
Chapter 36
Mathematical and Computational
Analysis of MHD Viscoelastic Fluid Flow
and Heat Transfer Over Stretching
Surface Embedded in a Saturated Porous
Medium

Jagadish Tawade and Prashant G. Metri

Abstract The study of MHD flow and heat transfer over a stretching sheet in pres-
ence of saturated porous media with the effect of space and temperature dependent
internal heat source/sink. Two different heating process has been considered namely,
Prescribed surface temperature (PST) and Prescribe heat flux (PHF). The nonlin-
ear boundary layer equations of momentum, which are nonlinear partial differen-
tial equations are converted into nonlinear ordinary differential equations by means
of suitable similarity transformation. Similarly, the heat transfer equations, which
are partial differential equations, are converted into ordinary differential equations
introducing a similarity transformation. The resultant flow and heat transfer has been
solved analytically. The effects of viscoelastic parameter, porous parameter, Mag-
netic field, suction, space and temperature dependent heat source/sink on both flow
and heat transfer characteristics are presented graphically.

Keywords Boundary layer flow · Heat transfer · Kummer’s function · MHD ·
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36.1 Introduction

The study of continuously moving surface in a laminar boundary layer of non-
Newtonian fluids is an important type of flow that occurs in various technological
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processes. Examples of practical applications include aerodynamic extrusion of plas-
tic sheets, endless sheetmetal cooling along cooling paths showing electrolyte crystal
growth, boundary layers of liquid layers in the condensation process, compression
by continuous deformation of mold or filament polymer sheets. Glass blowing, con-
tinuous casting, and fiber shearing are associated with flux as the surface stretches.
There are a number of practical applications in the metallurgical and chemical indus-
tries, such asmaterials produced by extrusion and heat-treatedmaterials, whichmove
between a feed roller and a coil roller, or run on a conveyor belt with a continuously
moving surface. And also in the polymer industry, where plastic films andman-made
fibers are drawn, which rise from almost zero at the opening to a maximum value
at which they remain stable. The moving fiber boundary layer creates a flow in the
surrounding medium. Eventually, the fiber cools, and this affects the final product of
the yarn.

Flow through a porous fluid saturated medium is important in many technological
applications, and its importance increases with the growing interest in the problems
of geothermal energy and astrophysics. Certain other applications can also bene-
fit from an understanding of the basics of mass, energy and momentum transfer
in porous media, namely cooling of nuclear reactors and underground disposal of
nuclear waste, oil tank operations, building insulation, food processing, casting and
welding, manufacturing processes and etc. Heat transfer in a porous medium plays a
key role in these applications, so the books by Ingham and Pop [7], Nild and Bejan
[20] have shown that flow in porousmedia is becoming a classic topic where previous
developments have been confirmed by a large number of subsequent research.

Most studies of the thermal conductivity of porous media have been considered
for liquids in environments with constant physical properties. However, it is well
known that the viscosity of a liquid changes significantly with temperature and this
affects the change in velocity and temperature caused by the flow. Therefore, when
used for practical heat transfer problemswhere there is a large temperature difference
between the surface and the liquid, continuous assimilation of ownership can lead to
significant errors. For example, the viscosity of water decreases by about 240%when
the temperature rises from 10 to 500 ◦C, the effect of changing properties on heat
transfer is a very difficult task for several reasons. Firstly, variations in temperature
properties differ from one liquid to another, sometimes it is impossible to express
them analytically. However, for practical applications, a reliable and suitable corre-
lation equation based on the assumption of a constant property can be used so that it
can be used when the influence of a variable property becomes important. Mahapatra
et al. [8] studied the heat transfer and MHD stagnation point flow of a viscoelastic
fluid over a stretching sheet. When the sheet is stretched on its own plane, the speed
is proportional to the distance from the stagnation point. Babaelahi et al. [3] analyzed
the viscoelastic magnetohydrodynamic flow and heat transfer overa stretching sheet
and taken into account of ohmic and viscous dissipation. Hsiao [6] studied the heat
andmass transfer of mixed convection magnetohydrodynamic viscoelastic fluid flow
over a stretching sheet in presence of ohmic dissipation. Aiboud et al. [1] analyzed the
second law of thermodynamics toMHDviscoelastic flow over a stretching sheet. The
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entropy analysis highly influenced the visco-elastic parameter and internal heating
heat source/sink parameter.

