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CD Cyclodextrin
CD-PEG Cyclodextrin-polyethylene glycol
Chol Cholesterol
DMPC 1,2-Dimyris-toyl-sn-glycero-3-phosphocholine
DMPG 1,2-Dimyristoyl-sn-glycero-3-phospho-(1’-racglycerol)
DNA Deoxyribonucleic acid
DOPC Palmitoyloleoylphosphatidylcholine
DOPS Dioleoylphosphatidylserine
DOTAP 1,2-Dioleoyl-3-trimethylammonium propane
DPPC Dipalmitoylphosphatidylcholine
DPPG 1,2-Dipalmitoyl-sn-glycero-3-phosphoglycerol;
DSPC Distearoylphosphatidylcholine
DSPE Distearoyl-sn-glycero-phosphoethanolamine
DSPG 1,2-Distearoyl-sn-glycero-3-phosphoglycerol
ECM Extracellular matrix
EGFR Epidermal growth factor receptor
EMA European Medicines Agency
EPC Egg phosphatidylcholine
EPR Enhanced permeability and retention
FDA US Food and Drug Administration
HCC Hepatocellular carcinoma
HER2 Human epidermal growth factor receptor 2
HIV Human immunodeficiency virus
HSA Human serum albumin
HSPC Hydrogenated soy phosphatidylcholine
KRAS Kirsten rat sarcoma viral oncogene homolog
KS Kaposi sarcoma
L-MTP-PE Muramyl tripeptide phosphatidylethanolamine
LNPs Lipid nanoparticles
LSAM Large surface area microparticle
MDP Muramyl dipeptide
MDR Multidrug resistance
MPEG Methoxy polyethylene glycol
MPPE Maleimidated palmitoyl phosphatidylethanolamine
MSPC 1-Myristoyl-2-stearoyl-sn-glycero-3-phosphocholine
NGPE N-glutaryl phosphatidylethanolamine
NIPAM Poly(N-isopropylacrylamide)
NPs Nanoparticles
NSCLC Non-small cell lung cancer
PC Phosphatidylcholine
PE Polyethylene
PEG Polyethylene glycol
PEG2000-DSPE PEGylated distearoyl-sn-glycero-phosphoethanolamine
PFS Progression-free survival
PICN Paclitaxel injection concentrate for nanodispersion
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PLA Polylactic acid
PLA2 Phospholipase A2
PLGA Polylactide-co-glycolic acid
POPC Palmitoyloleoylphosphatidylcholine
PPE Palmar-plantar erythrodysesthesia
PSMA Prostate-specific membrane antigen
PVP Polyvinyl-pyrrolidone
RES Reticuloendothelial system
RFA Radiofrequency ablation
RNA Ribonucleic acid
SM Sphingomyelin
SPARC Sun Pharma Advanced Research Company, Ltd.
TAMs Tumor-associated macrophages

1  Introduction

Cancer is a general term for a large group of diseases, whose causes, characteristics, 
and occurrence can vary. All of them are characterized by the development of abnor-
mal cells that divide uncontrollably and infiltrate and disrupt normal body tissue. 
Cancer has a major impact on society across the world, and, in fact, there were 
19.3  million new cases in 2020 worldwide (Fig.  1) (https://www.iarc.who.int/). 
Among these statistics, breast, lung, colorectal, prostate, and stomach highlight as 
the most common cancer types, with more than 1 million cases each. Moreover, 
according to the International Agency for Research on Cancer (IARC), the number 
of new cases per year is expected to rise to 29.5 million by 2040 (https://www.iarc.
who.int/).

Current medicine takes advantage of traditional approaches for cancer therapy: 
surgery, radiotherapy, chemotherapy, phototherapy, immunotherapy, and hormonal 
therapy (Jabir et al., 2018). Unfortunately, although the available treatments have 
improved patient survival and treatment outcomes (Ferlay et al., 2021), these clini-
cal approaches can cause nonspecific effects in normal tissues, such as chemical 
toxicity, radiotoxicity, or phototoxicity, thereby provoking serious issues, namely, 
nausea, kidney damage, neutropenia, hair loss, loss of appetite, peripheral neuropa-
thy, diarrhea, and skin damage (Koo et al., 2020; Liang et al., 2010). Chemoresistance, 
and multidrug resistance (MDR) in particular, is another challenge when treating 
cancer patients. MDR consists on cross-resistance to a wide amount of unrelated 
chemotherapeutic drugs after exposure to a single anticancer agent (Baguley, 2010; 
Bukowski et al., 2020). Therefore, cancer research is focused on the discovery and 
development of biomedical tools to improve the specificity of cancer therapies aim-
ing to achieve therapeutic effect only at the tumor sites.

Although the administration of free chemotherapeutic drugs remains as the gold 
standard for cancer treatment, this therapeutic strategy still presents inherent chal-
lenges (Gonzalez-Valdivieso et al., 2021a, b). One of the most important problems 
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Fig. 1 Cancer statistics across the world. Number of new cases in 2020 for both gender and all 
ages (a). Estimated number of new cases from 2020 to 2040 for both gender and all ages classified 
by type of cancer (b) or geographical continent (c). (Data source: GLOBOCAN. Adapted from 
(https://www.iarc.who.int/))

of current medicine resides in the lack of specific treatments and poor drug accumu-
lation in the tumors (Creixell & Peppas, 2012). As a consequence, undesired side 
effects in healthy tissues occur, especially in the heart (Octavia et al., 2012), bone 
marrow (Daniel & Crawford, 2006), gastrointestinal tract (Mitchell, 2006), and ner-
vous system (Grothey, 2003). For this reason, novel approaches are needed to over-
come these issues and improve the action of unspecific chemotherapeutic agents.

Nanomedicine is one of these recent strategies for cancer therapy (Awasthi et al., 
2018; Bobo et al., 2016; Cao et al., 2020; Shreyash et al., 2021). Nanomedicine has 
emerged as a new discipline combining biology, engineering, chemistry, and phys-
ics, among others, with multiple biomedical applications in the screening, diagno-
sis, and treatment of diseases (Bayda et  al., 2019; Caballero et  al., 2022; 
Gonzalez-Valdivieso et al., 2021a, b; Lammers et al., 2011; Man et al., 2018). The 
therapeutic potential of nanomedicine aims to use sophisticated systems toward a 
more personalized medicine, in which each patient could take advantage of tailored 
approaches (Fenton et al., 2018; Park et al., 2021; Sanchez-Moreno et al., 2018). 
Thus, recent progress in nanotechnology has achieved the development of novel 
nanomaterials, whose physicochemical characteristics make them excellent candi-
dates to be applied in the biomedical science, with high impact in the pharmaceuti-
cal industry (Norouzi et al., 2020; Park et al., 2021; van der Meel et al., 2019; Wicki 
et al., 2015). Drug delivery, tissue engineering, viral infections, or pathogenic bac-
teria are some of the biomedical applications in which nanomedicine highlights as 
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an effective and promising tool (Das & Ali, 2021; Girotti et al., 2020a; Gonzalez- 
Valdivieso et  al., 2020; Peres et  al., 2021; Qiao et  al., 2021; Yacoby & Benhar, 
2008). In this work, we will focus on nanomedicine for cancer therapy because, 
even if drug delivery purposes have been explored for diverse diseases, cancer is 
undoubtedly the main target of drug delivery research (Davis et al., 2008; Shi et al., 
2017) and, in fact, multiple drug delivery nanosystems based on these concepts have 
been translated into clinical products for chemotherapy, such as Abraxane®, 
DaunoXome®, Doxil®/Caelyx®, Marqibo®, Myocet®, and Onivyde® (Gonzalez- 
Valdivieso et al., 2021b; Han et al., 2017; Kushwah et al., 2018; Saw et al., 2017).

2  Cancer Physiology

Cancer is characterized by a challenging physiology which is a huge hurdle for 
biomedical research and demands therapeutic agents to have special features. 
Therefore, nanomedicine is able to explore multiple features of cancer that provoke 
low outcome rates and poor drug accumulation. The aberrant proliferation of cancer 
cells stimulates the fast formation of new blood vessels, also known as angiogene-
sis, thereby resulting in leaky vasculature with aberrant tortuosity, abnormal base-
ment membrane, poor lymphatic drainage, high interstitial pressure, dense 
extracellular matrix (ECM) network, or extensive stromal cells, namely, tumor- 
associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) 
(Matsumoto et al., 2016; Shi et al., 2020). Furthermore, the tumor microenviron-
ment traps many nanocarriers on the tumor vasculature periphery and avoids pene-
tration into the tumor core (Matsumoto et al., 2016).

In addition, cancer cells are characterized by higher expression of multiple pro-
teins, not only cytoplasmic proteins but also anchored receptors to cell membrane 
(Byrne et al., 2008; Jain & Stylianopoulos, 2010). These cancer markers have huge 
interest as different targets can be used depending on the type of tumor (Baron, 
2012; Sethi et al., 2013). Indeed, cancer markers allow us to even differentiate pri-
mary tumors from distance metastasis (Byrne et al., 2008; Quail & Joyce, 2013). 
Nanocarriers surface can be decorated with molecules (peptides, DNA or RNA 
aptamers) as targeting systems to specifically drive these devices to cancer cells in 
specific locations within the body, thereby reducing the amount of drug needed to 
achieve therapeutic effect and avoiding undesired effects in healthy cells (Agrawal 
et al., 2020; Girotti et al., 2020a, b; Hwang et al., 2020; Liu et al., 2010; Mitchell 
et al., 2021). Thus, nanotechnology takes advantages of cancer markers to develop 
advanced targeted nanocarriers toward personalized biomedical therapeutics 
(Aguado et al., 2018; Blanco et al., 2015; Cao et al., 2020; Ho et al., 2020).

