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4.1 Introduction

Commutation relations of the form
AB = BF(A) 4.1

where A, B are elements of an associative algebra and F is a function of the ele-
ments of the algebra, are important in many areas of Mathematics and applications.
Such commutation relations are usually called covariance relations, crossed product
relations or semi-direct product relations. Elements of an algebra that satisfy (4.1)
are called a representation of this relation in that algebra. Representations of covari-
ance commutation relations (4.1) by linear operators are important for the study of
actions and induced representations of groups and semigroups, crossed product oper-
ator algebras, dynamical systems, harmonic analysis, wavelets and fractals analysis
and applications in physics and engineering [4, 5, 16-18, 26-28, 34, 35, 42].

A description of the structure of representations for the relation (4.1) and more
general families of self-adjoint operators satisfying such relations by bounded and
unbounded self-adjoint linear operators on a Hilbert space use reordering formulas for
functions of the algebra elements and operators satisfying covariance commutation
relation, functional calculus and spectral representation of operators and interplay
with dynamical systems generated by iteration of maps involved in the commutation
relations [3, 7-13, 19-21, 29-34, 36-40, 42-55].

In this paper, we construct representations of the covariance commutation rela-
tions (4.1) by linear integral operators on Banach spaces L, over measure spaces.
When B = 0, the relation (4.1) is trivially satisfied for any A. Thus, we focus on
construction and properties of nontrivial representations of (4.1). We consider rep-
resentations by the linear integral operators defined by kernels satisfying different
conditions. We derive conditions on such kernel functions so that the corresponding
operators satisfy (4.1) for polynomial F when both operators are of linear integral
type. Representations of polynomial covariance type commutation relations by lin-
ear integral operators on L, over measure spaces are constructed. Conditions for
such representations are described in terms of kernels of the corresponding integral
operators. Representation by integral operators are studied both for general poly-
nomial covariance commutation relations and for important classes of polynomial
covariance commutation relations associated to arbitrary monomials and to affine
functions. Examples of integral operators on L, spaces representing the covariance
commutation relations are constructed. Representations of commutation relations
by integral operators with special classes of kernels such as separable kernels and
convolution kernels are investigated. In particular, we prove that there are no nonzero
one sided convolution linear integral operators representing covariance type com-
mutation relation for monomial #”, where m a nonnegative integer except 1. This
paper is organized in four sections. After the introduction, we present in Sect.4.2
some preliminaries, notations, basic definitions and two useful lemmas. In Sect. 4.3,
we present some representations when both operators A and B are linear integral
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operators acting on the Banach spaces L. In particular, we consider cases when
operators are convolution type and operators with separable kernels.

4.2 Preliminaries and Notations

In this section we present preliminaries, basic definitions and notations for this article
[1, 2, 6, 14, 22-24, 41].

Let R be the set of all real numbers, X be a non-empty space, and S C X.
Let (S, X, u) be a o-finite measure space, where X' is a o —algebra with mea-
surable subsets of S, and S can be covered with at most countably many disjoint
sets Ey, Ey, E3, ... such that E; € ¥, u(E;) <oo,i =1,2,... and i is a mea-
sure. For 1 < p < oo, we denote by L,(S, u), the set of all classes of equiva-
lent (different on a set of zero measure) measurable functions f : S — R such that
f | f(®)|?du < oo. This is a Banach space (Hilbert space when p = 2) with norm
N

1
Nfll, = (f |f(t)|1’dt> ’ . We denote by L, (S, ) the set of all classes of equivalent
s

measurable functions f : S — R such that exists C > 0, | f ()| < C almost every-
where. This is a Banach space with norm || f ||oc = ess sup,g | f(¢)]. The support of
afunction f : X — Rissupp f = {t € X: f(¢) # 0}. We will use notation

Q¢ (u,v) = /M(I)V(t)du 4.2)

G

for G € ¥ and such functions u, v : G — R that integral exists and is finite. The
convolution of functions f: R — R and g: R — R is defined by (f xg)(¢) =

400
[ f(0)gt —t)dr.

Now we will consider two useful lemmas for integral operators which will be
used throughout the article. Lemma 1 is used in the proof of Theorem 1 and Lemma
2 is used in the proof of Theorem 2.

Lemma 1 Let (X, X, ) be a o-finite measure space. Let f, g € L,(X, ) for 1 <
q <ooandletGy, Gy € X suchthat u(G;) < oo,i =1,2.Let G = G| N Gy.Then
the following statements are equivalent:

1 1
1. Forallx € L,(X, ), 1 < p <oosuchthat —+ — =1,
2}

06, (f.x) = / FOx(0dp = / g(Ox(dp = 00, (. %).
Gy

G,

2. The following conditions hold:



62 D. Djinja et al.

(a) for almosteveryt € G, f(t) = g(t),
(b) for almosteveryt € G\ G, f(t) =0,
(c) foralmosteveryt € G\ G, g(t) =0.

Proof 2 = 1 By additivity of the measure of integration © on X',
[ fOx®dp = / f®Ox@)du + / fOx@®)dp = / fOx@)dp
G GI\G

=/g(t)X(l)dM = / g(t)X(t)du«Jr/g(t)X(t)dM = /g(l)x(t)du.
G G2\G G Gy

1 = 2 For the indicator function x (t) = I, () of the set H; = G; U G,

f FOx®dp = f g)x()dp = f fdp = f gWdp =,

Gy G G,

where 7 is a constant. Now by taking x(t) = Ig,\¢ we get

[ fOx@dp = [ gOxdu= [ f)du= [g)-0du=0.
G G,

G]\G Gy

Then [ f(r)du = 0. Analogously by taking x () = Ig,\(1) we get [ g(t)du
G1\G G2\G
= 0 We claim that f(t) = 0 for almost every t € G| \ G and g(¢) = O for almost

every t € G, \ G. We take a partition S, S2,..., Sy, ... of the set G| \ G such

that each set S;, i =1, 2, 3, ... has positive measure. For each x;(t) = I5,(t), i =
1,2,3,...wehave [ f(t)x(t)du JeWxdu= [ f()du= [ g@t)-0du =
G] G7 Sz GZ

0. Thus, [ f(t)du =0, i =1,2,3, ... Since we can choose arbitrary partition with
Si

positive measure on each of its elements, f(t) =0 for almosteveryt € G; \ G.

Analogously, g(t) =0 for almostevery t € G, \ G. Therefore n = f fdu =

[ gw)du = ff(t)d,u fg(t)du Then, for all function x € L,,(X ,u) we have
G,

f f(t)x(t)dp, fg(t)x(t)d,u & f[f(t) — g()]x(t)duw = 0. This implies that
f(t) = g(¢) for almost everyt € G U

Let n be a positive integer, (R”, X, i) be the standard Lebesgue measure space
and £2 € ¥. We denote by C(£2) the set of all continuous functions f : £2 — R.
This is a Banach space with norm || f|| = max;cg | f(¢)|. We denote by C.(R") the
set of all continuous functions with compact support.

The following statement is similar to Lemma 1 under conditions: X = R"” and
sets G, G, can have infinite measure.
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Lemma 2 Ler (R", X, u) be the standard Lebesgue measure space and f, g €
L,R", u) for1l <q <00, Gy € ¥ and G, € X. Let G = G N G,. Then the fol-
lowing statements are equivalent:

1 1
1. Forallx € L,(R", ), where 1 < p < oo suchthat — 4+ — =1,
P q

Qg (f. x) = f fOx@)du = /g(t)X(t)du = 06,(g, x).

G[ GZ

2. The following conditions hold:

(a) for almosteveryt € G, f(t) = g(t);
(b) for almosteveryt € G{\ G f(t) =0,
(c) for almosteveryt € G, \ G g(t) = 0.

Proof 2 = 1 This follows by direct computation as in the proof of Lemma 1.

1 = 2 Suppose that 2 is true. If G; € ¥ and G, € X have finite measure then it
follows from Lemma 1. Suppose that either G has infinite measure or G, has infi-
nite measure. For any o > 0 and £2, = [—«, a]* C R", the set V, = {x € C.(R") :
x(t) =0, Vr € R"\ £2,} is a subspace of C.(R"). Since condition 1 is satisfied for
any x € V,, and any x € V,, vanishes outside the set £2,, with finite measure, we
have from Lemma 1:

(a) for almostevery r € G N £2,, f(t) = g(1);
(b) for almosteveryt € (G N$2,)\ G, f() =0;
(c) for almostevery t € (G, N §2,) \ G, g(t) = 0.

These conclusions are true for any fixed @ > 0, and so for the corresponding £2,,
Vu. Since f, g € L,(R", u) 1 < p < oo then there exist compact sets K, such that

Lim p({r € RU\ Ky 2 f() > 0) = lim u({r € R\ Ky @ g(1) > 0)) = 0.

