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Preface

The theory of belief functions, also referred to as evidence theory or Dempster-Shafer
theory, was first introduced by Arthur P. Dempster in the context of statistical inference,
and was later developed by Glenn Shafer as a general framework for modeling epistemic
uncertainty. These early contributions have been the starting points of many important
developments not only in statistics but also in computer science and engineering. The
theory of belief functions is now well established as a general framework for reasoning
with uncertainty, and has well understood connections to other frameworks such as
probability, possibility, and imprecise probability theories. It has been applied in diverse
areas such as machine learning, information fusion, and pattern recognition.

The series of biennial International Conferences on Belief Functions (BELIEF),
sponsored by the Belief Functions and Applications Society (BFAS), is dedicated to the
confrontation of ideas, the reporting of recent achievements, and the presentation of the
wide range of applications of this theory. The first edition of this conference series was
held in Brest, France, in 2010. Later editions were held in Compiègne, France, in 2012,
Oxford, UK, in 2014, Prague, Czech Republic, in 2016, again in Compiègne, France,
in 2018, and in Shanghai, China, in 2021 together with the 1st International Conference
on Cognitive Analytics, Granular Computing, and Three-way Decisions (CCGT 2021).

The 7th International Conference on Belief Functions (BELIEF 2022) was held
in Paris, France, during October 26–28, 2022. It was held both onsite and online due
to the COVID-19 situation. This volume represents the proceedings of BELIEF 2022,
and it contains 29 accepted submissions, each reviewed by either two or three peers
in a single-blind review process. Original contributions were solicited on theoretical
aspects (including, for example, mathematical foundations, links with other uncertainty
theories) as well as on methods for various problems including classification, clustering,
data fusion, and on applications in various areas including medical data processing,
environmental studies, and so on.

We would like to thank all the people who made this volume and this conference
possible: all contributing authors, the organizers, and the Program Committee mem-
bers who helped to build such an attractive program. We are especially grateful to our
four invited speakers, Stéphane Canu (INSA Rouen Normandie, France) for his talk
“Robustness of neural networks and adversarial attacks”, Rémi Bardenet (CNRS and
Lille University, France) for his talk “Topics in Monte Carlo computation and Bayesian
learning”, Ozgur Erdinc (Raytheon Technologies Research Center, USA) for his talk
“Challenges in AutomatingMission-Critical DecisionMaking Systems: A Practitioner’s
Perspective”, and Philippe Xu (Université de Technologie de Compiègne, France) for his
talk “Fusion of heterogeneous deep neural networks with belief functions”. We would
also like to thank all our generous sponsors: the Belief Functions and Applications
Society (BFAS), the DATAIA Institute, the SATIE Laboratory, the Sorbonne Center of
Artificial Intelligence (SCAI), the International Journal of Approximate Reasoning, and
Elsevier. Furthermore, we would like to thank the editors of the Springer series Lecture
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Notes in Artificial Intelligence (LNCS/LNAI) and Springer for their dedication to the
production of this volume.

August 2022 Sylvie Le Hégarat-Mascle
Isabelle Bloch
Emanuel Aldea
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A Distributional Approach for Soft
Clustering Comparison and Evaluation

Andrea Campagner1(B), Davide Ciucci1, and Thierry Denœux2,3

1 University of Milano-Bicocca, viale Sarca 336, 20126 Milan, Italy
a.campagner@campus.unimib.it

2 Université de technologie de Compiègne, CNRS,
UMR 7253 Heudiasyc, Compiègne, France

3 Institut universitaire de France, Paris, France

Abstract. The development of external evaluation criteria for soft clus-
tering (SC) has received limited attention: existing methods do not pro-
vide a general approach to extend comparison measures to SC, and are
unable to account for the uncertainty represented in the results of SC
algorithms. In this article, we propose a general method to address these
limitations, grounding on a novel interpretation of SC as distributions
over hard clusterings, which we call distributional measures. We pro-
vide an in-depth study of complexity- and metric-theoretic properties of
the proposed approach, and we describe approximation techniques that
can make the calculations tractable. Finally, we illustrate our approach
through a simple but illustrative experiment.

Keywords: Soft clustering · Evidential clustering · External validation

1 Introduction

External clustering evaluation, defined as the act of objectively assessing the
quality of a clustering result by means of a comparison between two or more
clusterings (one of which is usually assumed to be the correct one), is one of
the most relevant steps in clustering analysis [19]. In the case of hard clustering
(HC), where each object is unambiguously assigned to a single cluster, several
criteria have been considered in the literature [5,17,18].

By contrast, how to properly evaluate the results of a clustering analysis is
much less clear in the case of soft clustering (SC) methods. Several SC methods
have been proposed, including rough clustering (RC) [14], fuzzy clustering (FC)
[2], possibilistic clustering (PC) [13] and evidential clustering (EC) [7,9]. The
development of evaluation measures for SC has largely focused on the extension
of common measures [1], notably the Rand index, to the setting of FC [4,11,12],
while only recently a formulation of this approach has been introduced for the
more general case of EC [8]. Nonetheless, a general approach to extend other
comparison measures to SC is still lacking. Furthermore, existing measures fail
to properly distinguish and quantify different types of uncertainty that can arise
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Le Hégarat-Mascle et al. (Eds.): BELIEF 2022, LNAI 13506, pp. 3–12, 2022.
https://doi.org/10.1007/978-3-031-17801-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17801-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-17801-6_1


4 A. Campagner et al.

in SC [8], namely: ambiguity, i.e., the inability to uniquely assign an object to a
single clustering (typical of RC); and partial assignment, i.e., the assignment of
objects to multiple clusters (typical of FC and PC).

In this article, we propose a general method to address these limitations,
which makes it possible to extend any clustering evaluation to the case of SC.
This approach allows us providing a full account of the uncertainty in the two
clusterings to be compared. It relies on a novel interpretation of SC as represent-
ing distributions over HCs, referred to as distributional measures. We provide
an in-depth study of the proposed approach, with respect to both computa-
tional complexity and metric properties1 Furthermore, we describe approxima-
tion techniques that can make the approach tractable. Finally, we illustrate the
application of the proposed method through a simple but illustrative example
involving commonly adopted SC algorithms.

2 Background and Related Work

In the following section we provide basic background on clustering (Sect. 2.1)
and evaluation measures for SC (Sect. 2.2).

2.1 Background on Clustering

Let X = {x1, ..., xn} be a set of objects. A HC is an unique assignment of
objects in X to clusters. Formally, a HC can be represented as a mapping C :
X �→ Ω, where Ω = {ω1, ..., ωk} is a set of clusters. This representation is
called object-based. An equivalent representation, called relational representation,
can be obtained by defining a clustering as an equivalence relation [C] ⊆ X ×
X. Clearly, for the case of HC the two representations are equivalent. Given
a clustering C, [C] denotes its relational representation. Given two clusterings
C1, C2 we say that they are equivalent iff [C1] = [C2]; we then write C1 ∼ C2.

As mentioned in the introduction, in SC the unique assignment assumption
is relaxed: the intuition is that we allow uncertainty in the cluster assignments.
In the most general framework of EC, the uncertainty about cluster assignment
is represented as a Dempster-Shafer mass function. Formally, using the object-
based representation, an EC is a set M = {mx}x∈X , where each mx is a mass
function: i.e., a function mx : 2Ω �→ [0, 1] such that

∑
A⊆Ω mx(A) = 1. If the

mass functions mx are logical, then the collection R = {mx}x∈X is said to be
a RC. A RC can be seen equivalently as a set of HCs [3]. Namely, a HC C
is compatible with R if ∀x ∈ X, C(x) ∈ R(x). Then, R can be represented by
C(R) = {C : C is compatible with R}. If all mx are Bayesian, then the collection
F = {mx}x∈X is a FC. Finally, if all mx are consonant, then the collection
P = {mx}x∈X is a PC. Both FC and PC can be alternatively represented as a
collection of cluster membership vectors F = {μx}x∈X . In PC it is assumed that
∀x ∈ X, maxω∈Ω μx(ω) ≤ 1, while in FC that ∀x ∈ X,

∑
ω∈Ω μx(ω) = 1.

1 Due to space constraints, the complete version of all proofs appears online at https://
arxiv.org/abs/2206.09827.

https://arxiv.org/abs/2206.09827
https://arxiv.org/abs/2206.09827
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A relational representation can also be defined for the case of EC. Let
Θ = {s,¬s} be the frame where s denotes that two objects are in the same
cluster, and ¬s the opposite event. Given an EC M , the corresponding rela-
tional representation can be obtained, for any two objects x, y ∈ X, by com-
bining mx,my using Dempster’s rule of combination and then computing the
restriction mxy of the resulting mass function to Θ [8].

Finally, we note that, if we interpret a SC as describing the uncertainty in
regard to an underlying (unknown) HC, then two types of uncertainty can be
distinguished. First, partial assignment, i.e., the fact that for ω1, ω2 ∈ Ω it may
happen that mx(ω1),mx(ω2) > 0. Second, ambiguity, i.e., the assignment of
some mass to non-singleton events, describing our inability to exactly determine
to which cluster an object belongs. It is easy to observe that in a FC only partial
assignment is relevant, since all the mass is assigned to the singletons, while in
the case of RC, only ambiguity is present. By contrast, the EC formalism is
flexible enough to represent both types of uncertainty.

2.2 Clustering Comparison Measures

Several measures have been defined to compare clusterings. Given two HCs
C1, C2, a commonly adopted approach to compare them is to evaluate the num-
ber of object pairs x, y ∈ X on which they agree. Formally, the Rand index can
be defined as:

Rand(C1, C2) =
|{(x, y) ∈ X2 : (x, y) ∈ ([C1] ∩ [C2]) ∪ ([C1]c ∩ [C2]c)}|

|X|2 . (1)

It is easy to show that the Rand index is a similarity on HCs.
Several extensions of the Rand index to the setting of SC have been consid-

ered. In the case of FC and PC, Campello et al. [4] and Frigui et al. [11] proposed
to use a t-norm ∧ and a t-conorm ∨ in place of classical set operators. This set-
ting was later generalized to the setting of RC [10], by means of a transformation
from RC into FC. A further generalization of the Rand index was proposed by
Hüllermeier et al. [12], in the setting of FC, and Denœux et al. [8], in the more
general setting of EC. This approach is based on the use of a normalized metric
dM on mass functions, that is then extended to compare ECs as

RandE(M1,M2) =
2

n(n − 1)

∑

x�=y∈X

1 − dM (mxy
1 ,mxy

2 ). (2)

The authors of [8,12] note that, while the measure they propose is a pseudo-
similarity, it is not completely satisfactory for the comparison of ECs as it does
not distinguish between partial assignment and ambiguity.

Another commonly adopted approach for the definition of clustering evalua-
tion measure grounds on information theory. Let C1, C2 two HCs. The mutual
information is defined as

MI(C1, C2) =
∑

ω1
i ∈Ω1

∑

ω2
j ∈Ω2

pij log
pij

p1i · p2j
, (3)
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where p1i = |{x ∈ X : C1(x) = ω1
i }|/|X|, and similarly for each ω2

i ∈ Ω2, while
pij = |{x ∈ X : C1(x) = ω1

i and C2(x) = ω2
j }|/|X|. The mutual information

is a similarity over HCs. This measure has been extended to the case of RC in
[3], by representing RCs as collections of compatible HCs. To our knowledge, no
proposal to extend these metrics to the more general case of EC can be found
in the literature.

Finally, another comparison approach grounds on the notion of edit distance
between partitions. The partition distance [5] which, for two HCs C1, C2, is
defined as the minimum number of objects to be moved to transform C1 into C2

(or, equivalently, C2 into C1), can be computed as

dπ(C1, C2) =
1

|X| − 1
min

w

1
2

∑

i

|ω1
i Δω2

w(i)|, (4)

where w is a permutation function, and Δ is the symmetric difference operator.
It is easy to note that dπ is a normalized metric. An extension of the partition
distance to the case of FC was proposed by Zhou [20]. The obtained measure
is a proper generalization of the partition distance and is a metric. As for the
mutual information, to our knowledge, the extension of the partition distance to
rough and EC has not been considered in the literature.

3 A General Framework for Soft Clustering Evaluation
Measures

As shown in the previous section, most of the research on clustering comparison
measures for SC has focused on the analysis of some specific indices, while a
general methodology for obtaining such measures is still missing. Furthermore,
as noted in [8,12], most of the existing methods fail to satisfy reasonable metric
properties and can thus hardly be used for the objective comparison of SCs.
Notably, also the more principled approaches [8] can have some drawbacks, such
as the inability to properly distinguish between different types of uncertainty
arising in SC. In this section, we propose an approach that attempts to address
these limitations, based on the representation of a SC as a distribution over HCs.

3.1 Distribution-Based Representation of Soft Clustering

As shown in Sect. 2.1, a RC R can be represented as a set C(R) of HCs C. Based
on this observation, we extend this representation to general SCs. Formally, given
an EC M , we consider the following probability distribution over RCs:

mM (R) =
∏

x∈X

mx(R(x)), (5)

which can also be seen as a Dempster-Shafer mass function over HCs. Given an
EC M and its distribution-based representation mM , we denote with F(M) the
collection of focal RCs of mM , that is F(M) = {R : mM (R) > 0}.
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The distribution-based representation for RC, FC and PC can then be
obtained as a special case of Eq (5). Indeed, in the case of RC, mM is logi-
cal (i.e. |F(mM )| = 1). In the case of a FC F = {μx}x, where μx : C �→ [0, 1] is a
probability distribution, the focal RCs are all singletons (i.e., HCs), thus we can
define PrF (C) =

∏
x∈X μx(C(x)) Finally, given a PC P and a t-norm ∧, we can

view P as a possibility distribution over HCs PossP (C) =
∧

x∈X μx(C(x)). The
possibility distribution PossP can equivalently be represented as a consonant
mass function, i.e., a mass function for which the focal RCs are nested. Note
that, when ∧ is the product t-norm, we recover the case of FC.

3.2 Distributional Measures

Let d be a normalized metric on HCs. Since, as shown in the previous section,
any SC can be seen as a distribution over HCs, an intuitive approach would
be to extend d to a distribution-valued function, providing a quantification of
the belief about the real value of the evaluation measure. The intuition behind
this idea is based on the definition of SC as representing a clustering with some
uncertainty affecting our knowledge with respect to the assignment of objects to
clusters. Thus, it is natural to require that an evaluation measure for SC should
transfer this uncertainty to the possible outcomes of the evaluation.

Therefore, intuitively, a measure over RCs would provide, given two RCs
R1, R2, a set of values, representing all possible distances between HCs com-
patible with R1, R2. More generally, a measure over ECs would provide a mass
function over possible values of d. Formally, we define the distributional measure,
based on d, between two RCs (resp., PCs, ECs) as, respectively:

dR(R1, R2) = {d(C1, C2) : C1 ∈ C(R1) and C2 ∈ C(R2)} (6)

∀v ∈ R, dP (P1, P2)(v) =
∨

C1,C2:d(C1,C2)=v

PossP1(C1) ∧ PossP2(C2) (7)

∀V ∈ 2R, dE(M1,M2)(V ) =
∑

R1,R2:dR(R1,R2)=V

mM1(R1) · mM2(R2) (8)

where ∧,∨ are a t-norm and the corresponding dual s-conorm. It is easy to
observe that dE is a generalization of dR and dP . For ease of notation, we dis-
tinguish the case of dP where ∧ = ⊗P ,∨ = ⊕P (resp., the product t-norm and
the corresponding t-conorm) and we denote it as dF , since it can be applied
directly to the case of FC. Intuitively, dE(M1,M2) = V can be interpreted as
the evidence supporting the statement “The distance between the two real HCs
underlying M1,M2 is within V ”. Therefore, dE provides a complete representa-
tion of the possible distance values that arise when comparing HCs compatible
with M1,M2. Though, clearly, dE is not a metric, we can see that it satisfies the
properties stated in the following theorem.

Theorem 1. Function dE satisfies (M3) (see Appendix A2). dE(M1,M2)(0) =
1 iff there exists a HC C s.t. for i = 1, 2, R ∈ F(Mi) =⇒ ∀C ′ ∈ C(R), C ′ ∼ C.
2 https://arxiv.org/abs/2206.09827.

https://arxiv.org/abs/2206.09827
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As a consequence of the previous result, the value dE(M1,M2)(0) can be inter-
preted as the evidence that the unknown HCs corresponding to M1 and M2 are
the same (have a distance equal to 0). Indeed, dE assigns full evidence to value
0, if and only if M1,M2 are totally compatible. In particular, simple equality
between M1,M2 does not suffice to obtain dE(M1,M2)(0) = 1, unless M1,M2

are HCs.
In regard to computational complexity, it is easy to show that computing dR

(resp., dF , dP , dE) is computationally easy w.r.t. the size of the distribution-
based representation introduced in the previous section, while it is intractable
w.r.t. the size of the object-based representation:

Theorem 2. The problem of computing dR (resp., dF , dP , dE) has complexity
O(km), where m = |{x ∈ X : |R(x)| �= 1}| and k = |Ω| is the number of clusters.
More precisely, dR can be computed in constant amortized time, while dF , dP , dE

can be computed in at most linear amortized time.

Interval Representation. A possible solution to the intractability of comput-
ing the distributional measures would be to consider a compact representation
of the latter. For the case of RC, dR could be summarized as the interval:

〈dlR, duR〉(R1, R2) = 〈min{v ∈ R : v ∈ dR(R1, R2)},max{v ∈ R : v ∈ dR(R1, R2)}〉.
We note that this definition satisfies the following properties:

Proposition 1. Let R1, R2 be two RCs. Then, 1 − dl
R is a consistency: in par-

ticular dl
R = 0 iff C(R1) ∩ C(R2) �= ∅. By contrast, du

R is a meta-metric: in
particular, du

R = 0 iff R1 = R2 and |C(R1)| = 1, that is iff R1 = R2 is a HC.

Corollary 1. du
R is a metric iff either R1, R2 is a HC.

As a result of the previous corollary, in the special case where the aim is to
evaluate a RC R with respect to a HC C representing the ground truth, then du

R

is guaranteed to be a metric. Nonetheless, it is easy to observe that computing
〈dl

R, du
R〉 is still computationally hard:

Theorem 3. Let R1, R2 be two RCs, represented through the object-based rep-
resentation. Then, the problem of computing 〈dl

R, du
R〉 is NP-HARD3.

For the case of FC, PC and, more generally, EC, a possible approach to
obtain a similar summarization would be to apply a decision rule to transform
the distribution-valued dF , dP , dE into simpler indices [6]. An example of this
approach would be to compute the following lower and upper expectations:

E(dE)(M1,M2) =
∑

V ⊆2R

dE(M1,M2)(V )min
d∈V

d = E(dl
R), (9)

E(dE)(M1,M2) =
∑

V ⊆2R

dE(M1,M2)(V )max
d∈V

d = E(du
R). (10)

3 The problem is trivially in P w.r.t. the distribution-based representation of R1, R2.
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If M1,M2 are two FCs we obtain that E(dE) = E(dE) = E(dF ). Similarly to
the case of RC, it is easy to show that the following properties hold:

Theorem 4. Let M1,M2 be two ECs. Then E(dE) is a meta-metric. Further-
more, E(dE) satisfies only (M1b) and (M2) (see Appendix A4). In particular:

– If M1,M2 is a HC, then 1 − E(dE) is a consistency and E(dE) is a metric;
– If F1, F2 are two FCs, then E(dF ) is a meta-metric.

From the computational complexity point of view, computing E(dE), E(dE)
is at least as hard as computing 〈dl

R, du
R〉. However, for the case of FC, it is easy

to show that for certain base distances d, E(dF ) can be computed efficiently:

Proposition 2. Let d = 1−Rand. Then, E(dF ) can be computed in time O(n2).

We leave the problem of characterizing the general complexity of computing
E(dE), E(dE) as open problem.

3.3 Approximation Methods

In the previous section we proposed distributional measures as a general app-
roach to extend any HC comparison measure to a SC comparison measure.
Nonetheless, the computation of these distributional measures is, in general,
intractable. For this reason, in this section, we introduce some approximation
methods and algorithms, based on a sampling approach, which can be applied
to any base distance between HCs.

We start with the case of the summarized representation of dR, that is with
dl

R, du
R. Given two RCs R1, R2, we draw s samples (C1

1 , C1
2 ), . . . , (Cs

1 , C
s
2) uni-

formly from C(R1), C(R2). Then, we can approximate dl
R and du

R as, respec-
tively, d̂l

R = mini∈{1,...,s} d(Ci
1, C

i
2) and d̂u

R = maxi∈{1,...,s} d(Ci
1, C

i
2). Clearly,

the following result holds:

Proposition 3. The following bounds hold for any ε > 0:

Pr(du
R − d̂u

R > ε) ≤ F (du
R − ε)s, P r(d̂l

R − dl
R > ε) ≤ 1 − (

1 − F (ε − dl
R)

)s

(11)

where F is the cumulative distribution function (CDF) of the probability distri-
bution pR defined as pR(t) = |{C1∈C(R1),C2∈C(R2):d(C1,C2)=t}|

|dR(R1,R2)| .

Since for each ε, the quantity F (du
R − ε) (resp., F (ε− du

R)) is stricly less than
1, it holds that Pr(du

R − d̂u
R > ε) (resp., Pr(d̂l

R − dl
R > ε)) decays exponentially

w.r.t. the size of the sample s. However, we note that the quality of the previ-
ously described approximation method largely depends on dR. In particular, the
convergence in Eq (11) is influenced by the tailedness of pR: the heavier the tails
of pR, the lower the approximation error.

For the case of FC, if we use the expected value E(dF ) to summarize dF and
we use a sampling procedure to estimate E(dF ) as d̂F then we can obtain a tail
bound by applying Hoeffding’s inequality:
4 https://arxiv.org/abs/2206.09827.

https://arxiv.org/abs/2206.09827
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Proposition 4. Assume that d is a normalized metric on HCs. Then:

Pr(|d̂F − E(dF )| ≥ ε) ≤ 2e−2sε2 (12)

Hence, the deviation between the empirical mean d̂F and E(dF ) has exponential
decay in the size of the sample s.

Combining Eqs (11) and (12), a similar result holds also for dE :

Proposition 5. Assume that d is a normalized metric on HCs. Let d̂l
E , d̂u

E be
the sample estimates of E(dE), E(dE). Then:

Pr(|d̂l
E − E(dE)| ≥ ε) ≤ 2e−2sε2 , P r(|d̂u

E − E(dE)| ≥ ε) ≤ 2e−2sε2 (13)

Given two ECs M1,M2, the previous estimate requires that d̂l
E , d̂u

E are com-
puted by sampling pairs R1, R2 of RCs from the distributions mM1 ,mM2 and
then computing the exact values of dl

R(R1, R2), du
R(R1, R2). As a consequence

of Proposition 3, this may not be feasible when |X| is large. In such cases, a
possible solution would be to compute d̂l

E , d̂u
E by means of nested sampling (i.e.,

first we sample a RC R from mM , then we sample a HC C from C(R)). In this
case, however, one should expect a larger approximation error. Finally, we note
that all the above mentioned sampling-based approximation methods can easily
be implemented in time complexity O(n2s).

4 Illustrative Experiment

In this section, we illustrate the use of the proposed metrics using the Ander-
son’s Iris dataset. This latter is a small-scale benchmark problem comprising 150
objects, four numerical features and three perfectly balanced classes. We selected
this dataset as, the three classes being approximately linearly separable, it can
be expected that any SC algorithm would give as output a clustering close to
being an HC. As a consequence of Theorem 3, this is a necessary condition for
efficient computation of the exact versions of the distributional measures.

We considered five different clustering algorithms, namely: k-means (KM),
rough k-means (RKM) [16], fuzzy c-means (FCM) [2], possibilistic c-means
(PCM) [13] and evidential c-means (ECM) [15]. In order to reduce the complexity
of computing the distributional measures, we set the algorithm hyper-parameters
to obtain clusterings close to being hard. In particular, for RKM we set ε = 1.1,
for FCM and PCM we set m = 5, and for ECM we set δ = 10, β = 5, α = 5.
The output of each algorithm was compared with the ground truth labeling of
the iris dataset. We considered, in particular, the distributional generalizations
of the Rand index (D-RI) and the partition distance (D-PD), as well as their
sampling-based approximations (S-RI, S-PD). Code was implemented in Python
(v. 3.8.8), using scikit-learn (v. 0.24.1), numpy (v. 1.20.1) and scipy (v. 1.6.2).

The results of the experiment are reported in Table 1, in terms of the metrics
values as well as running time (in seconds). As far as running time is con-
cerned, we can observe that the cost of computing the exact versions of the pro-
posed measures sharply increases when considering more general SC algorithms.
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Table 1. Results of the experiment. For the Rand index higher is better, while for the
partition distance lower is better.

Metric KM RKM FCM PCM ECM

D-RI 0.877
(0.034 s)

(0.874, 0.886)
(0.802 s)

0.876
(784.388 s)

(0.839, 0.941)
(979.053 s)

(0.781, 0.944)
(1394.69 s)

S-RI - (0.874, 0.886)
(0.429 s)

0.876
(11.266 s)

(0.860, 0.927)
(19.848 s)

(0.681, 0.819)
(19.845 s)

D-PD 0.111
(0.031 s)

(0.099, 0.113)
(0.803 s)

0.112
(184.707 s)

(0.033, 0.122)
(224.31 s)

(0.041, 0.229)
(431.57 s)

S-PD - (0.100, 0.113)
(0.202 s)

0.112
(11.391 s)

(0.072, 0.103)
(13.739)

(0.154, 0.209)
(16.424 s)

Indeed, the running times of D-RI and D-PD for ECM were approximately twice
those of FCM and PCM. On the other hand, the differences in running time for
the approximation algorithms were much smaller, and indeed the running times
for FCM, PCM and ECM were similar.

In terms of approximation quality, even though for RKM and FCM there were
no differences between the approximated and exact results, this was not the case
for PCM and ECM. In particular, we note that the sampling-based approxi-
mation algorithm systematically underestimated the uncertainty in clustering
comparison results, by producing intervals that were narrower than the exact
ones. Nonetheless, we note that the approximation methods provided results
that were aligned with the exact ones, with smaller values according to one
method associated to smaller values according to the other one.

5 Conclusion

In this article we proposed a general framework for extending clustering compar-
ison measures from HC to EC (hence, as special cases, also to RC, FC and PC),
that we called distributional measures. We studied the metric- and complexity-
theoretic properties of the proposed measures and, since a major limitation of
the proposed approaches lies in their high computational complexity, we also
proposed some strategies for approximation based on sampling . Finally, we
illustrated the application of the proposed methods through a simple experi-
ment.

We believe that this article could provide a first step toward the development
of general and principled approaches for the comparison of SC algorithms. For
this reason, we deem the following problems to be worthy of further investigation:
1) Generalizing Proposition 2 to other base distance measures, and determining
whether this result can be extended to EC; 2) Designing more refined sampling
approaches that can be used to correct the uncertainty underestimation that we
observed in the experiments.
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Abstract. Classical prototype-based clustering algorithms usually can-
not achieve satisfactory results when the data is insufficient. Transfer
learning can be adopted to address this problem. For instance, in the
recently proposed transfer clustering methods Transfer Evidential C-
Means (TECM), the prototypes of data in the source domain are trans-
ferred to the target domain to help improve the clustering performance.
However, in TECM the prototypes are calculated based on all the fea-
tures of samples in the clusters in source data sets. Due to distribution
shift in two domains, sometimes the prototypes obtained from all the
features of samples in the source may not be a good representation for
clusters in the target domain. In this paper, we propose an approach
for solving this problem by exploiting causal inference, and introduce
a new prototype-based causal transfer evidential clustering algorithm.
The experimental results demonstrate the effectiveness of the proposed
clustering approach.

Keywords: Causality · Transfer clustering · Distribution shift ·
Prototype-based clustering

1 Introduction

Transfer learning can utilize data or knowledge in the source domain to improve
the performance of learning tasks on the target domain with only a small amount
of data or even without labeled samples [6]. It relaxes the restriction of tradi-
tional machine learning methods that training and test data should follow the
same probability distribution, and only requires a certain similarity between
two domains. Currently, transfer learning has been successfully applied to many
machine learning tasks.

Clustering is often used as a data analysis technique for discovering interest-
ing patterns in the data sets. Sometimes, the number of samples in the clustering
task is too small to construct a good cluster method. If we can get some possible
help from some related domain, the clustering performance may be improved.
In this sense, transfer learning can be a good try.

Evidential clustering allows ambiguity, uncertainty or doubt in the assign-
ment of objects to clusters by using mass functions to describe the membership
of objects [2]. Due to the advantages of effectively expressing uncertain cluster

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Le Hégarat-Mascle et al. (Eds.): BELIEF 2022, LNAI 13506, pp. 13–22, 2022.
https://doi.org/10.1007/978-3-031-17801-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17801-6_2&domain=pdf
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structure in the data sets, it has been widely applied in many fields such as
community detection [16], medical image segmentation [9] and so on. We have
proposed an evidential transfer clustering method named TECM [15], where pro-
totypes of clusters in the source domain are transferred to the target domain as
complementary knowledge to help improve the clustering performance. However,
as there is inevitable distribution shift in two domains, the prototypes calculated
by all the features of the source data may not well represent the clusters in the
target. This problem is related to one of the key issues in transfer learning, that
is to say, what to transfer?

Feature selection, as one of the key problems in machine learning, can remove
irrelevant and redundant features from the dataset [5]. Classical feature selection
methods are commonly based on the correlation between features and the class
attributes. But some authors claim that correlation is not robust for predictive
models and propose the concept of causal features [12]. It can contribute to build
interpretable and robust models by capturing the causal relationship between
variables [11].

Here we will use an illustrative example to demonstrate the necessity of causal
feature in the transfer clustering task. Figures 1 (a) and (b) are from the dataset
in [4]. As we can see, both the source and target domains consist of pictures
of cats and dogs. The task is to separate the images of cats from those of dogs
in the target with the help of images in the source. In the source domain, 80%
of the cats are in the grass while the remaining 20% are in the water. For the
dogs, 80% are in the water, and the rest are in the grass. In the target domain,
however, the opposite setup is used. In the situation, a big distribution shift
occurs between the source and target.

a. Source domain b. Target domain

Fig. 1. An example where causal feature selection is required for transfer clustering.

Admittedly, many features related to the image labels (i.e., cats or dogs) can
be obtained from the source domain. Here we consider three features: the length
of the ear (X1), whether to have whiskers (X2), and the body humidity (X3). If
the correlation-based approaches are used, all the three features should be taken
into account due to their strong correlation with class attributes. However, if
the causality-based approaches are adopted, the body humidity will no longer
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be considered as it does not have a robust relationship with the animal labels. It
is easy to imagine that the causal features such as X1 and X2 which are stably
related to the animal type can be good shared knowledge to be transferred across
domains. These two features are domain invariant. On the contrary, X3 is not a
good alternative as it changes significantly with the environment (domain).

