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Abstract. Graphs are becoming increasingly larger, with datasets hav-
ing millions of vertices and billions (or even trillions) of edges. As a
result, the ability to fit the entire graph into the main memory of a single
machine faces challenges in common hardware, even more so in edge/IoT-
like devices (i.e., more energy efficient but also more resource constrained).
Reading the graph from secondary storage may pose in itself significant
overhead, negatively impacting query performance and storage require-
ments. It thus becomes relevant to explore techniques to optimize the stor-
age of graphs, specially in memory, in a way that circumvents space limi-
tations, while avoiding compromising the performance of processing.

We observe that current graph storage systems manage the graph
representation by storing graphs in an uncompressed format, either: i)
in a shared architecture which leads to a higher space overhead and the
inability to represent the graph entirely in main memory, or ii) in a dis-
tributed architecture, where the graph dataset is partitioned over a clus-
ter of machines with each one storing in main memory only a fragment
(shard) of the (uncompressed) graph. We present PK-Graph, our pro-
posal which extends a distributed graph processing system, highly used
in academia and industry (Spark GraphX), in order to deploy the use
of a compressed graph representation, with added support for dynamic
updatable graphs (not currently supported in GraphX). Our experimen-
tal results show that PK-Graph can achieve up to 50% lower graph
memory usage, while maintaining competitive performance in executing
typical graph operations used in common applications.

Keywords: Graph representation · Graph databases · Graph
processing systems · Optimization · Compression

1 Introduction

Graphs are now more relevant than ever and their importance will continue to
expand [38], as well continuing to grow in size, having millions of vertices and
billions (or even trillions) of edges in some cases [9,15], stimulating the need for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Sellami et al. (Eds.): CoopIS 2022, LNCS 13591, pp. 149–167, 2022.
https://doi.org/10.1007/978-3-031-17834-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17834-4_9&domain=pdf
http://orcid.org/0000-0002-7191-5895
http://orcid.org/0000-0002-9285-0736
https://doi.org/10.1007/978-3-031-17834-4_9


150 B. Morais et al.

novel and more efficient storage and representation solutions due to increasing
space requirements. Fitting an entire graph in the main memory of a single
multiprocessor machine becomes challenging if the graph is very large. This may
lead to a significant overhead by having to read the graph from secondary storage.
Thus, it is relevant to try to minimize the storage requirements of the graph, for
efficiency and viability, without degrading access time and ideally even improving
it. Current solutions store graphs in uncompressed format [16,18,19,22,24,39,
42,44]. By using a lossless graph compression technique, it is possible to store the
graph in a compressed format that can reside in the main memory of a single
resource-rich machine [6,28,43], achieving equal or better performance when
accessing the graph, thus motivating the employment of compression techniques
in graph storage.

A relevant use-case when working with graph-based data is the ability to
modify it as a dynamic graph, where it is possible to add or remove vertices and
edges. For this use-case, using basic compression techniques would require con-
verting the graph to an uncompressed format before modifying it, which would
imply limitations in required storage and obtained speed. Popular graph algo-
rithms, such as PageRank [31], mutate attributes stored in the vertices and edges
of graphs as part of their logic. As a consequence, the ability to use compressed
graph representations which support graph-changing operations without having
to decompress becomes very important.

Existing solutions focus on partitioning graphs based on their edges to achieve
better work distribution among computing nodes [24,44]. This leads to edges
being assigned to unique partitions and vertices, while being replicated through-
out various partitions. In a worst-case scenario, a vertex needs to be replicated
throughout all partitions. This approach is used because the number of edges
is typically much higher than the number of vertices, leading to smaller storage
requirements when replicating vertices. We focus on addressing several short-
comings that current solutions present, such as: i) not being able to store large
graphs completely in main memory, requiring access to secondary storage which
is much slower; ii) storing graphs in an uncompressed format, potentially lead-
ing to higher resource consumption and comparatively worse processing per-
formance than compressed representations; iii) immutable graphs that do not
support removing or adding vertices/edges, requiring the entire graph to be re-
constructed when adding new elements.