Beside cancer features and special physiology, the development of accurate sys-
tems for controlled release of therapeutics is key when working in drug delivery. 
Bionanomaterials have been designed for use in advanced drug delivery systems to 
improve the delivery and efficacy of multiple pharmaceutical agents, such as pep-
tides, antibodies, enzymes, drugs, and vaccines (Caliceti & Matricardi, 2019; 
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Fenton et al., 2018; Yun et al., 2015). Therefore, designing biomaterials for drug 
delivery purposes is challenging and has to take into account multiple parameters to 
achieve the maximum therapeutic benefit: (i) biocompatibility of materials them-
selves and their degradation products, (ii) physicochemical properties of host mate-
rials, (iii) adequate drug for prolonged release, (iv) protection of therapeutic agent 
from breakdown while maintaining biological activity, (v) predictable release pro-
file, (vi) route of administration, and (vii) cost of material synthesis and production 
(Helary & Desimone, 2015; Mitchell et al., 2017; Yun et al., 2015).

3  Nanocarriers for Drug Delivery

As a consequence of special tumor physiology, Matsumura and Maeda reported the 
enhanced permeability and retention (EPR) in 1986 (Matsumura & Maeda, 1986). 
Their research showed that solid tumors have defective architecture within the blood 
vessels and enhanced vascular permeability, thereby receiving high amounts of 
nutrients and oxygen for rapid growth. Thus, the EPR effect considers that this 
nature of tumor blood vessels facilitates transport of molecules (proteins, drug- 
polymer conjugates, micelles, liposomes) into tumor tissues: molecules larger than 
the threshold of renal clearance (40 kDa) showed longer circulation times and slow 
clearance from the body, thereby being accumulated and retained in tumor tissues 
for long periods (Fang et al., 2011; Islam et al., 2021; Matsumura & Maeda, 1986; 
Shi et al., 2020). In contrast, this EPR effect does not occur in normal tissues. Thus, 
the EPR effect is considered a landmark in tumor-targeted chemotherapy.

As most chemotherapeutic drugs used in clinics are highly hydrophobic, the 
development of nanomaterials has explored over the past several decades different 
approaches and origins with different intrinsic and extrinsic properties to achieve 
better encapsulation and higher concentrations within tumor cells to achieve better 
therapeutic effect (Figs.  2 and 3) (Howes et  al., 2014; Kushwah et  al., 2018; 
Luginbuhl et al., 2017; Minelli et al., 2010; Yousefpour et al., 2019).

3.1  Types of Nanoparticles

3.1.1  Lipid-Based Nanocarriers

Lipid-based nanomaterials offer many advantages, such as simple formulation, self- 
assembling, biocompatibility, high bioavailability, or the ability to carry large cargo 
(Sercombe et al., 2015). These advantages make them very attractive for drug deliv-
ery purposes, thereby being the most common class of FDA-approved nanomedi-
cines (Anselmo & Mitragotri, 2019; Fenton et al., 2018). There are different types 
of lipid-based nanomaterials:
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Fig. 2 Application of engineered nanomaterials in cancer. Multidisciplinary research results in a 
wide pool of tailor-made tools for cancer detection, imaging, and therapy, thereby improving sur-
vival rates and treatment outcomes. (Reproduced with permissions from (Caballero et al., 2022))

Polymersome

Polymer micelle Nanosphere EmulsionGold NPIron oxide NP

Dendrimer Silica NP Quantum dot Liposome Lipid NP

Lipid-basedInorganicPolymeric

Fig. 3 Types of nanoparticles reviewed in this chapter with different origins: polymeric, inor-
ganic, and lipid-based nanomaterials. (Adapted from (Mitchell et al., 2021))

 (i) Liposomes, which are typically composed of phospholipids, thereby allowing 
the liposome to carry hydrophilic, hydrophobic, and lipophilic drugs (Sarfraz 
et al., 2018). Liposome’ surface is usually modified to extend their circulation 
times within the body to overcome the fast uptake by the reticuloendothelial 
system (Alyautdin et al., 2014).
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 (ii) Lipid nanoparticles (LNPs), which form micellar structures within the particle 
core. LNPs are typically composed of four major components: phospholipids 
for particle structure, cationic lipids to complex with negatively charged genetic 
material, cholesterol for stability and membrane fusion, and PEGylated lipids 
to enhance longer circulation times (Kulkarni et al., 2019; Leung et al., 2015). 
LNPs have high efficacy of nucleic acid delivery, simple synthesis, small size, 
and serum stability as main advantages for gene therapy, but their high uptake 
in the liver and spleen is an important limitation for translation into the clinics 
(Cheng et al., 2020; Fenton et al., 2018).

3.1.2  Polymeric Nanocarriers

Polymeric nanocarriers can be synthesized from natural or synthetic materials by 
emulsification (Brown et al., 2020), nanoprecipitation (Le et al., 2018), ionic gela-
tion (He et al., 2020), or microfluidics (Zhang et al., 2020), among others. Polymeric 
nanocarriers highlight due to their high biocompatibility, simple formulation, biode-
gradability, water solubility, stability over time, and wide potential to modify their 
surfaces for specific targeting (Fenton et al., 2018; Valcourt et al., 2020). Furthermore, 
this nanomaterial offers many different ways to carry the therapeutic agents, such as 
binding to the nanoparticle’ surface, chemical conjugation to the polymer, entrap-
ping in the polymer matrix, or encapsulation in the core (Mitchell et al., 2021). This 
wide versatility allows delivery of hydrophobic and hydrophilic compounds, as well 
as cargos with different molecular weights, ranging from small molecules to pro-
teins and vaccines (Caldorera-Moore et al., 2019; Knight et al., 2019; Liu et al., 
2020, 2010; Zhang et  al., 2020). However, despite their advantages, polymeric 
nanocarriers have some limitations, such as particle aggregation and toxicity. There 
are multiple subtypes of polymeric nanoparticles, such as nanocapsules (cavities 
surrounded by a polymeric membrane), nanospheres (solid matrix systems), poly-
mersomes (vesicles with membranes composed of amphiphilic block copolymers), 
micelles (composed of a hydrophilic core and hydrophobic coating), and dendrimers 
(hyperbranched polymers with complex 3D architecture and active functional 
groups on the external part to conjugate biomolecules) (Rideau et al., 2018; Shae 
et al., 2019; Zelmer et al., 2020).

3.1.3  Inorganic Nanocarriers

Inorganic nanomaterials (gold, iron, and silica) have been widely studied for diag-
nostics, drug delivery, photothermal therapy, and imaging purposes in biomedicine 
and cancer research due to their physical, electrical, magnetic, and optical proper-
ties (Bobo et al., 2016). Therefore, inorganic nanoparticles present the advantage of 
a great ability to be engineered into tailored nanocarriers with precise physicochem-
ical properties (size, structure, and geometry). Despite their good biocompatibility 
and stability, inorganic nanoparticles are limited in the clinical application by their 
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low solubility and toxicity (Bobo et al., 2016; Manshian et al., 2017). There are 
multiple forms of gold nanoparticles (AuNPs), such as nanospheres, nanorods, 
nanostars, nanoshells, and nanocages (Quazi et  al., 2021). AuNPs can be easily 
functionalized, thereby allowing researchers to design and develop nanocarriers 
specifically targeted to different tissues (Bobo et  al., 2016; Quazi et  al., 2021). 
Another example of inorganic nanoparticles is magnetic iron oxide NPs, composed 
of magnetite (Fe3O4) or maghemite (Fe2O3) (Arias et al., 2018). These nanocarriers 
present superparamagnetic properties especially useful for various applications as 
contrast agents, drug delivery vehicles, and thermal-based therapies (Arias et al., 
2018; Bobo et al., 2016). Calcium phosphate and mesoporous silica nanoparticles 
are also inorganic nanocarriers typically used for gene and drug delivery (Huang 
et al., 2020; Xu et al., 2019), while quantum dots are widely used for in vitro imag-
ing applications (Wagner et al., 2019).

Hence, in this chapter, we will focus on a comprehensive analysis of the clinical 
application of chemotherapy-based drug delivery nanosystems as advanced tools 
for cancer treatment.

3.2  Mechanism of Action of Classic Chemotherapeutic Agents

In the mid-1900s, the birth of the chemotherapy entailed a whole revolution in can-
cer treatment. Before that, the only options available were mainly radical surgical 
methods, with low success rates, that aimed at the complete eradication of the dis-
ease before it could spread and metastasize throughout the organism (Falzone 
et al., 2018).

Classic chemotherapeutic agents, also referred to as antineoplastic agents, are 
used to directly or indirectly inhibit the uncontrolled growth and proliferation of 
cancer cells. Their main disadvantages are related to their low specificity toward 
cancer cells, generating acute toxicity also to healthy tissues, and the drug resis-
tance mechanisms that lower their efficacy.