To address the limitations and enable effective feature transfer across differ-
ent domains in the unsupervised clustering task, we will propose a prototype-
based causal transfer evidential clustering method in this paper. The remainder
of this paper is organized as follows. Some related knowledge is introduced in
Sect. 2. The proposed causal transfer clustering algorithm is presented in detail
in Sect. 3. Some experiments are conducted in Sect. 4. Conclusions are drawn in
the final section.

2 Related Work

Some related knowledge with this paper such as transfer evidential clustering
and causal feature selection methods will be introduced in this section.

2.1 Transfer Evidential Clustering

Denote the n data samples in the target domain by X = {x1,x2, ...,xn}, and
c denotes the number of the cluster. The discernment frame of classes is Ω =
{ω1, ω2, ..., ωc}. The available knowledge in the source domain is represented by
prototypes V (s) = {v1

(s),v2
(s), ...,vc

(s)}. The superscript (s) indicates that the
prototypes are from the source domain.

TECM aims to look for the optimal credal partition
M = (m1,m2, ...,mn ) ∈ R

n×2c

and the cluster centers V = (v1,v2, ...,vc)
in the target domain by minimizing following objective function:

JTECM(M ,V ) =
n∑

i=1

∑

Aj⊆Ω

Aj �=∅

cα
j mβ

ijd
2
ij +

n∑

i=1

δ2mβ
i∅

+ β1

⎡

⎢⎢⎣
n∑

i=1

∑

Aj⊆Ω

Aj �=∅

cα
j mβ

ijd
(s)2
ij +

n∑

i=1

δ2mβ
i∅

⎤

⎥⎥⎦ + β2

c∑

k=1

||v(s)
k − vk||2, (1)

subject to: ∑

Aj⊆Ω,Aj �=∅
mij + mi∅ = 1, (2)

where mij denotes mi(Aj) and mi∅ denotes mi(∅). cj = |Aj | denotes the cardinal
of Aj . dik denotes xi and the barycenter v̄k:

d2ik = ||xi − v̄k||2. (3)
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Notion vh denotes the center of samples in cluster ωh, and parameters α, β and
δ control the degree of penalization for imprecise classes with high cardinality,
the fuzziness of the partition, and the amount of outliers respectively.

The Lagrange multiplier method can be used to optimize the objective func-
tion. The iterative update rule for the membership and prototypes can be shown
as follows. The equations for updating the credal membership can be derived as:

mij =

(
1/

(
cα
j

(
d2ij + β1d

2(s)
ij

))) 1
β−1

∑
Ak⊆Ω

Ak �=∅

(
1/

(
cα
k

(
d2ik + β1d

2(s)
ik

))) 1
β−1

+
(

1
δ2+β1δ2

) 1
β−1

, (4)

mi∅ =

(
1

δ2+β1δ2

) 1
β−1

∑
Ak⊆Ω

Ak �=∅

(
1/

(
cα
k

(
d2ik + β1d

2(s)
ik

))) 1
β−1

+
(

1
δ2+β1δ2

) 1
β−1

, (5)

The rules for updating the prototypes in the target domain are:

(H + β2I) v = B + β2v
(s), (6)

where I is the (c × c) identity matrix, B is a matrix of size (c × p) and H is a
matrix of size (c × c):

Blq =
n∑

i=1

xiq

∑

Aj⊆Ω

Aj �=∅

cα−1
j mβ

ijslj =
n∑

i=1

xiq

∑

Aj�ωl

cα−1
j mβ

ij , (7)

H lk =
n∑

i=1

∑

Aj⊆Ω

Aj �=∅

cα−2
j mβ

ijsljskj =
∑

i

∑

Aj�{ωk,ωl}
cα−2
j mβ

ij . (8)

2.2 Causal Feature Selection

Fig. 2. The local structure of ALARM network
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Over the years, many causal feature selection methods have been proposed
[3,10,13]. Different from correlation-based feature selection methods designed to
find strongly relevant features, causal feature selection approaches aim to learn
the causality between variables. As causality is more stable in different envi-
ronment, it can contribute to build more explainable and robust models [11].
Generally speaking, the goal of causal feature selection is to identify the Markov
blanket (MB) of the class attributes or a subset of the MB which can be used as
the optimal subset for feature selection. When a Bayesian network is used to rep-
resent the relationship between feature variables, the MB of a variable includes
its parents (direct causes), children (direct effects), and spouses (the other par-
ents of its children) under the faithfulness assumption [7]. Besides, it has been
shown that the set of direct causes (parents) of the class attributes can be used
as a stable or invariant feature subset when the data of the source domain and
the target domain are from different distributions [13]. Figure 2 shows the MB
of variable “Heart rate” which is from A Logical Alarm Reduction Mechanism
(ALARM) network [1], including four children (HR BP, HR EKG, HR SAT and
CO), one parent (CL) and three spouses (ER LO, ER CA and SV).

3 Causal Transfer Evidential Clustering

In order to show the proposed causal transfer evidential clustering method
clearly, we continue with the illustrative example with the animal image data
set. In causal inference, the Directed Acyclic Graph (DAG) is often used to rep-
resent causal relationship between variables. Generally speaking, a DAG consists
of node set V and edge set E, where edge Vi(∈ V ) → Vj(∈ V ) denotes that Vi

is the parent of Vj [11].
Recall that we have three variables to identify the animal labels in the images.

Let X4 denote the animal labels (X4 = 0 for dogs, while X4 = 1 for cats). X1

and X2 denote two physical features, i.e., “the length of the ear” and “whether
to have whiskers” respectively. It is easy to know that they are the parents of X4.
We introduce a context variable C, representing the environment. When C = 1,
we say it is the source domain with most of the cats are in the grass. On the
contrary, when C = 0, we can say this is the case of target domain with most of
the dogs are in the grass. Let X3 denote the body humidity. We know the value
of X3 is up to C and X4. Thus, we can get a DAG as shown in Fig. 3.

As there is strong correlation between the body humidity and the class
attributes, it is clear that the correlation-based feature selection method will not
remove the humidity from the feature subset. However, if we eventually select
the feature subset which contains the humidity, the clustering performance in
the target data will be greatly degraded. On the one hand, when clustering
the samples with the humidity, the samples are largely grouped by the context
(grass or water). On the other hand, the humidity leads to larger distribution
shift between domains, i.e., inconsistent conditional distributions in the source
and target domains as shown in Eq.(9), which further affects the performance
of transfer clustering.
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Fig. 3. A simplified directed acyclic graph with the animal image data

Ps{X4|X3} �= Pt{X4|X3}. (9)

where Ps and Pt represent the distribution of the source domain and the target
domain, respectively.

Causality-based feature selection methods can avoid both of the above prob-
lems. According to the causal graph model shown in Fig. 3, causal feature selec-
tion will select X1,X2 as the feature subsets. On the one hand, X1,X2 represent
the physical features which are completely correct for the partition of the ani-
mals. On the other hand, from the concept of d-separation, we know that the
conditional distribution of the class attributes X4 with respect to X1 and X2 is
consistent no matter in the source or target domain as shown in Eq. (10)

Ps{X4|X1,X2} = Pt{X4|X1,X2}. (10)

Following the discussion above, we propose the Causal Transfer Evidential
Clustering (CTEC) approach, which can be divided into two steps:

(1) Identify causal features of class attributes based on the source domain data.
Even though learning the DAG from data is an NP-hard problem because of
the combinatorial acyclicity constraint [14], some causal structure learning
and DAG learning methods have been proposed to select causal features [8,
14]. In this paper, we consider the adjacency matrix based numerical method
to estimate the DAG and identify the causal invariant features [14]. The
objective function of this causal feature selection algorithm can be defined
as follows:

min
W∈Rd×d

f(W ) =
1
2n

||X − XW ||2F + λ||W ||1, (11)

subject to:
h(W ) = tr(eW◦W ) − d = 0, (12)

where X ∈ Rn×d denotes the sample data, W ∈ Rd×d denotes the adjacency
matrix of the DAG, ||·||F is Frobenius norm and ◦ is the Hadamard product.
The acyclicity of DAG can be guaranteed by the constraint h(W ) = 0.
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The above optimization problem can be solved by the use of the augmented
Lagrange multiplier method given the source domain data. After that we
can obtain the adjacency matrix W of the corresponding DAG between
the features and class attributes. Then the causal features can be selected
based on the adjacency matrix from the source and target domain data
respectively.

(2) Perform the prototype-based evidential transfer clustering TECM.
With the selected features in the last step, we can use the prototype-based
transfer clustering method. It is remarked here that with the causal feature
selection step, the transferred knowledge from the source domain is not based
on the whole set of features. We just find some transferable knowledge from
the perspective of causal learning.

4 Experiments

Some experiments are provided in this section to demonstrate the effectiveness
of the proposed causal transfer clustering method. The Adjusted Rand Index
(ARI) and Normalized Mutual Information (NMI) are used as the metrics to
evaluate the performance of the clustering methods. Denote the number of data
instances in the source and target domain by Ns and Nt respectively. The causal
feature selection method in proposed CTEC method and correlation test method
are applied respectively to obtain the transferred feature subset across domains
based on the source domain data. Denote the obtained correlation-based and
causality-based feature subsets by A and B respectively. In the following exper-
iments, the number of features in source and target domains is the same.

4.1 Synthetic Datasets

We continue with the example with the DAG in Fig. 3. Based on this DAG,
the simulated datasets are generated by the Structure Equation Model (SEM)
defined in the following equation:

Xj = fj(Xj (pa)) + ε, (13)

where Xj (pa) denotes the parents of Xj and the noise ε ∼ N(0, 1). Both the
source and target domain have three feature variables (X1,X2,X3) and one class
variable (X4).

In this experiment, let Ns = 1000, Nt = 100 and the number of the cluster
be c = 2. The functions fj , j = 1, 2, 3, 4 are defined as follows:

f1(C) = C + p, f2(C) = C + p,

f4(X1,X2) = X1 + X2, f3(C,X4) = X4 + 2 · C.

In the above equations, C is the context variable describing the two domains
and p denotes a binary vector used to divide the data into two clusters. Let
C ∼ b(Ns, 0.8) in the source domain while C ∼ b(Nt, 0.2) in the target domain.
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a. Synthetic datasets b. ALARM network datasets

Fig. 4. Correlation matrices of the variables from the synthetic datasets snd ALARM
network datasets

The correlation feature set A can be obtained based on the correlation coeffi-
cient between feature variables and the class variable as shown in Fig. 4(a), while
the causality feature set B can be got by the first step of CTEC. The obtained
feature sets are as follows:

A = {X1,X2,X3}, B = {X1,X2}. (14)

Then we examine the clustering results of the target domain with different fea-
ture subsets by TECM. The transfer evidential clustering approach with the two
feature sets are denoted by TECM-A and TECM-B respectively.

Table 1. The clustering results on the synthetic dataset.

Method TECM-A TECM-B Method TECM-A TECM-B

ARI 0.5433 0.9208 NMI 0.5373 0.8586

The ARI and NMI values of the clustering results provided by TECM with
feature subset A or B are listed in Table. 1. The clustering results with the
feature subset B are significantly better than those with the feature subset A.

4.2 ALARM Network Dataset

In the experiment, we use the datasets from the ALARM network which includes
37 variables and choose the “Heart rate” as the class variable which have three
class labels. Set Ns = 5000, Nt = 500 and c = 3. Five features are selected
to form the correlation feature set A by comparing the correlation coefficients
between features and the class variable as shown in Fig. 4(b). Based on the DAG
and MB of the class variable learned by the first step of CTEC, seven features
are selected as the causality feature set B.
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Table 2. The clustering results on ALARM network dataset.

Method TECM-A TECM-B Method TECM-A TECM-B

ARI 0.5519 0.6080 NMI 0.4802 0.5321

The ARI and NMI values of the clustering results based on ALARM network
datasets are listed in Table 2. The clustering results of TECM-B are also better
than those of TECM-A.

From these two experiments we can see that the causal features are able
to transfer stably in the cross-domain tasks, and consequently can improve the
performance of transfer clustering methods.

5 Conclusion

In this study, the causal features have been used to develop causal prototype-
based transfer evidential clustering methods named CTEC for the application
of clustering task when the target data are uncertain or insufficient. The pro-
posed CTEC algorithm can effectively learn from not only the data of the target
domain but also from the knowledge of the source domain in the form of proto-
types as well. Compared with the existing transfer clustering methods, with the
help of an additional causal feature selection process, the transferred knowledge
in the form of prototypes in CTEC is more effective, consequently the cluster-
ing performance has been greatly improved. The experiments on the synthetic
datasets and ALARM network datasets have demonstrated the effectiveness of
the proposed causal transfer evidential clustering method.

The success of the proposed causal prototype-based transfer clustering algo-
rithm indicates that causal features are robust across different domains and that
learning them is beneficial for transfer clustering task. However, this work is only
a simple work to demonstrate the role of causal features in transfer clustering.
More experiments will be conducted in the future. We hope that this work will
inspire further research on transfer clustering from a causal perspective. More-
over, in this work we divide the causal feature learning and transfer clustering
into two separate steps. In the future, we will study how to combine the two
steps together to further improve the robustness of the transfer clustering task.
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Abstract. We investigate Gaussian Mixture Models (GMM) with uncer-
tain parameters to evaluate whether this model can help in interpreting
acoustic emission data used in non-destructive testing. This model, called
VBGMM (variational Bayesian GMM) allows the end-user to automat-
ically determine the number of clusters which makes it relevant for this
type of application where clusters are related to damages. In this work,
we modify the training procedure to include prior knowledge about clus-
ters. Experiments are made on a recently published benchmark, ORION-
AE, that aims at estimating the tightening levels in a bolted structure
under vibrations. Preliminary results of the VBGMM with soft priors
(VBGMM-SOFT) show good improvement over the standard VBGMM.

Keywords: Clustering · Soft labels · Acoustic emission · Approximate
inference · Structural health monitoring · Loosening of bolted joints ·
ORION-AE benchmark

1 Introduction

The idea of using soft labels in clustering introduced in [4,20,21] for the Gaus-
sian Mixture Model (GMM) and more general models [7] was motivated by the
possibility to introduce the available knowledge on the components of a mix-
ture model used to generate each observation. By using belief functions, the
end-user can encode imprecision and uncertainty on the labels used in training
and inference. Several studies demonstrated that the use of soft labels (using
belief functions and probability theories) in various clustering and classification
methods improves not only the global performance [6], but also the interpreta-
tion of clusters by providing insights about the decision frontiers [12], and the
robustness against mislabelling [4,15].

The present study aims at investigating how the Variational Bayesian GMM
[2] (VBGMM) behaves when soft labels are introduced. This work is motivated
by an application related to Structural Health Monitoring (SHM) based on the
Acoustic Emission (AE) non-destructive technique.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Le Hégarat-Mascle et al. (Eds.): BELIEF 2022, LNAI 13506, pp. 23–32, 2022.
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The AE technique relies on permanently attached piezoelectric sensors glued
on the surface of a material. Under loading, damage occurring within the material
releases energy, and a part of it takes the form a high frequency (possibly between
20 kHz and 2 MHz) transient elastic wave propagating on the surface, converted
into a voltage signal by the sensors. The technique is widely used in industry to
detect anomalies, such as in civil infrastructures and aeronautics [9,10,19]. The
advantage of this technique is the high sensivity of the available sensors which
allows to get a lot of details about the damages. With a sampling frequency
generally around 5 MHz on multiple sensors, the AE technique provides from
thousands to millions of signals during mechanical tests.

There is no physics-based model able to interpret all the collected transient
signals due to the several difficulties, in particular the unknowns about the influ-
ence of damages on the content of transient elastic waves. Therefore, the main
methodologies to interpret AE data are mainly based on clustering, where the
clusters are analyzed a posteriori to assess their relevance for a given applica-
tion. The most widely used algorithms are the K-means [3], the fuzzy C-means
(FCM) [11], the Gustafson-Kessel (GK) algorithm [13] and Gaussian Mixture
Models (GMM) [18].

In previous studies, authors made use of clustering validity indices to estimate
the number of clusters [22,23], which is of paramount interest in Material Science
and for AE users because it indicates the number of AE sources which are related
to damages. One of the advantage of the VBGMM is its ability to automatically
estimate the number of clusters and can thus be of interest for interpreting AE
data. By allowing the introduction of soft labels in this model, we expect to
improve the results even with small amount of prior.

Section 2 presents how to introduce soft priors in a VBGMM. Our first results
are illustrated in Sect. 3 on a benchmark recently proposed for AE data clustering
and classification.

2 Use of Soft Labels in a Variational Bayesian GMM

2.1 Directed Acyclic Graph

A Bayesian Gaussian Mixture Model (GMM) is represented by the directed
graph in Fig. 1 where yn is the value taken by an observed variable Y, made of
D-dimensional features in �D and n = 1 . . . N the number of feature vectors, xn

is the value taken by a latent variable X. Like in a standard GMM, π, μ and Λ
are the mixing proportions, means and precision (inverse of covariance).

In a Bayesian GMM, the three last parameters are uncertain and are consid-
ered as random variables to which the end-user assigns a prior distribution: A
Dirichlet prior over π, and an independent Gaussian-Wishart prior [2, Chap. 2]
on (μ, Λ) (mean and precision) of each Gaussian component [2, Chap. 10]. These
particular priors are said conjugate because the posterior distributions have the
same functional form as the priors through Bayes rule. The learning process
consists in estimating the distribution over the uncertain parameters using a
Bayesian Expectation-Maximization algorithm [1].
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Fig. 1. Directed graph of a VBGMM-SOFT with prior on the latent variables x.

In this graphical model, the prior (expert judgments) is represented by vari-
able I. In this “data-driven Bayesian network with expert judgments” [5], the
values In taken by this variable are dependent on the values of xn and may
be dependent on yn, for example when the end-user tunes In according to the
observed values and what he expects on xn.

2.2 Learning Problem Under pl

Solving the learning problem relies on a process detailed in [1] and [2, Chap. 10]
and consists in maximizing the lower bound of the log-marginal probability of the
data p(X) subject to a factorization constraint. Indeed, a solution to this learn-
ing problem, called Variational Bayesian Expectation-Maximization, assumes a
factorization between, on one side, a first factor that is the distribution over the
parameters (π, μ and Λ) and, on the other side, a second factor which is the
distribution over the latent variables xn, n = 1 . . . N . Then, for one of those fac-
tors, we compute the expectation of the logarithm of the joint distribution over
all hidden and visible variables and then take the expectation with respect to the
other factor. The process is general can be applied to any mixture model.

The expectations are not trivial, the reader can refer to [2, Chap. 10] for
more details. We here remind some of the results helpful to understand how to
introduce the prior on xn. The other equations remain the same.

The first step is to compute the joint distribution on all variables in this
model. Following Fig. 1, it is given by:

p(X,Y,π,μ,Λ, I) = p(X | π)p(Y | X,μ,Λ)p(π)p(μ | Λ)p(Λ)p(l|X) (1)

where
p(ln|xnk = 1) = plnk (2)

represents the prior on the latent variable for the n-th feature vector and the k-
th component in the mixture. This prior is represented by a plausibility contour
function for each feature vector, generated from a belief mass over the set of K
components. The way of introducing the prior using an auxiliary variable (here
I) was proposed in [8].
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Using the cognitive independence assumption [7], we can write

p(l|X) =
N∏

n=1

K∏

k=1

[plnk]xnk (3)

Introducing the prior on the latent variables modifies the expression of the expec-
tation of xnk, and does not change the Maximization step. Only the expectation
on the latent variable (the values taken by xnk) are modified by the plausibilities
as follows:

E[xnk] ∝ plnkπ̃k|Λ̃k|1/2 exp
[
− D

2βk
− νk

2
(yn − mk)t Wk (yn − mk)

]
(4)

with

log π̃k = ψ (αk) − ψ

(
K∑

k=1

αk

)
(5a)

log |Λ̃k| =
D∑

i=1

ψ

(
νk + 1 − i

2

)
+ D log 2 + log |Wk| (5b)

and ψ(a) =
d

da
Γ (a) is the digamma function, (αk, βk, νkWk,mk) are the param-

eters of the Dirichlet and Gaussian-Wishart distributions [2, Chap. 2,10]. The
interesting point with this result is that Eq. 4 boils down to the expression found
for non Bayesian GMM in [4] when uncertainty on parameters tends to 0.

2.3 Algorithm and Automatic Relevance Determination

The algorithm starts with random initial values and updates the parameters
iteratively until the maximum number of iterations is reached (2000) or the
evolution of the likelihood becomes less than 10−8. The general algorithm is
provided in Algorithm 1.

One of the interests of this algorithm lies in the way some of the components
vanish during learning. And this is possible without numerical instabilities as
observed in standard GMM when K, for example, is too large. This phenomenon
qualified as “Automatic Relevance Determination” allows the end-user to actu-
ally set the number of clusters to a large value, and, after convergence, some
of the clusters can be removed due to the fact that several parameters tend to
their prior. In particular, the expected values of the mixing coefficients E[π] in
the posterior distribution tend to α0/(Kα0 + N) for very small cluster and N
data points. In this expression, α0 (the same for all components, set to 1 in
experiments) is the parameter of the Dirichlet distribution over the mixing coef-
ficients π, which is the effective prior number of observations associated with
each component of the mixture. Therefore, a cluster made of E[πk] elements can
be removed.
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Algorithm 1. General algorithm of VBGMM-SOFT.
1: Generate plausibilities with ρ provided by end-user
2: while max iterations not reached and evolution of likelihood above threshold do
3: E-Step: Compute log q�(X) = Eπ ,μ ,Λ [log p(X,Y, π, μ, Λ, I)]+c (c is a constant)
4: For this step, use the same equations as in [2] except for E[xnk] where Eq. 4

should be used instead.
5: M-Step: Compute log q�(π), log q�(μ) and log q�(Λ) by taking the expectation

of Eq. 1 on, respectively, π, μ and Λ, with respect to X (using the results of the
E-Step).

6: Compute the likelihood (expression given in [2, p. 481] and using Eq. 4).
7: end while

3 First Results and First Conclusion

This section presents preliminary results on the capacity of the VBGMM with
soft labels to provide relevant clusters. For that we used a benchmark, called
ORION-AE, obtained from a real system, and described in [17].

3.1 Data Set Description

The system is composed of a two metallic plates jointed by three bolts and was
designed to reproduce the loosening phenomenon observed on structures made
of assemblies, in particular when submitted to vibrations. One of the bolts was
untightened manually to simulate the loosening. The lower plate was submitted
to 120 Hz harmonic force by means of a shaker. Seven levels of tightening were
considered, and for each level, an acoustic emission sensor recorded the transients
liberated during the test. Each tightening level was maintained during 10 s. The
test was repeated 5 times, leading to 5 datatsets, each made of 7 seven classes
with 70 s of data for different sensors (in this paper only the second sensor was
used).

The seven tightening levels can be used as a ground truth when designing
learning methods. This makes this dataset useful for developing and testing
clustering and classification methods for interpreting acoustic emission data.

The ORION-AE data are raw time-series. To be used in a VBGMM, we need
a preprocessing stage. We used a similar preprocessing to [16] with a first step
consisting in detecting the transients in the data stream and followed by a step of
feature extraction. Conversely to [16], the Principal Components Analysis (PCA)
was not used. Thirteen features were kept, and all combinations of four features
were considered (four were used to decrease the amount of time of tests since all
combinations were considered). The VBGMM was applied for each combination
while also varying the amount of prior.

3.2 The Priors

The priors (pl) were generated as proposed by Côme et al. [4, Section 5.2.1]
using the true labels. For each training sample i, a number pi was drawn from
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a specific Beta distribution with expected value equal to ρ ∈ {0, 0.3, 0.6, 0.9, 1}
and variance 0.1, used to define the doubt expressed by a hypothetical expert on
the class of that sample. With probability pi, the label of sample i was changed
(to any other class with equal probabilities). Therefore ρ controls the amount
of prior introduced: When ρ = 0, all the labels are used as priors corresponding
to supervised learning, whereas ρ = 1 corresponds to the unsupervised learning
situation1.

3.3 Sorting the Partitions

The partitions obtained for all combinations for a given ρ were then sorted
according to a criterion proposed in [14]. The criterion works as follows. For
each partition, the onset time (first occurrence) of each cluster was determined.
Then, each cluster was re-labelled according to their order of occurrence: the
first cluster to occur was labelled “1”, the second cluster labelled “2”, and so
on. This co-association allows the fusion of partitions since all clusters with the
same label are assumed to correspond to the same source [13].

After re-labelling, each partition was ranked by :

C(S) =
κ−1∑

k=1

Δonset(k, k + 1) log Δonset(k, k + 1) (6a)

Δonset(k, k + 1) = tonset,k+1 − tonset,k (6b)

where κ is the number of cluster, S is a subset of features used to compute
the partition, tonset,κ+1 is equal to the timestamp of the last AE signal. This
criterion assumes that the onsets of all clusters in a given partition should be
spread onto the time (or load) axis as uniformly as possible.

Once the partitions have been sorted according to this criterion, the best
partition is taken for evaluating the quality of the clusters. In order to evaluate
the performances, we used the Adjusted Rand Index [24], which provides a value
between 0 and 1, where a “1” is obtained for perfect correspondence between
the clusters estimated and the true labels.

3.4 Results

Several tests were performed, using various ρ, considering uncertain and noisy
priors, on the five datasets available in ORION-AE, with a comparison to clus-
tering algorithms used in the literature. In this communication, results are only
shown for the first dataset.

Figure 2 illustrates the results for the first dataset and for the second sensor.
The priors were considered uncertain. Each curve represents the decadic loga-
rithm of the cumulated number of acoustic emission transients in each clusters.
For example, consider the left-hand side of the top-left figure (Fig. 2a, corre-
sponding to the unsupervised case so with ρ = 1). The blue curve, for example,
1 The code can be found on T. Denœux’s homepage in software/E2M/add noise.m.
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is the cumulated number of the acoustic emission transients assigned to the first
cluster. We can see that the curve reaches a plateau around 10 s, knowing that
interval [0, 10] seconds corresponds to the first level of tightening (the second
interval, [10, 20] is the second level, and so on). Therefore, this first cluster is
relevant and can be assigned to the first tightening level because the blue curve
evolves only in the first period. The yellow, purple, green and light blue clusters
correspond to tightening levels 2, 3, 5 and 6 respectively. We can see that cluster
6 starting at 60 s does not stop increasing in (level 7), which means that cluster
6 gathers data from both intervals. We can also see that the red cluster starts
within [0, 10] which means that the first level of tightening is split in two clusters.
This red cluster stops increasing until 30 s where it grows again. This cluster is
certainly related to the fourth level (the vertical axis is in logarithmic scale) and
shares common features with the first one (according to the clustering method).

0 10 20 30 40 50 60 70
Time (s)

0

0.5

1

1.5

2

2.5

3

C
um

ul
at

ed
 o

cc
ur

re
nc

e 
of

 c
lu

st
er

s

(a) ρ = 1 (without prior)
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(b) ρ = 0.9
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(c) ρ = 0.6
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(d) ρ = 0.3

Fig. 2. Cumulated number of transient signals assigned to each cluster for ρ =
{1, 0.9, 0.6, 0.3}.

The second figure (top right, Fig. 2b) corresponds to a small amount of prior,
ρ = 0.9 (all labels are true but with large uncertainty). We can see that the red
cluster is now at the good location, while a new cluster was positioned between
50 and 60 s. Therefore, there is a mixing between the two last levels. Then
from ρ = 0.6 (Fig. 2c) downwards, the clusters correspond quite precisely to the
tightening levels, with no difference between ρ = 0.6 and ρ = 0.3.
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These results show that the cumulated plots of clusters bring two main infor-
mation: The starting points (called onsets) of the accumulation, and the steady
phase. When an onset is well located, it means that the clustering is able to
assign the first transients of a given tightening level to the correct cluster. Con-
cerning the steady phase, when it starts at the right location, it means that
we are able to locate when a cluster stops increasing, therefore when a possible
damage or functioning condition stops occurring. The height of the steady phase
depends on how active was a damage and this can be useful for monitoring.

Figure 3 illustrates the evolution of the ARI for different values of ρ and
considering all combinations of features (715). The ARI values were sorted by
descending order. Circled-markers represent the 10 best ARI values correspond-
ing to the 10 best partitions (estimated by the VBGMM-SOFT method and
selected by the criterion proposed in [14]). We can see that the markers are
located on the left-hand side of these curves corresponding to quite high ARI
values.
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Fig. 3. Adjusted Rand Index (ARI) sorted for all partitions. The ten best parti-
tions obtained by a VBGMM with different amounts of priors are superimposed with
markers.

4 Conclusion

The first results obtained with a VBGMM on acoustic emission data are encour-
aging. We propose to add some prior which results in a small modification of the
original algorithm.

With a small amount of prior the performance are greatly improved. The
clusters obtained are interpreted by means of cumulated plots. For the appli-
cation targeted, these plots underline two important pieces of information: the
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onsets of clusters and their steady phase. As a future work, we plan to exploit
both of them for Structural Health Monitoring since it informs about the damage
process taking place within the material.

The way to generate the prior remains a key problem. One idea followed by
the acoustic emission community consists in getting prior knowledge from numer-
ical simulations. However, in addition to the computational burden involved in
such simulations, another difficulty holds in the fact that these simulations also
require knowledge about the material properties which evolve during a test.

Acknowledgments. This work was supported by the EIPHI Graduate school (con-
tract “ANR-17-EURE-0002”).
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Abstract. A new clustering method, named Evidential clustering by
Competitive Agglomeration (ECA), is introduced by applying the frame-
work of belief functions to a competitive strategy. It has two-fold advan-
tages: Firstly, with the help of the credal partition, it has a good ability to
deal with noise objects since it can mine the ambiguity and uncertainty
of the data structure; secondly, through a competitive strategy, it can
automatically gain the number of clusters under the rule of intra-class
compactness and inter-class dispersion. Results demonstrate the effec-
tiveness of the proposed method on synthetic and real-world datasets.

Keywords: Belief functions · Credal partition · Competitive
agglomeration

1 Introduction

Clustering analysis, as an important data mining technology [1–3], is widely
used in pattern recognition [4], image processing, machine learning[5], informa-
tion retrieval and other fields [6]. The most classical fuzzy partition method is
the Fuzzy C-Means (FCM) algorithm [7]. But for FCM, the number of clustering
centers is difficult to determine. Concerning this problem, Frigui and Krishnapu-
ram [8] propose the Competitive Agglomeration (CA) algorithm, which combines
the advantages of hierarchical clustering and partition clustering technology. In
order to improve performance of the CA algorithm, Grira et al. [9,10] effectively
propose an active fuzzy constrained clustering (AFCC) algorithm. Gao et al.
[11] further improve the objective function of AFCC algorithm and propose a
semi-supervised fuzzy clustering algorithm with pairwise constraints (SCAPC).
However, all these CA and CA-based algorithms confront a common problem of
poor robustness to noise and outliers [12].