Hence condition 1 holds for all x € C.(R") if and only if condition 2 holds. The
conclusion follows from [6, Theorem 4.3 and Theorem 4.12], that is, the set C.(R")
isdensein L ,(R", u), for 1 < p < oo. |

4.3 Representations by Linear Integral Operators

Let (X, ¥, ) be ao-finite measure space. In this section we consider representations
of the covariance type commutation relation (4.1) when both A and B are linear
integral operators acting from the Banach space L ,(X, u) to itself for a fixed p such
that 1 < p < oo defined as follows:
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(AX)(1) = / katt, $)x(5)dps,  (Bx)(1) = / Kp(t, $)x(s)d s,

S,\ Sb'

almost everywhere, where the index in u, indicates the variable of integration,
Sa, Sp € X, u(Syp) < 00, u(Sp) < 00, ka(t,s): X x Sq —> R, kg(t,s): X x Sp
— R are measurable functions satisfying conditions bellow. For 1 < p < co we
have from [15] that the operators A : L,(X, u) — L,(X,u)and B : L,(X, u) —
L, (X, ) are well-defined if kernels satisfy the following conditions

rlq rla

f f st )%dpy | ds < oo, / / ka(t, $)%dp, | duy < oo,
SA X SB

X

4.3)
where 1 < g < oo is such that + + 1 = 1. For p = 1, operators A : L(X, u) —
Li(X,un)and B : Li(X, nu) - Li(X, ) are well-defined if kernels satisfy the fol-
lowing conditions

/ess sup |ka(t, s)|du, < oo, /ess sup lkg(t, s)|du, < oo. “4.4)

SESA SESB

For p = o0, operators A : Loo(X, ) & Loo(X, ) and B : Loo(X, ) — Ly
(X, n) are well-defined if kernels satisfy the following conditions

ess sup / lka(t, s)|dus | < o0, ess sup / lkg(t,s)|dus | <oo. (4.5)
teX teX

SA SB
Theorem 1 Let (X, X, u) be a o-finite measure space. Let A : L,(X, ) — L,
(X,w), B: L,(X,n) = L,(X,u), 1 <p =< o0 be nonzero operators defined as
follows

(Ax)(1) = /kA([»S)x(S)dﬂs» (Bx)(1) = /kB(I,S)x(S)de,

GA GB

almost everywhere, where the index in [ indicates the variable of integration,
Ga, Gpe X, u(Gy) <00, w(Gp) <00, ka(t,s) :Rx Sy — R, kg(t,s) : R x
Sp — R are measurable functions satisfying either relation (4.3) or (4.4) or (4.5),
respectively. Consider a polynomial F : R — R defined by F(z) = ) 8;z/, where

=0
5;eR, j=0,1,2,...,n.8etG=G,NGp, and
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ko a(t,s) =ka(t,s), kna(t,s) = /kA(tyT)km—l,A(Ta s)dup,, m=1,2,3,...,n
Gy

Falkat, $)) =Y 8k 1(t,5), n=1,2,3,...

j=1

Then AB = BF(A) if and only if the following conditions are fulfilled :

1. for almost every (t,7) € X x G,
f ka(t, $)ka (s, T)dps — Sok(1, 7) = / k(1. ) Fy(ka(s, 0))d1ss.
GA GB

where g indicates that integration is taken with respect to the variable s;
2. for almost every (t,7) € X x (Gg \ G), f ka(t, s)kp(s, T)dug = Sokp(t, T);
Ga

3. for almost every (t,7) € X X (G4 \ G), f kg(t,s)F,(k(s, t))dus, = 0.
Gp

Proof By applying Fubini theorem from [1] and iterative kernels from [25] we have

(A%x)(t) = [ ka(t, $)(Ax)(s)dps = [ ka(t,s) ( [ ka(s, T)x(f)d,uz> dts
G Gy Ga
= [ ([ kaCt,)k(s, D)dps)x(Ddpr = [ ki a(t, 1)x(T)d e,
GA GA G/\

kia(t,s) = [ ka(t, Dka(z, s)dpe;
Gy

(Ax) (1) = [ ka(t,)(A2x)()dps = [ ka(t,)( [ ki als, D)x(D)dpr)d s

Gy Ga Ga
= [ ([ kaCt,)ki(s, Ddps)x(t)dpe = [ ko alt, T)x(T)dptr,
GA GA GA
ko,a(t,s) = [ ka(t, D)ki a(z, $)dpiz;
Ga

(A"X)(0) = [ kn—1,a(t, )x()dps, n =1,
Ga

km,A(t7 S) = f kA(t5 T)km—l,A(T’ S)dl'L‘Ev m = 15 27 35 LR ] na
Ga

koa(t,s) = ka(t,s);

(F(A)x)(1) = dox (1) + i 8;(ATx)(1)

j=1

=80x(t)+ X 8; [ kj_1,a(t, s)x(s)d s
=1 "G4

= 80x (1) + [ Fu(ka(t,)x(s)d s,
Gy
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Falka(t,$) = 3 8k;o1.a(t.5), n=1,2.3,...;
j=1

(BF(A)x)(1) = [ kg(t,s)(F(A)x)(s)d
Gp

G B

= [ kg(t,s) (50x(S)+ S Fu(ka(s, T)X(f)duf)) d g
Ga

=380 [ kp(t, )x(s)dps + [ ( [ kp(t, s)F,(ka(s, T))dus> x(v)dpy

=80 [ kg(t,s)x(s)dps + [ kgpa(t, T)x(T)d s,
GB GA

kgpa(t,7) = [ kp(t,s)Fy(ka(s, 7))dps;
Gp

(ABx)(t) = [ ka(t,s)(Bx)(s)dps = [ ka(t,s) ( [ kg(s, T)X(T)dll«r> dug
G Ga G

=f ( S/ kA(tss)kB(S»T)dMs> x(dpr = [ kap(t, 1)x(0)d e,
Gp

Gp Gy

kap(t, ) = [ ka(t,s)kg(s, T)d L.
Gy

Therefore, (ABx)(t) = (BF(A)x)(t) forall x € L,(X, ) if and only if

[ lkag(t, T) — 8okp(t, Dx(t)dpr = [ kgpa(t, T)x(T)d s
GB GA

By applying Lemma 1 we have AB = BF(A) if and only if

1. for almost every (¢, 7) € X x G,

S ka(t, $)kp(s, T)dps — Sokp(t,7) = [ kp(t, )F,(kals, T))dps;
GA GB

2. for almost every (,7) € X X (G \ G), f ka(t,$)ka(s, T)dus = Solz(t, 7);
Gy

3. for almostevery (¢, 7) € X X (Ga \ G), [ kg(t,s)Fy(ka(s, v))dpus =0. O
Gp

Remark 1 In Theorem 1 when G4 = G = G conditions 2 and 3 are taken on set
of measure zero so we can ignore them. Thus, we only remain with condition 1.
When G4 # Gp, then we need to check conditions 2 and 3 outside the intersection
G = G4 N Gg. Moreover, condition 3 that for almost every (¢, 7) € X X (G4 \ G),
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/kB(t, $)Fu(ka(s, T))dps =0, (4.6)
Gp

does not imply B Z cSkAk) = 0 because its kernel has to satisfy (4.6) only on the
k=1

set X x (G4 \ G) and not on the whole set of definition. On the other hand, the same
kernel has to satisfy condition 1, which is, for almost every (¢, 7) € X x G,

/k(t,s)lz(s, )dps — Sok(t, 7) = /lé(t,s)Fn(k(s, T))d .

GA GB

Note that Theorem 1 does not imply Z 8rAF = 0. In fact, Z 8rAF = 0 implies
k=1 k=1

n
B (Z SkAk> = 0 but as mentioned above it can be non zero in general.

Example 1 Let (R, X', 1) be the standard Lebesgue measure space. Consider inte-
gral operators acting on L, (R, ) for1 < p <oo.Let A: L,(R, u) — L,(R, ),
B:L,R,u)— L,(R,u),1 < p < oo defined as follows

(Ax)(1) = [ka(t,)x(s)dpg, (Bx)(1) = [kp(t, s)x(s)d s,
0 0

almost everywhere, where the index in u indicates the variable of integration,

ka(t,s) = I[O,,,g](t)%(costcoss + sintsins + costsins),
kg(t,s) = I[a,,g](t)%(costcoss + 2sintsins),

almost everywhere (¢, s) € R x [0, 7], o, B are real constants such thata < 0, 8 >
7 and Ig(¢) is the indicator function of the set E. These operators are well defined,
since the kernels satisfy (4.3). In fact,

J( f ka(t, $)|7dpas)* dpa,
R

T

B
/ /|—(costcoss—i—smtsms—l—costsms)| dus) du,

— (-

=

IA

< 00,

2
[
/

[ ([ s ldps)" dp,
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|2 (cost cos s +2smtsms)|qd,u@)p/qdut < f =800

P 1 pT

B
-

S—x

1 1
where g > 1 suchthat — 4+ — = 1.In the estimations above we used the inequalities:
P q

[2(costcoss +sintsins + costsins)|? < 27.37 = 69,
[2(costcoss +2sintsins)|? <27.37 =67, 1 < g < oo.

Note that in this case conditions 1, 2 and 3 of Theorem 1 reduce just to condition
1 because the sets G4, = Gp = [0, 7],andso G = [0, 7],GAa \ G =G\ G = 0.
Therefore, according to Remark 1 conditions 2 and 3 are taken on a set of measure
Zero.

