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Abstract. Bayesians and frequentists are now largely focused on devel-
oping methods that perform well in a frequentist sense. But the widely-
publicized replication crisis suggests that performance guarantees are
not enough for good science. In addition to reliably detecting hypotheses
that are incompatible with data, users require methods that can probe
for hypotheses that are actually supported by the data. In this paper, we
demonstrate that valid inferential models achieve both performance and
probativeness properties. We also draw important connections between
inferential models and Deborah Mayo’s severe testing.
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1 Introduction

Important decisions affecting our everyday experiences are increasingly data-
driven. But is data helping us make better decisions? The widely-publicized
replication crisis in science raises serious concerns, e.g., the American Statistical
Association’s president commissioned a formal Statement on Statistical Signifi-
cance and Replicability.1 The lack of any clear guidance in that statement reveals
that there are important and fundamental questions concerning the foundations
of statistical inference that remain unanswered:

Should probability enter to capture degrees of belief about claims? ... Or
to ensure we won’t reach mistaken interpretations of data too often in the
long run of experience? (Mayo 2018, p. xi)

The two distinct roles of probability above correspond to the classical frequen-
tist and Bayesian schools of statistical inference, which have two fundamentally
different priorities, referred to here as performance and probativeness, respec-
tively. Over the last 50+ years, however, the lines between the two perspectives
1 https://magazine.amstat.org/blog/2021/08/01/task-force-statement-p-value/.
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and their distinct priorities have been blurred. Indeed, both Bayesians and fre-
quentists now focus almost exclusively on performance. Such considerations are
genuinely important for the logic of statistical inference:

even if an empirical frequency-based view of probability is not used directly
as a basis for inference, it is unacceptable if a procedure. . . of representing
uncertain knowledge would, if used repeatedly, give systematically mislead-
ing conclusions (Reid and Cox 2015, p. 295).

As the replication crisis has taught us, there is more to inference than achieving,
say, Type I and II error rate control. Beyond performance, we are also concerned
with probativeness, i.e., can methods probe for hypotheses that are genuinely
supported by the observed data? Modern statistical methods cannot achieve both
performance and probativeness objectives, so a fully satisfactory framework for
scientific inferences requires new perspectives.

To set the scene, denote the observable data by Y . The statistical model
for Y will be denoted by PY |θ, where θ ∈ Θ is an unknown model parameter.
Note that the setup here is quite general: Y , θ, or both can be scalars, vectors,
or something else. We focus here on the typical case where no genuine prior
information is available/assumed. So, given only the model {PY |θ : θ ∈ Θ} and
the observed data Y = y, the goal is to quantify uncertainty about the unknown θ
for the purpose of making inference. For concreteness, we will interpret “making
inference” as making (data-driven) judgments about hypotheses concerning θ.
Let H denote a collection of subsets of Θ, containing the singletons and closed
under complementation, and associate H ∈ H with a hypothesis about θ.

Section 2.1 briefly describes the Bayesian vs. frequentist two-theory problem in
our context of hypothesis testing. There we justify our above claim that modern
statistical methods fail to meet both the performance and probativeness objec-
tives. This includes the default-prior Bayes solution that aims to strike a balance
between the two theories. What holds the default-prior Bayes solution back from
meeting the performance and probativeness objectives is its lack of calibration,
which is directly related to the constraint that the posterior distribution be a
precise probability. Fortunately, the relatively new inferential model (IM) frame-
work, reviewed briefly in Sect. 2.2 below, is able to achieve greater flexibility by
embracing a certain degree of imprecision in its construction. Our main contri-
bution here, in Sect. 3, is to highlight the IM’s ability to simultaneously achieve
both performance and probabitiveness. Two illustrations are presented in Sect. 4
and some concluding remarks are given in Sect. 5.

The probativeness conclusion is a direct consequence of the IM output’s
imprecision. That the additional flexibility of imprecision creates opportunities
for more nuanced judgments is one of the motivations for accounting for impre-
cision, so this is no big surprise. But our contribution here is valuable for several
reasons. First, the statistical community is aware of this need to see beyond basic
performance criteria (e.g., Mayo 2018), but no clear, general, and easy-to-follow
guidance has been offered. What we are suggesting here, however, is simple: just
follow the general theory of valid IMs and you get both performance and pro-
bativeness assurances. Second, it showcases the importance of the role of belief
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functions and imprecise probability more generally, by reinforcing the key point
that imprecision is not due to an inadequate formulation of the problem, but,
rather, an essential part of the complete solution.

