
Chapter 25 
Salinity Prediction in Coastal Aquifers 
of the Vietnamese Mekong River Delta 
Using Innovative Machine Learning 
Algorithms 

Dang An Tran , Ha Nam Thang , Dieu Tien Bui , 
and Vuong Trong Kha 

Abstract Groundwater salinization is a severe issue, causing various problems to 
human health, agriculture, ecosystems, and infrastructure in many coastal regions 
across the world. However, this phenomenon is difficult to predict with high accu-
racy. In this study, we propose and verify a new artificial intelligence approach 
for predicting groundwater salinity and identifying the main factors of salinization. 
The coastal aquifers of the Mekong River Delta (Vietnam) were selected to test the 
new approach. In the proposed approach, Extreme Gradient Boosting (XGB) was 
used to build a groundwater salinity model, and Genetic Optimization (GO) was 
employed to optimize the model parameters. Gaussian Processes (GP) and Random 
Forests (RF) were also used as a benchmark for the model comparison. For this 
regard, a groundwater salinity database with 215 groundwater samples and 20 driven 
factors related to hydrology, geology, geography, and anthropogenic activities was 
prepared. Performance of the models was assessed using Correlation Coefficient (r), 
Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and 
Mean Absolute Error (MAE). The results show that the proposed GO-XGB model 
yields high performance both on the training dataset (r = 0.999, RMSE = 18.450, 
MAPE = 2.070, and MAE = 4.864) and the validation dataset (r = 0.787, RMSE 
= 141.042, MAPE = 87.250, and MAE = 74.993). The proposed GO-XGB model
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performed better predictive result compared to the benchmark, GP, and RF. Among 
the 20 factors, groundwater level, vertical hydraulic conductivity, lithology, extrac-
tion capacity, horizontal hydraulic conductivity, distance to saline sources, and well 
density are the most important factors to groundwater salinization prediction. 

Keywords Groundwater salinization · GO-XGB model · Coastal aquifers ·
Mekong River Delta · Vietnam 

25.1 Introduction 

Groundwater is identified as the primary source of water for about two billion 
people and accounts for 33% of the total water withdrawal worldwide (Famiglietti 
2014). It is a crucial freshwater resource for domestic uses, industrial development, 
and irrigational activities (Mohanty and Rao 2019; Behera et al. 2019; Kaur et al. 
2020). However, groundwater resource is highly vulnerable to human activities (Ma 
et al. 2019a; Brouwer et al. 2018; Graaf et al. 2019) and natural variation (Kagabu 
et al. 2020; Giambastiani et al. 2018), especially in coastal regions where are facing 
groundwater overexploitation, seawater intrusion, climate change, and sea-level rise 
(Ferguson and Gleeson 2012). In such regions, groundwater is likely to increase in 
salinity due to paleo-seawater intrusion (Delsman et al. 2014), modern seawater intru-
sion (Han and Currell 2018), leaking brines from oil fields and irrigation activities 
(Paine 2003). High salt concentrations in groundwater may cause various environ-
mental and health issues. For example, high salinity in irrigated water may cause 
physiological drought and reduce crop yield (Nishanthiny et al. 2010). High salt in 
drinking water increases the risk of hypertension (Vineis et al. 2011), coronary heart 
disease (Park and Kwock 2015), and chronic kidney disease; therefore, assessing 
groundwater quality, especially the salinization level, is crucial to protect the envi-
ronment and human health (Melloul and Goldenberg 1997; Guhl et al. 2006; Gallardo 
and Marui 2007; Carretero et al. 2013; Larsen et al.  2017). 

For last several decades, mathematical model has been used widely in predic-
tion of groundwater dynamics and seawater intrusion into coastal aquifers (Lal and 
Datta 2019; Abdelhamid et al. 2016; Mahmoodzadeh and Karamouz 2019; Stein 
et al. 2019; Voss and Souza 1987). However, mathematical groundwater modelling 
requires expert knowledge about the physical characteristics of hydrogeological 
system, governing process, various types of input data (i.e., topography, soil prop-
erties, geology, initial and boundary conditions, hydrological and climate data, etc.) 
while the accuracy of the model simulation depends on reliable model input param-
eters (Lal and Datta 2019; Kim and Yang 2018). Meanwhile, machine learning 
is a data-driven model with little requirement about the physical process, and it 
could provide an accurate prediction (Sun et al. 2016; Yadav et al. 2018). There-
fore, machine learning has been considered as an alternative, i.e., Genetics algorithm 
(Sreekanth and Datta 2010), artificial neural networks (Banerjee et al. 2011), multi-
objective optimization (Javadi et al. 2015), multivariate adaptive regression spline
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(Roy Dilip and Datta 2017), support vector regression (Lal and Datta 2019; Isazadeh 
et al. 2017; Nadiri et al. 2018), ensemble multiadaptive boosting logistic regression 
(Rizeei et al. 2019), and Gaussian Process Regression (Yadav et al. 2018; Kopsiaftis 
et al. 2019), and hybrid computational intelligence models (Pham et al. 2019a; Chen 
et al. 2019). A common conclusion from the above works is that machine learning 
is a highly flexible tool with the ability to handle complex non-linear relationships 
between groundwater salinity and influencing factors (Naghibi et al. 2015; Ransom 
et al. 2017; Sajedi-Hosseini et al. 2018). Nonetheless, no studies have figured out 
which are the most important factors influencing on groundwater salinity in coastal 
areas, while the rapid development in the field of computer science has introduced 
more superior methods. 

