
Chapter 6
Valuation and Optimal Strategies for
American Options Under a Markovian
Regime-Switching Model

Lu Jin, Marko Dimitrov, and Ying Ni

Abstract In this research, we consider the pricing of American options when the
underlying asset is governed by theMarkovian regime-switching process.We assume
that the price dynamics depend on the economy, the state of which transits based on a
discrete-time Markov chain. The underlying economy cannot be known directly but
can be partially observed by receiving a signal stochastically related to the real state
of the economy. The pricing procedure and optimal stopping problem are formulated
using a partially observable Markov decision process. Some structural properties of
the American option prices are derived under certain assumptions. These properties
establish the existence of a monotonic optimal exercise policy with respect to the
holding time, asset price, and economic conditions.
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6.1 Introduction

Pricing of American options is a much harder problem than its European counterpart
due to its feature of early-exercising. Exact analytical formulas do not exist even
under the classical Black–Scholesmodel. At each time epoch and for each underlying
process state, we can compare the value of early exercising to the value of holding
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the option to decide on an optimal strategy. The option’s values are then determined
by optimal strategies. In this way, we can also split the range of the prices of the
underlying asset into a region for exercising and a region for holding.

Consider, for example, the standardAmericanput options under theBlack-Scholes
model, at each time epoch t before maturity, there exists a unique critical underlying
asset price s∗ such that it is optimal to exercise the option for every underlying
asset price below this critical price. The function s∗ = s∗(t) is called the optimal
exercise boundary. This boundary is in general unknown and needs to be determined
simultaneously with the solution to the pricing problem. Knowing the structural
properties of the optimal exercising strategies and the optimal exercising boundary
is very useful for American option pricing. For example, numerical methods like
Monte-Carlo simulation can then be applied to the valuation of the American option.

There have been numerous studies on the analytical properties of the optimal
exercise/hold regions and on the optimal exercise boundary for models with a one-
dimensional underlying process. Under the simplest binomial tree model, [6] stud-
ied the properties of the optimal exercise boundary in the case of constant volatility
and later in the case of deterministic volatility in [7]. For a geometric Brownian
motion underlying process, [2] proved that the optimal exercising boundary is non-
decreasing in the underlying asset price for American put options and non-increasing
for American call options with continuous dividend yields. It should also be men-
tioned that non-standard American options, for example, options with different types
of monotone payoff functions, were analyzed in [9, 10]. These monotonicity proper-
ties were also presented in other works, see [5] for a complete survey on optimal exer-
cising regions for American options. A more recent reference on American option
pricing and the corresponding optimal exercising strategies, under more advanced
models, can be found in the comprehensive bibliographic remarks given in books
[16, 17].

Our model is a regime-switching model with different volatility regimes. Com-
paring to the stochastic volatility models where the stochastic volatility is modeled
by a mean-reverting diffusion process with an unclear motivation behind, regime-
switching models provide a more natural and convenient way to describe the impact
of changes in economic conditions on price dynamics. The reference [3] pioneered
applications of regime-switching models in economic analysis, in particular, in mod-
eling and explaining business cycles. In addition to Hamilton’s research in [3], there
are many applications of regime-switching models in option pricing. The reference
[8] developed a discrete-time model in which the volatility is stochastic and con-
trolled by a discrete-time Markov chain (and also a continuous-time model). Their
discrete-time model can be seen as an extension of the binomial tree model with
Markov regime-switching volatility. They concluded that if the underlying Markov
chain is stochastically monotone, a European option’s price is an increasing func-
tion of the current volatility. For a similar extension of the binomial tree model, [1]
provided an algorithm for constructing a recombining tree to facilitate the pricing
of European and American options. The reference [12] developed a model for two-
state European options using a regime-switching model and analyzed options-based
trading strategies to hedge against the risk of jumps in the return volatility. Refer-
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ence [15] considered the pricing of variance swaps modulated by a continuous-time
finite-state observable Markov chain.

Some previous researchers have considered a non-standard callable American
option with which both the issuer and the holder have the right to terminate/exercise
the option. The valuation process as a coupled stochastic game for the optimal stop-
pingproblem is then formulatedwithin aMarkovdecision process. The reference [13]
considered this problem under an observable economic condition. Some analytical
properties of the optimal stopping rules for the issuer and the holder were derived. In
practice, the states of the underlying economy are not directly observable. Reference
[14] extended their previous model in [13] for the valuation of callable American
options under a partially observable economic condition. They showed that there
exists a unique optimal value for the callable option and derived sufficient conditions
for establishing structural properties of the optimal investing strategies.

In this research, we consider the pricing and the optimal exercising problems for a
standard American option.We formulate the pricing process as a partially observable
Markov decision process using the same procedure as in [14]. However, we don’t
use one of the key assumptions in [14]. More specifically, we don’t assume that
the random variable of the underlying price relative at time t can be ordered across
different economy states with respect to stochastic increasing (see explanation in
Sect. 6.2). Our model is novel and can be seen as an extension of the binomial tree
model with volatility parameter governed by a discrete-time hidden Markov chain.

The object of interest here lies in the structural properties of the prices of Amer-
ican options and the corresponding optimal exercise boundaries. Our contribution
is to provide a set of sufficient conditions on the transition probability matrix of
economy evolution and conditional probabilities of observations, to prove analytical
properties related to American option prices and to illustrate these properties with
numerical examples. The forms of the corresponding conditions derived in [14] are
given as implicit functions. Our conditions are more explicit and clarify the rela-
tionship between the properties of American options and economic conditions and
observations.

The paper is organized as follows. Section 6.2 presents the model of this research.
Section 6.3 formulates the pricing procedure of American options using a partially
observable Markov decision process. Section 6.4 studies the properties of American
option prices and optimal exercise boundaries. In Sect. 6.5, these properties are illus-
trated via numerical examples. Finally, concluding remarks and future research are
addressed in Sect. 6.6.