2 Background

2.1 Two-Theory Problem

In a nutshell, the two dominant schools of thought in statistics are as follows.

Bayesian. Uncertainty is quantified directly through specification of a prior
probability distribution for θ, representing the data analyst’s a priori degrees
of belief. Bayes’s theorem is then used to update the prior to a data-dependent
posterior distribution for θ. The posterior probability of a hypothesis H rep-
resents the analyst’s degree of belief in the truthfulness of H, given data, and
would be essential for inference concerning H. That is, the magnitudes of the
posterior probabilities naturally drive the data analyst’s judgments about which
hypotheses are supported by the data and which are not.

Frequentist. Uncertainty is quantified indirectly through the use of reliable
procedures that control error rates. Consider, e.g., a p-value for testing a hypoth-
esis H. What makes such a p-value meaningful is that, by construction, it tends
to be not-small when H is true. Therefore, observing a small p-value gives the
data analyst reason to doubt the truthfulness of H:

The force with which such a conclusion is supported is logically that of the
simple disjunction: Either an exceptionally rare chance has occurred, or
[the hypothesis] is not true (Fisher 1973, p. 42).

The p-value does not represent the “probability of H” in any sense. So, a
not-small (resp. small) p-value cannot be interpreted as direct support for H
(resp. Hc) or any sub-hypothesis thereof.

The point is that, at least in principle, Bayesians focus on probativeness
whereas frequentists focus on performance. But the line between frequentist and
modern Bayesian practice is not so clear. Even Bayesians typically assume little
or no prior information, as we have assumed here, so default priors are the norm
(e.g., Berger 2006; Jeffreys 1946). But with a default prior, the “degree of belief”
interpretation or the posterior probabilities is lost,

[Bayes’s theorem] does not create real probabilities from hypothetical prob-
abilities (Fraser 2014, p. 249)

and, along with it, the probative nature of inferences based on them,

...any serious mathematician would surely ask how you could use [Bayes’s
theorem] with one premise missing by making up an ingredient and think-
ing that the conclusions of the [theorem] were still available (Fraser 2011,
p. 329).
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The default-prior Bayes posterior probabilities could still have performance
assurances if they were suitably calibrated. But the false confidence theorem
of Balch et al. (2019) shows that this is not the case: there exists false hypothe-
ses to which the posterior distribution tends to assign large probabilities. This
implies that inferences based on the magnitudes of default-prior Bayes posterior
probabilities can be “systematically misleading” (cf. Reid and Cox). This is per-
haps why modern Bayesian analysis focuses less on the posterior probabilities
and more on the performance of procedures (tests and credible sets) derived from
the posterior. Hence modern Bayesians and frequentists are not so different.

The key take-away message is as follows. Frequentist methods focus on detect-
ing incompatibility between data and hypotheses (performance), so they do not
offer any guidance on how to identify hypotheses actually supported by the
data (probativeness). Default-prior Bayesian methods are effectively no differ-
ent, so this critique applies to them too. More specifically, the default-prior Bayes
posterior probabilities lack the calibration necessary to reliably check for either
incompatibility or support. Therefore, neither of the dominant schools of thought
in statistical inference are able to simultaneously achieve both the performance
and probativeness objectives.

2.2 Inferential Models Overview

Inferential models (IMs) were first developed in Martin and Liu (2013, 2015) to
balance the Bayesians’ desire for belief assignments and the frequentists’ desire
for error rate control. A key distinction between IMs and the familiar Bayesian
and frequentist frameworks is that the output is an imprecise probability or, more
specifically, a necessity–possibility measure pair. This imprecision, however, is
not the result of an inability to precisely specify a model, etc., it is a necessary
condition for inference to be valid in the sense defined in Sect. 3 below.

Possibility is an entirely different idea from probability, and it is some-
times, we maintain, a more efficient and powerful uncertainty variable,
able to perform semantic tasks which the other cannot (Shackle 1961,
p. 103).

The false confidence theorem establishes that validity cannot be achieved via
ordinary probability. More recently it has been shown that the possibility-
theoretic formulation is key to achieving the relevant performance-related prop-
erties.

