
Chapter 5
Computable Bounds of Exponential
Moments of Simultaneous Hitting Time
for Two Time-Inhomogeneous Atomic
Markov Chains

Vitaliy Golomoziy

Abstract In this paper, we study the first simultaneous hitting of the atom by two
discrete-time, inhomogeneous Markov chains with values in general phase space.
We establish conditions for the existence and find computable bounds for the hit-
ting time’s exponential moment using a geometric drift condition adapted for time-
inhomogeneous Markov chains.
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5.1 Introduction

Properties of hittingmoments play an important role in theMarkov chains theory, and
various drift conditions are practical tools used in applications when dealing with
such moments. The theory of hitting moments and convergence of homogeneous
Markov chains is well developed. Many books are devoted to that topic, see, for
example, [7, 23, 30]. The first work includes a good overview of the recent results,
and we will refer to this book repeatedly.

Hitting moments play such an extraordinary role in the homogeneous Markov
chains theory because of two important methods that are used in research nowadays:
splitting and coupling. The splitting method was introduced in the seminal work of
Nummelin [25] and was further developed by other authors. A famous book [23]
presents the comprehensive theory of homogeneous Markov chains developed using
the splitting technique.

The coupling method was first used by Doeblin [6] and became very popular
afterward. The essence of the coupling method is covered in books [20, 31]. In the
last years coupling method was extensively used (see [1, 8, 14–19, 27]).
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At the same timemajority of the papers were devoted to the homogeneousMarkov
chains, while the inhomogeneous theory is not so well developed. Inhomogeneous
chains play an important role in applications, for example, in actuarial mathematics
[16], risk theory [2], stochastic optimization [4, 22], etc. In addition, there is a great
theoretical interest to this area of research. Foundational results in the theory of
inhomogeneous Markov chains were established by Dobrushin [5], and following
works [21, 26, 28]. Most of the aforementioned works are related to the ergodicity
of time-inhomogeneous chains. However, the coupling technique can be applied to
the study of the stability of inhomogeneous chains. By stability, we mean not only
stability of the same chain with regard to different initial distributions, but proximity
in some sense, of two different time-inhomogeneous chains. Stability results for
inhomogeneous chains could be found in [14–19].

The essential tool in the application of the coupling method to stability research
in the inhomogeneous case is the renewal theory. This theory is well-developed
for the homogeneous renewal sequences, and such classical results as Blackwell,
Kendall theorems, andKeyRenewal Theorem play an important role. However, there
are no such strong results for inhomogeneous renewal sequences (such sequences
are generated by the inhomogeneous Markov chains). We can highlight the works
of Chow and Robbins [3], and Smith [29] in this domain. Properties of renewal
sequences (such as estimation of the expectation of the simultaneous hitting time)
in the context of inhomogeneous Markov chains were studied in the papers [9–13].
The present paper can be considered as the contribution to the renewal theory of
time-inhomogeneous Markov chains.

An important aspect of any research is the ability to verify the conditions in
practical application. The standard tool that is used for that purpose in the Markov
chains theory is drift conditions. In this paper, we develop a drift condition that
is sufficient to ensure the existence of the exponential moment of the return time
and evaluate its bounds. Such conditions extensively used in the theory of both
homogeneous and inhomogeneous Markov chains. See [1, 8], as an example of drift
condition being used for studying ergodicity of the inhomogeneous Markov chains.

The paper is organized as follows. In Sect. 5.2 we construct probability space
and introduce notation used in the rest of the paper. Section5.3 includes drift con-
ditions adapted to time-inhomogeneous chains that ensure an exponential moment’s
existence. Section5.4 presents theorems that guarantee the existence of an expo-
nential moment of simultaneous return time of the couple of different inhomo-
geneous chains, computable bounds for such moment and application to ergodic-
ity. Section5.5 includes auxiliary lemmas used in the proof of the main results. In
Appendix we provide the well-known Comparison Theorem for adapted processes
with discrete time.



5 Computable Bounds of Exponential Moments of Simultaneous Hitting … 99

5.2 Notation

Let (E, E) be a measurable space, M1(E), F+(E), Fb(E) be the spaces of all proba-
bility measures, positive and bounded measurable functions on (E, E), respectively.
Denote by N0 a set of all nonnegative integers, N0 := {0, 1, 2, . . .}. In this paper, we
study time-inhomogeneous Markov chains, taking values in the space (E, E). We
associate time-inhomogeneous Markov chain with a sequence of Markov kernels
Pt : E × E → [0, 1], where t ∈ N0. Markov kernel Pt (x, A) stands for the proba-
bility for the chain to be at time t at the state x ∈ E and hit the set A ∈ E at time
t + 1.

We introduce a special notation for a product of transition kernels:

Pt,n(x, A) =
⎛
⎝
n−1∏
k=0

Pt+k

⎞
⎠ (x, A) =

∫
E

. . .

∫
E
Pt (x, dx1) . . . Pt+n−1(xn−1, A), n ≥ 1,

Pt,0(x, A) = 1A(x).

It is verywell known that a sequence ofMarkov kernels (Pt ) togetherwith the starting
measureλ ∈ M1(E) defines a time-inhomogeneousMarkov chain (see [24], Theorem
5.1). Our main goal in this section is to introduce a notation that is not overwhelmed
with indexes and allows us to use intuition from the homogeneous Markov chains
theory and emphasize the difference brought by time-inhomogeneity.

Let � = E∞ be the set of all infinite sequences ω = (ω0, ω1, . . .), ω j ∈ E and
F = E∞ be the sigma-field generated by all cylinder sets. For each fixed t ∈ N0 and
λ ∈ M1(E) there exists unique probability measure Pt

λ (see [24], Chap. 5 for details
of the construction), such that for any cylinder set A0 × A1 . . . At+n × E∞ ∈ F :

Pt
λ {A0 × · · · × At+n} =

∫
At

∫
At+1

. . .

∫
At+n

λ(dx0)Pt (x0, dx1) . . . Pt+n−1(xn−1, dxn).

Define a sequence of random variables Xt,n(ω) = ωt+n, n ≥ 0, such that for
all A0, . . . , An ∈ E : Pt

λ

{
Xt,0 ∈ A0, . . . , Xt,n ∈ An

} = Pt
λ{Et × A0 × . . . × An}.

Denote Ft,n = σ
[
Xt,k, 0 ≤ k ≤ n

]
, a natural filtration associated with random

sequence (Xt,n, n ≥ 0), and use a notation E
t
[
f (Xt,n+m)|Ft,n

]
for the condi-

tional expectation associated with Xt,n, n ≥ 0 (here f ∈ F+(E), n,m ≥ 0). Then
the Markov property holds true: Et

[
f (Xt,n+m)|Ft,n

] = E
t
[
f (Xt,n+m)|Xt,n

]
.

