number
of words per document of 897.

First, we clean the dataset discarding all documents without text, reducing the num-
ber of documents to 488000. Then we split them into sequences of the same length (64
words) obtaining a total of 6800000 pieces. For each sequence of unstructured text, we
create three types of queries: non-fluent, fluent, and entity-based.

For the Non-fluent queries, we generate them as unordered sequences of n key-
words, leveraging tf − idf which scores each word according to its importance in the
given sentence.

S(wd) = log(1 + tf(wd)) × log
( N

df(w)
)

(1)

where tf(wd) is the frequency of the term w in the document d and df(w) is the fre-
quency of the term w in all the N documents in the corpus. We select the n words with
the highest score, where n is a random number extracted from a Gaussian distribution
n ∼ N (μ = 5, σ2).

Fluent queries are produced as syntax-correct queries from each passage leveraging
the summarization algorithm KL-Sum [16] which greedily adds extracted sentences to
the summary, trying to minimize the KL-divergence4. Neural solutions as [25] fail due
to the need of fine-tuning.

Entities-based queries are single entities among a legislative reference, a location,
a name of a person or organization, extracted by using a multilingual NER based on
XLM-RoBERTa [4] that we fine-tuned on I-CAB dataset [24].

Passage: ...complessivo e, quindi, del corrispettivo dell’appalto. Secondo il T.A.R. una
tale ipotesi sarebbe perseguibile soltanto in corso di svolgimento del servizio....
Non-fluent query: appalto servizio ipotesi
Fluent query: Secondo il T.A.R. una tale ipotesi sarebbe perseguibile
Extracted name entity: T.A.R.

3.2 Language Model

We use DistilBERT [32], trained for multilingual tasks, where we add a pooling layer
generating one single embedding for each passage si as the mean of all the token
embeddings. We add a dense feed-forward network to map the input tensor to a 512-
dimensional space with tanh activation function. The whole system can be formalized
with the following equation:

ei = D(θd,P(E(θe, si))) (2)

3 https://www.maggioli.com/it-it.
4 The implementation is from sumy. https://github.com/miso-belica/sumy.

https://www.maggioli.com/it-it
https://github.com/miso-belica/sumy
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where D,P, E are respectively the dense layer, the pooling layer and the Bert model
layer. The θd, θe represent the trainable parameters of the dense and Bert model layers.

We train the model by leveraging a deep metric loss, namely the multiple negatives
ranking loss function [17], ideal for training neural models for retrieval settings with
positive pairings (i., e., (query, passage)).

MNL = −1/K

K∑

i=1

[
S(xi, yi) − log

K∑

j=1

eS(xi,yj)
]

(3)

where S is a similarity function between sentence embeddings, we use cosine similarity.
x and y are elements from the batch where xi and yj are similar only for i = j.

Furthermore, to improve the training phase, we apply two different techniques:Hard
Negatives andMasking. Hard Negatives are negative items, but with a grade of similar-
ity higher than normal negatives. We generate them by extracting from each sequence
the top 10 keywords using TFiDF. Sequences sharing more than three keywords are
considered hard negatives.

Then, we implement a query masking which consists of substituting some words
from the passage, also present in the query, with random words. It forces the model to
rely less on word matching and more on the semantics of the phrase, already used in
different domains [6]. We found that masking the 10% of words gives the best results.

4 Experiments

4.1 Resources and Training Details

We used a workstation equipped with a GPU GeForce RTX 3090 with 24 GB of ded-
icated memory, and 24 GB of RAM. We used Python3, PyTorch framework Hugging-
Face for Deep Learning tasks and Faiss for optimized similarity search.

The model is based on the Sentence Transformer library5, in particular, we used
distiluse-base-multilingual-cased-v1. We trained the model for 2 epochs over 8.1 mil-
lions triplets composed by 4 million fluent queries, 4 million non-fluent queries, and
100000 of queries composed by specific entities. We used a minibatch size of 64 and a
AdamW optimizer [23] with a weight decay of 0.01 and a learning rate of 2e − 056.

4.2 Results

To evaluate the model’s performance improvement obtained by our method, we used
one large test set (400K passages and 1000 queries) for each type of query, reporting
top-1, top-5, and top-10 rank accuracies, from a set of never seen documents (removed
from the training pool). The ranking accuracy rank@n, normalized and expressed as
a percentage, returns the frequency of presence of the associated passage to the input
query in the top n retrieved documents.