6.2 A Markovian Regime-Switching Model

We consider the pricing of American options when the underlying asset is governed
by aMarkovian regime-switching process under a variable economic situation Z .We
assume that the financialmarket under consideration is frictionless and arbitrage-free.
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Let T be the maturity time of the option, the interval [0, T ] is divided into several
equidistant time periods with a length h. We assume that h is chosen in such a way
that T/h is an integer. A time epoch t takes a discrete value from {0, 1, ..., T/h}.
Suppose that Zt takes a value in a finite state space: Z = {1, 2, ..., n}. The numbers
are ordered to reflect the progress of the economic situation, with 1 referring to the
worst situation and n the best. At the beginning of each time period, the economic
situation Z changes based on a known transition law: P = [pi j ]i, j∈Z, of which pi j is
the probability that the economic situation transits to level j from level i .

We present a model for the price dynamics of the underlying risky assets under
the partially observable Markovian regime-switching process. Without loss of gen-
erality, we suppose that the underlying asset is a dividend-paying equity stock with
continuously compounded dividend yield δ > 0. Denote St as the price of this under-
lying asset at a discrete-time t , and define the price relative dynamics as Xt = St

St−1
.

Assume that Xt depends on the situation of the economy Z at time t , more specifically
X j , which is the price dynamics given Z = j , follows a probability distribution

P(X j = x j ) =
{
q j x j = u j

1 − q j x j = d j = 1/u j
(6.1)

with q j = e(r−δ)h−d j

u j−d j
, u j = eσ j

√
h,where σ j > σ j ′ for j < j ′. Here r > 0 is the con-

tinuously compounded risk-free rate and to exclude arbitrage opportunities assume

d j < e(r−δ)h < u j , j ∈ Z. (6.2)

Note that our economy is classified according to the volatility σi , with high volatil-
ity referring to the bad economy and low volatility to good economy. Indeed, low
volatility indicates usually a stable market.

By the risk-neutral option valuation theory, the price of a European option is the
expected payoff under a risk-neutral probability measure, discounted at the risk-free
interest rate. We assume here that a risk-neutral probability measure Q is chosen by
the market and is given to us. All expectations and distributions in this paper are
under this probability measure Q. Indeed, the probability distribution (6.1) given
above is the well-known risk-neutral probability distribution for a binomial model
with a continuous dividend yield.

•> Important

Ourmodel is not a particular case of the genericmodel in [14] as it does not satisfy its
assumption 3.1 (i). Indeed, Assumption 3.1 (i) in [14] states that X j is stochastically
less than or equal to X j ′ for two different states if j ≤ j ′. However, in our model, it
is trivial to show that E[X j ] = e(r−δ)h for any state j , and Var[X j ] > Var[X j ′ ] for
j < j ′, implying that X j and X j ′ cannot be ordered in terms of stochastic increasing.
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•! Attention

It is never optimal to early exercise an American call if the underlying is a non-
dividend-paying stock and r > 0, which is a well-knownmodel-free result on Amer-
ican call options. Hence to avoid triviality we assume the dividend yield δ > 0 in all
our discussions on American call options below.

At each time period, the economic situation in the spot market cannot be observed
directly. However, we are able to receive observation Y , such as economic indica-
tors that provide incomplete information related to the real economic situation Z .
Observation Y comes from a finite set, Y = {1, 2, ...,m}. Let � = [γ jθ ] j∈Z,θ∈Y be
an observed conditional probability matrix that describes the relationships between
the economic situation and the observations. Here, γ jθ = P(Y = θ |Z = j) is the
element of � in j-th row and θ -th column.

Let π = (π1, ..., πn) be a probability vector that expresses the information about
the economic situation. Here, πi = P (Z = i) ,

∑n
i=1 πi = 1. In this research, π is

called the economy information vector. At any time period, the pair (s,π) is called
a process state, meaning that the current asset price is s and the information vector
which reflects the economic situation is π .

At the beginning of every time period, the holder can select one of two actions:
early exercise or hold. If the holder decides to early exercise, a payoff of ve(st ) =
max{K − st , 0} (reps. ve(st ) = max{st − K , 0}) is received for put (reps. call) option,
where K is the strike price and st is the underlying asset price at time t .

6.3 Pricing of American Options

At the beginning of every time period, an early-exercising decision is made based on
the current process state (s,π). Under the decision to hold for one more time period,
the information vector at the beginning of the next time period is updated to T(π , θ),
given the observation θ with probability ψ(θ |π). Here,

ψ(θ |π) =
n∑
j=1

n∑
i=1

πi pi jγ jθ , (6.3)

and the j-th element of the updated information vector T(π , θ) is

Tj (π , θ) =
∑n

i=1 πi pi jγ jθ

ψ(θ |π)
. (6.4)
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We now formulate the optimal stopping problem using a partially observable
Markov decision process. Let N be the number of the remaining time periods to
maturity. i.e. N = T/h at the beginning of option transaction, and N = 0 at maturity.

Consider an American put option with the current process state (s,π), strike price
K and remaining periods to maturity N . The option price vN (s,π), is given by

vN (s,π) = max

⎧⎪⎨
⎪⎩
max{K − s, 0} = veN (s)

β

m∑
θ=1

ψ(θ |π)

2∑
k=1

vN−1
[
sxkj , T(π , θ)

]
P(xkj ) = vhN (s,π)

where x1j = u j , x2j = d j , and β = e−rh (0 < β < 1) is the discount factor.
Let the quantity veN (s,π) be the value/payoff if the holder exercises the option

at the beginning of the current time period, and vhN (s,π) be the value if the holder
decides to hold and follow the optimal strategy in the remaining periods. Note that
vhN (s,π) is valued as the discounted expected payoff for one time period, i.e. in a
similar way to an European option. Since the payoff of early exercise does not depend
on the remaining time periods N , we use ve(s) instead of veN (s) in the following.