Consider the polynomial F(¢) = t*,¢ € R. These operators satisfy AB = BF (A).
In fact, by applying Theorem 1 we have §o = §; =0,8, = 1, n =2,

kap(t,7) = [ka(t, $)kp(s, T)d s
0

= % 0} I, 1(t) (cos(t) cos(s) + sin(z) sin(s) + cos(¢) sin(s))-

I, g1(s)(cos(s) cos(t) + 2 sin s sin 7)d
= 2Lap) (1) (S2LST 4 costsinT + sintsinT)

%I[a,m(t)(costcosr +2costsint + 2sintsint),

for almost every (¢, 7) € R x [0, w]. Moreover,

Foka(t,s)) = ki at,s) = [ka(t, Dka(t,s)dp, =
0

T
= % fl[a.ﬂ](t)(costcosr +sinzsint 4 costsinT)-
0

Iio.p1(t)(cOs T cos s + sin T sin s + cos T sin s)d .
= ;I[a’ﬂ]([) (w 4 costsins + smtzsmv)

= %Ila,ﬂl(t)(costcoss + 2costsins + sint sins),

for almost every (¢, s) € R x [0, m]. Therefore,
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L
kgra(t,©) = [kg(t,s)Fao(ka(s, T))d s
0

=5 0} Ta. (1) (cos(t) cos(s) + 2 sin(z) sin(s))

“ lja,p1(s)(cos s cOs T + 2 cos s sin T + sin s sin 7)d g
= 2 J1q.p)(t) (<255 + costsin T + sint sin 7)

%I[a,ﬁ](t)(cos tcost +2costsint +2s8intsinT),

for almost every (¢, ) € R x [0, =], which coincides with the kernel k45. Thus,
conditions of Theorem 1 are fulfilled and so AB = BA2. Moreover, B A2 # 0 as
mentioned in Remark 1, in fact

/2
(BA%x)(1) = %I[a,ﬁ](t) f (costcost +2costsint + 2sintsint)x(t)du,
0

almost everywhere.

The following corollary is a special case of Theorem 1 for the important class of
covariance commutation relations, associated to affine (degree 1) polynomials F.

Corollary 1 Let (X, X, 1) be a o-finite measure space. Let A : L,(X,u) —
L, X,n), B:L,(X,un)— L,(X,u), 1= p =00 benonzero operators defined
as follows

(Ax)(1) = /kA(t»S)x(S)dﬂ.w (Bx)(1) = /kB(t,S)x(S)d,us,

GA GB

where the index in | indicates variable of integration, G4, Gp € X, u(Gy) <
o0, (Gp) <00, ka(t,s): X x G4 — R, kg(t,s) : X x Gp — R are measurable
functions satisfying either relation (4.3) or (4.4) or (4.5). Let F : R — R be a poly-
nomial of degree at most 1 given by F(z) = 8y + 8,2, where 8y, §; € R. We set
G=GsNGg.

Then AB — §1BA = §yB if and only if the following conditions are fulfilled

1. for almost every (t,7) € X x G,
/kA(t7 $)kp(s, T)dps — dokp(t, T) = & /kB(l, $)ka(s, T)d .
GA GB

2. for almost every (t,7) € X x (Gg \ G), f ka(t,s)kp(s, T)dus = dokp(t, 7).

3. for almost every (t,7) € X X (G4 \ G), 81 f kp(t, s)ka(s, T)duy = 0.
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The following corollary of Theorem 1 is concerned with representations by inte-
gral operators of another important family of covariance commutation relations asso-
ciated to monomials F'.

Corollary 2 Let (X, X, 1) be a o-finite measure space. Let A : L,(X,u) —
L,(X, ), B:Ly(X,u)— L,(X,u), 1 <p < o0 be nonzero operators defined
as follows

(Ax)(1) = /kA(tvs)x(S)d/Ls» (Bx)(1) = /kB(I,S)X(S)d,us,

GA GB

where the index in g indicates variable of integration, G5, Gp € X, u(Gp) <
o0, (Gp) < 00, ka(t,s): X x Gy — R, kp(t,s) : X x Gp — R are measurable
functions satisfying either relation (4.3) or (4.4) or (4.5). Let F : R — R be a mono-
mial defined by F (z) = 8z%, where § # 0 is a real number and d is a positive integer.
Let G =G, NGpgand

ko a(t,s) =ka(t,s), kya(t,s) = /kA(t, Dkm—1.4(T, 8)dpu.,, m=1,2,3,...,d.
Ga

Then AB = 8BA? if and only if the following conditions are fulfilled
1. for almost every (t,7) € X x G,

/ ka(t, $Yka(s. Dy = 8 f K (1, ka1 s, T)ds.
GA GB

2. for almost every (t,7) € X x (Gp \ G), f ka(t,s)kg(s, T)dus = 0.
Ga

3. for almost every (t,7) € X X (G4 \ G), f kp(t, s)ka_1.4(s, T)dus = 0.
Gp

Remark 2 Example 1 describes a specific case for Corollary 2 when G4 = G =
[0,7],6=1,d=2.

Consider now the case when X = R! and p is the Lebesgue measure. In the
following theorem we allow the sets G4 and G p to have infinite measure.

Theorem 2 Let (R, ¥, W) be the standard Lebesgue measure space. Let
AL, ) — L,R ), B:L,[R, pu) - L,R, p), 1 <p<oo

be nonzero operators defined by

(Ax)(1) =/kA(I,S)x(S)dMs, (Bx)(1) :/kB(tvs)-x(s)dMsv

Gy Gp
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where the index in u indicates the variable of integration, G4 € X and Gg € X, and

kernelska(t,s) 1R x G4 — R kg(t,s) : R x Gg — Rare measurable functions

satisfying either relation (4.3) or (4.4). Consider a polynomial F : R — R defined
n

by F(z) =Y 8;z/, where§; € R, j =0,1,2,...,n. Let G= G, N Gp and
=0

kao(t,s) =ka(t,s), kam(t,s) = /kA(l, Dkam-1(t,)dp,, m=1,2,3,...,n
Gy

Foulka(t,$) =Y 8jkaj-1(t.s), m=1,23,....n

j=1

Then AB = BF(A) if and only if the following conditions are fulfilled:

1. for almost every (t,7) € R" x G,

/kA(taS)kB(sa T)d s — dokp(t, T) = /kB(tvs)Fn(kA(Sa T))d 5.
GA GB

2. for almost every (t,7) € R" x (G \ G), f ka(t, $)kg(s, T)dus = dokp(t, 7).

3. for almost every (t,7) € R" x (G4 \ G), f kg(t,s)F,(ka(s, T))dus = 0.
Proof By applying Fubini theorem from [1] and iterative kernels from [25] we have

(A20) (1) = [ ka(t, $)(Ax)()dps = [ ka(t,$)( [ kals, Dx(0)dpr)dps

Ga Ga Ga
= f( f ka(t,s)kal(s, t)ds)x(t)dr: f ki at, Dx(t)dpr,
Ga Gy Ga
kia(t,s) = [ ka(t, 0ka(t, s)dpr;
Ga
AP0@) = [ kalt, )AZ) s = [ kat,)( [ ki als, Dx(0dpur)dpas
Ga Ga Ga
= [ ([ kaGt, k1 aG, Ddps)x(@)dpr = [ ko a(t, Dx(t)dpr,
Ga Ga Ga
ky at,8) = [ ka(r, Dky a(t, )dus;
Ga
A"x)(O) = [ k1,40, 9)x()dpg, n=1
Ga
kma(t,s) = [ kalt,Dkm_1,a(x,)due, m=1,2,3,...,n, ko a(t,s) =ka(t,s);
Ga

n i n
(F(AD)(0) = 80x(0) + Y. 8;(ATx)0) = 8ox(0) + 3 8; [ Kjo1.40 9)x()dps
j=1 j=1 " Ga
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=80x() + [ Fu(ka(t,s))x(s)dus,

Ga

n
Fu(ka(t,s)) = 3 8jkj_1,4(t,8), n=1,2,3,...;
j=1

(BF(A)x)(t) = [ kp(t,s)(F(A)x)(s)dps =

Gp
= [ kp(t,5)(80x(s) + [ Falka(s, Dx(0)dpr))dpus
Gp Ga
=380 [ kp(t,)x(s)dps + [ ([ kp(t,s)Falkp(s, 0))ds)x()dpr =
Gy Ga Ggp
=80 [ kp(t.9)x()dus + [ kpp(t. T)x(2)dpe
GB GA
kBF(tv T): f kB(RS)Fn(kA(S,T))d//«s;
Gp
(ABx)(t) = [ ka(t,)(Bx)(s)dps = [ ka(t,$)( [ kp(s, D)x()dpr)dps
Gp Ga Gp
= [ ([ ka(t,9)kp(s, Ddps)x(@)dpur = [ kap(t, ©)x(v)dpr,
GB GA GB
kAB(t7 T): f kA([,S)kB(S, r)dl’LS'
Ga