5 https://github.com/UKPLab/sentence-transformers.
6 The remaining hyperparameters of the underlying pretrained sentence-transformer are kept at
their default settings.

https://github.com/UKPLab/sentence-transformers
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We turned each passage into an embedding leveraging the model to test, and we
exploited Faiss to speed up and optimize the similarity research among them against
an input query embedding7. We compare our self-supervised solution against the same
model with no fine-tuning, a state-of-the-art and ready-to-use model for the multilingual
semantic search, which represents the only option for neural semantic search in the lack
of a labelled dataset. We show the results on the Tables 1, 2, and 3.

Table 1. Fluent queries.

Baseline Trained
R@1 28% 91.6%
R@5 37% 96.4%
R@10 40.5% 96.7%

Table 2. Non-fluent queries.

Baseline Trained
R@1 33% 87%
R@5 35.5% 94.2%
R@10 36% 95.8%

Table 3. Entity-based queries.

Baseline Trained
R@1 0.7% 49%
R@5 4% 72%
R@10 8% 78%

Our solution significantly improves the baseline performances. The three kinds of
queries, automatically generated for the train and the test, mimic the queries a user
can submit to the system seeking a specific term, documents about some keywords, or
expressing a fluent human question.

4.3 Ablations

Table 4. The table reports the results obtained using different pretrained models.

Model Rank@1 Rank@5 Rank@10

paraphrase-xlm-r-multilingual-v1 52% 57% 57%

xlmr-personal-multilingual 37% 40% 41%

stsb-xlm-r-multilingual 29% 30% 31%

distiluse-base-multilingual-cased-v1 64% 73% 75%

paraphrase-multilingual-MiniLM-L12-v2 35% 38% 39%

paraphrase-multilingual-mpnet-base-v2 40% 45% 45%

We tested different pretrained models from Huggingface8, training them for 1000
instances using non-fluent queries, and we tested them on a test set of 10K passages.
As reported in Table 4, the distiluse-base-multilingual-cased is the one
with higher performances.

We also investigated different metric losses (Tables 6 and 5), namely Cosine Simi-
larity Loss, Contrastive Loss, Triplet Loss and Multi Negative Ranking Loss. The latter
gives the best results with fluent and non-fluent queries.

Furthermore, we studied the number of tokens per items: 64 and 128 (Table 8) and
the masking percentage (Table 9). The results show that a minor number of tokens
increases the performance, and masking the 10% leads to the best results9.
7 We used IndexFlatL2, which allows exact search by L2 norm distance without errors.
8 https://huggingface.co/.
9 Both tests are conducted on fluent-queries test set of 400000 items.

https://huggingface.co/
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Finally, we tested two different approaches to create hard negatives: Legislative
references in common and Keywords in common (Sect. 3.1). In Table 7 we report the
results by training the model with fluent queries and evaluated on 400000 sequences.
Results empirically prove that hard negatives from keywords help in the model training.

Table 5. Non-fluent queries.

Loss R1 R5 R10
Baseline 22% 28% 28%
Triplet 30% 34% 35%
Constr 43% 48% 49%
CosSim 52% 64% 65%
MNR 73% 83% 84%

Table 6. Fluent queries.

Loss R1 R5 R10
Baseline 26% 33% 36%
Triplet 31% 34% 37%
Constr 42% 46% 49%
CosSim 28% 35% 38%
MNR 44% 56% 60%

Table 7. Results with different
kinds of hard negatives.

Hard Neg R1 R5 R10
Random 65% 72% 75%
Leg. ref 65% 72% 75%
Keywords 65% 74% 76%

Table 8. Different passage lengths.

Loss R@1 R@2 R@5
64 tokens 65% 72% 75%
128 tokens 44% 56% 60%

Table 9. Different masking percentages.

Masking R@1 R@5 R@10
0% 65% 74% 76%
10% 66% 75.5% 78%
20% 66% 74.5% 77.5%

5 Conclusion

We presented a novel domain-agnostic self-supervised method to train a neural semantic
IR on unsupervised text sets, which automatically generates three kinds of queries for
each textual passage: (i) fluent query using a summarizer method, (ii) non-fluent query,
selecting with TFiDF the most important keywords, and (iii) entity-based query, using a
NER algorithm to extract specific entities. These artificial queries were then employed
for training a neural model using existing deep metric learning losses. This solution
mitigates the lack of labelled datasets in most domains, which are almost impossible to
forge because of the time required and the human economic costs. Indeed, we applied
it to a real unlabelled dataset provided by a private Italian company, which is a col-
lection of more than 500000 Italian legal documents with no explicit categories and
relationships as required by neural models.

