
Chapter 14
Stochastic Differential Equations Driven
by Additive Volterra–Lévy
and Volterra–Gaussian Noises

Giulia Di Nunno, Yuliya Mishura, and Kostiantyn Ralchenko

Abstract We study the existence and uniqueness of solutions to stochastic differ-
ential equations with Volterra processes driven by Lévy noise. For this purpose, we
study in detail smoothness properties of these processes. Special attention is given to
two kinds of Volterra–Gaussian processes that generalize the compact interval rep-
resentation of fractional Brownian motion to stochastic equations with such process.
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14.1 Introduction

The main object that is studied in the present paper are stochastic differential equa-
tions with additive noise, admitting the form

dXt = u(Xt )dt + dYt , t ≥ 0, X |t=0 = X0 ∈ R, (14.1)

where u : R → R is a measurable function, and Y = {Yt , t ≥ 0} is a Volterra–Lévy
process. Equations of the form (14.1), with different coefficients and different noises,
were the subject of long and careful considerations. Namely, the most popular case
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is the Langevin equation, where u(x) = ax , x ∈ R, with some coefficient a �= 0,
and a Wiener process as a noise. Such process is called the Ornstein–Uhlenbeck
process, or the Vasicek process, and it serves as mathematical model in many areas
of science. Initially the Eq. (14.1) was proposed as a model for velocity of particles
in the theory of the Brownian motion in [9], then the corresponding mathematical
theory was developed in [21, 24], see, e. g. the book [22] for applications of the
Ornstein–Uhlenbeck process in physics. Since the seminal paper by Vasicek [23],
the Ornstein–Uhlenbeck process has become a very popular model in mathematical
finance, see e. g. [6, 7, 10, 11, 17–19, 25].

A Volterra–Lévy process has the form Yt = ∫ t
0 g(t, s) dZs , where g(t, s) is a

given deterministic Volterra-type kernel, and Z is a Lévy process. The conditions
on g and Z supplying the existence of Volterra–Lévy processes were studied in
[2] together with a theory of pathwise stochastic integration with respect to such
processes. Some approximations and first numerical results can be found in [1]. The
goal of the present paper is to study stochastic differential equations with additive
noise represented by a Volterra–Lévy process.

We start with investigation of continuity and Hölder properties of Volterra–
Lévy processes. In order to apply the Kolmogorov–Chentsov theorem, we establish
moment upper bounds for increments of these processes. In particular, we study in
detail the case when the kernel g satisfies certain power restrictions. Two examples
of such kernels are considered, namely, the Molchan–Golosov kernel, which arises
in the compact interval representation of fractional Brownian motion, and a sub-
fractional kernel, which corresponds to sub-fractional Brownian motion. For both
kernels, it holds that sample paths of the corresponding Volterra–Lévy processes
satisfy Hölder condition up to order H − 1

2 , where H denotes the Hurst index. How-
ever, in the particular case of Gaussian Z , one has Hölder continuity up to order H .
This agrees with the theory of fractional Brownian motion and with the paper [20],
where the authors study the case, when g(t, s) is the Molchan–Golosov kernel and
Z is a Lévy process without Gaussian component.

Special attention in the paper is given to Volterra–Gaussian processes that arise
in the case when Lévy process Z is a Brownian motion. We investigate two types of
kernels that generalize the Molchan–Golosov kernel of fractional Brownian motion.
One of these kernels corresponds to fractional Brownian motion with Hurst index
H > 1

2 . It was introduced in [12], where conditions for its existence and Hölder
continuity were investigated. Also, in [12] the inverse representation of underlying
Wiener process via Volterra–Gaussian process was studied. This study was based on
the properties of Sonine pairs. In the present paper we introduce also another type
of Volterra–Gaussian process that extends fractional Brownian motion with H < 1

2 .
We study smoothness of this process. We also derive the inverse operators for both
types of Volterra–Gaussian processes in terms of generalized fractional integrals and
derivatives for Sonine pairs.

Then we apply the results mentioned above for investigation of stochastic differ-
ential equations with Volterra–Lévy processes. We start with a deterministic analog
of the Eq. (14.1), where the stochastic term Yt is replaced by a non-random function
that is locally integrable or locally bounded. We study solvability of this equation
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under Lipschitz condition on the drift coefficient u. Then we prove that the stochastic
Eq. (14.1) with locally Lipschitz coefficient of linear growth has a unique solution
under certain conditions on the underlying Volterra process Z and power restrictions
on the kernel g(t, s).

We also study stochastic differential equations with two kinds of Volterra–
Gaussian processes. In this case we can prove solvability of the equation under
weaker assumptions on the drift coefficient. Namely, we assume sublinear growth
of this coefficient and its Hölder continuity. We generalize the results of [14], where
the noise was fractional Brownian motion, to the case of more general Volterra–
Gaussian noise. We prove the existence and uniqueness of a weak solution, the
pathwise uniqueness of two weak solutions and the existence and uniqueness of a
strong solution.

The paper is organized as follows. In Sect. 14.2 we recall the definition of a
Volterra–Lévy processes, necessary conditions for its existence, and a priory esti-
mates for its moments. Section14.3 is devoted to Hölder properties of Volterra–
Lévy processes. As auxiliary results, we establish upper bounds for the incremental
moments in general case (Subsect. 14.3.1) as well as in the case of power restrictions
on the kernel (Subsect. 14.3.2). In Subsect. 14.3.3 we apply these bounds for investi-
gation of continuity and Hölder properties of three types of Volterra–Lévy processes.
Two examples of appropriate kernels are given in Subsect. 14.3.4. In Subsect. 14.3.5
two kinds of Volterra–Gaussian processes are studied. Section14.4 is devoted to the
existence and uniqueness of solution to the Eq. (14.1). The stochastic differential
equations with Volterra–Gaussian processes are studied in Sect. 14.5. In Appendix A
we prove some auxiliary results related to fractional calculus for Sonine pairs. In the
Appendix B a deterministic analog of the Eq. (14.1) is investigated.

Throughout the paper, we shall use notation C for various constants whose value
is not important and may change from line to line and even in the same line.

14.2 Brief Description of Volterra–Lévy Processes

We start with a Lévy process Z . In order to describe it, define τ(z) :=
{
z, |z| ≤ 1,
z
|z| , |z| > 1.

Then the characteristic function of Zt can be represented in the following form (see,
e. g., [16]): E exp {iμZt } = exp {t�(μ)} , where

�(μ) = ibμ − aμ2

2
+
∫

R

(
eiμx − 1 − iμτ(x)

)
π(dx),

b ∈ R, a ≥ 0, π is a Lévy measure on R, that is a σ -finite Borel measure satisfy-
ing
∫
R

(
x2 ∧ 1

)
π(dx) < ∞, with π({0}) = 0. The triplet (a, b, π) is shortly called

the characteristic triplet of Z . Let us fix some T > 0 and introduce the following
Volterra–Lévy process
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Yt =
t∫

0

g(t, s) dZs, t ∈ [0, T ], (14.2)

where g(t, s) is a given deterministic Volterra-type kernel. The integral in (14.2) is
understood in the sense of [15] as the limit in probability of elementary integrals. Its
construction is described in [2, Thm. 2.2]. According to [2], in order to guarantee the
existence of the process Y and of its moments, we need more strict assumptions on
the here called base-process Z and the kernel g(t, s). More precisely, in what follows
we assume that the Volterra–Lévy process (14.2) has b = 0 (i. e., Z is a Lévy process
without drift), the measure π is symmetric and one of the following conditions holds:

(A1) There exists p ∈ [1, 2) such that g = g(t, ·) ∈ L p([0, t]) for any t ∈ [0, T ];
a = 0 and

∫
R

|x |p π(dx) < ∞;
(A2) There exists p ≥ 2 such that g = g(t, ·) ∈ L p([0, t]) for any t ∈ [0, T ] and∫

R
|x |p π(dx) < ∞.

Then, according to [2, Thm. 2.2], the integral
∫ t
0 g(t, s) dZs exists for any t ∈ [0, T ].

Moreover, in the case when condition (A1) holds, we have the following a priori
estimate

E

∣
∣
∣
∣
∣
∣

t∫

0

g(t, s) dZs

∣
∣
∣
∣
∣
∣

p

≤ C‖g(t, ·)‖p
L p([0,t])

∫

R

|x |pπ(dx), (14.3)

and in the case when condition (A2) holds, we have the following a priori estimate

E

∣
∣
∣
∣
∣
∣

t∫

0

g(t, s) dZs

∣
∣
∣
∣
∣
∣

p

≤ C

⎛

⎝a p/2‖g(t, ·)‖p
L2([0,t]) + ‖g(t, ·)‖p

L p([0,t])

∫

R

|x |p π(dx)

⎞

⎠ .

(14.4)

The constant C in (14.3) and (14.4) does not depend on the function g. However, it
may depend on p and T .

14.3 Moment Upper Bounds and Hölder Properties
of Volterra–Lévy Processes

In our approach, in order to consider a Volterra–Lévy process as a noise, we need in
the smoothness properties of its trajectories. So, the present section is devoted to its
Hölder properties. Obviously, these properties depend both on the properties of the
kernel g and the Lévy baseprocess Z .
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14.3.1 General Upper Bounds for the Incremental Moments

In this subsection we establish upper bounds for E |Yt − Ys |p under assumptions
(A1) and (A2).

Lemma 1 Consider 0 ≤ s ≤ t ≤ T . Let assumption (A1) hold. Then

E |Yt − Ys |p ≤ C
∫

R

|x |pπ(dx)

⎛

⎝
t∫

s

|g(t, u)|p du +
s∫

0

|g(t, u) − g(s, u)|p du

⎞

⎠ .

(14.5)
Let assumption (A2) hold. Then

E |Yt − Ys |p ≤ C
∫

R

|x |pπ(dx)

⎛

⎝
t∫

s

|g(t, u)|p du +
s∫

0

|g(t, u) − g(s, u)|p du

⎞

⎠

+ Cap/2

⎛

⎜
⎝

⎛

⎝
t∫

s

|g(t, u)|2 du

⎞

⎠

p/2

+
⎛

⎝
s∫

0

|g(t, u) − g(s, u)|2 du

⎞

⎠

p/2
⎞

⎟
⎠ .

(14.6)

Proof Note that the increment of Y is given by

Yt − Ys =
t∫

0

g(t, u)dZu −
s∫

0

g(s, u)dZu

=
t∫

s

g(t, u)dZu +
s∫

0

(g(t, u) − g(s, u))dZu .

Therefore,

E |Yt − Ys |p ≤ C

⎛

⎝E

∣
∣
∣
∣
∣
∣

t∫

s

g(t, u)dZu

∣
∣
∣
∣
∣
∣

p

+ E

∣
∣
∣
∣
∣
∣

s∫

0

(g(t, u) − g(s, u))dZu

∣
∣
∣
∣
∣
∣

p⎞

⎠ .

(14.7)
In order to conclude the proof, it suffices to apply the bounds (14.3) and (14.4) to
the integrals in the right-hand side of (14.7). �

We remark that the Hölder continuity of paths is a central property also e. g. in
the rough-paths approach to the study of stochastic (partial) differential equations.
Our results can then find application in that framework. We refer to e. g. [8] for a
study ofVolterra-driven stochastic differential equationswithmultiplicative noise via
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rough-paths. Note that, different from our work, the starting base-process is Hölder
continuous.

14.3.2 Incremental Moments and Hölder Continuity Under
Power Restrictions on the Kernel g

As one can see from the inequalities (14.5) and (14.6), the incremental moments of Y
are bounded by some integrals containing g, its powers and its increments. Now let
us consider more specific class of the kernels g. Assume that the function g satisfies
the following power restrictions with some p ≥ 1.

(B1) There exist constants α ∈ R, β > − 1
p and γ > − 1

p such that

|g(t, u)| ≤ Ctαuβ(t − u)γ for all 0 < u < t ≤ T .

(B2) There exist a constant δ > 0 and a function h(t, s, u) such that

|g(t, u) − g(s, u)| ≤ |t − s|δ h(t, s, u) for all 0 < u < s < t ≤ T,

and sup
0<s<t≤T

∫ s

0
|h(t, s, u)|p du < ∞.

As we shall see further on in the examples, these conditions on the kernel are well
motivated by the fractional and sub-fractional Brownian motions. An extension of
condition (B1) is provided in Remark 1 at the end of the next subsection.