Thus for all x € L,,(Rl w), 1 < p < oowehave (ABx)(t) = (BF(A)x)(t) almost
everywherelfandonlylff[kAB(t 7) — 8ok (t, T)Ix(T)dpr = f kgr(t, T)x(T)d i,

almost everywhere. By Lemma 2 we have AB = BF(A) if and only if

1. for almost every (¢, 7) € R x G,

S ka(t, $)kp(s, T)dps — Sok(t,7) = [ kp(t, )Fy(kals, ©))dps;
GA GB

2. for almost every (¢, 7) € R x (G \ G), f ka(t, s$)kg(s, T)dus = dokp(t, 7).
Gy

3. for almostevery (7, 7) € R x (Ga \ G), [ kg(t,s)Fy(ka(s, ©))dus =0. O
Gp

Remark 3 Similar to Remark 1, in Theorem 2 when G4 = G = G conditions 2
and 3 are taken on set of measure zero so we can ignore them. Thus, we only remain
with condition 1. When G4 # G g we need to check also conditions 2 and 3 outside
the intersection G = G 4 N G g. Moreover condition 3, which is, for almost every
(1,7) e R" x (G4 \ G),

/ k(1. ) Fp(ka (5. )i = 0. @.7)
Gp
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does not imply B (Z SkAk) = 0 because its kernel has to satisfy (4.7) only on the
k=1

set R” x (G4 \ G) and not on the whole set of definition. On the other hand, the
same kernel has to satisfy condition 2, that for almost every (¢, 7) € R" x G,

fk(t,s)lz(s, T)dps — Sok(t, T) = //E(z,s)Fn(k(s, ))d s

GA GB

Note that Theorem 2 does not imply Z 8xAF = 0. In fact, Z 8rAF = 0 implies
k=1 k=1

n
B (Z 8kAk> = 0 but as mentioned above it can be non zero in general.
k=1
Proposition 1 Ler (R, X', u) be the standard Lebesgue measure space. Let A :

L,R,u) = L,R, ), B:L,(R,u)—> L,(R, u), 1< p < oo benonzero oper-
ators defined as follows

(Ax)(1) = / ka(t — $)x(s)dpy, (Bx)(t) = / kp(t — $)x(s)dpy,

R R

where the index in p indicates the variable of integration, kernels ka() € Li(R, nw),
kg(-) € Li(R, w), that is,

f lka(t)ldp, < 00, f kg (t)|du, < oo.
R R

Consider a polynomial F :R — R, F(z) =Y. 8jz-f, where §; € R, j=0,1,
j=0
2,...,n. Then AB = BF(A) if and only if for almost every t € R,

kp x 12A—60—§ 8j(kaxkax...xka) | (@) =0. (4.8)
N e’
Jj=1 j times

In particular, if §o = O, that is, F(z) = 6;t + 8222 + ...+ 8,7", then AB = BF(A)

if and only if the set supp Kg N supp (KA -y

j .
iz16j KA) has measure zero in R,

where

[ee] [ee]

Kp(s) = / exp(—st)kg(t)dp,, Ka(s) = / exp(—st)ka(t)d ;.

—00 —00
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Proof Operators A and B are well defined by Young theorem ([6], Theorem 4.15).
By Fubbini theorem for composition of operators A, B and A", similarly to the proof
of Theorem 2 when k4 (¢, s) = ka(t — s), kg(t,s) = kg(t —s)and G4, = Gz =R
we get from Lemma 2 that AB = BF (A) if and only if for almost every (¢, s) € R?,

f ka(t — Okp(t — s)dp, — Sokp(t —5) = / kp(t — ©)Fy(ka(z, $))dp,, (4.9)
R R

where

ko at,s) =ka(t —s), /Em,A(t,s)=//€A(t—r>km_1,A(r,s)dut, m=1,2,3,....n
R

m
Fn(ka(t,s)) = Z(Sjl;j_LA(t,S), m=1,2,3,...,n.
j=1

Computing /2,,,,,4 (t,s) we have form =1,

kiat,s) = /h(z—r)h(r —8)dpr = flEA(t—s—vﬂ%A(v)duv = (ka % ka)(t — 5),
R R

form =2,

Foalt,s) = / Falt = ) (g % For (v = )dpas =
R

_ f/EA(t 5 — ) (Fa # Ba )y = (o 5 Fon % Bt — 5.
R

and forall 2 <m <n, IE,,,,LA(I, s) = (IEA *le * ... *IgA)(t — ). Thus, for all 1 <
—_—

m times
m=<n

Fnlka(t,s)) = Zsj(/EA xhkpx. . xkp)(t —5),

j=1 j times

/IEB(t—sm(/EA(s, O)dps = /IFBa—r)« D 8jkaxkax ... xka)(® = 9)dps

R R j=1 Jj times

n
=fZaleB(r—s—v).(IEA*EA*...*IEA)(u)dMU
. N——
R /=1 j times
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n
= Z(Sjl;B*(l;A*IEA*...*IEA)(t—s).

j=1 Jj times

Therefore, for almost every pairs (¢, s) € R?, the equality (4.9) is equivalent to

(ka *kp)(t — ) = Sokg(t — )+ Y _ 8kp* [ kaxkaw...xka | (t—25)
—_—

Jj=1 j times

which is equivalent to (4.8). If §p = 0, then by applying the two-sided Laplace trans-
form we get that (4.8) is equivalent to

o]

/ eXP(—Sf)Igs * | ka — ZSﬂgzj (Hdu; =0,

e j=1

which is equivalent to

Kp(s) - (Ka(s) = Yi_ 8K (s)) =0, (4.10)
where Kp(s) = 7exp(—sr)/23(t)du,, Ka(s) = fexp(—st)le(r)du,.

J
=1 (Sj KA) to
have measure zero in R. O

Equation (4.10) is equivalent to the set supp Kz N supp (K A=

Proposition 2 Ler (R, X, w) be the standard Lebesgue measure space. Let
A . L])(R7 /‘L) g Lp(R’ /J“)v B : Lp(Ra I’L) - L[)(Rv M)’ l < p <00

be non-zero operators defined as follows

(Ax)(1) = / ka(t — $)x(s)dpy, (Bx)(t) = / kp(t —s)x(s)dps,  (4.11)

R R

where kx(-) € Li(R, ), kg(-) € Li(R, p), that is,

/ Fa(0)ldiy < oo, / o ()]s < o0, 4.12)
R R

and the index in | indicates the variable of integration. Suppose that
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/ exp(—st)ka(t)dp, = Ka(s), / exp(—st)kp(t)dp, = Kp(s)

exist and the domain of K 4(-) is equal to the domain of Kg(-) with exception of a
set of measure zero. Then, AB = §BA", fora fixedn € Z, n = 2 and § € R\ {0} if
and only if (ka x kp)(t) = 0 almost everywhere.

Proof Operators A and B are well defined by Young theorem ([6], Theorem 4.15).
Letn > 1. By Fubbini Theorem for composition of operators A, B and A", similarly
to the proof of Theorem 2 when k4 (¢, s) = le(t — ), kg(t,s) = IEB(t —5),Ga =
Gp =R, we get from Lemma 2 that AB = §BA" if and only if, for almost every
(t,s) € R?,

/ ka(t — Dkp(t — s)dp, = / 8k (t — Dkn_1.a(t, )d s, (4.13)
R R
koa(t,s) =ka(t —5), kna(t,s) = / ka(t = Dky—1.4(t, )dptr, n > 1.

R

Computing Iz,,,A(t, s), we getforn = 1,

kia(t,s) = / ka(t — Dka(r — $)dp, = / ka(t —s —vka(v)dp, = (ka xka)(t — 5),
R R

forn =2,

ko alt,s) = /I;A(t — 1) (ka *ka(t — 8)dp, =

R
= /iEA(z — 5 —V)(ka xka(v)dp, = (kg *ka*ka)(t — 3).
R
and for all n > 2,
kn_1.a(t,8) = (kg xkp%...%xka)(t —s5), (4.14)
e e’

n times

/lég(r ) a1 D)ty = flEBa — 1) RaxFax. . E)(@ — 5)dpae

R R n times
= //EB(t —s =) (karkax...xka)(V)dp,.
————
R n times

Therefore, for almost all pairs (¢, s) € R?, the equality (4.13) is equivalent to
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(ko xkp)(t —5) =Sk % (ka xkp%...xkA)(t —5),
——— —

n times
which is equivalent to
(ky k) (1) = Skp % (ko xkp%...%xkp)(1) (4.15)
—— ———
n times

almost everywhere. By applying the two-sided Laplace transform in both casesn > 2

we get that (4.15) is equivalent to f exp(—st)lzg * (IEA — 812;‘,”) (t)du; = 0 almost
—00

everywhere, which can be written as follows

KB(s)-(KA(s)—SKZ(s)) =0,n>2, (4.16)
almost everywhere, Kp(s) = 70 exp(—st)lEB(t)d,u,, Ka(s) = 7 eXp(—st)le(t)

d .. Equation (4.16) is equivalent to the set supp K N supp (K4 — 8K%), n > 2,
to have measure zero in R, thatis, K(-) - Lisupp(k,—s KX))(') = 0 almost everywhere
and (K4 () — 6K’ () - Lisupp k) (-) = 0 almost everywhere, where /£ (-) is the indi-
cator function of the set E. If supp(K4 — §K;) = R then supp K g has measure zero,
that is, B = 0. Similarly, if suppKp = R then A = 0. Suppose that supp Kp # R
and has positive measure. If (K4(-) — 8K (-)) - Isupp k) (-) = 0 almost everywhere,
then K4 (s) — 8K’} (s) = O for almost every s € supp K. Let p(z) = z — §z". Sup-
pose that p(z) hasm > Oroots z;,i = 1,2,...,m,m < n,n > 2. We consider the
following cases:

e Ifn > 1and p(z) hasm > 2roots z;,i = 1,2,...,m, m < n, then
m

ka(t) = Z 7; A(t — z;), where A(t — 1y), t, ty € R, is the Dirac function defined
i=1