When the time period expires, vh0 (s,π) = 0, hence

v0(s,π) = max{ve(s), vh0 (s,π)} = ve(s). (6.5)

6.4 Some Properties for Optimal Strategy

In this section, the structural properties of the optimal total payoff function are
derived.

6.4.1 Preliminaries

First define a totally positive property of order 2 (see [4]), abbreviated as TP2, which
is used in this research.

Definition 1 If for two vectors x = (x1, x2, ..., xn), and y = (y1, y2, ..., yn)∣∣∣∣xi x j

yi y j

∣∣∣∣ ≥ 0, 1 ≤ i < j ≤ n,

holds, it is said that y dominates x in the sense of totally positive ordering of order

2, denoted by x
TP2≺ y.

Definition 2 Let X = [xi j ]i j be an n × m matrix for which det(B) ≥ 0 for every
submatrix B = [xik jl ]kl of dimensions 2 × 2 where 1 ≤ i1 < i2 ≤ n, 1 ≤ j1 < j2 ≤
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m. Matrix X is said to have a property of totally positive of order two, denoted by
X ∈ TP2.

In this research, the following important conditions are assumed. Note that we
consider functions as increasing or decreasing in the weak sense throughout this
paper.

(A-1) The transition probability matrix for economic situation P has a TP2 prop-
erty.

(A-2) The conditional probability matrix for observation � has a TP2 property.

Assumption (A-1) asserts that, as the economy gets better, it tends to move to a
more progressing situation in the next time period. Assumption (A-2) implies that
a better economic situation gives rise to higher output levels for the observations
probabilistically.

6.4.2 Lemmata

From the assumptions (A-1) and (A-2), we obtain the following lemmata and prop-
erties to establish the structural properties of American option prices. We begin our
preparation by citing two results on TP2 ordering from [4, 11]. These are fundamental
properties of TP2 vectors and matrices.

Lemma 1 ([4]) If f (i) is a decreasing/increasing function of i ,then
∑n

i=1 π1
i f (i)

decreases/increases in π in the sense of TP2 ordering.

Lemma 2 ([11]) If P is a (kP × k) TP2 matrix, and Q is a (k × kQ) TP2 matrix,
then PQ is a (kP × kQ) TP2 matrix.

Lemma 3 Under assumptions (A-1) and (A-2), T(π , θ1)
TP2≺ T(π , θ2) holds for any

π and 1 ≤ θ1 < θ2 ≤ m.

Lemma 4 Under assumptions (A-1) and (A-2),T(π1, θ)
TP2≺ T(π2, θ) holds for any

θ and π1 TP2≺ π2.

Lemmas 3 and 4 establish the monotonicity on θ and π of T(π , θ) in the sense of
TP2, respectively. Here, T(π , θ) is the updated information vector of the next time
period given the current information vector π . We omit the proofs for Lemmas 3 and
4 since they can be obtained by developing Eq. (6.4) from assumptions (A-1) and
(A-2).

Lemma 5 The following inequality holds for j < j ′:

2∑
k=1

max(K − sxkj , 0)P(xkj ) ≥
2∑

k=1

max(K − sxkj ′ , 0)P(xkj ′).
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Proof Recall that

P(x1j ) = P(sx j = su j ) = q j , P(x2j ) = P(sx j = sd j ) = 1 − q j ,

P(x1j ′) = P(sx j ′ = su j ′) = q j ′ , P(x2j ′) = P(sx j ′ = sd j ′) = 1 − q j ′ .

It is straightforward to show that E[sx j ] = E[sx j ′ ] = e(r−δ)hs.Hence, the following
is true

q j su j + (1 − q j )sd j = q j ′su j ′ + (1 − q j ′)sd j ′ , (6.6)

and Eq. (6.6) is the starting point of our proof. Note that s > 0 and sd j < sd j ′ <

su j ′ < su j . Depending on the value of strike price K , we have one of the following
cases: (i) K < sd j , (ii) sd j ≤ K < sd j ′ , (iii) sd j ′ ≤ K < su j ′ ; (iv) su j ′ ≤ K < su j

and (v) K ≥ su j .
We prove the lemma for each of the above cases. For case (i)

2∑
k=1

max(K − sxkj , 0)P(xkj ) =
2∑

k=1

max(K − sxkj ′ , 0)P(xkj ′) = 0.

The lemma holds with equality. For case (ii), the lemma holds due to the facts that

2∑
k=1

max(K − sxkj , 0)P(xkj ) > 0,
2∑

k=1

max(K − sxkj ′ , 0)P(xkj ′) = 0.

For case (iii), the lemma reduces to (1 − q j )(K − sd j ) ≥ (1 − q j ′)(K − sd j ′). In
Eq. (6.6), we replace su j in the left hand side and su j ′ by the strike price K in
the right hand side. Since su j > su j ′ and q j , q j ′ ∈ (0, 1), by Eq. (6.6) we obtain
q j K + (1 − q j )sd j < q j ′K + (1 − q j ′)sd j ′ , which leads to (1 − q j )(K − sd j ) >

(1 − q j ′)(K − sd j ′). Then, the proof for case (iii) is complete. Consider case (iv).
The lemma now reduces to (1 − q j )(K − sd j ) ≥ q j ′(K − su j ′) + (1 − q j ′)(K −
sd j ′). Since K < su j , we have (1 − q j )sd j < q j ′su j ′ + (1 − q j ′)sd j ′ − q j K from
Eq. (6.6), and the above can be written as (1 − q j )(K − sd j ) > q j ′(K − su j ′) +
(1 − q j ′)(K − sd j ′). The proof for this case is complete. Finally for case (v), the
lemma in this case is q j (K − su j ) + (1 − q j )(K − sd j ) ≥ q j ′(K − su j ′) + (1 −
q j ′)(K − sd j ′) and it holds with equality from Eq. (6.6). �

Lemma 6 The following is true for for j < j ′:

2∑
k=1

max(sxkj − K , 0)P(xkj ) ≥
2∑

k=1

max(sxkj ′ − K , 0)P(xkj ′).