Herein we present our design, implementation and evaluation of PK-Graph,
an extension to the storage component of the Spark GraphX distributed graph
processing system, incorporating the k2-tree lossless compressed graph repre-
sentation to improve space-efficiency. Our solution was designed with the goal
of achieving performance within the same order of magnitude of the uncom-
pressed version of the system and with the goal of supporting dynamic graphs,
with mutation of attributes and addition/removal of graph elements. This paper
is structured as follows. Section 2 addresses relevant state-of-the-art in graph
processing systems, graph databases, and optimized graph representations. In
Sect. 3 we present the architecture of PK-Graph. Section 4 describes the eval-
uation methodology and the results obtained for our implementation. Section 5
concludes by summarizing our findings and mentioning future vectors of research.
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2 Related Work

Distributed Graph Processing Systems. They focus on scalable iteration of
potentially large input graphs in order to execute algorithms over them. Their
approach consists in partitioning the graph throughout a cluster of processors,
where each processor stores only a fraction of the total graph in main memory.
They maintain serialized graph formats in secondary storage, at penalty, and
only if the graph is too large. These systems do not typically require fine-grained
access to the vertices and/or edges of the graph and instead iterate all elements
of the graph or a subset of them.

Apache Spark [20] and Apache Flink [45] are known examples of generic dis-
tributed processing systems, based on dataflow programming. Although they are
generic, graph-specific libraries have been built over them, such as GraphX [44]
on Spark and Gelly on Flink. There are also systems designed with an ab initio
architectural focus on graph processing such as Apache Giraph [42], implement-
ing a vertex-centric approach known as think-like-a-vertex (TLAV), where a user-
defined function is applied in the context of each vertex. This model first debuted
in Google Pregel [26]. Other approaches exist regarding the unit of computa-
tion when expressing graph-processing logic. The computational unit may also
be the edge, in which case the system is said to be edge-centric, known as think-
like-an-edge (TLEV). This approach was popularized with the X-Stream [37] and
Chaos [36] graph processing systems (they are no longer maintained or devel-
oped). Other approaches exist, such as defining the unit of computation as a
part of the graph, but they are outside this scope.

In terms of dynamism, systems such as Spark and Flink typically only allow
for applying changes to the graph (updating attributes or adding/removing ver-
tices/edges), by transforming an existing graph into a new one [3]. This a func-
tional programming aspect of the dataflow-based computation of these systems,
and even if the systems provide primitives to reuse or cache data between dataflow
jobs to keep changing and using a graph, that does not necessarily lead to an
improvement in these sequences of graph changes [10]. In the literature there are
other efficient graph processing systems such as GraphBolt [27], PowerLyra [8]
and GraphTau [17], among others. While presenting innovative distributed graph
processing techniques, as far as we know they typically do not have an active devel-
opment community or were tailor-made for specific experiments.

Graph Databases. Graph database systems are akin to typical relational
databases, but have specialized formats to efficiently store graphs. These sys-
tems also focus on fine-grained access to the vertices and edges of a graph,
allowing for complex queries to be made while not necessarily needing to tra-
verse the entire graph for each query. As such, the storage of the graph is made
to be very space efficient but also to allow for very low latency when performing
queries. Throughout these databases we find graph storage location approaches
such as: storing in the file system, potentially a distributed one like HDFS [41] or
S3 [32]; in key-value stores, where the vertices and edges are stored by mapping
their identifier to their attributes, or in NoSQL databases adapted to store graph
data.
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The database can also be distributed, with the graph stored across multiple
machines, or centralized, with the entire graph stored in a single machine. In
some cases, where specialized hardware is available, centralized systems may
have similar or even better performance than distributed ones (such as Ringo [33]
and Mosaic [25]). An example of a relevant graph database is Neo4j [16], a
native graph database platform used to store, query, analyze and manage highly
connected data expressed in the property graph model. It provides its own query
language Cypher [14], with data stored on disk as linked lists of fixed-size records.
Properties are stored as a linked list of property records, each holding a key and
value and pointing to the next property.