Inspite of many advantages of applying machine learning in predicting envi-
ronmental issues, this approach has some limitations such as lacking good data, 
deterministic problems, and misapplication. Especially, the predictive results mainly 
based on statistical relationship instead of performing directly physical processes 
like numerical models therefore it requires in-depth understanding between target 
variable and independent variables to improve reliability and accuracy of the ML 
models. In this research, therefore, we propose and validate a new artificial intelli-
gence approach, which is based on Extreme Gradient Boosting (XGB) and Genetic 
Optimization (GO), named as GO-XGB, for predicting groundwater salinity in the 
coastal aquifers of the Mekong River Delta (Vietnam). To the best of our knowledge, 
this is the first time that GO-XGB is considered for groundwater salinity modelling. 
We also compare and discuss the performance of our models and traditional models 
such as random forests and Gaussian processes to understand if this approach adds 
value to the field of groundwater salinity prediction. Besides, the role of various influ-
encing factors in aquifer salinization is assessed. The proposed models were tested 
using groundwater salinity data and its controlling factors in the multi-aquifers in 
the Mekong Delta, Vietnam. 

25.2 Background of the Machine Learning Algorithms 
Used 

In this section, we first review two traditional machine learning models which are 
already applied to predict groundwater salinity, namely random forests, and Gaus-
sian processes. We then introduce the idea of the combination of Extreme Gradient 
Boosting and Genetic Optimization to form a new hybrid algorithm. The perfor-
mance of the two traditional models is then considered as benchmarks to assess our 
model.
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25.2.1 Gaussian Processes 

Gaussian processes (GP) are a type of supervised learning for both regression and 
classification problems (Kopsiaftis et al. 2019; Rasmussen et al. 2003; Hall et al.  
2012; Azimi et al. 2018). The principal idea of Gaussian processes is that in the input 
space x = [x1, …, xn] T, every point is associated with a random variable, so as the 
joint distribution of them can be modelled as a multivariate Gaussian and a function 
(called f) can be modelled using an infinite multivariate Gaussian distribution (Ma 
et al. 2019b). Similarly, if we have a salinity dataset M = ([Xi, yi], i= 1, 2, …, m) with 
Xi ∈ Rn is a matrix of m input variables with n observation, whereas yi ∈ R is an output 
variable (Cl− concentration in groundwater). A GP regression model formulates the 
relation of the input and output variables as following equation (Rasmussen et al. 
2003; Hoa et al. 2019): 

y(x) = 
n∑ 

i=1 

αi K (Xi , X ) (25.1) 

where αi is the weight and K is the Radial Basis kernel function (RBF) (Eq. 25.2) 
(Park and Sandberg 1991; Scholkopf et al. 1997). 

K (Xi , X ) = β × e
− 

m∑ 
i=1 

[ 
(Xm i −Xm i )2 

2σ 2 

] 

(25.2) 

where β is the scaling factor and σ is the kernel parameter. 
The performance of the GP model is dependent on the parameters β and weights 

αi and they could be automatically turned and optimized through maximizing the 
marginal likelihood (Rasmussen et al. 2003). 

25.2.2 Random Forests 

A random forest (RF) is a method for both classification and regression based on the 
ensemble of decision trees (Breiman 2001). A decision tree is a top-down tree-like 
structure, in which each non-leaf node is a test, each branch is an outcome of the test, 
and each leaf node is a decision. Regression with a single decision tree may result 
in the problem of overfitting (high variance) and is dependent on the distribution 
of training sets. A large number of decorrelated decision trees can form a random 
forest which then can reduce the variance and boost model performance (Criminisi 
2011). The procedure developing RFs is as follows: (1) n random subsets (called 
“bootstrapped subsets”) are sampled from a training dataset based on a random 
selection of features of the dataset. A subset may contain overlapped data in other
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Fig. 25.1 Example of the partitions left and classification tree structure right with two classes 
coloured in green and red 

subsets; (2) n decision trees are built using these n bootstrapped subsets (Fig. 25.1). 
The number of trees n is decided using either cross-validation or out-of-bag (OOB) 
error methods. A detailed description of the statistical formulation of RF can be 
found in Breiman (2001). 