Despite such substantial limitations, thanks to our novel technique, we were capa-
ble of training a neural information retriever that significantly improves multilingual
distillBERT performances, which is the state-of-the-art solution for semantic search on
the multilingual domain. Finally, we performed extensive experiments and ablations
studies to assess our architectural choices.

We believe this methodology could be general and exploited for other languages
and domains, particularly useful in scenarios with extremely limited or unlabelled text
sets. For this purpose, we will perform new studies on new text sets in other languages
with scarce or missing labelled text sets.
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Abstract. Knowledge graphs are useful in many querying and knowl-
edge management applications, and some difficult data environments
have use-cases that would benefit from models that could autonomously
create or modify knowledge graphs with context over multiple modali-
ties and/or data-sets. For example, knowledge graph discovery in discon-
nected data with little or no existing relationship context could provide
additional insights and enrich querying into the data. Additionally, a
complex query itself may be best represented as a small knowledge graph
in some cases. However, there are many challenges in discovering these
complex relationships, especially in data-sets that cover multiple modal-
ities. Relationship dependencies may exist at various contextual levels in
the data, and some data environments have dynamic data with continu-
ously evolving relationships and/or entities. The focus of the research is
to solve challenges in this space by developing novel methods to discover
or manipulate knowledge graphs to improve querying and knowledge
management in difficult data environments with complex multi-modal
relationships.

Keywords: Knowledge graphs · Multi-modal · Graph generation ·
Attention mechanisms · Neural networks

1 Introduction

Knowledge graphs are useful in many querying and knowledge management
applications, and some difficult data environments have use-cases that would
benefit from models that could autonomously create or modify knowledge graphs
with context over multiple modalities and/or data-sets. For example, knowl-
edge graph discovery in disconnected data with little or no existing relation-
ship context could provide additional insights and enrich querying into the data.
Knowledge management could also be improved by drawing connections between
existing disconnected knowledge bases. Additionally, a complex query in a multi-
modal data-set itself may be best represented as a small knowledge graph in some
cases. Instead of just using keywords, consider a query consisting of an image
semantically tied to keywords, or in the reverse having a query return an entity
with semantically similar entities and how they may relate.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Skopal et al. (Eds.): SISAP 2022, LNCS 13590, pp. 293–298, 2022.
https://doi.org/10.1007/978-3-031-17849-8_24
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However, there are many challenges in discovering these complex relation-
ships, especially in data-sets that cover multiple modalities. Relationship depen-
dencies may exist at various contextual levels in the data, and some data envi-
ronments have dynamic data with continuously evolving relationships and/or
entities. Some relationships may be simple where only the characteristics of two
entities are required to determine how they relate, but other relationships could
be much more complex where nuances that define them may have a dependency
on the characteristics and existing relationships over multiple neighboring enti-
ties. One focus of this research is to solve challenges in this space by developing
novel methods to determine these relationships across the different possible levels
of context.

Overall, the argument is that autonomous discovery and manipulation of
knowledge graphs would be beneficial in a broad range of search and knowledge
management use-cases and the goal of this research is to develop novel methods
for creating models that would be beneficial in these data scenarios. To achieve
this, a method for conditionally generating knowledge graphs is proposed that
is driven by a novel hierarchical attention mechanism which intends to improve
relationship discovery by attending on multiple contextual levels in the data. For
the purposes of this work, a knowledge graph is defined as a heterogeneous graph
with typed edges providing semantic meaning by describing entity relationships
and entities of different modalities.

1.1 Problem Statement

The goal is to develop novel methods for discovering, modifying, and interpreting
knowledge graphs with complex relationships that may have dependencies over
multiple modalities and/or relationships for the purposes of improving similarity
searches and knowledge management. Specifically, the main problem difficulty
lies in discovering relationships that may be dependent on multiple contextual
levels, and the goal is in finding novel mechanisms that can capture all of these
contexts effectively.