The magnetic field was also used to clean molten metals from non-metallic inclu-
sions. Numerous studies have been reported on the flow and heat transfer of elec-
trically conductive fluids over an elongated surface in the presence of a magnetic
field. Turkyilmazoglu [27, 28] studied the viscoelastic electrical conducting fluid of
slip flow over a stretching surface. The key is to look at the structure of the solutions
analytically anddetermine the thresholds abovewhichmultiple solutions exist. In var-
ious embodiments, the closed form formulas of the flow boundary layer equations are
shown in two different cases, such as second class liquid B fluids andWalter. The heat
transfer analysis is also performed for two different cases, such as the surface temper-
ature of the required secondary power law and the heat flux of the required secondary
power law. Rushi Kumar et al. [23] studied the viscoelastic electrically conducting
fluid flow, heat andmass transfer over a vertical cone and flat plate taken into account
of variable viscosity, viscous dissipation and chemical reaction. Turkyilmazoglu [29]
investigated the three dimensional viscoelastic magnetohydrogynamic flow and heat
transfer over a porous stretching and shrinking surface. Eswaramoorthi et al. [5] stud-
ied the three diemensional viscoelastic electrically conducting convective flow and
heat transfer over a stretching surface in presence of thermal radiation and internal
heating. Nayak et al. [18] studied the vicoelastic electrically conducting fluid, heat
and mass transfer over a porous surface taken in to account of viscous dissipation,
thermal radiation and chemical reaction. Metri et al. [9] studied the mathematical
and computational analysis of viscoelastic electrically conducting mixed convection
flow over a porous stretching surface considered the effects of viscous dissipation
and non-uniform heat source/sink. Nayak [19] studied the heat and mass transfer
of viscoelastic MHD flow over a stretching sheet embedded in a porous medium,
considered the effects of thermal radiation and chemical reaction. Metri et al. [10,
11] studied the heat and mass transfer over a nonlinear stretching surface in presence
of viscous dissipation. Tawade et al. [26] studied the effects of thermal radiation on
electrically conducting fluid flow over a unsteady stretching surface with internal
heating. Umavathi et al. [30] studied the linear stability of Maxwell nano fluid in a
saturated porous medium, when the porous walls of the porous layers are subjected
to periodic temperature modulation. A modified Darcy-Maxwell model is used to
describe the movement of fluids. Metri et al. [12, 13] studied the MHD nanoliquid
flow and heat transfer over an unsteady stretching surface. Pratap Kumar et al. [21]
studied the effect of chemical reaction on magneto hydrodynamic flow in a vertical
double passage channel. Baag et al. [2] analyzed the second law of thermodynam-
ics for viscoelastic electrically conducting fluid flow, heat and mass transfer over a
porous stretching surface.Metri et al. [14]Metri, P.G., studied theLie symmetry anal-
ysis for magnetohydrodynamic flow over a stretching surface in presence of viscous
dissipation and internal heating. Metri et al. [15] studied the analytical solution for
magnetohydronamic nanoliquid flow over an unsteady stretching surface. Narayana
et al. [17] investigated the thermocapillary effect on laminar flow of a thin film of a
power-law nanoliquid over an unsteady stretching surface. Mishra et al. [16] studied
the analytical and numerical solution of the viscoelastic electrically conducting fluid



794 J. Tawade and P. G. Metri

flow over a porous surface with non-uniform heat source/sink. Seth et al. [24] stud-
ied the radiation effect on magnetohydrodynamic viscoelastic free convective flow
and heat transfer over a stretching surface in presence of partial slip. Galerkin Finite
element method is used to solve the nonlinear fluid flow and heat transfer equations.
Sureshkumar Raju [25] studied the Viscoelastic Darcy-Forchheimer flow and heat
transfer over moving neddle with viscous dissipation. Ramesh et al. [22] studied the
effects of thermal radiation, chemical reaction on viscoelastic nanoparticles flow,
heat and mass transfer over stretching surface with convective boundary condition.

It is worth mentioning that heat transfer in porous media which is induced by
internal heat generation arises in various physical problems such as heat removal
from nuclear fuel debris in nuclear reactors, the underground disposal of radioactive
waste materials, fire and combustion modeling, the development of metal waste from
spent nuclear fuel, and exothermic chemical reaction in packed-bed reactors. Exact
modeling of internal heat source/sink is impossible and hence simple mathematical
models considering average behavior in most physical situations. In the present work
we worked on Newtonian liquids investigated to viscoelastic liquid flows. The main
aim of the article is to analyze the effect of space dependent and temperature depen-
dent heat generation absorption parameters, Prandtl number, magnetic parameter,
viscoelastic parameter, and porosity parameter on a viscoelastic boundary layer flow
and heat transfer over stretching sheet with suction-blowing effects.