Our goal in this and the next subsection is to obtain an inequality of the form
E |Yt − Ys |p ≤ C |t − s|c with some c > 0. In particular, if we get such an inequality
with c > 1, we will be able to apply the Kolmogorov continuity theorem and to
investigateHölder properties ofY . Taking into account Lemma1,we need to estimate
the integrals of the form

∫ t
s |g(t, u)|p du and

∫ s
0 |g(t, u) − g(s, u)|p du. Obviously,

the second integral under the assumption (B2) satisfies the inequality

s∫

0

|g(t, u) − g(s, u)|p du ≤ C |t − s|δp . (14.8)

The study of the first integral is more delicate. We start with the following auxiliary
result.
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Lemma 2 Let μ > −1 and ν > −1. Then for all 0 ≤ s < t ≤ T ,

t∫

s

uμ(t − u)ν du ≤ Ctμ(t − s)ν+1. (14.9)

The positive constant C in (14.9) may depend on μ, ν and T .

Proof Write

t∫

s

uμ(t − u)ν du =
s+t
2∫

s

uμ(t − u)ν du +
t∫

s+t
2

uμ(t − u)ν du =: I1 + I2. (14.10)

For s ≤ u ≤ t , we have (t − u)ν = (t − u)ν+1(t − u)−1 ≤ (t − s)ν+1(t − u)−1.

Therefore,

I1 ≤ (t − s)ν+1

s+t
2∫

s

uμ

t − u
du = (t − s)ν+1t−1

s+t
2∫

s

uμ(t − u + u)

t − u
du

= (t − s)ν+1t−1

s+t
2∫

s

uμ du + (t − s)ν+1t−1

s+t
2∫

s

uμ+1

t − u
du =: I11 + I12. (14.11)

The term I11 can be bounded as follows:

I11 = C(t − s)ν+1t−1

((
s + t

2

)μ+1

− sμ+1

)

≤ Ctμ(t − s)ν+1, (14.12)

since
(
s+t
2

)μ+1 − sμ+1 ≤ ( s+t
2

)μ+1 ≤ tμ+1.

In order to bound I12, we use the inequality uμ+1 ≤ ( s+t
2

)μ+1 ≤ tμ+1. We get

I12 ≤ (t − s)ν+1tμ

s+t
2∫

s

du

t − u
= (t − s)ν+1tμ

(

log(t − s) − log
t − s

2

)

= tμ(t − s)ν+1 log 2 = Ctμ(t − s)ν+1. (14.13)

Consider I2. Note that for s+t
2 < u < t ,

uμ ≤
(
s + t

2

)μ

≤
(
t

2

)μ

if μ < 0,

uμ ≤ tμ if μ ≥ 0.
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Hence, in both cases we have the bound uμ ≤ Ctμ. Therefore,

I2 ≤ Ctμ
t∫

s+t
2

(t − u)ν du = Ctμ
(

t − s + t

2

)ν+1

= Ctμ(t − s)ν+1. (14.14)

Combining (14.10)–(14.14), we get (14.9). �

Lemma 2 allows us to obtain an upper bound for the integral
∫ t
s |g(t, u)|p du.

Lemma 3 Assume that condition (B1) holds with some p ≥ 1. Then

t∫

s

|g(t, u)|p du ≤ C(t − s)κp+1, for all 0 ≤ s < t ≤ T,

where

κ = κ(α, β, γ ) =
{

α + β + γ, if α + β < 0,

γ, if α + β ≥ 0.
(14.15)

The constant C may depend on α, β, γ , p and T .

Proof According to condition (B1),
∫ t
s |g(t, u)|p du ≤ Ctαp

∫ t
s u

βp(t − u)γ p du.

Applying the upper bound (14.9), one gets
∫ t
s |g(t, u)|p du ≤ Ct (α+β)p(t − s)γ p+1.

Ifα + β < 0, then t (α+β)p ≤ (t − s)(α+β)p, andweobtain the inequality
∫ t
s |g(t, u)|p

du ≤ C(t − s)(α+β+γ )p+1. Ifα + β ≥ 0, then t (α+β)p ≤ T (α+β)p, hence,
∫ t
s |g(t, u)|p

du ≤ C(t − s)γ p+1. �

14.3.3 Application of the Upper Bounds for the Incremental
Moments to Volterra–Lévy Processes of Three Types

Now, basing on Lemma 3, we can better specify the upper bounds (14.5) and (14.6)
for the moments of increments of the Volterra–Lévy process Y satisfying (B1)–(B2).
Also, as a consequence, we shall state its Hölder properties. We consider three cases:
(1) Z is a Lévy process without Brownian part; (2) Z is a Brownian motion; (3) Z is
a Lévy process of a general form.

14.3.3.1 Lévy–Based Process Without Brownian Part

We start with the case of a Lévy process in (14.2) without Brownian part, that is,
a = 0.
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Lemma 4 Assume that p ≥ 1, a = 0,
∫
R

|x |p π(dx) < ∞, the conditions (B1) and
(B2) hold with some α ∈ R, δ > 0, β > − 1

p , γ > − 1
p and such that α + β + γ >

− 1
p . Then for all 0 ≤ s < t ≤ T , E |Yt − Ys |p ≤ C(t − s)min{κp+1,δp}, where κ is

defined by (14.15). If κ > 0 and δ > 1
p , then the trajectories of Y are a. s. Hölder

continuous up to order min
{
κ, δ − 1

p

}
.

Proof According to Lemma 1, we have

E |Yt − Ys |p ≤ C

⎛

⎝
t∫

s

|g(t, u)|p du +
s∫

0

|g(t, u) − g(s, u)|p du

⎞

⎠ .

Applying Lemma 3 and (14.8), we get

E |Yt − Ys |p ≤ C(t − s)κp+1 + C(t − s)δp

≤ CT κp+1

(
t − s

T

)min{κp+1,δp}
+ CT δp

(
t − s

T

)min{κp+1,δp}

≤ C(t − s)min{κp+1,δp}.

Hölder continuity follows from the Kolmogorov continuity theorem. �

14.3.3.2 The Brownian Case

Lemma 5 Assume that Z is a Brownian motion, the conditions (B1) and (B2) hold
with p = 2,α ∈ R,β > − 1

2 , γ > − 1
2 such thatα + β + γ > − 1

2 . Then for all p ≥ 2

and all 0 ≤ s < t ≤ T , E |Yt − Ys |p ≤ C(t − s)pmin{κ+ 1
2 ,δ}, where κ is defined by

(14.15). If κ > − 1
2 , then the trajectories of Y are a. s. Hölder continuous up to order

min
{
κ + 1

2 , δ
}
.

Proof In the Brownian case, (14.6) becomes

E |Yt − Ys |p ≤ C

⎛

⎜
⎝

⎛

⎝
t∫

s

|g(t, u)|2 du

⎞

⎠

p/2

+
⎛

⎝
s∫

0

|g(t, u) − g(s, u)|2 du

⎞

⎠

p/2
⎞

⎟
⎠ .

Then by Lemma 3 and (14.8), we get

E |Yt − Ys |p ≤ C(t − s)
p
2 (2κ+1) + C(t − s)δp ≤ C(t − s)pmin{κ+ 1

2 ,δ}.

By theKolmogorov continuity theorem, if pmin
{
κ + 1

2 , δ
}

> 1, then the trajectories
ofY are a. s. Hölder up to ordermin

{
κ + 1

2 , δ
}− 1

p . Since p can be chosen arbitrarily

large, we get Hölder continuity up to order min
{
κ + 1

2 , δ
}
, if κ > −1/2. �
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14.3.3.3 Lévy–Based Process of a General Form

Now let us consider a Lévy process Z of a general form. In this case we need to
assume that p ≥ 2 in order to guarantee the existence of Y and its moments, see [2,
Thm. 2.2]. It turns out that under this assumption we have the same upper bound for
the incremental moment as in the case a = 0.

Lemma 6 Assume that for some p ≥ 2 we have
∫
R

|x |p π(dx) < ∞ and the condi-
tions (B1) and (B2) hold with someα ∈ R,β > − 1

p , γ > − 1
p such thatα + β + γ >

− 1
p . Then for all 0 ≤ s < t ≤ T , E |Yt − Ys |p ≤ C(t − s)min{κp+1,δp}, where κ is

defined by (14.15). If κ > 0 and δ > 1
p , then the trajectories of Y are a. s. Hölder

continuous up to order min
{
κ, δ − 1

p

}
.

Proof Applying Lemma 1, Lemma 3 and (14.8), we obtain

E |Yt − Ys |p ≤ C

⎛

⎝
t∫

s

|g(t, u)|p du +
s∫

0

|g(t, u) − g(s, u)|p du

+
⎛

⎝
t∫

s

|g(t, u)|2 du

⎞

⎠

p/2

+
⎛

⎝
s∫

0

|g(t, u) − g(s, u)|2 du

⎞

⎠

p/2
⎞

⎟
⎠

≤ C(t − s)κp+1 + C(t − s)δp + C(t − s)
p
2 (κp+1)

≤ C(t − s)min{κp+1,δp, p
2 (κp+1)} = C(t − s)min{κp+1,δp}.

Hölder continuity follows from the Kolmogorov continuity theorem. �

Remark 1 The assumption (B1) can be replaced by the following more general
condition:

(B1′) There exist constants αi ∈ R, βi > − 1
p and γi > − 1

p , i = 1, 2, . . . ,m, such

that for all 0 < u < t ≤ T , |g(t, u)| ≤ C
∑m

i=1
tαi uβi (t − u)γi .

In this case the statements of Lemmas 3–6 hold true with κ = min
1≤i≤m

κi , where

κi = κ(αi , βi , γi ), i = 1, . . . ,m, are defined by (14.15). Indeed, in order to proof
Lemma 3 under the assumption (B1′), it suffices to apply the bound (x1 + · · · +
xm)p ≤ C

(
x p
1 + · · · + x p

m
)
and follow the same reasoning as in the case of the con-

dition (B1). Other lemmas are then easily deduced from Lemma 3.
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14.3.4 Examples of Volterra–Lévy Processes with Power
Restrictions on the Kernel

14.3.4.1 The Molchan–Golosov Kernel

Let us verify the assumptions (B1) and (B2) for the Molchan–Golosov kernel, which
is defined as

KH (t, s) = CHs
1
2 −H

⎛

⎝t H− 1
2 (t − s)H− 1

2 − (H − 1
2 )

t∫

s

uH− 3
2 (u − s)H− 1

2 du

⎞

⎠ ,

(14.16)

where H ∈ (0, 1), CH =
(
2H�(H+ 1

2 )�( 3
2 −H)

�(2−2H)

) 1
2
. This kernel arises in the compact

interval representation of the fractional Brownian motion as an integral with respect
to aWiener processW , see, e. g., [13, Sect. 2.8]. More precisely, the Volterra process

BH
t =

t∫

0

KH (t, s) dWs, t ≥ 0 (14.17)

is a fractional Brownian motion with the Hurst parameter H , that is a zero mean
Gaussian process with covariance function EBH

t BH
s = 1

2

(
s2H + t2H − |t − s|2H ) .

Note that the precise value ofCH is irrelevant in the context of our study, the following
results concerning Hölder continuity of Volterra processes are valid for any C > 0
instead of CH .

Hereafter we consider the Volterra process

Y H
t =

t∫

0

KH (t, s) dZs, t ∈ [0, T ], (14.18)

where Z is a Lévy base-process. We recall that if Z is without Gaussian component,
then the process (14.18) is known as fractional Lévy process by Molchan–Golosov
transformation. It was introduced and studied in [20].

Proposition 1 Let H ∈ (0, 1), ε ∈ (0, H).

1. Let 0 <
∫
R
x2 π(dx) < ∞. Then for all 0 ≤ s < t ≤ T ,

E
∣
∣Y H

t − Y H
s

∣
∣2 ≤ C(t − s)2(H−ε).

If H ∈ ( 12 , 1), then the trajectories of Y H are κ-Hölder continuous for any κ ∈
(0, H − 1

2 ).
2. Let Z be a Brownian motion. Then for all p ≥ 2 and all 0 ≤ s < t ≤ T ,
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E
∣
∣Y H

t − Y H
s

∣
∣p ≤ C(t − s)p(H−ε),

and the trajectories of Y H are κ-Hölder continuous for any κ ∈ (0, H).

Proof We prove both statements simultaneously. Without loss of generality, assume
that 0 < ε < min

{
1 − H, 1

2

}
. Indeed, if the result of the proposition holds for some

ε = ε∗ > 0, then it holds also for all ε > ε∗. We consider the cases H = 1
2 , H > 1

2
and H < 1

2 separately.
Case H = 1

2 . Note that if H = 1
2 , then KH ≡ const. Hence, for any p, (B1) and

(B2) are valid with α = β = γ = 0 and with any δ > 0. If
∫
R
x2 π(dx) < ∞, then,

by Lemma 6, E
∣
∣Y H

t − Y H
s

∣
∣2 ≤ C(t − s) for all 0 ≤ s < t ≤ T . If Z is a Brownian

motion, then by Lemma 5, E
∣
∣Y H

t − Y H
s

∣
∣p ≤ C(t − s)

p
2 for all 0 ≤ s < t ≤ T and

p ≥ 2. Hence, both statements of the proposition hold even for ε = 0 (consequently,
they hold for any ε > 0).

