
Chapter 9
Investigating Some Attributes
of Periodicity in DNA Sequences
via Semi-Markov Modelling

Pavlos Kolias and Alexandra Papadopoulou

Abstract Periodicity ofDNAsegments and sequences have been studied thoroughly
during the past decades. One of the main problems is the identification of protein
coding and non-coding regions inside genes, using mathematical techniques. Peri-
odicity plays an important role in the structure of DNA, as specific regions have been
shown to have periodic patterns. In this paper, we consider that a DNA sequence
is described by a semi-Markov chain (SMC), with discrete state space consisting
of the four nucleotides. Equations in closed analytic form are derived, in order to
characterize strong or weak d-periodic and quasiperiodic behaviour of our model
for both the homogeneous and non-homogeneous case. The model is applied to 3-
base periodic sequences, which characterize the protein-coding regions of the gene.
The related probabilities and the corresponding indexes are provided, which yield a
description of the underlying periodic pattern. Last, the previous theoretical results
are illustrated with data from synthetic and real DNA sequences.

Keywords Semi-Markov chains · Quasiperiodicity · Partial non-homogeneity ·
DNA sequence
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9.1 Introduction

Periodicity is a structural property of DNA sequences. It is expressed as either
nucleotides or words of nucleotides, that have a tendency to appear with specific
distances in-between. It is worth noting that, in DNA analysis, periodicity refers
to a tendency of letters or words to reappear at certain distances, in contrast with
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the formal mathematical definition of periodicity. Repetitive patterns in DNA often
cause human diseases and algorithmic techniques have been applied to detect such
patterns using statistically based criteria [5]. Also, there exist some structural types of
periodicity in DNA, that are not linked to diseases. Mainly, there have been observed
two such types of periodic behaviour in the DNA. The first one was discovered
in 1980 [26] regarding the signal of nucleosomes contained in the nucleus. The
authors observed that certain dinucleotides in the DNA of chromatin tend to appear
at approximately every 10 to 11 bases. Subsequent studies suggested that the period
of chromatin sequences converges to 10.4 bases [10]. Also, a more recent study,
which investigated the genome of three organisms (A. thaliana, C. elegans and H.
sapiens), suggested that the dinucleotide AA has almost perfect 10.5-base periodic
behaviour in sequences of these organisms [22]. One explanation about this type
of periodicity is that the distance of 10.5 bases is the “step” of the double strand,
which suppress the long DNA sequence into the area of the nucleus [14]. Previous
studies have used the Fourier transformation and spectral density analysis, as the
main tool for exploring the periodic behaviour in DNA sequences [7–9, 24, 31].
The second type of periodicity has been observed in areas of the genome that are
transcribed and later translated into proteins, called coding regions . Previous stud-
ies, using similar methods, have shown that in coding regions, there is a tendency
of certain nucleotides to reappear every 3-bases [32]. Also, this type of periodicity
has only been observed in coding regions, while for non-coding regions there was
not found any similar periodic behaviour [12, 25, 27]. As each of the amino acids
is encoded with a triplet of nucleotides (codon) and some specific amino acids are
more abundant than others, the authors concluded that the periodic behaviour, in fact
exists, due to the abundance of certain amino acids and the period of 3-bases is due
to the triplet nature of the DNA [2]. As the whole genome sequence of each organism
is frequently of several billions bases and the coding regions only constitute a small
part of DNA, the information about the periodic behaviour of the coding regions of
the DNA could be helpful for detecting these regions and distinguish between pro-
tein coding regions and non-coding regions [20]. Also, other well-known and highly
accurate probabilistic algorithms use hidden-Markov models, in order to predict the
different gene structures inside DNA [6]. Markov chains have been previously used
in the analysis of letter and DNA sequences and some of the models could be found
in the book ofWaterman [29] and also in [1, 3, 13, 23, 30]. In this paper we consider
that a DNA sequence is described by a semi-Markov chain (SMC) Xt , with discrete
state space S = {A,C,G, T }, where t denotes the index position inside the sequence
and C(m) = {ci, j (m)} is the core matrix of the SMC. Previously, in [19] a similar
modelling was examined to derive distributions of the word location and frequency
of occurrences. The applied semi-Markov model was of a discrete finite state space
S with elements specific words i.e. finite combinations of letters taken from the
alphabet with known length and non-overlapping occurrences. An overview of prob-
abilistic and statistical properties of words, as occurrences in biological sequences,
is provided in [21]. Semi-Markov chains are a generalization of the Markov chains
and allow the sojourn time between transitions to follow arbitrary distributions. An
overview of the basic theory of homogeneous semi-Markov chains could be found in
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the book of Howard [15]. Further theory and applications of semi-Markov modelling
can be found in [4, 11, 16–18]