The original IM construction put forward in Martin and Liu (2013) relied on
suitable random sets, whereas Liu and Martin (2021) recently offered a direct
construction using possibility measures. The latter construction starts by associ-
ating data Y and unknown parameter θ with an unobservable auxiliary variable
U with known distribution PU via the formula

A(Y, θ, U) = 0, U ∼ PU .

Let π denote a plausibility contour on the U -space such that the corresponding
possibility measure is consistent with PU in the sense that PU (B) ≤ supu∈B π(u)
for all subsets B. Now define its extension to Θ as
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πy(ϑ) = sup
u:A(y,ϑ,u)=0

π(u), ϑ ∈ Θ.

Assuming this is a genuine/normal contour, then it defines an IM for θ having
the mathematical form of a possibility measure with upper probability

Πy(H) = sup
ϑ∈H

πy(ϑ), H ⊆ Θ,

and lower probability Πy(H) = 1 − Πy(Hc). The IM’s output is meaningful
thanks to the properties it satisfies, which we discuss in Sect. 3. The performance-
related properties have been the focus in previous work, but it is interesting that
the performance properties together with the inherent imprecision in the IM’s
possibilistic output leads to probativeness properties too.

3 Two P’s in the Same Pod

3.1 Performance

As discussed above, the property that gets the most attention in the statistics
literature is performance, i.e., procedures developed for the purpose of making
inference-related decisions (e.g., accept or reject a hypothesis) have error rate
control guarantees. This is genuinely important: if statistical methods are not
even reliable, then they have no hope of helping to advance science.

Our main result here, which is not new, is that procedures derived from a
valid IM achieve the desired performance-related properties. As presented in the
reference given in Sect. 2.2 above, we say that an IM without lower and upper
probability output y �→ (Πy,Πy) is valid if

sup
θ∈H

PY |θ{ΠY (H) ≤ α} ≤ α, for all α ∈ [0, 1] and allH ∈ H. (1)

This means that, with respect to the model PY |θ, it is a relatively rare event
that the IM assigns relatively small upper probability to a true hypothesis about
θ. Property (1) closely resembles the defining stochastically-no-smaller-than-
uniform property of p-values. As such, Fisher’s “logical disjunction” argument
also applies to the valid IM’s output, giving it objective meaning.

Although we are not aware of Fisher ever making such a statement, we believe
that Fisher’s disdain for the Neyman-style behavioral approach to statistical
inference at least partially stemmed from the fact that such properties would
be immediate consequences of the calibration needed for his “disjunction” argu-
ment to apply. So if Fisher’s calibration is satisfied, then Neyman’s error rate
control is a corollary. Indeed, if the IM with output (Πy,Πy), with corresponding
plausibility contour πy, is valid in the sense of (1), then

– for any fixed α ∈ (0, 1), the test “reject H if and only if Πy(H) ≤ α” controls
the frequentist Type I error probability at level α, and
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– for any fixed α ∈ (0, 1), the set Cα(y) = {ϑ : πy(ϑ) > α} is a 100(1 − α)%
confidence set, i.e., its frequentist coverage probability at least 1 − α.

These claims are almost immediate consequences of (1); see, e.g., Martin (2021)
for a proof. Therefore, valid IMs offer performance guarantees.

Here it is also worth briefly pointing out that the connection between valid
IMs and performance guarantees is even more fundamental. It was recently
shown in Martin (2021) that every procedure with provable frequentist per-
formance guarantees has, working behind the scenes, a valid IM with the form
of a possibility measure. So, not only does the IM framework offer performance
guarantees, it is really the only framework that does so. This also highlights the
deep connections between frequentist inference and possibility theory.

3.2 Probativeness

The literature on IMs has largely focused on performance, i.e., that (1) implies
that the output is suitably calibrated which leads to the results quoted in
Sect. 3.1 above. While the IM output does, as discussed above, represent lower
and upper probabilities, or degrees of necessity/support and possibility, a clear
explanation of their post-data interpretation, and why non-additivity is valuable,
has yet to be given. This section aims to fill that gap.

Standard performance metrics, such as Type I and Type II error probabilities,
are not data-dependent and, therefore, cannot directly speak to whether the
actual observed data offer any direct support to a particular hypothesis. The IM
output returns both lower and upper probabilities but, so far, the literature has
largely only focused on one of these, typically the upper probability. Perhaps the
lower probability will be of some value after all.