In the last decades, new discoveries in the field of immunology, cell biology, and 
molecular biology allowed researchers to investigate the molecular mechanisms 
responsible for the neoplastic transformation of cells and to redirect the path toward 
more specific and personalized therapies, including monoclonal antibodies or 
immunotherapies, among others. However, the classic chemotherapy, alone or in 
combination with new treatments, is still a key pharmacological option, despite its 
notable adverse effects (Falzone et al., 2018; Ferlay et al., 2021).

Classic chemotherapeutic agents are classified according to their mechanism of 
action and include alkylating agents, antimetabolites, topoisomerase inhibitors, 
antibiotics, and mitotic inhibitors, among others (Malhotra & Perry, 2003).

Alkylating agents impair cell function by alkylating the DNA molecule. They 
depend on proliferation for activity, but are not cell phase-specific, and are classified 
according to their chemical structures and mechanisms (Ralhan & Kaur, 2007). 
Alkylating agents include nitrogen mustards (More et  al., 2019), nitrosoureas 
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(Mitchell & Schein, 1986), platinum complexes (Bai et al., 2017), oxazaphospho-
rines (Giraud et  al., 2010), imidazotetrazines (temozolomide) (Moody & 
Wheelhouse, 2014), alkyl sulfates (busulfan, treosulfan, mannosulfan) (Lawson 
et al., 2021), and hydrazines (procarbazine) (Tweedie et al., 1987), among others.

Oxazaphosphorines (Zhang et al., 2005), such as cyclophosphamide and ifos-
famide, are a type of alkylating agent that induce cross-linking at guanine.

Nitrogen mustards are powerful local vesicants. Their metabolites are highly 
reactive in alkylating the DNA molecule. The hematopoietic system is especially 
susceptible to these compounds, and dose-limiting toxicity includes myelosuppres-
sion. Severe nausea and vomiting are common side effects and, in some cases, alo-
pecia, sterility, diarrhea, and thrombophlebitis. Examples are chlorambucil and 
melphalan (Diethelm-Varela et al., 2019).

Nitrosoureas (Brandes et  al., 2016), for example, carmustine, lomustine, and 
streptozocin, are very instable and rapidly and spontaneously decompose into 
highly reactive intermediates. Their lipophilic nature enables free passage across 
membranes, including the blood-brain barrier. Therefore, these agents are used for 
a variety of brain tumors, but their dose-limiting toxicity is related to 
myelosuppression.

Platinum agents that are still widely used as first- and second-line treatments of 
various tumors produce intra-strand and interstrand DNA cross-links and form 
DNA adducts that inhibit their replication. Cisplatin, carboplatin, and oxaliplatin 
are examples of these compounds. Carboplatin shows greater water solubility, 
slower hydrolysis, and a different toxicity profile. Dose-limiting toxicities for cis-
platin are renal insufficiency, peripheral sensory neuropathy, and ototoxicity. For 
carboplatin, the dose-limiting toxicity is myelosuppression, especially thrombocy-
topenia (Chen et al., 2013; Dasari & Tchounwou, 2014).

Antimetabolites’ major effect is interfering with the building blocks of DNA 
synthesis, and they are therefore most active in the S phase of the cell cycle and have 
little effect on the cells in G0. Consequently, these drugs are most effective in 
tumors that have a high growth fraction. Most of them are structural analogs of the 
naturally occurring metabolites involved in DNA and RNA synthesis. The antime-
tabolites can be divided into antifolates, purine antagonists, pyrimidine antagonists, 
and ribonucleotide reductase inhibitors. These include methotrexate, fluorouracil, 
cytarabine, gemcitabine, mercaptopurine, pemetrexed, pentostatin, hydroxyurea, 
fludarabine, and cladribine. They can induce myelosuppression and other severe 
adverse effects, such as hepatotoxicity or neurotoxicity, among others. Among 
these, 6-mercaptopurine and 5-fluorouracil, analogs of purines and pyrimidines, 
respectively, are widely used in clinical practices for the treatment of both hemato-
logical malignances and solid tumors (Kaye, 1998; Peters et  al., 1993; Peters 
et al., 2000).

Topoisomerase inhibitors interrupt the DNA unbinding during the S and G2 
phases of the cell cycle, by blocking topoisomerases I and II. Irinotecan and topote-
can, two water-soluble analogs of the camptothecin, bind to topoisomerase I and are 
used to treat ovarian, colorectal, and small cell lung cancer. Their main adverse 
effects include severe myelosuppression and acute diarrhea. In particular, irinotecan 
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demonstrated to have much more effective antitumor activity than first-generation 
camptothecins and less renal toxicity. On the other hand, etoposide and teniposide 
inhibit topoisomerase II, which leads to DNA double-strand breaks and increased 
DNA degradation. They are used to treat solid tumors, such as testicular and small 
cell lung cancer, leukemias, and lymphomas, and their adverse effects include 
myelosuppression and alopecia (Binaschi et al., 1995; Sinha, 1995; Wang & Tse- 
Dinh, 2019).

Antitumor antibiotics (Galm et al., 2005) can also be used for cancer treatment. 
First, bleomycin (Froudarakis et al., 2013), which has a cytotoxic effect on nondi-
viding tumor cells, intercalates DNA, resulting in spontaneous oxidation and forma-
tion of free oxygen radicals that cause strand breakage. It is effective in the treatment 
of lymphomas, germ cell tumors, head and neck cancers, and squamous cell carci-
noma, but the dose can be limited by the pulmonary toxicity that occurs in 10–40% 
of the treated patients. Dermatologic toxicity, fever, and anorexia are also fre-
quently seen.

Other antibiotics, such as the anthracyclines doxorubicin, daunorubicin, and ida-
rubicin, do not depend on the cell cycle and have multiple mechanisms of action, 
including the inhibition of topoisomerase II and the inhibition of DNA and RNA 
synthesis by intercalation with DNA, DNA strand excision, and generation of free 
radicals. They are effective in treating leukemias, lymphomas, and breast, ovarian, 
and bone cancer, and their adverse effects include cardiomyopathy and cardiotoxic-
ity (Bhagat & Kleinerman, 2020; Carvalho et al., 2009; Greene & Hennessy, 2015).

Actinomycin D and mitomycin are also antibiotics with chemotherapeutic activ-
ity whose mechanism of action does not depend on the cell cycle. The first one 
intercalates into DNA and prevents DNA, RNA, and protein synthesis. It is used to 
treat some childhood cancers and rhabdomyosarcoma, among others, with a dose- 
limiting myelosuppression and dermatologic toxicity. On the other hand, mitomy-
cin is used to treat gastric and pancreatic cancers. It alkylates DNA and inhibits 
DNA and RNA synthesis, also causing myelosuppression, hemolytic uremic syn-
drome, thrombotic thrombocytopenic purpura, and fever (Bradner, 2001).

Mitotic inhibitors include vinca alkaloids, taxanes, and nontaxane microtubule 
inhibitors (Jiang et al., 2006). Vinca alkaloids include vincristine, vinblastine, and 
vinorelbine. Upon entering the cell, vinca alkaloids bind rapidly to the tubulin and 
inhibit its assembly, during the S phase. Thus, polymerization of microtubules is 
blocked, resulting in cell cycle arrest in the M phase. They are used to treat many 
solid tumors, leukemias, and Hodgkin and non-Hodgkin lymphoma, but peripheral 
neurotoxicity can limit their dose (Duflos et al., 2002; Martino et al., 2018; Moore 
& Pinkerton, 2009; Moudi et al., 2013).

Taxanes, paclitaxel, and docetaxel, unlike the vinca alkaloids which cause micro-
tubule disassembly, promote microtubule assembly and stability, therefore blocking 
the cell cycle in mitosis. Docetaxel is more potent in enhancing microtubule assem-
bly and also induces apoptosis. These compounds have revolutionized the treatment 
of several solid tumors including metastatic breast cancer, metastatic pancreatic 
adenocarcinoma (in association with gemcitabine), NSCLC (in association with 
carboplatin), head and neck cancer, and gastric and prostate cancer. In particular, 
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these drugs are used when the first-line treatment failed in metastatic patients and 
therefore represent the only therapeutic option for patients who show drug resis-
tance mechanisms or are not candidates for curative surgical interventions (Mosca 
et al., 2021; Muggia & Kudlowitz, 2014; Zhang et al., 2019; Zhu & Chen, 2019). 
Adverse effects include peripheral neuropathy, interstitial pneumonitis, myelosup-
pression, cardiotoxicity, alopecia, and skin changes (Brewer et  al., 2016; Sibaud 
et al., 2016).

Nontaxane microtubule inhibitors disrupt microtubule stability by blocking 
mitotic spindles without affecting depolymerization and thus stop the process of 
cell division at the G2/M phases. They are commonly used in the treatment of meta-
static breast cancer and unresectable liposarcoma. Adverse effects include myelo-
suppression, peripheral neuropathy, and QT prolongation. Eribulin, ixabepilone, 
and epothilone are included in this group (Shetty & Gupta, 2014; Swami et al., 2017).

There are other compounds that are also worth mentioning, for example, the 
L-asparaginase, mostly used in acute lymphoblastic leukemia, an enzyme that 
breaks down the amino acid L-asparagine to aspartic acid and ammonia, reducing 
the source of asparagine for leukemic cells and inhibiting protein synthesis in tumor 
cells. During the treatment, allergic reactions, hepatotoxicity, hyperglycemia, pan-
creatitis, and blood clotting are frequently observed (Costa-Silva et al., 2020).