So far, we defined a space (�,F) and a sequence Pt
λ of probability measures on

that space, as well as double-indexed sequence Xt,n : � → E , t, n ≥ 0. Naturally,
we associate Xt,n with a probability space (�,F ,Pt

λ). Now, we establish how Pt
λ

and Xt,n are connected for different t .
Let us introduce the shift operators θn : � → �, n ≥ 1, where ∀ω =

(ω0, ω1, . . .) ∈ �: θ(ω) = θ1(ω) = (ω1, ω2, . . .), θn(ω) = (θn−1 ◦ θ)(ω) =
(ωn, ωn+1, . . .), n > 1. It is clear that, for any t, s, n ∈ N0: Xt+s,n = Xt,n+s =
Xt,n ◦ θs, but, for B ∈ E : Pt+s

λ

{
Xt+s,n ∈ B

} 	= Pt
λ

{
Xt,n+s ∈ B

}
. For a set C ∈ E
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define hitting and return times by τt,C = inf{n ≥ 0 : Xt+n ∈ C}, σt,C = inf{n ≥
1 : Xt+n ∈ C}. In order to simplify further transformation and use intuition origi-
nated by the time-homogeneous case, we make the following agreement:We always
use random element Xt,n in context of probability Pt

λ and never in context of
Ps

λ, s 	= t . So, we will omit lower index t for Xt,n , Ft,n , τt,C and σt,C in context of
Pt

λ.
For example, we can write

Pt
λ {σC > n} = Pt

λ

{
σt,C > n

} = Pt
λ {X1 /∈ C, . . . Xn /∈ C}

= Pt
λ

{
Xt,1 /∈ C, . . . Xt,n /∈ C

} = Pt
λ {ω ∈ � : ωt+1 /∈ C, . . . , ωt+n /∈ C} .

Similarly, for f ∈ F+(E), using Markov property, we get

Et
[
f (Xn+m)|Fn

] = Et
[
f (Xt,n+m)|Ft,n

] = Et
[
f (Xn+m)|Xn

] = Pt+n,m f (Xt,n)

=
∫
E

∫
E

. . .

∫
E
Pt+n(ωt+n, dx1)Pt+n+1(x1, dx2) . . . Pt+n+m−1(xm−1, dxm) f (xm).

Note, that in the formula above the index t must be specified in Pt+n,m f (Xt,n). On
the other hand, it is obvious that for x ∈ E ,

Et
[
f (Xn+m)|Xn = x

] = Et+n
x [ f (Xm)] ,

which is a typical expression in the theory of homogeneous Markov chains.
We conclude this section with the definition of an atom.

Definition 1 We say that a set α ∈ E is an atom for the sequence of Markov kernels
(Pt , t ∈ N0), if there exists a sequence of probability measures μt ∈ M1(E) such
that for any t ∈ N0, A ∈ E and x ∈ α: Pt (x, A) = μt (A).

We say that atom α is aperiodic if there exists m ≥ 1 such that

inf
t

{Pt,m(α, α), Pt,m+1(α, α)} > 0. (5.1)

Remark 1 For a homogeneous Markov chain with kernel P aperiodic atom sat-
isfies Pn(α, α) > 0, for all n ≥ m, where m some positive integer. Note that
condition (5.1) implies that there exists m ≥ 1, such that Pt,m+n(α, α) > 0, for
all n ≥ 0 In contrast to the homogeneous case in the inhomogeneous case it is
possible that Pt,m+n(α, α) → 0, t → ∞. That is why we require in (5.1) that
inf t {Pt,m(α, α), Pt,m+1(α, α)} > 0. Since the greatest common divisor of m and
m + 1 equals to 1, the latter condition can be rewritten in the following form, which
we use in the proof of the main result:

∃m ≥ 1, ∀n ≥ 0, ∃γn > 0 : inf
t,0≤k≤n

{Pt,m+k(α, α) ≥ γn > 0}. (5.2)
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5.3 Geometric Drift Condition

5.3.1 Drift Condition for Inhomogeneous Markov Chains

In this section, we construct a time-inhomogeneous analog of the very well known
result for homogeneous Markov chains, regarding geometric drift conditions and
existence of the exponential moments. It worth mentioning that the standard homo-
geneous drift condition in the form PV (x) ≤ λV (x) + b1C (x) is not useful in the
inhomogeneous case. This is related to the fact that the inhomogeneous chain prop-
erties do not necessarily coincide with that of each particular Pt . In other words,
the whole chain may have the finite exponential moment, while the homogeneous
chains generated by most of Pt will not. In time-inhomogeneous case, constant λ and
test function V have to be dependent on t . One other peculiarity of inhomogeneous
chains is that it could be convenient to analyze the chain in terms of blocks Pt,k

rather than in terms of individual transition probabilities Pt . That is why we state the
drift condition in such “blocks” form.
Condition (D). We say that a sequence of Markov kernels (Pt , t ∈ N0) satisfies
Condition (D) with the set C ∈ E if:
1. There exist a sequence of positive integers {nk, k ≥ 1}, a sequence of measurable
functions Vk : E → [1,∞] and two sequences of positive constants {λk, k ≥ 0}, and
{bk, k ≥ 0} such that for all x ∈ E

PNk ,nk+1Vk+1(x) ≤ λk+1Vk(x) + bk1C(x), (5.3)

where Nk =
k∑
j=1

n j , k ≥ 1.

2. Sequence {λk, k ≥ 0} defined in item 1., satisfies

∞∑
k=0

⎛
⎝

k∏
j=0

λ j ∨ 1

⎞
⎠

−1

(1 − λk)
+ = ∞.

Here a ∨ b = max{a, b}, and a+ = max{a, 0}.
We find it convenient to use the following notation

k(t) = min{k : Nk ≥ t}, N (t) = Nk(t),

τ = inf{ j ≥ 1 : Xt,Nk(t)+ j−t ∈ C}, where t ∈ N0.
(5.4)

Variable τ here depends on selection of t , which should be clear from the context.

Theorem 1 Let (Pt ) be a sequence of Markov transition kernels, C ∈ E be some set
and Condition (D) hold true. Then the following two statements hold true.

1. For any t ∈ N0 and x ∈ E such that Pt,N (t)−t VN (t)(x) < ∞:
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Pt
x {τ < ∞} = Pt

x {σC < ∞} = 1.

2. For any x ∈ E, t ∈ N0 :

Et
x

⎡
⎣

τ∏
j=1

λ−1
N (t)+ j

⎤
⎦ ≤ Pt,N (t)−t VN (t)(x) + λ−1

Nk(t)+1
bN (t)P

t,N (t)−t (x,C),

where k(t), N (t) and τ are defined in (5.4).

Proof In the proof we use the notation from Sect. 5.2. The key tool of the proof is
the Comparison Theorem (see Appendix). Assume that t ∈ N0 is fixed.

First, for readability purposes, we define an increasing sequence of positive num-
bers {mk, k ≥ 0}, inhomogeneous Markov chain Zk and filtrationF∗

n (all depending
on t) in the following way:

m j = Nk(t)+ j , j ≥ 0, Z j = Xt,m j−t , j ≥ 0, F∗
n = Ft,mn .

So, m0 ≥ t is the first number Nk that is greater or equal than t , m1 is the second
such number and so on. It is also clear that τ is a stopping time for filtration F∗

n and
it can be written as τ = inf{ j ≥ 1 : Z j ∈ C}.