Suppose that the data y is such that Πy(H) is relatively large, i.e., the data
are not incompatible with the hypothesis H. If, instead, Πy(H) were small, then
we can apply all of what we are about to describe to Hc instead of H. If we
determine that the data are not incompatible with H, then a natural follow-up
question is to ask if the data actually support the hypothesis H or any proper
subset, say, H ′ ⊂ H. For this, we propose to consider the lower probability

Πy(H ′) = 1 − Πy(H ′c) = 1 − sup{πy(ϑ) : ϑ 	∈ H ′},

where the right-most expression is exclusive to the case where the IM output
takes the form of a possibility measure, as we consider here. Coincidentally or
not, Shafer (1976, Ch. 11) refers to the lower probability function, H �→ Πy(H),
as a support function, which is consistent with how we propose to use it here. If
Πy(H) is not small, then Πy(H ′) ≤ Πy(H) can be small or (relatively) large, and
its magnitude determines the extent to which the data supports the truthfulness
of H ′, beyond just compatibility or plausibility. On the one hand, if Πy(H ′) is
small and Πy(H) is relatively large, then H ′ is plausible—or not incompatible—
with the data y but there is little direct support in y for its truthfulness. This
corresponds to a case with relatively large “don’t know” in the sense of Dempster
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(2008). On the other hand, if both Πy(H ′) and Πy(H) are relatively large, then
y is not only compatible with H, it also directly supports H ′.

What makes the “if Πy(H ′) is relatively large, then infer H ′” judgment
warranted? Readers familiar with imprecise probability might be surprised by
this question—this is precisely what lower probabilities are designed for—but
remember that Πy is not a subjective assessment of the data analyst’s degrees
of belief. So the data analyst should require, à la Reid and Cox, that their IM
will tend not to lead them to erroneous judgments. Like Πy is the dual to Πy,
there is a corresponding dual to the validity property (1):

sup
θ �∈H

PY |θ{ΠY (H) > 1 − α} ≤ α, for all α ∈ [0, 1] and allH ∈ H. (2)

It is easy to verify that (2) and (1) are equivalent, but it is worth considering both
versions because, while the latter refers primarily to assessments of compatibility
between data and hypotheses, the former is relevant to judgments about when
data actually support a certain hypothesis.

In Sect. 1, we remarked that there have been recent efforts by statisticians
to supplement the standard p-values, etc. with measures designed to probe for
hypotheses supported by the data. In particular, Mayo (2018) proposes a so-
called severity measure but only gives one concrete example. If we extrapolate
her suggestion beyond that one example, then it boils down to what we described
above. That is, the map H ′ �→ Πy(H ′) on subcollections of H can be used to
probe for hypotheses that are actually supported by the data.

There is, however, a minor difference between ours and Mayo’s perspective.
On the one hand, Mayo is thinking in terms of a specific test of a particular
hypothesis, so her severity measure is intended to describe how severe the test
is, how deep that tests probes for actual support in the data beyond just compat-
ibility or lack thereof. On the other hand, we are thinking in terms of big-picture
uncertainty quantification. In light of the fundamental connection between valid
IMs and frequentist inference, perhaps it is no surprise that Mayo’s proposal,
despite coming from a slightly different perspective, ends up directly aligning
with what the valid IM does automatically; see Sect. 4.1. It is now clear that
probabitiveness is inherent in the valid IM—no supplements needed!

4 Illustrations

4.1 Normal Mean

Mayo (2018, p. 142) describes a hypothetical water plant where the water it
discharges is intended to be roughly 150◦ Fahrenheit. More specifically, under
ideal settings, water temperature measurements ought to be normally distributed
with mean 150◦ and standard deviation 10◦. To test the water plant’s settings, a
sample Y = (Y1, . . . , Yn) of n = 100 water temperature measurements are taken;
then the sample mean, Ȳ , is N(150, 1). Since water temperatures higher than
150◦ might damage the ecosystem, of primary interest are hypotheses Hϑ =
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Fig. 1. Results of the valid IM applied to Mayo’s normal mean example; the red dots
correspond to the values in Table 3.1 of Mayo (2018) (Color figure online)

(−∞, ϑ] for ϑ near 150. For hypotheses of this form, the “optimal” IM (Martin
and Liu 2013, Sect. 4.3) has upper probability