3.3  Marketed Chemotherapy-Loaded Nanoparticles 
for Cancer Treatment

As potent and effective cytotoxic drugs, these classic chemotherapeutic agents 
would benefit notably from a technology that could improve their specificity toward 
cancer cells, decreasing their toxicity and adverse effects and thus allowing for the 
administration of higher doses directed to the tumor. Nanotechnology could be the 
answer to the specific formulation needs of some of the abovementioned drugs. For 
example, doxorubicin is known to cause cumulative dose-dependent cardiotoxicity 
that can be severe, life-threatening, and dose-limiting (Zhao & Zhang, 2017). 
Changing its pharmacokinetic profile by encapsulating it into nanoparticles has 
demonstrated to significantly improve this aspect. Meanwhile, the mitotic inhibitor 
paclitaxel is very insoluble in water and is generally formulated using Cremophor 
EL, which generates the need for premedication and notably increases its side 
effects (Gelderblom et al., 2001). Figure 4 summarizes the main formulation prob-
lems that can be improved using nanoparticles.

With this idea in mind, for decades, hundreds of scientific groups worldwide 
have tried to improve the pharmaceutical profile of these antineoplastic agents, 
encapsulating them in nanoparticles of lipid, polymeric, or even inorganic nature, 
but it was not until 1995 when this approach finally reached the clinic (Anselmo & 
Mitragotri, 2019; Kemp & Kwon, 2021; Mitchell et al., 2021) (Table 1).
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Fig. 4 Main advantages of nanocarriers used for drug delivery purposes against cancer

Doxil® (in Europe Caelyx®), a doxorubicin-loaded liposomal formulation, was 
the first FDA-/EMA-approved liposomal chemotherapeutic agent (Barenholz, 
2012). Its success was based on three key elements: the liposome lipid bilayer was 
composed of high-T(m) phosphatidylcholine (PC) and cholesterol (in liquid state 
inside the body), the surface of the liposomes was modified with polyethylene gly-
col (PEG) to prolong drug circulation time and avoid the uptake by the reticuloen-
dothelial system (RES), and a high drug-loading was achieved with a remote 
doxorubicin-loading ammonium sulfate-based transmembrane gradient.

With a prolonged circulation time, clearance and volume of distribution are dras-
tically reduced, when compared to free doxorubicin (at least 250-fold and 60-fold, 
respectively), and the tumor cells are more exposed to the drug, for longer periods. 
Doxil not only has a better therapeutic effect but also significantly reduces the side 
effects of doxorubicin, such as myelosuppression, hair loss, vomiting, and diarrhea 
and, most importantly, the dose-limiting cumulative dose-dependent cardiotoxicity. 
However, Doxil® causes another characteristic side effect, desquamative dermatitis, 
which is called palmar-plantar erythrodysesthesia (PPE) or “hand-foot syndrome,” 
and an infusion-related reaction characterized by flushing and shortness of breath 
(von Moos et al., 2008). This symptom can be alleviated by slowing down the infu-
sion rate and appropriate medication. Moreover, due to the long circulation time of 
the PEGylated drug, stomatitis (inflammation of mucus lining) became the new 
dose-limiting toxicity.
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The US FDA approved the first generic version of Doxil® (doxorubicin hydro-
chloride liposome injection), LipoDox®, made by Sun Pharma Global FZE, in 2013, 
to ease drug shortage (Pillai & Ceballos-Coronel, 2013).

Just a few months after the approval of Doxil®, DaunoXome®, a liposomal for-
mulation of another anthracycline, daunorubicin, was first licensed in the UK and 
later approved by the FDA (Petre & Dittmer, 2007). Its liposomes were composed 
mainly of two lipids, distearoylphosphatidylcholine (DSPC) and cholesterol, with a 
reduced size and neutral charge that minimized RES uptake, leading to prolonged 
drug circulation. A citrate salt was used for the active loading of daunorubicin into 
the nanoparticles.

DaunoXome® was approved for the treatment of AIDS-associated Kaposi sar-
coma (KS), in the years where HIV was emerging as a serious threat, and it allowed 
for the administration of higher cumulative chemotherapeutic doses without signifi-
cant cardiotoxicity or other adverse effects. Daunorubicin® plasma AUC levels were 
more than 35fdd greater than those reported for comparable doses of free drug, with 
responses above 50% for the treatment of KS (Forssen & Ross, 1994; Gill 
et al., 1996).

There is also a second liposomal doxorubicin approved, in Europe and Canada, 
for the first-line treatment of metastatic breast cancer, in combination with cyclo-
phosphamide: Myocet® (Batist et al., 2002; Leonard et al., 2009). This formulation 
consists of doxorubicin encapsulated in non-PEGylated liposomes, made of PC and 
cholesterol, and its pharmacokinetics differs from both conventional doxorubicin 
and PEGylated liposomal doxorubicin. The clearance of this formulation is slower 
than free doxorubicin, with higher plasma levels, but faster than the PEGylated 
liposomes (Baselga et al., 2014).

Regarding the adverse effects, Myocet® has demonstrated to be substantially less 
cardiotoxic than doxorubicin and PPE occurs rarely, with an incidence of <0.5% in 
metastatic breast cancer patients treated in phase III clinical trials. Thus, this formu-
lation has a particular role in patients previously treated with anthracyclines in the 
adjuvant setting and those with cardiac risk factors (Safra, 2003).

The last anthracycline-based liposomal formulation approved for cancer treat-
ment is actually a combination of daunorubicin with cytarabine, at a cytarabine/
daunorubicin 5:1 molar ratio (Blair, 2018). The liposome is composed of DSPC, 
1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG), and cholesterol. Vyxeos® 
(CPX-351) efficiently encapsulates both drugs into the same liposome, exploiting 
the synergies of these two drugs for the treatment of acute myeloid leukemia, pro-
viding a survival benefit with acceptable tolerability. In addition, it allows for rela-
tively simple administration versus conventional 7 + 3 chemotherapy. Compared to 
standard of care treatment, Vyxeos® demonstrated superior median overall survival 
(3.61 months longer), event-free survival (1.22 months longer), and remission rate 
(14.4% higher) without increasing treatment-related mortality and toxicities (Lancet 
et al., 2016; Lancet et al., 2018).

Another sustained-release formulation encapsulating just cytarabine for the 
treatment of neoplastic meningitis is DepoCyt® (Mantripragada, 2002), prepared  
by a proprietary technology called DepoFoam®, that comprises 
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tens-of-microns-in-diameter multivesicular particles formed by compartments sep-
arated by lipid bilayers. It is composed of palmitoyloleoylphosphatidylcholine 
(DOPC) and 1,2-Dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG), and its struc-
ture allows encapsulation of large quantities of drugs and ensures prolonged release. 
It is the only liposomal drug for intrathecal administration.

The terminal half-life of the formulation was 40 times longer than that of stan-
dard cytarabine (Chamberlain et al., 1995), notably improving its pharmacokinetic 
profile. The incidence and severity of chemical arachnoiditis, a common adverse 
event following administration of DepoCyt, can be reduced by the coadministration 
of dexamethasone.

The first nanoparticulate system for cancer treatment based in polymeric 
nanoparticles was approved in 2004, with the name of Eligard®. Polymeric nanopar-
ticles represent very versatile vehicles that can be designed to improve the solubility 
of the encapsulated drug, the release profile, or the specific target, among others. 
Eligard® is composed of leuprolide (a testosterone inhibiting drug) incorporated 
into a polylactide-co-glycolic acid (PLGA) nanoparticle and is indicated as an 
effective treatment for the symptoms of prostate cancer. PLGA (Makadia & Siegel, 
2011) is a widely used hydrophobic and biodegradable polymer that slowly decom-
poses into the constituent monomeric units over time, generating sustained-release 
profiles of the nanoencapsulated drug.

Oncaspar® (Dinndorf et  al., 2007), by Servier Pharmaceuticals, is another 
approved nanoparticulate polymeric formulation for cancer treatment, which is 
composed of asparaginase and PEG. By covalently conjugating the native asparagi-
nase to the hydrophilic polymer PEG, it is possible to increase its circulation and 
retention time, decrease proteolysis, and hide antigenic determinants from the 
immune system, thus avoiding hypersensitivity associated to the administration of 
free asparaginase (Jarrar et  al., 2006). Oncaspar® was first approved for use in 
patients with acute lymphoblastic leukemia (ALL) who developed hypersensitivity 
to asparaginase. Later, it was approved as first-line treatment for ALL, as part of a 
multiagent thermotherapy regimen.

Abraxane® (Desai, 2016; Green et al., 2006; Lee et al., 2020) by Celgene is an 
albumin-bound formulation of another chemotherapy, paclitaxel, which is approved 
by the FDA for the treatment of metastatic breast cancer, NSCLC, and pancreatic 
adenocarcinoma. Conjugating the drug with albumin eliminated the need for an 
organic solvent, usually required for the delivery of the highly water-insoluble free 
paclitaxel, thus notably decreasing medication-associated side effects.