Case H ∈ ( 12 , 1). In this case the kernel (14.16) can be rewritten using integration
by parts in the following form:

KH (t, s) = Cs
1
2 −H

t∫

s

uH− 1
2 (u − s)H− 3

2 du. (14.19)

For 0 < s < t ≤ T , we have

|KH (t, s)| ≤ Cs
1
2 −H t H− 1

2

t∫

s

(u − s)H− 3
2 du = CtH− 1

2 s
1
2 −H (t − s)H− 1

2 .

Therefore the condition (B1) holds with α = H − 1
2 , β = 1

2 − H , γ = H − 1
2 .

In order to verify the condition (B2),weneed to estimate thedifference |KH (t, u) −
KH (s, u)|. We have for 0 < u < s < t ≤ T ,

|KH (t, u) − KH (s, u)| = Cu
1
2 −H

t∫

s

zH− 1
2 (z − u)H− 3

2 dz

≤ Cu
1
2 −H

t∫

s

(z − u)2H−2 dz + C

t∫

s

(z − u)H− 3
2 dz

(14.20)

(herewe have used the inequality zH− 1
2 ≤ (z − u)H− 1

2 + uH− 1
2 ). Let ε ∈ (0, 1 − H).

Then the integrals in the right-hand side of (14.20) can be bounded as follows:
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t∫

s

(z − u)2H−2 dz ≤ (s − u)H+ε−1

t∫

s

(z − s)H−ε−1 dz

= C(s − u)H+ε−1(t − s)H−ε,

t∫

s

(z − u)H− 3
2 dz ≤ (s − u)ε−

1
2

t∫

s

(z − s)H−ε−1 dz = C(s − u)ε−
1
2 (t − s)H−ε.

Hence,
|KH (t, u) − KH (s, u)| ≤ (t − s)H−εh(s, u),

where
h(s, u) = C

(
u

1
2 −H (s − u)H+ε−1 + (s − u)ε−

1
2

)
.

If

p <
1

H − 1
2

, p <
1

1 − H − ε
, and p ≤ 1

1
2 − ε

, (14.21)

then

s∫

0

|h(s, u)|p du ≤ C

s∫

0

(
u( 1

2 −H)p(s − u)(H+ε−1)p + (s − u)(ε−
1
2 )p
)
du

= Cs(ε− 1
2 )p+1 ≤ CT (ε− 1

2 )p+1 < ∞.

Thus, the condition (B2) holds with δ = H − ε for all p satisfying (14.21) (in par-
ticular, for p = 2).

According to Lemma 6, if 0 <
∫
R
x2 π(dx) < ∞, then for all 0 ≤ s < t ≤ T ,

E
∣
∣Y H

t − Y H
s

∣
∣2 ≤ C(t − s)2(H−ε),

and the trajectories of Y H are κ-Hölder continuous for any κ ∈ (0, H − 1
2 ).

If Z is a Brownianmotion, then, by Lemma 5, for all p ≥ 2 and all 0 ≤ s < t ≤ T ,

E
∣
∣Y H

t − Y H
s

∣
∣p ≤ C(t − s)p(H−ε),

and the trajectories of Y H are κ-Hölder continuous for any κ ∈ (0, H).
Case H ∈ (0, 1

2 ). Denote

K (1)
H (t, s) = t H− 1

2 s
1
2 −H (t − s)H− 1

2 , K (2)
H (t, s) = s

1
2 −H

t∫

s

uH− 3
2 (u − s)H− 1

2 du.
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Then (14.16) implies that

|KH (t, s)| ≤ C
(
K (1)

H (t, s) + K (2)
H (t, s)

)
.

According to Remark 1, we can treat K (1)
H (t, s) and K (2)

H (t, s) separately. Evidently,
the kernel K (1)

H (t, s) satisfies (B1) with α1 = H − 1
2 , β1 = 1

2 − H , γ1 = H − 1
2 .

Then κ1 = γ1 = H − 1
2 , see (14.15).

In order to bound K (2)
H (t, s), we make a substitution z = u−s

s in the integral. We
get

K (2)
H (t, s) = sH− 1

2

t−s
s∫

0

zH− 1
2

(1 + z)
3
2 −H

dz ≤ sH− 1
2

∞∫

0

zH− 1
2

(1 + z)
3
2 −H

dz

= B
(
H + 1

2 , 1 − 2H
)
sH− 1

2 .

Therefore, K (2)
H (t, s) satisfies (B1) with α2 = 0, β2 = H − 1

2 , γ2 = 0. Consequently,
κ2 = α2 + β2 + γ2 = H − 1

2 = κ1. Thus, KH (t, s) satisfies (B1′), and the corre-
sponding value of κ equals H − 1

2 .
Now let us verify the assumption (B2). Let 0 < u < s < t ≤ T . We have

|KH (t, u) − KH (s, u)| ≤ C
∣
∣
∣K (1)

H (t, u) − K (1)
H (s, u)

∣
∣
∣

+ C
∣
∣
∣K (2)

H (t, u) − K (2)
H (s, u)

∣
∣
∣ . (14.22)

The first term in the right-hand side can be decomposed as follows:

∣
∣
∣K (1)

H (t, u) − K (1)
H (s, u)

∣
∣
∣ =

∣
∣
∣t H− 1

2 u
1
2 −H (t − u)H− 1

2 − sH− 1
2 u

1
2 −H (s − u)H− 1

2

∣
∣
∣

≤ u
1
2 −H (t − u)H− 1

2

∣
∣
∣t H− 1

2 − sH− 1
2

∣
∣
∣+ u

1
2 −HsH− 1

2

∣
∣
∣(t − u)H− 1

2 − (s − u)H− 1
2

∣
∣
∣

=: K (1,1)
H (t, s, u) + K (1,2)

H (t, s, u). (14.23)

Let ε ∈ (0, 1
2 ). For K

(1,1)
H (t, s, u) we have
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K (1,1)
H (t, s, u) = Cu

1
2 −H (t − u)H− 1

2

t∫

s

zH− 3
2 dz

≤ Cu
1
2 −H (t − s)H− 1

2 sH−1+ε

t∫

s

z− 1
2 −ε dz

= Cu
1
2 −H (t − s)H− 1

2 sH−1+ε
(
t
1
2 −ε − s

1
2 −ε
)

≤ Cu
1
2 −HsH−1+ε(t − s)H−ε. (14.24)

Similarly,

K (1,2)
H (t, s, u) = Cu

1
2 −HsH− 1

2

t∫

s

(z − u)H− 3
2 dz

≤ Cu
1
2 −HsH− 1

2 (s − u)ε−
1
2

t∫

s

(z − s)H−1−ε dz,

where we have used the inequality

(z − u)H− 3
2 = (z − u)ε−

1
2 (z − u)H−1−ε ≤ (s − u)ε−

1
2 (z − s)H−1−ε.

Therefore,
K (1,2)

H (t, s, u) ≤ Cu
1
2 −HsH− 1

2 (s − u)ε−
1
2 (t − s)H−ε. (14.25)

Let us consider
∣
∣
∣K (2)

H (t, u) − K (2)
H (s, u)

∣
∣
∣. We have

∣
∣
∣K (2)

H (t, u) − K (2)
H (s, u)

∣
∣
∣ = u

1
2 −H

t∫

s

zH− 3
2 (z − u)H− 1

2 du.

Using the bounds (z − u)H− 1
2 ≤ (s − u)H− 1

2 and zH− 3
2 = zε− 1

2 zH−1−ε ≤ sε− 1
2 zH−1−ε, we

obtain

∣
∣
∣K (2)

H (t, u) − K (2)
H (s, u)

∣
∣
∣ ≤ u

1
2 −Hsε− 1

2 (s − u)H− 1
2

t∫

s

zH−1−ε du

= Cu
1
2 −Hsε− 1

2 (s − u)H− 1
2
(
t H−ε − sH−ε

)

≤ Cu
1
2 −Hsε− 1

2 (s − u)H− 1
2 (t − s)H−ε. (14.26)
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Combining (14.22)–(14.26), we get

|KH (t, u) − KH (s, u)| ≤ (t − s)H−εh(s, u),

where

h(s, u) = Cu
1
2 −H

(
sH−1+ε + sH− 1

2 (s − u)ε−
1
2 + sε− 1

2 (s − u)H− 1
2

)
.

It is straightforward to check that if p < 1
1
2 −ε

and p < 1
1
2 −H

, then

s∫

0

|h(s, u)|p du ≤ Cs1−( 1
2 −ε)p ≤ CT (ε− 1

2 )p+1 < ∞.

This means, in particular, that the condition (B2) is satisfied with δ = H − ε and
p = 2.

According to Lemma 6, if
∫
R
x2 π(dx) < ∞, then for all 0 ≤ s < t ≤ T ,

E
∣
∣Y H

t − Y H
s

∣
∣2 ≤ C(t − s)2(H−ε).

If Z is a Brownianmotion, then, by Lemma 5, for all p ≥ 2 and all 0 ≤ s < t ≤ T ,

E
∣
∣Y H

t − Y H
s

∣
∣p ≤ C(t − s)p(H−ε),

and the trajectories of Y H are κ-Hölder continuous for any κ ∈ (0, H). �

Remark 2 If H < 1
2 and Z is a non-Gaussian Lévy process, then the Kolmogorov–

Chentsov theorem does not guarantee continuity of Y H , since 2(H − ε) < 1. More-
over, if Z is a Lévy process without Gaussian component, then according to [20,
Prop. 3.7], Y H has discontinuous sample paths with positive probability.

14.3.4.2 The Sub-fractional Kernel

Let us consider another example for a kernel satisfying (B1)–(B2), namely

LH (t, s) = Cs
3
2 −H

⎛

⎝t−1
(
t2 − s2

)H− 1
2 +

t∫

s

z−2
(
z2 − s2

)H− 1
2 dz

⎞

⎠ , (14.27)

where H ∈ (0, 1), C > 0. This kernel arises in the compact interval representation
of the sub-fractional Brownian motion [13, Sect. 2.8] (see also [4]).

Let us consider the Volterra process UH
t = ∫ t

0 LH (t, s) dZs, t ∈ [0, T ]. It turns
out that its properties are similar to those of the process Y H in (14.18).
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Proposition 2 Let H ∈ (0, 1), ε ∈ (0, H).

1. Let 0 <
∫
R
x2 π(dx) < ∞. Then, for all 0 ≤ s < t ≤ T ,

E
∣
∣UH

t −UH
s

∣
∣2 ≤ C(t − s)2(H−ε).

If H ∈ ( 12 , 1), then the trajectories of U H are κ-Hölder continuous for any κ ∈
(0, H − 1

2 ).
2. Let Z be a Brownian motion. Then for all p ≥ 2 and all 0 ≤ s < t ≤ T ,

E
∣
∣UH

t −UH
s

∣
∣p ≤ C(t − s)p(H−ε),

and the trajectories of U H are κ-Hölder continuous for any κ ∈ (0, H).

Proof Case H = 1
2 . Observe that LH ≡ const in this case, and the statement holds,

see the proof of Proposition 1.
Case H ∈ ( 12 , 1). It is not hard to see that (14.27) can be written in the following

form: LH (t, s) = Cs
3
2 −H

∫ t
s

(
z2 − s2

)H− 3
2 dz. Then,

LH (t, s) = Cs
3
2 −H

t∫

s

(z − s)H− 3
2 (z + s)H− 3

2 dz ≤ C

t∫

s

(z − s)H− 3
2 dz,

because (z + s)H− 3
2 ≤ sH− 3

2 . Therefore, LH (t, s) ≤ C(t − s)H− 1
2 , and (B1) holds

with α = β = 0 and γ = H − 1
2 .

Let us verify (B2). For 0 < u < s < t ≤ T we have

|LH (t, u) − LH (s, u)| = Cu
3
2 −H

t∫

s

(
z2 − u2

)H− 3
2 dz

= Cu
3
2 −H

t∫

s

(z − u)H− 3
2 (z + u)H− 3

2 dz.