36.2 Mathematical Formulation

Two-dimensional flow of an incompressible electrically conducting viscoelastic fluid
of the type Walter’s liquid B past a porous stretching sheet embedded in a porous
medium is considered. The flow is generated due to stretching sheet along x-axis
by application of two equal and opposite forces. This flow obeys the rheological
equation of state derived by Beard and Walters [4], further this flow field is exposed
under the influence of uniform transverse magnetic field. Hence, under the usual
boundary layer assumptions, the equations of continuity, momentum and energy for
the flow of MHD viscoelastic fluid of Walter’s B model are:

∂u

∂x
+ ∂u

∂y
= 0. (36.1)
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Here, B0 is the applied magnetic field, σ is the electrical conductivity of the fluid,
k0 is the first moment of the distribution function of relaxation times, ν is Kinematic
viscosity and k ′ is the permeability of the porous medium. The magnetic field B0 is
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applied in the transverse direction of the sheet and induced magnetic field is assumed
to be negligible.
where u, v and T are the fluid x-component of velocity, y-component of velocity and
the temperature, respectively.ρ, ν, k and cp are the fluid density, Kinematic viscosity,
thermal conductivity and specific heat at constant pressure of the fluid respectively,
q ′′′ is the rate of internal heat source (> 0) or sink (< 0) coefficient. The internal
heat source or sink term is modeled according to the following equation

q
′′′ =

(
kuw(x)

xν

)
[A∗(Tw − T∞)e−αη + B∗(T − T∞)], (36.4)

In (36.4), the first term represents the dependence of the internal heat source or sink on
the space coordinates while the latter represents its dependence on the temperature.
Note that when both A∗ > 0 and B∗ > 0, this case corresponds to internal heat source
while for both A∗ < 0 and B∗ < 0, this case corresponds to internal heat sink.

36.3 Boundary Conditions

The boundary conditions for the flow situation are

uw(x) = cx, v = −v0 at y = 0, and u → 0 uy = 0 as y → ∞. (36.5)

36.3.1 Prescribed Surface Temperature (PST)

For this case boundary conditions are:

T = Tw = T∞ + Ax1 at y = 0 and T → ∞ as y → ∞, (36.6)

where l is the wall temperature parameter, Tw is the temperature at the wall, and A
is a constant. When l = 0, the thermal boundary conditions become isothermal. We
define non-dimensional temperature profile as

θ(η) = T − T∞
Tw − T∞

. (36.7)

36.3.2 Prescribed Wall Heat Flux (PHF)

The boundary conditions are
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− k
∂T

∂y
= Tw = Dxm, at y = 0, and T → T∞ as y → ∞. (36.8)

Here,m is thewall heat flux parameter, form = 0, the stretching sheet is subjected
to uniform heat flux. Defining

T − T∞ = Exm(νc)
1
2 g(η), (36.9)

where E is another constant. Further change of dependent variable (36.9),

36.4 Dimensionless Quantities

Equations (36.1) and (36.2) admit self-similar solution of the form

u = cx f
′
(η), v = −(cν)

1
2 f (η) where η =

( c
ν

) 1
2
y. (36.10)

Equations (36.1)–(36.3) with Eqs. (36.5)–(36.7) and (36.10), we obtain following
equations.

36.5 Reduced Non-linear Ordinary Differential Equations

f ′2 − f f ′′ = f ′′′ − Mn f ′ − k1
{
2 f ′ f ′′′ − f ′′2 − f f iv

} − k2 f
′, (36.11)

θ
′′ + Pr f θ

′ + (B∗ − Prl f
′
)θ = −A∗ f

′
. (36.12)

g′′ + Pr f g′ + (B∗ − Prl f ′)g = −A∗ f ′, (36.13)

where k1 = k0c
ν

is the viscoelastic parameter, Mn = σ B2
0

ρ
the magnetic parameter,

k2 = ν

k ′ c is the porosity parameter, Pr = μcp
k is the Prandtl number and A∗ and B∗

are space and temperature dependent internal heat generation/absorption.
Corresponding boundary condition.
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36.6 Reduced Boundary Conditions

f ′(0) = 1, f (0) = R at η = 0 and f ′(∞) = 0, f ′′(∞) = 0 as η → ∞,

(36.14)
where R = ν0√

cv
is the suction parameter.