0, t #1

o0, =1y
every s in supp K g. But this implies K 4 (s) = 0 for almost every s in supp K p since
the Dirac function A(-) is equivalent to zero function.

e Ifn > 1and p(z) has only one real root, which is z = 0, then supp (KA — 5Kf‘) =
supp K 4 for all s in supp K. This implies that Equality (4.16) is satisfied if and
only if K4(-) = 0 almost everywhere in supp K.

as follows A(t — ty) = .Inthis case K4 (s) — 6K} (s) = O for almost

In both cases we conclude that K 4(-) = 0 almost everywhere in supp K g. Outside
of supp K, the function K 4(-) can be nonzero. This implies that Equality (4.16) is
equivalent to K 4(s)K g(s) = 0 almost everywhere. This is equivalent to

(ka * kp) (1) = 0 almost everywhere.

Remark 4 Let (R, ¥, u) be the standard Lebesgue measure space. The opera-
tors A and B definedin (4.11)as A : L,(R,u) - L,(R,u)and B: L,(R, u) —
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Ly(R, ), 1< p<oo, (Ax)(t) = [ka(t —$)x(s)dp, (Bx)1) = [kp(t —s)
R R

x(s)d g, almost everywhere, with ka() € L1 (R, w, ks(-) € L1 (R, W), commute,
thatis AB = BA. In fact, by applying Fubbini theorem for composition of A, B and
Lemma 2,

AB = BA & flEA(t — $)kp(s — 1)ds = /léB(t — $)ka(s — T)d s
R R
& (ko *kg)(t — 1) = (kg xka) (1 — T) for almost every (1, 7) € R?,

which holds true by the commutativity property of convolution.

Remark 5 If operators A and B commute then they satisfy, simultaneously, the
following relations AB = BF(A), BA = F(A)B and B(A — F(A)) = 0. In fact, if
A and B commute, then AB = BA, BF(A) = F(A)B, and thus AB = BF(A) is
equivalent to BA = F(A) B, which can be then written also as B(A — F(A)) = 0.

Proposition 3 Let ([0, 00), X, ) be the standard Lebesgue measure space. Let
A Lp([0,00), ) = Lp([0,00), 1), B:Ly([0,00), ) = Lp([0,00), u), 1 < p <00

be non-zero operators defined by

(Ax)(t) = [ka(t — $)Ij0.00)(t — $)x(s)d s,
% 4.17)

(Bx)(t) = [ kp(t — $)Ij0,00)(t — $)x(s)d s,
0

ka(:) € Li([0, 00), ), kg(-) € L1 ([0, 00), 1)

o0 o0
thatis, [ |ka(t)|dp, < oo, [ lkg(t)ldu, < oo,
0 0

where Ig (-) is the indicator function of the set E and the index in | is the variable of
integration. Then, there are no non-zero operators A and B satisfying AB = §BA"
forafixedne Z, n>2,68 € R\ {0}

Proof Operators A and B are well defined by Young’s theorem ([6], Theorem 4.15).
Let n > 1. By applying Fubbini theorem for composition of operators A, B and
A", similarly to the proof of Theorem 2 when k4 (¢, s) = ka(t — $)110,00), kp(t, s) =
123(1‘ — $)j0,00)(t —5) and G; = G, = [0, 00), we get from Lemma 2 that AB =
8BA" if and only if for almost every (¢, s) € R?,
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ka(t — 00,00 (t — TYkB(T — $)110.00) (T — $)d 1

o —3

(4.18)

kp(t — ©)(kn—1.4(z, $))d -,

ko a(t,s) = ka(t — $)Ij0.00)(t — 5),

~ w‘-{
kna(t,s) = [kalt — ) 0,00)(t — Dkp—1,a(T, 8)dpte, n>1.
0

Computing /E,I_I,A(z, s) for n > 1, using (4.14), yields
kn_1.a(t,s) = (kaxkax...xka)(t —5)jo.00)( — 5) =
—— ———
n times
= [ka(t — 1) - (ky*kax...%ks)(T —s)dpu; =
—— ———

n—1 times

%\N

Z—S~ - - -
= [ ka(t —5 —v) - (ka xkax...xka)(V)dp,
—— —
0 n—1 times
= (kg xky*...xks)(t —5).
————

n times

Therefore, from (4.18) we have forn > 2,

t—s _ - t=s _ - - "
[ katt —s —Dkp(t)dpr = [ kp(t —s — 1)8(ka *kax...%ka)(T)dir

n times

which we can write as follows

(kaxkpg)(t —s) = 8(kp * (ka * kax ... xkp))(t — 5). (4.19)

n times

By commutativity, linearity of convolution and the Titchmarsh convolution theorem,
(4.19) is equivalent to either

kp(t —s) =0o0r8(ky*kax...xks)(t —s) = ka(t —5)
N e’

n times

for almost every (z, s) € R2 such thatt > 0,0 < s < 7. This is equivalent to either

kp(@) =0 or (ks xkax...%ks)(t) = ku(t)
———

n times



80 D. Djinja et al.

almost everywhere, n > 2. Suppose that kg (7) # 0 for almost every 7 in a set of pos-
itive measure. Then § (kg x kax ... xk4)(¢t) = ks (t) for almost every ¢ € [0, 00). By
—

n times
o ~
applying the one sided Laplace transform K 4 (s) = [ k4 (t) exp(—ts)dt, which exists
0

for certain s > 0 since exp(—st) € L,([0, c0), u), I < p < oo, we have forn > 2
S(kaxkax...xkp)(t) =ka(t) <= 8K’ (s) = Ka(s).Let p(z) = z — 87" and sup-
—
n times
pose that p(z) hasm > O roots z;,i = 1,2,...,m,m <n,n > 1. We consider the
following cases:

e If n > 1 and p(z) has m > 2 roots, then IEA(t) = > z;A(t — z;), In this case

i=1
K4(s) — 8K (s) =0 for all 5 in the domain of K,(-). But this implies A =0
since the Dirac function A(-) is equivalent to zero function.
e Ifn > 1and p(z) has only one real root, whichis z = 0,then K4 (s) — §K’{(s) =0
implies A = 0. ]

Remark 6 Let ([0, 00), X, ) be the standard Lebesgue measure space. The oper-
ators A1 L,([0, 00), u) = Lp([0, 00), u), B : Lp([0,00), ) = L,([0, 00), ),
1 < p < 00, defined in (4.17) as

(Ax)(1) = [ka(t —5) - [j0,00)(t — )x(8)d 5, (Bx)(t) = [ kp(t —5) - [[0,00)x (s)d 15,
0 0

almost everywhere, withle(') e L ([0, 00), u),lzg(-) € L([0, c0), u) (where I (-)
denotes the indicator function of the set £, and the index in w indicates the variable
of integration) commute, AB = BA. In fact, by applying Fubbini theorem for com-
position of operators A, B and Lemma 2 we have AB = BA if and only if

ka(t —8) - Lo.00)(t — $)kp(s — T) - Tjo.00) (s — T)d 1t

o —3

0o _ ~ <
= [kp(t —5) - L0,00)(t — )ka(s — T) - [j0,00) (5 — T)d s
0
[ ka(t = )kp(s — )y = [kp(t —5) - kals — Ddps <
[ Ealt =t = ks, = [ kgt —7 —v) - kaWdppr,  (420)
0 0

for almost every (¢, 7) € R?. By changing variable & = ¢ — t — v on the right hand
side of (4.20) we get
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T

[ Eplt =7 —v) - Ea)dp,
0

0 ~ ~
— [ kp(&) - ka(t — T — &)dps

t

[ Ealt—1—&) - kg E)dpe
0

which proves (4.20). This completes the proof.

In the following theorem we consider a special case of operators in Theorem 1
when the kernels have the separated variables.