Proof Let f1= ∑2
k=1 max(sxkj − K , 0)P(xkj ), f2= ∑2

k=1 max(K − sxkj , 0)P(xkj )
Note that
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f1 − f2 =
2∑

k=1

[max(sxkj − K , 0) − max(K − sxkj , 0)]P(xkj )

=
2∑

k=1

(sxkj − K )P(xkj ) = e(r−δ)hs − K

Hence f1 = f2 + e(r−δ)hs − K . Now it is obvious that f1 and f2 have the same
behavior with respect to the economy state, which completes the proof. �

Lemma 7 For both American put and call options, for π1 TP2≺ π2, the inequality
vh1 (s,π

1) ≥ vh1 (s,π
2) holds.

Proof We prove the lemma for American put options. From Eq. (6.3),

vh1 (s,π
1) = β

m∑
θ=1

ψ(θ |π1)

2∑
k=1

v0
[
sxkj , T(π1, θ)

]
P(xkj )

= β

m∑
θ=1

ψ(θ |π1)

2∑
k=1

ve(sxkj )P(xkj ) = β

n∑
j=1

n∑
i=1

π1
i pi j

2∑
k=1

max(sxkj − K , 0)P(xkj )

Let πP be a vector with
∑n

i=1 πi pi j as the j-th element, then π1P
TP2≺ π2P for

π1 TP2≺ π2 from Assumption (A-1) and Definition 1. Therefore, we obtain

vh1 (s,π
1) = β

n∑
j=1

n∑
i=1

π1
i pi j

2∑
k=1

max(sxkj − K , 0)P(xkj )

≥ β

n∑
j=1

n∑
i=1

π2
i pi j

2∑
k=1

max(sxkj − K , 0)P(xkj ) = vh1 (s,π
2)

from Lemmata 1 and 5. The case for American call can be proved similarly from
Lemmata 1 and 6. �

6.4.3 Properties

From the above assumptions and lemmata, we provide some properties which are
important for investigating the optimal strategies for an American option. A decision
of the option buyer is made at the beginning of every time period. This discretization
scheme of decision making enables us to use induction on the steps of option price
iteration as a proof technique.
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At first, we obtain some properties on the value function for holding vhN (s,π).

Proposition 1 For a put (call) option, vhN (s,π) is decreasing (increasing) in s for
any N and π under the assumptions (A-1) and (A-2).

Proof We focus on American put options first and prove the claim by mathematical
induction. For N = 1 the following holds for s < s ′ using Eq. (6.5):

vh1 (s,π) = β

m∑
θ=1

ψ(θ |π)

2∑
k=1

v0
[
sxkj , T(π , θ)

]
P(xkj )

= β

m∑
θ=1

ψ(θ |π)

2∑
k=1

ve(sxkj )P(xkj ) ≥ β

m∑
θ=1

ψ(θ |π)

2∑
k=1

ve(s′xkj )P(xkj ) = vh1 (s′,π).

For N = n − 1, assume that vhn−1(s,π) is decreasing in s. Next, prove the mono-
tonicity of s for vhn (s,π). Since for N = n it follows that

vhn (s,π) = β

m∑
θ=1

ψ(θ |π)

2∑
k=1

vn−1
[
sxkj , T(π , θ)

]
P(xkj )

= β

m∑
θ=1

ψ(θ |π)

2∑
k=1

max
{
ve(sxkj ), v

h
n−1

[
sxkj , T(π , θ)

]}
P(xkj )

≥ β

m∑
θ=1

ψ(θ |π)

2∑
k=1

max
{
ve(s ′xkj ), v

h
n−1

[
s ′xkj , T(π , θ)

]}
P(xkj ) = vhn (s

′,π)

holds for s < s ′ using the inductive hypothesis of N = n − 1, which proves the
claim.

The increasing of holding value function for American call can be derived simi-
larly. �

Proposition 2 For both put and call options, vhN (s,π) is increasing in remaining
time periods N for any s and π under the assumptions (A-1) and (A-2).

Proof Prove the proposition using mathematical induction for the case of American
put. For N = 1, it is obvious that vh1 (s,π) ≥ vh0 (s,π). For N = n − 1, assume that
vhn−1(s,π) ≥ vhn−2(s,π), then for N = n,
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vhn (s,π) = β

m∑
θ=1

ψ(θ |π)

2∑
k=1

vn−1

[
sxkj , T(π , θ)

]
P(xkj )

= β

m∑
θ=1

ψ(θ |π)

2∑
k=1

max
{
ve(sxkj ), v

h
n−1

[
sxkj , T(π , θ)

]}
P(xkj )

≥ β

m∑
θ=1

ψ(θ |π)

2∑
k=1

max
{
ve(sxkj ), v

h
n−2

[
sxkj , T(π , θ)

]}
P(xkj )

= β

m∑
θ=1

ψ(θ |π)

2∑
k=1

vn−2

[
sxkj , T(π , θ)

]
P(xkj ) = vhn−1(s,π)

from inductive hypothesis of N = n − 1. Therefore, Proposition 2 holds true, and
we obtain the same result for American call. �
Proposition 3 For both put and call options, vhN (s,π) is decreasing inπ in the sense
of TP2 for any N and s under the assumptions (A-1) and (A-2).