Belief function theory [13] adds the concept of credal partition to the exist-
ing hard and fuzzy, which allows for a deeper understanding of the data and
improves the robustness of outliers. Therefore, the credal partition algorithm
has attracted more and more scholars’ attention recently. Masson and Denoeux
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Le Hégarat-Mascle et al. (Eds.): BELIEF 2022, LNAI 13506, pp. 33–43, 2022.
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[14] solve the problem of calculating credal partition from object data and pro-
pose a new algorithm called Evidential C-Means (ECM). Su [15] proposes a
new ECM evolutionary algorithm (E2CM), in which the objective function J
and standardized specificity index N∗ are simultaneously optimized in ECM.
Inspired by a novel clustering method DPC [16], Su [17] introduces Belief-Peaks
Evidential Clustering (BPEC) in the framework of belief functions. To improve
the clustering performance, Gong [18] proposes the cumulative belief peaks evi-
dential K-nearest neighbor clustering (CBP-EKNN).

Based on the above discussion, in order to better mine the ambiguity and
uncertainty of the data structure, this paper proposes Evidential clustering by
Competitive Agglomeration (ECA) by applying the framework of belief functions
to a competitive strategy. Interestingly, the proposed ECA not only retains the
unique ability of CA to automatically gain the number of clusters, but also has
the powerful ability to reveal the data structure. It can deal with noise objects,
which improves the robustness of CA.

The rest of this article is organized as follows. The basic concepts of CA and
belief functions are briefly introduced in Sect. 2. The ECA method is presented
in Sect. 3. The performance of ECA is verified by an numerical example and
compared with other clustering algorithms in Sect. 4. The last part gives the
conclusion.

2 Background

We recommend that readers become familiar with some basic concepts of Com-
petitive Agglomeration (CA) and belief functions through a brief overview of
the paper.

2.1 Competitive Agglomeration (CA)

Let X = {xj |j = 1, ..., n} ∈ Rn×p. Let V = {v1, ..., vc}′ ∈ Rc×p represents a
c-tuple of prototypes each of which characterizes one of the c clusters. Each vi

consists of a set of parameters.
The CA algorithm first divides a dataset into a large number of small clusters.

With the development of the algorithm, neighboring clusters compete for data
points, and some clusters that lose competition gradually dry up and disappear.
The final partition has the “optimal” cluster number. It should be noted that the
number of clusters c is dynamically updated in each iteration. The CA algorithm
minimizes the following objective function, which is shown in Eq. (1), and Eq.
(2) are constraints.

JCA(U, V ) =
c∑

i=1

n∑

j=1

um
ij d2ij − α

c∑

i=1

[
n∑

j=1

uij ]2, (1)

s.t.

c∑

i=1

uij = 1,∀j = 1, 2, · · · , n, (2)
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where uij is the membership degree of the sample xj to the ith cluster, and
U = [uij ] is a c × n matrix called a constrained fuzzy c-partition matrix. m is
the degree of ambiguity of the algorithm, which is generally set to 2, dij is the
Euclidean distance between the center of ith cluster and the sample xj , α is to
balance the first and second terms.

2.2 Basic Concepts of Belief Functions

Given a frame of discernment Ω = {ω1, ω2, · · · , ωc}, a mass function is defined
as a mapping from 2Ω to [0, 1], such that

∑

A⊆Ω

mΩ(A) = 1, (3)

where the subsets A of Ω with mΩ(A) > 0 are called the focal sets of m. A mass
function is said to be Bayesian if it only has singletons (i.e., |A| = 1) as focal
sets, where | · | denotes the cardinality of a focal set or size of a dataset. It is said
to be Nondogmatic belief function if it has Ω as one focal set. In particular, the
vacuous mass function, verifying mΩ(Ω) = 1, corresponds to total ignorance.

A mass function has other equivalent representations such as belief function
and plausibility function, defined as:

belΩ(A) =
∑

∅�=B⊆A

mΩ(B), (4)

plΩ(A) =
∑

A∩B �=∅
mΩ(B), (5)

for all A ⊆ Ω.
The combination of mass functions plays an important role in theory of

belief functions. Given two mass functions m1 and m2, the combination of mass
functions is defined as follows:

mΩ
1∩2(A) =

∑

B∩C=A

mΩ
1 (B)mΩ

2 (C), A ⊆ Ω. (6)

The normality condition mΩ(∅) = 0 is recovered by dividing each mass
mΩ

1∩2(A) by 1 − mΩ
1∩2(∅). This operation is noted ⊕ and called Dempster’s rule

of combination:

mΩ
1⊕2(A) =

mΩ
1∩2(A)

1 − mΩ
1∩2(∅)

, ∅ �= A ⊆ Ω. (7)

3 Main Results

3.1 Basic Idea and Motivations

The basic idea of ECA can be expressed as follows: the belief functions are
applied to a competitive strategy to obtain an objective function similar to CA
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and the required parameters are solved by minimizing the objective function.
Here we define the sum of pl values of each sample corresponding to the tth

cluster in clusters c as the cardinality N ′
t of this cluster. In general, there are few

samples near the spurious clusters and they are influenced by other clusters, so
the support degree of samples to this cluster is not high, that is, the sum of the
sample pl values corresponding cluster is low. The competitive strategy proposed
in this paper can further devalue their pl value to such clusters during iteration,
which leads to a gradual reduction of the cardinality of these spurious clusters.
When the cardinality of a cluster drops below a threshold, we discard the cluster
and update the number of clusters. In the process, neighboring clusters compete
with each other to obtain the “optimal” cluster number.

The motivation of ECA is to improve the performance of CA by introducing
belief functions to mine the ambiguity and uncertainty of data structure. It can
reveal data structures in the form of credal partition, from which hard, fuzzy,
possibilistic and rough partitions can be derived, thus improving the robustness
of CA.

3.2 The Proposed Method

For a given dataset X = {xi|i = 1, ..., n} ∈ Rn×p, the recognition framework is
Ω = {ω1, ω2, ..., ωc}. For each sample xi, we can construct a piece of evidence
mi to represent the cluster to which xi belongs. Each mass mi(Aj) indicates the
degree that xi belongs to cluster Aj . The set of n pieces of evidence constitutes
a credal partition M = {m1,m2, · · · ,mn}′ ∈ Rn×2c

. V = {v1, ..., vc}′ ∈ Rc×p is
the set of cluster centers.

The objective function of ECA is composed of two components, i.e., JECA =
J1 + J2. Its objective function and the constraints are shown in Eq. (8)–(11).
The first component J1 is similar to the objective function of ECM, which allows
us to control the shape and size of clusters and obtain compact clusters. When
the number of clusters c equals the number of samples n, that is, each cluster
contains only one data point, the global minimum value of this component can
be obtained. Here we define the sum of mij corresponding to the jth subset (i.e.,
focal set Aj) as the cardinality Nj of this subset, so the second component J2 is
the sum of the β power of the cardinality of each subset plus a minus sign, which
allows us to control the number of clusters. The global minimum for the item
(including the minus sign) can be achieved when all points are in one cluster and
all other clusters are empty. When the two components are combined and γ is
correctly selected, the final partition minimizes the sum of distances within the
cluster while dividing the dataset into the smallest possible number of clusters.
It should be noted that the number of clusters c is dynamically updated in each
iteration.

JECA(M,V ) = J1 + J2, (8)

J1 =
n∑

i=1

∑

j|∅�=Aj⊆Ω

|Aj |αmβ
ijd

2
ij +

n∑

i=1

δ2mβ
i∅ (9)
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J2 = −γ[
∑

j|∅�=Aj⊆Ω

(
n∑

i=1

mij)β + (
n∑

i=1

mi∅)β ], (10)

s.t.
∑

j|∅�=Aj⊆Ω

mij + mi∅ = 1,∀i = 1, 2, · · · , n, (11)

where dij represents the Euclidean distance between the sample xi and the
center of gravity v̄j (the calculation of v̄j is shown in Eq. (12)), mij represents
the mass of the jth subset assigned to the sample xi, mi∅ represents the quality
of the empty set assigned to the sample xi, α is the weight coefficient used
to compensate for the focal elements of the high primitives in the subset, the
coefficient β controls the ambiguity of the belief partition degree, usually 2, δ
coefficient mainly controls the number of noise points considered, and usually
the larger the δ, the fewer points will be classified as noise points.

Based on the basic concept of belief functions, the centers of gravity v̄j are
defined as follows:

v̄j = |Aj |−1
c∑

t=1

stjvt, (12)

where wt ∈ Aj , stj = 1, otherwise, stj=0, vt is the center of the single cluster
(primitive number |Aj | = 1).

To minimize the objective function in Eq. (8) with respect to M , we apply
Lagrange multipliers and obtain

L(M,λ1, λ2, · · · , λn) = JECA −
n∑

i=1

λi(
∑

j|∅�=Aj⊆Ω

mij + mi∅ − 1). (13)

Making the first-order partial derivative of L(·) about mij , mi∅ equal to 0,
we get: ⎧

⎪⎨

⎪⎩

∂L
∂mij

= β|Aj |αmβ−1
ij d2ij − βγ(

n∑
s=1

msj)β−1 − λi = 0,

∂L
∂mi∅

= βδ2mβ−1
i∅ − βγ(

n∑
s=1

ms∅)β−1 − λi = 0.
(14)

The solution can be greatly simplified by assuming that the credal partition
M does not change significantly from one iteration to the next and by com-
puting the term (

∑n
s=1 msj)β−1 and (

∑n
s=1 ms∅)β−1in Eq. (14) using the credal

partition M from the previous iteration. Under this assumption, we get:
{

mij = [ λi+βγNj

β|Aj |αd2
ij

]
1

β−1 ,

mi∅ = [λi+βγN∅
βδ2 ]

1
β−1 ,

(15)

where ⎧
⎪⎨

⎪⎩

Nj|∅�=Aj⊆Ω = (
n∑

s=1
msj)β−1,

N∅ = (
n∑

s=1
ms∅)β−1.

(16)
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According to the constraints, we get:

∑

k|∅�=Ak⊆Ω

[
λi + βγNk

β|Ak|αd2ik
]

1
β−1 + [

λi + βγN∅
βδ2

]
1

β−1 = 1. (17)

In this paper, in order to simplify the calculation, we set the coefficient β to
be 2, then the equation is simplified to :

λi

∑

k|∅�=Ak⊆Ω

1
2|Ak|αd2ik

+
λi

2δ2
+ γ

∑

k|∅�=Ak⊆Ω

Nk

|Ak|αd2ik
+

γN∅
δ2

= 1. (18)

Thus the expression λi is obtained:

λi =

1 − γ
∑

k|∅�=Ak⊆Ω

Nk

|Ak|αd2
ik

− γN∅
δ2

∑
k|∅�=Ak⊆Ω

1
2|Ak|αd2

ik
+ 1

2δ2

. (19)

After substituting λi into the expression of mij , we can get mij = mECM
ij +

mBias
ij and mi∅ = mECM

i∅ + mBias
i∅ :

⎧
⎪⎪⎨

⎪⎪⎩

mECM
ij = 1

∑

k|∅�=Ak⊆Ω

|Aj |αd2
ij

|Ak|αd2
ik

+
|Aj |αd2

ij

δ2

; mBias
ij = γ

|Aj |αd2
ij

(Nj − N̄i),

mECM
i∅ = 1

∑

k|∅�=Ak⊆Ω

δ2

|Ak|αd2
ik

+1
; mBias

i∅ = γ
δ2 (N∅ − N̄i),

(20)

where N̄i =

∑

k|∅�=Ak⊆Ω

Nk
|Ak|αd2

ik

+
N∅
δ2

∑

k|∅�=Ak⊆Ω

1
|Ak|αd2

ik

+ 1
δ2

is the weighted average of the cardinality of

each subset from the point of view of sample xi, the mBias
ij and mBias

i∅ are the
signed bias terms represented as the difference between the cardinality of the
jth subset and the weighted average of the cardinality. For the cardinality of jth

subset in the higher than average, the bias term is positive, thus appreciating
the belief mass value. On the other hand, for low cardinality subset, the bias
term is negative, thus depreciating the belief mass value.

Then we minimize the objective function in Eq. (8) with respect to V . As
the second term J2 of objective function in Eq. (8) is not affected by distance,
the update equation of centers obtained is the same as those of ECM, i.e., Eq.
(21)

HV = B, (21)

where
⎧
⎪⎪⎨

⎪⎪⎩

Blq =
n∑

i=1

xiq

∑
ωl∈Aj

|Aj |α−1mβ
ij ,

Hlk =
n∑

i=1

∑
ωl,ωk⊆Aj

|Aj |α−2mβ
ij , l, k = 1, 2, · · · , c, q = 1, 2, · · · , p.

(22)
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In ECA algorithm, it is important to choose γ in Eq. (8) so that the two
terms (i.e., J1 and J2) are of the same order of magnitude. If γ is too large, the
first item will be ignored and all samples will be grouped into a cluster. If γ is
too small, the second term will be ignored and the number of clusters will not
decrease. In this paper, we choose γ to be

γ(k) = η(k)

n∑
i=1

∑
j|∅�=Aj⊆Ω

|Aj |αm2
ijd

2
ij +

n∑
i=1

δ2m2
i∅

∑
j|∅�=Aj⊆Ω

(
n∑

i=1

mij)2 + (
n∑

i=1

mi∅)2
, (23)

where η(k) = η0 exp(−k/τ), k is the number of iterations, η0 is the initial value
constant, and τ is the number of iterations constant.

Different from CA, uij is replaced by mij in ECA, so the expression form of
the cardinality N ′

t evolves as follows:

N ′
t =

n∑

i=1

plit, (24)

where pl can be obtained by Eq. (5), N ′
t is the cardinality of tth cluster in

clusters c and ε1 (i.e., the threshold of N ′
t) is an evaluation index used to retain

the correct clusters and eliminate spurious clusters.
Interestingly, it can be found from the above discussion that ECA and CA or

ECM have a conversion relationship: when mij = uij , δ = 0, ECA degenerates
into CA, and the algorithm loses the function of revealing data structure deeply;
when γ = 0, ECA degenerates into ECM, and the algorithm loses the ability to
gain the number of clusters automatically.

Based on the above explanations, the ECA is summarized in Algorithm 1:

4 Experimental Evaluation

In this section, we conduct experiments on synthetic and real-world datasets.
In Sect. 4.1, an numerical example is used to show the effectiveness of the ECA
algorithm. In Sect. 4.2, the performance of ECA is compared with that of CA
and ECM.

4.1 An Numerical Example: Four-Class Dataset

The Four-class dataset is divided into 4 clusters, each containing 100 2-
dimensional data points. The input parameters of the algorithm simulation are
set to k = 0, kmax = 30, cmax = 8, α = 2, β = 2, δ2 = 20, η0 = 3, τ = 10,
ε1 = 30.

Figure 1(a)-(f) are the implementation process of ECA in the Four-class
dataset. The position of centers are shown as “+” signs superimposed on the
dataset. Figure 1(a) is the dataset verified in this paper. Figure 1(b) shows the
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Algorithm 1: ECA Clustering Algorithm
Input: Determine the maximum number of clusters cmax, α, β, δ, dataset X,

maximum number of iterations kmax, ε1(i.e., the threshold of N ′
t), the

initial value constant η0 and the number of iterations constant τ .
Output: the cluster centers V and the belief partition matrix M .

1 the initial V (0) and M (0) are obtained by ECM algorithm;
2 k = 0
3 Repeat
4 calculate d2(xi, vj);
5 use Eq. (23) to update γ(k);
6 use Eq. (20) to update M to obtain the likelihood function pl;
7 use Eq. (24) to calculate the cardinal N ′

t of each cluster (1 < t < C), if N ′
t <

threshold ε1, discard the vt;
8 update the number of cluster C and get V after discarding vt;

9 use Eq. (20) M (k) again;

10 use Eq. (21) to update V (k);
11 k = k + 1;
12 Until (k = kmax, M and V are stable).

initial parameters of the prototype partition. The dataset is broken up into many
small clusters. Figure 1(c) shows that the ECA discards three spurious clusters
after one iteration. Figure 1(d) shows that after the second iteration, one spu-
rious cluster is discarded again and the number of clusters is reduced to four.
Figure 1(e)-(f) show that in the subsequent iteration, the number of clusters is
no longer reduced and optimization is carried out on the basis of four clusters.
After reaching the set maximum number of iterations, the algorithm converges.
The result verifies that ECA can find the “optimal” number of clusters without
prior knowledge.

The credal partition for the Four-class dataset is shown in Fig. 2, where ωjk

means {ωj , ωk}. As can be seen, in addition to the four obvious clusters (the
cluster center V is represented by the red ’+’), credal partition also displays
its powerful data analysis structure, including the description of the transition
data points between adjacent clusters, represented by {ω12, ω23, ω34, ω14}. Even
more complex cases involving ωijk = {ωi, ωj , ωk} (primitive number |Aj | = 3) or
complete ignorance of Ω = {ω1, ω2, ω3, ω4} can also be expressed. Finally, ECA
has the same function as the ECM and can identify the existence of noise point,
namely X(∅) := {i|mi(∅) = max

k
m(Ak)}, which is framed by a red box in Fig. 2.

4.2 Compared with Other Clustering Methods

In this section, the used datasets are summarized in Table 1, among which the
first three real world datasets are from UCI database [19], and the last simulation
dataset is from [20]. To ensure the effective execution of the algorithm, the
parameters are set to α = 2, β = 2, δ2 = 20.
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Fig. 1. Original image of spherical cluster on a dataset of intermediate results of ECA
algorithm (a) original dataset (b) prototype used for initialization (c) 1 iteration (d) 2
iterations (e) 20 iterations (f) 30 iterations (convergence).
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Fig. 2. Contours of credal partition for the Four-class dataset via the ECA.

The CA and ECM are chosen as the comparing algorithms, where the ECM
needs to set the number of clusters in advance while the CA does not. In order
to be fair, we take the number of clusters obtained by ECA as the prerequisite
of ECM. For CA and ECA, the parameters are set to cmax = 30, η0 = 3, τ = 10,
ε1 = 15 for the first two data datasets, ε1 = 30 for the last two datasets.

We use ARI (Adjusted Rand Index) to measure the performance of these
clustering algorithms. Table 2 shows the ARI values (mean ± variance) simu-
lated by ECA, CA and ECM after 30 runs respectively. The bold and underlined
value(s) in each row indicates the best performance, and the number in parenthe-
ses represents the number of clusters that the algorithm results in when applied
to this dataset. As can be seen that ECA performs better than CA in most cases
according to the ARI values. Compared with ECM, ECA is slightly better or
equivalent. Considering that ECA can automatically gain the number of clusters
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Table 1. Dataset description

Dataset #Samples #Dimensions #Clusters

Ecoli 272 7 3

Seeds 210 7 3

WDBC 569 30 2

Flame 240 2 2

Table 2. Comparison of ARI values of ECA, CA and ECM

Dataset #ECA #CA #ECM

Ecoli 0.7696 ± 0 (3) 0.7163 ± 0 (3) 0.7658 ± 0 (3)

Seeds 0.7415 ± 0 (3) 0.7149 ± 0 (3) 0.7459 ± 0.0061(3)

WDBC 0.7366 ± 0 (2) 0.7361 ± 0 (2) 0.7366 ± 0 (2)

Flame 0.4880 ± 0 (2) 0.4880 ± 0 (2) 0.4649 ± 0 (2)

while ECM fails, ECA is superior to ECM. As mentioned above, ECA yields the
best comprehensive performance here.

5 Conclusion

This paper proposes a new clustering method named Evidential clustering by
Competitive Agglomeration (ECA) by applying the framework of belief functions
to a competitive strategy. The ECA algorithm can find the “optimal” number of
clusters without prior knowledge. In addition, compared to CA, ECA can have
a credal partition that displays data structures in a way that makes more sense
than classical partition clustering. An numerical example is given to illustrate the
effectiveness of the proposed method, and it is compared with other clustering
algorithms on four other datasets.

Some practical issues as well as more simulations have not been raised and
will be discussed in the near future. In addition, there is some further work.
The first method is that the combination of CA and belief functions can be
considered from another perspective to achieve more appropriate performance.
The second method extends ECA to deal with instance constraints to improve
the accuracy of the algorithm.
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Abstract. Classification is used to predict classes by extracting infor-
mation from labeled data. But sometimes the collected data is imper-
fect, as in crowdsourcing where users have partial knowledge and may
answer with uncertainty or imprecision. This paper offers a way to deal
with uncertain and imprecise labeled data using Dempster-Shafer theory
and active learning. An evidential version of K-NN that classifies a new
example by observing its neighbors was earlier introduced. We propose
to couple this approach with active learning, where the model uses only
a fraction of the labeled data, and to compare it with non-evidential
models. A new computable parameter for EK-NN is introduced, allow-
ing the model to be both compatible with imperfectly labeled data and
equivalent to its first version in the case of perfectly labeled data. This
method increases the complexity but provides a way to work with imper-
fectly labeled data with efficient results and reduced labeling costs when
coupled with active learning. We have conducted tests on real data imper-
fectly labeled during crowdsourcing campaigns.

Keywords: Belief functions · Imperfect labels · Active learning

1 Introduction

In supervised classification, where the aim is to find the class of an observation,
one still works largely with hard labels i.e. if a label exists for an observation,
this label is defined in a categorical way. The labeling process often is carried
out by humans [7,10]; without making any difference between a label given by
someone who has hesitated for a long time and someone who has no doubt.

Using hard labels might be convenient for many machine learning and deep
learning problems but is never completely representative of the reality. Imper-
fection, on the other hand, can help us fill in this lack of information. It can
be represented by many criteria but only uncertainty and imprecision will be
discussed in this paper. Ignorance is then derived from imprecision. Such infor-
mation can be modeled with the theory of belief functions, introduced in [1,12].
This paper proposes to compare a non-evidential model with its evidential ver-
sion and to observe the impact of imperfect labeling on classification. The widely
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Le Hégarat-Mascle et al. (Eds.): BELIEF 2022, LNAI 13506, pp. 44–53, 2022.
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used non-parametric model K-NN [5] will then be compared with EK-NN, an
evidential version presented in [2–4]. A new parameter will be proposed for EK-
NN to work with imperfectly labeled data and to maintain equivalence with the
original model. In a context where data labeling is not only imperfect but also
expensive, active learning [11] is particularly interesting. Indeed, a small volume
of labeled data is sufficient to obtain good performance. Very little research has
been done to couple belief functions with active learning. The main difference
with [14] is the use of an imperfectly labeled data set instead of using only noise.
The plan of the paper is as follows. Section 2 reviews the theory of belief func-
tions, K-NN and EK-NN algorithms and then ends with an overview of active
learning. Section 3 describes the proposed method, and the contribution con-
cerning the parameters of EK-NN. A new credibilist dataset is also presented.
Experiments on datasets composed of noisy real data and imperfectly labeled
data are discussed in Sect. 4. Finally, Sect. 5 concludes the article.

2 Background

2.1 Reminder on Belief Functions

The theory of belief functions, also called Dempster-Shafer theory [1,12], is used
in this study in order to model both imprecision and uncertainty.

One considers Ω = {ω1, . . . , ωM} the frame of discernment for M exclusive
and exhaustive hypotheses. The power set 2Ω is the set of all subsets of Ω. A
Basic Belief Assignment (BBA) is the belief that a source may have about the
elements of the power set of Ω, this function assigns a mass to each element of
this power set such that the sum of all masses is equal to 1.

m : 2Ω → [0, 1],
∑

A∈2Ω

m(A) = 1. (1)

Each subset A ∈ 2Ω such as m(A) > 0 is called a focal element of m. If
m(A) = 1 − δ and m(Ω) = δ with A ∈ 2Ω\∅ and δ ∈ [0, 1], m is called a simple
support mass function.

A source might not be trustworthy, a discounting coefficient α is then intro-
duced to transfer some belief into Ω, also called the ignorance, such that:

{
mα(A) = αm(A) , ∀A ∈ 2Ω , A �= Ω,

mα(Ω) = 1 − α(1 − m(Ω)),
(2)

where mα is the new discounted mass.
The normalized conjunctive combination of Basic Belief Assignments (BBAs)

mj derived from N sources is given by:
⎧
⎪⎪⎨

⎪⎪⎩

m(A) =
1

1 − κ

∑

B1∩...∩BN=A

N∏

j=1

mj(Bj) if A �= ∅,

m(∅) = 0,

(3)
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with ∅ the empty set and:

κ =
∑

B1∩...∩BN=∅

N∏

j=1

mj(Bj). (4)

On decision level, the pignistic probability BetP helps decision making on
singletons:

BetP (ω) =
∑

A∈2Ω , ω∈A

m(A)
|A| . (5)

2.2 K-Nearest Neighbors

When dealing with perfectly labeled data, a non-parametric discrimination
model known as the K-Nearest Neighbors (K-NN) is introduced in [6]. This
is a popular classification model in which the label of an incoming sample is
predicted according to its K nearest neighbors. The main drawback of this algo-
rithm is that it assumes that there are close neighbors of the incoming sample.
It is then proposed in [5] a distance-weighted K-NN where each neighbor is
weighted according to its closeness to the incoming sample.

2.3 EK-NN

An evidential version of K-NN is introduced in [3], this Evidential K-Nearest
Neighbors (EK-NN) uses belief functions to assign a label to a new sample. It
is presented in the original paper as working with perfectly labeled data, but
some work has subsequently been done to make this algorithm work with imper-
fectly labeled data. A version of EK-NN [4] is proposed with data labeled with
possibility theory and [2] allows to calculate the parameters when dealing with
imperfectly labeled data coupled with the theory of belief functions. However,
it then loses the equivalence with the previous model in the particular case of
perfectly labeled data.

2.4 Active Learning

Imperfect labels can be modeled by belief functions, and EK-NN can be a tool
for learning from imperfectly labeled data, but we are also interested in reducing
the number of labeled instances. Active learning [11] is a part of machine learning
where the learner can choose which observation to label in order to work with
only a fraction of the labeled data to reduce the labeling cost. Observations are
called Instances, the act of requesting for the label of an instance is a Query and
the entity giving its label to an instance is called the Oracle.

The difficulty is therefore to determine which instances should be labeled first.
This process is called Sampling, the best known being Random Sampling where
queries to the Oracle are made on random instances. Uncertainty Sampling, on
the other hand, aims to perform a query on the sample for which the model is
the least certain.
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3 Classification of Imperfectly Labeled Data with EK-NN
and Active Learning

Let X be a P features collection of N samples such as X = {xn = (xn
1 , . . . , xn

P )
|n = 1, . . . , N}, and Ω a set of M classes as Ω = {ω1, . . . , ωM}. Let ds,i be
the distance between xs and xi with xs an incoming sample to be classified
using the information contained in the training set and xi one of its K nearest
neighbors. Classifying xs means assigning it one class in Ω. Let Φs be the set of
the K-nearest neighbors of xs in X and mi the BBA associated to xi.

3.1 EK-NN for Imperfectly Labeled Data

In [3], the author introduces an equation of the BBA between an unclassified
sample xs and a neighbor xi when it comes to imperfectly labeled data. This
section results from the following proposition. If xs is a sample to be classified,
one’s belief about the class of xs induced by knowing that xi ∈ Φs can be
represented by a basic belief assignment ms,i deduced from mi and ds,i:

ms,i(A) = α0φ(ds,i)mi(A),

ms,i(Ω) = 1 −
∑

A∈2Ω\Ω

ms,i(A), (6)

with φ a monotonically decreasing function and:

0 < α0 < 1,

φ(0) = 1,
lim

d→∞
φ(d) = 0.

(7)

As a decreasing function φ, [3] suggests to choose:

φ(d) = e−γdβ

, (8)

with γ > 0 and β ∈ {1, 2, . . .} possibly fixed to a small value. When φ is first
introduced, it depends on γq with ωq the class of xi and there are as many γq

as different classes. As each point xi no longer has a unique label since we are
using imperfectly labeled data, γq cannot be calculated. This specificity forces
the model to differ from a model using hard labeled data. It is discussed in
Sect. 3.2.

Each BBA is now combined using (3):

m̄s(A) =
∑

B1∩...∩BK=A

∏

xi∈Φs

α0φ(ds,i)mi(Bi),∀A ∈ 2Ω . (9)

Considering the closed world, the mass of the empty set must be forced to be
null. The new normalized combined BBA, denoted ms is obtained as:

⎧
⎨

⎩
ms(A) =

1
1 − κ

m̄s(A), A �= ∅,

ms(∅) = 0.
(10)
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with κ the fusion inconsistency given at Eq. (4). Each new sample is then clas-
sified by maximizing the pignistic probability.

3.2 Parameters Optimization and γi-EKNN

This part deals with the calculation of the parameters of the model. They are:
K, α0, γ and β. The number K of nearest neighbors can be optimized identically
to K-NN, using for example cross-validation. Furthermore, the use of variable
size datasets within active learning has an impact on the optimal K. From
preliminary experimental results (not given here), the parameter α0 is set to 0.8,
but might depend on the knowledge of the sources, which modifies the results
very slightly; β = 2 gave satisfying results with little impact when changed.
When dealing with imperfectly labeled data, the use of one γ parameter per class
becomes meaningless, as there are no longer any classes but only samples with
BBAs that more or less belong to a class. Several options have been proposed in
[2–4] and compared in [2].

– In its first version [3], here renamed γq-EKNN, the model is presented with a
γq parameter depending on the class ωq of the neighbor xi. The computable
formula given for γq is 1/dβ

q with dq the mean distance between two training
vectors of the same class.

– A one γ version of the model [4], γ-EKNN, is later presented in a possibilistic
environment and suitable for imperfectly labeled data. The use of a single γ
parameter leads to the loss of equivalence with the initial model.

– Finally, a contextual-discounting based model [2] with M learnable γq is intro-
duced, and will be referred to as CD-EKNN.