Another Cremophor-free paclitaxel formulation approved by the EMA is 
Apealea® (Vergote et al., 2020), which is also the newest nanoparticle formulation 
for cancer treatment in the market (approved in Europe in 2018). It is indicated in 
adult patients with a first relapse of platinum-sensitive epithelial ovarian cancer, 
primary peritoneal cancer and fallopian tube cancer, in combination with carbopla-
tin. The formulation is based on the proprietary XR17 micelle platform technology, 
composed of two novel micelle-forming excipients, N-(all-trans-retinoyl)-L-cysteic 
acid methyl ester sodium salt and N-(13-cis-retinoyl)-L-cysteic acid methyl ester 
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sodium salt. Apealea® showed non-inferior efficacy results and improved safety 
profile in phase III clinical trials against Taxol® (paclitaxel with Cremophor).

Marqibo® (Silverman & Deitcher, 2013), another mitotic inhibitor based formu-
lation, is also approved by the FDA. In this case, vincristine sulfate, a semisynthetic 
chemotherapeutic agent, was encapsulated in sphingomyelin (SM) and cholesterol 
liposomes to overcome the dosing, pharmacokinetic, and pharmacodynamic limita-
tions of free vincristine. In clinical trials, alone or in combination, Marqibo® was 
well tolerated and showed higher activity than standard vincristine treatment, prob-
ably due to the pharmacokinetic optimization and enhanced delivery. Currently it is 
indicated for the treatment of adult patients with Philadelphia chromosome- negative 
(Ph-) ALL, in second or greater relapse, or whose disease has progressed following 
two or more antileukemia therapies.

In 2015, based on the encouraging preclinical and clinical data available for the 
treatment of a variety of solid tumors, Onivyde® (Zhang, 2016), the nanoliposomal 
formulation of irinotecan, was approved by the FDA, as a combination regimen 
with 5-fluorouracil (5-FU) and leucovorin, for patients with gemcitabine-based 
chemotherapy-resistant metastatic pancreatic cancer. In advanced clinical trials, 
patients who received the combination of this PEGylated liposome formulation and 
5-FU/leucovorin gained on average 2 months of survival and showed an average 
delay in the time to tumor growth of 3.1  months when compared to those who 
received only 5-FU/leucovorin (FDA Approves Onivyde Combo Regimen for 
Advanced Pancreatic Cancer, 2015).

Finally, Mepact® was the first drug approved for the management of high-grade, 
resectable, nonmetastatic bone tumors combined with postoperative combination 
chemotherapy in children, adolescents, and young adults who have gone through 
full macroscopic surgical resection. It is made of non-PEGylated liposomes loaded 
with muramyl tripeptide phosphatidylethanolamine (L-MTP-PE), a fabricated lipo-
philic derivative of muramyl dipeptide (MDP) (a naturally occurring constituent of 
bacterial cell walls) that activates monocytes, macrophages, and some cytokines, 
producing an immune response against osteosarcoma lung metastases. In clinical 
trials, it demonstrated a very good safety profile, both in patients and healthy volun-
teers, and given in addition to the usual combination chemotherapy conducted in 
children and young adults with osteogenic sarcoma showed an increase in 6-year 
net survival from 70% to 78% (Kager et al., 2010; Meyers et al., 2008).

3.4  Clinical Development of Nanoparticulate Systems 
for Cancer Treatment

Despite the few nanoparticle-based drugs approved for cancer treatment, many dif-
ferent formulations have reached clinical trials during the last decades. Alkylating 
agents, antimetabolites, topoisomerase inhibitors, and enzymes, but especially anti-
tumor antibiotics and mitotic inhibitors, have been encapsulated mainly into 
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PEGylated or non-PEGylated liposomes or polymeric micelles, sometimes func-
tionalized for active targeting, but heavily relying just in the EPR effect (Anselmo 
& Mitragotri, 2021) (Table 2).

Regarding antitumor antibiotics, doxorubicin is by far the most commonly 
selected drug for its encapsulation into targeted and nontargeted nanoparticles, and, 
apart from the already mentioned successfully marketed formulations, many others 
have been tested in clinical trials. In one example from more than 20 years ago, 
Mitsubishi Pharma Corporation produced MCC-465, a liposome containing doxo-
rubicin, with PEG and anti-GAH mAb that binds specifically to a molecule on the 
cell surface of gastric cancer cells. The expectations were high, as the results 
obtained in xenografts were promising, but the phase I trial in patients with gastric 
cancer revealed no clinical response, and no more clinical trials were performed 
with the formulation (Matsumura et al., 2004). HER2-targeted PEGylated liposome 
MM-302, from Merrimack Pharmaceuticals, experienced a similar fate and, besides 
the promising safety results obtained in the first phase I clinical trial in breast cancer 
patients, failed to show improvements in efficacy in more advanced studies (Miller 
et al., 2016; Munster et al., 2018). The two different formulations of doxorubicin- 
loaded epidermal growth factor receptor (EGFR)-targeting nanoparticles, from 
EnGeneIC (Whittle et al., 2015) and the Swiss Group for Clinical Cancer Research 
of the University Hospital of Basel (Mamot et al., 2012), were not successful in 
reaching the market either. EnGeneIC is now testing its technology, based on the 
EDV® Nanocell Platform (bacterially derived minicell) with other cytotoxic drugs, 
and the Swiss Group for Clinical Cancer Research has just started a new phase I 
clinical trial with a doxorubicin-loaded PEGylated liposome.

2B3-101 from 2-BBB Therapeutics – that later was sold to Oncology Venture, 
changing its name to 2X-111  – is a glutathione-containing PEGylated liposome 
loaded with doxorubicin, for the treatment of solid tumors and especially designed 
to cross the blood-brain barrier (BBB). The first phase I clinical trial started in 2011, 
and the results showed a good safety profile (Brandsma et  al., 2014). A second 
phase II clinical trial is registered, but its status is “unknown” since a decade ago.

Worth mentioning is also the case of doxorubicin-loaded ThermoDox® system, 
the first and only thermosensitive liposome formulation to reach clinical trials, 
based on lipids that enable the temperature triggered release of their encapsulated 
content. The initial phase III clinical trial on ThermoDox® (i.e., HEAT trial) evaluat-
ing the drug in combination with the interventional oncology technique radiofre-
quency ablation (RFA), in comparison with RFA alone, for treatment of inoperable 
hepatocellular carcinoma (HCC) failed to meet its primary endpoint in progression- 
free survival (PFS). However, analysis of patient subgroups revealed a therapeutic 
benefit for ThermoDox® in patients who received prolonged RFA treatments, and 
thus Celsion Corporation decided to start a second phase III clinical trial, OPTIMA, 
exploring this condition, but it demonstrated that the addition of ThermoDox® to 
RFA does not provide a measurable survival benefit (Dou et al., 2017; Regenold 
et al., 2021).

To date, liposomal annamycin (semisynthetic analog of doxorubicin) has been 
tested in clinical trials, with different formulations, by three companies. The 
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products by NYU Langone Health (Booser et al., 2002) and Callisto Pharmaceuticals 
(Wetzler et al., 2013) failed to show efficacy in patients and are no longer actively 
being studied. On the contrary, Moleculin Biotech has just announced updated pre-
liminary safety data for annamycin in its three phase I clinical trials for acute 
myeloid leukemia and metastases of soft-tissue sarcoma, reporting a promising 
safety profile, with no cardiotoxicity and reduced alopecia (Gil et al., 2019).

Most of the evaluated antibiotics have been encapsulated in the inner aqueous 
phase of the liposomes, both by passive or active loading, but there are also exam-
ples of lipophilic drugs retained in the lipid bilayer of these nanoparticles. This is 
the case of Promitil® (Gabizon et al., 2020), a mitomycin-C lipidic prodrug loaded 
in PEGylated liposomes for the treatment of solid tumors that has already com-
pleted two phase I clinical trials showing a favorable safety profile and reduced 
toxicity as compared to equivalent doses of mitomycin-c. The product is currently 
being evaluated in a third phase I clinical trial.

Two companies selected mitoxantrone as the drug to be encapsulated into lipo-
somes for the treatment of various cancers. The formulation of NeoPharm Labs Ltd. 
was evaluated 20 years ago, in a phase I clinical trial, but the results did not encour-
age the continuation of the studies (Ahmad et al., 2005). The mitoxantrone hydro-
chloride liposome from CSPC ZhongQi Pharmaceutical Technology has been tested 
in a total of 23 clinical trials, alone or in combination with other chemotherapeutic 
drugs, for the treatment of very different cancers, such as malignant lymphoma, 
metastatic breast cancer, acute myeloid leukemia, advanced pancreatic cancer, etc. 
In general, the shown safety profile is good, and the technology will continue being 
evaluated in clinical trials to determine its efficacy (Wang et al., 2021).

Antibiotics have also been encapsulated into polymeric nanoparticles, such as 
the NC-6300 epirubicin-loaded polymeric micelles that showed to be well tolerated, 
with a manageable side effect profile, in a phase Ib dose escalation trial in patients 
with advanced solid tumors or advanced, metastatic, or unresectable soft-tissue sar-
coma (Chawla et al., 2020; Riedel et al., 2021). Another example is the PE-PEG- 
composed IMX-110 system, from Immix Biopharma, presented as monotherapy for 
soft-tissue sarcoma, that just a few weeks ago announced encouraging safety results 
for their ongoing phase Ib/IIa clinical trial.