2 Methodology

Given that the nature of the problem is discovering relationships between mul-
tiple data entities, the proposed methodology is to treat this as a conditional
graph generation problem where the set of nodes is given, but relevant edges
have to be found. To achieve this there needs to be a mechanism for construct-
ing the graph, and a mechanism for guiding the construction conditions of the
graph. The mechanism forming the construction conditions needs to be able to
capture the context required to determine new relationships from existing rela-
tionships. This is where a novel hierarchical attention mechanism is proposed
to attempt to capture relevant context across multiple data levels for discover-
ing new relationships between entities. In the context of the overall problem,
the following methodology describes one unit of work in graph discovery that
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is intended to act as a stepping stone towards a broader range of methods in
discovering and manipulating knowledge graphs. However, first it is important
to clarify the complexity of relationships that are intended to be discovered by
going over a data set that is utilized for testing these mechanisms.

2.1 MultiModalQA Data Set

MultiModalQA (MMQA) [11] is a question answering data set generated from
Wikipedia data. The questions are generated to require a joint reasoning over
image, text, and table data. The data set consists of roughly 30,000 examples
with diversity over dozens of domains such as science, film, sport, etc.

While the overall goal is not to perform a question answering task, the
MMQA data set has some characteristics that make is suitable as a data source
for the problem at hand. The MMQA data set was chosen because it has multi-
modal relationships that are dependent on not only inter-entity data (ex. object
in an image) but also cross-entity relationships (ex. text references a specific
image). In order to utilize the data set for the problem, some pre-processing is
done to convert each data entity into a feature vector to act as node features.
Example graphs are then created using the relationships given in the data set
to use in comparing against graphs created with the generation mechanism.

2.2 Getting Node Features

In order to utilize the previously mentioned model, node features need to
obtained for each entity in the data-set. Node features are the proposed avenue
for generalizing this model for different data-sets. The idea is that as long as
entities in a data-set can each be converted to a single feature vector, the model
could be applied. In the MMQA case pre-trained models are used to convert data
entities into node features. The MMQA dataset comes with a pre-trained object
detection model [1] for its image data that uses the Mask R-CNN architecture
[4]. The Mask R-CNN model outputs multiple feature vectors for the objects
detected in an image. To convert these feature vectors into a single vector, clus-
tering is done on the Mask R-CNN output for the entire MMQA image corpus.
Each cluster acts as a dimension in a new feature space, and for each image a
single feature vector is obtained by attributing each object vector in the Mask
R-CNN output to a cluster and mapping it to the new feature space. For textual
data, a pre-trained FastText [5] model trained on Wikipedia data [2] is used for
word embeddings, then a similar clustering approach is used to generate a single
feature vector for the whole body of text.

2.3 Building Context in Iterations

Graph generation typically falls into two camps: one-shot approaches [3,6,9,10]
that try to generate all the edges simultaneously, and iterative approaches [7,13]
that sequentially generate edges. Approaches from the one-shot family gen-
erate graph components either independently or with weak dependency, and
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while computationally efficient, can compromise the quality of the created graph
[7,8,13]. Due to complex relationships having inter-component dependencies, an
iterative approach was chosen with the idea that context can be built sequen-
tially by first creating relatively more “obvious” edges between entities, and
on subsequent iterations leveraging the constructed context to determine more
complex relationships. As a baseline for the generation mechanism, the general
iterative method described by Li et al. [7] was used as a starting point. The
method consists of defining a set of graph operation functions, and in the con-
ditional generation case, passing the conditional information as an input to the
functions. For the purposes of this problem, only edges need to be generated,
therefore an edge scoring model is employed to determine which two nodes are
the best candidates for a new edge. The edge scoring model uses a graph embed-
ding of the current state of the generated graph as conditional information for
computing a score. While the scoring model consists of a simple trained linear
layer, the proposed novelty is in the generation of the graph embedding using a
hierarchical attention mechanism to guide the scoring model over the generation
loop.

Fig. 1. The graph generation loop.

2.4 Hierarchical Graph Attention

In order to provide conditional input to the edge scoring model, the relevant
information needs to be captured. Information at different data levels is required
to determine the relationship between a question and an answer. For example,
at the relationship level an answer cannot be simply attributed to a question.
Both the question and answer must also have a relationship to a relevant piece
of context data in order to be relevant to each other. Furthermore, at the entity
level the information in a question needs to have some sort of tie to the infor-
mation in a piece of data for that data to be relevant as context. With this in
mind, a hierarchical graph attention mechanism is proposed in order to cap-
ture information that would be relevant in determining new graph edges. For
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the relationship level, a relational attention mechanism is utilized as described
by Zhang et al. [14], supplemented by a standard graph attention layer [12] for
aggregating node level data and an additional edge attention mechanism. The
complete graph generation loop can be seen in Fig. 1. For training purposes the
loss is determined by generating a graph embedding of the real example graph
of the given nodes and the generated graph after the loop terminates. These two
embeddings are used to compare how closely the generated graph matches the
real graph.