Proof We consider American put first. Since vh0 (s,π) = 0 for every s and π , we
have the fact that

vh0 (s,π
1) = vh0 (s,π

2),

and
vh1 (s,π

1) ≥ vh1 (s,π
2)

holds for π1 TP2≺ π2 from Lemma 7.
Next, assume that

vhn−1(s,π
1) ≥ vhn−1(s,π

2) for π1 TP2≺ π2 (6.7)

and prove that

vhn (s,π
1) ≥ vhn (s,π

2) for π1 TP2≺ π2 (6.8)

holds for N = n. We focus on
∑2

k=1 vn−1[sxkj , T(π1, θ)]P(xkj ) first.

2∑
k=1

vn−1

[
sxkj , T(π1, θ)

]
P(xkj )

=
2∑

k=1

max
{
ve(sxkj ), v

h
n−1

[
sxkj , T(π1, θ)

]}
P(xkj )

≥
2∑

k=1

max
{
ve(sxkj ), v

h
n−1

[
sxkj , T(π1, θ ′)

]}
P(xkj )

=
2∑

k=1

vn−1

[
sxkj , T(π1, θ ′)

]
P(xkj )
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for θ < θ ′ from the induction hypothesis given by Eq. (6.7) and Lemma 3, and this

means
∑2

k=1 vn−1

[
sxkj , T(π1, θ)

]
P(xkj ) is a decreasing function of θ . Similarly,

2∑
k=1

vn−1
[
sxkj , T(π1, θ)

]
P(xkj ) ≥

2∑
k=1

vn−1
[
sxkj , T(π2, θ)

]
P(xkj ) (6.9)

Next, look at ψ(·|π) = (ψ(1|π), ..., ψ(m|π)). Since

ψ(·|π1)
TP2≺ ψ(·|π2) (6.10)

for π1 TP2≺ π2 under assumptions (A-1) and (A-2) from Lemma 2. From Eqs. (6.9)
and (6.10), the following holds

vhn (s,π
1) = β

m∑
θ=1

ψ(θ |π1)

2∑
k=1

vn−1(sx
k
j , T(π1, θ))P(xkj )

≥ β

m∑
θ=1

ψ(θ |π2)

2∑
k=1

vn−1(sx
k
j , T(π1, θ))P(xkj )

≥ β

m∑
θ=1

ψ(θ |π2)

2∑
k=1

vn−1(sx
k
j , T(π2, θ))P(xkj ) = vhn (s,π

2)

on the basis of Lemmata 1 and 4. This establishes Eq. (6.8).
This property for American call can be derived in the same way. �

Since the value of early exercise is given by ve(s) = max{K − s, 0} (ve(s) =
max{s − K , 0}) which is a decreasing (increasing) function of s, we can obtain the
following properties of the functions for American put/call option price from the
above properties.

Proposition 4 Under the assumptions (A-1) and (A-2), vN (s,π) is monotonically
decreasing (increasing) in s for any π for American put (call) option.

Proposition 5 vN (s,π) is increasing in remaining time periods N for any s and π

under the assumptions (A-1) and (A-2).

Proposition 6 Under the assumptions (A-1) and (A-2), vN (s,π) is monotonically
decreasing in π (in the sense of TP2 ordering) for any s for both American put and
call options.

Propositions 4, 5, and 6 provide a set of sufficient conditions under which the
American option price is monotonic in N , s and π . Note that in this research we
investigate the strategy in the sense of TP2 ordering of π . This means that the price
of the American option is monotonic in the remaining time, asset price and the
progression of the economy.
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To explore the optimal investment strategy for buyers, we also need to investigate
the relationship between the value functions under holding and early exercising
decisions.

Define the holding value premium LN (s,π) = max
{
0, vhN (s,π) − ve(s)

}
.

We study the properties of LN (s,π) in N and π for American options.

Proposition 7 For a put (call) option, (i) vhN (s,π) is a convex function of s, (ii)
the decreasing (increasing) rate of vhN (s,π) in s is less than 1 for any π under the
assumptions (A-1) and (A-2).

Proof First, prove the convexity of vhN (s,π) in s for any given π inductively. For
N = 0, vh0 (s,π) = 0. For N = 1, the following is true

vh1 (s,π) = β

m∑
θ=1

ψ(θ |π)

2∑
k=1

v0
[
sxkj , T(π , θ)

]
P(xkj )

= β

m∑
θ=1

ψ(θ |π)

2∑
k=1

ve(sxkj )P(xkj ) = β

m∑
θ=1

ψ(θ |π)

2∑
k=1

max
{
K − sxkj , 0

}
P(xkj )

is a convex function of s.
Next, assume that vhn−1(s,π) is a convex function of s for N = n − 1, then

λvhn−1(s1,π) + (1 − λ)vhn−1(s2,π) ≥ vhn−1 [λs1 + (1 − λ)s2,π ]

for 0 < λ < 1 and s1 < s2 from Jensen’s inequality. Since vn−1(s,π), which is a
convex linear combination of vhn−1(s,π) and ve(s) = max {K − s, 0}, is a convex
function of s, then

λvn−1(s1,π) + (1 − λ)vn−1(s2,π) ≥ vn−1 [λs1 + (1 − λ)s2,π ] (6.11)

for 0 < λ < 1 and s1 < s2.
For N = n, it follows that

λvhn (s1,π) + (1 − λ)vhn (s2,π)

= β

m∑
θ=1

ψ(θ |π)

2∑
k=1

{
λvn−1

[
s1x

k
j , T(π , θ)

] + (1 − λ)vn−1
[
s2x

k
j , T(π , θ)

]}
P(xkj )

≥ β

m∑
θ=1

ψ(θ |π)

2∑
k=1

{
vn−1

[
(λs1 + (1 − λ)s2)x

k
j , T(π , θ)

]}
P(xkj )

= vhn
[
(λs1 + (1 − λ)s2)x

k
j ,π

]
from the inductive hypothesis of the convexity of vn−1(s,π) given by Eq. (6.11) for
N = n − 1.