The flow behavior permits us to assume the solution of (36.11) in the form which
satisfies the basic equation (36.1) and boundary conditions (36.14) with

f (η) = A + B exp(−αη), α > 0, (36.15)

with A = R + 1
α
, and B = − 1

α
.

Here, α is the positive real root of the cubic equation

α3 + (k1 − 1)

Rk1
α2 + 1

k1
α + (1 + Mn + k2)

Rk1
= 0. (36.16)

Hence, the resultant solutions of velocity components are

u = cxexp(−αη),

ν = −(vc)
1
2 {A + Bexp(−αη)} . (36.17)

36.6.1 Prescribed Surface Temperature (PST)

Similarly boundary conditions (36.6) take the form

θ(0) = 1 at η = 0 , θ(∞) = 0 as η → ∞, (36.18)

36.6.1.1 Introducing a New Independent Variable

ξ = Pr Bexp(−αη)

α
, (36.19)

substituting above equation in (36.12) and considering the value f , we obtain,

ξθ
′′ +

(
1 − Pr A

α
− ξ

)
θ

′ − l B∗θ = A∗

Pr
. (36.20)

The corresponding boundary conditions are
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θ

(
Pr B

α

)
= 1, θ(0) = 0. (36.21)

The solution of (36.20) subjected to the boundary conditions (36.21) is

θ(η) = c1(e
−αη)p1M

[
1 + l B∗, p1 + 1, (

Pr Be−αη

α

]
+ c2

(
Pr Be−αη

α

)2

.

(36.22)
Here M denotes the Kummer’s function with

c1 =
(
1 − c2(

Pr B
α

)2
)

(
Pr B
α

)p1 M[p1 + l B∗, p1 + 1, Pr B
α

] , (36.23)

c1 = A∗

Pr [4 − 2p1 − l B∗] , (36.24)

p1 = Pr A

α
, A = R + 1

α
, B = − 1

α
. (36.25)

The non-dimensional wall temperature gradient derived from (36.11), (36.14)–
(36.15) is

θ
′
(0) = c1

{
−αp1M

[
p1 + l B∗, p1; Pr B

α

]
+

+ p1l B∗Pr B
α

M

[
p1 + l B∗ + 1, p1 + 2; Pr B

α

]}
−

−c2
Pr2B2

α
. (36.26)

36.6.2 Prescribed Heat Flux (PHF)

g′(0) = −1 at η = 0 and g(∞) = 0 as η → ∞. (36.27)

Here prime denotes derivative w.r.t η
Using transformation (36.19), Eqs. (36.13) and (36.27) take the following respec-

tive form

ξg′′ +
(
1 − Pr A

α
− ξ

)
g′ − l B∗g = A∗

Pr
, (36.28)

g′
(
Pr B

α

)
= 1

Pr B
and g(0) = 0, (36.29)
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where prime denotes derivative w.r.t. ξ . The solution of (36.28), w.r.t the boundary
conditions (36.29) is

g(η) = c3(e
−αη)p1M

[
p1 + mB∗, p1 + 1; Pr B

α
e−αη

]
+ c2

(
Pr B

α
e−αη

)2

,

(36.30)
where:

• c2 = A∗
Pr [4−2p1−l B∗] ,

• c3 = 1−2cPr B
αp1M[p1+mB∗,p1+1; Pr B

α ]− Pr B
α

p1+mB∗
p1+1 M[p1+mB∗+1,p1+2; Pr B

α ]
, and

• p1 = Pr A
α

.

36.7 Results and Discussion

A boundary layer problem for momentum and heat transfer in MHD boundary layer
viscoelastic fluid flow over a stretching surface in porous media with space and
temperature dependent internal heat source/sink is examined in this paper. Linear
stretching of the porous boundary, temperature dependent, space dependent, heat
source/sink and porosity, magnetic parameter are taken into consideration in this
study. The basic boundary layer partial differential equations, which are highly non-
linear, have been converted into a set of non-linear ordinary differential equations
by applying suitable similarity transformations and their analytical solutions are
obtained in terms of confluent hyper geometric function (Kummer’s function). Dif-
ferent analytical expressions are obtained for non-dimensional temperature profile
for two general cases of boundary conditions, namely (i) Prescribed power law sur-
face temperature (PST) and (ii) Prescribed power law heat flux (PHF).