Theorem 3 Let (X, X, u) be o-finite measure space. Let A : L,(X,u) — L,
(X,n), B:Ly(X,u)— L,(X,u), 1 <p =< oo be nonzero operators defined as
follows

(Ax)(1) = /a(t)b(S)X(S)d/Ls, (Bx)(1) = /C(t)e(S)X(S)de (4.21)

GA GB

almost everywhere, where the index in [, indicates the variable of integration,
Gy € X and G € X with finite measure, a,c € L,(X, 1), b € Ly(Gy4, 1), € €
Ly(Gp, ), 1 <qg <00, % + é = 1. Consider a polynomial F : R — R defined by
F(2) = Z;'.:Oszj, where§; € R j =0,1,2,...,n.let G =G4, NGg, and

ki =Y 8;0Qc,(a, b)Y ' Qq,(a e), k= Qg,b,c),

j=1

where Q A(u,v), A € X, is defined by (4.2). Then AB = BF(A) if and only if the
following conditions are fulfilled:

1. (a) for almost every (t,s) € suppc x [(suppe) N G], we have;
(i) ifks # Othen b(s)ky = re(s) anda(t) = Wfor some real scalar
A,
(ii) ifky = 0 then kib(s) = —&pe(s).
(b) Ift ¢ supp c then either ky = 0 or a(t) = 0 for almost all t ¢ supp c.
(c) Ifs € G\ suppe then either k; = 0 or b(s) = 0 for almost all
s € G\ suppe.
2. kpa(t) — 8pc(t) = 0 for almost every t € X or e(s) = 0 for almost every s €
Gp\G.
3. ky =0o0rb(s) =0 for almost everys € G4 \ G.

Proof We observe that since a,c € L,(X, ), 1 <p <00, be L,(Gy, ), ee
L,(Gp, p), where | < g < oo, with L+ + 5 = 1, then either condition (4.3) or (4.4)
or (4.5) is satisfied and therefore the operators A and B are well-defined. By direct
calculation, we have
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(A1) = / a(Db(s) (Ax) (s)d s = / a(Ob(s)als)d s / b(e)x (r)des
Gy Ga Ga

= Q¢,(a. b)(Ax)(1),
(A’0) (1) = A(A’X) (1) = Qg,(a, b)(A*X)(1) = Qg, (a, b)*(Ax)(1)
almost everywhere. We suppose that
(A"x)(t) = Qg,(a, b)’”_l(Ax)(t), m=1,2,...
almost everywhere. Then
(A" X)) = A(A"x) (1) = Qq,(a,b)" " (A’x)(1) = Qg, (@, b)" (Ax)(t)

almost everywhere. Then, we compute

(ABx)(1) = /a(t)b(s)c(s)dﬂsfe(fl)x(fl)dﬂtl

) Gr (4.22)
= k2 f a(t)E(Tl)X(fl )dl’LTl ’

Gp
(F(AX)(@) = 8x(1) +a(®) Y 8; (Qg,(@. b)) / b(D)x(D)d i,
Jj=1 Ga

(BF(A)x)(t) = doc(t) / e(t)x(T1)dpr, (4.23)
Gp

+c() Y8, (Qa,(a. b))~ / e(D)a(t)dpi f b(ry)x(t)d s,

j=1 Gs Gy

— Soc(t) / e(t)x () dpts, + (ks / b(e)x(r) s, 4.24)
Gp Ga

Thus, (ABx)(t) = (BF(A)x)(t) forall x € L,(X, ) if and only if

/[kza(l) — doc(D)]e(s)x(s)dps = /klc(t)b(s)x(s)d,us-
Gp

Ga

Then by Lemma 1, AB = BF(A) if and only if

1. for almost every (¢,5) € X x G,
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[kaa(t) — Soc(t)]e(s) = kic(t)b(s);

2. kpa(t) — Soc(t) = 0 for almost every ¢t € X or e(s) = 0 for almost every s €
Gp\G;

3. ky =0 or ¢(r) = 0 for almost every t € X or b(s) = 0 for almost every s €
Ga\G.

We can rewrite the first condition as follows:
(a) Suppose (t, s) € suppc x [(suppe) N G].

(i) If k, # 0, then k; % = kz% — 8o = X for some real scalar A. From this,
it follows that k1 b(s) = e(s)X and a(t) = ().
(ii) If kp = 0 then —8pc(t)e(s) = kyc(t)b(s) from which we get that k1b(s) =

—8pe(s).
(b) Ift ¢ supp c then kya(t)e(s) = 0 from which we get that either k, = O ora(t) =
0 for almost all ¢ ¢ supp c or e(s) = 0 almost everywhere (this implies B = 0).
(c) Ifs € G\ suppe, thenk;c(¢)b(s) = 0 whichimplies thateitherk; = Qorb(s) =
0 for almostall s € G \ suppe, or c¢(¢) = 0 almost everywhere (this implies that
B =0). (]

Remark 7 Observe that operators A and B as defined in (4.21) take the form
(Ax)(t) = a(t)¢(x) and (Bx)(t) = c(t)¥ (x) for some functions a, ¢ € L (X, ),
1 < p < o0 and linear functionals ¢, ¢ : X — R. In this case AB = BF(A) if and
only in ¢ (Y (x)c(t))a(r) = Y (F(¢(x)a()))c(t) in L,(X, u), 1 < p < oo.

Corollary 3 Let (X, X, ) be a o-finite measure space. Let A : L,(X,u) —
L,(X, ), B:Ly(X,u) — L,(X,un), 1 =< p =< o0 benonzero operators such that

(Ax)(1) = /a(l)b(S)X(S)dMs, (Bx)(1) = /C(t)e(S)X(S)dus,
G G
(the index in g indicates the variable of integration)

almost everywhere, G € X is a set with finite measure, a,c € L,(X, 1), b, e €
Ly(G, ), 1 <q=<o0, % + é = 1. Consider a polynomial F(z) = 8o+ 812+ ...+
8,2", wherez e R, §; € R, j=0,1,2,...,n. Set

ki=Y 8;06(a,b) " Qgla,e), k= Qqb,0),
j=1
Then AB = BF(A) if and only if the following is true
1. for almost every (t, s) € suppc X supp e, we have

a) Ifk, # 0, then k\b(s) = e(s)A and a(t) = ‘S‘)k—jkc(t)for some )\ € R.
b) Ifky = 0 then k\b(s) = —dpe(s);
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2. Ift ¢ suppc then either ky = 0 or a(t) = 0 for almost all t ¢ supp c.
3. Ifs € G\ suppe, then either k; = 0 or b(s) = 0 for almost all s € G \ suppe

Proof This follows immediately from Theorem 3 as G4 = G = G. O

Remark 8 From Theorem 3 and Corollary 3 we observe thatifky, k, # 0, then given
operator B as defined by (4.21), we can obtain the kernel of operator A using relations,
a(t) = %c(t) and b(s) = kA—le(s) for some A € R. In the next two propositions we
state necessary and sufficient conditions for the choice of A.

Proposition 4 Let (X, X, i) be a o-finite measure space. Let
A:L,(X,pu) > Lp(X, ), B:Ly(X, ) > Ly(X, ), 1 <p=<o00

be nonzero operators such that

(Ax)(1) = /a(t)b(S)x(S)dus, (Bx)(1) = /C(t)e(S)x(S)dus,
G G
(the index in g indicates the variable of integration)

almost everywhere, G € X is a set with finite measure, and a, c € L,(X, ), b, e €
L,(G, ), 1 <g <00, é + é = 1. Consider apolynomial F(z) = 8o + 812+ --- +
8,2", wherez e R, §; e R, j =0,1,2,3,...,n. Set

ki =Y 5;06(a.b) "' Qa(a.e). k= Qc(b. o).

j=1

Suppose that AB = BF(A). Ifky # 0 and ky # 0 in condition 1(a) in Corollary 3,
then the corresponding nonzero A satisfy

F(L+8p) = A+ 6. (4.25)

Proof By definitionk; = Y "_,8,Qc(a,b)"'Qcla,e), k»= Qc(b,c). Ifk; #

j=l1
0, k, # 0, by condition 1(a) in Corollary 3 we have a(t) = A7:—2‘3"0(1‘), b(s) =
,f—le(s) almost everywhere. If A # 0 then we replace k, = Qg (b, ¢) = Q(;(:—I& c)

j-1
Atdo . A At+do
oG T e) Oc ( oG e) . Then,

by using the bilinearity of Qg (-, -) and after simplification, this is equivalent to

A= Z;’:l 5+ 80)’. By adding 8y on both sides we can write this as (4.25). [

in the following equality k1 = 3__, 8, Q¢ (

Proposition 5 Ler (X, X, 1) be a o-finite measure space. Let
At Ly(X.p) = Lp(X. ), B:Ly(X. 1) = Lp(X,p), 1 < p <00

be nonzero operators such that
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400 = [ awbx6dn. B0 = [ e,
G G
(the index in g indicates the variable of integration)

almost everywhere, G E X lS a set with finite measure, a,c € L,(X, ), b,e €
L,(G,n), 1 <g <00, > + - =1 ConszderapolynomtalF(z) = 50 +8iz+...+
8,2", where z € R, §; e R, ] =0,1,2,3,...,n. Suppose that for almost every
(t, s) € supp c x supp e, we have

A4S
a(ry = ~F%

A
c(t), b(s) = k—le(S)

for nonzero constants A, k1 and k. If F(A + 69) = L + dpand kp, = ,?—l Qcle, c), then

] A= )wHSo B
2. for allx el (X, w) and almost all t € suppc, (ABx)(t) = (BF(A)x)(1).