First we show that if x ∈ E is such that Pt,N (t)−t VN (t)(x) < ∞ then

Pt
x {τ < ∞} = Pt

x {σC < ∞} = 1. (5.5)

Define An =
⎛
⎝

n∏
j=0

λm j ∨ 1

⎞
⎠

−1

, Vn = AnVmn (Zn),

Zn = An+1(1 − λmn+1)
+Vmn (Zn) and Yn = bN (t)An+11C(Zn). Then, we can write

Et
[Vn+1|F∗

n

]+ Zn = An+1
(
Et
[
Vmn+1(Zn+1)|Fmn

]+ (1 − λmn+1)
+Vmn (Zn)

)

= An+1
(
Pmn ,mn+1−mn Vmn+1(Zn) + (1 − λmn+1)

+Vmn (Zn)
)

≤ An+1
(
λmn+1Vmn (Zn) + (1 − λmn+1)

+Vmn (Zn) + bN (t)1C(Zn)
)
.

Consider now two cases. If λmn+1 ≤ 1, then An+1 = An and

λmn+1Vmn (Zn) + (1 − λmn+1)
+Vmn (Zn) = Vmn (Zn),

which yields for λmn+1 ≤ 1:

Et
[Vn+1|F∗

n

]+ Zn ≤ AnVmn (Zn) + An+1bN (t)1C(Zn) = Vn + Yn. (5.6)

Now, let λmn+1 > 1. In this case An+1λmn+1 = An and (1 − λmn+1)
+ = 0. Then, for

λmn+1 > 1,
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Et
[Vn+1|F∗

n

]+ Zn ≤ AnVmn (Zn) + An+1bN (t)1C(Zn) = Vn + Yn. (5.7)

Combining (5.6) and (5.7), we conclude that these inequalities holds for all λmn+1 >

0.
Comparison Theorem then yields:

Et
x [Vτ1τ<∞] + Et

x

[
τ−1∑
k=0

Zk

]
≤ Et

x [V0] + Et
x

[
τ−1∑
k=0

Yk

]
.

Using the last inequality, and the fact that Vk ≥ 1, for all k ≥ 0, we can establish
the finiteness of the series

∑
n≥0

An(1 − λmn )
+Pt

x {τ > n} = Et
x

[
τ−1∑
n=0

An(1 − λmn )
+
]

≤ Et
x

[
τ−1∑
n=0

An(1 − λmn )
+Vmn (Zn)

]
= Et

x

[
τ−1∑
n=0

Zn

]
≤ Et

x [V0] + Et
x

[
τ−1∑
k=0

Yk

]

= A0P
t,N (t)−t VN (t)(x) + Et

x

[
A1bN (t)1C(XN (t)−t )

]
< ∞.

Therefore,weget the relation
∑
n≥0

An(1 − λmn )
+Pt

x {τ > n} < ∞. It follows from the

Condition (D) that
∑
n≥0

An(1 − λmn )
+ = ∞ which implies Pt

x {τ > n} → 0, which

proves (5.5), since Pt
x {σC < ∞} ≥ Pt

x {τ < ∞} = 1. The rest of the proof of the
theorem follows the arguments from the [7], Proposition 4.3.3 (ii). We apply the
Comparison Theorem once again. Put


0 = 1, 
n =
n∏

k=1

λ−1
mk

, n ≥ 1,Vn = 
nVmn (Zn), n ≥ 0,

Zn = 0, Yn = 
n+1bN (t)1C(Zn), n ≥ 0.

Then, for all n ≥ 0,

Et
[Vn+1|F∗

n

]+ Zn = 
n+1P
mn ,mn+1−mn Vmn+1(Zn)

≤ 
n+1λmn+1Vmn (Zn) + 
n+1bN (t)1C(Zn) = 
nVmn (Zn) + Yn = Vn + Yn.

Assume that x ∈ E satisfies inequality Pt,N (t)−t VN (t)(x) < ∞. Taking into account
(5.5), the Comparison Theorem yields:
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Et
x [
τ ] ≤ Et

x [Vτ ] ≤ Et
x [V0] + Et

x

[
τ−1∑
k=0

Yk

]

= Pt,N (t)−t VN (t)(x) + λ−1
Nk(t)+1

bN (t)P
t,N (t)−t (x,C),

which completes the proof.

Corollary 1 It follows from Theorem 1 that sufficient conditions for the existence of
the moment of σC for given t ∈ N0 and x ∈ E are the following:

1. Condition (D) holds true.

2. There exist β > 1 and Cβ > 0 such that ∀n, k ≥ 0: βk ≤ Cβ

k∏
j=1

λ−1
n+ j .

3. x ∈ E is such that Pt,N (t)−t VN (t)(x) < ∞.
Then, the following inequality is valid,

C−1
β Et

x

[
βσC
] ≤ Pt,N (t)−t VN (t)(x) + λ−1

Nk(t)+1
bN (t)P

t,N (t)−t (x,C).

Proof Since for all ω ∈ �, return time σC(ω) satisfies the inequality σC(ω) ≤ τ(ω),

we can conclude that Et
x [β

σC ] ≤ Et
x [β

τ ] ≤ CβEt
x

[
τ∏
j=1

λ−1
N (t)+ j

]
. Required state-

ment then follows from Theorem 1.

Remark 2 In the case where nk = 1, for every k ≥ 0, the drift condition and expo-
nential moment bound could be rewritten in the simpler form:

PtVt+1(x) ≤ λt+1Vt (x) + bt1C(x), C−1
β Et

x

[
βσC
] ≤ Vt (x) + λ−1

t+1bt1C(x),

assuming that conditions of Corollary 1 are satisfied. In fact,Condition (D) implies
one-step drift condition with the special functions Vt under some additional assump-
tions. The following proposition is a straightforward analog of a well-known homo-
geneous result (see [7], Proposition 4.3.3 (i)).

Proposition 1 Let {λt , t ∈ N0} be a set of positive constants such that

b := supt∈N0,x∈C Et
x

[
σC∏
k=0

λ−1
t+k

]
< ∞. Then drift condition PtVt+1(x) ≤ λt Vt (x) +

b1C(x) holds true for the function Vt (x) = Et
x

[
τC∏
k=0

λ−1
t+k

]
.

Proof Markov property yields:
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PtVt+1(x) = Et
x

[
Vt+1(X1)

] = Et
x

[
Et+1

Xt,1

[
τC∏
k=0

λ−1
t+1+k

]]

= Et
x

[
τt+1,C∏
k=0

λ−1
t+1+k

]
= Et

x

[
τC◦θ∏
k=0

λ−1
t+1+k

]
=
∑
j≥1

Et
x

[
τC◦θ∏
k=0

λ−1
t+1+k1σC= j

]

=
∑
j≥1

Et
x

[
j−1∏
k=0

λ−1
t+1+k1σC= j

]
=
∑
j≥1

Et
x

[
j∏

k=1

λ−1
t+k1σC= j

]

=
∑
j≥1

λtEt
x

[
j∏

k=0

λ−1
t+k1σC= j

]
= λtEt

x

[
σC∏
k=0

λ−1
t+k

]
.