Mitotic inhibitors have also been extensively studied in nanoformulations for 
cancer treatment, especially docetaxel and paclitaxel. Paclitaxel, very insoluble in 
water, is generally formulated using Cremophor EL.  Docetaxel, more soluble in 
water, is formulated using Tween 80 and ethanol. Tween 80, albeit less toxic than 
Cremophor EL, may be responsible of some toxic effects. Thus, nanoparticles are a 
key technology to eliminate these vehicles and improve the drug’s antitumor 
efficacy.

Merrimack Pharmaceuticals tested a second formulation in a phase I clinical 
trial  – apart from the previously described doxorubicin-loaded MM-302  – the 
docetaxel-loaded MM-310 anti-EphA2 receptor immunoliposome for the treatment 
of solid tumors (Kirpotin et al., 2016). The last safety update showed inability to 
reach optimal therapeutic index due to continued observation of cumulative periph-
eral neuropathy, and the formulation was discarded (Ernstoff et al., 2018).

T. B. Lopez-Mendez et al.



361

The ATI-1123 product from Azaya Therapeutics, now acquired by Cytori 
Therapeutics, was also tested in a phase I clinical trial with encouraging safety 
results (Mahalingam et al., 2014). Now, based on the FDA feedback, the company 
plans to proceed with a follow-on phase II trial in platinum-sensitive small cell lung 
cancer that have progressed at least 60 days after initiation of first-line chemother-
apy. The formulation is composed of phospholipids, cholesterol, human serum albu-
min (HSA), and sucrose, with the aim of removing the need for solvents, reducing 
hypersensitivity reactions, eliminating the requirement for premedications, and 
enhancing systemic docetaxel exposure.

The case of the BIND Therapeutics company is also well known. They devel-
oped prostate-specific membrane antigen (PSMA)-targeted polymeric nanoparti-
cles, based on their Accurin® technology, loaded with chemotherapeutics, for the 
treatment of various cancers (Autio et al., 2018). Specifically, the BIND-014 prod-
uct was loaded with docetaxel and evaluated in five phase I and II clinical trials for 
the treatment of prostate, metastatic, non-small cell lung, cervical, head and neck, 
or Kirsten Rat Sarcoma Viral Oncogene Homologue (KRAS)-positive lung cancers. 
Despite all the collaborations with the big pharmaceutical companies, the acquired 
funding, and the high expectations, their products failed to show efficacy in the 
clinic, and the company declared bankruptcy in 2016.

Cristal Therapeutics relies in polymeric micelles for sustained release of chemo-
therapeutics too (Braal et al., 2018). Their CriPec® platform is composed of tune-
able polymers, biodegradable drug linkers, and optional target motives and has been 
evaluated, loaded with docetaxel, in three phase I and II clinical trials for the treat-
ment of solid tumors and ovarian cancer. Phase I clinical trials showed well- tolerated 
safety profile, but in the phase II clinical trial, the efficacy endpoint was not met.

Docetaxel was also one of the chosen molecules for the cyclodextrin-based 
nanoparticle system of Cerulean, formed by covalently conjugating docetaxel to a 
linear, cyclodextrin-polyethylene glycol (CD-PEG) copolymer (Piha-Paul et  al., 
2021). Once again, the safety profile was acceptable, but the company decided to 
terminate clinical trials fearing lack of efficacy.

Samyang Biopharmaceuticals (South Korea) developed two polymeric micelle 
formulations loaded with docetaxel and paclitaxel, Docetaxel-PM (also DOPNP201/
Nanoxel®) (Lee et al., 2011) and Genexol-PM (Kim et al., 2004; Madamsetty et al., 
2019), respectively. These two monomethoxy PEG-b-poly(D,L, lactic acid) (PLA) 
formulations were specifically designed to improve the solubility of the chemo-
therapeutic drugs and to avoid the need to use toxic solubilizing agents such as 
Cremophor EL or Tween 80. Docetaxel-PM is commercialized in South Korea, and 
it is under clinical evaluation for pharmacokinetic equivalence with docetaxel injec-
tion concentrate as well as for safety and antitumor efficacy. Paclitaxel-PM is also 
available in South Korea and other Asian countries for the treatment of breast, non- 
small cell lung, and ovarian cancer and is currently undergoing bioequivalence test-
ing to gain marketing approval in the US and European markets, under the name of 
Cynviloq IG-001, but the process is being long and highly controversial, with even 
legal accusations between the companies involved.

Clinical Trials Involving Chemotherapy-Based Nanocarriers in Cancer Therapy: State…
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In addition, there are other four paclitaxel-loaded nanoparticle formulations 
approved in the Asian market. The first one, called LIPUSU® (Xu et  al., 2013; 
Zhang et al., 2022), is a liposomal formulation, composed of lecithin and choles-
terol, that was approved in China for the treatment of non-small cell lung cancer, 
breast cancer, and ovarian cancer, and it has been administered to over 2 million 
patients in the last 17  years. The second one is Nanoxel®, by Fresenius Kabi 
Oncology Ltd., that was approved in India in 2006 (Madaan et al., 2013; Ranade 
et al., 2013), allowing patients to receive Cremophor and premedication free pacli-
taxel, with equivalent efficacy. The third, Liporaxel®/DHP107 (Kim et  al., 2020; 
Rugo et al., 2021; Yang et al., 2020), has the peculiarity of being intended for oral 
administration. The formulation, which is elaborated by mixing up the paclitaxel 
chemotherapeutic drug with monoolein, tricaprylin, and Tween 80, was approved in 
South Korea, in 2016, for the treatment of advanced, metastatic, and local recurrent 
gastric cancer and is currently in clinical trials in patients with other cancers. The 
last one, the Paclitaxel Injection Concentrate for Nanodispersion (PICN), by Sun 
Pharma Advanced Research Company Ltd. (SPARC), was approved in India, in 
2014, for the treatment of metastatic breast cancer. In a phase II/III clinical study in 
patients with metastatic breast cancer (Jain et  al., 2016; Ma et  al., 2021), it was 
found to be equally effective and safe when compared to Abraxane®. Clinical stud-
ies are still ongoing.

Nippon Kayaku and Nanocarrier evaluated a paclitaxel-loaded polymeric 
micelle, NK105 (Hamaguchi et al., 2005; Hamaguchi et al., 2007; Kato et al., 2012), 
in a late-stage clinical trial against paclitaxel reference treatment too, but the formu-
lation failed to meet its primary endpoint. Nanocarrier decided to continue clinical 
trials with a second-generation micelle pipeline in which the drug was chemically 
conjugated to the polymers inside the nanoparticles. We have already mentioned the 
epirubicin-loaded NC-6300, and another two, NC-6004 (Subbiah et al., 2018) and 
NC-4016 (Ueno et al., 2014), encapsulating cisplatin and oxaliplatin, respectively, 
are also being evaluated in clinical trials. NC-6004, in phase II clinical trials, is 
administered as a combination therapy, for the treatment of pancreatic, head, or 
neck cancer, among others. On the other hand, a phase I dose-escalation and phar-
macokinetic study of NC-4016 in patients with advanced solid tumors or lymphoma 
has been completed in 2017, but no results have been published so far.

Finally, two more paclitaxel-loaded liposomal formulations have reached clini-
cal testing: Endotag-I and LEP-ETU. The novelty of Endotag-I, from Medigene, is 
its positive charge, due to the presence of 1,2-Dioleoyl-3-trimethylammonium pro-
pane (DOTAP) in the formulation. It is generally accepted that nanoparticles of 
neutral or slightly negative charge more efficiently scape removal by the immune 
system, but positive charges augment the interaction between the nanoparticles and 
the negatively charged cellular membranes (Mitchell et al., 2021). The hypothesis 
behind Endotag-I (Fasol et al., 2012) is that because of the positively charged lipids, 
it interacts with newly developed, negatively charged endothelial cells, which are 
particularly required for the generation of tumor blood vessels. The nanoparticles 
attack the endothelial cells as they divide, thus targeting the blood supply to tumors 
without affecting the blood supply to healthy tissue. However, preclinical studies 
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and clinical trials conducted on different types of cancer such as breast cancer, ade-
nocarcinoma, or pancreatic cancer have shown limited efficacy and sometimes 
notable adverse events. There are still phase III clinical trials ongoing, with 
Endotag-I as a second-line treatment for pancreatic cancer.

On the other hand, the paclitaxel-loaded LEP-ETU (Slingerland et  al., 2013), 
from NeoPharm Labs Ltd., is based on a similar formulation to the already men-
tioned mitoxantrone-loaded LEM-ETU, and the company evaluated a third compo-
sition in clinical trials too: the SN-38-loaded LE-SN-38 (Zhang et al., 2004). The 
three liposome formulations are based on similar combinations incorporating cho-
lesterol and cardiolipin. LEP-ETU entered clinical evaluation to treat ovarian, 
breast, and lung cancers and completed its last phase II clinical trial in 2012. Since 
then, it received the Orphan Drug Designation from the FDA, but no updated infor-
mation has been released. On the other hand, SN-38 is the active metabolite of iri-
notecan, and the LE-SN-38 liposomal formulation was tested for the treatment of 
small cell lung cancer and metastatic colorectal cancer in phase II clinical trials, 
where the formulation showed to be well tolerated but failed to meet efficacy 
endpoints.