In this paper, we propose γi-EKNN, a version with K computable γi param-
eters, allowing to recover the equivalence, both theoretical and practical, with
the original model in the case of perfectly labeled data. To maintain the equiva-
lence with the model introduced in [3] when dealing with perfectly labeled data,
the proposition of using one γ for each neighbor according to their similarity
is made. When it comes to imperfectly labeled data, γ is calculated in relation
to the distance with the other samples and according to its resemblance with
Jousselme distance introduced in [8]. The closer we get to perfect labeling, the
closer we get to one γ per class:

γi =
1

dβ
i

, di =

N∑

ν=0

N∑

μ=0

(1 − di,ν
J )(1 − di,μ

J )dν,μ

[
N∑

ν=0

(1 − di,ν
J )]2 −

N∑

ν=0

(1 − di,ν
J )2

, (11)

with N the total number of samples and di,ν
J Jousselme’s distance between mi

and mν .
In order to study the relevance of using imperfect labels by comparing an

eviendential and a non-evidential model, γi-EKNN will be used, at the cost of
its complexity, as it maintains equivalence with the orginal model.
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3.3 Labeling with Uncertainty and Imprecision

In order to work with imperfectly labeled data, we obtained a dataset from
crowdsourcing campaigns using the model and the materials developed in [13].

Credal Bird-10 is a dataset composed of 200 pictures of birds imperfectly
labeled. Each of these images belongs to a class corresponding to one of the 10
species of birds evenly distributed on the dataset. During crowdsourcing cam-
paigns, the pictures are displayed and participants can choose multiple corre-
sponding classes as well as the belief they have in their responses. The resulting
dataset is a combination of pictures associated with BBAs, refer to [13] for con-
struction of the dataset. When using non-evidential models, the class maximizing
the pignistic probability is then chosen as the perfect label. Two datasets have
been obtained, one on the Irisa laboratory (Credal Bird-10 irisa) and one on a
non-specific crowd of paid contributors (Credal Bird-10 public).

Example for a picture of red/green/blue pixels corresponding to a marsh
tit with y1 the vector on 2Ω which is the BBA describing its imperfect label:

y1

m({Marsh tit}) 0.2

m({Marsh tit, Great tit}) 0.5

m(Ω) 0.3

4 Experiments

The following section presents several procedures for implementing the method.
The interest is to show that allowing a source to provide imperfectly labeled
data may be more realistic than perfectly labeled data and therefore yield bet-
ter results. For each experiment 20% of the dataset is used as a test set and the
remaining as a training set. The experiment of Sect. 4.1 is a brief comparison
between the approaches discussed in Sect. 3.2. The experiments given in Sects. 4.2
and 4.3 are coupled to active learning in order to avoid expensive labeling. A
comparison between K-NN and its evidential version is made to study the rel-
evance of using imperfectly labeled data, other models are added for a general
overview.

4.1 Different Approaches for γ Parameter

A comparison is made in Table 1 between K-NN and the approaches presented
in Sect. 3.2. They are used with a K nearest neighbors value equal to 7 and
the result is a mean accuracy over 100 iterations. The distance weighted K-NN
is compared to the original version γq-EKNN, to the unique gamma γ-EKNN
version using γ = 1/dβ , with d the mean distance between two training vectors,
and to the proposed γi-EKNN. Datasets are split into two categories: perfectly
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labeled (Iris, Wine and Breast Cancer)1 and imperfectly labeled (Credal Bird-10
public). The 95% confidence interval2 is also given.

As it can be observed in Table 1, there is an equivalence between γq-EKNN
and the proposed γi-EKNN on perfectly labeled datasets (Iris, Wine and Breast
Cancer); this equivalence is discussed in Sect. 3.2. When dealing with imperfectly
labeled data, the same γi-EKNN model is also competitive. Letting sources label
imperfectly gave better results.

Table 1. Mean accuracy over 100 iterations on perfectly labeled (Iris, Wine, Breast
Cancer) and imperfectly labeled (Credal Bird-10 public) datasets.

Dataset K-NN γq-EKNN γ-EKNN γi-EKNN

Iris 0.965 ± 0.006 0.963 ± 0.006 0.964 ± 0.006 0.963 ± 0.006

Wine 0.737 ± 0.013 0.696 ± 0.012 0.704 ± 0.012 0.696 ± 0.012

Breast Cancer 0.927 ± 0.004 0.928 ± 0.004 0.928 ± 0.004 0.928 ± 0.004

Credal Bird-10 public 0.383 ± 0.015 0.389 ± 0.014 0.411 ± 0.014 0.412 ± 0.014

4.2 Experiment on Noised Real World Datasets

In this experiment both Iris and Wine datasets have been noised as this is a
common point in the literature. A noise parameter ε = [0, 1] is defined and the
observations are randomly selected in order to have a proportion of noisy labels
equal to ε. For each selected observation another singleton is randomly selected
and a random mass assigned. The remaining mass is evenly distributed among
all other elements. For non-evidential classifiers, the singleton which maximizes
the pignistic probability of this new mass is the new label. The Iris and Wine
datasets were altered with ε equal to 0.5. In this experiment, the mean accuracy
of different models is compared using active learning. The models are as follows:
K-NN based on a distance weight with 7 nearest neighbors, Logistic Regression
with newton-cg for optimization and Random Forest, all used with the scikit-
learn default parameters [9]. They are compared to γi-EKNN presented in this
paper using 7 nearest neighbors. Both experiments used 8 randomly labeled
instances (there must be more than K labeled instances) and 20 active learning
queries were performed according to uncertainty sampling. The mean accuracy
is calculated over 100 iterations.

Figure 1 shows that γi-EKNN achieves a mean accuracy of about 0.9 on Iris
dataset with only 28 labeled instances, a 30% performance improvement over
K-NN due to less significant alteration of the real labels. The distance between
the mean accuracy of γi-EKNN and K-NN is also greater as the queries number

1 https://archive.ics.uci.edu.
2 Formula: [x̄ − 1,96

S√
n
; x̄ + 1,96

S√
n
], with n the size of the sample, x̄ its mean and S

the standard deviation of the serie. This formula is used because it is a mean over
100 experiments and not a single proportion.
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increases, which means that the model manages to select better instances to
label while using the same uncertainty sampling. The same Fig. 1 shows less
optimistic results on the Wine dataset, but still with a dominance of γi-EKNN
over its non-evidential version. One must be careful with the results, even if the
noisy data are distributed in the same way, the labels used for the non-evidential
classifiers do not contain the same information as the labels used for γi-EKNN,
making the comparison more difficult. Apart from the noise, one of the objectives
of the paper is to find out whether by adding information during the labeling
phase, interesting results can be obtained with a low labeling cost, which leads
to the experiment presented in Sect. 4.3.

(a () b)

Fig. 1. Mean accuracy by number of labeled instances with 50% noise, on the Iris (a)
and Wine (b) datasets.

4.3 Experiment on Imperfectly Labeled Datasets

So far, perfectly labeled datasets have been used for comparison. In this section,
a procedure is proposed that can this time be fully compared to non-evidential
methods as the labels are unchanged but fundamentally imperfect. To show
a real application of the proposed method, we need to train on uncertain and
imprecise labels. With the imperfectly labeled dataset of 10 classes introduced in
Sect. 3.3 and dimensionally reduced to 512 variables on X , the model is compared
to its non-evidential version. The same models and active learning steps as in
the Experiment 4.2 are used. Differences are present in the datasets, imperfectly
labeled by the contributors.

Figure 2 represents the mean accuracy of 100 iterations on both Credal Bird-
10 irisa and Credal Bird-10 public datasets. With 28 labeled instances, EK-NN
performs better than its non-evidential version, with around 0.44 accuracy on
Credal Bird-10 irisa and 0.48 on Credal Bird-10 public compared to 0.41 and
0.44 for K-NN respectively. The comparison between the two datasets also shows
that the results may vary greatly depending on the labels, even with the same
models. Here, two different populations labeled the same pictures, members of



52 A. Hoarau et al.

a laboratory and crowdsourcing contributors. This difference produces changes
in the results with, in all cases, better results for EK-NN.

(a () b)

Fig. 2. Mean accuracy by number of labeled instances, on the Credal Bird-10 irisa (a)
and Credal Bird-10 public (b) datasets.

5 Conclusion

This study presents a model for efficient learning from a small amount of data
derived from imperfect human contributions. It is proposed to couple the theory
of belief functions, to model the uncertainty and imprecision of the data, with
an active learning algorithm using only a fraction of the labeled data. In par-
ticular, our work focuses on the labeling method and how information can be
added to allow the learning phase to work more efficiently and at lower cost. A
version of the evidential K-nearest neighbors model is proposed, offering a new
computation for the parameter γ and allowing to recover an equivalence with
the original model in the case of imperfectly labeled data.

To validate this approach, experiments were first conducted on noisy data
sets (Sect. 4.2). Very optimistic results are obtained with good performances of
the credibility classifiers. However, as the nature of the noise makes it difficult
to compare a credibility classifier with its classical version, two new imperfectly
labeled datasets on bird species were produced via crowdsourcing to test the
model on real data. Few labeled images are used in Sect. 4.3 for decent perfor-
mance. The quality of the labeling, which depends on the oracle and the model
used to represent the imperfection, has a strong influence on the final perfor-
mance, and can make the results vary more significantly by improving the quality
of the labels rather than the quality of the model itself. In future work, we plan
to study how to maximize the quality of the imperfection contained in the labels,
by working on its modelisation or on the interface allowing even an inexperienced
user to give a relevant uncertain and imprecise answer. Improvement could also
be done with active learning, taking into account at the sampling step, that the
model can give an evidential answer.



Imperfect Labels with Belief Functions for Active Learning 53

References

1. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping.
Ann. Math. Stat. 38(2), 325–339 (1967)

2. Denoeux, T., Kanjanatarakul, O., Sriboonchitta, S.: A new evidential k-nearest
neighbor rule based on contextual discounting with partially supervised learning.
Int. J. Approximate Reasoning 113, 287–302 (2019)

3. Denæux, T.: A k-nearest neighbor classification rule based on dempster-shafer
theory. IEEE Trans. Syst. Man Cybern. 219(1995)

4. Denæux, T., Zouhal, L.: Handling possibilistic labels in pattern classification using
evidential reasoning. Fuzzy Sets Syst. 122, 409–424 (2001)

5. Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst.
Man Cybern. SMC 6(4), 325–327 (1976)

6. Fix, E., Hodges, J.L.: Discriminatory analysis. nonparametric discrimination: Con-
sistency properties. Technical report 4. USAF, School of Aviation Medicine, Ran-
dolph Field (1951)

7. Fredriksson, T., Mattos, D.I., Bosch, J., Olsson, H.H.: Data labeling: an empirical
investigation into industrial challenges and mitigation strategies. In: Morisio, M.,
Torchiano, M., Jedlitschka, A. (eds.) Product-Focused Software Process Improve-
ment, pp. 202–216. Springer International Publishing, Cham (2020). https://doi.
org/10.1007/978-3-030-64148-1 13
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Abstract. We introduce a distance-based neural network model for
regression, in which prediction uncertainty is quantified by a belief func-
tion on the real line. The model interprets the distances of the input
vector to prototypes as pieces of evidence represented by Gaussian ran-
dom fuzzy numbers (GRFN’s) and combined by the generalized product
intersection rule, an operator that extends Dempster’s rule to random
fuzzy sets. The network output is a GRFN that can be summarized by
three numbers characterizing the most plausible predicted value, variabil-
ity around this value, and epistemic uncertainty. Experiments with real
datasets demonstrate the very good performance of the method as com-
pared to state-of-the-art evidential and statistical learning algorithms.

Keywords: Evidence theory · Dempster-shafer theory · Belief
functions · Machine learning · Random fuzzy sets

1 Introduction

The Dempster-Shafer (DS) theory of evidence is a general mathematical frame-
work for reasoning and making decisions based on imprecise and uncertain infor-
mation [7,14]. This framework is based on the representation of independent
pieces of evidence by belief functions, and on their combination by a conjunc-
tive operator called Dempster’s rule. The greater number of degrees of freedom
offered by belief functions, as compared to probabilities, makes it possible to dis-
tinguish between two situations of high uncertainty: equally supported hypothe-
ses on the one hand, and total lack of support on the other hand, the latter
situation characterizing complete ignorance.

In machine learning, DS theory has been mainly applied to classification and
clustering tasks, in which the set of elementary hypotheses (or frame of dis-
cernment) is finite. In particular, several methods have been proposed to learn
evidential classifiers, i.e., classifiers representing prediction uncertainty by belief
functions. In the first such classifier, the evidential K-nearest neighbor (EKNN)
rule [3], each neighbor of a feature vector to be classified is represented by a
simple mass function, and the mass functions from the K nearest neighbors are

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Le Hégarat-Mascle et al. (Eds.): BELIEF 2022, LNAI 13506, pp. 57–66, 2022.
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combined by Dempster’s rule. The evidential neural network (ENN) introduced
in [5] is based on the same principle, the elementary mass functions being com-
puted based on distances to prototypes. Recently, this distance-based approach
has been extended to deep networks [9,15,16], by adding a DS layer to a deep
architecture; output mass functions are then computed based on distances to
prototypes in the space of high-level features extracted by convolutional layers.

Applying DS theory to regression is more challenging, because in regression
tasks the frame of discernment is typically the real line or a real interval, whereas
most tools of DS theory have been developed for finite frames. This difficulty
can be circumvented by discretizing the response variable, as proposed in [4],
in which a neural network model for regression directly extending the ENN
model was introduced. The output of this model is a mass function with disjoint
intervals and the whole frame as focal sets. Another approach, introduced in [12]
[13], is to modify the EKNN rule by combining simple mass functions focussed
either on a single real number, or on a fuzzy number in the case of learning
data with fuzzy response variable. The output mass function then has a finite
number of crisp or fuzzy focal sets. This method, called EVREG, was shown
in [13] to yield good results in the case of crisp data, and to efficiently handle
uncertain response data (such as provided by an unreliable sensor). However, the
K nearest neighbor approach breaks down as dimension grows, and it cannot
compete with state-of-the-art regression methods.

In this paper, we propose another evidential neural network model for regres-
sion inspired from the ENN model. This new model, called ENNreg, uses the
formalism of Gaussian random fuzzy numbers (GRFN’s) recently introduced in
[8]. A GRFN is a random fuzzy subset of the real line, which can be described as
a Gaussian possibility distribution whose mode is a Gaussian random variable.
GRFN’s induce belief functions and can be combined using a generalization of
Dempster’s rule. In ENNreg, GRFN’s associated to each of the prototypes are
combined to yield an output GRFN quantifying prediction uncertainty.

The rest of this paper is organized as follows. The general framework of
epistemic random fuzzy sets and the GRFN model are first recalled in Sect. 2.
The proposed ENNreg model is then introduced in Sect. 3. Experimental results
are reported in Sect. 4, and Sect. 5 concludes the paper.

2 Epistemic Random Fuzzy Sets

The theory of epistemic random fuzzy sets (ERFS) was introduced in [6] and
[8] as a general framework encompassing both DS theory and possibility theory.
We first recall some important definitions in Sect. 2.1. Gaussian random fuzzy
numbers, a parametric family of ERFS’s on the real line are then described in
Sect. 2.2.

2.1 General Framework

Let (Ω,ΣΩ , P ) be a probability space and let (Θ, ΣΘ) be a measurable space.
Let ˜X be a mapping from Ω to the set [0, 1]Θ of fuzzy subsets of Θ. For any
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α ∈ [0, 1], let α
˜X be the mapping from Ω to 2Θ defined as

α
˜X(ω) = α[ ˜X(ω)],

where α[ ˜X(ω)] is the weak α-cut of ˜X(ω). If for any α ∈ [0, 1], α
˜X is ΣΩ − ΣΘ

strongly measurable [11], the tuple (Ω,ΣΩ , P,Θ, ΣΘ, ˜X) is said to be a random
fuzzy set (also called a fuzzy random variable) [2]. When there is no possible
confusion about the domain and codomain, we will refer to mapping ˜X itself as
a random fuzzy set.

In ERFS theory, random fuzzy sets represent unreliable and fuzzy evidence.
In this model, we see Ω as a set of interpretations of a piece of evidence about
a variable θ taking values in Θ. If interpretation ω ∈ Ω holds, we know that
“θ is ˜X(ω)”, i.e., θ is constrained by the possibility distribution defined by ˜X(ω).
We qualify such random fuzzy sets as epistemic, because they encode a state of
knowledge about some variable θ. If all images ˜X(ω) are crisp, then ˜X defines an
ordinary random set. If mapping ˜X is constant, then it is equivalent to specifying
a unique fuzzy subset of Θ, which defines a possibility distribution.

Belief and plausibility functions. In the following, we will assume that random
fuzzy set ˜X is normalized, i.e., that it verifies the following conditions: (1) For
all ω ∈ Ω, ˜X(ω) is either the empty set, or a normal fuzzy set, i.e., hgt( ˜X(ω)) =
supθ∈Θ

˜X(ω)(θ) ∈ {0, 1}; (2) P ({ω ∈ Ω : ˜X(ω) = ∅}) = 0. For any ω ∈ Ω, let
Π

˜X(· | ω) be the possibility measure on Θ induced by ˜X(ω):

Π
˜X(B | ω) = sup

θ∈B

˜X(ω)(θ), (1)

and let N
˜X(· | ω) be the dual necessity measure:

N
˜X(B | ω) =

{

1 − Π
˜X(Bc | ω) if ˜X(ω) �= ∅

0 otherwise,

where Bc denotes the complement of B. The mappings Bel
˜X and Pl

˜X from ΣΘ

to [0, 1] defined as

Bel
˜X(B) =

∫

Ω

N
˜X(B | ω)dP (ω) (2)

and
Pl

˜X(B) =
∫

Ω

Π
˜X(B | ω)dP (ω) = 1 − Bel

˜X(Bc) (3)

are, respectively, belief and plausibility functions.

Combination. Consider two epistemic random fuzzy sets (Ωi, Σi, Pi,Θ, ΣΘ, ˜Xi),
i = 1, 2, encoding independent pieces of evidence. The independence assumption
means here that the relevant probability measure on the joint measurable space
(Ω1×Ω2, Σ1⊗Σ2) is the product measure P1×P2. If interpretations ω1 ∈ Ω1 and
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ω2 ∈ Ω2 both hold, we know that “θ is ˜X1(ω1)” and “θ is ˜X2(ω2)”. It is then
natural to combine the fuzzy sets ˜X1(ω1) and ˜X2(ω2) by an intersection operator.
As discussed in [6], the normalized product intersection operator � is suitable
for combining fuzzy information from independent sources and it is associative.
We thus consider the mapping ˜X�(ω1, ω2) = ˜X1(ω1) � ˜X2(ω2), assumed to be
Σ1 ⊗ Σ2-ΣΘ strongly measurable.

If hgt( ˜X1(ω1) ˜X2(ω2)) = 0, the two interpretations ω1 and ω2 are inconsistent
and they must be discarded. If hgt( ˜X1(ω1) ˜X2(ω2)) = 1, the two interpretations
are fully consistent. If 0 < hgt( ˜X1(ω1) ˜X2(ω2)) < 1, ω1 and ω2 are partially
consistent. The soft normalization proposed in [8] consists in conditioning the
product probability P1×P2 by the fuzzy subset ˜Θ∗ of consistent pairs of interpre-
tations, with membership function ˜Θ∗(ω1, ω2) = hgt

(

˜X1(ω1) · ˜X2(ω2)
)

. Alter-
natively, we can use a hard normalization operation, which consists in condition-
ing P1 ×P2 by the crisp set Θ∗ of interpretations that are not fully inconsistent,
described formally as

Θ∗ = {(ω1, ω2) ∈ Ω1 × Ω2 : hgt( ˜X1(ω1) ˜X2(ω2)) > 0}.

Both combination rules, with soft or hard normalization, are commutative and
associative, and both of them generalize Dempster’s rule. In the following, we will
use hard normalization as it leads to simpler calculations. This operation will be
referred to as the generalized product-intersection rule with hard normalization,
and the corresponding operator will be denoted by �.

2.2 Gaussian Random Fuzzy Numbers

A Gaussian Fuzzy Number (GFN) is a fuzzy subset of R with membership func-
tion

ϕ(x;m,h) = exp
(

−h

2
(x − m)2

)

,

where m ∈ R is the mode and h ∈ [0,+∞] is the precision. Such
a fuzzy number will be denoted by GFN(m,h). The normalized prod-
uct intersection of two GFN’s GFN(m1, h1) and GFN(m2, h2) is a GFN
GFN(m12, h12) = GFN(m1, h1) � GFN(m2, h2), with m12 = (h1m1+h2m2)/(h1+
h2) and h12 = h1 + h2.

Let (Ω,ΣΩ , P ) be a probability space and let M : Ω → R be a Gaussian
random variable (GRV) with mean μ and variance σ2. The random fuzzy set
˜X : Ω → [0, 1]R defined as

˜X(ω) = GFN(M(ω), h)

is called a Gaussian random fuzzy number (GRFN) with mean μ, variance σ2

and precision h, which we write ˜X ∼ ˜N(μ, σ2, h). A GRFN is, thus, defined by a
location parameter μ, and two parameters h and σ2 corresponding, respectively,
to possibilistic and probabilistic uncertainty.
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A GRFN can be seen either as a generalized GRV with fuzzy mean, or as
a generalized GFN with random mode. In particular, a GRFN ˜X with infinite
precision h = +∞ is equivalent to a GRV with mean μ and variance σ2, which we
can write: ˜N(μ, σ2,+∞) = N(μ, σ2). If σ2 = 0, M is a constant random variable
taking value μ, and ˜X is a possibilistic variable with possibility distribution
GFN(μ, h). Another case of interest is that where h = 0, in which case ˜X(ω)(x) =
1 for all ω ∈ Ω and each x ∈ R, and the belief function induced by ˜X is vacuous.

As shown in [8], the plausibility and belief of any real interval [x, y] are given
by the following formulas:

Pl
˜X([x, y]) = Φ

(

y − μ

σ

)

− Φ
(

x − μ

σ

)

+

pl
˜X(x)Φ

(

x − μ

σ
√

hσ2 + 1

)

+ pl
˜X(y)

[

1 − Φ
(

y − μ

σ
√

hσ2 + 1

)]

, (4a)

and

Bel
˜X([x, y]) = Pl

˜X([x, y]) − pl
˜X(x)Φ

(

(x + y)/2 − μ

σ
√

hσ2 + 1

)

−

pl
˜X(y)

[

1 − Φ
(

(x + y)/2 − μ

σ
√

hσ2 + 1

)]

, (4b)

where Φ is the standard normal cumulative distribution function (cdf), and

pl
˜X(x) =

1√
1 + hσ2

exp
(

− h(x − μ)2

2(1 + hσ2)

)

(4c)

is the contour function. Denoting by F
˜X(x) = Bel

˜X((−∞, x]) and F
˜X(x) =

Pl
˜X((−∞, x]), respectively, the lower and upper cdf’s of ˜X, its lower and upper

expectations are

E∗( ˜X) =
∫ +∞

−∞
x dF

˜X(x) = μ −
√

π

2h

and

E
∗( ˜X) =

∫ +∞

−∞
x dF

˜X(x) = μ +
√

π

2h
.

The usefulness of GRFN’s as a model of uncertain information about a real
quantity arises from the fact that GRFN’s can easily be combined by the gen-
eralized product-intersection rule, with soft or hard normalization [8]. Here,
we only consider hard normalization, which is used in the proposed regres-
sion model described in Sect. 3. Given two GRFN’s ˜X1 ∼ ˜N(μ1, σ

2
1 , h1) and

˜X2 ∼ ˜N(μ2, σ
2
2 , h2), we have ˜X1 � ˜X2 ∼ ˜N(μ12, σ

2
12, h12), with

μ12 =
h1μ1 + h2μ2

h1 + h2
, σ2

12 =
h2

1σ
2
1 + h2

2σ
2
2

(h1 + h2)2
, and h12 = h1 + h2.
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3 Neural Network Model

The ENN (Evidential Neural Network) model introduced in [5] for classification
is based on prototypes in input space, each one having degrees of membership to
the different classes. In this model, each prototype provides a piece of evidence
regarding the class of a test instance. This evidence is represented by a DS mass
function defined from the class membership degrees of the prototype and the
distance from the input vector. The mass functions induced by the prototypes
are then combined by Dempster’s rule. Here, we propose a similar model for
regression, called ENNreg. The propagation equations and the loss function are
given, respectively, in Sects. 3.1 and 3.2.

3.1 Propagation Equations

We consider J prototypes wj ∈ R
p, j = 1, . . . , J , where p is the dimension of

the input space. The activation of prototype j for input x is

aj(x) = exp(−γ2
j ‖x − wj‖2),

where γj is a positive scale parameter. The evidence of prototype j is represented
by a GRFN ˜Yj(x) ∼ ˜N(μj(x), σ2

j , aj(x)hj), where σ2
j and hj are variance and

precision parameters for prototype j; the mean μj(x) is defined as μj(x) =
βT

j x + αj , where βj is a p-dimensional vector of coefficients, and αj is a scalar
parameter. The vector ψj of parameters associated to prototype j is, thus, ψj =
(wj , γj ,βj , αj , σ

2
j , hj).

The output ˜Y (x) for input x is computed by combining the GRFN’s ˜Yj(x),
j = 1, . . . , J induced by the J prototypes using the � operator. It is a GRFN
˜Y (x) ∼ ˜N(μ(x), σ2(x), h(x)), with

μ(x) =

∑J
j=1 aj(x)hjμj(x)
∑J

k=1 ak(x)hk

, σ2(x) =

∑J
j=1 a2

j (x)h2
jσ

2
j

(

∑J
k=1 ak(x)hk

)2 ,

and h(x) =
∑J

j=1 aj(x)hj . Some special cases are of interest:

1. If βj = 0 for all j, then μj(x) = αj , and μ(x) is identical to the output of
a radial basis function (RBF) neural network with hidden-to-output weights
hjαj and normalized outputs;

2. If J = 1 and γ1 = 0, μ(x) = βT
1 x + α1, σ2(x) = h1σ

2
1 and h(x) = h1. We

then have a linear model with constant variance.

3.2 Loss Function

We want to fit the model described in the previous section in such a way that
the observed values of the response variable have a high degree of belief and a
high plausibility. Because the degree of belief is zero for a single real value, we
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consider a small interval [y−ε, y+ε], denoted as [y]ε, around each observed value
y, and we define the following loss function:

Lλ,ε(y, ˜Y ) = −λ ln Bel
˜Y ([y]ε) − (1 − λ) ln Pl

˜Y ([y]ε), (5)

where y is the true response, ˜Y ∼ ˜N(μ, σ2, h), and λ ∈ [0, 1] is a hyperparameter.
This loss function is minimal for a perfect forecast, such that μ = y, h = +∞
and σ2 → 0. With a fixed variance σ2, the term Bel

˜Y ([y]ε) is maximized for
μ = y and h = +∞, while the term Pl

˜Y ([y]ε) is maximized for h = 0, whatever
μ. Hyperparameter λ thus determines the precision of the predictions. We can
also remark that, when ε is small, we have, for a probabilistic GRFN ˜Y ∼
˜N(μ, σ2,+∞), Lλ,ε(y, ˜Y ) ≈ − ln φ(y−μ

σ ) − ln ε, where φ denotes the standard
normal probability density function; loss function (5) then becomes equivalent
to minus the log-likelihood.

Using a training set T = {(x1, y1), . . . , (xn, yn)}, we minimize the regularized
average loss

C(Ψ) =
1
n

n
∑

i=1

Lλ,ε(yi, ˜Y (xi)) +
ξ

J

J
∑

j=1

hj ,

where Ψ = (ψ1, . . . , ψJ ) is the vector of all parameters, and ξ is a regularization
coefficient. We note that setting hj = 0 amounts to removing prototype j, as
the GRFN ˜Yj(x) becomes vacuous for any input x. Increasing ξ results in more
cautious predictions and a more parsimonious model.

4 Experimental Results

We first give an illustrative example in Sect. 4.1. Results from a comparative
experiment are then reported in Sect. 4.2.

4.1 Illustrative Example

As an illustrative example, we consider data with p = 1 input from the following
distribution:

1. The input X is drawn from a mixture of two uniform distributions on [−3,−1]
and [1,4]: X ∼ 0.5Unif(−3,−1) + 0.5Unif(1, 4);

2. Given X = x, Y = x + sin 3x + η, where η is a Gaussian random variable
with zero mean and variance σ2 = 0.01 if x < 0 and σ2 = 0.3 otherwise.

We generated a learning set of size n = 200 and a test set of size nt = 1000 from
that distribution. We trained a network with J = 10 prototypes initialized by
the k-means algorithm, with λ = 0.95, ξ = 10−3 and ε = 0.01. Figure 1 shows the
expected values μ(x), together with the lower and upper expectations E∗(˜Y (x)),
E

∗(˜Y (x)), as well as prediction intervals of the form

[F
−1
˜Y (x)(α/2), F −1

˜Y (x)
(1 − α/2)], (6)
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for 1 − α ∈ {0.5, 0.9, 0.99}. The estimated coverage probabilities of these inter-
vals are, respectively, 0.76, 0.96 and 0.997, which suggests that expression (6)
provides conservative prediction intervals. As can be seen from Fig. 1, the pre-
diction intervals are wider when the variance of the data is larger, and in regions
of the input space where there is no data.

-5.0

-2.5

0.0

2.5

5.0

7.5

-2.5 0.0 2.5 5.0
x

y

Fig. 1. Learning data and predictions for the illustrative example. The red solid and
broken lines correspond, respectively, to the expected values μ(x), and to the lower

and upper expectations E∗(˜Y (x)), E
∗(˜Y (x)). Prediction intervals at levels 1 − α ∈

{0.5, 0.9, 0.99} are shown as grey areas. (Color figure online)

4.2 Comparative Experiment

The performance of ENNreg model was compared to those of six alternative
regression methods on four datasets from the UCI Machine Learning Reposi-
tory1. The methods are:

– The two evidential regression algorithms published so far: the neural network
model introduced in [4] (referred to as ENN97) and EVREG [13]:

– Three state-of-the-art nonlinear regression algorithms with Radial Basis
Function Kernel: Relevance Vector Machines (RVM), Support Vector
Machines (SVM), and Gaussian Process (GP);

– The Random Forest (RF) algorithm, which is often considered as one of the
best statistical learning procedures.

1 Available at https://archive.ics.uci.edu/ml/.

https://archive.ics.uci.edu/ml/
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For all methods, except ENN97 and EVREG, we used the implementation in
the R package caret [10]. Each dataset was split randomly into a training set
and a test set containing, respectively, 2/3 and 1/3 of the observations. All
predictors were scaled to have zero mean and unit standard deviation. For each
method, hyperparameters were tuned by 10-fold cross-validation. For ENN97,
the number M of classes was set to 10. For ENNreg, we used J = 30, λ = 0.9
and ε = 0.01σy (where σy is the standard deviation of the response variable) for
all the simulations; only ξ was tuned by cross-validation.