For x /∈ C we have Pt
x {σC = τC } = 1, which means that PtVt+1(x) = λt Vt (x).

Additionally, for any x ∈ C :

PtVt+1(x) = λtEt
x

[
σC∏
k=0

λ−1
t+k

]
≤ λt sup

x∈C
Et
x

[
σC∏
k=0

λ−1
t+k

]
≤ λtλ

−1
t b.

Combining the inequalities for x ∈ C and x /∈ C we get:

PtVt+1(x) ≤ λt Vt (x)1Cc(x) + b1C (x) ≤ λt Vt (x) + b1C(x).

So, the statement Remark 2 is proved.

5.3.2 Constructing a Sequence that Dominates Return Time

Existence of a dominating sequence, i.e., such sequence of positive, real numbers
{Ĝn, n ≥ 0} that Ĝn(x) ≥ Pt

x {σC > n} , plays an important role in a series of results
for inhomogeneous Markov chains (see, [9–13]).

Practically, however, it is not always easy to find such a sequence. We will show
that the drift condition could be used to address this problem.

Lemma 1 Consider inhomogeneous Markov chain defined by a series of Markov
kernels (Pt , t ∈ N0). Assume that conditions of Corollary 1 are satisfied. Then

Pt
x {σC > n} ≤ Cβ

Pt,N (t)−t VN (t)(x) + λ−1
Nk(t)+1

bN (t)Pt,N (t)−t (x,C)

e(n+1) ln β
. (5.8)

In particular, when conditions of Remark 2 are satisfied, (5.8) is equal to

Pt
x {σα > n} ≤ Cβ

Vt (x) + bt
λt+1

e(n+1) ln β
. (5.9)
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Proof is a trivial application of the Chernoff inequality

Pt
x {σC > n} = Pt

x {σC ≥ n + 1} ≤ Et
x

[
eσC ln β

]

e(n+1) ln β
.

Formulas (5.8) and (5.9) follows from Corollary 1 and Remark 2.

Using Lemma 1, we may construct dominating sequences in the assumption that
right-hand sides of (5.8) or (5.9) are bounded as functions of t . The nice property of
such dominating sequences is that they admit finite exponential moments.

5.4 Main Result

In this section we consider a pair of sequences of Markov kernels (P0,t , t ∈ N0)

and (P1,t , t ∈ N0) defined on the E × E . Let E ⊗ E be a sigma-field generated
by all products A × B, A, B ∈ E and ∀λ, λ′ ∈ M1(E) denote as λ ⊗ λ′ a product
measure defined on the E ⊗ E . We may construct the sequence of Markov kernels
P̄t : E2 × E ⊗ E → [0, 1], such that for all t ∈ N0, x, y ∈ E, A ∈ E ⊗ E :

P̄t ((x, y), A) =
∫

(z0,z1)∈A
P0,t (x, dz0)P1,t (x, dz1).

We can build the canonical space (�̄, F̄) and a series of probability measures P
t
λ0⊗λ1

(λ0, λ1 ∈ M1(E)) using the same approach as in Sect. 5.2. It is clear that every ω̄ ∈ �̄

can be written as ω̄ = (ω̄0, ω̄1, . . .), where ω̄ j =
(
ω

(0)
j , ω

(1)
j

)
, ω

(i)
j ∈ E , i ∈ {0, 1},

j ≥ 0. For each t ∈ N0 we have then a pair of time-inhomogeneous Markov chains
(X (0)

t,n , X
(1)
t,n , n ≥ 0), such that X (0)

t,n (ω̄) = ω
(0)
t+n and similarly X (1)

t,n (ω̄) = ω
(1)
t+n .

It follows from the construction, that ∀A ∈ E , i ∈ {0, 1}:

P
t
λ0⊗λ1

{
X (i)
n ∈ A

} =
∫
E

λi (dx)P
t,n
i (x, A),

where, for i ∈ {0, 1}: Pt,n
i (x, A) =

(
n−1∏
k=0

Pi,t+k

)
(x, A). For a given set C ∈ E we

define hitting and return times to C × C :

τ̄t,C×C = inf{n ≥ 0 :
(
X (0)
t,n , X

(1)
t,n

)
∈ C × C},

σ̄t,C×C = inf{n ≥ 1 :
(
X (0)
t,n , X

(1)
t,n

)
∈ C × C},

an the shift operator on �̄: θ̄ ((ω̄0, ω̄1, . . .)) = (ω̄1, ω̄2, . . .).
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We will also need indviduall probabilities and expectations Pt
i,λ, E

t
i,λ, i ∈ {0, 1},

λ ∈ M1(E). They should be understood as canonical probabilities and expectations
generated by the sequences (P0,t , t ∈ N0), or (P1,t , t ∈ N0) separately.

Going forwardwewill drop the bottom index t in the context ofP
t
λ0⊗λ1

as described
in the Sect. 5.2.

We will need the following conditions:
Condition A: There exists set α ∈ E which is an aperiodic atom for both (P0,t ), and
(P1,t ).
Condition D1: Assume that Condition (D) holds true for each of the sequences
(Pi,t , t ∈ N0, i ∈ {0, 1}) with V (i)

t , λ
(i)
t and β

(i)
t . Assume also, there exists β > 1

and constants C (i)
β > 0 such that for i ∈ {0, 1}, t, n ≥ 0, and λ

(i)
t

βn ≤ C (i)
β

(
n∏

k=1

λ
(i)
t+k

)−1

. (5.10)

Now we introduce a notation specific for the proof of the main result.
Let Condition (A) hold true, so that α is an aperiodic atom for both chains. Then,

we can assume, without loss of generality, that there arem > 0 and γ0 > 0, such that

γ0 = inf
t∈N0,i∈{0,1}

{Pt,m
i (α, α), Pt,m+1

i (α, α), . . . , Pt,2m−1
i (α, α)} > 0. (5.11)

Let us define a sequence of “coupling trials” νt,k :

νt,−1 = min{σ̄t,α×E , σ̄t,E×α}, νt,0 = max{σ̄t,α×E , σ̄t,E×α},

νt,n+1 =
⎧⎨
⎩

∞, if νn = ∞,

min{k ≥ νt,n + m, X (1)
t,k ∈ α}, if X (0)

t,νt,n ∈ α,

min{k ≥ νt,n + m, X (0)
t,k ∈ α}, if X (1)

t,νt,n ∈ α,

(5.12)

where n ≥ 0 and m is from (5.11). We also introduce the following notation

Ut,n = νt,n − νt,n−1, n ≥ 0, τt = min{k ≥ 0 : νt,k−1 = νt,k}. (5.13)

Ut,n can be understood as a next after time m hit of α by X (1−i) if X (i)
t,νt,n ∈ α,

τt is a number of the first successfull coupling trial, and νt,τt is an index, such that(
X (0)
t,νt,τt

, X (1)
t,νt,τt

)
∈ α × α for the first time. The main reason, why we added m steps

of delay, is to ensure that renewal probabilities are separated out from 0, which is
the critical element for the proof. Let us also define a family of sigma-fields:

Bt,n = σ
[F̄νt,n−1 ,Ut,n

]
, n ≥ 0. (5.14)

Theorem 2 Let (P0,t , t ∈ N0) and (P1,t , t ≥ 1) be two sequences of Markov ker-
nels. Assume that Condition (A) is satisfied and there exist constant β > 1 and sets



108 V. Golomoziy

Ẽ0, Ẽ1 ∈ E , such that α ⊂ Ẽ0 ∩ Ẽ1 and for all x, y ∈ Ẽ0 × Ẽ1 :

sup
t

(
Et
0,x

[
βσα
]+ Et

1,y

[
βσα
])

< ∞.