Using the bound (z + u)H− 3
2 = (z + u)−1(z + u)H− 1

2 ≤ u−1(2z)H− 1
2 , we get

|LH (t, u) − LH (s, u)| ≤ Cu
1
2−H

t∫

s

(z − u)H− 3
2 zH− 1

2 dz = C |KH (t, u) − KH (s, u)| ,

see (14.20). Thus, the condition (B2) holds with δ = H − ε for all p satisfying
(14.21) (in particular, for p = 2), see the proof of Proposition 1. Similarly to the
case of the Molchan–Golosov kernel, we can conclude that the proposition holds in
the case H > 1

2 .
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Case H ∈ (0, 1
2 ). It follows from (14.27) that |LH (t, s)| ≤ C

(
L(1)
H (t, s) + L(2)

H (t, s)
)

,

with L(1)
H (t, s) = s

3
2 −H t−1

(
t2 − s2

)H− 1
2 , L(2)

H (t, s) = s
3
2 −H

∫ t
s z

−2
(
z2 − s2

)H− 1
2 dz.

Applying the estimate

(
t2 − s2

)H− 1
2 = (t − s)H− 1

2 (t + s)H− 1
2 = (t − s)H− 1

2 (t + s)H+ 1
2 (t + s)−1

≤ (t − s)H− 1
2 (2t)H+ 1

2 s−1 = CtH+ 1
2 s−1(t − s)H− 1

2 , (14.28)

we obtain
L(1)
H (t, s) ≤ Cs

1
2 −H t H− 1

2 (t − s)H− 1
2 = CK (1)

H (t, s). (14.29)

For the term L(2)
H (t, s) we also use (14.28) and arrive at

L(2)
H (t, s) ≤ Cs

1
2 −H

t∫

s

zH− 3
2 (z − s)H− 1

2 dz = CK (2)
H (t, s). (14.30)

From the bounds (14.29) and (14.30) we deduce that the condition (B1′) is satisfied
with the same constants αi , βi , γi , i = 1, 2, as in the case of the kernel KH (t, s), see
the proof of Proposition 1.

Now we consider the difference

|LH (t, u) − LH (s, u)| ≤ C
∣
∣
∣L(1)

H (t, u) − L(1)
H (s, u)

∣
∣
∣+ C

∣
∣
∣L(2)

H (t, u) − L(2)
H (s, u)

∣
∣
∣ ,

where 0 < u < s < t ≤ T . For the first term in the right-hand side we have

∣
∣
∣L(1)

H (t, u) − L(1)
H (s, u)

∣
∣
∣ = u

3
2 −H

∣
∣
∣t−1

(
t2 − u2

)H− 1
2 − s−1

(
s2 − u2

)H− 1
2

∣
∣
∣

≤ u
3
2 −H

(
t2 − u2

)H− 1
2
∣
∣t−1 − s−1

∣
∣+ u

3
2 −Hs−1

∣
∣
∣
(
t2 − u2

)H− 1
2 − (s2 − u2

)H− 1
2

∣
∣
∣

=: L(1,1)
H (t, s, u) + L(1,2)

H (t, s, u).

Consider L(1,1)
H (t, s, u) = Cu

3
2 −H (t − u)H− 1

2 (t + u)H− 1
2
∫ t
s z

−2 dz. Since

(t + u)H− 1
2 ≤ uH− 1

2 , z−2 = zH− 3
2 z−H− 1

2 ≤ zH− 3
2 u−H− 1

2

we see that

L(1,1)
H (t, s, u) ≤ Cu

1
2 −H (t − u)H− 1

2

t∫

s

zH− 3
2 dz ≤ CK (1,1)

H (t, s, u).

by (14.24). The term L(1,2)
H (t, s, u) can be rewritten as follows:
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L(1,2)
H (t, s, u) = Cu

3
2 −Hs−1

t2∫

s2

(
z − u2

)H− 3
2 dz

= Cu
3
2 −Hs−1

t∫

s

(
x2 − u2

)H− 3
2 x dx

= Cu
3
2 −Hs−1

t∫

s

(x − u)H− 1
2 (x + u)H− 3

2 x dx .

Using the bound

(x + u)H− 3
2 x = (x + u)H− 3

2 xsH− 1
2 s

1
2 −H

≤ (x + u)H− 3
2 (x + u)sH− 1

2 (x + u)
1
2 −H = sH− 1

2

we obtain

L(1,2)
H (t, s, u) ≤ Cu

3
2 −HsH− 3

2

t∫

s

(x − u)H− 1
2 dx

= C
u

s
K (1,2)

H (t, s, u) ≤ CK (1,2)
H (t, s, u).

Finally, applying the inequality (14.28), we get

∣
∣
∣L(2)

H (t, u) − L(2)
H (s, u)

∣
∣
∣ = u

3
2 −H

t∫

s

z−2
(
z2 − u2

)H− 1
2 dz

≤ Cu
1
2 −H

t∫

s

zH− 3
2 (z − u)H− 1

2 dz = C
∣
∣
∣K (2)

H (t, u) − K (2)
H (s, u)

∣
∣
∣ .

Thus, we have established that

|LH (t, u) − LH (s, u)| ≤ CK (1,1)
H (t, s, u) + CK (1,2)

H (t, s, u)

+ C
∣
∣
∣K (2)

H (t, u) − K (2)
H (s, u)

∣
∣
∣ .

The proof is concluded by applying the bounds and the arguments from the proof of
Proposition 1. �
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14.3.5 Sonine Pairs and Two Kinds of Volterra–Gaussian
Processes

Hereafter we discuss some family of kernels providing in turn Volterra–Gaussian
processes with good paths regularity. The characterization of the kernels is based
on the so-called Sonine pairs. As a motivation, consider the compact interval rep-
resentation (14.17) of the fractional Brownian motion, where the kernel is given by
(14.16). We shall consider (14.16) in the two cases H ∈ ( 12 , 1) and H ∈ (0, 1

2 ). This
will lead to different kind of considerations on the family of kernels.
(a) Let us consider first H ∈ ( 12 , 1). In this case, the kernel KH can be simplified to

KH (t, s) = (H − 1
2

)
CHs

1
2 −H

t∫

s

uH− 1
2 (u − s)H− 3

2 du. (14.31)

This leads us to consider the following Gaussian process

Yt =
t∫

0

K (t, s) dWs, t ∈ [0, T ], (14.32)

whereW = {Wt , t ∈ [0, T ]} is a Wiener process, and the Volterra kernel K (t, s) has
the following form

K (t, s) = a(s)

t∫

s

b(u)c(u − s) du. (14.33)

The functions a, b, c : [0, T ] → R are measurable and satisfy the following assump-
tions

(C1) Functions a ∈ L p([0, T ]), b ∈ Lq([0, T ]), and c ∈ Lr ([0, T ]) for p ∈ [2,∞],
q ∈ [1,∞], r ∈ [1,∞] such that 1/p + 1/q + 1/r ≤ 3/2.

(C2) Functions a, b are positive a. e. on [0, T ].
(C3) Function c creates a Sonine pair with some h ∈ L1([0, T ]).
Recall the definition of Sonine pairs as given in [12].

Definition 1 The function c creates a Sonine pair on the interval [0, T ] with some
function h ∈ L1([0, T ]) if, for any t ∈ [0, T ],

t∫

0

c(t − s)h(s) ds = 1.

It was established in [12] that under the assumption (C1),
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sup
t∈[0,T ]

‖K (t, ·)‖L2([0,t]) < ∞.

This means that for any Wiener process W = {Wt , t ∈ [0, T ]}, the process

Yt =
t∫

0

K (t, s) dWs, t ∈ [0, T ],

is well defined, see [12, Thm. 1].

Remark 3 If H ∈ ( 12 , 1), a(s) = Cs
1
2 −H , b(s) = sH− 1

2 , c(s) = sH− 3
2 , then K (t, s)

is theMolchan–Golosov kernel (14.19), henceY is a fractionalBrownianmotionwith
the Hurst index H . Moreover, in this case the assumptions (C1)–(C3) are satisfied,
see [12]. Therefore, the kernel K is an analog of the kernel KH with H > 1

2 . In this

case h(s) = s
1
2 −H . Other examples of Sonine pairs (c, h) are given in [12].

Let us consider the operator K associated with the kernel K (t, s) in (14.33):

K f (t) =
t∫

0

K (t, s) f (s) ds =
t∫

0

a(s)

t∫

s

b(u)c(u − s) du f (s) ds. (14.34)

In order to find an inverse operator toK , let us apply the elements of “fractional”
calculus related to Sonine pair (c, h). More precisely, we use the notions similar to
notions of the fractional integral and the fractional derivative, as given in Definition 3
from Appendix A, see also [12].

In terms of the fractional integral I c0+ from Definition 3, the operator K can be
rewritten as follows:

K f (t) =
t∫

0

b(u)

s∫

0

a(s)c(u − s) f (s) ds du =
t∫

0

b(u)I c0+(a f )(u) du. (14.35)

Lemma 7 Consider the equation

K f (t) =
t∫

0

a(s)

t∫

s

b(u)c(u − s) du f (s) ds =
t∫

0

u(z) dz, t ∈ [0, T ].

Then its solution has a form

f (t) = a−1(t)Dh
0+(ub−1)(t), (14.36)

under the assumption that the right-hand side of (14.36) is well-defined and
Dh

0+(ub−1) ∈ L1([0, T ]). Here Dh
0+ stands for fractional derivative, seeDefinition 3.
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Proof According to (14.35), b(t)I c0+(a f )(t) = u(t) a.e. or

I c0+(a f )(t) = b−1(t)u(t). (14.37)

Assume that a f ∈ L1([0, T ]) and apply Lemma 10, item (i) to (14.37). As a result,
we arrive to a f (t) = Dh

0+(b−1u)(t), and the proof follows. �

As already mentioned, condition (C1) is sufficient for the existence of process
Y . However, in order to guarantee its Hölder continuity, a stronger assumption is
required. The following proposition summarizes the results in Lemma 1 and Theo-
rem 3 of [12].

Proposition 3 1. Let the coefficients a, b, c satisfy the assumption

(C4) a ∈ L p([0, T ]), b ∈ Lq([0, T ]), c ∈ Lr ([0, T ]), where p ≥ 2, q, r ≥ 1, 1
p +

1
r ≤ 1

2 , and
1
p + 1

q + 1
r ≤ 1 + ε for some ε ∈ (0, 1/2).

Then the stochastic process Y has a modification satisfying Hölder condition
up to order ν = 3

2 − 1
p − 1

q − 1
r > 1/2 − ε.

2. Let the coefficients a, b, c satisfy the assumption

(C5) for any t1 ≥ 0, t2 ≥ 0, t1 + t2 < T ,

a ∈ L p([0, T ]) ∩ L p1([t1, T ]), where 2 ≤ p ≤ p1,
b ∈ Lq([0, T ]) ∩ Lq1([t1 + t2, T ]), where 1 < q ≤ q1,

c ∈ Lr ([0, T ]) ∩ Lr1([t2, T ]), where 1 ≤ r ≤ r1,

1
p + 1

q + 1
r ≤ 3

2 , and
1
q1

+ max
(
1
2 ,

1
p + 1

r1
, 1
p1

+ 1
r

)
< 1.

Then the process Y on any interval [t1 + t2, T ] has a modification that satisfies

Hölder condition up to order μ = 3
2 − 1

q1
− max

(
1
2 ,

1
p + 1

r1
, 1
p1

+ 1
r

)
> 1/2.

In [12] details about the value of these conditions for fractional Brownian motion
are given. Briefly, condition (C4) supplies its Hölder property up to order 1/2, and
condition (C5) supplies Hölder property up to order H on any interval separated
from zero.
(b) In the present paper, we consider the kernel (14.16) with Hurst index H ∈
(0, 1/2). Then we introduce its generalization in the form

K̂ (t, s) = â(s)

⎡

⎣b̂(t)ĉ(t − s) −
t∫

s

b̂′(u)ĉ(u − s) du

⎤

⎦ , (14.38)

where â, b̂, ĉ : [0, T ] → R are measurable functions. In what follows, we assume
that the following conditions hold.
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(Ĉ1) The function â is nondecreasing, b̂ is absolutely continuous, âb̂ is bounded,
ĉ ∈ L2([0, T ]), and

A(T ) =
T∫

0

T∫

0

∣
∣
∣b̂′(u)

∣
∣
∣
∣
∣
∣b̂′(z)

∣
∣
∣

u∧z∫

0

â2(s)
∣
∣ĉ(u − s)

∣
∣
∣
∣ĉ(z − s)

∣
∣ ds du dz < ∞.

(Ĉ2) Functions â, b̂ are positive a. e. on [0, T ].
(Ĉ3) Function ĉ creates a Sonine pair with some ĥ ∈ L1([0, T ]).
Remark 4 Sufficient condition for (Ĉ1) is

(Ĉ1′)
T∫

0

∣
∣
∣b̂′(u)

∣
∣
∣

⎛

⎝
u∫

0

â2(z) ĉ2(u − z) dz

⎞

⎠

1
2

du < ∞.