The results are reported in Table 1. We can see that ENNreg performs much
better than the two other evidential methods on all datasets, and also better
that the state-of-the-art methods for most datasets (it was only outperformed
by RF on the Concrete dataset). From these results, it appears that ENNreg not
only provides informative outputs with uncertainty quantification, but is also
very competitive in terms of prediction accuracy.

Table 1. Test mean squared errors of ENNreg and six alternative algorithms on four
UCI datasets. (See the description of the methods in the text).

n p ENNreg ENN97 EVREG RVM SVM GP RF

Boston 506 13 8.72 15.78 19.82 14.86 9.74 17.10 10.68

Energy 768 9 0.342 5.303 4.266 0.721 0.440 2.324 0.462

Concrete 1,030 8 28.32 62.0 71.4 42.3 29.6 52.7 25.6

Yacht 308 6 0.462 6.662 42.045 2.771 3.295 33.721 0.908

5 Conclusions

The evidential distance-based neural network described in this paper can be seen
as regression counterpart of the ENN model introduced in [5] for classification.
Both models are based on prototypes, and interpret the distances of the input
vector to the prototypes as pieces of evidence. In ENN, pieces of evidence are
represented by mass functions on the finite frame of discernment and are com-
bined by Dempster’s rule. In ENNreg, the frame of discernment is the real line;
pieces of evidence are represented by GRFN’s and combined by the generalized
product-intersection rule with hard normalization, which generalizes Dempster’s
rule to random fuzzy sets.

The output of ENNreg for input vector x is a GRFN defined by three num-
bers: a point prediction μ(x), a variance σ2(x) measuring random uncertainty,
and a precision h(x), which can be seen as representing epistemic uncertainty.
Experimental results show that the method outperforms previous evidential
regression models in terms of mean squared error, and that it also performs bet-
ter than or as well as some of the state-of-the-art nonlinear regression models.
In future work, we will further investigate the calibration properties of the out-
put belief functions, and study their potential to faithfully represent prediction
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uncertainty, particularly in information fusion contexts. We will also compare
our approach to that of Cella and Martin [1], who propose a method, applicable
to any regression algorithm, for constructing a predictive possibility distribution
with some well-defined frequentist properties.
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Abstract. The extreme learning machine model for ordinal classifica-
tion is extended to the uncertain case. Dealing with epistemic uncertainty
by Dempster-Shafer theory, in this paper, the single-model multi-output
extreme learning machine is learned from evidential training data. Taking
both the uncertainty and the ordering relation of labels into considera-
tion, given mass functions of training labels, different evidential encod-
ing schemes for model output are proposed. On that basis, adopting the
structure of a single extreme learning machine model with multiple out-
put nodes, the construction procedure of evidential ordinal classification
model is designed. According to the encoding mechanism and learning
details, when there is no epistemic uncertainty in training labels, the pro-
posed evidential ordinal method can be reduced to the traditional ordinal
one. Experiments on artificial and UCI datasets illustrate the practical
implementation and effectiveness of proposed evidential extreme learning
machine for ordinal classification.

Keywords: Ordinal classification · Dempster-Shafer theory · Extreme
learning machine

1 Introduction

Ordinal classification, also known as ordinal regression [1], is a special kind of
supervised learning approach, with wide applications in various fields. It con-
siders the ordinal variables appeared in various practical problems, such as the
attitude degree in Likert Scale Extremely � Very Much � Moderately � A little
� Not at all. Ordinal classification aims at learning a model from the training
set to predict the output labels of new instances, with specifically the finite set
of possible labels being naturally ordered. Due to the existence of the ordering
relations of labels, ordinal classification bridges the classification and regression
tasks. However, it differs from classification problem as the latter deals with
nominal variables having no ordering among elements. On the other hand, since
there is no metric on the ordinal output (Extremely is not five times more severe
that Not at all), it also cannot be simply treated as a regression problem.
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The origin of ordinal classification research can be traced back to the ordinal
statistics methods in the 1980s.s. With the development of machine learning,
more methods have been proposed by considering ordered labels within classi-
fication models, such as support vector machine [2], deep learning model [3]
and so on. As supervised learning, the training set of ordinal classification
model must be certain and precise, leading to high cost of preprocessing and
loss of useful information. Also, there exists epistemic uncertainty in the model
itself. Hence, considering uncertainty in data and model, within the framework
of imprecise probability, Desdercke discussed the lower and upper medians of
ordinal problems [4], and proposed to perform cautious ordinal classification by
binary decomposition [5]. In this paper, we adopt Dempster-Shafer theory [6,7]
(also called the theory of belief functions) to represent and deal with epistemic
uncertainty. Although there are some researches focused on ordinal information,
such as He discussed the entropy and evidence combination in ordinal environ-
ment [8,9], little work has been done on ordinal classification with evidential
data.

This paper proceeds with extreme learning machine (ELM) that has a sim-
ple single-hidden-layer structure, and extends its model to learn directly from
evidential data. The rest of this paper is organized as follows: Sect. 2 provides
some brief descriptions and definitions of the evidential ordinal classification
task. Section 3 is devoted to the evidential encoding scheme and the construc-
tion of proposed model. In Sect. 4, experiments on artificial and UCI datasets
demonstrate the implementation and performance of proposed evidential ordinal
ELM model. Finally, the main conclusions are summarized in Sect. 5.

2 Background

In this section, we recall some necessary definitions and descriptions from the
Dempster-Shafer theory and the ordinal extreme learning machine approach.

2.1 Dempster-Shafer Theory

As a generalization of both set and probabilistic uncertainty, Dempster-Shafer
theory provides a flexible framework for modelling and reasoning with uncer-
tainty. Here only a few definitions needed in the rest of the paper are recalled.
More complete descriptions can be found in Shafer’s book [7] and in the recent
survey [10]. Let finite set K = {1, 2, · · · ,K} be the frame of discernment, con-
taining all the possible exclusive values that the ordinal variable can take. When
the true value of the variable is ill-known, we can model its partial information
by a mass function m : 2K → [0, 1] such that m(∅) = 0 and

∑

A⊆K
m(A) = 1. (1)

A subset A of K with m(A) > 0 is called a focal set of m. We can interpret the
quantity m(A) as the amount of evidence indicating that the true value is specif-
ically in A while in no strict subset. This formalism extends both probabilistic
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and set-valued uncertainty models. For example, the vacuous mass function ver-
ifies m(K) = 1 and represents total ignorance. A Bayesian mass function is such
that all its focal sets are singletons, being equivalent to a probability distribu-
tion. A mass function such that m(A) = 1 for some subset A ⊆ K is said to be
logical, being equivalent to set A.

In the Transferable Belief Model, Smets proposed the pignistic probability
distribution [11], which is obtained by distributing masses equally among the
sets of A as

BetP (k) =
∑

{A⊆K:k∈A}

m(A)
|A| , (2)

where |A| denotes the cardinality of A ⊆ K.

2.2 Ordinal Extreme Learning Machine

Developed from the single-hidden-layer feedforward neural network, Extreme
Learning Machine (ELM) was proposed in [12] as a fast-learning algorithm,
with input weights assigned randomly and output weights decided analytically.
Deng [13] extended ELM to Ordinal Extreme Learning Machine (ORELM) by
proposing different encoding schemes and multiple model structures.

Considering the ordering relation among labels, ORELM mainly includes
the steps of encoding, learning and prediction. For the ORELM structure of
one model with multiple output nodes, the target output is encoded in the
form of t1×K = [1, ...1,−1, ...,−1], where label k and its lower-orders are set
with value 1 and the others -1. ORELM can also be decomposed into multiple
binary classifiers, such as K−1 binary ELM classifiers adopting 1-vs-all encoding
scheme or K(K−1)/2 binary ones with 1-vs-1 scheme. Once the model structure
and encoding strategy are decided, the learning procedure of ORELM basically
follows that of traditional ELM. The weight vectors connecting the input nodes
and hidden nodes, as well as the bias in the hidden nodes are randomly assigned
according to certain probability distribution. The weight vectors connecting the
hidden nodes and output nodes are obtained as the least square solution of a
linear equation system. The learning procedure is similar to what described in
Sect. 3.2. Due to length limitation, the calculation is not detailed here.

3 Single-Model Multi-output Evidential Ordinal Extreme
Learning Machine

Inspired by the decision-making criteria in the Dempster-Shafer theory [14],
several evidential encoding schemes are proposed to transfer mass functions of
ordinal labels to output coding bits. Considering both the ordinal relationship
among labels and the epistemic uncertainty in training instance labels, the learn-
ing procedure of single-model multi-output evidential ordinal extreme learning
machine (EORELM) is proposed.
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3.1 Evidential Encoding Schemes

The key to build the evidential ordinal ELM model is to achieve the output cod-
ing bits based on mass functions of training labels. For each evidential training
instance (xi ,mi) with inputs xi and mass function mi, i = 1, · · · , N , the target
output is encoded into K bits as ti = [ti1, · · · , tiK ], where the total coding bit
is the same as the number of ordinal classes K = |K|.

Evidential encoding is based on the ordinal coding matrix generated in the
following way. Taking the ordering relation of labels into consideration, when
an instance belongs to the k-th class, it is also classified into its lower-order
classes {1, 2, ..., k − 1}. The target output is encoded in the formation of c̃ =
[1, ...1, 0, ..., 0], where

c̃j =

{
1, 1 ≤ j ≤ k

0, k + 1 ≤ j ≤ K
j = 1, · · · ,K. (3)

Ordinal coding matrix is obtained by gathering the target outputs of all
possible labels together. Taking K=3 for example, the K × K ordinal coding
matrix C is shown in Table 1. The i-th column of C represents the target coding
output of the i-th class. The matrix element cij represents the output coding bit
ti corresponding to output node i, given class j.

Table 1. Ordinal coding matrix C

Coding bits True label

1 2 3

t1 1 1 1

t2 0 1 1

t3 0 0 1

Given ordinal coding matrix CK×K and mass function m of a training label,
evidential encoding can be implemented with the following proposed schemes:

Generalized Maximin Encoding Scheme. When generating the evidential
coding vector t = [t1, · · · , tK ], the worst case of possible label is considered
within each focal set B. Each coding bit of the evidential coding vector is
calculated by the lower expected coding value

ti =
∑

B⊆K
m(B)min

j∈B
cij , i = 1, · · · ,K. (4)

Generalized Maximax Encoding Scheme. Taking an optimistic point of
view, each coding bit of the evidential coding vector t = [t1, · · · , tK ] is calcu-
lated by the upper expected coding value

ti =
∑

B⊆K
m(B)max

j∈B
cij , i = 1, · · · ,K. (5)
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That is to say, when generating the evidential coding vector, the best case of
possible label is considered within each focal set B.

Pignistic Encoding Scheme. In this scheme, each coding bit of the resulted
coding vector tp = [tp1, · · · , tpK ] is computed as the weighted-sum of coding
values for all labels, with Pignistic probabilities obtained from mass function
as weights. It can also be seen from Equation (6) that actually coding values
within the focal set are averaged.

tpi =
K∑

j=1

BetP (j)cij =
∑

B⊆K
m(B)

⎛

⎝ 1
|B|

∑

j∈B

cij

⎞

⎠ , i = 1, · · · ,K. (6)

Generalized Hurwicz Encoding Scheme. To obtain the evidential coding
vector, this scheme takes a convex combination of the minimum and maximum
coding value. A pessimism index α ∈ [0, 1] is set to adjust the combination,
with α = 1 and α = 0 corresponding, respectively, to the previously proposed
generalized maximin and maximax encoding schemes. Each coding bit of
tα = [tα1 , · · · , tαK ] is calculated by

tαi =
∑

B⊆K
m(B)

(
α min

j∈B
cij + (1 − α)max

j∈B
cij

)
= αti + (1 − α)ti. (7)

Example 1. Suppose K = {1, 2, 3} and the mass function for the label of a train-
ing instance is m({1}) = 0.7, m({1, 2}) = 0.2,m({1, 2, 3}) = 0.1, the evidential
coding vectors obtained with different encoding schemes are listed as follows:

– Generalized maximin encoding scheme: t = [1, 0, 0]
– Generalized maximax encoding scheme: t = [1, 0.3, 0.1]
– Pignistic encoding scheme: tp = [1, 0.17, 0.03]
– Generalized Hurwicz encoding scheme (α = 0.4): tα = [1, 0.18, 0.06]

3.2 Construction of Evidential Ordinal ELM Model

In this paper, the evidential ordinal classification model is constructed as the
structure of one ELM model with multiple output nodes. The evidential training
set contains N instances {(xi, ti)}N

i=1, where xi = [xi1, · · · , xip] ∈ Rp is the input
of instance i consisting of p attributes, and ti = [ti1, · · · , tiK ] is the evidential
coding vector encoded by mass function mi using one of the proposed evidential
encoding schemes.

As shown in Fig. 1, for the single-model multi-output EORELM, input and
output layers respectively have p nodes (number of attributes ) and K nodes
(number of classes). There is one hidden layer with h hidden nodes, each of
which is associated with bias bi and activation function gi(x), i = 1, · · · , h.
With weights from input nodes to hidden nodes wi = [w1i, · · · , wpi], i = 1, · · · , h,
weights from hidden nodes to output nodes βij , i = 1 · · · , h, j = 1, · · · ,K, biases
and activation functions, the EORELM can be mathematically modelled as
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Fig. 1. Structure of single-model multi-output EORELM

h∑

i=1

βijgi(wix
T
j + bi) = tj , j = 1, · · · , N. (8)

The N equations corresponding to the N training instances can be arranged into
the matrix-vector format as

Hβ = T, (9)

in which β = (βij)h×K , T = (tij)N×K and

HN×h =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

g(w1x1 + b1) · · · g(whx1 + bh)

... · · · ...

g(w1xN + b1) · · · g(whxN + bh)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Being different from the weight-tuning methods, since ELM is a fast-learning
method, the wights wi and bias bi are assigned randomly. Given (wi, bi), the
weights β from hidden layer to output layer are determined by solving the overde-
termined system of linear equations. Analytically, it is the least-square solution
of equation system

β̂ = H+T, (10)

where H+ is the Pseudo inverse of the hidden layer output matrix H.
Once the model is learned, given a new instance, the model output is com-

pared with each column of ordinal coding matrix C by loss-based distance. The
instance is then predicted as the label corresponding to the closest column. The
learning procedure of single-model multi-output EORELM is summarised in
Algorithm 1. It is notable that according to the mechanism of evidential encod-
ing schemes, when there is no epistemic uncertainty in the training labels, the
proposed EORELM is degraded to traditional ordinal ELM (ORELM).
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Algorithm 1: Learning procedure of EORELM
Input: uncertain training set {(xi,mi)}Ni=1, new instance x, type of encoding

scheme TP, activation function g, number of hidden nodes h
Output: label prediction ŷ

1 % Learning;
2 C=CodingMatrixGeneration;
3 for i=1:N do
4 ti=EvidentialEncoding(mi,TP);

5 (wi, bi)=RandomGeneration;
6 for i=1:N do
7 for i=1:h do
8 Hij = g(wjxi + bj);

9 T=Gathering(ti);

10 β̂ = H+T ;
11 % Predicting;
12 ỹ=Prediction(EORELM,x);
13 ŷ=DistanceJudgement(ỹ, C);

4 Experiments

4.1 Artificial Dataset

The proposed encoding schemes and learning procedure are illustrated by an
artificial dataset firstly. A dataset of 1000 instances was generated following the
same way of paper [13] (Section 4.1), with function y = (0.5 − x1)2 + (2 − x2)2.

For each instance in the data set {xi, yi}, i = 1, · · · , 1000, the two inputs were
both randomly uniformly distributed on interval [0, 1]. To make the dataset
closer to real applications, the random noise uniformly distributed on [−0.1,
0.1] was added to y for all the training instances, while the test set remains
unchanged. Set K = {1, 2, 3}, the ordinal label for each instance is decided by
value of y as

t̃i =

⎧
⎪⎨

⎪⎩

1, yi ≤ 2.08
2, 2.08 < yi ≤ 3.17
3, yi > 3.17

(11)

ORELM can be learned from training instances with labels t̃i. For EORELM,
due to uncertainties in y and the ordinal label t̃i, mass functions were generated
for instances near the classification boundaries. In this paper, two focal sets were
considered, being the singleton t̃i, and the set consisting of t̃i and its adjacent
class. Mass assigned to the set was computed as

m(set) =

⎧
⎪⎨

⎪⎩

y−a
b−a , a < y ≤ b
c−y
c−b , b < y ≤ c

0, others

(12)
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Fig. 2. Mass function generation

In detail, for the instances with y near boundary 2.08, m({1, 2}) is calculated
with a = 1.98, b = 2.08, c = 2.18, while for the instances near boundary 3.17,
m({2, 3}) is calculated with a = 3.07, b = 3.17, c = 3.27. The rest of the mass
was assigned to the singleton. For example, when y = 3.25, the generated mass
function is m({3}) = 0.8,m({2, 3}) = 0.2. Fig. 2 shows the mass assigned to the
focal sets with different y.

Table 2. Classification accuracies of different encoding schemes (artificial data)

Encoding scheme Cross validation

1 2 3 4 5

Pignistic 0.4100 0.4200 0.3550 0.4200 0.3850

Maximax 0.9500 0.9550 0.9550 0.9650 0.9750

Maximin 0.9350 0.9800 0.9750 0.9700 0.9350

Hurwitz 0.9700 0.9900 0.9900 0.9850 0.9550

Mass functions were transformed into coding vectors with different encod-
ing schemes, to obtain evidential training sets. Five-fold cross validation was
implemented. The activation function was selected as the radial basis function
g(x) = exp(−x2). Classification accuracies on the test sets are shown in Table 2.
The Pignistic encoding scheme has a poor performance due to its average prop-
erty. Meanwhile, the other three schemes can provide satisfying results, with
Hurwitz encoding scheme (α = 0.3) resulting in reletively higher accuracies.

4.2 UCI Datasets

In this section, the proposed method is tested on five UCI datasets [15], as
detailed in Table 3. As regression datasets, they were turned into ordinal ones by
output variable discretization, with discretizing points listed in the last column
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of Table 3. In the experiments, we tested the proposed EORELM models with
different encoding schemes (Pignistic, Maximax, Maximin, Hurwitz with α =
0.3), and compared them with traditional classification model (ELM) and ordinal
classification model (ORELM).

Table 3. UCI datasets for validation

Dataset # instances # attributes # classes discretizing points

Boston housing 506 13 3 [15, 25]

Appliances energy prediction 19735 27 3 [55, 85]

Real estate valuation 414 27 5 [25, 34, 41, 49]

Parkinsons telemonitoring 5875 20 5 [15, 25, 35, 45]

Combined cycle power plant 9568 4 5 [428, 446, 459, 472]

The activation function in Sect. 4.1 was used. Following Equation (13), mass
functions were generated according to the value of regression output variable.
Let b be the discretizing points and δ = b − a = c − b.The value of δ was set as
0.1 for Parkinsons and CCPP datasets, 0.5 for Bonston and Real state datasets,
and 5 for Appliances dataset. Number of hidden nodes was set as 25 for Real
state dataset, 200 for Parkinsons dataset, and 50 for the others. Accuracies were
obtained from 5-fold cross validation, with each experiment repeated three times
for average. Table 4 summarises the performances of different models. EORELM
with Pignistic encoding scheme still performances poorly. Except for this one,
all the models considering ordering relation outperform ELM. Compared to
ORELM, EORELM models usually have a slightly performance improvement.
One one hand, considering uncertainty in ordinal labels helps to make better
use of information. On the other hand, as only instances near the classification
boundaries are considered as uncertain, most instances actually obtain mass 1
for a certain singleton, providing little additional information.

Table 4. Classification accuracy comparisons on UCI datasets

Dataset ELM ORELM Pignistic Maximax Maximin Hurwitz

Boston 0.7746 0.8083 0.2450 0.8261 0.8261 0.8162

Appliances 0.4043 0.5655 0.3155 0.5648 0.5659 0.5672

Real state 0.3599 0.5606 0.1908 0.5630 0.5750 0.5653

Parkinsons 0.6708 0.7391 0.0756 0.7479 0.7457 0.7491

CCPP 0.7635 0.8305 0.1954 0.8311 0.8316 0.8328

5 Conclusion

Single-model multi-output EORELM is proposed in this paper to learn ordi-
nal classification model directly from evidential data. The evidential encoding
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schemes of Maximax, Maximin, Hurwitz and Pignistic are proposed, with the for-
mer three have the value of practical application. Based on coding vectors trans-
formed from mass functions, the learning procedure of EORELM is detailed.
Experiments demonstrate the implementation and performances of proposed
approach. The encoding-based framework can also be used in other ordinal clas-
sification models such as support vector machines. In future work, binary decom-
position structure of EORELM, as well as other evidential ordinal classification
models will be explored.
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Abstract. The classification analysis of imbalanced data remains a chal-
lenging task since the base classifier usually focuses on the majority class
and ignores the minority class. This paper proposes a reliability-based
imbalanced data classification approach (RIC) with Dempster-Shafer
theory to address this issue. First, based on the minority class, mul-
tiple under-sampling for the majority one are implemented to obtain the
corresponding balanced training sets, which results in multiple globally
optimal trained classifiers. Then, the neighbors are employed to evaluate
the local reliability of different classifiers in classifying each test sam-
ple, making each global optimal classifier focus on the sample locally.
Finally, the revised classification results based on various local reliability
are fused by the Dempster-Shafer (DS) fusion rule. Doing so, the test
sample can be directly classified if more than one classifier has high local
reliability. Otherwise, the neighbors belonging to different classes are
employed again as the additional knowledge to revise the fusion result.
The effectiveness has been verified on synthetic and several real imbal-
anced datasets by comparison with other related approaches.

Keywords: Imbalanced data · Reliability · Dempster-Shafer theory

1 Introduction

Imbalanced data refers to the dataset has an unequal distribution between
classes [1]. For a binary class problem, if the number of samples in the major-
ity class is significant larger than that of the minority class, traditional classi-
fiers, such as K-nearest neighbors (K-NN) [2], support vector machine classifier
(SVM) [3], are dedicated to maximize the overall classification performance. In
this case, most minority samples are assigned to majority class.

Increasingly works are emerged for classifying imbalanced data, and they
can be roughly divided into three categories including sampling approaches [4],
cost-sensitive learning [5] and ensemble learning [6]. Sampling approaches focus
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Le Hégarat-Mascle et al. (Eds.): BELIEF 2022, LNAI 13506, pp. 77–86, 2022.
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on preprocessing the input data to balance the classes. By doing this, the
preprocessed data can be classified by basic classifiers. Cost-sensitive learning
approaches assign relatively high weights to minority samples, which can reduce
the misclassification of the minority class. Ensemble learning approaches combine
different classifiers trained by various subsets, which supplies the complementar-
ity information to improve the performance of classification with respect to an
individual classifier. However, these imbalanced data classification approaches
only consider the global optimum and are not suitable for each test sample. For
instance, the samples lying in the overlap area of different classes are indistin-
guishable and easily misclassified. In this case, there are some uncertain infor-
mation between between classes.

Dempster-Shafer theory (DST) [7,8], also known as the theory of belief func-
tions, has the advantage of reasoning uncertain information, and has been widely
used in classification [9–12]. Recently, a few works [13,14] have been proposed
to deal with imbalanced data classification within the belief function theory.
Although these approaches has the advantage of capturing uncertain informa-
tion thanks to evidence reasoning, they fill to consider the local performance
of classifiers for each test sample. In this paper, we propose a reliability-based
imbalanced data classification approach with Dempster-Shafer theory. The con-
tributions mainly include three aspects. 1) We design a reliability evaluation
strategy to obtain local reliability of different classifiers for each test sample,
which can characterize the local performance of classifiers. 2) We introduce a
revision strategy to resubmit the samples with low local reliability of different
classifiers according to neighbors from various classes. 3) We apply RIC to syn-
thetic and several real imbalanced datasets to demonstrate the superiority.

The rest of this paper is organized as follows. The proposed approach is
presented in detail in Sect. 2. Then, it is tested in Sect. 3 and compared with
several other typical methods, followed by conclusions.

2 Reliability-Based Imbalanced Data Classification

In this section, a reliability-based imbalanced data classification approach is
proposed in detail. Assume that a test set X = {x1, ...,xN} is classified
under the frame of discernment Ω = {ωmin, ωmaj} according to a training set
Y = {y1, ...,yM} on H different attribute spaces. Ymin and Ymaj represent the
minority class and majority class, respectively.

2.1 Multiple Under-Sampling for Majority Class

In this subsection, we implement random under-sampling1 for the majority class
multiple times to obtain different training sets thereby training basic classifiers.

T subsets Y1
maj , ...,YT

maj are random sampled from the majority class Ymaj .
Each subset has the same number of samples as that of the minority class Ymin,
1 In applications, users can employ other appropriate under-sampling approaches

according to the request of practice.
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and is combined with Ymin to form a new training set. By doing this, we can
obtain T training sets, named Y1, ...,YT , and the number of T is denoted as:

T= [IR] (1)

with

IR =
|Ymaj |
|Ymin| (2)

where IR, such that IR ≥ 1, refers to the measurement for the imbalanced
degree of the dataset, and |.| represents the cardinality symbol. [·] is a rounding
symbol that rounds the elements of IR to the nearest integers towards infinity.

Then, each training set can train a basic classifier that has high performance
in classifying a balanced dataset. The classification result of xi by t-th classifier
is denoted as Pt

i = [pt
i({ωmin}), pt

i({ωmaj}], t = 1, ..., T .

2.2 Evaluate the Local Reliability for Classifiers Fusion

In this subsection, we evaluate the local reliability of different classifiers for
classifying each test sample. Then, we combine classifiers with various reliability
by the original discounting fusion rule.

Here, we employ the neighbors y1, ...,yK of the test sample xi to evaluate
the local reliability of different classifiers, since xi has the similar data structure
and distribution with respect to y1, ...,yK . The better the performance of the
classifier to classify y1, ...,yK , the higher the reliability for classifying xi. Based
on the above analysis, we define a rule to evaluate the degree of reliability of
different classifiers, denoted as:

ξit =
exp(−ϑit)

T∑

t=1
exp(−ϑit)

(3)

with

ϑit =
K∑

k=1

√ ∑

{ωc}∈Ω

[pt
k({ωc}) − lk({ωc})]2 (4)

where ξit, such that 0 < ξit < 1, represents the reliability of the t-th clas-
sifier for classifying xi. pt

k({ωc}) refers to the probability of yk belongs to
{ωc}. The truth of classification of yk is characterized by the binary vector
Lk = [lk({ωmin}), lk({ωmaj})]. The lk({ωc}) = 1 if the true class of yk is
{ωc}. If not, lk({ωc}) is equal to 0. Ω is the frame of discernment, such that
Ω = {{ωmin}, {ωmaj}}. We can observe that the lower the deviation between
classification results and truths, the higher reliability of the classifier.

Each classification result can be considered as a piece of evidence under the
framework of DST, which is appealing to combine multi-source information. The
reliability-based discount fusion method [8], is employed here for discounting and
fusing pieces of evidence. The reliability ξit for different T classifiers can be con-
sidered as the discounting factors. The discounted masses of belief is denoted as:
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⎧
⎨

⎩

mt
i({ωc}) = ξitp

t
i({ωc}), {ωc} ∈ Ω

mt
i(Ω) = 1 − ξit

(5)

where pt
i({ωc}) represents the probability (Bayesian BBA) that the sample xi

belongs to {ωc} under Bayesian framework, and Ω is the the total unknown class.
We can find that the more important and reliable the classification result, the
larger the corresponding discounting factor, and the less discounted information
assigned to the total ignorance Ω. In particular, the degree of conflict between
pieces of evidence is reduced since the conflict information is transferred into
Ω that plays a particular neutral role in the fusion process. In this case, the
global fusion result for T basic belief assignments (BBAs) of the sample xi is
denoted as:

mi = m1
i ⊕ · · · ⊕ mT

i (6)

where mt
i = [mt

i({ωmin}),mt
i({ωmaj})], and ⊕ refers to the DS fusion rule [7]

for the combination of these T pieces of evidence. mi represents the normalized
combination result. As a result, the fused BBAs can be transferred into pignistic
probability[15] for the preliminary decision-making.

2.3 Employ Neighbors for Final Decision

In this subsection, we employ neighbors from different classes as the additional
information to make final decision.

For the test sample xi, it can be directly classified if there is more than
one classifier that has high local reliability. In contrast, when all classifiers have
low reliability to classify xi, which means it is hard to be correctly classified by
different classifiers.

We evaluate the different degrees of local reliability of classifiers for classifying
xi before normalization, and obtain the max values of them, denoted as:

ξ̂i,max = max{ξ̂i1, ..., ξ̂iT } (7)

where ξ̂it represents the degree of local reliability of t-th classifier for classify-
ing xi, such that ξ̂it = exp(−ϑit). The higher the value of ξ̂i,max, the bigger
the possibility of xi being correctly classified. Thus, we define a threshold δ to
distinguish whether xi can be directly classified or not, given by:

δ= quantile(Ξ̂max, γ) (8)

with
Ξ̂max = {ξ̂1,max, ..., ξ̂N,max} (9)

where γ is a quantile number such that γ ∈ [0, 1]. If ξ̂i,max > δ, the test sample
xi can be classified directly according to the classification result obtained by
discounting fusion. Otherwise, we need to mine some additional information by
neighbors to revise classification results. We convert the distances between xi
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and different classes into the mass of belief that it belongs to different classes,
denoted as:

m̂i({ωc}) =
exp(−d(xi, {ωc}))

∑

{ωc}∈Ω

exp(−d(xi, {ωc}))
. (10)

where d(xi, {ωc}) represent the mean Euclidean distance between xi and its K
neighbors in class {ωc}. We can observe that the larger the distance d(xi, {ωc}),
the lower the possibility that xi belongs to class {ωc}. Then, the BBA of xi,
named m̂i, is fused with mi according to the DS fusion rule. Finally, the fused
BBAs can be transferred into pignistic probability to make final decision.

3 Experiment Applications

In this section, the proposed RIC is compared with several typical approaches
including ROS [4], RUS [16], SMOTE [17], CBU [18] and RUSBoost [6]. SVM [3]
is taken as the basic classifier in different approaches. Two common indexes [1],
i.e., F-measure (FM) and G-mean (GM), widely used in imbalanced data classi-
fication, are employed to evaluate the performance of different approaches. The
higher the values of FM and GM, the better the performance of the approach.

3.1 Benchmark Datasets

A 2-D dataset with two classes Ω = {ωmin, ωmaj} is given in Fig. 1(a)(b), where
each sample denoted as a point has two dimensions of attributes corresponding
to x-coordinate and y-coordinate. The minority class ωmin has 2000 samples
and majority class ωmaj consists of 200 samples. All the samples are generated
from two bivariate Gaussian densities and have the following means vectors
and covariance matrices, denoted as: μmin = (3.1, 5), Σmin = 0.01I, μmaj =
(4, 5) , Σmaj = 0.1I, where I represents the 2 × 2 identity matrix. Half of the
samples in each class are randomly selected as training samples and others are as
test samples. ωtr

min and ωte
maj represent the minority class and majority class in

the training set, respectively. The ground truth of test set is marked by different
colors and represented by ωte

min and ωte
maj .