Then there exists constant M > 0 such that the following inequality holds true :

E
t
x,y

[
δσ̄α×α

] ≤ M
(
Et
0,x

[
βσα
]+ Et

1,y

[
βσα
])

. (5.15)

Constant M could be expressed as

M = 1 + 1

1 − √
(1 − γ )(1 + ε)

, (5.16)

where γ, ε > 0 some constants, such that (1 − γ )(1 + ε) < 1.

Proof Since for every ω̄ ∈ �̄ we have the inequality σ̄t,α×α(ω̄) ≤ νt,τt (ω̄) then for
all x, y ∈ Ẽ0 × Ẽ1 we get:

E
t
x,y

[
βσ̄α×α

] ≤ E
t
x,y

[
βντ
] =

∞∑
k=0

E
t
x,y

[
1τ=kβ

νk
]

≤ E
t
x,y

[
βν0
]+

∞∑
k=1

E
t
x,y

[
1τ>k−1β

νk
]

≤ E
t
x,y

[
βν0
]+

∞∑
k=0

(
P
t
x,y {τ > k}Et

x,y

[
β2νk+1

]) 1
2
.

(5.17)

Last inequality is due to the Cauchy-Schwarz inequality. By Lemma 6with r(k) = 1
there exists γ ∈ (0, 1) such that P̄t

{
τ > j |F̄ν j−1

} ≤ (1 − γ )1τt> j−1, which entails:

P
t
x,y {τ > k} < (1 − γ )k . (5.18)

Note that νt,k+1 = νt,k +Ut,k+1 and νt,k is Bt,k-measurable. Let us select ε, such that
(1 + ε)(1 − γ ) < 1. Since supt,i E

t
i,α [β

σα ] < ∞, we can apply Lemma 4 and find
such δ ∈ (1, β) that

E
t
x,y

[
δ2νk+1

] = E
t
x,y

[
δ2νkE

t [
δ2Uk+1 |Bk

]] ≤ (1 + ε)E
t
x,y

[
δ2νk
]
. (5.19)

Applying (5.19) recursively we obtain the following estimate:

E
t
x,y

[
δ2νk+1

] ≤ (1 + ε)k+1E
t
x,y

[
δν0
]
. (5.20)

Plugging (5.20) and (5.18) into (5.17), and taking into account that (5.17) remains
true if we replace β with δ, we get:
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E
t
x,y

[
δσ̄α×α

] ≤ E
t
x,y

[
δν0
] (

1 +
∞∑
k=0

((1 − γ )(1 + ε))
k
2

)

≤ E
t
x,y

[
δν0
] (

1 + 1

1 − √
(1 − γ )(1 + ε)

)

≤ (Et
0,x

[
δσα
]+ Et

1,y

[
δσα
]) (

1 + 1

1 − √
(1 − γ )(1 + ε)

)
.

(5.21)

Since δ ≤ β, (5.21) renders:

E
t
x,y

[
δσ̄α×α

] ≤
(
Et
0,x [β

σα ] + Et
1,y [β

σα ]
) (

1 + 1
1−√

(1−γ )(1+ε)

)
, (5.22)

which proves the theorem with M = 1 + 1
1−√

(1−γ )(1+ε)
.

Theorem 2 establishes the existence of the exponential moment, however, it could
be difficult to verify its conditions and find constants δ, ε, γ , which are necessary to
calculate M using (5.16). To address this problem, we state the next result.

Theorem 3 Let (Pi,t , i ∈ {0, 1}, t ∈ N0) be two sequences of Markov kernels.
Assume that Condition (A) and Condition (D1) hold true. Assume additionally:

1. There exist constants Ĉ > 0, β̂ > β such that

Pt
i,α {σα > n} ≤ Ĉ β̂−n,

so that m̂ := ∑
n≥0

Ĉ β̂−n = Ĉ β̂

β̂−1
< ∞.

2. There exist m > 0 and γ0 > 0 such that for i ∈ {0, 1},

inf
t∈N0

{Pt,m
i (α, α), . . . Pt,2m−1

i (α, α)} ≥ γ0.

3. There exist sets Ai ∈ E , Ai 	= ∅, i ∈ {0, 1} such that for all x ∈ Ai ,

sup
t

Pt,N (t)−t
i V (i)

N (t)(x) < ∞.

Then the following inequality holds true for x ∈ A0 ∪ α, y ∈ A1 ∪ α,

E
t
x,y

[
δσ̄α×α

] ≤ M
(
C (0)

β W (0)
t (x) + C (1)

β W (1)
t (y)

)
, (5.23)
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where

W (0)
t (x) = Pt,N (t)−t

0 V (0)
N (t)(x) + b(0)

N (t)

λ
(0)
N (t)+1

Pt
0,x

{
XN (t)−t ∈ α

}
,

W (1)
t (y) = Pt,N (t)−t

1 V (1)
N (t)(y) + b(1)

N (t)

λ
(1)
N (t)+1

Pt
1,x

{
XN (t)−t ∈ α

}
,

M = 1 + 1
1−√

(1−γ )(1+ε)
, γ = γ0(1 − Ĝm)

m̂−Ĝm
Ĝm , δ = (1 + ε/2)

1
m+n0 ,

n0 =
⌊
ln
(

ε(β̂−β)

2Ĉβm+1

)
/ ln

(
β

β̂

)⌋
+ 3.

(5.24)

Here ε is an arbitrary constant such that ε <
γ

1−γ
, and �a� is an integer part of a

real number a.

Proof Since Condtion (D1) is satisfied, we can apply Corollary 1 and get
for every x ∈ Ai \ α, i ∈ {0, 1}: supt E

t
i,x [β

σα ] < ∞. Condition 1 implies that

supt E
t
i,α [β

σα ] < ∞. So, conditions of Theorem 2 are satisfied with Ẽi = Ai ∪ α.

Formulas for W (0)
t (x) and W (1)

t (y) follow from Theorem 1, the formula for the
constant M is proven in Theorem 2, formulas for δ and n0 are from Lemma 4. The
formula for γ follows from Lemmas 2 and 3.