In order to have some insight of the flow and heat transfer characteristics, results
are plotted graphically for typical choice of physical parameters. Figure 36.1a, b
are graphical representation of horizontal velocity profiles f ′(η) for different val-
ues of viscoelastic parameter k1 and porous parameter k2. Figure 36.1a provides the
information that the increase of viscoelastic parameter leads to the decrease of the
horizontal velocity profile. This is because of the fact that introduction of tensile
stress due to viscoelasticity causes transverse contraction of the boundary layer and
hence velocity decreases. The effect of porosity parameter on the horizontal velocity
profile in the boundary layer is shown in Fig. 36.1b, it is observed that the increase
of permeability parameter k2 leads to the decrease of the horizontal velocity pro-
files, which leads to the enhanced deceleration of the flow and hence, the velocity
decreases.

Figure 36.1c illustrates that the effect of magnetic parameter i.e., the introduction
of transverse magnetic field normal to the direction, has a tendency to create a drag
due to horizontal force which tends to resist the flow and, hence the horizontal
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Fig. 36.1 Velocity profiles for various values of parameters of interest

velocity boundary layer decreases. This result is even true for the presence of porous
parameter k2.

The presence of magnetic field in an electrically conducting fluid tends to produce
a body force against the flow. This type of resistive force tends to slow down the
motion of the fluid in the boundary layer which, in turn reduces the rate of heat in
the flow and appears in increasing the flow temperature.

Figure 36.1d, e depict the influence of suction/blowing parameter R on the velocity
profiles in the boundary layer. It is known that imposition of the wall suction (R > 0)
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Fig. 36.2 Temperature profiles for various values of k1

has the tendency to reduce the momentum boundary layer thickness, this causes
reduction in the velocity profiles. However, the opposite behaviour is observed by
imposition of the wall fluid blowing or injection (R < 0).

In Fig. 36.2a, b, θ(η) temperature distribution θ(η) in both PST and PHF
case respectively for different values of viscoelastic parameters k1 are plotted.
Figure 36.2a, b reveals that increase of viscoelastic parameter k1 leads to increase of
temperature profile θ(η) in the boundary layer. This is consistent with the fact that
thickening of thermal boundary layer occurs due to the increase of non-Newtonian
viscoelastic normal stress.

The effect of porosity parameter k2 on temperature profiles for PST and PHF case
is shown in Fig. 36.3a and b, respectively. It is observed that the effect of porosity
parameter k2 is to decrease the temperature profile in the boundary layer.

The effect of magnetic parameter on temperature profile for PST and PHF case in
presence of porosity parameter and heat source/sink parameter is shown in Fig. 36.4a
and b, respectively. It is observed that the effect of magnetic parameter is to increase
the temperature profile in the boundary layer. The Lorentz force has the tendency

Fig. 36.3 Temperature profiles for various values of k2
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Fig. 36.4 Temperature profiles for various values of Mn

to increase the temperature profile, also the effect on the flow and thermal fields
becomemore so as the strength of themagnetic field increases. The effect ofmagnetic
parameter is to increase the wall temperature gradient in PST and PHF case.

Figure 36.5a, b depict the influence of suction/blowing parameter R on the tem-
perature profile in the boundary layer. It is observed that imposition of the wall
suction (R > 0) have the tendency to reduce the thermal boundary layer thickness.
This causes reduction in the temperature profile. However, opposite behaviour is
observed by imposition of the wall fluid blowing or injection (R < 0) as shown in
Fig. 36.6a, b.

The influence of the presence of space dependent internal heat source (A∗ > 0)
or sink (A∗ < 0) in the boundary layer on the temperature field is presented in
Fig. 36.7a and b in PST and PHF case respectively, it is clear from this graph that
increasing the value of A∗ produces increase in temperature distributions of the fluid.
This is expected since the presence of heat source (A∗ > 0) in the boundary layer
generates energy which causes the temperature of the fluid to increase. This increase
in the temperature produces an increase in the flow field due to the buoyancy effect.

Fig. 36.5 Temperature profiles for various values of R (R > 0)
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Fig. 36.6 Temperature profiles for various values of R (R < 0)

Fig. 36.7 Temperature profiles for various values of A∗

However, as the heat source effect becomes large (A∗ = 1, A∗ = 2), a distinctive
peak in the temperature profile occurs in the fluid adjacent to the wall. This means
that the temperature of the fluid near the sheet is higher than the sheet temperature
and consequently, heat is expected to transfer to the wall. On the contrary, heat sink
(A∗ < 0) has the opposite effect, namely cooling of the fluid.

When the internal heat source is absent or present, it is seen that the effect of
the internal heat source is especially pronounced for high values of A∗. The fluid
temperature is greater when internal heat source exists. This is logical because the
increase of the heat transfer close to the plate and this will induce more flow along
the plate.