In Sect. 9.2.1, a recursive equation of the homogeneous semi-Markov model that
could be used as an identification tool for regions that have strong or weak d-periodic
behaviour is constructed. In Sect. 9.2.2 the previous theoretical results are general-
ized for the non-homogeneous case, considering the triplet nature of the DNA and
assuming each coding position corresponds to a different transition matrix P(k). In
Sect. 9.3, the case of quasiperiodicity of a state is included. The above tool is struc-
tured considering the fact that it is possible for the chain to lose its periodic behaviour
for a number of cycles or the state to appear not exactly after a period of d positions,
but in a radius of d ± ε positions. This could be due to the fact of genetic mutations
that could shift theway the sequence is read. In Sect. 9.4, we present illustrationswith
data from both synthetic and real DNA sequences, regarding the 3-base periodicity.
In the final section, conclusions are provided.

9.2 The Basic Framework

We assume that the DNA sequence is a realization of a semi-Markov chain Xt

with state space the four nucleotides S = {A,C,G, T }. The semi-Markov chain is
described by a sequence of Markov transition matrices {P(t)}∞t=0 and a sequence
of conditional holding time matrices {H(m)}∞m=1, such as P(t) = {pi, j (t)}, i, j ∈
S, t ∈ N , where

pi, j (t) = Prob[ the SMC will make its next transition to state j
/ the SMC entered state i at timet],

with pi, j (t) ≥ 0, ∀i, j ∈ S, t ∈ N and
∑

j∈S
pi, j (t) = 1, ∀i, t ∈ N and

H(m) = {hi, j (m)}, i, j ∈ S, m ∈ N ,

hi, j (m) = Prob[The SMC will stay in state i form time units
before moving to state j].

We define the probabilities of the waiting time wi (t,m), which are the prob-
abilities for the SMC to hold for m time units in state i , before making its next
transition, while it entered state i at time t , to be wi (t,m) = ∑

j∈S pi, j (t)hi, j (m).

Also the cumulative distribution for thewaiting time is >wi (t, n) =
∞∑

m=n+1

wi (t,m) =
∞∑

m=n+1

∑

j∈S
pi, j (t)hi, j (m). The basic parameter of the SMC is the core matrix and
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it is defined as C(t,m) = {ci, j (t,m)}i, j∈S = P(t) ◦ H(m), where the operator {◦}
denotes the element-wise product of matrices (Hadamard product). Also, we define
the interval transition probabilities qi, j (t, n), which are the probabilities for the SMC
to be in state j after n time units, while it entered state i in time t , to be

Q(t, n) = {qi, j (t, n)}i, j∈S
= >W(t, n) +

n∑

m=0

[P(t) ◦ H(m)]Q(t + m, n − m),
(9.1)

where >W(t, n) = diag{ >wi (t, n)}. The elements of the matrix Q(t, n) are

qi, j (t, n) = δi, j
>wi (t, n) +

∑

r∈S

n∑

m=1

ci,r (t,m)qr,i (t + m, n − m), i, j ∈ S, t, n ∈ N .

9.2.1 The Homogeneous Case

In the following, we consider the DNA sequence to be a homogeneous semi-Markov
chain, therefore we have pi, j (t) = pi, j ,∀t ∈ N . Furthermore, we assume that DNA
sequences do not contain virtual transitions, therefore subsequent appearances of the
same state count as holding and pi,i (t) = 0, ∀i ∈ S, t ∈ N . For the purpose of the
present, the parameter of time indicates the position, based on the nature of the DNA
sequences, as their evolution depends on the index position of every letter in the
sequence. In order to study the d-periodic behaviour of a DNA sequence, we would
like to examine the probability of a letter reappearance after d positions. Also, for
a sequence with strong d-periodic behaviour, it is expected that for every periodic
state, the frequency of the state appearances, every kd positions, would be high.
Therefore, an interesting question is whether the chain is in the same state, not only
for the first cycle of length d, but also for a number of n successive cycles of the
same length. Thus, we define the following probabilities.