Indeed, under (Ĉ1′)

T∫

0

T∫

0

∣
∣
∣b̂′(u)

∣
∣
∣
∣
∣
∣b̂′(z)

∣
∣
∣

u∧z∫

0

â2(s)
∣
∣ĉ(u − s)

∣
∣
∣
∣ĉ(z − s)

∣
∣ ds du dz

≤
T∫

0

T∫

0

∣
∣
∣b̂′(u)

∣
∣
∣
∣
∣
∣b̂′(z)

∣
∣
∣

⎛

⎝
u∧z∫

0

â2(s)
∣
∣ĉ(u − s)

∣
∣2 ds

⎞

⎠

1
2

×
⎛

⎝
u∧z∫

0

â2(s)
∣
∣ĉ(z − s)

∣
∣2 ds

⎞

⎠

1
2

du dz

≤
⎛

⎜
⎝

T∫

0

∣
∣
∣b̂′(u)

∣
∣
∣

⎛

⎝
u∫

0

â2(s)
∣
∣ĉ(u − s)

∣
∣2 ds

⎞

⎠

1
2

du

⎞

⎟
⎠

2

< ∞.

Remark 5 We observe that in the case of fractional Brownian motion with H <

1/2 it holds that â(s) = Cs
1
2 −H , b̂(s) = ĉ(s) = sH− 1

2 and ĥ(s) = s− 1
2 −H , so, these

functions indeed satisfy conditions (Ĉ1)–(Ĉ3). Indeed, from the remark above we
can see that

T∫

0

∣
∣
∣b̂′(u)

∣
∣
∣

⎛

⎝
u∫

0

â2(s)
∣
∣ĉ(u − s)

∣
∣2 ds

⎞

⎠

1
2

du

= C
(
1
2 − H

)
T∫

0

uH− 3
2

⎛

⎝
u∫

0

s1−2H (u − s)2H−1 ds

⎞

⎠

1
2

du
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= C
(
1
2 − H

)
T∫

0

uH−1 du < ∞.

Lemma 8 Under assumption (Ĉ1), supt∈[0,T ] ‖K̂ (t, ·)‖L2([0,t]) < ∞ holds, and for

anyWiener processW = {Wt , t ∈ [0, T ]}aprocess Ŷt = ∫ t
0 K̂ (t, s) dWs, t ∈ [0, T ],

is well defined.

Proof Obviously,

‖K̂ (t, ·)‖2L2([0,t]) ≤ Cb̂2(t)

t∫

0

â2(s)ĉ2(t − s) ds

+ C

t∫

0

â2(s)

⎛

⎝
t∫

s

b̂(u)ĉ(u − s) du

⎞

⎠

2

ds.

If âb̂ is bounded, â is nondecreasing, and ĉ ∈ L2([0, T ]), then

b̂2(t)

t∫

0

â2(s)ĉ2(t − s) ds ≤ b̂2(t)â2(t)

t∫

0

ĉ2(t − s) ds

≤ (âb̂)2(t)‖ĉ‖2L2([0,T ]) < ∞.

Furthermore,

t∫

0

â2(s)

⎛

⎝
t∫

s

b̂(u)ĉ(u − s) du

⎞

⎠

2

ds

≤
t∫

0

â2(s)

t∫

s

b̂(u)
∣
∣ĉ(u − s)

∣
∣ du

t∫

s

b̂(v)
∣
∣ĉ(v − s)

∣
∣ dv ds

=
t∫

0

t∫

0

b̂(u)b̂(v)

u∧v∫

0

â2(s)
∣
∣ĉ(u − s)

∣
∣
∣
∣ĉ(v − s)

∣
∣ ds du dv ≤ A(T ) < ∞,

and the proof follows. �

Let us now consider the operator K̂ associated with the kernel K̂ (t, s) in (14.38)
(similarly to the operator K from (14.34) associated with K (t, s)). In this case K̂
has the form
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K̂ f (t) =
t∫

0

K̂ (t, s) f (s) ds

= b̂(t)I c0+(â f )(t) −
t∫

0

(â f )(s)

t∫

s

b̂′(u)ĉ(u − s) du ds, f ∈ L2([0, T ]),

and under the assumptions (Ĉ1)–(Ĉ3) we can apply the Fubini theorem and get

K̂ f (t) = b̂(t)I c0+(â f )(t) −
t∫

0

b̂′(u)

u∫

0

ĉ(u − s)(â f )(s) ds du

=
t∫

0

b̂(u)
d

du

u∫

0

ĉ(u − z)(â f )(z) dz du =
t∫

0

b̂(u)Dĉ
0+(â f )(u) du.

Consider the following Gaussian process

Ŷt =
t∫

0

K̂ (t, s) dWs, t ∈ [0, T ], (14.39)

where W = {Wt , t ∈ [0, T ]} is a Wiener process. Under assumptions (Ĉ1)–(Ĉ3) it
is well defined on [0, T ]. Taking Lemma 10 fromAppendix A into account, it is easy
to establish, similarly to Lemma 7, the following result.

Lemma 9 Consider the equation K̂ f (t) = ∫ t
0 u(z) dz, z ∈ [0, T ]. Then its solu-

tion has a form f (t) = â−1 I h0+
(
b̂−1u

)
(t).

Furthermore, we prove the following result on the Hölder continuity of paths.

Theorem 1 Let the conditions (Ĉ1)–(Ĉ3) hold, together with the following assump-
tions:

1.
∣
∣
∣â(t)b̂′(t)

∣
∣
∣ ≤ Ct−1, t ∈ [0, T ];

2. there exists γ ∈ (0, 2) such that

t∫

0

ĉ2(s) ds ≤ Ctγ , t ∈ [0, T ],

T−t∫

0

(
ĉ(t + s) − ĉ(s)

)2
ds ≤ Ctγ , t ∈ [0, T ].
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Then the trajectories of the process Ŷ satisfy δ-Hölder condition a. s. for any δ ∈
(0, γ /2).

Remark 6 In the case when â(s) = Cs
1
2 −H , b̂(s) = ĉ(s) = sH− 1

2 we have that
â(s)b̂′(s) = Cs−1,

∫ t
0 ĉ

2(s) ds = Ct2H ,

T−t∫

0

(
ĉ(t + s) − ĉ(s)

)2
ds =

T−t∫

0

(
(t + s)H− 1

2 − sH− 1
2

)2
ds

= t2H

T
t −1∫

0

(
(1 + z)H− 1

2 − zH− 1
2

)2
dz < t2H

∞∫

0

(
(1 + z)H− 1

2 − zH− 1
2

)2
dz

≤ Ct2H ,

since (1 + z)H− 1
2 − zH− 1

2 ∼ zH− 3
2 , z → ∞, and so

∫∞
0

(
(1 + z)H− 1

2 − zH− 1
2

)2
dz ≤

C . Therefore, in this case we can put γ = 2H , and (Ĉ4)–(Ĉ5) hold.

Proof For t1 < t2,

E
(
Ŷt2 − Ŷt1

)2 = E

⎛

⎝
t1∫

0

(
K̂ (t2, s) − K̂ (t1, s)

)
dWs +

t2∫

t1

K̂ (t2, s) dWs

⎞

⎠

2

=
t1∫

0

(
K̂ (t2, s) − K̂ (t1, s)

)2
ds +

t2∫

t1

K̂ 2(t2, s) ds

≤ 2

⎛

⎝
t1∫

0

â2(s)
(
b̂(t2)ĉ(t2 − s) − b̂(t1)ĉ(t1 − s)

)2
ds

+b̂2(t2)

t2∫

t1

â2(s)ĉ2(t2 − s) ds +
t1∫

0

â2(s)

⎛

⎝
t2∫

t1

b̂′(u)ĉ(u − s) du

⎞

⎠

2

ds

+
t2∫

t1

â2(s)

⎛

⎝
t2∫

s

b̂′(u)ĉ(u − s) du

⎞

⎠

2

ds

⎞

⎟
⎠ =: 2(I1 + I2 + I3 + I4).

Let us show that each term in the right-hand side is bounded by C(t2 − t1)γ . We
make the analysis term by term.
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1. The first term can be rewritten as follows:

I1 =
t1∫

0

â2(s)
(
b̂(t2)ĉ(t2 − s) − b̂(t1)ĉ(t1 − s)

)2
ds

≤ 2b̂2(t2)

t1∫

0

â2(s)
(
ĉ(t2 − s) − ĉ(t1 − s)

)2
ds

+ 2
(
b̂(t2) − b̂(t1)

)2
t1∫

0

â2(s)ĉ2(t1 − s) ds =: J1 + J2. (14.40)

The first term in the right-hand side of (14.40) is bounded as follows:

b̂2(t2)

t1∫

0

â2(s)
(
ĉ(t2 − s) − ĉ(t1 − s)

)2
ds

≤ b̂2(t2)â
2(t2)

t1∫

0

(
ĉ(t2 − s) − ĉ(t1 − s)

)2
ds

≤ C

t1∫

0

(
ĉ(t2 − t1 + z) − ĉ(z)

)2
dz ≤ C(t2 − t1)

γ ,

and the second one can be bounded as follows:

(
b̂(t2) − b̂(t1)

)2
t1∫

0

â2(s)ĉ2(t1 − s) ds =
t1∫

0

â2(s)ĉ2(t1 − s)

⎛

⎝
t2∫

t1

b̂′(v) dv

⎞

⎠

2

ds

≤
t1∫

0

ĉ2(t1 − s)

⎛

⎝
t2∫

t1

∣
∣
∣â(v)b̂′(v)

∣
∣
∣ dv

⎞

⎠

2

ds ≤ Ctγ1

⎛

⎝
t2∫

t1

v−1 dv

⎞

⎠

2

= C

⎛

⎝
t2∫

t1

t
γ

2
1 v−1 dv

⎞

⎠

2

≤ C

⎛

⎝
t2∫

t1

v
γ

2 −1 dv

⎞

⎠

2

≤ C
(
t

γ

2
2 − t

γ

2
1

)2 ≤ C (t2 − t1)
γ .

Here we have used the monotonicity of â and then the conditions (Ĉ4) and (Ĉ5).
2. The second term can be bounded with the help of conditions (Ĉ1) and (Ĉ5):
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I2 = b̂2(t2)

t2∫

t1

â2(s)ĉ2(t2 − s) ds ≤ â2(t2)b̂
2(t2)

t2∫

t1

ĉ2(t2 − s) ds

≤ C

t2−t1∫

0

ĉ2(z) dz ≤ C (t2 − t1)
γ .

3. By Fubini’s theorem and monotonicity of â, the third term can be estimated as
follows:

I3 =
t1∫

0

â2(s)

⎛

⎝
t2∫

t1

b̂′(u)ĉ(u − s) du

⎞

⎠

2

ds

=
t1∫

0

â2(s)

t2∫

t1

b̂′(u)ĉ(u − s) du

t2∫

t1

b̂′(v)ĉ(v − s) dv ds

=
t2∫

t1

∫ t2

t1

b̂′(u)b̂′(v)

t1∫

0

â2(s)ĉ(u − s)ĉ(v − s) ds du dv

≤
t2∫

t1

t2∫

t1

∣
∣
∣â(u)b̂′(u)

∣
∣
∣
∣
∣
∣â(v)b̂′(v)

∣
∣
∣

t1∫

0

∣
∣ĉ(u − s)ĉ(v − s)

∣
∣ ds du dv.

Then applying successively the condition (Ĉ4), the Cauchy–Schwarz inequality and
the condition (Ĉ5) we obtain:

I3 ≤ C

t2∫

t1

t2∫

t1

u−1v−1

t1∫

0

∣
∣ĉ(u − s)ĉ(v − s)

∣
∣ ds du dv

≤ C

t2∫

t1

t2∫

t1

u−1v−1

⎛

⎝
t1∫

0

ĉ2(u − s) ds

⎞

⎠

1
2
⎛

⎝
t1∫

0

ĉ2(v − s) ds

⎞

⎠

1
2

du dv

≤ C

t2∫

t1

t2∫

t1

u
γ

2 −1v
γ

2 −1 du dv ≤ C
(
t

γ

2
2 − t

γ

2
1

)2 ≤ C (t2 − t1)
γ .