Next, investigate the decreasing rate of vhn−1(s,π) in s. For N = 0,
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vh0 (s1,π) − vh0 (s2,π) = 0 ≤ s2 − s1

for s1 < s2. Assume vhn−1(s1,π) − vhn−1(s2,π) ≤ s2 − s1 for N = n − 1. Since vn−1

(s1,π) − vn−1(s2,π) = max
{
vhn−1(s1,π), ve(s1)

} − max
{
vhn−1(s2,π), ve(s2)

} ≤
s2 − s1, then,

vhn (s1,π) − vhn (s2,π)

= β

m∑
θ=1

ψ(θ |π)

2∑
k=1

{
vn−1

[
s1x

k
j , T(π , θ)

] − vn−1
[
s2x

k
j , T(π , θ)

]}
P(xkj )

≤ β

m∑
θ=1

ψ(θ |π)

2∑
k=1

(s2 − s1) x
k
j P(xkj )

= e−rhe(r−δ)h (s2 − s1) = e−δh (s2 − s1) ≤ s2 − s1,

since 0 < e−δh < 1. Hence the decreasing rate of vhn (s,π) is thus less than 1.
This result can be proven for a call option. �

Proposition 8 For an American put or call option, LN (s,π) is increasing in N for
any s and π under the assumptions (A-1) and (A-2).

Proposition 9 For an American put or call option, LN (s,π) is decreasing in π in
the sense of TP2 ordering for any N and s under the assumptions (A-1) and (A-2).

Propositions 8 and 9 follow directly from the fact that ve(s) is constant in both N
and π .

6.4.4 Optimal Strategy

Based on the properties obtained in Sect. 6.4.3, we study the structural properties
of the optimal strategy for an American option. Define the stopping region and the
holding region for any N as follows:

• Stopping region for early exercise

De
N = {

(s,π) | vhN (s,π) < ve(s)
} = {

(s,π) | vN (s,π) = ve(s)
}

• Holding region

Dh
N = {

(s,π) | vhN (s,π) > ve(s)
} = {

(s,π) | vN (s,π) = vhN (s,π)
}
.

We consider first American put options. Figure 6.1 plots the values for holding
and for early exercising as functions of s. From Propositions 1 and 7, we know that
vhN (s,π) is a convex and decreasing function of s. Moreover the decreasing rate of
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Fig. 6.1 Relationship
between holding value,
exercise value and asset price
s for the case of American
put option

vhN (s,π) is thus less than 1. For a put option, the decreasing rate of veN (s) is −1
for s ∈ [0, K ) and 0 for s ∈ [K ,∞). Consequently, there is at most one threshold
s∗
N (π) for π when the remaining number of periods is N . As shown in Fig. 6.1, the
thresholds separate the space of s into two regions: stopping (early exercise) region
and holding region. Furthermore, s∗

N (π) increases with π since vhN (s,π) decreases

with π from Proposition 3. As shown in Fig. 6.1, s∗
N (π) < s∗

N (π ′) for π
TP2≺ π ′. This

means that it is preferable to hold the option under a worse economy situation i.e. in
a more volatile market.

Figure 6.2 plots the values of holding and early exercise as functions of π(∈ TP2).
From Proposition 3, we know that vhN (s,π) is a decreasing function of π in the sense
of TP2, and ve(s) is constant for any π . Therefore, there exists at most one threshold
π∗(s) (as shown in Fig. 6.2). From Proposition 1, π∗(s) decreases with s which
implies that it is better to exercise earlier if the asset price is lower.

Fig. 6.2 Relationship
between holding value,
exercise value and economy
situation π∗(s) for the case
of American put option
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Similar properties for American call options can also be derived. This means that
the information space of (s,π) is divided into two regions for both American put
and call options. We illustrate these regions using numerical examples in Sect. 6.5.

6.5 Numerical Examples

In this section, numerical examples are introduced to show the monotonicity of the
mentioned functions. A tree model was used for computation of the American put
option and American call option with dividend yield for three states.

6.5.1 Model Implementation

Consider a three-state economy with three pieces of information. Let P and � be
a transition probability matrix and a conditional probability matrix, respectively,

defined byP =
⎡
⎣p11 p12 p13
p21 p22 p23
p31 p32 p33

⎤
⎦ , � =

⎡
⎣γ11 γ12 γ13

γ21 γ22 γ23
γ31 γ32 γ33

⎤
⎦ , and the economy information

vector π = (π1, π2, π3) = (π1, π2, 1 − π1 − π2). Assume that P,� ∈ TP2.
Let S0 be the initial asset price, and K strike price. Consider a tree of M steps,

with expiration time T , volatility σ = (σ1, σ2, σ3), interest rate r , and economy
information vector π = (π1, π2, π3). The time duration of a step is h = T/M .

The asset price after n steps on the tree depends on the state, and the number of
times the price went up, and down. Denote with ni the number of times the price
increased in state i, i = 1, 2, 3, and withm j the number of times the price decreased
in state j, j = 1, 2, 3. Hence, sn(n1, n2, n3,m1,m2,m3) = S0u

n1
1 un22 un33 dm1

1 dm2
2 dm3

3
where n1 + n2 + n3 + m1 + m2 + m3 = n. Note that sN = sM−n (n = M − N )
where N is the number of the remaining time periods to the maturity.