Definition 1 Let pi (1, d) be the probability that the SMCwill be in state i in position
d, while in the initial position it was observed to be in state i , that is

pi (1, d) = Prob[the SMC will be in state i in position d/

the initial state was observed to be i].

Similarly, we define the probability that the SMC will be in state i every d positions
for n cycles, while in the initial position it was observed to be in state i , as follows
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pi (n, d) = Prob[the SMC will be in state i every d positions for n cycles /

the initial state was observed to be i].

It is important to note that for a given DNA sequence, we do not know if the initial
position is due to a letter transition or reappearance of the same letter, therefore we
have to include both cases in order to calculate the probability above. If we observed
the process to be in state i in the initial position, it would be unlikely that upon the
first observation the SMC had just entered this state. On the other hand, it would be
more plausible to think that we started to observe the process in a position, where the
entrance to a state has already been achieved.As a result, the processwill stay in state i
for the remaining positions and thenmake a transition to state j . The basic parameters
of the SMC under random starting concern only the behaviour of the process until
the first transition. Hence, let us denote by r pi, j (·) the transition probabilities under
random starting and r hi, j (·) the distributions of the holding positions under random
starting. A more detailed specification of the SMC under random starting could be
found in the book of Howard [15].

Lemma 1 Let P(1, d) and P(n, d) be the (N × 1) vectors, which consist of the
probabilities pi (d) and pi (n, d), i ∈ S respectively, following Definition 1. Then,

(a) P(1, d) =
[>

rW(d) +
d∑

x=1

I ◦ [
rC(x)[Q(d − x) ◦ (U − I)]]

]
· 1. (9.2)

(b) P(n, d) = P(n − 1, d) ◦ P(1, d), (9.3)

where I is the identity matrix, >
rW(d) = diag{>rwi (d)} denotes the survival function

of the waiting time distribution under random starting, rC(x) = {rci, j (x)} denotes
the core matrix of the SMC under random starting, which consist of the elements
rci, j (x) = r pi, j · r hi, j (x), U = {ui, j }, where ui, j = 1, for every i, j ∈ S and 1 =
[1, 1, · · · , 1]T .
Proof Let Sx = i i i i · · · i︸ ︷︷ ︸

x−times

j u u · · · u i,be the sequenceof states of lengthd,where

x = 1, 2, ..., d, j denotes any state different than i and u denotes any state from the
state space S. For a given sequence, let us now consider the following instances
which are mutually exclusive and exhaustive events:

S1 = i j u u · · · u i

S2 = i i j u u · · · u i

S3 = i i i j u u · · · u i

...

Sd−2 = i i · · · i j u i

Sd−1 = i i i · · · i j i
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Sd = i i i i i · · · i

According to the previous, the semi-Markov chain, with initial observed state i , will
be in state i after d positions, if either it holds for more than d steps in the initial
state or makes a transition to a different state j at position x before the end of the
cycle, but in any case to occupy state i in the final position. Thus, using probabilistic
argument and summing over all possible states and holding times, we can conclude

to the equation pi (1, d) = >
rwi (d) +

N∑

j �=i

d∑

x=1

r ci, j (x)q j,i (d − x). Let the element of

the i th row of a vector P(1, d) be the probability pi (1, d). The matrix notation in
Eq.9.2 can immediately be deduced by keeping only the non-diagonal elements, i.e.
multiplying by the matrix [U − I]. Similarly, concerning Eq.9.3, let us consider
that the elements of the matrix P(n, d) to be the probabilities pi (n, d). Hence, in
order for the SMC to be in the same state after n successive cycles of length d,

we have pi (n, d) = [>
rwi (d) +

N∑

j �=i

d∑

x=1

r ci, j (x)q j,i (d − x)
]n

. The matrix form is

deduced immediately by the result above. �

Remark 1 For the interval transition probability matrix Q(n), instead of using the
recursive formula 9.1, one can apply the closed analytic form, as proposed by Vas-
siliou and Papadopoulou [28]

Q(n) = >W(n) + C(n) +
n∑

j=2

{C( j − 1) +
j−2∑

k=1

S j (k,mk)}
×{>W(n − j + 1) + C(n − j + 1)},

(9.4)

where S j (k,mk) =
j−k∑

mk=2

j−k+1∑

mk−1=1+mk

· · ·
j−1∑

m1=1+m2

k−1∏

r=−1

C(mk−r−1 − mk−r ) for j � k +
2, while if j � k + 2 we have S j (k,mk) = 0.