Remark 3 In the case when all nk from Condition (D) are equal to 1, the formulas
for W (0)

t (x) and W (1)
t (y) in (5.24) could be simplified to

W (0)
t (x) = V (0)

t (x) + b(0)
t

λ
(0)
t+1

1α(x), W (1)
t (y) = V (1)

t (y) + b(1)
t

λ
(1)
t+1

1α(y). (5.25)

Remark 4 Condition 1 in Theorem 3 seems more restrictive than Condition (D1),
but in fact, it can be derived from Condition (D1) as shown in Lemma 1. In this case
we should find β ′ ∈ (1, β) and set β̂ = β and β = β ′ which will satisfy conditions
of Theorem 3. We stated condition 1 in Theorem 3 as a separate condition because
m̂ and Ĝm used in the obtained bounds. And of course, for some particular chains it
is possible to find better Ĝn than provided by Lemma 1.

Next, we show how the bounds for an exponential moment could be applied to the
ergodicity of inhomogeneous Markov chains. Conditions that guarantee strong and
week ergodicity of inhomogeneousMarkov chains arewell known. Strong ergodicity
was investigated in papers [5, 28] and criterion for weak ergodicity was established
in [21, 26].

Condition (D) does not imply even weak ergodicity as defined in [21, 26] (unless
supx,t Vt (x) < ∞, which does not hold in practice), but this condition is sufficient
for convergence in measure’s norm for n-steps transition probabilities. Rates of such
convergence have been studied in papers [1, 8]. In [1], geometric drift condition was
used to establish convergence rates. However, Condition (D) in the present paper is
less restrictive than one in [1] since we allow some λt to be greater than 1.

The main difference with the result in [1] is that we established bounds for geo-

metric sums
∞∑
k=0

δk ||Pt,k(x, ·) − Pt,k(y, ·)|| while [1] is concerned with bounds for
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a single term ||Pt,k(x, ·) − Pt,k(y, ·)||. In order to prove an estimate for the geo-
metric sum defined above, in the next theorem, we apply the coupling method to
two copies of the same inhomogeneous Markov chain started with different initial
distributions. This allows us to show that the sum is bounded by the exponential
moment of the simultaneous hitting time, and we can use Theorems 2 or 3 to obtain
computable bounds in terms of exponential moments of each chain or test function
from Condition (D).

The next theorem is a well-known fact for homogeneous Markov chains, and the
proof follows the same arguments as used for homogeneous chains (see. [7] Chaps. 8,
13). We state the theorem here to demonstrate one possible application of Theorems
2 and 3 and highlight the importance of the existence of exponential moment.

Theorem 4 Let (Pt , t ∈ N0) be a sequence of Markov kernels that admits an ape-
riodic atom α ∈ E , and λ, λ′ ∈ M1(E) two probability measures, such that for all
t ∈ N0, Pt

λ{σα < ∞} = P
t
λ′ {σα < ∞} = 1. Assume that there exists β > 1 such that

Et
α [β

σα ] < ∞. Then there exists δ ∈ (1, β) satisfying the following inequality

∑
k≥0

δk ||λPt,k − λ′Pt,k || ≤ 1

δ − 1

(
E
t
λ⊗λ′

[
δσ̄α×α

]− 1
)

.

Proof We conduct the proof using the standard coupling technique adapted for time-
inhomogeneous chains.

Let f : E → R be a bounded measurable function. Consider chains X (0)
t,n and X (1)

t,n

as two copies of the same time-inhomogeneous chain with a sequence of Markov
kernels (Pt , t ∈ N0). Then

Et
0,λ

[
f
(
X (0)
n

)] = E
t
λ⊗λ′

[
f
(
X (0)
n

)]

=
n∑

k=0

E
t
λ⊗λ′

[
f
(
X (0)
n

)
1σ̄α×α=k

]+ E
t
λ⊗λ′

[
f
(
X (0)
n

)
1σ̄α×α>n

]

=
n∑

k=0

E
t
λ⊗λ′

[
E
t+k
α×α

[
f
(
X (0)
n−k

)]
1σ̄α×α=k

]
+ E

t
λ⊗λ′

[
f
(
X (0)
n

)
1σ̄α×α>n

]

=
n∑

k=0

P
t
λ⊗λ′ {σ̄α×α = k} Pt+k,n−k f (α) + E

t
λ⊗λ′

[
f
(
X (0)
n

)
1σ̄α×α>n

]
.

Similar inequality holds true for Et
1,λ′
[
f
(
X (1)
n

)]
. By the bounds obtained above,

∣∣Et
0,λ

[
f
(
X (0)
n

)]− Et
1,λ′
[
f
(
X (1)
n

)]∣∣ ≤ E
t
λ⊗λ′

[∣∣ f (X (1)
n

)− f
(
X (2)
n

)∣∣ 1σ̄α×α>n
]

≤ sup
x,y∈E

| f (x) − f (y)|Pt
λ⊗λ′ {σ̄α×α > n} .
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Then, ||λPt,n − λ′Pt,n|| = supA∈E
∣∣Et

0,λ

[
1A
(
X (1)
n

)]− Et
1,λ′
[
1A
(
X (2)
n

)]∣∣
≤ P

t
λ⊗λ′ {σ̄α×α > n} . Finally, we arrive to:

∑
n≥0

δn||λPt,n − λ′Pt,n|| ≤
∑
n≥0

δnP
t
λ⊗λ′ {σ̄α×α > n} = 1

δ − 1

(
E
t
λ⊗λ′

[
δσ̄α×α

]− 1
)

.

The theorem is proved.

5.5 Auxiliary Lemmas

Lemma 2 For a sequence of Markov kernels (Pt , t ∈ N0), let α be an aperiodic
atom, and γ0 = inf t {Pt,m(α, α), Pt,m+1(α, α), . . . , Pt,2m−1(α, α)} > 0. Then, for
all t, n ≥ 0,

Pt,2m+n(α, α) ≥ γ0

n∏
k=0

P
t+k
α {σα ≤ m + n − k}

= γ0

n∏
k=0

Pt+n−k
α {σα ≤ m + k} > 0.

(5.26)

Proof We prove the lemma by induction. Let us start with n = 0 in (5.26),

Pt,2m(α, α) =
2m∑
k=1

Pt
α {σα = k} Pt+k,2m−k(α, α)

≥
m∑

k=1

Pt
α {σα = k} Pt+k,2m−k(α, α) ≥ γ0

m∑
k=1

Pt
α {σα = k} = γ0Pt

α {σα ≤ m} .

Assume that inequality (5.26) is true for all t ∈ N0, k ≤ n, let’s check if for n + 1.
Using the first entrance decomposition (see [23], Chap. 8, p. 174). we can write

Pt,2m+n+1(α, α) =
2m+n+1∑

k=1

P
t
α{σα = k}Pt+k,2m+n+1−k(α, α)

≥
m+n+1∑
k=1

P
t
α{σα = k}Pt+k,2m+n+1−k(α, α)

=
n+1∑
k=1

P
t
α{σα = k}Pt+k,2m+n+1−k(α, α) +

m+n+1∑
k=n+2

P
t
α{σα = k}Pt+k,2m+n+1−k(α, α)
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≥ γ0

n+1∑
k=1

P
t
α{σα = k}

n+1−k∏
j=0

P
t+k+n+1−k− j
α {σα ≤ m + j} + γ0P

t
α{n + 2 ≤ σα ≤ m + n + 1}

= γ0

n+1∑
k=1

P
t
α{σα = k}

n+1−k∏
j=0

P
t+n+1− j
α {σα ≤ m + j} + γ0P

t
α{n + 2 ≤ σα ≤ m + n + 1}

≥ γ0

n+1∑
k=1

P
t
α{σα = k}

n∏
j=0

P
t+n+1− j
α {σα ≤ m + j} + γ0P

t
α{n + 2 ≤ σα ≤ m + n + 1}

≥
⎛
⎝γ0

n∏
j=0

P
t+n+1− j
α {σα ≤ m + j}

⎞
⎠P

t
α{σα ≤ m + n + 1}

= γ0

n+1∏
j=0

P
t+n− j
α {σα ≤ m + j + 1}.