The pricing of American options is explained in Sect. 6.3. Notice that the infor-
mation vector π also yields a tree. In step n, each node represents a vector π

i, j
n =

(π
i, j
1,n, π

i, j
2,n, π

i, j
3,n), j = 1, 2, ..., 3n−1, i = 3 j − 2, 3 j − 1, 3 j, where π

i j
0 = π . The

index j represents a node in step n − 1 to which it is connected, e.g. nodes
π

i,3
3 , i = 7, 8, 9 are connected to node π

3,1
2 . Therefore, in step n there is a total

of 3n−1 × 3 = 3n nodes. To obtain vectors π
i, j
n , first find 3n−1 probability mass func-

tions h j
n, j = 1, 2, ..., 3n−1, from h j

n = (h j
1,n, h

j
2,n, h

j
3,n) = π

j,k
n−1P, where k is the

only integer in set
{

j+2
3 ,

j+1
3 ,

j
3

}
Then, for π

i, j
n , and j = 1, 2, ..., 3n−1, the follow-

ing is true
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π3 j−2, j
n = (π

3 j−2, j
1,n , π

3 j−2, j
2,n , π

3 j−2, j
3,n ) =

(
h j
1,nγ1,1

f 1, jn

,
h j
2,nγ2,1

f 1, jn

,
h j
3,nγ3,1

f 1, jn

)

π3 j−1, j
n = (π

3 j−1, j
1,n , π

3 j−1, j
2,n , π

3 j−1, j
3,n ) =

(
h j
1,nγ1,2

f 2, jn

,
h j
2,nγ2,2

f 2, jn

,
h j
3,nγ3,2

f 2, jn

)

π3 j, j
n = (π

3 j, j
1,n , π

3 j, j
2,n , π

3 j, j
3,n ) =

(
h j
1,nγ1,3

f 3, jn

,
h j
2,nγ2,3

f 3, jn

,
h j
3,nγ3,3

f 3, jn

)

where f jn = ( f 1, jn , f 2, jn , f 3, jn ) = h j
n�. The American put option pricing starts at each

of the final nodes and ends at the tree’s first node. In the Mth step, the value of
the American put option is νM(xnm) = [K − sM(xnm)]+ = max {K − sM(xnm), 0} ,

where xnm = (n1, n2, n3,m1,m2,m3), and n1 + n2 + n3 + m1 + m2 + m3 = M .
For step k, each node in the original tree has 3k option prices for j = 1, 2, ..., 3k ,

ν
j
k (xnm; h j

k ) = max{[K − sk(xnm)]+ , B̃νk+1}

where B̃νk+1( j, h j
k+1) = e−rh

∑3
i=1

∑3
θ=1 h

j
i,kγi,θ Bk+1( j, hl

k+1, i), and for option
prices in the next step Bk+1( j, hl

k+1, i), l = 1, 2, ..., 3k+1 is given by

Bk+1( j, hl
k+1, 1) = q1νk+1

(
n1 + 1, n2, n3,m1,m2,m3; hl

k+1

)
+ (1 − q1)νk

(
n1, n2, n3,m1 + 1,m2,m3; hl

k+1

)
,

Bk+1( j, hl
k+1, 2) = q2νk+1

(
n1, n2 + 1, n3,m1,m2,m3; hl

k+1

)
+ (1 − q2)νk

(
n1, n2, n3,m1,m2 + 1,m3; hl

k+1

)
,

Bk+1( j, hl
k+1, 3) = q3νk+1

(
n1, n2, n3 + 1,m1,m2,m3; hl

k+1

)
+ (1 − q3)νk

(
n1, n2, n3,m1,m2,m3 + 1; hl

k+1

)
.

Let S be a set of initial asset prices S0, and � a family of sets �i , i ∈ I, where
I is an index set, for which if economy information vectors π ,π ′ ∈ �i , i ∈ I then
π ,π ′ are TP2 comparable.

The thresholds in the numerical examples are obtained as follows. First, take
a finite subset S∗ ⊆ S, and a set TP∗

2 ∈ �. Then, for a fixed economy information
vectorπ ∈ TP∗

2 compute the option price for every S0 ∈ S∗. Initial asset price s∗ ∈ S∗
is the one-threshold that splits the set S∗ into a (early) exercise region De

N and a hold
region Dh

N .
The tree obtained from the information vector has exponential growth. It can be

controlled by discretizing the π space as follows. First, choose evenly spread a finite
number of information vectors from the π space. Then, find the closest information
vector from the finite set of information vectors to the one acquired in the node



138 L. Jin et al.

and substitute it. In that way the number of different information vectors can be
controlled.

6.5.2 Numerical Results

In this subsection, unless it is said otherwise, the parameters used for computation
are given in Table 6.1.

The transition probability matrix (T PM) and the probabilistic relation between
a signal and a state of the economy, the conditional probability matrix (CPM), are,

respectively, given by P =
⎡
⎣ 0.7 0.2 0.1
0.1 0.4 0.5
0.05 0.25 0.7

⎤
⎦ , � =

⎡
⎣ 0.6 0.2 0.2
0.1 0.4 0.5
0.05 0.4 0.55

⎤
⎦ . This choice

of parameters satisfy assumptions (A–1) and (A–2). It can be seen that both matrices
have the property of TP2.

(i) To showmonotonicity of νh
N (s,π), νN (s,π), and LN (s, π) inπ = (π1, π2, π3)

(in sense of TP2 ordering) for American put options and every s and N , a set
of all economy information vectors such that

π2 = 0.05, π1 = π2 + 0.03 × i, i = 0, 1, ..., 30, π3 = 1 − π1 − π2,

(6.12)
denoted by TP∗

2, was used. Note that sequence TP
∗
2 ∈ �, is in its reverse order.