9.2.2 The Case of Partial Non Homogeneity

The partial non-homogeneous semi-Markov chain (PNHSMC) is constructed based
on the fact that every amino acid consists of three nucleotides (codon). Using this
information, we can create three discrete coding positions k = {1, 2, 3} and for the
PNHSMC, we have three stochastic matrices P(k), k = 1, 2, 3 for the embedded
Markov chain. Similar to the homogeneous case, it would be of interest to find the
probability for the PNHSMC to be in the same state after a length of d positions and
also for n successive cycles of length d.
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Definition 2 Let us define the quantity pi (k, 1, d) to be the probability that the
PNHSMCwill be in state i in position d, while in the initial position it was observed
to be in state i , in coding position k, that is

pi (k, 1, d) = Prob[the SMC will be in state i in position d /

the initial state was observed to be i in coding position k].

Furthermore, we define the quantity pi (k, n, d) to be the probability that the
PNHSMCwill be in state i every d positions for n cycles, while in the initial position
it was observed to be in state i , in coding position k, that is

pi (k, n, d) = Prob[the SMC will be in state i every d positions

for n cycles/ the initial state was observed to be i in coding position k].

Lemma 2 Let P(k, 1, d) and P(k, n, d) be (N × 1) vectors, consisting of the prob-
abilities pi (k, 1, d) and pi (k, n, d), i ∈ S respectively, following Definition 2. Then

(a) P(k, 1, d) = (9.5)

[>

rW(k, d) +
d∑

x=1

I ◦ [
rC(k, x)[Q(k + x mod s, d − x) ◦ (U − I)]]

]
· 1

(b) P(k, n, d) = P(k, n − 1, d) ◦ P(k, 1, d), (9.6)

where >
rW(k, d) = diag{>rwi (k, d)} denotes the survival function of the waiting

time distribution of the PNHSMC under random starting, rC(k, x) = {rci, j (k, x)}
denotes the core matrix of the PNHSMC under random starting, which consist of the
elements r ci, j (k, x) = r pi, j (k) · r hi, j (x) and U = {ui, j }, where ui, j = 1.

Proof Let

Sx = ik ik+1 · · · ik+x−1 mod s︸ ︷︷ ︸
x−times

jk+x mod s uk+x+1 mod s · · · uk+d−1 mod s ik+d mod s

be the sequence of states of length d, where x = 1, 2, ..., d, j denotes any state
different than i, u denotes any state from the state space S, k denotes the coding
position and s denotes the total number of different coding positions. For a given
sequence, let us define the following instances which are mutually exclusive and
exhaustive events:
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S1 = ik jk+1 uk+3 uk+3 uk+4 · · · uk+d−1 mod s ik+d mod s

S2 = ik ik+1 jk+2 uk+3 uk+4 · · · uk+d−1 mod s ik+d mod s

S3 = ik ik+1 ik+2 jk+3 uk+4 · · · uk+d−1 mod s ik+d mod s

...

Sd−2 = ik ik+1 ik+2 · · · jk+d−2 mod s uk+d−1 mod s ik+d mod s

Sd−1 = ik ik+1 ik+2 ik+3 · · · jk+d−1 mod s ik+d mod s

Sd = ik ik+1 ik+2 ik+3 ik+4 ik+5 · · · ik+d mod s,

The PNHSMC, with initial observed state i in coding position k, will be in state i
after d positions, either if it holds for more than d positions in the initial state or
moves to a different state j at position x + k mod s before the end of the cycle, but
in any case to occupy state i in the final position. Thus, using probabilistic argument
and summing over all possible states and holding positions, we obtain

pi (k, 1, d) = >
rwi (k, d) +

N∑

j �=i

d∑

x=1

rci, j (k, x)q j,i ((k + x) mod s, d − x).

Let the element of the i th row of a vector P(k, 1, d) to be the probability pi (k, 1, d).
The matrix notation in Eq. (9.5) can be deduced immediately by multiplying with the
matrix [U − I]. Similarly, concerning equation (9.6), let us consider the elements of
the matrix P(k, n, d) to be the probabilities pi (k, n, d). In order for the PNHSMC
to be in the same state after n successive cycles of length d, we have

pi (k, n, d) = [>
rwi (k, d) +

N∑

j �=i

d∑

x=1

r ci, j (k, x)q j,i (k + x mod s, d − x)
]n

.