Compact Graph Representations. Compressed graph representations are
employed to reduce the computational space complexity of graphs, lowering their
storage requirements and enabling their processing with hardware that is less
powerful. In the context of this work, we focus on computational representations
that are directly compatible with or enabling components of the property graph
model [2], which allows for attributes to be held in the elements of the graph.
Depending on the relationship between the representation design and its imple-
mentation, it is possible to store element attributes in a compressed form together
with the rest of the graph structure. There are factors that influence the design
of a representation. Whether the graph is directed or undirected has an influence
on the representation. If the graph is directed, then twice the number of edges (of
an equivalent undirected graph) would be necessary, as each undirected edge may
be represented with two edges with opposing directions (between the same two
vertices). For example, another factor influencing the representation is tied to the
potential need of representing more than one edge between the same two vertices
(multi-graph) or not (simple graph). In the context of dynamism, if compressed
graph representations allow mutating graphs, they are also known as compact rep-
resentations.

Some of the most well-known compressed representations are the WebGraph [5]
framework and the k2-tree [6]). The WebGraph [5] framework uses mathematical
analysis and information theory [30] to represent the graph (in a lossless way)
with lower complexity (using traits such as vertex ordering [4]). WebGraph enabled
the exploration of many graph datasets, enabling researchers to analyze them and
obtain statistics using files with smaller sizes. It is implemented in Java and does
not support mutating the graph, which limits the scope of its applicability.

Some more recent work in compressed graph representations includes
g-Sum [34], a graph summarization approach for large social networks that min-
imizes the Reconstruction Error (RE) of the representation, allowing for a more
accurate summarization and improving its usefulness. Another recent work [21]
presents MoSSo, an algorithm for incremental lossless graph summarization. This
work provides a novel approach in the efficient and lossless summarization of fully
dynamic graphs. However, this representation is not suitable for distributed pro-
cessing systems like Spark GraphX since the graph would need to be partitioned
throughout various executors. Furthermore, the summarization is not intended to
allow for the iteration of all edges/vertices of the graph, instead it focuses on specif-
ically handling the processing of individual changes to the underlying graph.



PK-Graph Compact and Dynamic Graphs in Spark GraphX 153

Hornet [7] is a data structure for efficient computation of dynamic sparse
graphs and matrices using GPUs. It is platform-independent and implements
its own memory allocation operation instead of standard function calls. The
implementation uses an internal data manager which makes use of block arrays
to store adjacency lists, a bit tree for finding and reclaiming empty memory
blocks and B+ trees to manage them. It was evaluated using an NVIDIA Tesla
GPU and experiments targeted the update rates it supports, algorithms such
as breadth-first search (BFS) and sparse matrix-vector multiplication. While a
relevant mark in the literature, it is GPU-focused.

Another recent example is the k2-tree [6], an optimized compressed graph
representation that takes advantage of sparse adjacency matrices by recursively
decomposing them. Figure 1 shows one such tree. The tree represents the struc-
ture of the graph’s adjacency matrix, where each node in the tree is represented
by a single bit: 1 for internal nodes and 0 for leaf nodes, except in the last level
where all nodes are leaves and represent the bit values in the adjacency matrix.
Different implementations (C/C++) of the k2-tree exist, and although the orig-
inal one did not support graph mutability, more recent implementations allow
the graph to be mutated, either by directly using dynamic bit vectors (which
suffers a performance bottleneck on compressed dynamic indexing [29,30]), or
more recently, by using techniques to provide dynamic behavior on underly-
ing static collections [11], achieving competitive performance compared to other
implementations [12].
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Fig. 1. Adjacency matrix and corresponding k2-tree.

3 PK-Graph: Architecture

While many graph processing systems are available, many were released solely
to assess and validate specific scientific ideas. From our analysis of graph pro-
cessing systems, we find value in attributes such as the pace of development of
the systems as well as active communities with which it is possible to engage
to discuss ideas or troubleshoot development challenges that are found. While
Flink and Spark are prime candidates with these attributes, Spark was chosen
to implement our contribution, as its design implementation already has some
concern for some form of data reuse (such as its cache() operator).