4. The fourth term can be bounded similarly to the third one:
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I4 =
t2∫

t1

â2(s)

⎛

⎝
t2∫

s

b̂′(u)ĉ(u − s) du

⎞

⎠

2

ds

=
t2∫

t1

t2∫

s

t2∫

s

â2(s)b̂′(u)ĉ(u − s)b̂′(v)ĉ(v − s) du dv ds

≤
t2∫

t1

t2∫

s

t2∫

s

∣
∣
∣â(u)b̂′(u)

∣
∣
∣
∣
∣
∣â(v)b̂′(v)

∣
∣
∣
∣
∣ĉ(u − s)ĉ(v − s)

∣
∣ du dv ds

≤ C

t2∫

t1

t2∫

s

t2∫

s

u−1v−1
∣
∣ĉ(u − s)ĉ(v − s)

∣
∣ du dv ds

= C

t2∫

t1

t2∫

t1

u−1v−1

u∧v∫

t1

∣
∣ĉ(u − s)ĉ(v − s)

∣
∣ ds du dv

≤ C

t2∫

t1

t2∫

t1

u−1v−1

⎛

⎝
u∧v∫

t1

ĉ2(u − s) ds

⎞

⎠

1
2
⎛

⎝
u∧v∫

t1

ĉ2(v − s) ds

⎞

⎠

1
2

du dv

≤ C

t2∫

t1

t2∫

t1

u−1v−1

⎛

⎝
u∫

t1

ĉ2(u − s) ds

⎞

⎠

1
2
⎛

⎝
v∫

t1

ĉ2(v − s) ds

⎞

⎠

1
2

du dv

≤ C

t2∫

t1

t2∫

t1

u−1v−1 (u − t1)
γ

2 (v − t1)
γ

2 du dv

≤ C

t2∫

t1

t2∫

t1

(u − t1)
γ

2 −1 (v − t1)
γ

2 −1 du dv ≤ C (t2 − t1)
γ .

Combining the bounds we get E
(
Ŷt2 − Ŷt1

)2 ≤ C (t2 − t1)
γ , whence the result fol-

lows. �

14.4 Equations with Locally Lipschitz Drift of Linear
Growth

In this section we study stochastic differential equations with additive Volterra–Lévy
noise. The noise considered has Hölder regularity of the paths as discussed in the first
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part of this work. We shall adopt pathwise considerations and, for this reason, we
start the study taking deterministic equations into account, then we move to discuss
the stochastic cases.

Let T > 0 be fixed, f = f (t), t ∈ [0, T ], and coefficient u = u(x), x ∈ R, be the
measurable functions. Introduce the equation

Xt =
t∫

0

u(Xs) ds + f (t), t ∈ [0, T ], X |t=0 = X0 ∈ R. (14.41)

This equation is studied in Appendix B. Now let us return to the Eq. (14.1), that is,
let us consider the Volterra–Lévy process Yt = ∫ t

0 g(t, s) dZs instead of the deter-
ministic function f . According to Lemma 11 in Appendix B, in order to obtain the
existence and uniqueness of a solution, it suffices to establish either local integrability
or local boundedness of Y .

First, we study the sufficient conditions for integrability. Namely, we present the
conditions supplyingE

∫ T
0 |Yt | dt < ∞. If the assumption (A1) holds, then by (14.3),

E

T∫

0

|Yt | dt ≤
T∫

0

(
E |Yt |p

) 1
p dt ≤ C

⎛

⎝
∫

R

|x |pπ(dx)

⎞

⎠

1
p T∫

0

‖g(t, ·)‖L p([0,t]) dt,

therefore, the sufficient condition for integrability is
∫ T
0 ‖g(t, ·)‖L p([0,t]) dt < ∞.

Similarly, if the assumption (A2) holds, then using (14.4) we get

E

T∫

0

|Yt | dt ≤ Ca
1
2

T∫

0

‖g(t, ·)‖L2([0,t]) dt

+ C

⎛

⎝
∫

R

|x |pπ(dx)

⎞

⎠

1
p T∫

0

‖g(t, ·)‖L p([0,t]) dt.

Since p ≥ 2, we see that again the sufficient condition for integrability has the form∫ T
0 ‖g(t, ·)‖L p([0,t]) dt < ∞. In the Gaussian case the second term vanishes, hence a

weaker condition is required, namely
∫ T
0 ‖g(t, ·)‖L2([0,t]) dt < ∞.

Now let the kernel g satisfy the assumption (B1). Then
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T∫

0

‖g(t, ·)‖L p([0,t]) dt ≤ C

T∫

0

tα

⎛

⎝
t∫

0

sβp(t − s)γ p ds

⎞

⎠

1
p

dt

≤ C

T∫

0

tα+β+γ+ 1
p dt,

where we have used the equality
∫ t
0 s

βp(t − s)γ p ds = B(βp + 1, γ p + 1)tβp+γ p+1

(assuming that β > − 1
p , γ > − 1

p ). Consequently, under the assumption (B1) the

condition
∫ T
0 ‖g(t, ·)‖L p([0,t]) dt < ∞ holds, if α + β + γ + 1

p > −1.
Similarly to Lemmas 4–6, we can consider three cases. Thus, we arrive at the

following result.

Theorem 2 Assume that one of the following assumptions holds:

1. p ≥ 1, a = 0,
∫
R

|x |p π(dx) < ∞, the condition (B1) holds with some α ∈ R,
β > − 1

p , γ > − 1
p such that α + β + γ > − 1

p − 1;

2. p ≥ 2,
∫
R

|x |p π(dx) < ∞, the condition (B1) holds with some α ∈ R, β > − 1
p ,

γ > − 1
p such that α + β + γ > − 1

p − 1;

3. Z is a Brownian motion, the condition (B1) holds with p = 2, α ∈ R, β > − 1
2 ,

γ > − 1
2 such that α + β + γ > − 3

2 .

Then E
∫ T
0 |Yt | dt < ∞. Consequently, if the coefficient u satisfies the assumption

(D1) 1) of Lemma 11, then the Eq. (14.1) has a unique solution.

Now we adapt the condition (D2) 3) of Lemma 11 to the stochastic case. Since
continuity is a sufficient condition for local boundedness, we obtain the following
corollary from Lemmas 4–6.

Theorem 3 Assume that one of the following assumptions holds:

1. p ≥ 1, a = 0,
∫
R

|x |p π(dx) < ∞, the conditions (B1) and (B2) hold with some
α ∈ R, β > − 1

p , γ > − 1
p , δ > 1

p such that α + β + γ > − 1
p , κ > 0;

2. p ≥ 2 we have
∫
R

|x |p π(dx) < ∞ and the conditions (B1) and (B2) hold with
some α ∈ R, β > − 1

p , γ > − 1
p , δ > 1

p such that α + β + γ > − 1
p , κ > 0;

3. Z is a Brownian motion, the conditions (B1) and (B2) hold with p = 2, α ∈ R,
β > − 1

2 , γ > − 1
2 , δ > 0 such that α + β + γ > − 1

2 , κ > − 1
2 .

Then Y has a. s. continuous (hence, locally bounded) sample paths. Consequently,
if the coefficient u satisfies the assumptions (D2) 1), 2) of Lemma 11, then the Eq.
(14.1) has a unique solution.

We remark that it seems that there no general results about solutions of stochastic
differential equations (14.1) with Volterra–Lévy noise without some form of Lip-
schitz continuity assumptions. There are instead some papers dealing with some
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classes of such equations also with exploding drift. We refer e. g. to [3] for a short
survey and the study of a class of such equations.

In the next section we address another class of equation without Lipschitz drift.
We focus onVolterra–Gaussian processes. The particular case of fractional Brownian
motion was considered in [14].

14.5 Equations with Volterra–Gaussian Processes

Now our goal is to consider equations with additive noise represented by various
Volterra–Gaussian processes, some of which were introduced in [12]. Our aim is to
relax the conditions on the drift coefficient, in a similar fashion to what was done in
the paper [14]. Remark that, in [14], the noise was fractional Brownian motion, but
here we deal with more general noise.

14.5.1 Girsanov Theorem. Definition of Weak and Strong
Solutions

Let
{
F V

t , t ∈ [0, T ]} denote the natural filtration of V , where V can be either Y
defined by (14.32) and (14.33), or it can be Ŷ is defined by (14.39) and (14.38). For
some process u = {ut , t ∈ [0, T ]} with integrable trajectories, denote

z(s) = (a−1Dh
0+
(
ub−1)) (s), ẑ(s) =

(
â−1 I ĥ0+

(
b̂−1u

))
(s).

an let, respectively,

ξT = Ep

⎧
⎨

⎩
−

T∫

0

z(s) dWs − 1

2

T∫

0

z2(s) ds

⎫
⎬

⎭
,

ξ̂T = Ep

⎧
⎨

⎩
−

T∫

0

ẑ(s) dWs − 1

2

T∫

0

z2(s) ds

⎫
⎬

⎭
.

Theorem 4 (1) Let the assumptions (C1)–(C3) hold, and let u = {ut , t ∈ [0, T ]} be
a FY -adapted process with integrable trajectories. Consider the transformation

V0(t) = Yt +
t∫

0

us ds. (14.42)
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Assume that

1. z ∈ L2([0, T ]) a. s.,
2. EξT = 1.

Then V0 can be represented as V0(t) =
t∫

0
K (t, s) dBs, t ∈ [0, T ], where B is a

F Y -Wiener process under the new probability PB defined by dPB/dP = ξT .
(2) Let the assumptions (Ĉ1)–(Ĉ3) hold, and let u = {ut , t ∈ [0, T ]} be a FŶ -

adapted process with integrable trajectories. Consider the transformation

V̂0(t) = Ŷt +
t∫

0

us ds.

Assume that

1. ẑ ∈ L2([0, T ]) a. s., and
2. Eξ̂T = 1

Then V̂0 can be represented as V̂0(t) = ∫ t
0 K̂ (t, s) d B̂s, t ∈ [0, T ], where B̂ is

aF Ŷ -Wiener process under the new probability PB̂ defined by dPB̂/dP = ξ̂T .

Proof Let us prove only (1) since both statements are proved similarly. Insert-
ing (14.32) into (14.42) yields V0(t) = ∫ t

0 K (t, s) dWs + ∫ t
0 us ds = ∫ t

0 K (t, s) dBs,

where Bt = Wt + ∫ t
0 K

−1
(∫ ·

0 us ds
)
(r) dr. Using (14.36), we get

Bt = Wt +
t∫

0

a−1(r)Dh
0+
(
ub−1) (r) dr.

Finally, by the standard Girsanov theorem, B is a F Y -Wiener process under the
probability PB . �

In the sequel, we study two stochastic differential equations

Xt = x + Vt +
t∫

0

u(s, Xs) ds, t ∈ [0, T ], (14.43)

where x ∈ R, u : [0, T ] × R → R is a measurable function, V = Y, Ŷ , where Y is
defined by (14.32) and (14.33), while Ŷ is defined by (14.39) and (14.38). We shall
consider both strong and weak solutions according to the definition below.

Definition 2 (i) By a weak solution of Eq. (14.43) we mean a couple of processes
(V, X) on the filtered probability space (�,F , F

V ,P), such that
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Vt =
t∫

0

K (t, s) dWs or Vt =
t∫

0

K̂ (t, s) dWs, (14.44)

respectively, with some Wiener process W , and (V, X) satisfy (14.43).
(ii) By a strong solution of equation (14.43) we understand a process X on

(�,F , F
V ,P), and V is of the form (14.44) with the fixed Wiener process

W .

14.5.2 Weak Existence and Weak Uniqueness

Let the coefficients a, b, c satisfy the assumptions (C1)–(C4). Then, according to
Proposition 3, the stochastic processY has amodification satisfyingHölder condition
up to order ν ∈ (0, 1/2).

Theorem 5 (i) Assume that u(s, x) satisfies the sublinear growth condition: there
exist such 0 < α < 1 and C > 0 that

|u(t, x)| ≤ C(1 + |x |α), (14.45)

and Hölder condition in space and time: there exist 0 < β ≤ 1, 0 < γ < 1 and
C > 0 such that for any s, t ∈ [0, T ] and any x, y ∈ R

|u(t, x) − u(s, y)| ≤ C
(|t − s|β + |y − x |γ ) .

Additionally to (C1)–(C4), let also functions a, b and h satisfy the following
assumption: there exist C > 0 and ν ′ ∈ (0, ν) such that

T∫

0

a−2(s)h2(s)b−2(s) ds ≤ C,

T∫

0

a−2(t)

⎛

⎝
t∫

0

∣
∣h′(t − r)

∣
∣
∣
∣b−1(t) − b−1(r)

∣
∣ dr

⎞

⎠

2

dt ≤ C, (14.46)

T∫

0

a−2(t)b−2(t)

⎛

⎝
t∫

0

∣
∣h′(t − r)

∣
∣ (t − r)β dr

⎞

⎠

2

dt ≤ C,

T∫

0

a−2(t)b−2(t)

⎛

⎝
t∫

0

∣
∣h′(t − r)

∣
∣ (t − r)γ ν ′

dr

⎞

⎠

2

dt ≤ C.