The matrix form in (9.6) is deduced immediately by applying the Hadamard product
over n matrices of the form P(k, 1, d). �

Remark 2 For the interval transition probability matrix Q(t, n), instead of using
the recursive formula, we can apply the closed analytic form, which is [28]

Q(k, n) = >W(k, n) + C(k, n) +
n∑

j=2

{C(k, j − 1) +
j−2∑

x=1

S j (x, k,mx )}

×{>W(k + j − 1, n − j + 1) + C(k + j − 1, n − j + 1)},
(9.7)

where S j (x, k,mx ) =
j−x∑

mx=2

j−x+1∑

mx−1=1+mx

· · ·
j−1∑

m1=1+m2

x−1∏

r=−1

C(k + mx−r − 1,mx−r−1 − mx−r ) for

j � x + 2, while if j � x + 2 we have S j (x, k,mx ) = 0.
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9.3 Quasiperiodicity

The previous results, for both the homogeneous and non-homogeneous case, cor-
respond to the probability of a state i to reappear again after d positions and n
successive cycles. However, for the model to be more coherent, we also have to
include the event that the periodicity is not strict and the state i does not appear
exactly after d positions, but in the interval (d − ε, d + ε). Also, we are interested
in the quasiperiodic behaviour of the SMC, not only for a cycle of length d, but
also for a number of n successive cycles. For simplicity we assume that ε = 1,
although the results for ε > 1 are straightforward. For this purpose, let us define
the entrance probabilities under random starting rei, j (n), which are the probabilities
that the SMC will enter state j at position n, given that, in the initial position, the
SMC was observed to be in state i [15]. The equation for calculating the probabili-

ties is r ei, j (n) = δi, jδ(n) +
N∑

r=1

n∑

m=0

r ci,r er, j (n − m). Furthermore, let us define the

first passage time probabilities fi, j (n), which are the probabilities that the SMC will
transition to state j for the first time after n positions, given that it had entered state i
in the initial position [15]. The recursive formula of the probabilities fi, j (n) is given

by fi, j (n) =
N∑

r �= j

n∑

m=0

pi,r hi,r (m) fr, j (n − m) + pi, j hi, j (n).

Definition 3 Let us define the quantity ε pi (1, d), assuming ε = 1, to be the proba-
bility that the SMCwill be in state i at least once in the position interval d ± ε, while
in the initial position, the SMC was observed to be in state i . Also, let us define the
probability ε pi (n, d) to be the probability that the SMC will be in the state i in the
interval (d − 1, d + 1) for n successive cycles, that is

(a) ε pi (1, d) = Prob[the SMC will be in state i either in position d − 1,
or d, or d + 1 / the initial state was observed to be i]

(9.8)

(b) ε pi (n, d) = Prob[the SMC to be in state i either in positiond − 1,
or d, or d + 1 for n cycles/ the initial state was observed to be i]

(9.9)

Theorem 1 Let ε P(1, d) and ε P(n, d) be (N × 1) vectors, consisiting of the prob-
abilities ε pi (1, d) and ε pi (n, d), i ∈ S respectively, following Definition 3. Then

(a) ε P(d) = P(d − 1)+
[d−1∑

m=1

I ◦
[

r
E(m)

[[F(d − m) + F(d + 1 − m)] ◦ (U − I)
]] · 1

]
(9.10)

(b) ε P(n, d) =ε P(n − 1, d))◦
[
P(d − 1) +

[d−1∑

m=1

I ◦
[

r
E(m)

[[F(d − m) + F(d + 1 − m)] ◦ (U − I)
]] · 1

]]
,

(9.11)
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where rE(·) = {r ei, j (·)} is the matrix which consists of the entrance probabilities
under random starting and F(·) = { fi, j (·)} is the matrix with the first passage time
probabilities.

Proof Let us define the events A0, A1, A2 as

A0 = [the SMC is in state i in position d − 1/the initial state was

observed to bei].
A1 = [the SMC is in state i in position d and in state r �= i in position d − 1/

the initial state was observed to be i].
A2 = [the SMC is in state i in position d + 1 and in state r �= i in positions

d − 1 and d/the initial state was observed to be i].