Proof We have, almost everywhere,

A+ Sp)A A+ 80)A
(AD)(1) = / a()b(s)x(s)d s = % / cWex)dus = 220% By
112 kiky
G G
A+ 80)A A+ Sp)A
(ABX)(1) = %(Bzxm) = BAEN G e (B,
1k2 kiky
A+ 80)A\2 A+ 89)A\ 2
@on = (CEDH) @ - (S5 oo omno.
152 152

Similarly, for m > 2, almost everywhere

A4S \"
(A"x)(1) = (%) Qc(c, e)" ' (Bx)(1)
112
! A+ 8o)A\! ,
(F(A)x)(1) = 8o(Bx)(t) + ;6,- (%) Qa(c, )’ (Bx) ().
Therefore, almost everywhere,
" A+ 8o\’ ‘
(BF(A)x)(t) = 8o(B*x)(t) + Y _8; (ﬂ) Qc(c, e) 1 (B2x)(1)
o kika

P RYRN ‘
%) 06 (e, e) (Bx)(1)
1/2

= 80Qc(c. e)(Bx)(1) + Y _ 5 (
j=1
_ s ((,\ + 80)A

Kok Qqlc, e)> (Bx)(1),
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Hence, (ABx)(t) = (BF(A)x)(t), forall x € L ,(X, ) and almost all r € supp c if

and only if

A+ o)A A+ S0

EER 000 = (S 00t 0) (4.26)
182

for almost every ¢ € suppc. If k, = ]?L—IQG(C, e) and ) satisfies (4.25), then (4.26)
holds. (I

Corollary 4 Let (X, X, 1) be a o-finite measure space. Let A : L,(X,u) —
L,(X,u), B:Ly(X,u)— L,(X,n),1 < p < oo benonzero operators such that

(Ax)(0) = / aOb(s)x(s)dpty,  (Bx)(E) = / c(e()x (5)dps,
G G
(the index in g indicates the variable of integration)

almost everywhere, G E X is a set with finite measure, a,c € L,(X, ), b,e €
Ly(G, ), 1 <g < o0, 5 + = = 1. Consider a polynomial F(z) = 80 + 812+ 6,22,
where zeR §;eR, j= O 1,2. Suppose that for almost every (t,s) € suppc X
suppe, a(t) = H‘s“c(t) b(s) = —Ie(s) for nonzero constants X\, ki and ky. If

ky = %Qg(e, ¢), then (ABx)(t) = (BF(A)x)(t), forall x € L,(G, i) and almost
all t € suppc if either 506, < 0, or 808, > 0 and either §; > 1 + 2./806 or 6; <
1 —24/606>.

Proof From Propositions4 and 5 wehavethat AB = BF(A)if F(A + 8yp) = X + §p.
This is equivalent to

820% 4 (28082 + 81 — DA + 8285 + 8180 =0 4.27)

Equation (4.27) has real solutions if and only if (§; — 1)2 — 4808, > 0. This s equiv-
alent to either §p6, < 0,0r8pd, > Oandeitherd; > 1 + 24/8pdr0rd1 < 1 — 24/8¢62,
which completes the proof. ]

Example 2 Let (R, X, ) be the standard Lebesgue measure space. Let
At L,R, ) = LR, ), B: LR, p) = LR, ), 1 <p <00

be nonzero operators defined as follows

1 1

(Ax)(1) = /a(t)b(s)x(s)ds, (Bx)(t) = /c(t)e(s)x(s)ds,

0 0

where a € L,(R, w), b € L,([0, 1], ), 1 < g < oo, % + 5 =1, and c(¢) = 1.1
(1), e(s) = s + 1. Consider the polynomial F(z) = z> 4+ z — 1 and suppose that for
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almost every (¢, s) € suppc X suppe, a(t) = AZ—f“c(t), b(s) = Ae(s) for nonzero
constants A and k, = AQjo,11(e, ¢) = gk. From Propositions 4 and 5 we have that
AB = BF(A) if F.—1)=A —1, or A2 — 21 = 0. Therefore, we take A = 2.

Then, A = 52 B = ¢B. Hence, A% = (£B) (¢B) = () B2 But

5
(Bzx)(t) = /tl,o,ll(t)(s + 1)/s1[0,1|(s)(r + Dx(t)dt = E(Bx)(t).
0

0

Therefore, A% =(£)?B>=¢B=A. Thus, F(A)=A>+A—-1=2A—1=
2B—1 and BF(A)=B(2B—-1)=2B>-B=12.2B— B=B. Finally,
AB=2%B*=%.3B=B=BF(A).

1
Remark 9 Example 2 is a case when operator B (Z 8xAF) # 0 as mentioned in

k=1
Remark 1 and Remark 3. In this case we have G4 = Gp = G = [0, 1], operators A :

L,R,u) = L,R,w),B:L,R,u)— L,(R, u),1 < p < oo are defined as fol-
1

lows (Ax)(t) = %’(Bx)(t), (Bx)(t) = f t1jo,11(t)(s + 1)x(s)ds almost everywhere,
0

the polynomial is F(z) = —1 + z + z? with coefficients §o = —1, 8, = 8, = 1. We
have that Condition 2 and 3 are satisfied because they are taken onthe set R x ¢J = ¢
which has measure zero in R x [0, 1]. Condition 1 is satisfied as showed in Example

1
2. Moreover, B(A + A% =2BA =2 ng =2B =2 [tlpt)(s + Dx(s)ds #
0
12 1
0,and A+ A’ =2A = ?B = /11[0,1](r)(s + Dx(s)ds # 0.
0

Remark 10 Let (X, X, u) be a o-finite measure space. From Proposition 5 we

have that if A: L,(X,u) - L,(X,u), B:L,(X,u) — L,(X,u), 1 <p<o0

are nonzero operators defined as follows (Ax)(t) = f a(t)b(s)x(s)dus, (Bx)(t) =
G

fc(t)e(s)x(s)dus, almost everywhere, G € X is a set with finite measure, a, ¢ €

G

L,(X, 1), b,e € Ly,(G,pn),1<q<o0, §+ql= land F(z) =8+ 81z + ...+
8,2", where z € R, §; e R, j=0,1,2,3,...,n. If we suppose that for almost
every (¢, s) € suppc X suppe, a(t) = %c(t) and b(s) = ki]e(s) for some nonzero
constants A, k; and k, and if F(A + &p) = A + &g and k, = %Q(;(E, c), then A =

*t%_pB and AB = BF(A). Now suppose that A = wB for some w € R, then

G(e,0)

0
AB = BF(A) if and only if

F(wQg(c,e)) = wQglc,e). (4.28)

(A+80)2

This relation is the same as Equation (4.26) with v = Tk
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Corollary 5 Let (X, X, 1) be a o-finite measure space. Let A : L,(X,u) —
L,(X,u), B:Ly(X,u)— L,(X,u), 1 <p < o0 be nonzero operators defined

by (Ax)(t) = [ a(@)b(s)x(s)dus, (Bx)(1) = [ c(t)e(s)x(s)dus, almost every-
Ga Gp
where, where G4 € X, Gp € X are sets with finite measure, a,c € L,(X, i),

beLy(Ga,p), eeLy(Gp, ), 1 <q <00 and % +1=1 Consider a polyno-
mial F(z) =80 + 81z + ...+ 8,2", where z € R, §; eﬂg,jzo, 1,2,3,...,n. Let
G=G,NGgpg, and

k=Y 8;06,(@.b) " Q¢,a.e). k= Qg, (b, 0).
j=1
Then,

1. ifk) #0, ky #0, then AB = BF(A) ifand only if A = B, for some constant
w which satisfies (4.28);
2. ifkp =0then AB =0and, AB = BF(A) ifand only if BF (A) = 0. Moreover,

(a) ifky # Othen BF(A) = Oifandonly if b(s) = —]‘z—(]’e(s)lg(s) almost every-
where;
(b) ifk; =0then AB = BF(A) if§o =0, thatis, F(t) = Z, 16; it

3. ifks #0and k; = 0then AB = BF(A) ifand only if AB = §¢B, that is
(Ax)(1) = /C(Z)b(S)X(S)de
GA

Proof 1. By applying Theorem 3 if k| 7~ 0 and k, # 0 we have AB = BF (A) if
and only if the following is true:

e for almost every ¢ € suppc a(t) = ‘Sogkc(t) and b(s) = %e(s) for almost
every s € G N supp e and nonzero constant A satisfying (4.26);

e ¢(s) = 0 for almostevery s € G \ G;

e b(s) = 0 for almost every s € G4 \ G;

From which we have,

(A0)(1) = / a(t)b(s)x(s)d s + / a(®)b(s)x(s)dpty =
G GA\G
A+ Sp)A A A
—( + N f c(t)e(s)x (s)dp, = LT 20 :k‘)) (Bx)(1)

almost everywhere. If A = 0 then A = 0.
2. If k, = 0 then from (4.22) we have AB = 0 and, hence AB = BF(A) if and
only if BF(A) = 0. Moreover, by applying Theorem 3 we have
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(a) ifk; # Othen AB = BF (A) if and only if for almost every s € suppe N G,
b(s) = —I‘i—?e(s), b(s) = 0 for almost every s € G \ suppe, e(s) =0 for
almostevery s € Gp \ G and b(s) = O foralmostevery s € G4 \ G. There-
fore, almost everywhere, b(s) = —]‘i—?e(s)l(; (s).

(b) if ky =0and 6o = 0, then AB = BF(A).