The influence of the temperature-dependent internal heat source (B∗ > 0) or
sink (B∗ < 0) in the boundary layer on the temperature field is the same as that
of space-dependent internal heat source or sink. Namely, for B∗ > 0 (heat source),
the temperature of fluid increase while they decrease for B∗ < 0 (heat sink). These
behaviours are depicted in Fig. 36.8a and b in PST and PHF case respectively.

In Fig. 36.9a and b several temperature profiles are drawn in both PST and PHF
cases respectively. The effect of Prandtl number on heat transfer may be analyzed
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Fig. 36.8 Temperature profiles for various values of B∗

Fig. 36.9 Temperature profiles for various values of Pr

from these figures. Both graphs implicate that the increase of Prandtl number results
in the decrease of temperature distribution at a particular point. This is due to the fact
that therewould be a decrease of thermal boundary layer thicknesswith the increasing
values of Prandtl number. Temperature distribution in both situations asymptotically
approaches to zero in the free stream region.

36.8 Conclusion

Amathematical model study on the influence of heat transfer inMHDboundary layer
viscoelastic fluid flowover stretching surface in porousmediawith space and temper-
ature dependent internal heat source/sink, where flow is subject to suction/blowing
through the porous boundary are taken in to consideration in this study. Analytical
solutions of the governing boundary layer problem have been obtained in terms of
confluent hyper geometric function (Kummer’s function) and its special form, dif-
ferent analytical expressions are obtained for non-dimensional temperature profile
for two general cases of boundary conditions, namely (i) Prescribed surface temper-
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ature (PST) and (ii) Prescribed wall heat flux (PHF). Explicit analytical expressions
are also obtained for dimensionless temperature gradient θ ′(0) and heat flux qw for
general cases as well as for special cases of different physical situations. The special
conclusions derived from this study can be listed as follows.

1. Explicit expressions are obtained for various heat transfer characteristics in the
form of confluent hyper geometric function (Kummer’s function), several expres-
sions are also obtained in the form of some other elementary functions as the
special cases of Kummer’s function.

2. The combined effect of increasing values of viscoelastic parameter k1 and porosity
parameter k2 is to decrease velocity of the fluid significantly in the boundary
layer region, this is because of the fact that introduction of tensile stress due
to viscoelasticity causes transverse contraction of the boundary layer and hence
velocity decreases, and increasing the values of porosity parameter which leads
to enhanced deceleration of the flow and hence, velocity decreases.

3. The effect of increasing values of magnetic parameter Mn is to decrease velocity
of the fluid, i.e., the introduction of transverse magnetic field normal to the direc-
tion have a tendency to create a drag due to horizontal force which tends to resist
the flow and, hence the horizontal velocity boundary layer decreases.

4. The effect of increasing values of suction parameter (R > 0) is to decrease the
velocity, where as it has opposite effect for R < 0.

5. The combined effect of increasing values of magnetic parameter Mn and vis-
coelastic parameter k1 is to increase temperature distribution in the flow region,
as the increasing values of magnetic parameter is to increase the temperature,
because Lorentz force has the tendency to increase the temperature profile, also
the effect on the flow and thermal fields become more so as the strength of the
magnetic field increases. An increasing values of viscoelastic parameter is to
increase temperature, this is consistent with the fact that thickening of thermal
boundary layer occurs due to the increase of non-Newtonian viscoelastic normal
stress.

6. The effect of increasing the values of porosity parameter k2 is to decrease the
temperature distribution in the flow region.

7. The effect of increasing values of suction parameter R is to decrease the tem-
perature distribution and that of blowing is to increase the same, it is known that
imposition of thewall suction (R > 0) have the tendency to reduce themomentum
boundary layer thickness. This causes reduction in the velocity profiles. However
the opposite behavior is observed by imposition of the wall fluid blowing or
injection (R < 0).

8. The combined effect of increasing values of space dependent and temperature
dependent heat source/sink parameters A∗ and B∗ respectively is to increase the
temperature distribution in the boundary layer flow region, as increase in the
values of A∗ is to increase fluid temperature is greater when internal heat source
exists. This is logical because the increase of the heat transfer close to the plate
and this will induce more flow along the plate.
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9. The effect of increasing values of Prandtl number Pr is to reduce the temperature
largely in the boundary layer flow region. This is due to the fact that there would
be a decrease of thermal boundary layer thickness with the increasing values
of Prandtl number. Temperature distribution in both situations asymptotically
approaches to zero in the free stream region.
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