With a slightly different concept, NanOlogy developed NanoDoce® and 
NanoPac® (Maulhardt et al., 2021, 2020; Mullany et al., 2020; Verco et al., 2021), 
two formulations of pure drug, docetaxel and paclitaxel, respectively, composed of 
large surface area microparticle (LSAM) therapeutic platforms, based on a propri-
etary supercritical precipitation technology that converts taxane API crystals into 
stable LSAMs, for tumor-directed therapy and sustained drug release. The adminis-
tration for both products is local/intratumoral, and they are being tested in phase I 
and II clinical trials for the treatment of different cancers, such as urothelial carci-
noma, pancreatic adenocarcinoma, and lung cancer.

Worth mentioning are two other mitotic inhibitors that have been tested in clini-
cal trials in nanoparticulate formulations for cancer treatment: eribulin mesylate and 
the thiocolchicine analog IDN 5405. Eribulin mesylate, Halaven®, synthesized by 
Eisai, got FDA approval in 2010, and the same company is now testing eribulin 
mesylate-loaded liposomal formulation (Halaven E7389-LF) in clinical trials. 
Results from the first phase I clinical trial showed the formulation was well toler-
ated in patients with advanced solid tumors (https://www.annalsofoncology.org/
article/S0923- 7534(19)58570- 2/fulltext#relatedArticles). Two more clinical trials, 
in phase I and phase Ib/II, are now ongoing in Japan, with the liposomal formulation 
alone or in combination with nivolumab. On the other hand, IDN 5405, the thiocol-
chicine analog, was formulated bound to albumin to develop ABI-011  – later 
NTB-011, in collaboration with Celgene – with cytotoxic and vascular disrupting 
properties (D’Cruz et  al., 2009). The expectations were high as the inventors of 
Abraxane®, the successful albumin-paclitaxel nanoparticle, were involved in the 
project; however, the first clinical trial was terminated and the second one with-
drawn even before starting patient enrollment.

One of the successful stories that ended up in the commercialization of one of the 
few approved nanoparticle-based chemotherapeutic formulations started with the 
testing of various sphingosomes by Inex Pharmaceuticals. The nanoparticles 
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composed of SM and cholesterol were loaded with vincristine (Onco TCS) (vincris-
tine liposomal-INEX: lipid-encapsulated vincristine, Onco TCS, transmembrane 
carrier system-vincristine, vincacine, vincristine sulfate liposomes for injection, 
VSLI, 2004), vinorelbine (INX-0125) (Semple et  al., 2005), or topotecan 
(INX-0076), among others, and evaluated in clinical trials for the treatment of 
advanced solid tumors and non-Hodgkin lymphoma (Bulbake et al., 2017). A few 
years later, Onco TCS changed its name to Marqibo® and was approved by the FDA 
for the treatment of Philadelphia chromosome-negative ALL and commercialized 
by Spectrum Pharmaceuticals. This company also tested another formulation in a 
phase I clinical trial, Alocrest, that resulted to be generally well tolerated (Deitcher 
et al., 2007).

INX-0076 and LE-SN-38 were not the only nanoparticulate formulation based 
on topoisomerase inhibitors that reached clinical testing. The therapeutic potential 
of camptothecins (including irinotecan and topotecan) is limited because they rap-
idly undergo hydrolysis at physiological pH, changing from their active form (lac-
tone ring structure) to their inactive form (carboxylate structure), leading to a short 
circulation lifetime. Liposomal formulations of these molecules can be designed to 
overcome these stability issues.

The previously mentioned company, Cerulean, developed a formulation based 
on camptothecin (apart from the docetaxel-loaded CRLX301), called CRLX101 
(Pham et  al., 2015; Svenson et  al., 2011; Young et  al., 2011) (formerly IT-101), 
developed by covalently conjugating camptothecin to a linear, cyclodextrin-PEG 
(CD-PEG) copolymer that self-assembles into nanoparticles. The formulation 
seemed promising at the preclinical level, as it was expected to address solubility, 
formulation, toxicity, and pharmacokinetic challenges, improving the efficacy. 
However, in 2013, it failed to show a benefit in lung cancer, causing a strategy 
change to drug combinations, but 3 years later, the company reported disappointing 
results for another phase II clinical trial, in combination with bevacizumab, in renal 
cell carcinoma patients.

Other clinical stage attempts to encapsulate topoisomerase inhibitors in nanopar-
ticles for cancer treatment including OSI-211, IT-141, and S-CKD602. The non- 
PEGylated liposomal form of lurtotecan, OSI-211 (Duffaud et al., 2004; Tomkinson 
et al., 2003), from OSI Pharmaceuticals, composed of hydrogenated soy phosphati-
dylcholine (HSPC) and cholesterol, was evaluated in a total of six clinical trials that 
finished more than a decade ago, and there are no updates since then. IT-141 (Carie 
et al., 2011) was composed of SN-38-loaded polymeric micelles and was evaluated 
in a phase I clinical trial that was terminated by the sponsor. Lastly, the phase I clini-
cal trial testing the PEGylated liposomal formulation S-CKD602 (Zamboni et al., 
2009), from Alza Corporation, finished in 2006, and, besides the company qualify-
ing the results as “promising,” there have been no news since then.

Regarding the use of alkylating agents, we have already mentioned NC-6004 
Nanoplatin and NC-4016 DACH-Platin from Nanocarrier, but there are more exam-
ples in clinical trials. The most evaluated drug has been cisplatin, in formulations 
including lipoplatin/nanoplatin, SPI-77, SLIT®, and LiPlaCis®, among others. 
Cisplatin is one of the most widely used chemotherapies due to its efficacy against 
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multiple cancer types but has severe side effects, demonstrating the critical need for 
specificity and reformulation.

Lipoplatin® (also known as Nanoplatin®) (Boulikas et al., 2005) is a proprietary 
PEGylated liposome formulation of cisplatin, by Regulon, Inc. The product has 
been introduced as Lipoplatin® for the treatment of pancreatic cancer and 
Nanoplatin® for lung cancer. This liposomes, composed of lipids including DPPG, 
soy PC, MPEG-distearoyl-sn-glycero-phosphoethanolamine (DSPE) lipid conju-
gate, and cholesterol, have been tested in phase I trials for malignant pleural effu-
sion, phase II trials for breast and gastric cancer, phase II/III trials for pancreatic 
cancer, and phase III trials for NSCL ((Mylonakis et al., 2010; Stathopoulos et al., 
2005; Stathopoulos et al., 2006a, b). In clinical trials, the company announced good 
safety profiles with reduced adverse effects associated with CPT including renal 
toxicity, peripheral neuropathy, ototoxicity, and myelotoxicity (Boulikas et  al., 
2005; Boulikas, 2009). In 2007, the EMA granted Orphan Drug Designation to this 
product for pancreatic cancer treatment, while clinical trials were still ongoing; 
however, no results have been published in years, and the company has not clarified 
if the drug is still being evaluated.

Formulations of cisplatin (SPI-77) (Seetharamu et al., 2010; Vokes et al., 2000; 
White et  al., 2006) or analogs, developed by ALZA Pharmaceuticals, formerly 
Sequus Pharmaceuticals, were based on stealth liposomes. Results obtained in 
phase I and II clinical trials demonstrated a good safety profile but very limited 
efficacy. These findings were attributed to the low loading capacity and insufficient 
release of the free drug.

LiPlaCis®, developed for treatment of advanced solid tumors, is a liposomal for-
mulation, incorporating cisplatin, which is composed of lipids with degradation 
properties controlled by the phospholipase A2 (PLA2) enzyme, highly expressed in 
a multitude of human solid tumors including prostatic, pancreatic, colorectal, gas-
tric, and breast cancers for a tumor-triggered release mechanism. In clinical trials, 
LiPlaCis® has demonstrated an enhanced therapeutic window compared to cispla-
tin, with superior PK properties, greater potency, and an increased maximum toler-
ated dose. However, severe renal toxicity and an acute infusion reaction were 
observed in patients in phase I study. Thus, LiPlaCis® clinical studies were halted.

SLIT® (Sustained Release Lipid Inhalation Target) (Chou et al., 2013), the lipo-
somal formulation from Transave (later Inhaled Lipid Cisplatin, ILC, from Insmed 
Incorporated), was composed of dipalmitoylphosphatidylcholine (DPPC) and cho-
lesterol and presented a key novelty: it was an aerosolized formulation for pulmo-
nary administration. In a phase I/II clinical study in patients with osteosarcoma 
metastatic to the lung, adverse effects associated to the IV administration of cispla-
tin were not reported, but changes in the pulmonary function were detected in some 
patients. Major benefits were described in patients with operable and small tumors 
(<2 cm), but more studies are needed to determine the efficacy and safety of the 
treatment.

On the other hand, oxaliplatin has also been nanoencapsulated and tested in clin-
ical trials. As a third-generation water-soluble platinum drug, it is different from 
cisplatin and carboplatin in that it presents free amino groups linked to platinum and 
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has lower toxicity and tumor resistance. MBP-426 (Sankhala et al., 2009; Senzer 
et al., 2009) is an oxaliplatin-encapsulated transferrin-conjugated N-glutaryl phos-
phatidylethanolamine (NGPE)-liposome that targets the transferrin receptor, which 
is upregulated in many types of cancer. After a phase I clinical trial in patients with 
advanced or metastatic solid tumors, the formulation entered a phase I/II trial for 
second-line gastric, gastroesophageal, or esophageal adenocarcinoma in 2009, but 
results have not been posted yet.