25.2.3 Extreme Gradient Boosting 

Similar to the random forest, an Extreme Gradient Boosting (XGB) is an ensemble-
machine learning algorithm that is based on decision trees (weak learners) (Friedman 
2001). However, a boosting model constructs the “forest” of decision trees sequen-
tially, or one decision tree can be constructed based on learning experience inherited 
from previous trees (Chen and Guestrin 2016; Johnson et al. 2018). The second tree 
focuses on the cases in which the first tree gives a poor prediction, and this learning 
process is repeated many times, so as the combination of these trees can better capture 
the relationship between predictands and predictors. Gradient Boosting is a form of 
boosting models in which poor prediction cases are assessed if they contribute to 
minimize the overall lost function (also called the prediction error) (Lim and Chi 
2019). A case can be considered as highly valuable if the adding decision tree built 
for this case can reduce the prediction error significantly while no change in the error 
implicates a no value case; thus, only useful decision trees are kept. This may give 
XGB models advantages in complex problems like quantifying saline concentration 
in groundwater since data measurement in the underground environment may contain 
many special cases. It is also worth to notice that the learning efficiency of each 
machine learning algorithm is controlled by its model parameters, and in the case of 
the XGB model, they include three groups: tree-specific, boosting, and miscellaneous
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parameters. Selection of these model parameters is a challenging task and depends 
on user experience while this process does not always return in an optimum set of 
parameters. Thus, we propose to use a genetic algorithm to automatically search in 
parameter spaces to improve the accuracy of numerical forecasts. 

25.2.4 Genetic Algorithm 

Genetic Algorithm takes the idea from the Darwinian theory of natural selection 
to evolve solutions by utilizing computer capacity to tune model parameters as an 
alternative to manual efforts (Forrest 1993). The most crucial concept of GA is 
the chromosome which consists of model parameters to define a solution (called 
individual) (Jennings et al. 2019). A certain number of individuals then forms a 
population. In the lower level, each chromosome consists of some genes which are 
often denoted as 0 s or 1 s (X ≡ (x1, x2, …, xn), xk ∈ [0.0, 1.0] ∀ k). Each individual 
is evaluated by its fitness value, a result of a fitness function. 

The basic operation performed during the training of XGB based model is as 
following steps: (1) A number of individuals are initialized to form a population, (2) 
individuals with the best fitness values are selected to generate a mating pool, (3) 
from the mating pool, either sequential or random selection methods select parents, 
and (4) several operators called crossover and mutation are then applied to each pair 
of parents to generate their offspring. This process keeps high-quality individuals to 
create more individuals, so as it evolves solutions to obtain the desired solutions. 

25.3 Study Area and Data 

25.3.1 Description of the Study Area 

The study area, Soc Trang province, is in the coastal area of the Mekong River Delta. 
The study area covers an area of 3,312 km2 with an elevation ranging from 0.5 to 
2.5 m above the mean sea level (Fig. 25.2). The province is bordered by the Hau 
River (one main branch of the Mekong River) to the Northwest and the Vietnamese 
East Sea (South China Seas) to the Southwest. Since this area has a dense river 
system connected to the sea, the hydrological regime in the study area is complex 
and strongly influenced by the flow regime of the Mekong River and tidal fluctuation.

The study area is in a tropical monsoon climate region with two distinct seasons, 
the dry season from May to November and the rainy season from December to 
April (in the following year). The annual average rainfall is about 1772 mm with 
substantial seasonal variation. About 85% of the annual rainfall occurs during the 
rainy season. The study area has recognized as one of the most vulnerable regions 
to climate change and sea-level rise in the world.
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Fig. 25.2 Location of the study area (Soc Trang province), the Vietnamese Mekong River Delta

Soc Trang province has around 1.20 million people in which a majority of the 
population depends on agriculture for their livelihoods, contributing to 42% of the 
total GDP in the province (Hoang et al. 2019). Agriculture lands are dominant, 
accounting for 84.77% (276,690 ha of total area), which includes rice fields (52.98%), 
fishponds (19.69%), orchards (15.51%), and lands of other vegetable types (6.75%), 
and other types of land use (Decision No. 108/NQ-CP of the Government 2018). 

In the study area, groundwater is used as a dominant source of water for domestic, 
industrial and agricultural activities, resulting in rapid groundwater level depletion in 
the irrigated areas (Hoang and Bäumle 2018; Minderhoud et al. 2017). Groundwater 
salinization has been identified as one of the significant threats to the groundwater
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resource in this region (An et al. 2018). The extent of groundwater salinization in 
the study area has recently been increased due to the rapid increase in groundwater 
demand (Minderhoud et al. 2017; Nam et al. 2019). 

The hydrogeological setting of the study area is characterized by a multi-layered 
aquifer system, formed between the Miocene and Holocene epoch (Wagner et al. 
2012; Hung et al. 2019). Groundwater in the Pleistocene aquifers is the primary 
source of drinking water because these aquifers have high yields and good-quality 
water compared to other aquifers (An et al. 2018). In this study, we focus on assessing 
the vulnerability and risk of groundwater in the Pleistocene aquifers to salinity. 

25.3.2 Data Preparation and Variables Selection 

In this research, 215 groundwater samples from the Pleistocene aquifers were 
collected between 2013 and 2018 during both the rainy and dry seasons. On-
site measurements were conducted to obtain physical parameters such as ground-
water temperature T (°C), pH, dissolved oxygen DO, and electrical conductivity 
EC using the HANNA portable instruments (Hanna Instruments Inc. 2015). The 
chloride concentration in groundwater samples was analyzed using Ion Liquid 
Chromatography (Shimadzu Co. Ltd., Japan) at the University of Tsukuba, Japan. 