Πy(Hϑ) = 1 − Φ(ȳ − ϑ), ϑ ∈ R,

where Φ denotes the standard normal distribution function.
Suppose we observe ȳ = 152, which is potentially incompatible with the

hypothesis H150. Indeed, a plot of the upper probability is shown in Fig. 1(a)
and we see that, at ϑ = 150, the upper probability is smaller than 0.05, so we
would be inclined to reject the hypothesis θ ≤ 150. To probe for support of
subsets of the alternative hypothesis, we also plot the lower probability

Πy(Hc
ϑ) = Φ(ȳ − ϑ), ϑ ∈ R,

and we see that there is, in fact, non-negligible support in the data for, say,
Hc

151 = (151,∞). These results agree exactly with the analysis presented in
Mayo (2018) based on her supplement of the ordinary p-value with a severity
measure. Mayo elaborates on this example in a couple different ways but, for the
sake of space, suffice it to say that our analysis perfectly agrees with hers.

4.2 Bivariate Normal Correlation

Suppose that Y consists of n independent and identically distributed pairs Yi =
(Y1,i, Y2,i) having a bivariate normal distribution with zero means, unit variances,
and correlation θ ∈ [−1, 1]. Let PY |θ denote the corresponding joint distribution.
An asymptotic pivot based on the maximum likelihood estimator, θ̂, can be
constructed and the corresponding Wald test would look very similar to that
in Sect. 4.1. This bivariate normal correlation problem, however, corresponds to
one of those “curved exponential families” where θ̂ is not a sufficient statistic
so some efficiency is lost in the Wald test for finite n. So we take a different
approach here, which extends us beyond the cases Mayo considers.
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Fig. 2. Results of the valid IM applied to Efron’s law school admissions data.

Let ϑ �→ Ly(ϑ) denote the likelihood function for θ based on data y. Follow-
ing Martin (2015, 2018), a valid IM can be constructed based on the relative
likelihood, ry(ϑ) = Ly(ϑ)/Ly(θ̂), with plausibility contour function

πy(ϑ) = PY |ϑ{rY (ϑ) ≤ ry(ϑ)}, ϑ ∈ [−1, 1].

This resembles the p-value function for a suitable likelihood ratio test. The IM’s
output, (Πy,Πy), is determined by optimizing the contour function.

As an illustration of the ideas presented above, consider the law school admis-
sions data analyzed in Efron (1982), which consists of n = 15 data pairs with
Y1 = LSAT scores and Y2 = undergrad GPA. For our analysis, we standardize
these so that the mean zero–unit variance is appropriate. Of course, this stan-
dardization has no effect on the correlation, which is our object of interest. In
this case, the sample correlation is 0.776; the maximum likelihood estimator,
which has no closed-form expression, is θ̂ = 0.789. A plot of the plausibility
contour πy for this data is shown in Fig. 2(a). The horizontal line at α = 0.05
determines the 95% plausibility interval, which is an exact 95% confidence inter-
val. It is clear that the data shows virtually no support for θ = 0, but there is
some marginal support for the hypothesis H = (0.5, 1]. To probe this further,
consider the class of sub-hypotheses Hϑ = (ϑ, 1], ϑ > 0.5. A plot of the function
ϑ �→ Πy(Hϑ) is shown in Fig. 2(b). As expected from Panel (a), the latter func-
tion is decreasing in ϑ and we clearly see no support for Hϑ as soon as ϑ ≥ θ̂.
But there is non-negligible support for Hϑ with ϑ less than, say, 0.65–0.70.

5 Conclusion

Here we showed that there is more to the IM framework than what has been pre-
sented in the existing literature. Specifically, the validity property, together with
its inherent imprecision implies both performance and probativeness assurances.
This is of special interest to the belief function/possibility theory community as
it showcases the fundamental importance of its brand of imprecision.
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We also identified a connection between IMs and Mayo’s severe testing frame-
work. This is beneficial to severe testers, as the IM construction exposed in
Sect. 2.2 provides a general recipe for assessing severity in a wide range of mod-
ern applications. We also find it attractive that the IM framework has this
notion of probativeness built in, as opposed to being an add-on to classical test-
ing. Illustrations in cases beyond the simple, low dimensional problems above
will be reported elsewhere, as well as the extension of the notion of probative-
ness/severity to statistical learning problems.
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