In Spark, data storage is handled by its Resilient Distributed Dataset
(RDD) construct. It represents an immutable collection of elements which may
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«interface»
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Fig. 2. Overview of PK-Graph architecture. (Color figure online)

undergo transformations (e.g. map(), filter()) defined in the functional pro-
gramming paradigm, and they can be processed in distributed fashion by split-
ting elements into various partitions and having different machines in the cluster
process different partitions.

Our solution extends Spark’s GraphX graph library to make use of a recent
dynamic, compact and competitive k2-tree implementation [11,12], allowing for
a compressed representation of property graphs in main memory. PK-Graph is
built into a JAR file which must be coupled with GraphX’s own JAR in order to
use it. GraphX provides an abstraction over graphs, containing views of: a) ver-
tices; b) edges; c) edge triplets which correspond to the union of an edge with its
corresponding source and destination vertices. All views are partitioned accord-
ing to user criteria (with default strategies also offered). GraphX implements this
abstraction by replicating the vertices in the edge partitions, thus efficiently per-
forming a join between an edge and its corresponding vertices. This abstraction
is static and does not allow the addition/removal of vertices/edges. It is possible
to update the attributes of either vertices or edges, but because Spark’s RDD is
immutable, updating the graph becomes a challenge (within the same dataflow
job). Our solution provides the same three views while maintaining a compressed
and fully dynamic representation of the graph, capable of adding new edges or
vertices as well as updating their attributes.
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3.1 Overall Architecture

Figure 2 shows a diagram of the architecture overview of our system and how it
integrates with the GraphX platform. The main classes of the GraphX implementa-
tion are shown in blue and the main classes of our system are in green. The Graph
class provides an interface for all basic graph operations, primitives used to imple-
ment graph algorithms and access to the underlying vertex and edge RDDs. All
graph operations are executed in a lazy and distributed fashion, by propagating
them throughout a cluster of computing nodes and aggregating the result in the
driver program. Figure 3 shows an example of how a graph operation can be dis-
tributed throughout a cluster.

Driver

Worker

Worker

Worker

Graph.mapEdges()

map()

map()

map()

EdgePartition 1

EdgePartition 2

EdgePartition 3

EdgePartition 4

EdgePartition 5

EdgePartition 6

EdgePartition 7

EdgePartition 8

EdgePartition 9

Graph (new)

Fig. 3. Distributed graph work in a cluster.

Vertices: Representation. The VertexRDD class provides an interface for
vertex-specific RDDs, containing operations to iterate and transform the underlying
vertices of the graph. The VertexRDDImpl contains the default GraphX implemen-
tation of the VertexRDD class. Our solution incorporates the k2-tree data struc-
ture to optimize operation on edges, with the vertex functionality of PK-Graph
remaining unchanged from what GraphX provides.

The vertex partitions (where the actual vertices are stored) are implemented
by the ShippableVertexPartition that keeps them in a format ready to be
shipped to their corresponding edge partitions. Each vertex partition keeps track
of the routing information for each of its vertices, later to be used to determine
to which edge partition the vertices are shipped. The mask bitset keeps track of
all active vertices in the partition. The vertex operations of a partition are only
applied to the active vertices. To access the vertices of a partition, all set bits in the
mask are iterated, retrieving the corresponding vertex identifier and attribute (see
Algorithm 3.1).
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Algorithm 3.1. Iterating the vertices of a given partition.
procedure iterate_vertices(partition)

i ← partition.mask.nextSetBit()
while i >= 0 do

vertexId ← partition.index[i]
attr ← partition.values[i]
output V ertex(vertexId, attr)
i ← partition.mask.nextSetBit()

Edges: Representation. The EdgeRDD class provides an interface for edge-
specific RDDs and contains operations to iterate and transform the underlying edges
of the graph. Our solution extends this abstraction with the PKEdgeRDD class, pro-
viding a specific implementation of the edge partitions (PKEdgePartition) using
the compressed k2-tree data structure to store the edges of the graph (K2Tree).
The edge partitions are stored in the PKEdgePartition class, which provides oper-
ations to iterate and transform the underlying edges. The actual edges are stored
in the K2Tree class, which implements the k2-tree compressed data structure. In
our modified edge partitioning, every operation in the edge partition creates a new
instance with copies of the previous data and any modifications applied. This is
done in order to offer the same expected semantics of GraphX when changing the
elements of an RDD.