Ten generally used real imbalanced datasets from Keel repository2 are
employed to test and evaluate the performance of different approaches in clas-
sifying imbalanced data. Each dataset is partitioned using a five-folds stratified
cross validation. The basic information of these datasets including the number
of all samples (#Size.), majority class samples (#Maj.), minority class samples
(#Min), attributes (#Attr.) and imbalance ratio (#IR.) are shown in Table 1.

2 http://www.keel.es/.
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Table 1. Basic information of the Keel datasets.

Data #Size. #Min. #Maj. #Attr. #IR.

glass1 214 76 138 9 1.82

yeast1 1484 429 1055 8 2.46

vehicle2 846 218 628 18 2.88

ecoli2 336 52 284 7 5.46

page-blocks0 5472 559 4913 10 8.79

vowel0 998 90 898 13 9.98

led7digit 443 37 406 7 10.97

ecoli4 336 20 316 7 15.80

yeast5 1484 44 1440 8 32.73

shuttle2vs5 3316 49 3267 9 66.67

3.2 Performance Evaluation

1) RIC vs. comparisons in the synthetic dataset.
This experiment is designed to intuitively validate the effectiveness of RIC in

classifying imbalanced data with the overlapped area between classes. We take
K = 7 and γ = 0.05 in RIC, and the parameters in comparison approaches
are as default. The training and test set of the synthetic dataset are reported
in Fig. 1(a)(b). We can see that the majority class and minority class are partly
overlapped on their borders. The classification results of comparison approaches
are shown in Fig. 1(c)-(g), where most samples lying in the overlapped area
are misclassified. Actually, these samples are hard to be correctly classified and
there are uncertain information between classes in this case. We can observe from
Fig. 1(h) that these samples marked by black points are correctly identified. As
shown in Fig 1(i), RIC can correctly resubmit most of these samples according
to neighbors from different classes. Moreover, an ablation study is carried out
on this dataset to compare the contribution of each step in RIC, and the results
are reported in Table 2. We can find that with the addition of each step in RIC,
the performance continues to improve, which verifies the effectiveness of each
step in RIC.

2) RIC vs. comparisons in Keel datasets.
In this experiment, ten Keel datasets are employed to further investigate

the effectiveness of the proposed approach by comparing it to other comparison
approaches in real word datasets. We take K = 7 and γ = 0.15 in RIC, and the
parameters in comparison approaches are as default. The classification results of
different approaches for classifying different approaches are reported in Table 3.
We can observe that the proposed RIC generally provides better performances
than comparison approaches in most datasets. The reason is that RIC evaluates
the local reliability of different classifiers in classifying each test sample, making
each global optimal classifier focus on the sample locally.
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(a) Training set.
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(b) Test set.
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(c) ROS.
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(d) RUS.
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(g) RUSBoost.
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Fig. 1. Classification results of the synthetic dataset by different approaches.

Table 2. The values of FM and GM of different approaches for the synthetic dataset
(IN %)

Indexes ROS RUS SMOTE CBU RUSBoost RICStep 1 RICStep 1−2 RICStep 1−3

FM 90.45 85.84 90.25 88.30 90.25 85.47 86.02 94.06

GM 98.72 98.34 98.70 98.67 98.70 98.29 98.36 98.92

3.3 Influence of K and γ

In this experiment, we employ the synthetic dataset to investigate the perfor-
mance of RIC with various values of K and γ. The classification results of RIC
with various parameters are shown in Fig. 2, where the x-coordinate denotes the
value of K, ranging from 5 to 15, and the y-coordinate represents the value of γ,
which is expressed in [0, 1]. The z-coordinate of Fig. 2(a) and (b) is the value of
FM and GM, respectively. We can see that with the increase of K, the variations
of the result are small, which verifies it is robust to the value of K. Of course,
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Table 3. Classification results for Keel datasets by different approaches (IN %)

Indexes Datasets ROS RUS SMOTE CBU RUSBoost RIC

ecoli2 72.38 72.40 71.45 70.97 69.30 83.70

ecoli4 73.21 60.64 74.35 63.69 68.55 84.14

led7digit 61.99 58.16 64.44 60.15 60.16 80.03

glass1 57.36 56.59 55.81 56.10 49.76 66.26

FM page-blocks0 22.87 22.59 18.38 31.54 46.84 80.54

shuttle2vs5 93.61 74.01 93.61 73.64 93.02 97.89

vehicle2 92.04 91.90 92.79 89.42 80.80 94.03

vowel0 78.23 72.45 81.58 72.29 75.25 94.10

yeast1 58.15 58.29 58.57 57.24 57.87 58.84

yeast5 46.69 38.65 46.96 37.78 56.96 58.41

ecoli2 90.77 89.72 90.39 89.15 88.05 93.36

ecoli4 95.28 95.08 92.92 93.79 87.00 96.20

led7digit 88.15 89.66 87.51 88.82 87.95 90.04

glass1 61.11 54.14 54.63 56.55 64.40 71.87

GM page-blocks0 50.26 46.02 38.21 48.85 83.51 87.94

shuttle-2vs5 96.69 99.46 96.69 99.43 99.59 98.96

vehicle2 95.62 95.69 96.32 94.80 88.95 96.93

vowel0 95.23 95.65 96.23 95.59 86.74 97.31

yeast1 70.60 70.58 70.20 69.09 70.15 71.18

yeast5 96.43 94.98 96.46 94.79 96.49 95.49

K is not the higher the better. The result in Fig. 2 reveals that the value of
GM tends to decrease when the K is taken too large, which may be affected by
noise samples. Thus, we recommend K ∈ [5, 12] as the default in applications.
Moreover, we can also observe that the value of γ should not taken too small,
since RIC may fail to fully mine the uncertain information in such a case. Thus,
γ ∈ [0.02, 0.15] can be recommended in applications.

Fig. 2. Classification results of RIC with different parameters in the synthetic dataset.
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3.4 Execution Time

The execution time in seconds of RIC and other comparison approaches on differ-
ent datasets with SVM as shown in Table 4. We can see that the execution time
of RIC is higher than other approaches since it needs to calculate a large number
of distances between samples to obtain neighbors. In applications, the proposed
RIC approach is more suitable for cases where high accuracy is required, whereas
efficient computation is not a vital requirement.

Table 4. Execution time of different methods (In seconds)

Datasets ROS RUS SMOTE CBU RUSBoost RIC

ecoli2 0.1946 0.0512 0.1412 0.1800 2.9829 0.7967

ecoli4 0.1773 0.0589 0.1374 0.1389 2.7882 2.0548

led7digit 0.1885 0.0633 0.1487 0.1619 2.9539 1.5250

glass1 0.2001 0.0543 0.1380 0.1602 2.9692 0.4475

page-blocks0 216.1961 18.9831 186.3028 14.4645 3.0455 251.9016

shuttle-2vs5 71.1344 0.0591 70.4835 1.4666 2.2398 12.8517

vehicle2 14.9956 3.4566 14.5732 1.7628 3.0990 22.3558

vowel0 0.3269 0.0724 0.3118 0.2386 3.0903 1.7887

yeast1 0.2646 0.0633 0.2313 0.2744 3.0286 1.9574

yeast5 0.2919 0.0557 0.1942 0.2191 3.2067 4.5351

4 Conclusion

This paper proposes a reliability-based imbalanced data classification approach
(RIC) with Dempster-Shafer theory. RIC considers not only the global optimiza-
tion of different classifiers, but also the local optimization. Thus, we can obtain a
more robust and reasonable performance for each test sample. The experiments
on synthetic and several real imbalanced datasets have verified the effectiveness
of RIC with respect to typical approaches. Moreover, we also investigate the
influence of parameters on the classification performance of RIC. In the future,
we will extend the application scope of RIC to other real-word tasks, such as
network intrusion detection.
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Abstract. In this paper, we propose an evidential regression (EVREG)
that can simultaneously perform feature selection and model parameters
learning. To achieve these two functions, an evaluation function for the
significance of the features to be selected is proposed, which contains two
terms, one for evaluating the impact of the feature to be selected on the
prediction accuracy and one for evaluating the redundancy between it
and the already selected features, respectively. According to the sequen-
tially forward selection strategy, the features with high degree of signifi-
cance are selected one by one, while irrelevant or redundant features are
eliminated. In contrast to traditional EVREG, instead of performing fea-
ture selection as a separate data pre-processing, this method combines
it with the parameters learning in model training, thus improving the
accuracy of regression prediction. The effectiveness of this method was
verified by implementing it on Friedman dataset.

Keywords: Evidential regression · Feature selection · Parameters
learning · Mutal information

1 Introduction

Regression is a statistical technique that learns functional relationship among
variables based on a learning set {(xi, y) | i = 1 to n}, and uses the learned rela-
tionship to make predictions. Many methods have been proposed to estimate
the regression function, such as k-nearest neighbor regression, SVM regression,
decision tree regression, in particular, the evidential regression (EVREG) pro-
posed by Petit-Renaud and Denoeux [1] takes into account the imprecision and
uncertainty of observations, and does not need to assume perfect knowledge of
the value of the response y for given sample set. It has received a lot of attention
in the field of machine learning.
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Irrespective of the regressor used, superfluous information in the training set
have a serious impact on parameters learning and prediction effects. In order to
simplify and clean up the training set, there are usually two typical approaches:
instance selection [2,3] and feature selection, with the latter being the focus
of this study. The purpose of feature selection is to eliminate irrelevant and
redundant parts of the original features and to select a smaller subset of features
that are sufficient for prediction. In general, the widely used feature selection
methods can be divided into three categories: filter, wrapper and embedded
methods. For the filter method, feature selection can be regarded as a data pre-
processing process before the model parameters are learned. The importance of
each feature to the target variable is evaluated based on the inherent nature of
the data or statistical criteria, the features most relevant to the target variable
can be selected by setting a threshold value. This method is fast and simple to
calculate, however, feature selection is conducted without considering its effect
on regression prediction accuracy, which resulted in parameters learning and
feature selection being independent of each other, and thus the selected features
may have less impact on improving prediction ability. While the wrapper and
embedded methods perform feature selection and model parameters learning
simultaneously, such as sequential selection algorithms [4] and direct objective
optimization methods [5], where the selected feature subsets are determined by
the predictive effect.

For EVREG, feature selection is more often used as a data preprocessing, just
like the filter method, such as Chen et al. [6] used the frequency ratio method
to give the coefficient weights of each feature and implemented the selection
with SWM method. However, for the evidential classifier, Su et al. [7] proposed
a REK-NN classification rule that can perform feature selection and classifi-
cation simultaneously, and inspired by this approach, this paper aims to pro-
pose a method for evidential regression that can perform feature selection and
parameters learning simultaneously. More precisely, we want to define a feature
evaluation criterion to measure the significance of a feature to be selected, tak-
ing into account its contribution to the predictive effect and the redundancy
between the already selected features. There are various methods that can be
used to evaluate the relationship between features, such as Pearson’s correlation
coefficient, Euclidean distance, and mutual information. The mutual information
based on Shannon’s information theory [8], which is not affected by whether the
variables are linearly related to each other, has received wide attention in the
field of feature selection. Therefore, we choose mutual information to describe
the redundancy between features, and based on that we propose an evidential
regression with feature selection and parameters learning functions.

The rest of this paper is organized as follows. In Sect. 2, the concept of
Dempster-Shafer theory and EVREG is briefly introduced. Section 3 introduces
the EVREG with feature selection and parameters learning functions. In Sect. 4,
the validity of this method is verified with a synthetic dataset. Conclusion is
drawn in Sect. 5.
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2 Preliminaries

2.1 Dempster-Shafer Theory

In this section, we will introduce the basic concepts of belief function theory.
More material on belief function can be found for instance in [9]. Let Ω be a
finite set called the frame of discernment, which contains all possible answers to
a given question of interest Q. And let 2Ω be the set of all subsets of Ω. Then a
mass function can be defined as a mapping from 2Ω to [0, 1], verifying:

∑

A⊆Ω

my(A) = 1 . (1)

Mass function, also called basic belief assignment(BBA), represents the uncer-
tainty about y when an evidential corpus EC is given. Each number my(A) rep-
resents the belief assigned to the hypothesis that “y ∈ A”, and that cannot be
assigned to any more restrictive hypothesis, given the available knowledge. Any
subset of Ω such as m(A) > 0 is called a focal element of m, denoted by F (m).

Let m1 and m2 be two mass functions induced by two distinct sources sep-
arately. The conjunctive combination of m1 and m2, denoted by ∩©, yields the
following unnormalized mass function:

m1∩©2(A) =
∑

B∩C=A

m1(B)m2(C),∀A ⊆ Ω . (2)

The normality condition m(φ) = 0 can be recovered by dividing each mass
m1∩©2(A) by 1 − m1∩©2(φ). This operation is noted +© and is called Dempster’s
rule of combination:

m1+©2(A) =
m1∩©2(A)

1 − m1∩©2(φ)
, φ �= A ⊆ Ω . (3)

Both operations are associative, commutative and admit the vacuous BBA
as a unique neutral element.

It may occur that we have some doubt about the reliability of the source of
information inducing m. To solve this problem, the discount of BBA is proposed:

mα(A) =

{
(1 − α)m(A), ∀A ⊂ Ω ,

α + (1 − α)m(A), A = Ω .
(4)

The discount rate α ∈ [0, 1] characterizes the degree of reliability of infor-
mation provided by the source. If α = 0, it means the information is absolutely
reliable. On the contrary, the information is absolutely unreliable.

The above three functions m, bel, pl describes a belief state, but not suit-
able for decision making. For decision making from mass functions, the pignistic
transformation is proposed [9]:

BetP (ω) =
∑

{A⊆Ω,ω∈A}

m∗(A)
| A | , (5)

where | · | denotes the cardinality of a focal element.
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2.2 EVREG: Evidential Regression

For evidential regression problem, the frame of discernment Ω represents all
possible values of the output variable y, usually taken as the output in training
set T and denoting as U(ymin,ymax). U represents the uniform distribution, and
ymin, ymax represents the minimum and maximum values of the output in T .
Let x be an arbitrary vector to be predicted, y be the corresponding unknown
output and NK(x) be the set of K nearest neighbors of x in T . The information
on y can be deduced from the neighbors. Each neighbor xi in NK(x) with output
yi can provide a piece of evidence about the possible value of y, which can also
be represented by the following mass function:

mi(y = A) | xi) =

{
φ(di), A = yi ,

1 − φ(di), A = Ω ,
(6)

where φ is a decreasing distance function from R
+ to [0, 1] verifying φ(0) ∈ (0, 1]

and limd→∞ φ(d) = 0. Function φ is called a discounting function. In (9), 1−φ(di)
is defined as the discount rate αi, which determines the influence of xi on x. αi

is close to 0 if xi is close to x. The distance used here is the Euclidean distance:
di = ‖x − xi‖1/2. So a natural choice for φ is:

φ(d) = θexp(−γd2) , (7)

where θ ∈ (0, 1) is a constant parameter, in this paper, we set θ to 0.95. And
γ > 0 is an important structure parameter that controls the decay gradient of
the distance function.

DS rule is used to combine the information provided by each neighbor in
NK(x), then the final BBA is:

m = +©K
i=1mi(y = A) | xi) . (8)

After the final BBA is calculated, various forms of output can be obtained.
For example, the probability density function about the value of y, BetP (y) can
be obtained through the evidential decision-making process. Based on that, the
point prediction ŷ can be calculated:

ŷ =
K∑

i=1

m(y = yi) · yi + m(y = Ω) · ymin + ymax

2
. (9)

γ is an important structural parameter that directly determines the predic-
tion effect of EVREG. To complete the model training of EVREG, γ needs to be
identified and optimized in order to complete the model training of Evreg. K-fold
cross-validation is applied to optimize γ by minimizing the following criterion:

CV (γ) =
1
k

k∑

j=1

(
k

N

N
k∑

i=1

(yi − ŷi[xi, T − Tj , γ])2 , (10)
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where T − Tj is the training set without the validation sets Tj = {xj |j =
1, 2, . . . , N

k }. The estimator γ̂ of parameter γ is then obtained by minimizing
this criterion:

γ̂ = arg min
γ

CV (γ) . (11)

3 Proposed Method

In this section, we will propose an evidential regression with feature selection
and parameters learning functions.

3.1 Construction of Evaluation Function

This method can be formulated as an optimization problem through evaluating
the significance of features, searching optimal neighborhood size K∗ and its
corresponding γ∗, and minimal feature subset B∗. Formally speaking, we want
to solve

(K∗,B, γ∗) = arg min
K,B,γ

J (K,B, γ) (12)

with an objective function J defined as follows:

J(K,B,γ) = CV(K,B,γ) + λ

∑
bi,bj∈B NI(bj , bi)

|B| , i = 1, . . . , |B| − 1, j > i . (13)

The first term CV reflects the fitting ability on the training set and can
approximate the prediction accuracy of the model. The second term is a penalty
item used to describe the redundancy between features, where NI represents the
normalized mutual information, its specific calculation method can be referred
to [10]. As described in Sect. 1, mutual information (MI) can describe the
amount of information shared between variables, and the larger the MI, the
greater the redundancy. The hyperparameters λ is a penalty factor, which con-
trols the tradeoff between the two terms in (14), in this paper, it is set to 0.01.

Hence, the significance of one feature a to be selected relative to the feature
subset B, denoted by SIG is defined as follows:

SIG(a,K,B, γ) = J(K,B,γ) − J(K,B ⋃
a,γ) . (14)

The evaluation function (15) indicates that significance will increase while
adding an informative feature. For a given K, the minimal feature subset B∗

of the whole feature set A can be found when the condition ∀a ∈ A − B,
SIG(a,B, γ) < 0 can be satisfied.

3.2 Feature Selection and Parameters Learning

As previously stated, our purpose is to propose evidential regression with feature
selection function, the search strategy is important to select the optimal feature
subsets. There are numbers of candidate search strategies to select a minimal
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feature subset, e.g., the greedy search strategy such as sequentially forward selec-
tion (SFS) and sequentially backward selection (SBS), B&B search strategy, and
GA-based feature selection. SFS is adopted for convenience. Firstly, for a given
K, using only one feature for model training, optimize γ according to (12), iter-
ate through all the features and select ak satisfying the following criterion to
add it to B:

SIG(ak,K,B) = max{SIG(ai,B,K)} . (15)

Repeat this operation, increasing selected features one by one until SIG is
no longer increasing to end the feature selection and optimization of γ for the
current K. According to above interpretations, our method can be realized as
follows.

Algorithm 1. Procedure of the proposed method
Input: traing data (x, y), feature set A, bound [K, K] for K, λ

and testing data xt, t = 1, 2, . . . , nt

Output: Optimal K∗, γ∗, selected feature subset B∗, estimations ŷt of xt

1: Calculate NI between each feature in A
2: K∗ = K, γ∗ = 0, B∗ ← ∅, J ∗ = inf
3: For K = K to K do
4: B ← ∅, γ = 0
5: while A − B �= ∅ do
6: For each ai ∈ A − B do
7: Compute γ̂i, SIG(a, K, B)
8: end For
9: Select ak: SIG(ak, K, B) = max{SIG(ai, B, K)}

10: if SIG(ak, B, K) > 0
11: B ← B

⋃

ak, γ = γ̂k

12: else
13: break
14: end if
15: end while
16: if J(K,B) < J ∗

17: B∗ ← B, K∗ ← K, γ∗ = γ, J ∗ ← J
18: end if
19: end For

4 Numerical Experiment

In this section, we use synthetic datasets to show the prediction capabilities and
feature selection effect of our method. The experiments were conducted on the
Friedman dataset. Friedman regression problem is a synthetic dataset proposed
in [11], which has 5 relevant variables. The formula is shown below:

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε , (16)
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where the inputs x1–x5 and irrelevant variables x6–x10 are uniformly distributed
over the interval [0, 1] and a Gaussian white noise ε with variance of 0.1 is
applied. In addition, to verify the ability to select redundant features by adding
the NI penalty term, eight redundant variables x11–x18 are applied: x11–x16

are generated by linear combinations of the original five variables, x17-x18 are
generated by nonlinear transformations of the original variables, and x19–x20 are
generated by random permutations of the original two variables x1 and x2.

In this paper, we randomly generated 500 sets of data and then randomly
divided them into the training data of 350 samples with the remainder making up
the test data. All the data was normalized into interval [0, 1]. Model was trained
on the training dataset with increasing K from 3 to 13. When optimizing for γ∗,
five-fold cross-validation was used according to (10) and (11).

As described in Sect. 3, our method has two functions: searching optimal
neighborhood size K∗ and its corresponding γ∗, and performing feature selection
to reduce the dimensionality of input, thus improving the prediction accuracy of
the regressor. To verify its validity, predictions were made on the test data using
the optimized K∗, γ∗ and selected features, and the expected output ŷt was
calculated using (6)–(9). The mean square error (MSE) between the expected
and true values is used as the evaluation metric for the prediction effectiveness.
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Fig. 1. Variation of objective J with the number of nearest neighbors K when λ is
0.01 (a) and with the order of selected variables (b).

Figure 1a shows the variation of J with the number of nearest neighbors K.
It can be seen that as K increases from 3 to 13, J first decreases and then
increases, and when K is taken as 5, J has the minimum value, which means
the optimal value K∗is 5. The selected features B∗ in this case is {4, 1, 2, 5, 3},
and the corresponding γ∗ is 1.0390.

The hyperparameters λ are taken as 0 and 0.01 to illustrate the effect of
adding the NI penalty term on the selection of redundant variables, respectively.
The optimal K∗ and selected variable subset for the two cases are shown in
Table 1. The objective J varying with the order of selected variables when K
takes 5 are shown in Fig. 1b.
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Table 1. Optimized parameters and selected variables with different λ

λ K∗ Selected variables B∗ γ∗ J ∗
(K∗,B∗)

0 5 4, 1, 2, 5, 3, 11, 16 0.9755 0.0062

0.01 5 4, 1, 2, 5, 3 1.0390 0.0082

From Table 1 and Fig. 1b, we can find that when the number of selected vari-
ables increases from 5 to 6, the objective J stops its decreasing trend and starts to
gradually increase, that can avoid redundant variables from being selected, thus
proving the validity of the penalty term on the selection of redundant variables.
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Fig. 2. Predicted values after inverse normalization against the true values.

To illustrate the effect of feature selection on prediction accuracy, predictions
were made on the test data using the subset of variables B∗

1 {4, 1, 2, 5, 3, 11, 16}
and B∗

2 {4, 1, 2, 5, 3}, which are selected when λ is 0 and 0.01, and the unselected
20 original variables A, respectively. MSE for the three cases are presented in
Table 2, and for ease of observation, Fig. 2 plots the predicted values after inverse
normalization against the true values.

Table 2. MSE on the test data when using different sets of variables for prediction

Variables set MSE (normalized) MSE (inverse normalized)

B∗
1 0.0060 3.7058

B∗
2 0.0057 3.5533

A 0.0142 8.7938
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It can be found that the prediction results after performing feature selection
are significantly better than those using all variables for prediction. The pre-
diction results using B∗

1 and B∗
2 are close in Fig. 2, from Table 2 we can clearly

find that the prediction accuracy after adding the penalty term is also improved
compared to when it is not added.

5 Conclusion

In this paper, an improved evidential regression is proposed, which can syn-
chronously accomplish feature selection and parameters learning: the determi-
nation of the optimal number of nearest neighbors K and the corresponding
structural parameters γ. By adding the penalty term about mutual information
in the objective function, the redundant features are effectively reduced and the
accuracy of regression prediction is improved. A synthetic dataset is used to show
the performance of this method. Some practical issues and more experimental
validation are not presented and will be discussed in our subsequent study.
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Abstract. For big data, the Evidential K -Nearest Neighbor (EK-NN)
classifier is still impractical due to the restrictions of time and memory.
In both the training and testing stage, searching for K closest neighbors
requires intensive quadratic computation and has to be repeated for each
input sample. To address this issue, we propose a distributed EK-NN
classifier, named Global Exact EK-NN, for fast processing with Apache
Spark. We compare the proposed classifier, which can be scaled to 48
nodes (2688 cores) at a cluster named the Texas Advanced Computing
Center Frontera, with several other parallel K-NN based algorithms over
4 large datasets. Our method is able to achieve state-of-the-art scaling
efficiency and accuracy on the large datasets having more than 10 million
samples.

Keywords: EK-NN · Apache spark · Distributed calculation

1 Introduction

As a powerful nonparametric learning method, the K -nearest neighbor (K-NN)
technique has been widely used for performing classification tasks. K-NN adopts
a distance measure to search K nearest neighbors (KNNs) of a testing sample
among training set, then assigns it with a label voted by a majority of the KNNs.
Different from the eager learners that establish a mathematical model, K-NN
classifier belongs to the family of lazy learners. To better describe the imperfect
knowledge in class labels, the evidential K-NN (EK-NN) classifier is proposed
in [1] under the framework of Dempster-Shafer (DS) theory [2] and proved to
usually outperform K-NN and fuzzy weighted K-NN (FK-NN) classifier [3].

In EK-NN, KNNs of one testing sample provide pieces of evidence supporting
hypotheses regarding its class membership. Each evidence is formulated as a
mass function concerning the dissimilarity between one neighbor and such a
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sample. By pooling those K pieces of evidence based on the Dempster’s rule
[4], a decision about the predicted label (single) of a testing sample can be then
made. In this way, the EK-NN classifier describes the ambiguous and uncertain
class membership and has been used in a variety of fields [5].

As far as we know, there are generally three schemes to enhance the quality
of EK-NN classifier. The first scheme is to improve information transmission and
fusion between KNNs and their corresponding samples. In [6], a class of para-
metric t-norm based combination rule [7] is proposed and used to substitute for
the Dempster’s rule in EK-NN. In this way, the hypothesis of evidence indepen-
dence is relaxed, which is often not be guaranteed in practice. By maximizing an
evidential version of likelihood [8], the classical discounting operation of evidence
is replaced by the contextual discounting. The second scheme is to expand the
representation of class labels. For example, methods introduced in [9] allow to
classify samples in some specific classes, such as meta-classes defined by a union
of several specific classes and an ignorant class for outlier detection. The last
scheme is utilizing the ensemble classifier system [10] to adapt EK-NN for solv-
ing complex classification, consisting of mainly two distinct levels: generation of
base classifiers and combination of their output predictions. More recently, we
can mention a rough EK-NN [11] integrating feature reduction and classification
to deal with the curse of dimensionality. Nevertheless, none of these methods is
focused on the classification of big data.

Over the two decades, technology improvements result in a relatively inex-
pensive and automatic way to gather data. This brings a significant overhead for
machine learning tasks in terms of processing huge datasets [12]. For EK-NN, the
large number of samples is particularly a crucial factor affecting its performance,
although it has become a widely used method in machine learning applications.
That is to say, KNN search has to traverse all training/testing samples. Due to
the computation of pairwise dissimilarity and corresponding sorting operation,
EK-NN becomes further impractical in big data applications. Therefore, how to
improve the performance of EK-NN classifier on huge datasets is still an open
problem.

Motivated by above discussion, we propose a distributed EK-NN classifier
for big data on Apache Spark [13–15] that is arguably considered as a more
flexible engine, by the name of Global Exact EK-NN (GE2K-NN), to remove
the bottleneck of computation. For GE2K-NN, the training set is partitioned
into several splits and candidate KNNs in the corresponding split of each testing
sample are found by map operations. Then, all these candidate KNNs are merged
to obtain exact KNNs and output the classification result after combining K
pieces of evidence. The novelties of this work are summarized as follows:

– EK-NN classifier is implemented on Apache Spark as a distributed version
for the first time to conduct classification for huge datasets;

– GE2K-NN shows great scalability in experiments on both a single computer
and supercomputer cluster without losing prediction accuracy.
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2 Preliminaries

2.1 EK-NN: Evidential K -NN Classifier

Consider the problem of classifying samples into c classes, set of which is
denoted by a frame of discernment Ω = {ω1, ω2, · · · , ωc}. The training set
T = {(x1, ω1), (x2, ω2), · · · , (xn, ωn)} consists of n samples, where xi ∈ R

p×1 =
(xi1, xi2, · · · , xip), i = 1, 2, · · · , n, is a p-dimensional vector, p is the number of
dimensions and ωi ∈ Ω is the label of xi.

Denote a testing sample to be classified as xt and the KNNs of it in T as
NK(xt). K distinct pieces of evidence regarding the class membership of xt

are provided by neighbors x(j) ∈ NK(xt) with ω(j) = {ωq}, q = 1, 2, · · · , c.
A small d(x(j),xt) means both patterns belong to the same class, and a large
d(x(j),xt) means otherwise. Each item of evidence can be formalized to a basic
belief assignment (BBA) over Ω defined by

{
mt({ωq}|x(j)) = α0 exp(−γqd(x(j),xt)

2),
mt(Ω|x(j)) = 1 − α0 exp(−γqd(x(j),xt)

2),
(1)

where mt({ωq}|x(j)) is a mass function [4], α0 is a constant such that 0 < α0 ≤ 1
and γq > 0 is a discounting parameter. Usually, α0 = 0.95 and γq is adaptively
fixed according to data structure.

After obtaining all K items of evidence provided by neighbors in NK(xt),
the final mass function mt regarding class of xt can be synthesized,

mt =
⊕

x(j)∈NK(xt)

mt(·|x(j)), (2)

where the symbol
⊕

denotes the fusion of evidences by using Dempster’ rule.
More details can be found in [4].

Converting the mass function to the pignistic probability distribution [16]

BetPt({ωq}) = mt({ωq}) +
mt(Ω)

c
, (3)

a decision regarding the assignment of xt to a class can be made by

ω̂t = arg max
ωq∈Ω

BetPt({ωq}). (4)

Especially, when we have mt(Ω) ≈ 1, i.e., BetPt(ωq) = 1
c for all q, the class of

xt is unknown and it may be assigned to Ω.

2.2 Apache Spark

Apache spark [13], an open source processing engine for big data analysis, is
originally designed under the MapReduce programming paradigm and can well
coexist with the Hadoop [17] ecosystem. Spark copies the data from distributed
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Fig. 1. Workflow of GE2K-NN. Blue and red blocks respectively represent the map
and reduce phase. (Color figure online)

physical storage to RAM memory, i.e., does in-memory computation, and thus
processes data 100 times faster than Hadoop. The data structure used in Spark
is named Resilient Distributed Dataset (RDD) [13]. Two kinds of distributed
operation can be performed on RDD: transformations (a RDD is transformed
into another RDD by it) and actions (one answer has to be given on a question).
Based on these two operations, Spark follows a “lazy” approach such that a RDD
is loaded into RAM only when an action rather than a transformation operation
must be performed. Spark also has supplied a scalable machine learning library
named MLlib on top of it.