3 Future Work

The current proposed approach described in previous sections is still a work in
progress, and encompasses only a portion of the research goals. In the broader
scheme of the research, it would be interesting to expand this work in a few ways.
The proposed paths are in applying this methodology on more dynamic knowl-
edge graphs, the discovery of knowledge graphs with latent edge relationships,
and novel querying mechanisms utilizing small knowledge graphs as querying
input and/or results.

In the case of dynamic knowledge graphs, the temporal aspect introduces a
new set of problems. Determining which contexts are changing over time com-
pounds the existing problem of relationship dependent context having the poten-
tial to exist at multiple data levels. Solving this problem would be very beneficial
for systems that try to determine a representation of a dynamic data environ-
ment with many mobile sensors, such as in managing a fleet of autonomous
vehicles.

Furthermore, the discovery of latent edges could act a method to solve the
difficulties associated with combining knowledge bases constructed with differ-
ent ontologies. Overcoming limitations of existing ontologies by expanding their
relationships to the latent domain could provide additional insights into the
data. Additionally, latent relationship discovery could lead to novel multi-modal
querying methods by treating a query as relationship discovery between two
knowledge graphs consisting of a small query graph and a knowledge base. The
main difficulty to overcome in these approaches, in addition to previously men-
tioned challenges in relationship discovery, is the limitation of the discovered
latent edges to only relevant relationships for the applied task.
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3. Gómez-Bombarelli, R., et al.: Automatic chemical design using a data-driven con-

tinuous representation of molecules. CoRR abs/1610.02415 (2016). http://arxiv.
org/abs/1610.02415

4. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. CoRR
abs/1703.06870 (2017). http://arxiv.org/abs/1703.06870

https://github.com/allenai/multimodalqa
https://github.com/facebookresearch/fastText/tree/master
https://github.com/facebookresearch/fastText/tree/master
http://arxiv.org/abs/1610.02415
http://arxiv.org/abs/1610.02415
http://arxiv.org/abs/1703.06870


298 A. Hedzic

5. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. In: Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 2, Short Papers, pp.
427–431. Association for Computational Linguistics (2017)

6. Kipf, T.N., Welling, M.: Variational graph auto-encoders (2016). https://doi.org/
10.48550/ARXIV.1611.07308, https://arxiv.org/abs/1611.07308

7. Li, Y., Vinyals, O., Dyer, C., Pascanu, R., Battaglia, P.W.: Learning deep gener-
ative models of graphs. CoRR abs/1803.03324 (2018). http://arxiv.org/abs/1803.
03324

8. Liao, R., Li, Y., Song, Y., Wang, S., Hamilton, W.L., Duvenaud, D., Urtasun, R.,
Zemel, R.: Efficient Graph Generation with Graph Recurrent Attention Networks.
Curran Associates Inc., Red Hook, NY, USA (2019)

9. Liu, Q., Allamanis, M., Brockschmidt, M., Gaunt, A.L.: Constrained graph vari-
ational autoencoders for molecule design. CoRR abs/1805.09076 (2018), http://
arxiv.org/abs/1805.09076

10. Simonovsky, M., Komodakis, N.: Graphvae: towards generation of small graphs
using variational autoencoders. CoRR abs/1802.03480 (2018). http://arxiv.org/
abs/1802.03480

11. Talmor, A., et al.: Multimodalqa: complex question answering over text, tables and
images. CoRR abs/2104.06039 (2021). https://arxiv.org/abs/2104.06039
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Abstract. Recommender systems are historically one of the most suc-
cessfull and widely known applications of AI, personalized suggestions
are nowadays a valuable commercial application of such systems. Many
papers have been published in this field, but it is not yet solved; these
models still lack state of the art multi-modal capabilities, such as con-
versational or visual suggestions. In this contribution we present a novel
Visual Recommendation module for fashion e-commerces capable of rec-
ommending items based on a concept of visual similarity, and a Visual
Search module where users can upload a picture of some clothing and
search for the most similar ones in a given e-commerce. In conclusion we
discuss about the accessibility of these recommender systems for small
and medium enterprises, briefly describing our idea of Recommendations-
as-a-Service.