Algorithm 3.2. Iterating the edges of a given partition.
procedure iterate_edges(partition)

iterator ← tree_iterator(kh, 0, 0, −1) � kh is the size of the global adjacency
matrix

i ← 0
while iterator.hasNext() do

(localSrc, localDst) ← iterator.next()
srcId ← partition.local2Global[localSrc]
dstId ← partitino.local2Global[localDst]
attr ← partition.edgeAttrs[i]
output Edge(srcId, dstId, attr)
i ← i + 1

procedure tree_iterator(size, line, col, pos)
if x ≥ |T | then � leaf node

if L[pos − |T |] = 1 then output (line, col)
else � internal node

if pos = -1 or T[pos] = 1 then
y ← rank(T, pos) · k2 � k2-tree rank operation to find child node
for i = 0..k2 − 1 do

tree_iterator(size/k, line ·(size/k)+i/k, col ·(size/k)+i mod k, y+i)
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The dynamic operations (addEdges and removeEdges) can add or remove
edges from the partition. Although they are dynamic operations, the edge partition
does not need to be mutable, since a new instance of the PKEdgePartition class
is returned as a result of these operations.

As stated previously, the edge partition uses a k2-tree compressed data struc-
ture to store the edges of the graph. This data structure is capable of representing
the edges of a graph in a very space-efficient format. Our architecture only requires
that the implementation of this structure provides a method to access and iterate
its edges. This will require iterating the k2-tree in a depth-first fashion and cal-
culating the line and column in the adjacency matrix of each edge. Each line and
column will correspond to local vertex identifiers, which then will need to be effi-
ciently mapped to global identifiers, as well as determining for each edge its corre-
sponding attribute. Algorithm 3.2 shows an example in pseudo-code of a possible
implementation to access the edges of an edge partition by iterating its correspond-
ing k2-tree.

In a similar fashion to the GraphX system, our solution also uses a simple wrap-
per over an edge RDD, provided by the PKReplicatedVertexView to handle the
shipping of vertices to the underlying edge partitions. This class stores the underly-
ing PKEdgeRDD instance and keeps track of whether the view includes the attributes
of both the source and destination vertices or if these are only partially shipped,
since in some cases these may be unnecessary.

DataflowOperations. The GraphX API offers dataflow operators to manipulate
the graph. We list the most relevant ones here.

The updateVertices operation receives an iterator referencing cached ver-
tices in the partition that should be updated with new attributes. The reverse
operation reverses all edges in the partition by switching the source vertices with
the destination vertices. This operation is directly used by the graph abstraction
to perform its own reverse operation. The map operation applies a user func-
tion to all edges stored in the partition. The filter operation filters both the ver-
tices of an edge and the actual edge according to the user defined predicates. The
innerJoin operation performs an inner join between two edge partitions. The
aggregateMessages operation is the primitive used to implement all popular
graph algorithms. It implements a Pregel-like messaging system to exchange mes-
sages between the vertices of a graph. Each vertex is capable of sending a mes-
sage through an edge to another vertex. These messages are then aggregated and
merged at each vertex and collected after all messages have been sent.

The GraphX computing model also has the ability to maintain only some ver-
tices in an active state, with only the active vertices able to receivemessages.Active
vertex information is stored in each edge partition and the non-active vertices
are skipped when aggregating messages. The activeness requirements can then be
specified as a parameter of the aggregateMessages function.

3.2 Dynamism

The DynamicGraph interface exposes various functions to both add and remove
vertices and edges from a graph. However, since the underlying Spark RDDs are
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immutable, some partitions of the graph will need to be rebuilt, or at the very least
a new copy of them will need to be made. This does not necessarily mean that the
entire graph will need to be rebuilt, only the partitions which we are transforming.
Thus, adding or removing both vertices and edges will require determining the
partitions affected, and only transforming these.