The accumulation of salinity in groundwater is a complex process because it is 
controlled by influencing factors (Mahlknecht et al. 2017; Kanagaraj et al. 2018). 
The selection of influencing factors for groundwater salinization prediction based 
on the possibilities of saltwater migration into aquifers. In the Pleistocene aquifers, 
groundwater salinity is originated from (1) downward or upward leakage of paleo-
saline water (Khaska et al. 2013; Chatton et al. 2016), (2) halite dissolution in the 
topsoil layer (Walter et al. 2017; Blasco et al. 2019), (3) seawater intrusion (Han and 
Currell 2018; Kanagaraj et al. 2018; Werner et al. 2013), and (4) irrigation return 
flow (Essaid and Caldwell 2017; Lapworth et al. 2017; Malki et al. 2017; Tweed 
et al. 2018). The downward or upward leakages of paleo-saline water may relate 
to the formation of aquifers, which is further incorporated into the lithology influ-
encing factor. Furthermore, the thicknesses of aquitards, distance to the hydraulic 
window, distance to fault, fault density, and vertical hydraulic conductivity could also 
affect the leaking rate (Elmahdy and Mohamed 2013; Liu et al. 2018). Besides, other 
geographical variables such as distance from main rivers, distance to the drainage 
and drainage density are also widely considered as influencing factor to groundwater 
salinity (Winkel et al. 2008). The halite dissolution process is characterized by salt 
rock/sediment properties, soil type, and horizontal and vertical hydraulic conduc-
tivity. Variables which represent the effect human activities on groundwater salinity 
in the study area are the groundwater level, extraction capacity, well density, extrac-
tion density, and operation time. The severity of seawater intrusion may also depend 
on the distance to the sea, groundwater level, well density, extraction capacity, extrac-
tion density, and horizontal hydraulic conductivity (Lee et al. 2016; Yechieli et al. 
2019). The four processes mentioned above interact with each other and result in a
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Table 25.1 Influencing factors for prediction of groundwater salinity using machine learning 
models 

No. Explanatory variables Coding Unit Data type 

1 Distance to the sea DTS km Numeric 

2 Distance to main river DTR km Numeric 

3 Distance to drainage DTD km Numeric 

4 Drainage density DD m/km Numeric 

5 Distance to hydraulic window DTW km Numeric 

6 Distance to fault DTF km Numeric 

7 Fault density FD m/km Numeric 

8 Distance to saline sources DTS km Numeric 

9 Temperature of groundwater T °C Numeric 

10 Depth of screen well DSW m Numeric 

11 Soil properties AT # Ordinal 

12 Horizontal hydraulic conductivity Kh m/d Numeric 

13 Vertical hydraulic conductivity Kv m/d Numeric 

14 Thickness of aquitard WA m Numeric 

15 Operation time (of well) OTW year Numeric 

16 Well density WD well/km2 Numeric 

17 Discharge density DCD m3/km2 Numeric 

18 Extraction capacity EXC m3/d Numeric 

19 Groundwater level GWL m.abmsl Numeric 

20 Lithology LT # Ordinal 

complex salinization process in the study area (An et al. 2018). Based on the anal-
ysis mentioned above, 20 influencing factors were selected for predicting the spatial 
distribution of salinity in groundwater (Table 25.1). 

25.4 The Proposed Methodology for the Prediction 
of Groundwater Salinity in Coastal Aquifers 
with Artificial Intelligence Techniques 

The modelling framework used in this study is as follows: (1) data pre-processing, 
(2) feature selection, (3) model parameters, (4) model performance and evaluation, 
(5) Data post-processing (Fig. 25.3).
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S1.Data pre-processing 
Potential Variables 
Groundwater level 
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Soil properties 
Distance to main river 
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Fig. 25.3 Methodological chart of the present study 

25.4.1 Data Pre-processing 

Prior to modelling, 215 groundwater samples from middle and lower Pleistocene 
aquifers were selected, and each sample consists of 20 variables (Table 25.1). The 
measured Cl− concentration is assigned as a dependent variable, while the 20 influ-
encing factors are assigned as independent variables. The dataset was then randomly
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split to training and testing datasets 80% of the dataset was used for training, and 
20% of the dataset was used for testing. 

Since the influencing factors for predicting groundwater salinization have signif-
icantly different ranges, normalization was used to convert the values of numeric 
columns into a range from 0 to 1 using the following equation: 

Xn = 
Xi − Xmax 

Xmax − Xmin 
(25.3) 

where Xn and Xi represent the moralized and raw training and testing data; Xmax and 
Xmin are the minimum and maximum of the training and testing data. 

25.4.2 Feature Selection 

As many factors control groundwater salinization processes in coastal aquifers, the 
selection of influencing factors plays a vital role in reducing time and cost of computa-
tion processes and improving the accuracy of prediction results. For several decades, 
numerous variable selection methods have been applied to identify significant vari-
ables before feeding machine learning algorithms to construct predictive models such 
as filters, wrappers, and embedded techniques (Kohavi and John 1997; Guyon and 
Elisseeff 2006; Hira and Gillies 2015). 