Schematically, we can visualize the events defined above, as the following sequences

A0 = i u u u · · · u i

A1 = i u u u · · · u r i

A2 = i u u u · · · u r︸ ︷︷ ︸
d−1

r i ,

where u denotes any state from state space S and r denotes a state different from i . It
is obvious that the events are mutually exclusive, therefore Prob[A0 ∪ A1 ∪ A2] =
Prob[A0] + Prob[A1] + Prob[A2]. The probability for the event A0 is defined as

Prob[A0] = pi (1, d − 1) = Prob[the SMC will be in state i in positiond − 1/

the initial state was observed to be i].

For the event A1 to happen, it is required for the SMC to be in a state r �= i in position
d − 1 and transition to state i in position d. Therefore, the SMC could have entered
state r �= i at a position m ≤ d − 1 and then transitioned to state i for the first time
after the remaining d − m positions. Using probabilistic argument and summing
over all the different positions and states, we can deduce the following equation

Prob[A1] =
N∑

r �=i

d−1∑

m=0

r ei,r (m) fr,i (d − m). Similarly we can deduce the probability

of the event A2 to happen, Prob[A2] =
N∑

r �=i

d−1∑

m=0

r ei,r (m) fr,i (d + 1 − m). For the

sum of the probabilities of the three events we can derive the following expression
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ε pi (d) = Prob[A0] + Prob[A1] + Prob[A2]

= pi (d − 1) +
N∑

r �=i

d−1∑

m=0

r ei,r (m) fr,i (d − m) +
N∑

r �=i

d−1∑

m=0

r ei,r (m) fr,i (d + 1 − m) =

= pi (d − 1) +
N∑

r �=i

d−1∑

m=0

r ei,r (m)[ fr,i (d − m) + fr,i (d + 1 − m)].

Equation (9.2) can be written in matrix form as

ε P(d) =P(d − 1)+
[ d−1∑

m=1

I ◦
[
E(m)

[[F(d − m) + F(d + 1 − m)] ◦ (U − I)
]] · 1

]
.

Last and by applying Lemmas 1 and 2, we can derive the corresponding equations
for the probabilities ε pi (n, d), which are described in matrix notation, as follows

ε P(n, d) =ε P(n − 1, d))◦
[
P(d − 1) +

d−1∑

m=1

I ◦
[
E(m)

[[F(d − m) + F(d + 1 − m)] ◦ (U − I)
]]
1
]
.

�

9.4 Illustrations of Real and Synthetic Data

For the illustrations of the homogeneous semi-Markov model, synthetic DNA
sequences as well as real genomic and mRNA sequences were used. The coding
sequence used was human dystrophin mRNA and the non-coding sequence, which
was used for comparison, was the human b-nerve growth factor gene (BNGF). These
sequences have already been examined using the spectral density analysis by Tsonis
[27]. We assumed that each of the sequences could be described by a homoge-
neous semi-Markov chain {Xt }∞t=0, with state space S = {A,C,G, T } and the index
t denotes the position of each nucleotide inside the sequence. The basic parame-
ters P i, j (s) and H i, j (m) of the SMC were estimated using the empirical estimators

p̂i, j (k) = N (i(k) → j)
∑

x∈S
N (i(k) → x)

and ĥi, j (m) = N (i → j,m)
∑

x∈S
N (i → x,m)

where N (i(k) → j)

denotes the number of transitions from state i to state j , starting from coding posi-
tion k and N (i → j,m) denotes the number of transitions from state i to state
j , while the SMC remained in state i for m positions. In order to estimate the
initial condition, which are the probabilities of the matrix P(1, d), the first 10
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cycles of length 3 have been used and the basic parameters P and H(m) have
been estimated. After that and for each cycle n, the core matrix C(m) has been
estimated, using the letters of the sequence up until the position 30 + n · d. This
specific process has been implemented, correcting the estimations, as in the current
application the length of each period is small (d = 3), resulting in an non adequate
sample size for each cycle. However, if we were interested in examining the peri-
odic behaviour for larger periods, this correction procedure would not be necessary.
Finally, the probability for the chain to be in the same state for every n · d positions
has been calculated using the recursive equation P(n, d). Let us define the ratio
by R(n) = [[P(n − 1, d)1] ◦ I

]−1 · P(n, d), where 1 = [1, 1, ..., 1]. The quantity
R(n) is a (N × 1) vector and the i th element of matrix R(n) is the ratio of the prob-
ability pi (n, d) over pi (n − 1, d) for every n and illustrates the variations between
the probabilities pi (n, d) and pi (n − 1, d), in order to investigate the periodicity
over a number of cycles. It is obvious that the probabilities pi (k, n, d) will con-
verge to zero, as they are a product of n probabilities. The most important things
in the periodic investigation, are the initial probability P(1, d), which contains the
probabilities for the chain to be in the same state after d positions and also the ratio
R(n), which measures the relationship between the probabilities of the current cycle
and the previous one using the correction procedure. For higher values of R(n), the
probabilities pi (n, d) decrease with a slower rate, while for lower values of R(n),the
probabilities pi (n, d) converge to zero faster.