Regulon, Inc., the company that developed the cisplatin-loaded Lipoplatin®, also 
developed an oxaliplatin-based liposomal formulation, LipoXal® (Stathopoulos 
et al., 2006a; Tippayamontri et al., 2014). In a phase I study, reduction respect to 
free oxaliplatin of myelotoxicity, nausea, and peripheral neuropathy was observed, 
but further clinical tests will be needed to demonstrate the improvement of antitu-
mor activity of LipoXal® over free oxaliplatin.

Aroplatin (L-NDDP) (Dragovich et al., 2006) is a liposome encapsulating a cis- 
bis- neodecanoato-trans-R,R-1,2-diaminocyclohexane platinum II (NDDP), an 
oxaliplatin derivative. The multi-lamellar liposomes were formed from 
1,2-dimyristoyl-sn-glycero-3-phospho-(1′-racglycerol) (DMPG) and 1,2- dimyris- t
oyl- sn-glycero-3-phosphocholine (DMPC) lipids in acidified saline solution. In 
phase II study, Aroplatin was tested in refractory metastatic colorectal cancer, and, 
besides the acceptable safety profile, in general the response was modest. To date, 
there is no report of any ongoing phase III study. Two decades ago, the same com-
pany, Aronex Pharmaceuticals (now Antigenics), tried to commercialize another 
liposomal formulation, loaded with tretinoin and named Atragen (Bernstein et al., 
1998), but the FDA rejected the approval.

Apart from the cytarabine-containing marketed formulations, nanomedicines 
based on antimetabolites for the treatment of cancer have been nearly anecdotic, 
with only one formulation reaching clinical trials: gemcitabine-loaded FF-10832 
(Matsumoto et al., 2021), by Fujifilm Pharmaceuticals. The PEGylated formulation 
is now being evaluated in a phase I clinical trial, for the treatment of solid tumors, 
and last year, Fujifilm Pharmaceuticals signed an agreement with Merck to start a 
new clinical study for advanced solid tumors in combination therapy with 
KEYTRUDA® (pembrolizumab).

Finally, worth mentioning are two strategies that are not based in traditional che-
motherapy: LipoCurc® (Bolger et  al., 2019) and 188Re-BMEDA-liposome. 
LipoCurc®, by SignPath Pharma, is composed of curcumin-loaded nanoparticles. 
Historically, development of curcumin as a pharmaceutical product has been ham-
pered by its poor absorption and cardiac side effects. Thus, LipoCurc® was designed 
to improve curcumin bioavailability and toxicological profile. First reported results 
were encouraging, with a very good safety profile despite the high blood concentra-
tions. They are planning new clinical trials in different cancer types.

188Re-BMEDA-liposome (Chang et al., 2007; Lepareur et al., 2019), from the 
Institute of Nuclear Energy Research of Taiwan, was the only formulation incorpo-
rating radioactive isotopes to reach clinical trials for the treatment of primary solid 
tumors in advanced or metastatic stage. However, the phase I trial was terminated 
due to concerns of accumulation of radioactivity in both the liver and spleen
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4  Challenges in Nanomedicine Clinical Translation

Despite the uncountable attempts to develop targeted nanoparticulate therapies for 
drug delivery to tumors, few anticancer nanomedicines have been approved by reg-
ulatory agencies, thus generating a debate regarding the real effectiveness of these 
systems for cancer treatment. Most anticancer medicines follow the same two basic 
criteria when trying to design effective and safe sustained drug delivery systems 
based on lipid or polymeric nanoparticles: (1) the EPR effect, caused by the leaky 
vasculature next to the tumor, increases drug accumulation in the affected area, and 
(2) long systemic circulation of drug-loaded nanoparticles avoids the uptake by the 
RES, decreasing drug accumulation in the normal organs and reducing toxicity (Sun 
et al., 2020). The EPR effect influencing nanomedicines has repeatedly been con-
firmed, both in animal xenografts and in human cancer patients, using nanoparticle- 
encapsulated imaging agents (Gaillard et al., 2014; Greish, 2010; Hamaguchi et al., 
2004; Koukourakis et al., 2000; Torchilin, 2011), but it is difficult to conclude if this 
EPR effect is different to the one observed for the free drugs. Free drugs, as small 
molecules with high plasma protein binding, also accumulate in tumors due to this 
phenomenon (Tang et al., 2014; Torchilin, 2011), and, due to ethical concerns, clini-
cal trials with a free drug control arm are not possible in most cases; thus, there are 
very few direct comparisons between the free drug and the nanoparticle 
formulation.

When Doxil® reached the market, the accumulation of doxorubicin in patient 
tumors was found to be an order of magnitude higher than with free drug, and 
pathogenic analysis of KS revealed notably leaky vasculature (Northfelt et al., 1998; 
Uldrick & Whitby, 2011). However, in a later study, the evaluation of the tumor 
uptake of radiolabeled liposomes, with the same lipid composition as Doxil®, dem-
onstrated considerable heterogeneity between patients with the same and different 
cancer types (Harrington et al., 2001). Since then, a few studies have demonstrated 
significantly higher drug concentrations in the tumors when administering liposo-
mal formulations (Gabizon et al., 1994), but limited improvements have been the 
reason of failure and cancelation of many clinical trials (Dragovich et  al., 2006; 
Kraut et al., 2005; White et al., 2006).

Recent studies increasingly downplay the EPR effect. An interesting analysis by 
Wilhelm et al., surveying the literature from the past 10 years, concluded that only 
0.7% (median) of the administered nanoparticle dose is found to be delivered to a 
solid tumor (Wilhelm et al., 2016). Another meta-analysis found no significant dif-
ference in clinical anticancer efficacy between liposomal and conventional chemo-
therapeutics in terms of objective response rate, overall survival, and PFS (Petersen 
et al., 2016).

Another key aspect is the validity of the animal xenograft models to mimic the 
biological phenomena observed in human cancers. In the available animal models, 
the EPR effect is notably exaggerated, resulting in a poor clinical translation (Greish, 
2010). Thus, there is an urgent necessity to develop new models for in vivo and in 
silico testing.
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Regarding the long systemic circulation and the high plasma concentration, it 
can increase tumor accumulation if there is a strong EPR effect or decrease drug 
accumulation in normal organs to reduce toxicity. However, it can also reduce effi-
cacy or alter drug distribution to different organs, generating new adverse events 
(Harrington et al., 2001; Ngan & Gupta, 2016; Northfelt et al., 1998).

In addition, even if nanoparticles are able to avoid clearance from blood circula-
tion (by the mononuclear phagocytic systems or the RES, among others) and the 
shear stress caused by varying flow rates and extravasate next to the tumor, the 
complex extracellular matrix surrounding malignant cells will notably limit their 
penetration (Yuan et al., 1994). Furthermore, lack of drug release from the vehicles 
can significantly decrease drug availability (Laginha et al., 2005; White et al., 2006).

Furthermore, after hundreds of preclinical and a few clinical studies with actively 
targeted nanoparticles incorporating specific motifs directed to molecules that are 
usually overexpressed on cancer cells, none of the tested strategies have reached the 
market (Ernstoff et al., 2018; Mamot et al., 2012; Matsumura et al., 2004). This is 
probably linked to the fact that actively targeted nanosystems also rely on the same 
principles as the passive targeting until they reach the microenvironment of the 
tumor where they can match with the specific molecules on the cancer cell mem-
branes, thus dealing with the same challenges.

In general, most of the marketed nanomedicines failed to show improved effi-
cacy, in comparison with the reference treatment, but they significantly and consis-
tently improved the toxicity profile of classic chemotherapeutic agents, allowing for 
the administration of higher doses and better patient quality of life (Batist et al., 
2002; Drummond et al., 1999; Farokhzad & Langer, 2006).

5  Conclusions

Cancer continues to be unstoppable worldwide, and there will be more than 30 mil-
lion new cases by 2040, according to the International Agency for Research on 
Cancer. Thus, novel diagnostic and treatment tools are needed to beat this global 
challenge. Among the approaches explored by scientists, nanomedicine highlights 
due to its ability to develop an endless variety of accurate nanomaterials to provide 
a new landscape in cancer research. Thus, different scientific disciplines, such as 
engineering, chemistry, physics, nanotechnology, materials science, or medicine, 
work together to achieve precision systems and also enhance the translation to the 
clinics and pharmaceutical market. However, even though standardization, stability, 
and reproducibility are required for this goal, tailored features are mandatory for the 
successful application of the personalized medicine.

In this chapter, we have evidenced the encouraging potential of advanced 
nanoparticles as smart drug delivery systems to improve the therapeutic effect of 
current standard drugs and increased patient survival rates. Undoubtedly, there is 
still a long journey from the nanocarrier design to translation to the pharmaceutical 
market as viable products. Although thousands of research articles describe great 
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outcomes of drug delivery systems with different nature and properties in multiple 
in vitro and in vivo cancer models, only a small fraction has successfully reached 
the translation to clinical level. This limited clinical translation of new nanoparticles 
is mainly due to incomplete therapeutic efficacy and off-target toxicity in vital 
organs. Nonetheless, results and evidences from previous clinical trials should guide 
not only the optimization of nanocarrier formulations but also setting clinical stud-
ies taking into account the tumor heterogeneity through the introduction of stratified 
populations instead of broad cancer patients.
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