Recently, Random Forests (RF) and its improved algorithms (XGB) have been 
widely used not only for predicting but also for selecting essential variables as the 
embedded technique to predictive models (Rodriguez-Galiano et al. 2014; Zeng et al. 
2018; Zhao et al. 2019). In this study, the RF algorithm is employed to select input 
parameters for predicting chloride concentrations in the middle and lower Pleistocene 
aquifers of the study area. The procedure was followed below steps: 

Step 1: Estimation of permutation-based mean squared error (MSE) reduction as 
Eq. (25.2): 

MSEt 
OO  B  =

1 

nO  O  B(t) 
. 
nO  O  B∑ 

i=1 

( 
yi − ŷi O  OB,t 

) 
(25.4) 

where MSEOOB is mean squared error, nOOB is the total of out-of-bag (OOB) 
samples, yi is the measure Cl− concentration in groundwater samples, and ŷi O  OB,t 

is the predicted Cl− concentration of the i-th sample from a decision tree t of OOB 
samples. 

Step 2: Estimation of MSE for permuted input variable xi using the following 
equation:
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MSEt 
OO  B[xi permuted] = 1 

nO  O  B(t) 
. 
nO  O  B∑ 

i=1 

( 
yi − ŷi O  OB,t 

) 
[xi permuted] (25.5) 

Step 3: Estimation of variable importance score for variable xi using the following 
equation: 

V I  (xi ) = 
1 

Ttree  
. 
T tree∑ 

t=1 

(MSEt 
OO  B[xi permuted] − MSEt 

OO  B  ) (25.6) 

25.4.3 Model Configuration and Training 

The configuration and training for the three machine learning models are conducted 
using a training dataset (80% of measured data). For the RF model, the tree-net 
system is built from 1000 trees with a maximum of 4 nodes per tree and the maximal 
tree depth of 17. For the GP model, the radial basis function (RBF) kernel and 
gamma = 0.014 are chosen to predict chloride concentrations in groundwater. In the 
GO-XGB model, each XGB prediction rule is trained with tenfold cross-validation 
to identify the number of trees (ntree) that minimizes an objective function. The 
prediction rule is fine-tuned by identifying the optimal combination of hyperparam-
eters that further minimized the objective function for each area. The hyperparameters 
include the number of base classifiers (n_estimators), the maximum depth of each tree 
(max_depth), the learning rate (eta), the number of observations in each leaf node of 
the tree (min_child_weight), the minimum loss reduction required to partition further 
a leaf node on a single tree (gamma and reg_alpha), the proportion of observed data 
were used by XGB algorithm to grow each tree (subsample), and the proportion 
of predictor variables used at each level of tree splitting (colsample_bytree). The 
n_estimators is defined as the number of base classifiers and improper setting of 
n_estimators will result in model failure. The maximum_tree_depth was selected 
appropriately to prevent model complexity. This parameter is crucial in controlling 
under and over-fitting issues in which too small values of maximum_tree_depth will 
cause underfitting while too large values will result in overfitting. Learning_rate 
represents the weight-reduction factor of each base classifier. Min_child_weight 
represents the weight of the minimum leaf node sample and is used to improve 
the generalization of the model. The value of gamma ranges from 0 to infinitive, 
which represents the minimum loss reduction required to make a further partition on 
a leaf node of the tree. The gamma parameter controls the drop value of the model 
loss function when the node splits. The subsample controls the proportion of random 
sampling for each tree, typically between 0.5 and 1. The regularization parameter 
alpha (reg_alpha) denotes the L1 regularization term of the weight, which is used to 
simplify the complexity of the model.
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In this study, the XGB algorithm was used to construct the model and opti-
mizes parameters with GA. The details framework is described in Fig. 25.3. The  
main parameters of the XGB algorithm that need to be optimized are max_depth, 
learning_rate, min_child_weight, subsample, alpha, and gamma. After adjusting 
parameters by a genetic optimization function, we found the best value of these 
parameters max_depth = 15, learning_rate = 0.153, min_child_weight = 1, 
subsample = 1, alpha = 0.005, and gamma = 0.0015. In addition, n_estimators 
= s1200, colsample_bytree = 0.635, and n_estimators = 1200 were selected. The 
decision rule was retrained and applied to the withheld testing data to predict a new 
series of count observations and evaluate the accuracy of the decision rule based on 
the optimal values of the hyperparameters and number of trees. The variable impor-
tance of each environmental predictor variable was also obtained using the XGB 
algorithm. 

25.4.4 Performance Assessment 

The performance criteria used for evaluating model performance depends on the 
output variables of each model, e.g., categorical or continuous variable (Tien Bui 
et al. 2016). For evaluating the model with output values is continuous, performance 
criteria such as the root mean square error (RMSE), the mean absolute percentage 
error (MAPE), the mean absolute error (MAE), and Pearson’s correlation coefficient 
(r) (Pham et al. 2019a) are used. Each performance criteria term indicates specific 
information regarding predictive performance efficiency (Li et al. 2016). RMSE is 
a quadratic scoring rule that measures the average magnitude of errors. It gives a 
relatively high weight to large errors; hence, it is most useful when large errors are 
undesirable. The Mean Absolute Percentage Error (MAPE) is the average of absolute 
errors divided by actual observation values. MAE measures the average magnitude 
of errors in a set of predictions without considering their direction. It is a linear 
score, implying that all individual differences between predictions and corresponding 
observed values are weighted equally in the average. The r is a measure of the linear 
correlation between observation and prediction values. RMSE, MAPE, MAE, and 
rare estimated by the equations (Pham et al. 2019b): 