3. By applying Theorem 3 and if k, #0, k; =0 we have AB = BF(A) if
and only if for almost every ¢ € suppc, a(t) = ‘S[}C—‘r’\c(z‘) and Xle(s) =0 for
almost every s € G Nsuppe, from which we get A = 0. Therefore, a(t) =
]‘i—‘z’c(t) almost everywhere. So we can write (Ax)(t) = f a(t)b(s)x(s)dus; =

Ga
,‘i—‘; Gf c(t)b(s)x(s)dus almost everywhere. Hence, almost everywhere,
A
(ABx)(1) = /C(I)b(S) / e(D)x(T)d e | dps
Ga B
3
= e [ cwporan, [ ewnwan,
2 GA Gb‘
3
= k—OQG(b, C)fC(t)E(f)X(f)er = 8o(Bx)()
2 2,
On the other hand, from (4.24) follows that BF (A) = §yB if k; = 0. O

Example 3 Let (R, X', 1) be the standard Lebesgue measure space. Let

AL, R w—L,R,n), B:L,(R,u)—> L,(R, ), 1 <p<oo

1 1
be nonzero operators (Ax)(r) = [ a(t)b(s)x(s)ds, (Bx)(t) = [c(t)e(s)x(s)ds,
0 0
where a(t) = t*Ij0.11(¢), b(s) = s>, c(t) = —6t*Ijo,11(¢) and e(s) = s. Consider
a polynomial F(t) = 8o + 8;¢ + 8,12, where t € R, 3; eR, j=0,1,2. We have

1 1
ky = Qpo.11(b, ¢) = [b(s)c(s)ds = [ —6s>s*ds = —1.If
0 0

ki = 81Qj0,11(a, e) + 82Q0,11(a, b) Qo,1)(a, e) =0,

then choose §;,i = 1, 2 such that 0 = §; + 82Q[0,1](a, b) =246, — éSZQ[O,l](C, b) =
81 + %82. Thus §, = —66, and ,‘i—‘; = —% from which we get §p = é. Hence, F(t) =
—6811% + 8t + é. We have almost everywhere
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1 1

(Ax)(t) = [ t* Iy (t)s*x (s)ds, (Bx)(t) = —6 / 210,11 (t)sx (s)ds,

0 0
and thus almost everywhere

1 1

(ABx)(t) = f o (t)s | =6 f s* I () Tx(t)dt | ds = é(Bx)(t),
0 0
1 1

(A%) (1) = f .1y (1) s° / s2 I ()T x(v)dt | ds = é(Ax)(t).

0 0

Finally, we have

1 1 1
BF(A) =B (—681A2 +81A + 61) = —81BA+8BA+ 2B =B =AB.

Example 4 Let (R, X, 1) be the standard Lebesgue measure space. Let
A:LyR, 1) — Ly, ). B:LyR, 1) > LR, p), 1 <p <00

B B
be nonzero operators (Ax)(t) = [a()b(s)x(s)ds, (Bx)(t) = [c(t)e(s)x(s)ds,

where o, B € R, —00o <a < B < 00,a,c € L,(R, ), b,e € L,([a, B], ) where
1 < g < oo such that + + 1 = 1. Consider a polynomial F(r) = 8y + 8;¢ + 8,12,
wheret e R, §; e R, j =0, 1, 2. We set

B
ky = Qupi(b, ¢) = [b(s)c(s)ds, ki = 81 Qla.pi(a, €) + 82 01a.p1(a, b) Q. p1(a, €).

If k» # 0 and k; = 0 then we choose either Q g1(a,e) =0 or §;, i =1,2 such
that 8; + 82 Qjq,1(a, b) = 0. Thus from Corollary 5 we have a(t) = ,‘z—fc(t) almost

everywhere. Thus k; = O implies that either Q4 g1(a, e) = 0ord; + 2—2821{2 =0.We

choose coefficients §;, j = 0, 1, 2 such that §; = —§y,, and hence F (1) = 812 —
8062t + 80. Then, the operators

B B
(Ax)(t) = i—j/c(t)b(s)x(s)ds, (Bx)(t) = /c(t)e(s)x(s)ds

o

almost everywhere, satisfy the relation
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AB = 8;BA* — 805, BA + 8B. (4.29)
In fact,
5 B B
(ABx)(t) = k—/c(t)b(s) /c(s)e(r)x(r)dr ds = 8o(Bx)(1),
B s B
(A*x)(1) = /C(t)b(S) k—O/C(S)b(f)X(T)dT ds = 8o(Ax)(1),
2

almost everywhere. Finally, wehave BF (A) = B (8,A% — 8,80A + 801) = 8,80BA —
8260BA + 6oB = 8oB = AB. In particular, if « =0, B=1, b(s) =s and
c(t) = tzl[o’l](t), e(s) = s> we have k, = Op.1b, c) = le' Hence the operators

1 1

(Ax)(t) = 48, / 210,11 (t)sx (s)ds, (Bx)(t) = / o (s’ x(s)ds  (4.30)

0 0

satisfy the Relation (4.29). In particular, if §, = 1 and 69 = —1, that is, F(¢) =
t? 4+ t — 1 then the corresponding operators in (4.30) satisfy AB = BA”> + BA — B.

Corollary 6 Let (X, X, 1) be a o-finite measure space. Let A : L,(X,u) —
L,(X,u), B:L,(X,u)— Ly(X,u), 1 <p =00 be nonzero operators defined
by

(Ax)(1) = /a(l)b(s)x(s)dus, (Bx)(1) = /C(l)e(s)x(s)dus,

GA GB

almost everywhere, G4 € X, Gg € X are sets withﬁnite measure a,c € Ly(X, ),

beLy(Ga, ), e€ Ly(Gp, ), 1 <qg <00 and - > + = = 1. Consider a poly-
nomial F(z) = 8o+ 81z + ...+ 8,2", where z € R, §; ER j=0,1,2,3,.

Let G=GoNGpand k| = 27:18 Qc,(a,b)/~ 1Q(;B(a e), ko = Qg, (b, c) If
ky #0 and Qg,(a,e) =0, then AB = BF(A) if and only if AB = 6yB, that is
a(t) = ]‘z—fc(t), almost everywhere.

Proof This follows by Corollary 5 since k; # 0 and k; = 0. (]

Corollary 7 Let (X, X, t) be a o-finite measure space. Let A : L,(X,u) —
L,(X,un), B:Ly(X,u)— L,(X,u), 1 <p < oo be nonzero operators defined
by

400 = [ awb©x6dn. B0 = [ e,

G, Gp

almost everywhere, Gy € X, Gp € X are sets with finite measure, a, c € L (X, ),
beLy(Gp,p),e€ Ly(Gp, ), 1 <qg= ooand% + é = 1. Consider a monomial
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F(z) = 829, where z € R, d is a positive integer and 8 # 0 is a real number. Let G =
GaNGpandk; =8Q0¢,(a,b)? ' 0¢,(a,e), ko= Qg,(b,c). Then AB = §BA4
if and only the following conditions are fulfilled:

1. (a) for almost every (t,s) € suppc X [(suppe) N G] we have the following:
(i) Ifky # 0, then k1b(s) = e(s)r and a(t) = %c(t)for some )\ € R.
(ii) If ko = O then either k; = 0 or b(s) = 0 for almost all s € suppe N G.
(b) Ift ¢ supp c then either ky = 0 or a(t) = 0 for almost all t ¢ supp c.
(c) Ifs € G\ suppe then either ki = 0 or b(s) = 0 for almost all
s € G\ suppe.
2. ko =0, ore(s) =0 foralmost everys € G \ G.
3. k1 =0o0rb(s) =0 foralmosteverys € G4 \ G.

Proof This follows from Theorem 3 and the fact that §; = O in this case. O

Example 5 Let (R, X, ) be the standard Lebesgue measure space. Let

A: LZ([av ﬁ]s /-’L) - LZ([as IB]’ /’L)9 B : LQ([O[, ﬁ]s M) - LZ([a7 :3]’ /’L)

B B
be defined by (Ax)(1) = [a()b(s)x(s)ds, (Bx)(t) = [c(t)e(s)x(s)ds, where

o o
a, B are real numbers with ¢ < B, a, b, c,e € Ly([a, B], i), such that a L. b and
B B
b L c, that is, fa(t)b(t)dt = fb(t)c(t)dt = 0. Then the above operators satisfy

AB =8BA?,d =2,3,....In fact, by using Corollary 7 and putting
Fit)=46t, d=2,3,...
ki = Quu.pi(a, ) Qapi(@, e), ka = Qap (b, ),
we get k; = k; = 0. So we have all conditions in Corollary 7 satisfied. In partic-

ular, if a(t) = (36 = 31) I_1,1)(t), b(s) = 35 —  and c(r) = tIi_1 11(1), then the
operators

1

5 3 3 1
(Ax)(t) = / (§t3 — §t> I—111(2) <Es2 — 5) x(s)ds,

-1
1

(Bx)(t) = /.tl[,lﬁl](t)e(s)x(s)ds

—1

satisfy the relation AB = BAY d =2.3,.... Infacta, b, care pairwise orthogonal
in[—1, 1].
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