Then the equation (14.43) with V = Y has a unique weak solution.
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(ii) Assume that u(s, x) satisfies the sublinear growth condition (14.45), and, addi-
tionally to (Ĉ1)–(Ĉ3), functions â, b̂ and ĥ satisfy following assumption: there
exists C > 0 such that

â−1(s)

s∫

0

∣
∣
∣ĥ(s − r)

∣
∣
∣
∣
∣
∣b̂−1(r)

∣
∣
∣ dr ≤ C. (14.47)

Then Eq. (14.43) with V = Ŷ has a unique weak solution.

Remark 7 Let us check the conditions (14.46) and (14.47) in the case when V is a
fractional Brownian motion.
(i) Let H > 1

2 , a(s) = s
1
2 −H , b(s) = sH− 1

2 , c(s) = sH− 3
2 , h(s) = s

1
2 −H . Then,

T∫

0

a−2(s)h2(s)b−2(s) ds =
T∫

0

s1−2H ds = (2 − 2H)−1T 2−2H ;

T∫

0

a−2(t)

⎛

⎝
t∫

0

∣
∣h′(t − r)

∣
∣
∣
∣b−1(t) − b−1(r)

∣
∣ dr

⎞

⎠

2

dt

= C

T∫

0

t2H−1

⎛

⎝
t∫

0

(t − r)−
1
2 −H

(
r

1
2 −H − t

1
2 −H

)
dr

⎞

⎠

2

dt

= C

T∫

0

t2H−1 · t−1−2H · t1−2H t2 dt

⎛

⎝
1∫

0

(1 − r)−
1
2 −H

(
r

1
2 −H − 1

)
dr

⎞

⎠

2

= CT 2−2H

⎛

⎝
1∫

0

(1 − r)−
1
2 −H

(
r

1
2 −H − 1

)
dr

⎞

⎠

2

.

Integral
∫ 1
0 (1 − r)− 1

2 −H
(
r

1
2 −H − 1

)
dr is finite, since around zero,

(1 − r)−
1
2 −H

(
r

1
2 −H − 1

)
∼ r

1
2 −H − 1

and around 1, (1 − r)− 1
2 −H

(
r

1
2 −H − 1

)
∼ (1 − r)

1
2 −H . Further,
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T∫

0

(
a−2b−2

)
(t)

⎛

⎝
t∫

0

∣
∣h′(t − r)

∣
∣ (t − r)β dr

⎞

⎠

2

dt

= C

T∫

0

⎛

⎝
t∫

0

(t − r)−
1
2 −H+β dr

⎞

⎠

2

dt ≤ C

if − 1
2 − H + β > −1, or β > H − 1

2 . Finally,

T∫

0

(
a−2b−2

)
(t)

⎛

⎝
t∫

0

∣
∣h′(t − r)

∣
∣ (t − r)γ ν ′

dr

⎞

⎠

2

dt

= C

T∫

0

⎛

⎝
t∫

0

(t − r)−
1
2 −H+γ ν ′

dr

⎞

⎠

2

dt ≤ C

if− 1
2 − H + γ ν ′ or γ ν ′ > H − 1

2 . But in this case ν ′ can be any number from0 to H ,
therefore, condition γ ν ′ > H − 1

2 holds if γ H > H − 1
2 , or γ > 1 − 1

2H . Therefore
assumptions (14.46) hold for β > H − 1

2 , γ > 1 − 1
2H .

(ii) Let H < 1
2 . Then â(s) = Cs

1
2 −H , b̂(s) = ĉ(s) = sH− 1

2 , ĥ(s) = s− 1
2 −H , therefore

â−1(s)

s∫

0

∣
∣
∣ĥ(s − r)

∣
∣
∣
∣
∣
∣b̂−1(r)

∣
∣
∣ dr = CsH− 1

2

s∫

0

(s − r)−
1
2 −Hr

1
2 −H dr = Cs

1
2 −H ≤ C,

so (14.47) holds.

Proof First, we give some upper bounds for z(s) and ẑ(s) in order to confirm that
the theorem assumptions supply Novikov conditions for ξT and ξ̂T , and therefore ξT
and ξ̂T satisfy Theorem 4. Then the proofs of (i) and (ii) are similar, therefore we
continue only with the second statement, dividing the proof into several steps and
refer to the paper [14] for additional detail.

Concerning z(s), by Lemma 10 (iii), we have that

z(s) = (a−1hb−1
)
(s)u (s,Ys + x)

+ a−1(s)

s∫

0

(
u (z,Yz + x) b−1(z) − u (s,Ys + x) b−1(s)

)
h′(s − z) dz

= J1(s) + J2(s).

Let us construct upper bounds for J1 and J2. Namely, we are interested in two
integrals. First,
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T∫

0

J 2
1 (s) ds ≤ C

(

1 + sup
0≤s≤T

|Ys + x |2α
) T∫

0

(
a−2h2b−2) (s) ds

≤ C

(

1 + sup
0≤s≤T

|Ys |2α
)

,

(14.48)

according to the first assumption in (14.46).
Second,

T∫

0

J 2
2 (s) ds ≤ C

(

1 + sup
0≤s≤T

|Ys + x |2α
)

×
∫ T

0
a−2(s)

⎛

⎝
s∫

0

∣
∣b−1(z) − b−1(s)

∣
∣
∣
∣h′(s − z)

∣
∣ dz

⎞

⎠

2

ds

+
T∫

0

(
a−2b−2) (s)

⎛

⎝
s∫

0

|u(s,Ys + x) − u(z,Yz + x)| ∣∣h′(s − z)
∣
∣ dz

⎞

⎠

2

ds

= M1 + M2.

Obviously,

M1 ≤ C

(

1 + sup
0≤s≤T

|Ys |2α
)

, (14.49)

according to the second assumption in (14.46). Concerning M2, it admits the follow-
ing upper bound:

M2 ≤ C

T∫

0

(ab)−2(s)

⎛

⎝
s∫

0

(s − z)β
∣
∣h′(s − z)

∣
∣ dz

⎞

⎠

2

ds

+ C

T∫

0

(ab)−2(s)

⎛

⎝
s∫

0

|Ys − Yz|γ
∣
∣h′(s − z)

∣
∣ dz

⎞

⎠

2

ds = N1 + N2.

According to 3rd assumption in (14.46), N1 ≤ C . Further, due to the 4th assumption
from (14.46),
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N2 ≤ C

(

sup
0≤s<t≤T

|Ys − Yt |γ
(t − s)γ ν ′

)2
T∫

0

(ab)−2(s)

⎛

⎝
s∫

0

(s − z)γ ν ′ ∣∣h′(s − z)
∣
∣ dz

⎞

⎠

2

ds

≤ C

(

sup
0≤s<t≤T

|Ys − Yt |
(t − s)ν ′

)2γ

=: CG,

and due to the fact that 2γ < 1 and to [5], E exp {CG} < ∞ for any G > 0. Com-

bining this with (14.48) and (14.49), we conclude that E exp
{
1
2

∫ T
0 z2s ds

}
< ∞, and

Novikov condition holds, consequently, ξ̂T is indeed a density function.
Concerning ẑ(s), let us provide the following calculations:

ẑ(s) = â−1(s)

s∫

0

ĥ(s − r) b̂−1(r) u
(
r, Ŷr + x

)
dr

and, according to (14.45),

∣
∣ẑ(s)

∣
∣2 ≤ Câ−2(s)

⎛

⎝
s∫

0

∣
∣
∣ĥ(s − r)

∣
∣
∣
∣
∣
∣b̂−1(r)

∣
∣
∣
(
1 + ∣∣Ŷr + x

∣
∣α) dr

⎞

⎠

2

≤ C

(

1 + sup
r∈[0,T ]

∣
∣Ŷr
∣
∣2α
)

â−2(s)

⎛

⎝
s∫

0

∣
∣
∣ĥ(s − r)

∣
∣
∣
∣
∣
∣b̂−1(r)

∣
∣
∣ dr

⎞

⎠

2

.

(14.50)

Under assumption (14.47),
∣
∣ẑ(s)

∣
∣2 ≤ C

(

1 + sup
r∈[0,T ]

∣
∣Ŷr
∣
∣2α
)

. Then it follows from

the fact that 2α < 2 and integrability of supremum of Gaussian process [5] that

sup0≤s≤T E exp

{

ρ sup
0≤s≤T

∣
∣ẑ(s)

∣
∣2
}

< ∞ for any ρ > 0, and this inequality supplies

Novikov condition for ξ̂T .
Now we continue with the proof of (i i). We consider the two cases of V .
(a) Together with Theorem 4, we can conclude that Ỹ is a Volterra–Gaussian

process of the form Ỹt = ∫ t
0 K̂ (t, s) d B̃s , where B̃ is a Wiener process with respect

to the probability measure PB̃ defined by dPB̃/dP = ξ̂T , where

ξ̂T = exp

⎧
⎨

⎩

T∫

0

ẑ(s) dWs − 1

2

T∫

0

ẑ2(s) ds

⎫
⎬

⎭
.

It means that the couple (Ỹ , Ŷ + x) creates a weak solution of (14.43) with V = Ŷ .

(b) Now let us apply and modify the approach from [14] concerning the proof of
uniqueness in law and pathwise uniqueness of the equations with additive fractional
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noise. Namely, consider any solution of the equation

Xt = x +
t∫

0

u(s, Xs) ds + Ŷt ,

where Ŷt = ∫ t
0 K̂ (t, s) dBs , B is some Wiener process, and define

ẑ(s) = â−1(s)

s∫

0

h(s − r)b̂−1(r)u(r, Xr ) dr.

Note that X ∈ C([0, T ]), therefore, due to sublinear growth condition,

sup
0≤v≤r

|u(v, Xv)| ≤ C

(

1 + sup
0≤v≤r

|Xv|2α
)

< ∞ a.s.

Also, sup
0≤t≤T

∣
∣Ŷt
∣
∣ < ∞ a. s. Therefore, from Gronwall inequality, we get sup

0≤t≤T
|Xt | ≤

(

|x | + sup
0≤t≤T

∣
∣Ŷt
∣
∣+ CT

)

eCT , and in turn it implies that, similarly to (14.50), under

assumption (14.47),
∣
∣ẑ(s)

∣
∣2 ≤ C

(

1 + sup
0≤t≤T

|Xt |2α
)

≤ C1

(

1 + sup
0≤t≤T

∣
∣Ŷt
∣
∣2α
)

for

any s ∈ [0, T ]. It means that w. r. t. the measure P̂ such that

dP̂T

dPT
= exp

⎧
⎨

⎩
−

T∫

0

ẑ(s)dBs − 1

2

T∫

0

ẑ2(s) ds

⎫
⎬

⎭
, (14.51)

Xt − x has the same distribution as the process
∫ t
0 K̂ (t, s) dVs , where V is a Wiener

process, Vs = Bs + ∫ s
0 ẑ(u)du, and the right-hand side of (14.51) indeed defines a

probabilitymeasure. Further, for any boundedmeasurable functional� onC([0, T ]),

EP�(X − x) =
∫

�

�(ξ − x)
dPT

dP̂T

(ξ) dP̂T

= EP̂

⎛

⎝�(X − x) exp

⎧
⎨

⎩

T∫

0

ẑ(s) dBs + 1

2

T∫

0

ẑ2(s) ds

⎫
⎬

⎭

⎞

⎠

= EP̂

⎛

⎝�(X − x) exp

⎧
⎨

⎩

T∫

0

â−1(s)

s∫

0

h(s − r)b̂−1(r)u(r, Xr ) dr dBs
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+ 1

2

T∫

0

⎛

⎝â−1(s)

s∫

0

h(s − r)b̂−1(r)u(r, Xr ) dr

⎞

⎠

2

ds

⎫
⎬

⎭

⎞

⎠

= EP̂

⎛

⎝�(X − x) exp

⎧
⎨

⎩

T∫

0

â−1(s)

s∫

0

h(s − r)b̂−1(r)u(r, Xr ) dr dVs

− 1

2

T∫

0

⎛

⎝â−1(s)

s∫

0

h(s − r)b̂−1(r)u(r, Xr ) dr

⎞

⎠

2

ds

⎫
⎬

⎭

⎞

⎠

= EP�

⎛

⎝
·∫

0

K̂ (·, s) dBs

⎞

⎠

× exp

⎧
⎨

⎩

T∫

0

â−1(s)

s∫

0

h(s − r)b̂−1(r) u

⎛

⎝r, x +
T∫

0

K̂ (r, z) dBz

⎞

⎠ dr dBs

− 1

2

T∫

0

⎛

⎝â−1(s)

s∫

0

h(s − r)b̂−1(r)u

⎛

⎝r, x +
T∫

0

K̂ (r, z) dBz

⎞

⎠ dr

⎞

⎠

2

ds

⎫
⎪⎬

⎪⎭

= EP�

⎛

⎝
·∫

0

K̂ (·, s) dVs

⎞

⎠ . (14.52)

Taking (14.52) into account, we conclude that any two weak solutions have the same
distribution, so we established weak uniqueness. �

14.5.3 Pathwise Uniqueness of Weak Solution. Existence
and Uniqueness of Strong Solution

Now we consider only equation

Xt = x + Yt +
t∫

0

u(s, Xs) ds, t ∈ [0, T ], (14.53)

where x ∈ R, u : [0, T ] × R → R is a measurable function, Y is defined by (14.32)
and (14.33).