The addVertices and addEdges functions add new vertices and edges,
respectively, to the graph, returning a new graph instance in the process. The
removeVertices and removeEdges functions remove the given vertices and
edges from the graph, also returning a new graph instance in the process. Both
of these functions work very similarly to applying a filter over the graph, with the
slight optimization that only either the vertices or the edges of a graph are affected,
instead of always having to filter both. All dynamic functions receive RDD instances
as parameters to allow for these operations to be distributed throughout a comput-
ing cluster. We note that the impact of PK-Graph and the k2-tree data structure
is focused only on the addEdges and removeEdges functions.

3.3 Partitioning

Because GraphX processes the graph data in a distributed fashion, our solution
will also need to address the problem of how to partition the graph to allow for
spatial and computational efficiency. The input graph is represented by two RDDs
provided by the user, one representing the vertices and another representing the
edges (similar to the GraphX implementation). For the case of edges, our solution
will interpret them as an edge adjacency matrix that will be partitioned using a 2D
partitioning scheme [1] that splits the adjacency matrix into several sub-matrices
of equal size, each assigned to a unique partition.

In case the number of partitions is not a perfect square, the last columnwill have
a different number of rows than the others. One problem with this distribution is
that it leads to poor work balance since, given a sparse adjacency matrix, some
partitions will have many more edges than others. To overcome this, we shuffle the
vertex locations in order to evenly distribute them through all partitions.

Like GraphX’s implementation, our solution will also replicate the vertices in
the edge partitions to provide an efficient way to join the edges with their respective
vertices. Using this distribution we guarantee that any vertex is replicated at most
2×√|P | times, where |P | is the number of partitions of the adjacency matrix, since
any vertex is represented by a line and a corresponding column in the matrix, and
every line and column intersect at most

√|P | partitions.
The described partitioning scheme is applied by default, with no configura-

tion required for the edges. It is also possible for the programmer to specify a
different partitioning scheme by using the already existing interface provided by
Spark. For the vertices, we would default to the partitioning scheme supplied by
the user or, if no scheme was provided, default to a uniform partitioning strategy
such as the one based on the hash of each vertex. In cases where the graph becomes
unbalanced, the user can repartition the underlying vertex and edge RDDs to either
increase or decrease the number of partitions, using Spark’s repartition function.
Increasing the number of partitions implies shuffling, which will incur a significant
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overhead due to network communication between workers. However, when
decreasing the number of partitions, it is possible to avoid a shuffling phase by
using Spark’s coalesce function.

The GraphX platform already offers several partition strategies such as:
EdgePartition2D, this is the strategy described earlier and implements a strat-
egy that divides the adjacency matrix of the graph into several blocks, as well
as shuffling the vertices of the graph to provide a more balanced work distribu-
tion; EdgePartition1D, which groups together edges with the same source ver-
tex; RandomVertexCut, which distributes the edges based on the hash code of
both the source and destination vertex identifiers; CanonicalRandomVertex-
Cut, the same strategy as the RandomVertexCut but also taking in consider-
ation the direction of the edge when performing the hash. Our solution also intro-
duces a new partition strategy, represented by the PKGridPartitionStrategy
class. This strategy is similar to EdgePartition2D of GraphX. The main differ-
ence between the strategies is that the vertices will not be shuffled, in order not to
change the data locality of the edges, thus providing a more space-efficient repre-
sentation of the entire graph in some cases, at the cost of worse workload distribu-
tion in the cluster.

4 Evaluation

To evaluate the implementation of our solution, we performed various benchmarks
in a cluster of computing nodes, each node corresponding to a Spark worker that
keeps part of the total graph in main memory. We submitted several graph pro-
cessing jobs to the cluster, executing some basic graph operations and some of the
more popular graph algorithms, using relevant graph datasets and analyzing the
gains (penalties) our solution has in terms of compression storage improvements
and processing performance.

The cluster was prepared using the AWS EMR service [13], which enables the easy
setup of a cluster of Spark workers. The cluster uses a single master node and var-
ious worker nodes.