9.4.1 DNA Sequences of Synthetic Data

Example 1 (Comparison between random and periodic DNA sequences) Let L be
a DNA sequence of length N = 1000 of the form: L = {U,U,U, ...,U }, where the
letter U corresponds to any nucleotide, from a uniform distribution. Thus,

Prob[U = A] = Prob[U = C] = Prob[U = G] = Prob[U = T ] = 1/4.

This kind of sequence would not exhibit any periodic behaviour, however the esti-
mated probability matrix P(n, d), for d = 3, will be estimated for comparison. The

estimation of the embedded Markov matrix is P =

⎛

⎜⎜⎜⎜⎜⎝

0 0.2 0.8 0
0.375 0 0.5 0.125
0.125 0.5 0 0.375
0.25 0.75 0 0

⎞

⎟⎟⎟⎟⎟⎠
and

the core matrix C(m) is C(1) =

⎛

⎜⎜⎜⎜⎜⎝

0 0 0.8 0
0.375 0 0.5 0.125
0.125 0.375 0 0.375
0.25 0.5 0 0

⎞

⎟⎟⎟⎟⎟⎠
, C(2) =

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0.125 0 0
0 0 0 0

⎞

⎟⎟⎟⎟⎟⎠
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Fig. 9.1 R(n) for the synthetic DNA sequence of a uniform distribution

while the only non zero element of C(3) is c4,2(3) = 0.25. The initial condition is

P(1, 3) =

⎛

⎜⎜⎜⎜⎜⎝

0.32
0.34
0.42
0.27

⎞

⎟⎟⎟⎟⎟⎠
.

Figure9.1 visualizes the ratio R(n) for the whole sequence. We observe that, as
expected, there exist no clear tendency for any state to achieve a stronger periodic
behaviour, compared to the other states. Now, let L be a DNA sequence of length
N = 1000 of the form: L = {A,U,U, A,U,U, ...}, where the letter A corresponds
to adenine and the letterU corresponds to any nucleotide from a uniform distribution,
therefore

Prob[U = A] = Prob[U = C] = Prob[U = G] = Prob[U = T ] = 1/4.

We will investigate the periodic behaviour, of period d = 3. One can notice that
the letter A can possibly have a non-zero waiting time probability wA(m) for every
m. On the other hand, for the other three letters C,G, T , the waiting time prob-
abilities are zero if m exceeds two, as between every three letters, the letter A
always appears at least once. The estimated embedded Markov transition matrix is

P =

⎛

⎜⎜⎜⎜⎜⎝

0 0.30 0.30 0.40
0.73 0 0.15 0.12
0.69 0.17 0 0.14
0.70 0.14 0.16 0

⎞

⎟⎟⎟⎟⎟⎠
and the core matrix is C(1) =

⎛

⎜⎜⎜⎜⎜⎝

0 0.19 0.16 0.27
0.60 0 0.15 0.13
0.56 0.17 0 0.15
0.50 0.14 0.16 0

⎞

⎟⎟⎟⎟⎟⎠
,

C(2) =

⎛

⎜⎜⎜⎜⎜⎝

0 0.08 0.11 0.09
0.13 0 0 0
0.13 0 0 0
0.20 0 0 0

⎞

⎟⎟⎟⎟⎟⎠
while the other matrices C(m) form > 2, have non-

zero elements only in the first row, that is for the letter A. The initial condition
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Fig. 9.2 R(n) for the synthetic DNA sequence with 3-base periodicity of adenine

is P(1, 3) =

⎛

⎜⎜⎜⎜⎜⎝

0.83
0.18
0.20
0.25

⎞

⎟⎟⎟⎟⎟⎠
. The probability for the chain to be in state A, every d = 3

positions, while starting from state A, is greater than the other three states, as we
expected. This is also confirmed by the ratio, as presented in Fig. 9.2, that shows that
state A exhibits higher values compared to the other states.