Keywords: Recommender systems · Image similarity · Deep Learning

1 Introduction

Few applications of Artificial Intelligence have seen as much commercial success
as Recommender Systems; user-tailored suggestions are nowadays present in
almost every aspect of our interactions with e-commerces, streaming services,
newscasts, social networks and are about to enter the Web3.0 and Metaverse
era. Given the astonishingly good results that such systems provided over the
years it is not surprising that research on this field is flourishing and interest by
both academic and industrial players is growing rapidly.

The latest trends in Recommender Systems [1] concern mostly on pushing
the frontiers in several open challenges regarding conversational systems, fairness
in recommendations, evaluation methods and general domain-specific enhance-
ments. In this last context a new clear trend is the development of Visual Rec-
ommenders based on modern neural models, able to take into account the visual
features of an item to make suggestions; the need for new kinds of interactions
mechanism between users and e-commerces is rising, due to both a new genera-
tion of customers and to the amazing enhancements in neural networks built to
handle image data.
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Another interesting topic that has not been addressed by the research com-
munity is the accessibility of these kind of services, the focus is mostly on imple-
menting complex and resource-hungry Deep Learning systems to further enhance
the quality of the suggestions. No effort is put into allowing these kind of sys-
tems to also reach Small and Medium Entreprises (SMEs), who lack resources
to implement such complex systems in terms of money and data availability.

2 Visual Recommendation and Visual Search

Even if traditional recommendation approaches have proven to be accurate, effi-
cient and easy to implement, the need for new solutions for interactions between
users and e-commerces is rising. New generation of consumers are accustomed
to much more complex interactions with their devices, platforms that will imple-
ment them will be rewarded on the long run.

We built a system able to perform image similarity search on top of any
kind of fashion e-commerce in order to recommend the most similar-looking
products. We also built an object detection module in order to add visual search
capabilities to the system.

2.1 Image Similarity

The feature representation and similarity measurement, which have been thor-
oughly explored by multimedia researchers for decades, are key components that
determine how well a content-based image retrieval system performs, this contin-
ues to be one of the most complex issues in current content-based image retrieval
(CBIR) research despite a range of solutions being suggested.

Following the ideas presented by Wan et al. [3] we chose to represent item’s
images with embeddings in a latent space, obtained by extracting the activations
of the last layers of a Convolutional Neural Network. The idea is simple, first we
train a CNN on a traditional classification task, so that the network can learn to
position similar items (e.g. belonging to the same class) nearby one to another in
the latent space, then K-NN based search can be used to find the most similar
images to a given one.

The currently implemented search is based on the cosine distance metric,
but we plan to take into account all the tecniques available in the literature.

2.2 EfficientNet Models

The decision on which model to use led us to search for the most modern con-
volutional architectures available in literature, we settled on the EfficientNet [4]
family of networks and we are currently still experimenting on which particular
implementation to use due to the availability of 7 different EffNets (B0 to B7)
with increasing levels of complexity and image resolutions they operate on. This
choice depends on the typical trade-off between representation capabilities and
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time required to effectively train the model on a real-case dataset and to make
predictions in a production environment.

We trained two different version of the same EfficientNet model: for the tasks
of visual recommendation we used a dataset made of whole products images that
exploits also the context around a product (dresses of different lenghts are easily
distinguished when the whole figure is visible) and for visual search a dataset
made of cropped products images has been used, to reduce the model context
dependency. Figure 1 shows a graphical explanation.

Fig. 1. Two different models are used

2.3 Visual Recommendation

In the context of fashion e-commerces Visual Recommendation means to be
able to suggest to users the most visually similar items in respect to the one
they are looking at. Let us consider the example situation of a user viewing the
page of a Dress, in the context of visual recommendation the first image of that
product (usually the most representative one) is given in input to the embedding
model and an exact K-NN search will be performed between this and all the
other images of products belonging to the same class, so for this example only
dresses embeddings will be queried, Fig. 2 shows an actual example on a small
e-commerce dataset.