RM  SE  = 

/∑n 
t=1 

( 
yobs i − y pr i 

)2 

n 
(25.7) 

MAE  = 
1 

n 

n∑ 

i=1 

(yobs i − y pr i ) (25.8) 

MAP  E  = 
n∑ 

i=1 

||| y
obs 
i −y pr i 

yobs i 

||| 
n

× 100 (25.9)
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r = 
∑n 

t=1(y
obs 
i − yobs) × (y pr i − ypr ) /∑n 

t=1(y
obs 
i − yobs) × 

/∑n 
t=1(y 

pr 
i − ypr ) 

(25.10) 

where yobs i and y pr i are measured and predicted Cl− concentration in observation i, 
and n is the number of observations. Higher values of rare preferred, i.e. close to 1, 
means better model performance and regression line fits the data well. Conversely, 
the lower values of RMSE, MAPE, and MAE values the better model performances. 

25.4.5 Generating Groundwater Salinity Map 

The results from the three machine learning models are then used to create chloride 
concentration maps. Prediction maps are constructed with four main steps as follows: 
(i) interpolating chloride concentrations in groundwater based on prediction results, 
(ii) reclassifying chloride concentrations based on the drinking water standard from 
WHO, (iii) estimating the salinity affected area, and (iv) estimating the number of 
people in each class of salinity affected area. In the first step, the predicted chloride 
concentrations are interpolated to create maps using the Kriging method by Spatial 
Analysis Tool in ArcGIS 10.3. In the second step, the interpolated results are reclas-
sified into four main classes, including low (Cl− < 250 mg/L), moderate (250 ≤ Cl− 

≤ 500 mg/L), high (500 ≤ Cl− ≤ 1000 mg/L), and high (Cl− > 1000 mg/L). In the 
third step, the salinity affected area for each class of the salinity concentration in 
groundwater was calculated using geometry functions in ArcGIS 10.3. In the final 
step, the numbers of people within each salinity affected area was estimated based 
on the salinity-affected areas and population density. 

25.5 Result and Discussion 

25.5.1 Feature Selection for the Groundwater Salinity 
Modelling 

The results in Table 25.2 showed the variable importance selection with the 
permutation based MSE decreased values ranged from 4.03 to 0.69.

In the study area, the top ten most important influencing factors are ground-
water level (4.03), vertical hydraulic conductivity (2.50), lithology (2.37), extraction 
capacity (2.10), horizontal hydraulic conductivity (1.85), distance to saline sources 
(1.73), well density (1.26), distance to hydraulic windows (0.85), depth of screen 
wells (0.79), and thickness of aquitards (0.69). The result reveals that groundwater 
salinization depends not only on hydrogeological features (vertical and horizontal 
hydraulic conductivities, lithology, paleo-saline sources, hydraulic connection, depth
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Table 25.2 Variable importance (permutation based MSE decreased) 

No. Variable Permutation-based MSE 
decreased 

Number of nodes used Ranking 

1 Groundwater level 4.03 636 1 

2 Vertical hydraulic 
conductivity 

2.50 35 2 

3 Lithology 2.37 50 3 

4 Extraction capacity 2.10 281 4 

5 Horizontal hydraulic 
conductivity 

1.85 260 5 

6 Distance to saline 
sources 

1.73 379 6 

7 Well density 1.26 242 7 

8 Distance to hydraulic 
window 

0.85 529 8 

9 Depth of screen well 0.79 518 9 

10 Thickness of aquitard 0.69 376 10 

11 Groundwater 
temperature 

0.64 354 11 

12 Age well 0.62 135 12 

13 Extraction density 0.59 208 13 

14 Distance to fault 0.59 400 14 

15 Fault density 0.54 158 15 

16 Soil properties 0.35 83 16 

17 Distance to main river 0.32 863 17 

18 Drain density 0.30 686 18 

19 Distance to Drain 0.25 628 19 

20 Distance to Sea 0.10 2199 20

of screen well, and thickness of aquitard) but also groundwater extraction practices 
(groundwater level, extraction capacity, well density). These influencing factors also 
play an important role in transportation processes of other solutes such as arsenic, 
fluoride and nitrate in groundwater (Ransom et al. 2017;Winkel et al.  2008; Podgorski 
et al. 2018). The hydrogeological features influence on moving of saline groundwater 
from shallow to deeper aquifers (Hung et al. 2019) while groundwater exploitation 
activities exacerbate groundwater salinization (Hoang and Bäumle 2018; An et al.  
2018). The result may also suggest that saline groundwater leaking from upper layers 
to lower layers is a dominant process, resulting in an increase of chloride concentra-
tion in groundwater of the study area. Hydraulically, an increase hydraulic gradient 
due to groundwater depletion coupled with high vertical hydraulic conductivity, think 
aquitard, and high-density gradients cause an increase of vertical flow rate as shown 
in the following equations (Ma et al. 2015).
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qv = −δ × Kv 

[ 
hup − hlow 

ΔL
+ ε 

( 
Cup + Clow 

2 

)] 
(25.11) 