Example 2 (Detection of periodic regions inside a sequence) Let L be a DNA
sequence of length N = 5000 of the form: L = {U,U,U, ...,U }, where the letterU
corresponds to any random nucleotide from a uniform distribution. In the position
intervals 1500–2000 and 3000–3500, which correspond to the 3-base cycles 500–
666 and 1000–1166 respectively, the letter U has been substituted with the letter A,
starting from the first position and at every 3 positions thereafter. Figure9.3 shows
the values of the ratio R(n) for the letter A, where the green regions are the 3-base
cycles of the sequence R(n) where the sequence is increasing, while the red regions
are the 3-base cycles where the sequence R(n) decreases. It is observed, that the
regions, in which we have synthetically added periodic behaviour for the letter A,
have an increasing ratio R(n) for A, indicating that in these regions the periodic
behaviour of A is stronger.

9.4.2 DNA Sequences of Real Data

The information about the periodic behaviour of the coding regions of the genome
could possibly be used, in order to distinguish these regions, over a DNA sequence
with great length. For the coding sequences of real DNA, the human dystrophin
mRNA has been used, while for the non coding region, the human b-nerve growth
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Fig. 9.3 R(n) of the letter A of the synthetic sequence with periodicity in the cycles 500-666 and
1000-1166

Fig. 9.4 R(n) for the human dystrophin mRNA sequence

factor has been used. These sequences have a length greater than 5000 bases and
they have already been studied for periodic behaviour [27]. One can notice through
Fig. 9.4, that for the humandystrophinmRNAsequence, the nucleotide A has a higher
chance to appear every 3 positions, while all the other nucleotides have almost the
same behaviour. The ratio for the nucleotide A is higher compared to the other three
states for the human dystrophin mRNA sequence, indicating the stronger periodic
behaviour for adenine. However, Fig. 9.5 indicates that for the human b-nerve growth
factor gene, which contains in more than 90% intronic sequences, the results are
similar with the random sequence, that was created in the first example.
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Fig. 9.5 R(n) for the human b-nerve growth factor sequence

9.5 Conclusion

In the present paper, a method is developed, in order to investigate some attributes
related to the periodicity of DNA sequences. The applied model is a semi-Markov
chain of discrete and finite state space and discrete time, where the elements of
the state space are the four nucleotides, i.e. S = {A,C,G, T } and time denotes the
index position in the sequence. The purpose of the model was to describe the peri-
odic behaviour of a givenDNA sequence, something that could possibly discriminate
between coding and non-coding regions. It is known that the coding regions of the
genome have different structure from the non-coding regions, as they exhibit a char-
acteristic tendency of repetition of some nucleotides every 3 bases. Considering the
previous fact and by modelling a DNA sequence with a semi-Markov chain, a recur-
sive equation that could be used as an identification tool for regions that have strong
or weak d-periodic behaviour is constructed. The corresponding probabilities are
calculated in relation to the basic parameters of the model in closed analytic form.
The theoretical results are also generalized for the non-homogeneous case, consid-
ering the triplet nature of the DNA and assuming each coding position corresponds
to a different transition matrix P(k). In addition, the case of quasiperiodicity of a
state is examined. The above theory is developed considering the fact that small
perturbations in the cycle of the period may appear, such as a shift of the position of
a letter due to genetic mutations and lead the chain to lose its periodic behaviour for
a number of cycles. Therefore, the state will appear not exactly after a period of d
positions, but in a radius of d ± ε positions. The numerical results of the implemen-
tation of the model on actual data confirmed the previous studies, as it was apparent
that periodic behaviour is a characteristic of the coding segments, unlike non-coding
segments that did not show similar behaviour. For the estimation of the parameters, a
correction procedure was applied, due to the short duration of the period (d = 3) for
the specific application. The approach could potentially be used as an initial method
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for investigating periodicity for any DNA sequence and also it could be used to sepa-
rate two different DNA segments, in terms of their periodic behaviour. Although the
examples produced satisfactory results, they should be perceived with caution, due
to the complexity of the structure of DNA and its various peculiarities. For example,
additional parameters could be included in themodel, such as the sequence length, the
frequencies of each nucleotide, the open reading frames (ORFS), the target organism,
specific mutations and others.
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