2.4 Visual Search

Plain visual recommendations are not enough to achieve the goal of inno-
vative interactions methods between customers and e-ecommerces, being just
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Fig. 2. An example of visual recommendations from a dress item, similarity score is
shown on top of each image

another way of suggesting products to customers. We decided to imple-
ment a Visual Search module inspired by the functionalities of Google Lens
(https://lens.google/), a service that allows users to upload a picture of any
kind and to search the web for items inside of it. Figure 3 shows a complete
high-level representation of this process. We implemented a plugin available for

Fig. 3. High-level schema of a complete visual search process

the major e-commerce platforms in the market (Shopify, Magento, Woocom-
merce) that can enable this feature in any kind of fashion e-commerce. Figure 4
shows an example of the beta implementation currently available in production:
users can upload a picture, items inside will be evidenced by the grey dots, when
they click on one of the items the actual crop will be embedded by using the
Crop model and the result sent to the visual recommendation module, in order
to find the most similar ones in that e-commerce.

Objects inside of an image are recognized by means of the Yolo (You only
look once) model [5], a well known object-detection model trained on the Open-
Images dataset provided by Google [6] from which we downloaded all the images
concerning the clothing categories and their relative bounding boxes.

Handling Any Fashion E-Commerce. The biggest challenge we are facing
is generality with respect to all the possible categories that can be found in an
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e-commerce, as stated in Sect. 2.1 the convolutional network is trained on a fixed
set of classes, but fashion e-commerces tend to have very different categorization
of clothing with a considerable rate of errors both in terms of misplaced product
classes and grammatical errors in the actual names of said categories.

To handle these problems we decided to settle on a fixed set of classes defined
by us, we map each product of any e-commerce that uses our plugin on that set
of classes by exploiting the classification capabilities of our CNN model. The
process of training is as follows:

1. Start from a pretrained EfficientNet (on imagenet dataset).
2. Build a training dataset with our fixed set of classes, by means of manual

web crawling.
3. Fine-tune the EffNet on that dataset for a classification task.

We then obtain a general model able to classify any kind of clothing picture
into our set of classes, therefore able to produce embeddings with enough repre-
sentative power to perform visual recommendation on any fashion e-commerce,
without the need of additional fine-tuning steps for each new client.

Fig. 4. The visual search module, users can upload a picture and select items to search

3 Conclusions and Future Work

We presented a novel method for implementing visual search and recommenda-
tion on any kind of fashion e-commerce without the need of fine tuning steps
and through the idea of Recommendations-as-a-Service. We built a cloud infras-
tructure that serves as backend for the plugins we developed, enabling virtually
any kind of e-commerce on major platforms to adopt these new interactions
by just installing a plugin, thus enabling SMEs with low economic budget and
development resources to access these new technologies.

As future work, we plan to further develop the RaaS infrastructure in a
scalable and modular way, in order to address the problem of SMEs not having
enough resources to actually use these new technologies; we believe there is a
niche of market yet to be filled in this regard.

Further and extensive experimentation is also still needed to enhance the
quality of the visual recommenders we presented, by building better training
datasets and via the implementation of some sort of continuos learning mecha-
nism, taking into account users feedbacks on our suggestions. Finally, we would
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like to address some of the latest trends in recommender systems, with a partic-
ular focus on conversational and multi-modal algorithms.

References

1. Jannach, D., Pu, P., Ricci, F., Zanker, M.: Recommender systems: trends and fron-
tiers. AI Mag. 43, 145–50 (2022). https://doi.org/10.1002/aaai.12050

2. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L.,
Shapira, B. (Eds.), Recommender Systems Handbook, 2nd edn., pp. 77–118 (2015)

3. Wan, J., et al: Deep learning for content-based image retrieval: a comprehensive
study. In: Proceedings of the 22nd ACM International Conference on Multimedia,
pp. 157–166 (2014)

4. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural net-
works. In: Proceedings of the 36th International Conference on Machine Learning,
pp. 6105–6114 (2019)

5. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection (2015). CoRR. http://arxiv.org/abs/1506.02640

6. Kuznetsova, A., et al.: The open images dataset V4. Int. J. Comput. Vision 128(7),
1956–1981 (2020). https://doi.org/10.1007/s11263-020-01316-z

https://doi.org/10.1002/aaai.12050
http://arxiv.org/abs/1506.02640
https://doi.org/10.1007/s11263-020-01316-z


Author Index

Abluton, Alessandro 299
Amato, Giuseppe 214, 251
Antol, Matej 274
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