δ = 
μ0 

μ 
= 1 − ξ × ε (25.12) 

where: δ—the ratio of the dynamic viscosity of freshwater to seawater; Kv is a 
vertical hydraulic conductivity (m d−1); hup and hlow denote the freshwater equivalent 
hydraulic heads at upper and lower layers (m), ΔL is the distance from upper to lower 
layers (m); μ0 and μ denote the dynamic viscosity (kg m−1 d−1); ξ is a constant; 
Cup is average observed salinity of pore water in upper aquifers (kg/m3); Clow is 
observed salinity of pore water in lower aquifers (kg/m3), and ε is a constant. The 
similar findings were also observed in other coastal aquifers in the world (Chatton 
et al. 2016; Cary et al.  2015; Delsman et al. 2014; Larsen et al.  2017), which indicated 
strong influences of over groundwater exploitation on seawater intrusion in coastal 
aquifers (Yechieli et al. 2019; Yu and Michael 2019; Han et al. 2015). 

The other major influencing factors have permutation based MSE values from 
0.64 for groundwater temperature to 0.10 for distance to the sea. It was noted that 
the distance to the sea had a little score value of 0.10, indicating less contribution 
to groundwater salinization processes. This result may suggest that direct seawater 
intrusion from the sea to coastal aquifers of the study is not dominant in the study 
area. 

25.5.2 Model Performance Evaluation and Comparison 

In this study, the predictive models for groundwater salinization are built using the 
training and the testing datasets, drawing upon a total of 215 observation wells and 
20 variables. The results of the goodness-of-fit assessment of the three machine 
learning algorithms-based models including the GO-XGB model, RF model and the 
GP model for both training and testing steps are shown in Fig. 25.4 and summarized 
in Tables 25.3 and 25.4, and respectively.

The training model performance (Table 25.3) shows that the GO-XGB model 
has the lowest value RMSE = 141.042 mg/L, followed by the RF (RMSE = 
176.179 mg/L) and GP (RMSE = 176.179 mg/L) models. The similar trend is also 
observed in MAE and MAPE for the GO-XGB (MAE = 4.864, MAPE = 2.070), 
RF (MAE = 58.286 mg/L, MAPE = 29.410 mg/L) and GP (MAE = 71.802 mg/L, 
MAPE = 61.42 mg/L). In contrast, the GO-XGB model has the highest r-value of 
0.999 compared to that of RF (r = 0.786) and Gaussian Processes (r = 0.882). 

In the testing step, the results of the predictive models are validated by using the 
testing dataset consisted of 20% random samples from the original dataset (Fig. 25.4). 
The testing results show that the GO-XGB model has the highest performance 
compared to the RF and GP models (Table 25.4). For example, GO-XGB has the 
best result of r = 0.787, followed by the RF model (r = 0.596) and the GP model
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Fig. 25.4 Observed versus predicted chloride concentration for training and test data for a GO-
XGB, b RF, and GP model
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Table 25.3 Goodness-of-fit of the ground water salinity models on the training dataset 

Statistical metrics GO-XGB RF Gaussian processes 

RMSE 18.450 244.754 219.329 

MAE 4.864 58.286 71.802 

MAPE 2.070 29.410 61.42 

r 0.999 0.786 0.882 

Table 25.4 Prediction performance of the ground water salinity models using the validation dataset 

Statistical metrics GO-XGB RF Gaussian processes 

RMSE 141.042 176.179 305.782 

MAE 74.993 84.708 127.355 

MAPE 87.250 95.780 130.840 

r 0.787 0.596 0.214

(r = 0.214). Similarly, the GO-XGB model shows the lowest values of RMSE = 
141.042 mg/L, MAE = 74.993 mg/L, and MAPE = 87.250 mg/L, followed by the 
RF (RMSE = 176.179 mg/L, MAE = 84.708 mg/L, MAPE = 95,780 mg/L) and GP 
(RMSE = 305.782 mg/L, MAE = 127.355 mg/L, MAPE = 130.840 mg/L) models. 

Overall, the GO-XGB model produces an excellent predictive performance with 
the highest value of r = 0.99 and r = 0.787 for training and validation steps among 
three predictive models. Likewise, this model also has the lowest values of RMSE, 
MAE, and MAPE compared to the RF and GP models in both training and validation 
steps. 

Although we have considered various influencing factors to provide the accurate 
prediction of groundwater salinity in a coastal area of the Mekong River Delta, 
however, the processes of seawater intrusion into fresh aquifers depend not only 
human activities but also natural variations. Therefore, for broader applicability, 
these models would be required to include additional influencing factors such as 
the regional groundwater flow system, tidal fluctuation, climate change, and sea-
level rise. Also, the performance of prediction models may have to compare with 
numerical models and other stochastic models. 