Theorem 6 Let coefficients a, b, c satisfy assumptions (C1)–(C3) and (C5). Let also
coefficient u(s, x) satisfy conditions of item (i), Theorem 5. Then any two weak solu-
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tions of Eq. (14.53) with the same Wiener process W occurring in the representation
of Y , coincide a. s.

Proof According to Proposition 3, the condition (C5) supplies that the process Y on
any interval [t1 + t2, T ] has a modification that satisfies Hölder condition up to order

μ = 3
2 − 1

q1
− max

(
1
2 ,

1
p + 1

r1
, 1
p1

+ 1
r

)
> 1

2 . So, consider any 0 < ε < T , and on

the interval [ε, T ] apply Itô formula to the process max
(
X1
t , X

2
t

)
, where X1 and X2

are two weak solutions with the same Wiener process W . Observing that X1 and X2

are Hölder up to order μ > 1
2 on [ε, T ], which implies that the quadratic variation

of X1 − X2 is zero, we get that for any t ∈ [ε, T ]

max
(
X1
t , X

2
t

)− max
(
X1

ε , X
2
ε

) = X1
t − X1

ε + (X2
t − X1

t

)
+ − (X2

ε − X1
ε

)
+

= Yt − Yε +
t∫

ε

u
(
s, X1

s

)
ds +

t∫

ε

(
u
(
s, X2

s

)− u
(
s, X1

s

))
1{X2

s >X1
s } ds

= Yt − Yε +
t∫

ε

u
(
s,max

(
X1
s , X

2
s

))
ds.

Let ε → 0. Then it follows from continuity of Y and u that Yε → 0 a. s., and

t∫

ε

u
(
s,max

(
X1
s , X

2
s

))
ds →

t∫

0

u
(
s,max

(
X1
s , X

2
s

))
ds a. s.

Moreover, max
(
X1

ε , X
2
ε

)→ x a. s.
Finally, max

(
X1
t , X

2
t

) = x + Yt + ∫ t
0 u
(
s,max

(
X1
s , X

2
s

))
ds. It means that

max
(
X1
t , X

2
t

)
(and similarly min

(
X1
s , X

2
s

)
) satisfies Eq. (14.53). Due to the weak

uniqueness proved in Theorem 5, max
(
X1
t , X

2
t

)
and min

(
X1
s , X

2
s

)
have the same

distribution, whence X1
t = X2

t a. s., and from continuity of X1 and X2, X1
t = X2

t ,
t ∈ [0, T ], a. s. �

Remark 8 1. Condition (C5) is fulfilled in the case when Y = BH with H > 1
2 . In

this casewecanput p1 = q1 = r1 = 3
ε
,where 0 < ε < min

{
(H − 1

2 ), 3(1 − H), 1
2

}
,

1
p = H = 1

2 + ε
3 ,

1
q = ε

3 ,
1
r = 3

2 − H + ε
3 . Then

μ = 3
2 − ε

3 − max
{
1
2 ,

3
2 − H + 2ε

3 , H − 1
2 + 2ε

3

} = H − ε > 1
2 .

2. In the case when we cannot guarantee that Y is Hölder up to some order
μ > 1

2 (for example, in the case when Y = BH with H < 1
2 ) the Itô formula for

max
(
X1
t , X

2
t

)
has a different form, and the statement like Theorem 5 is an open

problem.

We conclude with a straightforward consequence of Theorems 5 and 6.



318 G. Di Nunno et al.

Theorem 7 Under the assumptions of Theorem 6, Eq. (14.53) has a unique strong
solution.
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Appendix A: Elements of Fractional Calculus for Sonine
Pairs

Here we consider some notions similar to the notions of the fractional integral and
of the fractional derivative proper to classical fractional calculus.

Definition 3 Let functions c and h from L1([0, T ]) create a Sonine pair. Introduce
the operators, similar to operators of fractional integral and fractional derivative:

(
I c0+ f

)
(t) =

t∫

0

c(t − s) f (s) ds, f ∈ L1([0, T ]),

(
Dh

0+ f
)
(t) = d

ds

⎛

⎝
t∫

0

h(t − s) f (s) ds

⎞

⎠ ,

where f : [0, T ] → R is such that
∫ t
0 h(t − s) f (s) ds ∈ AC([0, T ]).

Now we can here establish some properties of the operators I c0+ and Dh
0+. Denote

I c0+
(
L1([0, T ])) = {ψ : [0, T ] → R : ψ(t) = (I c0+ϕ

)
(t), ϕ ∈ L1([0, T ])} .

Lemma 10 (i) Let f ∈ L1([0, T ]). Then (Dh
0+ I

c
0+ f

)
(t) = f (t) a.e.

(ii) Let f ∈ I c0+
(
L1([0, T ])). Then (I c0+Dh

0+ f
)
(t) = f (t), t ∈ [0, T ].

(iii) Let h ∈ C1(0, T ), there exist β > 0 such that lim
s→0

sβ+1h′(s) < ∞. Also, let f be

a Hölder function of order γ , and γ > β. Then for any t ∈ [0, T ], (Dh
0+ f

)
(t) =

h(t) f (t) + ∫ t
0 [ f (z) − f (t)]h′(t − z) dz.

Proof (i) Obviously,



14 Stochastic Differential Equations Driven by Additive Volterra-Lévy … 319

(
Dh

0+ I
c
0+ f

)
(t) = d

dt

⎛

⎝
t∫

0

h(t − s)

⎛

⎝
s∫

0

c(s − u) f (u) du

⎞

⎠ ds

⎞

⎠

= d

dt

⎛

⎝
t∫

0

f (u)

⎛

⎝
t∫

u

h(t − s)c(s − u) ds

⎞

⎠ du

⎞

⎠

= d

dt

⎛

⎝
t∫

0

f (u) du

⎞

⎠ = f (t) a. e.

(ii) Let f (t) = (I c0+ϕ
)
(t), ϕ ∈ L1([0, T ]). Then, according to (i),

(
I c0+D

h
0+ f

)
(t) = (I c0+Dh

0+ I
c
0+ϕ
)
(t) = (I c0+ϕ

)
(t) = f (t), t ∈ [0, T ].

(iii) For any t ∈ (0, T ) and �t > 0 (other values can be considered similarly),

� f :=
t+�t∫

0

h(t + �t − s) f (s) ds −
t∫

0

h(t − s) f (s) ds

=
t∫

0

(
h(t + �t − s) − h(t − s)

)
f (s) ds +

t+�t∫

t

h(t + �t − s) f (s) ds

=
t∫

0

(
h(t + �t − s) − h(t − s)

)(
f (s) − f (t)

)
ds

+
t+�t∫

t

h(t + �t − s)
(
f (s) − f (t)

)
ds + f (t)

t+�t∫

t

h(s) ds.

Evidently, 1
�t

(
f (t)

∫ t+�t
t h(s) ds

)
→ f (t)h(t), a. e., as �t → 0. Furthermore,

1

�t

∣
∣
∣
∣
∣
∣

t+�t∫

t

h(t + �t − s)[ f (s) − f (t)]ds
∣
∣
∣
∣
∣
∣
= |h(t + �t − θt )| | f (θt ) − f (t)| ,

where θt ∈ [t, t + �t]. According to condition (iii) and L’Hôpital’s rule, for
some constant C > 0, lim�t→0 |h(t + �t − θt )| | f (θt ) − f (t)| ≤ C lim

�t→0
�tγ−β =

0. Finally, for 0 < ε < t ,
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∣
∣
∣
∣
∣
∣

t∫

0

(
h(t + �t − s) − h(t − s)

�t
− h′(t − s)

)
(
f (s) − f (t)

)
ds

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

t∫

0

(
h′(θt − s) − h′(t − s)

)(
f (s) − f (t)

)
ds

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

t−ε∫

0

(
h′(θt − s) − h′(t − s)

)(
f (s) − f (t)

)
ds

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

t∫

t−ε

(
h′(θt − s) − h′(t − s)

)(
f (s) − f (t)

)
ds

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

t−ε∫

0

(
h′(θt − s) − h′(t − s)

)(
f (s) − f (t)

)
ds

∣
∣
∣
∣
∣
∣

+
t∫

t−ε

|h′(θt − s)|| f (s) − f (t)|ds +
t∫

t−ε

∣
∣h′(t − s)

∣
∣ | f (s) − f (t)| ds.

The first term,
∣
∣
∣
∫ t−ε

0

(
h′(θt − s) − h′(t − s)

)(
f (s) − f (t)

)
ds
∣
∣
∣, tends to 0 as �t →

0 for any ε > 0. Concerning the second term, it can be bounded as follows. For
sufficiently small ε, it follows from condition (iii) that

t∫

t−ε

∣
∣h′(θt − s)

∣
∣ | f (s) − f (t)| ds ≤ C

t∫

t−ε

(t − s)−1−β(t − s)α ds = Cεα−β,

and, the same is true for
∫ t
t−ε

∣
∣h′(t − s)

∣
∣ | f (s) − f (t)| ds, and the proof follows.

Appendix B: Deterministic Equations with Locally Lipschitz
Drift of Linear Growth

In this appendix we investigate the deterministic Eq. (14.41).

Lemma 11 Let any of two following groups of conditions hold.

(D1) (1) Thecoefficient u isLipschitz: there existsC > 0 such that forany x, y ∈ R,

|u(x) − u(y)| ≤ C |x − y| .

(2) The function f is locally integrable.
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(D2) (1) The coefficient u is of linear growth: there exists C > 0 such that for any
x ∈ R,

|u(x)| ≤ C(1 + |x |).

(2) the coefficient u is locally Lipschitz: for any R > 0 there exists CR > 0
such that for any x, y ∈ R, |x | , |y| < R,

|u(x) − u(y)| ≤ CR |x − y| .

(3) The function f is locally bounded.

Then the Eq. (14.41) has a unique solution X on [0, T ]. If condition (D1) holds, then
X is locally integrable. If condition (D2) holds, then X is locally bounded.

Proof First, we assume that (D1) holds. Let t0 > 0 be some number. We apply
successive approximations with X (0)

t = 0, X (1)
t = f (t) ∈ L1([0, t0]),

X (n)
t =

t∫

0

u
(
X (n−1)
s

)
ds + f (t) ∈ L1([0, t0]). (14.54)

Then for any 0 < t ≤ t0,

t∫

0

∣
∣X (n)

s − X (n−1)
s

∣
∣ ds ≤

t∫

0

s∫

0

∣
∣u
(
X (n−1)

v

)− u
(
X (n−2)

v

)∣∣ dv ds

≤ C

t∫

0

∣
∣X (n−1)

v − X (n−2)
v

∣
∣ (t − v) dv ≤ · · · ≤ Cn−1

t∫

0

| f (s)| (t − s)n−1

(n − 1)! ds

≤ (Ct)n−1

(n − 1)!
t∫

0

| f (s)| ds.

This means that X (n) is a Cauchy sequence in L1([0, t0]), therefore there exists a
limit Xt = limn→∞ X (n)

t in L1([0, t0]). It is clear that X is a solution of (14.41).
Uniqueness follows from the Gronwall inequality.

Now let us consider the case when holds. As before, let t0 > 0 be fixed, and
f (t) ≤ C = C(t0). With X (0)

t = 0, X (1)
t = f (t) is locally bounded, and every X (n)

that is defined by (14.54) is locally bounded as well. Moreover,
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∣
∣
∣X (n)

t

∣
∣
∣ ≤ | f (t)| + Ct + C

t∫

0

∣
∣X (n−1)

s

∣
∣ ds

≤ | f (t)| + Ct + C

t∫

0

(| f (s)| + Cs)ds + C2

t∫

0

∣
∣X (n−2)

s

∣
∣ (t − s) ds ≤ · · · ≤

≤ | f (t)| + Ct + C

t∫

0

(| f (s)| + Cs)eC(t−s)ds,

therefore, X (n) are totally locally bounded. Existence of the limit that is a unique
solution of (14.41) is evident.
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