The actual number of employed workers varies throughout each test. Each
machine in the cluster has a 4-core processor with 16 GB of available main mem-
ory, in order to represent typical cost-efficient cloud-provider servers. Note that in
edge cloud scenarios, servers would normally include more resource-constrained
machines [40] that would make memory efficiency a much more pressing issue.

The Spark jobs are submitted from a driver program in a remote machine and
the datasets are retrieved from AWS S3 buckets to be used in the jobs executed in
the cluster.

Datasets. The datasets used in the evaluation of our implementation are from the
Network Repository [35] and the Stanford Large Network Dataset Collection
(SNAP) [23]. The datasets chosen for the benchmarks are the following:

– YouTube Growth (3M vertices, 12.2M edges)
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– EU (2005) (863K vertices, 19M edges)
– Indochina (2004) (7M vertices, 194M edges)
– UK (2002) (18M vertices, 298M edges)

Memory Overhead. Our benchmarks show that the memory overhead of the data
structure of the graph remains the same independently of the number of processors.
This is due to the fact that the number of used partitions chosen by Spark, based
on the size of the file where the dataset was read from, remains the same.

Youtube Growth EU (2005) Indochina (2004) UK (2002)
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Fig. 4. Results of the memory overhead for each dataset.

Figure 4 shows the results of the memory usage of the entire graph for all
datasets. The results show that our solution has significantly less memory over-
head than the GraphX implementation. When testing the memory usage of the
entire graph, comparing to the GraphX implementation, results range from a reduc-
tion of 30% to 50% (roughly 1.50 to two-fold more memory efficient) of 60% to
70% (roughly three-fold more memory efficient). This is in part due to the par-
titioning of the graph and its nature. The best performance is observed on the
web graphs, since these have much higher edge clustering when compared to other
types of graphs. Furthermore, the number of processors has no significant impact
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Fig. 5. Iteration latency and vCPU counts for chosen datasets (PK-Graph: k = 8).
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on the graph size in memory. Regarding memory efficiency of edges specifically, it
improves three fold (30%, of initially used).

Workload Latencies. The workloads presented in this subsection compare the
latency between PK-Graph and GraphX for different graph algorithms. Latency
is defined as the total time the system takes to execute graph processing jobs.

Basic Iteration. This workload iterates all edges of the graph and applies a user
function to each edge (for evaluation, this function simply multiplies the edge’s
integer value by a constant). The obtained results are shown in Figs. 5a, 5b, 5c
and 5d. As observed with the previous tests, as the number of processors increases,
the iteration latency decreases. As the GraphX implementation is more efficient at
traversing all edges in an edge partition, it achieves a lower latency compared to
PK-Graph, even when using a k value that optimizes processing performance.
In terms of iteration latency, overall our implementation is between 15% to 40%
slower than the GraphX implementation, depending on the type of graph, obtaining
better results for web graphs when compared to social network graphs.

PageRank. For thePageRank algorithm, we observe similar patterns to the basic
iteration test, with PK-Graph’s latency approaching that of GraphX with higher
vCPU counts on the Indochina (2004) and UK (2002) datasets. The latency
results for PageRank are depicted in Figs. 6a, 6b, 6c and 6d. For larger graphs,
as the number of available processors increases, the latency of the graph operation
decreases.
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Fig. 6. PageRank latency and vCPU counts for chosen datasets (PK-Graph: k = 8).

Triangle Count. This workload executes an algorithm to count triangles, which
is typically used in social network analysis to detect communities andmeasure clus-
tering coefficients. It is an algorithm which has less latency than PageRank. Tri-
angle Count latency results are presented in Figs. 7a, 7b, 7c and 7d. For this algo-
rithm, the relationship between latency and number of vCPUs exhibited behav-
ior similar to PageRank, with datasets Indochina (2004) and UK (2002) seeing a
smaller latency gap betweenPK-Graph and GraphXwhen executingwith a higher
number of vCPUs.
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Fig. 7. Triangle Count latency and vCPU counts for chosen datasets (PK-Graph:
k = 8).