Since for every t ∈ N0, Pt
α{σα ≤ m} ≥ Pt,m(α, α) > 0, and sequence Pt

α{σα ≤ n} is
increasing in n, it implies that each term in the product (5.26) is positive. Therefore
Pt,2m+n(α, α) > 0, for all n ≥ 0.

Lemma 3 Let conditions of Lemma 2 hold true, and assume there exists a sequence
of decreasing, non-negative numbers {Ĝn, n ≥ 0}, such that Ĝn ≥ supt P

t
α{σα > n},

and
∑
n≥0

Ĝn = M < ∞.Assume also that Ĝm < 1. Then for γ = γ0(1 − Ĝm)
M−Ĝm
Ĝm >

0 and for all t, n ≥ 0 we have the lower bound

Pt,2m+n(α, α) ≥ γ > 0. (5.27)

Proof Lemma 2 yields:

Pt,2m+n ≥ γ0

n∏
k=0

(1 − Ĝm+k). (5.28)

The fact that (5.28) entails (5.27) is proved in Theorem 4.1 from [10].

Note that condition Ĝm < 1 is not restrictive. Since
∞∑
n=0

Gn < ∞ and {Gn, n ≥ 0}
is nonincreasing, it is necessary that there exists n0 such that Ĝk < 1 for all k > n0.
In case m ≤ n0, Lemma 2 shows it is always possible to choose another, bigger m
at the cost of smaller γ0.

The next three lemmas are adjusted versions of the known results from homoge-
neous theory (see [7], Chap. 13 formore details). Themain difference is that we study
here two different inhomogeneous chains rather than two copies of the same homo-
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geneous chain. In the next lemma, for example, we have conditions and estimates
that are different from the homogeneous analog.

Lemma 4 The following statements hold.

1. Let (Pt , t ∈ N0) be a sequence of Markov kernels that admits an aperiodic atom
α and there exist constant β > 1 such that

sup
t
E
t
α[βσα ] < ∞, (5.29)

Then for every m ≥ 0 and every ε > 0 there exists δ = δ(m, ε) ∈ (1, β) such that

sup
t,n

E
t
α[δm+τα◦θn ] ≤ 1 + ε. (5.30)

2. If additionally, there exists a dominating sequence Ĝn and constants Ĉ > 0,
β̂ > β, such that for all t, k ≥ 0

Pt
α {σα > k} ≤ Ĝk ≤ Ĉ β̂−k, (5.31)

then

δ = (1 + ε/2)
1

m+n0 , n0 =
⌊
ln

(
ε(β̂ − β)

2Ĉβm+1

)
/ ln

(
β

β̂

)⌋
+ 3, (5.32)

where �a� is an integer part of a real number a.

Proof First we wish to establish the following inequality

P
t
α{τα ◦ θn = k} ≤

n∑
j=1

P
t+n−1
α {σα = k + j}. (5.33)

In order to do this we provide the next transformations

P
t
α{τα ◦ θn = k} =

∞∑
j=0

P
t {σ ( j)

α < n ≤ σ
( j+1)
α , τα ◦ θn = k}

=
∞∑
j=0

n−1∑
i=0

P
t
α{σ ( j)

α = i, σα ◦ θ
σ

( j)
α

= k + n − i}

=
n−1∑
i=0

∞∑
j=0

P
t
α{σ ( j)

α = i}Pt+i
α {σα = k + n − i} =

n−1∑
i=0

P
t+i
α {σα = k + n − i}Ptα{Xi ∈ α}

≤
n−1∑
i=0

P
t+i
α {σα = k + n − i} =

n∑
j=1

P
t+n− j
α {σα = k + j}.
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Now we can derive that for all l ≥ 0

∞∑
k=l

βk
P
t
α{τα ◦ θn = k} ≤

∞∑
k=l

n∑
j=1

βk
P
t+n− j
α {σα = k + j}

=
n∑
j=1

β− j
∑
k≥l+ j

βk
P
t+n− j
α {σα = k}.

(5.34)

1. We assume that (5.29) holds true. Let us denote β1 = √
β > 0, and ξt =

β
σt,α

1 , note that random variables ξt defined on different probability spaces, as
described in Sect. 5.2. Condition (5.29) implies supt E

t
α

[|ξt |2
] = supt E

t
α [β

σα ] <

∞, which means that family of distributions of ξt is uniformly integrable.
We introduce a special notation for its tails a(t)

n = ∑
k≥n

βk
1P

t
α {σα = k} . So, we

have supt a
(t)
n → 0, n → ∞. Then, (5.34) yields supn

∞∑
k=l

βk
1P

t
α {τα ◦ θn = k} ≤

∞∑
j=1

β− j supt a
(t)
l+ j → 0, l → 0. The latter expression implies that we can find a

number n0 > 0 such that

∞∑
k>n0

βk
1P

t
α{τα ◦ θn = k} ≤ ε

2βm
1

. (5.35)

We now choose δ ∈ (1, β1) such that δm+n0 ≤ 1 + ε/2. Then we have:

E
t
α

[
δm+τα◦θn

] = E
t
α

[
δm+τα◦θn1τα◦θn≤n0

]+ E
t
α

[
δm+τα◦θn1τα◦θn>n0

]

≤ δm+n0 + βm
1

∑
k>n0

E
t
α

[
βk
11τα◦θn=k

]

= δm+n0 + βm
1

∑
k>n0

βk
1P

t
α{τα ◦ θn = k} ≤ 1 + ε/2 + εβm

1

2βm
1

= 1 + ε.

(5.36)

2. Assume that condition (5.31) holds true. Using trivial βk = (β − 1)
k−1∑
i=0

β i + 1,

we get for all l ≥ 1,
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∞∑
k= j+l

βkPt+n− j
α {σα = k} ≤ (β − 1)

∞∑
k=l+ j

k−1∑
i=0

β iPt+n− j
α {σα = k} + Ĝl+ j−1

≤ (β − 1)

⎡
⎣
(

j+l−2∑
i=0

β i

)
Ĝ j+l−1 +

∑
i> j+l

β iPt+n− j
α {σα > i}

⎤
⎦+ Ĝl+ j−1

≤ (β − 1)

⎡
⎣βl+ j−1 − 1

β − 1
Ĝ j+l−1 +

∑
i> j+l

β i Ĝi

⎤
⎦+ Ĝl+ j−1

= β j+l−1Ĝ j+l−1 + (β − 1)
∑
i> j+l

β i Ĝi

≤ Ĉ

(
β

β̂

) j+l−1

+ Ĉ(β − 1)
∑
i> j+l

(
β

β̂

)i

=
(

β

β̂

) j+l−1
β(β̂ − 1)

β̂ − β
Ĉ .