Indeed, let π1 = (p1, p2, 1 − p1 − p2) and π2 = (q1, q2, 1 − q1 − q2) such
that π1 �= π2. If p1 �= 0 and p1 = q1, then π1 and π2 are not TP2 comparable.

If p1 ≥ q1 and p2 = q2, then π1
TP2� π2. This claim can be easily derived from

Definition 1 so we omit the proof here. By this result, we note also that other
information vectors from the above partitioned space cannot be added into this

Table 6.1 General model test parameters

Name Notation Parameters

Maturity time T 8/252

Number of steps M 4

Time duration of a step h 2/252

Volatility vector σ (0.5, 0.3, 0.1)

Strike price K 100

Interest rate r 0.02

Dividend yield (American call) δ 0.1

TPM P [pi j ]i, j=1,2,3

CPM � [γi j ]i, j=1,2,3
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sequence, as each of them is not comparable to at least one of the information
vector in TP∗

2.
Note that in all relevant figures in this section, if the horizontal axis refers to
π information vectors, we plot these information vectors in descending order
with respect to the TP2 ordering.
Figures 6.3, 6.4, and 6.5 show that, respectively, νh

N (s,π), LN (s,π), and
νN (s,π) are decreasing in π for initial asset price s = 93.3 and N = M = 4.
Figure 6.6 shows that νN (s,π) is decreasing in π for an American call option
with dividend yield δ = 0.1 and initial asset price s = 105. Note that the no-
arbitrage condition (6.2) is satisfied with our choice of parameter values.

(ii) To show monotonicity of νN (s,π) in the remaining time periods N for every
s and π , a set N ∗ = {3, 6, ..., 90} of remaining time periods N was used.
Figure 6.7 shows that νN (s,π) is increasing in remaining time periods N for
s = 93.3 and π = (0.92, 0.04, 0.04) for an American put option.

(iii) To show monotonicity of νN (s,π) in s for every π and N , a set S∗

S∗ =
{(

0.7 + 0.4

30
× i

)
× K : i ∈ {0, 1, ..., 30}

}

Fig. 6.3 An example of the
monotonicity in π for the
holding value of an
American put νhN (s,π) with
parameters given in Table
6.1 and in (i)

Fig. 6.4 An example of the
monotonicity in π of holding
value premium LN (s,π)

with parameters given in
Table 6.1 and in (i)



140 L. Jin et al.

Fig. 6.5 An example of the
monotonicity in π of the
value of an American put
option νN (s,π) with
parameters given in Table
6.1 and in (i)

Fig. 6.6 An example of the
monotonicity in π of the
value of an American call
option with dividend yield
νN (s,π) with parameters
given in Table 6.1 and in (i)

of initial asset prices s was used for an American put option.
Figure 6.8 shows that νN (s,π) is decreasing in s for N = M = 4 and π =
(0.92, 0.04, 0.04).

(iv) In Sect. 6.4.4, we discussed the existence of one-threshold for the early exercis-
ing decisions. To show the exercise andhold regions, aswell as themonotonicity
of threshold in π , sets TP∗

2 and S∗ defined by Eq. (6.12) and

S∗ =
{(

0.7 + 0.3

5000
× i

)
× K : i ∈ {0, 1, ..., 5000}

}

for an American put, and by

S∗ =
{(

1 + 0.3

5000
× i

)
× K : i ∈ {0, 1, ..., 5000}

}

for an American call option with dividend yield δ = 0.1 were used.
Figures 6.9 and 6.10 show that the threshold is decreasing/increasing in π for
N = M = 4, as well as the exercise and hold regions for the buyer and both
American call option with dividend yield and American put, respectively.
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Fig. 6.7 An example of the
monotonicity in N of the
value of an American put
option νN (s,π) with
parameters given in Table
6.1 and in (i i)

Fig. 6.8 An example of the
monotonicity in s of the
value of an American put
option νN (s,π) with
parameters given in Table
6.1 and in (i i i)

Fig. 6.9 An example of the
optimal stopping regions for
an American put option and
the monotonicity of the
threshold in π with
parameters given in Table
6.1 and in (iv)

Figures 6.11 and 6.12 show the monotonicity of threshold in π for different
choice of π2 in Eq. (6.12), π2 = 0.02 and π2 = 0.07, respectively.
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Fig. 6.10 An example of the
optimal stopping regions for
an American call option with
dividend yield and the
monotonicity of the
threshold in π with
parameters given in Table
6.1 and in (iv)

Fig. 6.11 An example of the
optimal stopping regions for
an American put option and
the monotonicity of the
threshold in π with
parameters given in Table 6.1
and in (iv) for π2 = 0.02

Fig. 6.12 An example of the
optimal stopping regions for
an American put option and
the monotonicity of the
threshold in π with
parameters given in Table 6.1
and in (iv) for π2 = 0.07
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6.6 Conclusion and Future Research

We have studied the American option pricing and the corresponding optimal exer-
cising strategies under a novel model. Under our model, the asset price follows an
extended binomial tree with the volatility parameter governed by a discrete-time
hidden Markov chain. We have formulated the problem using a partially observ-
able Markov decision process and derived analytical structural properties for the
American option prices and optimal exercising strategies, under a set of sufficient
conditions on the transition probability matrix of the economy evolution and the
conditional probabilities of observations. Our analytical results are fully illustrated
with numerical examples.

For future research, we consider generalizing our model by permitting a more
general probability distribution for the asset price. We plan also to conduct extensive
numerical studies on the structural properties under less restrict conditions. Such
information is useful when we use this model in practice.

The results of this research are limited to the pricing of short-maturity options
because the changes in the economic situation are simple. For a long time period,
decision-makers often face more complex situations in the economy. So as future
work, we would also like to study extensions of our model for options with longer
maturities.
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