3 GE2K-NN: Global Exact EK-NN

The basic idea of GE2K-NN can be stated as follows. After partitioning the
training set T into U splits, the candidate KNNs of each testing sample xt

are firstly searched against the samples in local splits. That is to say, total
U × K neighbors of xt are determined. Then, these candidate neighbors are
sorted according to the distance from them to xt to find exact KNNs. Considering
the information provided by KNNs, parameter γ defined in (1) is individually
calculated. Ultimately, the classification rule (4) is conducted for every testing
sample.

Denote testing set and the number of testing samples as TS and N . As shown
in the left part of Fig. 1, the above idea of finding KNNs can be firstly realized
using a divided-and-conquer approach under Spark:

– Training set T is firstly read as a RDD using a spark function sc.textfile,
after declaring the SparkContext as sc. Using another spark function map-
Partitions, RDD T is divided into U splits T1, T2, · · · , TU with approximately
the same number of samples and being distributed among different computa-
tion cores. Along with these U splits, vectors of all xt are regarded as input
to map phase 1;
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Algorithm 1: Function reduceByKey(Merge)
Input: U key-value pairs (i, < dzi(1), d

z
i(2), · · · , dzi(K) >) of xti.

Output: The value array out =< di(1), · · · , di(K) > denoting the distances
between xti and its exact KNNs.

1 z ← 1, mout1 =< d1i(1), · · · , d1i(K) >

2 mout2 =< d2i(1), · · · , d2i(K) >

3 while z ≤ U − 1 do
4 if z ≥ 2 then
5 mout2 =< dz+1

i(1) , · · · , dz+1
i(K) >

6 id1 = 1, id2 = 1, t ← 1
7 out =< ·, · · · , · >, where < ·, · · · , · > is an empty array with length K
8 while t ≤ K do
9 if mout1(id1) ≤ mout2(id2) then

10 out(t) == mout1(id1)
11 if mout1(id1) == mout2(id2) then
12 t ← t + 1, id2 ← id2 + 1

13 id1 ← id1 + 1

14 else
15 out(t) = mout2(id2), id2 ← id2 + 1

16 t ← t + 1

17 mout1 = out, z ← z + 1

– For each xti, the candidate KNNs of it are searched in local split. Then,
a key-value pair, where the key denotes the index i of xti and the value
is an distances array, is obtained. The value array contains distances
<dz

i(1), d
z
i(2), · · · , dz

i(K)> between xti and its candidate KNNs in zth, z =
1, 2, · · · , U, split. Every value array is sorted in ascending order regarding the
distance to xi, i.e., dz

i(1) < dz
i(2) < · · · , dz

i(K);
– After receiving all the candidate KNNs from U splits, these constructed U

key-value pairs of xti are input into the reduce phase, i.e., a spark function
reduceByKey(merge) that is summarized in Algorithm 1.

This function combines two sorted value array assigned to mout1 and mout2
to obtain the out array that is closer to the exact KNNs. The distance value
dz

i(t) of each neighbor is compared one by one in each circle, starting with the
closest neighbor. Concretely, if the dz

i(t) is smaller than the current value in one
position, value of this position is updated with dz

i(t), otherwise we proceed with
the following dz+1

i(t) . After this circle, out is assigned to mout1 and mout2 is given
to a new value array. Until all the candidate KNNs are combined, we can obtain
the final distances between xti and its exact KNNs.

Then, all N testing samples associated with corresponding <di(1), di(2), · · · ,
di(K)> are input to map phase 2 by a map operation. As shown in the right part
of Fig. 1, γi are parallel calculated as γi = 1/

∑
di(j), i.e., γi of each xti is deter-
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mined adaptively according to <di(1), di(2), · · · , di(K)> rather than a learned
value. After pooling K pieces of evidence, the classification results of testing
samples are obtained based on (4) and collected from different computation
cores. To visualize the result in RDD form, the sc.saveAsTextFile function is
used to transform it into a .txt file.

The computational complexity of GE2K-NN can be analyzed as follows. First,
the computation cost to search local KNNs of testing samples is O(Nnp +
Nn log n

U ), where the first term is to calculate distances between testing and
training samples and the second one is sorting those obtained distances on
U computation cores. Then, the reduce phase needs O(NK log NK) opera-
tions. Finally, in map phase 2 of Fig. 1, O(NKp) operations need to be per-
formed to calculate individual γ and make prediction by pooling evidences
for each testing sample. The total computational complexity of GE2K-NN is
O(Nnp + Nn log n

U + NK log NK + NKp) ∼ O(Nnp + Nn log n
U ).

4 Experiments

In this section, the performances of GE2K-NN are statistically compared with
that of other state-of-the-art distributed KNN-based algorithms on 4 big datasets
(as summarized in Table 1) from UCI database [18]. The running time (RT ) in
seconds and speedup defined as speedup = RTminU

RTU
are used to check the accel-

eration achieved when using more computation cores, where RTU and RTminU

are running time executed respectively by U and the minimal number minU
of computation cores. The efficiency defined as efficiency = speedup·minU

U is also
used to check the acceleration efficiency by using U computation cores. The
experiments of Sect. 4.1 are carried out on a server with Intel(R) Xeon(R) Gold
6230 CPU @ 2.10 GHz 160 cores 256 GB RAM, and a 10-fold cross-validation
(10-fcv) procedure is used. We show experiments run on a supercomputer cluster
and discuss the communication cost between worker nodes and master nodes in
Sect. 4.2.

Table 1. Dataset description.

Dataset #Samples #Dimensions #Classes

Covtype 581,012 54 7

Poker 1,025,010 11 10

Susy 5,000,000 19 2

Higgs 11,000,000 29 2

4.1 Performance Evaluation

We compare GE2K-NN with other 3 state-of-the-art parallel KNN-based algo-
rithms: an exact K-NN classifier, named as K Nearest Neighbor-Iterative Spark
(KNN-IS) [19]; an approximate FK-NN classifier based on local approximate
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nearest neighbor (ANN) search, named Local Hybrid Spill Tree FK-NN (LHS-
FKNN) [20]; an approximate FK-NN classifier using hybrid tree to find ANNs
globally, named Global Approximate Hybrid Spill Tree FK-NN (GAHS-FKNN)
[20], which are also scaled up under Apache Spark. Hyper-parameters of KNN-
IS, LHS-FKNN and GAHS-FKNN are set to recommended values according to
corresponding literature.

Table 2. Comparative results among different algorithms.

Algorithm K Covtype Poker Susy Higgs

KNN-IS 3 0.9363 0.5180 0.7114 0.6402

5 0.9326 0.5314 0.7262 0.6421

7 0.9291 0.5408 0.7303 0.6420

GAHS-FKNN 3 0.9415 0.5270 0.7210 0.6401

5 0.9397 0.5379 0.7266 0.6384

7 0.9391 0.5487 0.7218 0.6593

LHS-FKNN 3 0.9385 0.5365 0.7253 0.6496

5 0.9337 0.5489 0.7254 0.6615

7 0.9303 0.5526 0.7295 0.6586

GE2K-NN 3 0.9465 0.5571 0.7187 0.6413

5 0.9470 0.5998 0.7346 0.6448

7 0.9462 0.6107 0.7388 0.6588

The comparative experiment results are reported in Table 2, where the bolded
and underlined value(s) indicates the best performance. As can be seen, the
proposed GE2K-NN has the best performance in most cases. The biggest gaps
between GE2K-NN and remaining algorithms are reflected on Poker dataset, on
which GE2K-NN achieves the accuracy of 0.6107 whereas the accuracy of other
3 algorithms are lower than 0.5526.

Then, we set K = 7 and analyze the scalability of different algorithms. The
running time with different numbers of computation cores is shown in Fig. 2.
Comparing the KNN-IS and GE2K-NN without a training stage, we can find
that GE2K-NN and KNN-IS almost cost the same amount of time, and both of
them show well scalability. Note that the evidence combination in GE2K-NN can
be completed by some matrix operations, whereas the voting process in KNN-
IS is done by a loop that traverses all the samples on local cores. This is why
GE2K-NN is not slower than KNN-IS even though it has an additional step of
calculating the adaptive γ. As U increases, the time consumed by the GE2K-NN
decreases significantly. When U = 320, the GE2K-NN consumes less time than
algorithms GAHS-FKNN and LHS-FKNN on the data sets Covtype, Poker and
higgs.

The speedup values of the distributed algorithms are shown in Table 3. We set
the maximum value of U to 320 that is greater than 160 (the number of available
cores of the used server), to achieve faster running speed of the algorithms.
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Fig. 2. Running time vs. number of cores with K = 7.

This is because that Apache Spark can queue the remaining map tasks and
dispatch them as soon as anyone has been finished [13]. From this, we can see
that GE2K-NN can be linearly scaled up when the numbers of used cores are less
than 160. On every dataset, GE2K-NN has comparable scalability with KNN-
IS. When U is increased from 160 to 320, the speedup can not continue to
increase linearly, because the available computing resources are only 160 cores
and there are remaining tasks waiting to be executed in a queue. Focusing on
the GAHS-FKNN and LHS-FKNN, they do not show good scalability, because
the HS tree method is used in their testing stage and this method can not be
significantly accelerated by adopting more computing resources [20]. It indicates
that GE2K-NN will cost less running time when there are enough computation
cores, compared with the GAHS-FKNN and LHS-FKNN.

Table 3. Speedup values of different distributed algorithms. The minimal number of
computation cores are set to 80 on the largest Higgs dataset, and are set to 40 on the
Susy.

Covtype U = 20 40 80 120 160 320 Poker U = 20 40 80 120 160 320

KNN-IS 1 1.98 4.06 5.88 8.65 11.24 KNN-IS 1 2.01 3.87 5.87 8.16 12.65

GAHS-FKNN 1 1.03 1.17 1.18 1.01 1.03 GAHS-FKNN 1 1.25 1.02 1.15 1.01 1.98

LHS-FKNN 1 1.24 1.56 1.68 1.75 1.81 LHS-FKNN 1 1.42 1.74 1.85 1.98 2.01

GE2K-NN 1 1.95 4.17 5.76 8.42 11.52 GE2K-NN 1 2.03 3.76 5.74 8.13 10.83

Susy U = 20 40 80 120 160 320 Higgs U = 20 40 80 120 160 320

KNN-IS – 1 2.06 3.15 4.05 5.01 KNN-IS – – 1 1.54 1.99 2.56

GAHS-FKNN – 1 1.12 1.09 1.08 1.2 GAHS-FKNN – – 1 1.05 1.06 1.14

LHS-FKNN – – 1 1.21 1.27 1.32 LHS-FKNN – – 1 1.21 1.27 1.32

GE2K-NN – 1 2.03 2.99 3.76 4.89 GE2K-NN – – 1 1.52 2.01 2.57
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4.2 Multi-node Experiments on TACC Frontera

Our methods are scaled up on the supercomputer cluster named TACC Fron-
tera in the section. The CPU specifications of each node are Model Intel
Xeon Platinum 8280 (“Cascade Lake”) 56 cores (partitions) on two sockets (28
cores/socket) 192 GB (2933 MT/s) RAM. We set K = 3 for all experiments
and use P to signify the number of nodes in this section. For example, if we use
P = 10 nodes, then there are U = P ∗ 56 = 560 cores being adopted.

Table 4. Results of GE2K-NN on TACC Frontera for Higgs dataset

P = 8 16 32 40 48

Time (s) 4243.9 1920.0 921.1 700.7 618.1

Speedup 1 2.210 4.607 6.057 5.121

Efficiency 100% 110.5% 115.2% 121.1% 114.4%

Accuracy 0.6413 0.6413 0.6413 0.6413 0.6413

Table 4 shows the results of Higgs dataset, which illustrates the excellent scal-
ability of GE2K-NN a High Performance Computing (HPC) system. As the num-
ber of nodes is increased from 8 to 48, we are able to get a strong scaling efficiency
of {110.5%, 115.2%, 121.1%, 114.4%}. Due to the complexity O(n log n

U ) of sort-
ing operations for local KNNs on each split, we can achieve an efficiency higher
than 100%. However, the communication overhead becomes larger with further
increase of the node number, leading to a decline in efficiency (114.4% < 121.1%)
when we using 48 nodes. Besides, more candidate KNNs from worker nodes need
to be merged by the reducers on the master node, relatively increasing the run-
ning time and lowering the efficiency. With different number of nodes, GE2K-NN
has the same accuracy (0.6413).

5 Conclusions

In this paper, we a distributed EK-NN classifier, GE2K-NN, to tackle the big
data problem. With the Apache Spark framework, our proposed classifier can
be executed with large datasets up to 11 million samples on either a single
computer or an HPC cluster. Compared to previous algorithms, experimental
results show that GE2K-NN achieve great performance. On the one hand, GE2K-
NN have similar scalability as KNN-IS but better prediction accuracy than it.
On the other hand, GE2K-NN is much more scalable than GAHS-FKNN and
LHS-FKNN and achieve higher prediction accuracy in most cases. Besides, by
using more computation cores, GE2K-NN does not lose prediction accuracy and
achieve high speedup and efficiency.
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{samir.hachour,frederic.pichon,david.mercier}@univ-artois.fr

Abstract. In this paper, we investigate the interest of learning a group
of evidential sources using contextual corrections, which is equivalent to
directly learning an optimized conjunctive combination instead of opti-
mizing each source individually. Several experiments on synthetic and
real UCI data demonstrates the interest of the approach.

Keywords: Information fusion · Belief functions · Group of sources ·
Contextual corrections · Optimization

1 Introduction

Information fusion [1,11] allows one, by combining different heterogeneous
sources of information, to obtain a better understanding (possibly more com-
plete, more precise) of the situation under evaluation.

The Dempster-Shafer theory of belief functions [2,17,18], being able to repre-
sent the imprecision and uncertainty of a piece of information, is an interesting
and already widely used framework for modeling a fusion scheme [9,16]. One
classical evidential fusion scheme consists in modeling the individual outputs of
the sources as finely as possible to make independent and reliable pieces infor-
mation so that they can be combined using the conjunctive rule of combination
(meaning the unnormalized Dempster’s rule). The reliability of the outputs of
the sources can be ensured using the discounting operation [15,15,18] or more
refined corrections such that contextual corrections [13,14]. For instance, we can
use the contextual discounting (CD), allowing one to weaken a piece of infor-
mation and which generalizes the discounting, or the contextual reinforcement
(CR), which can reinforce the output of a source, or the contextual negating
(CN), able to negate what a source indicates.

In the discounting operation [18], the reliability of the source, providing a
mass function m, is taken into account using a real β ∈ [0, 1] quantifying the
degree of belief in the fact that the source is reliable, and the corrected mass
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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function is denoted by βm. In the contextual correction mechanisms (CD, CR
and CN), the imperfection of the source, its bias in a broad sense, is modeled
using a vector β ∈ [0, 1]C , with C ≤ 2K and K the number of elements in the
universe (more specific details can be found in [14]). The resulting corrected
mass function is also denoted by βm for simplicity.

If moreover, a learning set composed of the outputs of a source, expressed
in the form of mass functions, are available regarding the classes of n objects
oi, i ∈ {1, . . . , n} the true class (belonging to the universe) of each object being
known, then it is possible [10,13] to find optimal parameters β, i.e., to learn the
parameters β minimizing a discrepancy measure between the corrected outputs
and the ground truths.

This classical information fusion scheme is illustrated in Fig. 1.

Object

Source 1

Source 2

...

Source �

Optimized β1m1

Optimized β2m2

...

Optimized β�m�

Combination
β1m1 ∩©β2m2 ∩© . . .β� m�

Decision

m1

m2

m�

Fig. 1. Fusion scheme using individual corrections (Scheme 1).

Another idea, illustrated in Fig. 2, consists in learning directly an optimized
conjunctive combination instead of optimizing each source individually. This
idea has been mentioned in [10] for the discounting operation and in [13] for a
particular CD.

In this paper, we use classifiers as sources of information, and we explore this
idea of optimizing directly the performance of the combination using possibly
different corrections among CD, CR and CN.

This paper is organized as follows. The notations and evidential concepts
used are recalled in Sect. 2. The learning of contextual corrections for a group of
evidential classifiers is presented in Sect. 3. Experiments on synthetic and real
data demonstrating the interest of the approach are exposed in Sect. 4. Finally,
a conclusion is given in Sect. 5.
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Object

Source 1

Source 2

...

Source �

Optimized combination
β1m1 ∩©β2m2 ∩© . . . ∩©β� m�

Decision

m1

m2

m�

Fig. 2. Fusion scheme using global corrections (Scheme 2).

2 Belief Functions: Notations and Concepts Used

2.1 Basic Concepts

Basic concepts are briefly recalled. Details of the theory can be found for example
in [5,15,18].

The universe Ω, a finite set, is composed of K elements ω1, . . ., ωK . We
consider a question of interest Q whose answer lies in Ω. A piece of information
regarding this answer can be represented by a mass function (MF) m defined
from 2Ω to [0, 1] verifying s.t.

∑
A⊆Ω m(A) = 1. The real m(A) represents the

part of belief allocated to the fact that the true searched value belongs to A and
nothing more. A subset A ⊆ Ω s.t. m(A) > 0 is called a focal element of m. A
categorical MF has only one focal element A ⊆ Ω and is denoted by mA. We
then have mA(A) = 1. In particular, mΩ represents the total ignorance.

A MF m is in one-to-one correspondence with a belief function Bel and a
plausibility function Pl respectively defined for all A ⊆ Ω by:

Bel(A) =
∑

∅�=B⊆A

m(B) , (1)

Pl(A) =
∑

A∩B �=∅
m(B) = Bel(Ω) − Bel(A) (2)

with A = Ω \ A.
The contour function pl corresponds to the restriction of the plausibility

function to the singletons of Ω, it is defined for all ω ∈ Ω by pl(ω) = Pl({ω}).
Two reliable and independent MFs m1 and m2 defined on the same uni-

verse Ω can be combined using the conjunctive rule of combination (CRC) (or
unnormalized Dempster’s rule) defined by

(m1 ∩©m2)(A) = m1 ∩©2(A) =
∑

B∩C=A

m1(B) · m2(C), ∀A ⊆ Ω . (3)
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2.2 Corrections

A source providing a MF m and only reliable at a degree β = 1 − α ∈ [0, 1] can
be discounted using the following operation

βm = β m + α mΩ

=
{

A �→ β m(A) ∀A ⊂ Ω
Ω �→ β m(Ω) + α

(4)

The contour function associated with the discounted MF βm (4) verifies for
all ω ∈ Ω, βpl(ω) = 1 − (1 − pl(ω))β, with pl the contour function of m (Details
can be found for example in [13–15]).

In Table 1, we summarize the contour functions of the contextual discounting
(CD), contextual reinforcement (CR) and contextual negating (CN) of a MF m
that can be obtained by a specific choice of C = K parameters βw ∈ [0, 1], for
each contextual corrections; the reasons for limiting ourselves to C = K param-
eters and the definitions of these K parameters for each contextual corrections
can be found in [14, Section 8].

Table 1. Contour functions of each contextual correction of a MF m given for any
ω ∈ Ω. Each parameter βω may vary in [0, 1].

Corrections Contour functions

CD βpl(ω) = 1 − (1 − pl(ω))βω

CR βpl(ω) = pl(ω)βω

CN βpl(ω) = 0.5 + (pl(ω) − 0.5)(2βω − 1)

As recalled in the introduction, if for a source we have a learning set con-
taining its outputs, meaning MF m{oi}, regarding the classes of n objects oi,
i ∈ {1, . . . , n}, the true classes are known, we can then compute the CD, CR
and CN parameters β optimizing the following measure of discrepancy between
the corrected outputs and the true classes of the objects

Epl(β) =
n∑

i=1

K∑

k=1

(βpl{oi}({ωk}) − δi,k)2 , (5)

where βpl{oi} is the contour function regarding the class of the object oi cor-
rected with a vector β = (βω ∈ [0, 1], ω ∈ Ω) and δi,k is the indicator function of
the truths of the objects oi, i ∈ {1, . . . , n}, meaning δi,k = 1 if the class of the
object oi is ωk, otherwise δi,k = 0.

The measure Epl yields, for each correction (CD, CR, and CN), a constrained
linear least-squares optimization problem which can be efficiently solved.
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3 Learning a Group of Evidential Sources

When several sources are available, instead of learning the best correction param-
eters individually for each source knowing that these adjusted MFs are going to
be next combined, it is possible to directly optimize the combination of the
adjusted MFs.

With � sources to be combined, � vectors β1, . . . , β�, each one associated with
either CD or CR or CN, can be obtained by minimizing the following measure

Epl(β1, . . . , β�) =
n∑

i=1

K∑

k=1

(β1pl1{oi}({ωk}) × . . . ×β� pl�{oi}({ωk}) − δi,k)2 (6)

Indeed, after the conjunctive combination, the plausibility of each singleton is
equal to the product of the plausibilities given by the � sources to this singleton.

Optimizing (5) for each classifier or (6) is not the same thing as a classifier
can be used in a different manner if it is used alone or through a collective.

One drawback, however, of this approach, is that the optimization of (6) is
no more a linear least-squares optimization problem, it can be minimized using
a standard constrained nonlinear optimization procedure reaching to a possible
local minimum.

Another critical point concerns the number of optimizations to undertake in
each scenario. With three possible mechanisms (CD, CR and CN), which can
be applied on each source, and � sources, we have for the first scheme using
individual corrections (cf Fig. 1) 3 × � possible corrections to test, while for
this second scheme optimizing the combination (cf Fig. 2), we have 3� possible
corrections to test.

As an example, let us consider the case of two sources S1 and S2 (� = 2).
For the individual optimizations, we have for each source three optimisations
to undertake, using (5), to know what correction between CD, CR and CN to
keep for each source, and thus finally 6 optimisations in total of (5). While, for
the direct optimization of the combination using (6), we have to compare all the
possible associations of corrections for sources S1 and S2 (CD-CD, CD-CR, CD-
CN, CR-CD, CR-CR, CR-CN, CN-CD, CN-CR and CN-CN) leading then to a
richer frame of possible corrections, but with more comparisons to do, 32 = 9 in
this scenario.

In the following section, we show with several experiments both on synthetic
and real data, that this second scheme can have an interest due to its perfor-
mances.

4 Experiments

To test these schemes (individual corrections - Fig. 1 - vs global correction -
Fig. 2), several numerical experiments conducted on synthetic and real data sets
using two evidential classifiers are exposed in this Section.
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The first classifier is the evidential k-nearest neighbor (EkNN) [3,6] with
k = 5. The second chosen classifier is the evidential neural networks (ENN) [4,6]
with number of prototypes np = 5.

For each data set, the following experiment was repeated 10 times:

– One half of the data (L1) is used to learn the classifier (EkNN or ENN);
– A 10-fold cross validation is then performed on the second half of the data

with 9 folds (L2) to learn the best correction, and 1 fold for testing.

The synthetic data set, illustrated in Fig. 3, has been generated by multi-
variate normal distribution composed of 2 features, 900 objects and 3 classes
with the means μ1 = (0, 2), μ2 = (1, 3), μ3 = (2, 2) and the following covariance

matrices for each class: Σ1 = 0.1I, Σ2 = 0.5I and Σ3 =
[

0.3 −0.15
−0.15 0.3

]

, where

I is the 2 × 2 identity matrix.

Fig. 3. Generated data set.

The real data sets used were taken from UCI [8]. Their descriptions can be
seen in Table 2.

The results are summed up in Table 3 using as a measure of performance
Epl (5), meaning the squared error between the contour function resulting from
the combination and the indicator function of the truths of the objects in the
test set.

It can be seen from Table 3 that the second scheme optimizing the combi-
nation reaches better performances according to Epl (5) than the first scheme
combining individual optimizations.
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Table 2. Description of the UCI data sets used [8]

Data sets #Instances #Features #Classes

Haberman 306 3 2

Iris 150 4 3

Glass 214 10 6

Ionosphere 350 34 2

Lymphography 140 18 3

Liver 345 6 2

Pima 768 8 2

Sonar 208 60 2

Transfusion 748 3 2

Vehicle 846 19 4

Vertebral 310 6 3

Table 3. Performances (Average Epl (5) values), the lower the better, obtained from
two sources (EkNN and ENN) for a conjunctive combination without correction (No
correction), for scheme 1 (best individual corrections), for scheme 2 (best parameterized
combination), for scheme 2 with only CD, only CR and only CN to highlight the interest
of possibly using multiple distinct corrections. Standard deviations are indicated in
parentheses. In bold the best performance for each data set.

Data No correction CC Scheme 1 Scheme 2 Scheme 2 only CD Scheme 2 only CR Scheme 2 only CN

Synthetic 10.953 (3.094) 11.690 (2.748) 9.496 (2.492) 9.491 (2.525) 10.961 (3.076) 10.882 (2.913)

Haberman 6.054 (2.381) 6.742 (1.664) 5.515 (1.725) 5.886 (2.096) 5.717 (2.070) 5.577 (1.849)

Iris 0.503 (0.619) 0.569 (0.608) 0.467 (0.715) 0.471 (0.712) 0.503 (0.619) 0.503 (0.619)

Glass 5.016 (1.765) 6.007 (0.778) 4.703 (1.340) 4.965 (1.737) 4.771 (1.408) 4.763 (1.267)

Ionosphere 2.411 (0.882) 2.874 (0.831) 2.057 (0.958) 2.057 (0.958) 2.411 (0.882) 2.411 (0.882)

Lympho 2.305 (1.077) 2.748 (0.929) 2.253 (1.058) 2.239 (1.045) 2.322 (1.086) 2.322 (1.059)

Liver 7.937 (1.778) 9.481 (0.942) 7.515 (1.242) 7.728 (1.564) 7.848 (1.565) 7.743 (1.405)

Pima 13.123 (2.770) 16.408 (1.970) 12.455 (2.415) 12.489 (2.490) 13.130 (2.738) 13.107 (2.681)

Sonar 3.489 (1.071) 4.365 (0.834) 3.164 (0.918) 3.160 (0.969) 3.491 (1.037) 3.492 (0.992)

Transfusion 17.018 (3.798) 16.393 (2.240) 13.218 (2.230) 15.561 (3.111) 15.096 (2.944) 13.528 (2.190)

Vehicles 23.277 (3.161) 30.886 (1.220) 21.741 (2.209) 23.106 (3.193) 22.949 (2.687) 21.851 (2.166)

Vertebral 4.632 (1.777) 5.173 (1.600) 3.979 (1.512) 3.995 (1.525) 4.645 (1.763) 4.573 (1.576)

We also wanted to highlight the possible interest of taking advantage of using
possibly several different corrections and so the performances of scheme 2 with
only CD, only CR and only CN were also exposed for comparisons. Using only
one kind of correction can limit the performances.

It can be observed that it happens that scheme 2 with only CD (Scheme
2 only CD) obtains slightly better performances (on Iris, Lympho and Sonar
data) than scheme 2 testing all combinations including CD-CD. Several non-
exclusive explanations may be given: first, the best configuration on the training
set is not necessarily the best one on the test set; second, the optimization on
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the learning set is only local; and at last, the performance measure Epl (5) is
somewhat favorable to CD (Details in [14, Section 8.5.1]).

As expected, the drawback to reach these performances is a longer time to
learn the parameters as shown in Table 4. With only two sources, this time
remains reasonable. If the number of sources were to become too large, it would
certainly be necessary to see if Scheme 2 is still applicable within a reasonable
time.

Table 4. Time consumption in seconds on a macbook Air M1 3.2 GHz 8 GB RAM for
the learning phase for Scheme 1 and Scheme 2. Standard deviations are indicated in
parentheses.

Data Scheme 1 Scheme 2

Synthetic 0.0477 (0.0116) 42.7417 (16.4333)

Haberman 0.0120 (0.0079) 11.4312 (1.3702)

Iris 0.0059 (0.0010) 5.9721 (1.1307)

Glass 0.0084 (0.0012) 18.5167 (3.9630)

Ionosphere 0.0120 (0.0020) 7.9370 (0.4878)

Lympho 0.0074 (0.0110) 6.5583 (0.7286)

Liver 0.0125 (0.0027) 13.5109 (1.0809)

Pima 0.0300 (0.0184) 22.2145 (3.2915)

Sonar 0.0070 (0.0013) 4.8880 (0.5885)

Transfusion 0.0281 (0.0078) 27.4938 (7.9787)

Vehicles 0.0596 (0.0223) 1.4006 (0.0770)

Vertebral 0.0124 (0.0017) 15.9031 (2.0436)

We now give the results according to another performance measure, and to
consider the interest of belief function modeling, we look at partial decisions
(meaning decision possibly in favor of a group of classes) [7], and we consider
that the set of possible decisions (or acts) is equal to Ω, so we can use [12][Page
6, Strong dominance criterion with 0 − 1 utilities and pieces of information
represented by belief functions] the following relation of dominance between the
singletons of Ω:

ω 	 ω′ ⇐⇒ Bel({ω}) ≥ Pl({ω′}) , (7)

and make a partial decision composed of the non dominated singletons according
to relation (7).

The results are then exposed in Table 5 using the u65 utility measure. This
measure, introduced by Zaffalon et al. [20], allows one to take into account the
interest of partial decisions for preferring the imprecision to being randomly
correct.

The U65 value of a partial decision d, possibly in favor a set of singletons, is
formally defined by

U65(x) = 1.6x − 0.6x2 (8)
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with x the so called discounted accuracy of d defined by I(ω∈d)
|d| , with I the

indicator function, ω the true class of the instance, and |d| the number of elements
in d. The u65 utility measure gives a greater utility to imprecise but correct
partial decisions of size n (meaning decisions equal to a set of n singletons one
of them being the true class) than precise decisions (in favor of one singleton)
only randomly correct with probability 1

n .

Table 5. Performances (Average U65 values), the higher the better, obtained from
two sources (EkNN and ENN) for a conjunctive combination without correction (No
correction), for scheme 1 (best individual corrections), for scheme 2 (best parameterized
combination), for scheme 2 with only CD, only CR and only CN to highlight the interest
of possibly using multiple distinct corrections. Standard deviations are indicated in
parentheses. In bold the best performance for each data set.