Plugging this inequality into (5.34) we get

sup
n

∞∑
k=l

Pt
α {τα ◦ θn = k} ≤ Ĉ

β(β̂ − 1)

β̂ − β

∞∑
j=1

β− j
(

β

β̂

) j+l−1

= Ĉ
β(β̂ − 1)

β̂ − β

(
β

hatβ

)l−1 ∞∑
j=1

β̂− j = Ĉ
β

β̂ − β

(
β

β̂

)l−1
.

(5.37)
We can now find number n0 ≥ 2 such that

∑
k>n0

Pt
α {τα ◦ θn = k} ≤ Ĉ

β

β̂ − β

(
β

β̂

)n0−2

≤ ε

2βm
. (5.38)

From (5.38) we can derive a direct expression for n0,

n0 =
⌊
ln

(
ε(β̂ − β)

2Ĉβm+1

)
/ ln

(
β

β̂

)⌋
+ 3,

which proves the formula for n0 in (5.32). The proof is completed by setting

δ = (1 + ε/2)
1

m+n0 and applying transformations (5.36) with β instead of β1.

In the next two lemmas, we will use notation from Sect. 5.4 and assume that
conditions of Theorem 2 hold true.

Lemma 5 Let h : E → R+ be a measurable function. Then ∀t ∈ N0:

1α

(
X (i)

ν j−1

)
Et
[
h
(
X (i)

ν j

)
|B j

]
= 1α

(
X (i)

ν j−1

)
P
t,Uj

i h(α). (5.39)
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Proof We prove formula (5.39) using the definition of conditional expectation. The
random variable P

t,Uj

i h(α) is B j -measurable by construction of B j . It is enough to
prove that for any set A ∈ Fν j−1 :

Et
x,y

[
1A1Uj=k1α(X (i)

ν j−1
)h(X (i)

ν j
)
]

= Et
x,y

[
1A1Uj=k1α(X (i)

ν j−1
)P

t,Uj

i h(α)
]
. (5.40)

Using the definition of ν j we get

Et
x,y

[
1A1Uj=k1α(X (i)

ν j−1
)h(X (i)

ν j
)
]

= Et
x,y

[
1A1α(X (i)

ν j−1
)Et
[
1Uj=kh(X (i)

ν j
)|Fν j−1

]]

= Et
x,y

[
1A1α(X (i)

ν j−1
)Et
[
1Uj=kh(X (i)

ν j−1+k)|Fν j−1

]]

= Et
x,y

[
1A1α(X (i)

ν j−1
)Et
[
1ν j−1+q+τ (1−i)◦θν j−1+q=k

h(X (i)
ν j−1+k)|Fν j−1

]]

= Et
x,y

[
1A1α(X (i)

ν j−1
)Et

X (i)
ν j−1 ,X

(1−i)
ν j−1

[
1τ (1−i)◦θq=k−qh(X (i)

k )
]]

= Et
x,y

[
1A1α(X (i)

ν j−1
)Et

i,α

[
h(X (i)

k )
]
PX (1−i)

ν j−1
{τ (1−i) ◦ θq = k − q}

]

= Et
i,α

[
h(X (i)

k )
]
Et
x,y

[
1A1α(X (i)

ν j−1
)Pt {Uj = k|Fν j−1}

]

= Pt,k
i h(α)Et

x,y

[
1A1Uj=k1α(X (i)

ν j−1
)
]

= Et
x,y

[
1A1Uj=k1α(X (i)

ν j−1
)P

t,Uj

i h(α)
]
.

So, formula (5.40) and thus (5.39) is proved.

Lemma 6 Let r(n), n ≥ 0 be a nonnegative sequence. Then there is γ < 1 such that

E
t
[
1τ> j r(ν j )|Fν j−1

] ≤ (1 − γ )1τ> j−1E
t
[
r(ν j )|Fν j−1

]
. (5.41)

Proof In this proof all random variables outside Et should be understood as having

lower index t , that is, 1α

(
X (i)

ν j−1

)
= 1α

(
X (i)
t,νt, j−1

)
. We have

1α

(
X (i)

ν j−1

)
E
t
[
1τ> j r(ν j )|Fν j−1

] = 1α

(
X (i)

ν j−1

)
E
t
[
1τ> j−11αc

(
X (i)

ν j

)
r(ν j )|Fν j−1

]

= 1τ> j−11α

(
X (i)

ν j−1

)
E
t
[
E
t
[
1αc

(
X (i)

ν j

)
|B j

]
r(ν j )|Fν j−1

]
.

Using Lemma 5 we get

1τ> j−11α

(
X (i)

ν j−1

)
E
t
[
E
t
[
1αc

(
X (i)

ν j

)
|B j

]
r(ν j )|Fν j−1

]

= 1τ> j−11α

(
X (i)

ν j−1

)
E
t
[
P
t,Uj

i (α, αc)r(ν j )|Fν j−1

]

= 1τ> j−11α

(
X (i)

ν j−1

)
E
t
[
(1 − P

t,Uj

i (α, α))r(ν j )|Fν j−1

]
.
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By Lemma 3, Pt,2m+n
i (α, α) ≥ γ , ∀n ≥ 0, and since Uj ≥ 2m:

1τ> j−11α

(
X (i)

ν j−1

)
E
t
[
(1 − P

t,Uj

i (α, α))r(ν j )|Fν j−1

]

≤ (1 − γ )1τ> j−11α

(
X (i)

ν j−1

)
E
t
[
r(ν j )|Fν j−1

]
.

It means, that we have established the following relation

1α

(
X (i)

ν j−1

)
E
t
[
1τ> j r(ν j )|Fν j−1

] ≤ (1 − γ )1τ> j−11α

(
X (i)

ν j−1

)
E
t
[
r(ν j )|Fν j−1

]
.

(5.42)
We may note that by the definition of ν j−1:

[
1α

(
X (0)

ν j−1

)
+ 1α

(
X (1)

ν j−1

)]
1τ> j−1 = 1. (5.43)

Now we sum inequalities (5.42) for i ∈ {0, 1} and using (5.43) derive (5.41).

Appendix

We state here the Comparison Theorem, it is proved in [7], Theorem 4.3.1.

Theorem 5 Let {Vn, n ≥ 0}, {Yn, n ≥ 0}, and {Zn, n ≥ 0} be three {Fn, n ≥ 0}-
adapted nonnegative processes such that for all n ≥ 0,

E
[Vn+1|Fn

]+ Zn ≤ Vn + Yn, P– a.s..

Then for every {Fn, n ≥ 0}-stopping time τ ,

E [Vτ1τ<∞] + E

[
τ−1∑
k=0

Zk

]
≤ E[V0] + E

[
τ−1∑
k=0

Yk

]
.
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