25.5.3 Mapping Salt-Groundwater-Affected Area 

In general, the average results obtained from the three machine learning models, 
including the GO-XGB (Fig. 25.5), RF (Fig. 25.6), and the GP models (Fig. 25.7), 
shows the main salinity-affected region, extending from the My Thanh River to 
the Central of Soc Trang City. It was noted that the prediction results from GO-
XGB model strongly agree with salinity observation in this study (Fig. 25.8) and
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previous studies (An et al. 2018). Accordingly, high chloride concentrations which 
exceed the limited standard for drinking water Cl− > 250 mg/L is predicted in the 
areas with to paleo-saline sources, high extraction rates, and significant groundwater 
level depletion. The severely affected areas are the Tran De estuary, the My Thanh 
river and the central region including Soc Trang city and My Xuyen district where 
chloride concentrations in wells elevate to 2000 mg/L. Surprisingly, low chloride 
concentrations (Cl− < 250 mg/L) in groundwater is predicted in coastal areas even if 
in the production wells located just around 2 km from the sea and at −10.5 m below 
the mean sea level (m.a.m.sl). Meanwhile, Soc Trang city, which locates far from 
the sea approximately 40 km, is predicted to have high chloride concentrations in 
groundwater. This reveals that processes of salinity accumulation in aquifers are very 
complex, depending not only on natural processes but also human-induced activities. 

The spatial distributions of affected areas with moderate and high chloride concen-
tration are relative differences among models. For example, in the GO-XGB model, 
the affected area is predicted to extend from the coastal line to the central area of the 
study (Fig. 25.6). 

In addition, the profoundly affected area is observed in the substantial groundwater 
extraction locations. These locations are located close to the paleo-saline groundwater 
sources coupled, and these areas also have high groundwater extraction rates and 
significant groundwater level depletion. This indicates that these influencing factors 
play an essential role in increasing chloride concentrations in groundwater. The 
similar finding is also in-line with recent studies (Hoang and Bäumle 2019; Tran

District boundary 
River and Sea 

Chloride (mg/L) 
< 250 
250-500 
500-1000 
> 1000 

Fig. 25.5 Predicted chloride concentration in groundwater of the study area using GO-XGB model
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District boundary 
River and Sea 

Chloride (mg/L) 
< 250 
250-500 
500-1000 
> 1000 

Fig. 25.6 Predicted chloride concentration in groundwater of the study area using RF model 

District boundary 
River and Sea 

Chloride (mg/L) 
< 250 
250-500 
500-1000 
> 1000 

Fig. 25.7 Predicted chloride concentration in groundwater of the study area using GP model

et al. 2019). Conversely, the results from the RF (Fig. 25.6) and the GP models 
(Fig. 25.7) show that the moderately affected areas are the central area of the study 
region.
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District boundary 
River and Sea 

Chloride (mg/L) 
< 250 
250-500 
500-1000 
> 1000 

Fig. 25.8 Measured chloride concentration in groundwater of the study area

The three models provide different predictions in the affected area (Table 25.5). 
The RF model predicted the largest affected area (3118.50 km2) followed by the GP 
model (3055.35 km2) and GO-XGB (2879.0 km2) with low chloride concentration 
(Cl− < 250 mg/L). Meanwhile, the largest affected-areas with moderate-high chloride 
concentration (Cl− = 250–500 mg/L) are observed by the GO-XGB model (433 
km2), the GP model (256.65 km2), and the RF model (193.50 km2). Both the GO-
XGB model and the GP models predicted the large affected-areas with high (Cl = 
500–1000 mg/L) and very chloride concentration (>1000 mg/L) while RF model 
predicted non-affected areas of high and very high chloride concentration.

25.6 Concluding Remarks 

In this study, three advanced machine learning models, including GO-XG, RF, and 
GP, were employed to predict chloride concentration in groundwater and assess 
impacts of salinity on water users in a coastal area of the Mekong River Delta, 
Vietnam. Twenty influencing factors were evaluated using the RF model based on 
score estimation. The most influenced factors to high salinity are related to both 
groundwater exploitation (groundwater level depletion, extraction capacity, and well 
density) and hydrogeological features (vertical hydraulic conductivity lithology, hori-
zontal hydraulic conductivity, distance to the saline source, distance to the hydraulic 
window, depth of screen well, and thickness of aquitard). This finding confirms
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previous studies in which groundwater exploitation is one of the most important 
influencing factors to seawater intrusion in coastal lowland regions. 

All three models perform well in predicting the probability of groundwater 
salinity. However, the GO-XGB model provides the highest accuracy prediction with 
RMSE = 18.450, MAE = 4.864, MAPE = 2.070, and r = 0.999 compared to the 
GP model (RMSE = 219.329, MAE = 71.329, MAPE = 61.42, and r = 0.882) and 
the RF model (RMSE = 244.754, MAE = 58.286, MAPE = 29.410, and r = 0.786). 
This indicated that GO-XGB model could be a useful tool to predict groundwater 
salinization in the coastal aquifers. 

All three models predicted that approximately 35% of the total population might 
have to use groundwater with chloride concentration exceeding the WHO drinking 
water standard (Cl− > 250 mg/L). More seriously, urban areas are close to paleo-
saline sources. While the thicknesses of aquitards are thin and groundwater levels 
deplete quickly, leaking paleo-saline becomes more server and cause groundwater 
salinization. This is stimulated by the hydraulic connection between aquifers and 
over groundwater exploitation. Given the rapid increase of water demand, significant 
groundwater depletion and unpredictable impacts of climate change and sea-level 
rise, immediate actions must be taken by the water authorities to find a suitable 
solution to this environmental crisis. 

Conflicts of Interest The authors declare no conflict of interest. 
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