CPU Usage Results. They are presented in Figs. 8a, 8b, 8c and 8d. For this met-
ric, we compare the total run time of Spark executors to their total CPU time for
each dataset, showing the percentage of the total run time spent on the processor.
PK-Graph achieves a higher CPU usage as the iteration algorithms used by our
solution are heavier.
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Fig. 8. CPU usage and vCPU counts for the chosen datasets (PK-Graph: k = 8).

Edge Partition Statistics. The latency of building an edge partition from a list of
edges is shown in Fig. 9. As the number of edges in a partition increase, the incurred
latency while building the partition also grows. In Fig. 10 we show the behavior of
iteration latency as the number of edges increases. The higher the value of param-
eter k in the k2-tree, the better the iterator performance due to the smaller height
of the tree.

Analysis andDiscussion. Overall, while considering the detailed evaluation of our
implementation, our solution provides a significant reduction in memory usage,
i.e. between 40% and 50% depending on the k value used for the k2-tree, the type
of graph and the partitioning strategy employed. As we are using a k2-tree as
the compressed data structure, the sparser the adjacency matrix of the graph is,
the better the compression achieved. This enables the employment of compara-
tively less capable devices, such as in those deployed in community micro clouds
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Fig. 9. Edge partition build latency compared to partition size.
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Fig. 10. Edge partition iteration latency compared to number of edges.

(i.e., in edge cloud and IoT-like scenarios), as well as those low-cost made avail-
able by cloud providers (i.e., spot instances and virtual machines tailored to micro-
services and serverless computing).

Our implementation also provides competitive processing performance when
compared to the GraphX implementation, specially considering that this current
GraphX approach focuses mainly on having the best possible processing perfor-
mance by keeping all edges in an array with no application of compression tech-
niques. The performance penalty of PK-Graph decreases in inverse relation with
the complexity of workload algorithm and the size of the dataset. Nonetheless,
while requiring less memory (the resource harder to share across time between
workloads), results show that at timesPK-Graph incurs a higher CPU usage than
GraphX, due to the increased graph processing complexity over the compact data
structure, as our iteration algorithms are more demanding on it.

5 Conclusion

We improve upon GraphX’s implementation, using a k2-tree, a data structure that
efficiently represents binary relations between two vertices. GraphX’s implemen-
tation uses two arrays to store the local source and destination vertex identifiers
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and a hash map to keep track of all the direct neighbors of each vertex. Our solu-
tion replaces this with a k2-tree that can efficiently compute the direct and reverse
neighbors of any local vertex.

We focused on reducing the memory usage of graphs while still maintaining
a competitive processing performance. We designed, developed and evaluated an
extension to the storage component of the GraphX distributed graph processing
library of Spark so that the processed graph is made more space-efficient by using
the k2-tree lossless compressed representation, while also aiming to achieve similar
performance to the uncompressed version. We evaluated the performance of PK-
Graph in a cluster of Spark workers, using various datasets to showcase the effec-
tiveness of our solution in both web and non-web graphs, as well as how our solution
scales as the size of the graph and the number of available processors increase. Our
experimental results highlight that our solution offers a significant reduction in
memory usage of graphs, specially forweb graphs, while achieving competitive pro-
cessing performance when compared to the GraphX implementation. PK-Graph
demonstrates an innovative combination of data representation and processing
techniques for distributed processing systems while decreasing space complexity,
resulting in a middleware which enables execution in resource-constrained scenar-
ios, with application on less powerful machines and spot-type virtual instances.
For the different iteration workloads, the latency difference between GraphX and
PK-Graph tended to decrease with bigger datasets and higher number of vCPUs.

FutureWork. We envision the integration of the k2-tree data structure on other
processing systems such as Flink, as well as exploring the possibility of integrat-
ing other schemes such as the WebGraph [5] representation. Orthogonal to this, it
would be relevant to expand evaluated datasets to include more diverse real-world
graphs and to evaluate further ideas with datasets of greater size. Evaluating our
contribution with other algorithms and also comparing with other similar works
will be relevant.
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