Data No correction Scheme 1 Scheme 2 Scheme 2 only CD Scheme 2 only CR Scheme 2 only CN

Synthetic 0.850 (0.052) 0.857 (0.046) 0.857 (0.046) 0.858 (0.046) 0.850 (0.052) 0.850 (0.052)

Haberman 0.755 (0.103) 0.747 (0.112) 0.758 (0.096) 0.762 ( 0.097) 0.756 (0.103) 0.759 (0.104)

Iris 0.971 (0.062) 0.971 (0.062) 0.968 (0.064) 0.969 (0.063) 0.971 (0.062) 0.971 (0.062)

Glass 0.677 (0.151) 0.679 (0.148) 0.681 (0.149) 0.684 (0.144) 0.688 (0.150) 0.683 (0.146)

Ionosphere 0.938 (0.047) 0.938 (0.046) 0.933 (0.043) 0.933 (0.043) 0.938 (0.047) 0.938 (0.047)

Lympho 0.815 (0.139) 0.805 (0.149) 0.805 (0.143) 0.806 (0.143) 0.814 (0.139) 0.815 (0.135)

Liver 0.697 (0.102) 0.684 (0.110) 0.703 (0.087) 0.704 (0.092) 0.700 (0.104) 0.698 (0.099)

Pima 0.769 (0.067) 0.767 (0.068) 0.777 (0.066) 0.775 (0.066) 0.769 (0.067) 0.771 (0.067)

Sonar 0.789 (0.132) 0.783 (0.132) 0.812 (0.096) 0.810 (0.096) 0.788 (0.135) 0.791 (0.131)

Transfusion 0.746 (0.060) 0.756 (0.064) 0.768 (0.056) 0.762 (0.053) 0.752 (0.062) 0.763 (0.057)

Vehicles 0.623 (0.062) 0.614 (0.064) 0.635 (0.058) 0.631 (0.059) 0.621 (0.063) 0.633 (0.058)

Vertebral 0.809 (0.106) 0.808 (0.104) 0.833 (0.094) 0.833 (0.093) 0.809 (0.106) 0.816 (0.105)

At last, with a classical error rate with decisions made for example by choos-
ing the class maximizing the pignistic probability [17], we obtain results very
similar with or without correction (Due to the page limit, it is difficult to put all
results). The results on this point are preliminary, we will explore other experi-
ments with surely more classifiers to see a possible interest of this approach.

5 Conclusion

In this paper, we have illustrated through experiments the interests of using
different contextual corrections to optimize the conjunctive combination of the
outputs of a group of evidential sources. We have also given elements of the
possible limitations of this strategy when the number of sources to be combined
increases, and according to classical error rate, these limitations remaining to
be more clarified. A perspective of interest and topicality will be to study the
possibility of using these schemes in an end-to-end learning of a group of deep
evidential classifiers in the lines of the works of Tong et al. for example [19].

Acknowledgements. The authors would like to thank the anonymous reviewers for
their very helpful and relevant comments.
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Abstract. In this paper, we present a measure of Information Content
(IC) of Basic Belief Assignments (BBAs), and we show how it can be
easily calculated. This new IC measure is interpreted as the dual of the
effective measure of uncertainty (i.e. generalized entropy) of BBAs devel-
oped recently.

Keywords: Belief functions · Information content · Generalized
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1 Introduction

Information quality (IQ) evaluation is of major importance for information pro-
cessing and for helping the decision-making under uncertainty. In [1], the authors
introduced the Accessibility, Interpretability, Relevance, and Integrity concepts
as main attributes to describe the information quality in the context of assurance
and belief networks, but unfortunately they present only general concepts with-
out explicit formulas to evaluate quantitatively these attributes. In several recent
books devoted to IQ [2–5], the authors proposed different models and methods
of IQ evaluations. Recently in [6], Bouhamed et al. proposed a quantitative IQ
evaluation using the possibility theory framework, which could be extended to
the belief functions theory framework with further investigations. In this latter
work, the information quantity component being necessary for the IQ evalua-
tion is based on Gini’s entropy rather than classical Shannon entropy. From the
examination of these aforementioned references (and some references therein),
it is far from obvious to make a clear justified choice among all these methods,
especially when we model the uncertain information by belief functions (BF).
What is clear however is that several distinct factors (or components) must be
taken into account in the IQ evaluation mechanism. In this paper we focus on
one of these components which is the Information Content (IC) component that
we consider as the very (if not the most) essential component for IQ evaluation
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and indispensable for developing an effective IQ evaluation method in future
research works.

It is worth noting that we do not address directly the whole IQ evaluation
problem in this work but to provide a mathematical solution for measuring the
IC of any Basic Belief Assignments (BBA) in the belief functions (BF) frame-
work. Our new IC measure is interpreted as the dual of an effective Measure of
Uncertainty (MoU) developed recently [7]. We show how to calculate the IC of
a BBA, and we also discuss the notion of information gain and information loss
in the BF context. In our opinion, we cannot define a measure of Information
Content independently of a Measure of Uncertainty (MoU) because they must
be strongly related to each other. Actually these measures are two different sides
of a same abstract coin we would say. On one side (the uncertainty side), more
uncertainty content we have harder is the decision or choice to make, and on
the other side (the information side) more information content we have easier
and stronger is the decision or choice to make. This very simple and natural
basic principle will be clarified mathematically next. So, the measure of infor-
mation content of a BBA must reflect somehow the easiness and strength in the
choice of an element of the frame of discernment drawn from the BBA (i.e. in the
decision-making). This paper is organized as follows. After a brief recall of basics
of belief functions in Sect. 2, we recall the effective MoU adopted in this work in
Sect. 3. Section 4 defines the measure of information content of a BBA and the
information granules vector. Section 5 introduces the notions of information gain
and information loss. Conclusions and perspectives appear in the last section.

2 Belief Functions

The belief functions (BF) were introduced by Shafer [8] for modeling epistemic
uncertainty, reasoning about uncertainty and combining distinct sources of evi-
dence. The answer of the problem under concern is assumed to belong to a known
finite discrete frame of discernement (FoD) Θ = {θ1, . . . , θN} where all elements
(i.e. members) of Θ are exhaustive and mutually exclusive. The set of all subsets
of Θ (including empty set ∅, and Θ) is the power-set of Θ denoted by 2Θ. The
number of elements (i.e. the cardinality) of the power-set is 2|Θ|. A (normalized)
basic belief assignment (BBA) associated with a given source of evidence is a
mapping mΘ(·) : 2Θ → [0, 1] such that mΘ(∅) = 0 and

∑
X∈2Θ mΘ(X) = 1. A

BBA mΘ(·) characterizes a source of evidence related with a FoD Θ. For notation
shorthand, we can omit the superscript Θ in mΘ(·) notation if there is no ambigu-
ity on the FoD we work with1. The quantity m(X) is called the mass of belief for
X. The element X ∈ 2Θ is called a focal element (FE) of m(·) if m(X) > 0. The
set of all focal elements of m(·) is denoted2 by FΘ(m) � {X ∈ 2Θ|m(X) > 0}.

The belief and the plausibility of X are defined for any X ∈ 2Θ by [8]

Bel(X) =
∑

Y ∈2Θ|Y ⊆X

m(Y ) (1)

1 However, we will keep mΘ(·) notation when very necessary.
2 � means equal by definition.
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Pl(X) =
∑

Y ∈2Θ|X∩Y �=∅
m(Y ) = 1 − Bel(X̄). (2)

where X̄ � Θ \ {X} is the complement of X in Θ.
One has always 0 ≤ Bel(X) ≤ Pl(X) ≤ 1, see [8]. For X = ∅, Bel(∅) = 0

and Pl(∅) = 0, and for X = Θ one has Bel(Θ) = 1 and Pl(Θ) = 1. Bel(X) and
Pl(X) are often interpreted as the lower and upper bounds of unknown prob-
ability P (X) of X, that is Bel(X) ≤ P (X) ≤ Pl(X). To quantify the uncer-
tainty (i.e. the imprecision) of P (X) ∈ [Bel(X), P l(X)], we use the notation
u(X) ∈ [0, 1] defined by

u(X) � Pl(X) − Bel(X) (3)

The quantity u(X) = 0 if Bel(X) = Pl(X) which means that P (X) is known
precisely, and one has P (X) = Bel(X) = Pl(X). One has u(∅) = 0 because
Bel(∅) = Pl(∅) = 0, and one has u(Θ) = 0 because Bel(Θ) = Pl(Θ) = 1. If all
focal elements of m(·) are singletons of 2Θ the BBA m(·) is a Bayesian BBA
because ∀X ∈ 2Θ one has Bel(X) = Pl(X) = P (X) and u(X) = 0. Hence the
belief and plausibility of X coincide with a probability measure P (X) defined on
the FoD Θ. The vacuous BBA characterizing a totally ignorant source of evidence
is defined by mv(X) = 1 for X = Θ, and mv(X) = 0 for all X ∈ 2Θ different from
Θ. This particular BBA has played a major role in the establishment of a new
effective measure of uncertainty of BBA defined in [7].

3 Generalized Entropy of a BBA

In [9] we did analyze in details forty-eight measures of uncertainty (MoU) of
BBAs by covering 40 years of research works on this topic. Some of these MoUs
capture only a particular aspect of the uncertainty inherent to a BBA (typically,
the non-specificity and the conflict). Other MoUs propose a total uncertainty
measure to capture jointly several aspects of the uncertainty. Unfortunately, most
of these MoUs fail to satisfy four very simple reasonable and essential desiderata,
and so they cannot be considered as really effective and useful. Actually only
six MoUs can be considered as effective from the mathematical sense presented
next, but unfortunately they appear as conceptually defective and disputable,
see discussions in [9]. That is why, a better effective measure of uncertainty
(MoU), i.e. generalized entropy of BBAs has been developed and presented in
[7]. The mathematical definition of this new effective entropy is given by

U(m) =
∑

X∈2Θ

s(X) (4)

with
s(X) � −m(X)(1 − u(X)) log(m(X)) + u(X)(1 − m(X)) (5)
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The quantity −(1 − u(X)) log(m(X)) = (1 − u(X)) log(1/m(X)) entering in
s(X) in (5) is the surprisal3 log(1/m(X)) of X discounted by the confidence (1−
u(X)) one has on the precision of P (X). The term −m(X)(1 − u(X)) log(m(X))
is the weighted discounted surprisal of X. The term u(X)(1 − m(X)) enter-
ing in (5) corresponds to the imprecision of P (X) discounted by (1 − m(X))
because the greater m(X) the less one should take into account the imprecision
u(X) in the MoU. The quantity s(X) is the uncertainty contribution related
to element X (named the entropiece of X) in the MoU U(m). This entropiece
s(X) involves m(X) and the imprecision u(X) = Pl(X) − Bel(X) about the
unknown probability of X in a subtle interwoven manner. The cardinality of X
is indirectly taken into account in the derivation of s(X) thanks to u(X) which
requires the derivation of Pl(X) and Bel(X) functions depending on the car-
dinality of X. Because u(X) ∈ [0, 1] and m(X) ∈ [0, 1] one has s(X) ≥ 0, and
U(m) ≥ 0. The quantity U(m) is expressed in nats because we use the natural
logarithm. U(m) can be expressed in bits by dividing the U(m) value in nats by
log(2) = 0.69314718.... This measure of uncertainty U(m) is a continuous func-
tion in its basic belief mass arguments because it is a summation of continuous
functions. In formula (5), we always take m(X) log(m(X)) = 0 when m(X) = 0
because limm(X)→0+ m(X) log(m(X)) = 0 which can be proved using L’Hôpital
rule [11]. Note that for any BBA m, one has always s(∅) = 0 because m(∅) = 0
and u(∅) = Pl(∅)− Bel(∅) = 0− 0 = 0. For the vacuous BBA, one has s(Θ) = 0
because mv(Θ) = 1 and u(Θ) = Pl(Θ) − Bel(Θ) = 1 − 1 = 0.

The set {s(X),X ∈ 2Θ} of the entropieces values s(X) can be represented
by an entropiece vector s(mΘ) = [s(X),X ∈ 2Θ]T , where any order of elements
X of the power set 2Θ can be chosen. For simplicity, we suggest to use the
classical N -bits representation (if |Θ| = N) with the increasing order - see the
next example.

This measure of uncertainty U(m) is effective because it can be proved (see
proofs in [7]) that it satisfies the following four essential properties:

1. U(m) = 0 for any BBA m(·) focused on a singleton X of 2Θ.
2. U(mΘ

v ) < U(mΘ′
v ) if |Θ| < |Θ′|.

3. U(m) = −∑
X∈Θ m(X) log(m(X)) if the BBA m(·) is a Bayesian BBA.

Hence, U(m) reduces to Shannon entropy [12] in this case.
4. U(m) < U(mv) for any non-vacuous BBA m(·) and for the vacuous BBA

mv(·) defined with respect to the same FoD.

The proof of the three first properties is quite simple to make. The proof of the
last property is much more difficult. As explained in [7], we do not consider that
the sub-additivity property [13] of U(m) is a fundamental desideratum that an
effective MoU must satisfy in general. In fact the sub-additivity desideratum is
incompatible with the fourth important property U(m) < U(mv) above which
stipulates that none non-vacuous BBA can be more uncertain (i.e. more ignorant

3 This terminology is not used by Shannon in his original paper but it has been
introduced by Tribus in [10] in the probabilistic context, and by analogy we adopt
Tribus’ terminology also for BBAs.
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about the problem under consideration) than the vacuous BBA. Actually, it does
not make sense to have the entropy U(mΘ×Θ′

v ) of the vacuous joint BBA mΘ×Θ′
v

defined on the cartesian product space Θ×Θ′ smaller than (or equal to) the sum
U(mΘ

v )+U(mΘ′
v ) of entropies of vacuous BBAs mΘ

v and mΘ′
v defined respectively

on Θ and Θ′. There is no theoretical justification, nor intuitive reason for this
sub-additivity desideratum in the context of non-bayesian BBAs. Of course for
Bayesian BBAs, U(m) is equivalent to Shannon entropy which is in this case
sub-additive.

It can be also proved, see [7] for details, that the entropy of the vacuous BBA
mv related to a FoD Θ is equal to

U(mΘ
v ) = 2|Θ| − 2 (6)

This maximum entropy value U(mv) makes perfect sense because for this very
particular BBA there is no information at all about the conflicts between the
elements of the FoD. Actually for all X ∈ 2Θ \ {∅, Θ} one has u(X) = 1 because
[Bel(X), P l(X)] = [0, 1], and one has u(∅) = 0 and u(Θ) = 0. Hence, the sum
of all imprecisions of P (X) for all X ∈ 2Θ is exactly equal to 2|Θ| − 2 which
corresponds to U(mΘ

v ) as expected. Moreover, one has always U(mΘ
v ) > log(|Θ|)

which means that the vacuous BBA has always an entropy greater than the
maximum of Shannon entropy log(|Θ|) obtained with the uniform probability
mass function distributed on Θ.

Example 1 of Entropy Calculation: consider Θ = {θ1, θ2} and the
BBA mΘ(θ1) = 0.5, mΘ(θ2) = 0.3 and mΘ(θ1 ∪ θ2) = 0.2, then one
has [Bel(∅), P l(∅)] = [0, 1] and u(∅) = 0, [Bel(θ1), P l(θ1)] = [0.5, 0.7],
[Bel(θ2), P l(θ2)] = [0.3, 0.5], and [Bel(Θ), P l(Θ)] = [1, 1]. Hence, u(θ1) = 0.2,
u(θ2) = 0.2 and u(Θ) = 0. Applying (5), one gets s(∅) = 0, s(θ1) ≈ 0.377258,
s(θ2) ≈ 0.428953 and s(Θ) ≈ 0.321887. Using the 2-bits representation with
increasing ordering4, we encode the elements of the power set as ∅ = 00, θ1 = 01,
θ2 = 10 and θ1 ∪ θ2 = 11. The entropiece vector for this simple example is

s(mΘ) =

⎡

⎢
⎢
⎣

s(∅)
s(θ1)
s(θ2)

s(θ1 ∪ θ2)

⎤

⎥
⎥
⎦ ≈

⎡

⎢
⎢
⎣

0
0.377258
0.428953
0.321887

⎤

⎥
⎥
⎦ (7)

If we use the classical N-bits (here N = 2) representation with increasing
ordering (as we recommand) the first component of entropiece vector s(mΘ) will
be s(∅) which is always equal to zero for any BBA m, hence the first component
of s(mΘ) is always zero. By summing all the components of the entropiece vector
s(mΘ) we obtain the entropy U(mΘ) ≈ 1.128098 nats of the BBA mΘ(·). Note
that the components s(X) (for X 
= ∅) of the entropieces vector s(mΘ) are not
independent because they are linked to each other through the calculation of
Bel(X) and Pl(X) values entering in u(X).
4 Once the binary values are converted into their digit value with the most significant

bit on the left (i.e. the least significant bit on the right).
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Example 2 of Entropy Calculation: for the vacuous BBA mΘ
v , and when

using the binary increasing encoding of elements of 2Θ, the first component s(∅)
and the last component s(Θ) of entropiece vector s(mΘ

v ) will always be equal to
zero, and all other components of s(mΘ

v ) will be equal to one. For instance, if
we consider Θ = {θ1, θ2} and the vacuous BBA mΘ

v (θ1) = 0, mΘ
v (θ2) = 0 and

mΘ
v (θ1 ∪ θ2) = 1, the corresponding entropiece vector s(mΘ

v ) is

s(mΘ
v ) =

⎡

⎢
⎢
⎣

s(∅)
s(θ1)
s(θ2)

s(θ1 ∪ θ2)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0
1
1
0

⎤

⎥
⎥
⎦ (8)

By summing all the components of the entropiece vector s(mΘ
v ) we obtain

the entropy value U(mΘ
v ) = 2 nats for this vacuous BBA mΘ

v (·), which is of
course in agreement with the formula (6).

4 Information Content of a BBA

We consider a (non-empty) FoD of cardinality |Θ| = N , and we model our state
of knowledge about the problem under consideration by a BBA defined on 2Θ.
Without more knowledge than the FoD itself (and its cardinality N), we are
totally ignorant about the solution of the problem we want to solve, and of
course we have no clue for making a decision/choice among the elements of the
FoD. The BBA reflecting this total ignorant situation is the vacuous BBA mv(·),
whose maximal entropy is U(mv) = 2N − 2. In such case, we naturally expect
that the information content we have5 is zero when the uncertainty measure
is maximal. In the very opposite case, it is very natural to consider that the
information content of a BBA is maximal if the entropy value (the MoU value)
of a BBA m(·) is zero, meaning that we make a choice of one element of the
FoD without hesitation. Based on these very simple ideas, we propose to define
the information content of any BBA m(·) as the dual of the effective measure of
uncertainty, more precisely by

IC(mΘ) � U(mΘ
v ) − U(mΘ) = (2|Θ| − 2) −

∑

X∈2Θ

s(X) (9)

where s(X) is the entropiece of the element X ∈ 2Θ given by (5), that is

s(X) � −(1 − u(X))mΘ(X) log(mΘ(X)) + u(X)(1 − mΘ(X))

and where u(X) is the level of imprecision of the probability P (X) given by

u(X) = PlΘ(X) − BelΘ(X) =
∑

Y ∈2Θ|X∩Y �=∅
mΘ(Y ) −

∑

Y ∈2Θ|Y ⊆X

mΘ(Y ) (10)

5 aside of the value of N of course.
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From the definition (9), one sees that for mΘ 
= mΘ
v one has IC(mΘ) > 0 because

U(mΘ) < U(mΘ
v ), and for mΘ = mΘ

v one has IC(mΘ
v ) = 0, which is what we

naturally expect.
It is worth mentioning that the information content IC(mΘ) of a BBA

depends not only of the BBA m(.) itself but also on the cardinality of the frame
of discernment6 Θ because IC(mΘ) requires the knowledge of |Θ| to calculate
the max entropy value U(mΘ

v ) = 2|Θ| − 2 entering in (9). This remark is very
important to understand that even if two BBAs (defined on different FoDs) focus
entirely on a same focal element, their information contents are necessarily dif-
ferent. For instance, if we consider the Bayesian BBA with mΘ(θ1) = 1 defined
on the FoD Θ = {θ1, θ2}, then

IC(mΘ) = U(mΘ
v ) − U(mΘ) = (2|Θ| − 2) − 0 = 2 (nats)

whereas if we consider the Bayesian BBA with mΘ′
(θ1) = 1 defined on the larger

FoD Θ′ = {θ1, θ2, θ3} (for instance), then

IC(mΘ′
) = U(mΘ′

v ) − U(mΘ′
) = (2|Θ′| − 2) − 0 = 6 (nats)

So even if the decision θ1 that we would make based either on mΘ or on mΘ′
is the

same, these decisions must not be considered actually with the same strength,
and this is what reflects our information content measure.

From this very simple definition of information content, we can also define the
Normalized Information Content (NIC) (if needed later in some applications),
denoted by NIC(mΘ) by normalizing IC(mΘ) with respect to the maximal
value of entropy U(mΘ

v ) as

NIC(mΘ) � U(mΘ
v ) − U(mΘ)
U(mΘ

v )
= 1 − U(mΘ)

U(mΘ
v )

(11)

Hence we will have NIC(mΘ) ∈ [0, 1] and NIC(mΘ) = 0 for m = mv, and
NIC(mΘ) = 1 for U(m) = 0 which is obtained when m(·) is entirely focused on
a singleton θi ∈ Θ, that is mΘ(θi) = 1 for some i ∈ {1, 2, . . . , |Θ|}.

In fact, the (total) information content of a BBA IC(mΘ) is the sum of all
the information granules IG(X|mΘ) of elements X ∈ 2Θ carried by a BBA mΘ,
that is

IC(mΘ) =
∑

X∈2Θ

IG(X|mΘ) (12)

where

IG(X|mΘ) �

⎧
⎪⎨

⎪⎩

0, if X = ∅
−s(X), if X = Θ

1 − s(X) otherwise
(13)

6 That is why it is better, we think, to use the notation IC(mΘ) instead of IC(m).
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We can define the information granules vector7 IG(m) = [IG(X|mΘ),X ∈ 2Θ]T

by
IG(mΘ) � s(mΘ

v ) − s(mΘ) (14)

One sees that the (total) information content IC(mΘ) of a BBA mΘ is just the
sum of all components IG(X|mΘ) of the information granules vector IG(m). The
information granules vector IG(m) is interesting and useful because it helps to
see the contribution of each element X in the whole measure of the information
content IC(mΘ) of a BBA mΘ.

Example 1 (continued): consider Θ = {θ1, θ2} and the BBA mΘ(θ1) = 0.5,
mΘ(θ2) = 0.3 and mΘ(θ1 ∪ θ2) = 0.2. The information granules vector IG(mΘ)
is given by

IG(mΘ) = s(mΘ
v ) − s(mΘ) =

⎡

⎢
⎢
⎣

0
1
1
0

⎤

⎥
⎥
⎦ −

⎡

⎢
⎢
⎣

0
0.377258
0.428953
0.321887

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0
0.622742
0.571047

−0.321887

⎤

⎥
⎥
⎦ (15)

By summing all the components of the information granules vector IG(mΘ) we
obtain the (total) information content IC(mΘ) = 0.871902 nats of the BBA mΘ,
which can of course be calculated directly also as

IC(mΘ) = U(mΘ
v ) − U(mΘ) = 2 − 1.128098 = 0.871902

However, the information granules vector IG(mΘ) is interesting to identify the
contribution of each element X in the whole measure of the information content.

5 Information Gain and Information Loss

Once the IC measure is defined for a BBA, it is rather simple to define the
information gain and information loss of a BBA with respect to another one, both
defined on a same FoD Θ. Suppose that we have a first BBA mΘ

1 and a second
BBA mΘ

2 , then we can calculate by formula (9) their respective information
contents IC(mΘ

1 ) and IC(mΘ
2 ). The difference of information content measure

of mΘ
2 with respect to mΘ

1 is defined by8

ΔIC(m2|m1) � IC(mΘ
2 ) − IC(mΘ

1 ) (16)

If we replace IC(mΘ
2 ) and IC(mΘ

1 ) by their expressions according to (9), it
comes

ΔIC(m2|m1) = [U(mΘ
v )−U(mΘ

2 )]−[U(mΘ
v )−U(mΘ

1 )] = U(mΘ
1 )−U(mΘ

2 ) (17)

7 We suppose for convenience that the elements X ∈ 2Θ are listed in increasing order
using the classical |Θ|-bits representation with the least significant bit on the right.

8 Similarly, we can define ΔIC(m1|m2) � IC(mΘ
1 ) − IC(mΘ

2 ) = −ΔIC(m2|m1).



Measure of Information Content of Basic Belief Assignments 127

If ΔIC(m2|m1) = 0, the BBAs mΘ
1 and mΘ

2 have same measure of information
content. So, there is no gain and no loss in information content if one switches
from mΘ

1 to mΘ
2 or vice versa. ΔIC(m2|m1) = 0 does not mean that the decisions

based on mΘ
1 and on mΘ

2 are the same. It does only means that the decision based
on mΘ

1 must be as easy as the decision made based on mΘ
2 . It means that they

have the same informational strength. That’s it. If ΔIC(m2|m1) > 0, one has
IC(mΘ

2 ) > IC(mΘ
1 ), i.e. the BBA mΘ

2 is more informative than mΘ
1 . In this case

we get an information gain if one switches from mΘ
1 to mΘ

2 , and by duality we get
an uncertainty reduction by switching from mΘ

1 to mΘ
2 . It means that it must be

easier to make a decision based on mΘ
2 rather on mΘ

1 . If ΔIC(m2|m1) < 0, one
has IC(mΘ

2 ) < IC(mΘ
1 ), i.e. the BBA mΘ

2 is less informative than mΘ
1 . In this

case we get an information loss if one switches from mΘ
1 to mΘ

2 , and by duality
we get an uncertainty raise by switching from mΘ

1 to mΘ
2 . It means that it must

be easier to make a decision based on mΘ
1 rather on mΘ

2 .
As simple example, consider Θ = {θ1, θ2, θ3}. For the vacuous BBA one

has U(mΘ
v ) = 23 − 2 = 6 nats. Suppose at time k = 1 one has the BBA

mΘ
1 (θ1 ∪ θ2) = 0.2, mΘ

1 (θ1 ∪ θ3) = 0.3, mΘ
1 (θ1 ∪ θ2 ∪ θ3) = 0.5, then U(mΘ

1 ) ≈
5.1493 nats, and IC(mΘ

1 ) = U(mΘ
v )− U(mΘ

1 ) ≈ 0.8507 nats. Suppose that after
some information processing (belief revision, or fusion, etc.) we come up with
the BBA mΘ

2 at time k = 2 defined by mΘ
2 (θ1) = 0.2 and mΘ

2 (θ1 ∪ θ3) = 0.8,
then U(mΘ

2 ) ≈ 0.5004 nats and IC(mΘ
2 ) = U(mΘ

v ) − U(mΘ
2 ) ≈ 5.4996 nats. In

this case, we get ΔIC(m2|m1) = 5.4996 − 0.8507 = 4.6489 which is positive.
Hence we get an information gain by switching from mΘ

1 to mΘ
2 thanks to the

information processing applied.

6 Conclusions

In this paper we have introduced a measure of information content (IC) for any
basic belief assignment (BBA). This IC measure based on an effective measure
of uncertainty of BBAs is quite simple to calculate, and it reflects somehow
the informational strength and easiness ability to make a decision based on
any belief mass function. We have also shown how it is possible to identify
the contribution of each focal element of the BBA to this information content
measure thanks to the information granule vector. This new IC measure is also
interesting because it allows to well quantify the information loss or gain between
two BBAs, and thus as perspectives we could use it to quantify precisely and
compare the performances of information processing using belief functions (like
fusion rules, belief conditioning, etc.). We hope that this new theoretical IC
measure will open interesting tracks for forthcoming research works on reasoning
about uncertainty with belief functions.
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Abstract. Most questionnaires offer ordered responses whose order is
poorly studied via belief functions. In this paper, we study the con-
sequences of a frame of discernment consisting of ordered elements on
belief functions. This leads us to redefine the power space and the union
of ordered elements for the disjunctive combination. We also study dis-
tances on ordered elements and their use. In particular, from a member-
ship function, we redefine the cardinality of the intersection of ordered
elements, considering them fuzzy.

Keywords: Ordinal variable · Ordered frame of discernment ·
Ordered and fuzzy elements · Ordered power set · Distance

1 Introduction

The theory of belief functions is used in more and more applications such
as machine learning, pattern recognition, clustering, etc. To apply the the-
ory of belief functions, we consider the frame of discernment given by
Ω = {ω1, ω2, . . . , ωn} and the basic belief assignments are defined as a map-
ping from the power set of Ω, noted 2Ω , to [0, 1] [13]. The elements ωi of Ω are
considered exclusive and exhaustive. The assumption of the exclusivity can be
lifted, considering the hyper power set DΩ [9].

However, we may be confronted with applications where a semantic or prox-
imity link exists between the elements of the frame of discernment. For example,
in questionnaires graduated or ordered answers can be proposed:

What is the distance between Lannion and Paris?:
314 km, 414 km, 514 km, 614 km

Other possible answers use the Likert scale such as:

Not happy, neutral, happy
Strongly disagree; Disagree; Neither agree nor disagree; Agree; Strongly agree

These answers can be represented by an ordinal variable. In these cases, there
is no way to deal with this link between the elements of the frame of discernment.
Forcing these elements to have a zero mass is not stable in the combination and
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decision processes. In this paper, we explore the possibilities of considering an
order between the elements of the frame of discernment with the theory of belief
functions. First in Sect. 2 we introduce the ordered power set, then we show how
we can combine mass functions defined on an ordered power set in Sect. 3. In
Sect. 4, we propose the definition of a distance between ordered elements used to
define a distance between belief functions, that can be used for conflict measure
and decision in Sect. 5. In Sect. 6, we consider ordered fuzzy elements to redefine
the cardinality of the intersection of elements before concluding.

2 Power Set of Ordered Elements

Let us take again the example of the question about the distance between Paris
and Lannion. The frame of discernment is given by Ω = {ω1, ω2, ω3, ω4}, with
the answers ω1 = 314 km, ω2 = 414 km, ω3 = 514 km, ω4 = 614 km. The right
answer is 514 km. Here, the elements of the frame of discernment are obviously
exclusive. However, if someone answers 614 km, the error is smaller than if the
answer given is 314 km. If we consider imprecise answers as in [15], {ω3, ω4} make
sense while {ω1, ω3} does not.

We therefore consider that we should not take into account all the elements of
the power set 2Ω , but only those which have a meaning. Thus disjunctions that
do not contain consecutive elements should not be considered. Let us consider
an ordinal variable having values in a finite set Ω = {ω1, . . . , ωn} of ordered ωi,
i = 1, . . . , n, i being an ordinal number.

Definition. The ordered power set, noted oPSΩ, is a subset of the power set com-
posed by the empty set and all the disjunctions of consecutive elements of Ω.

A disjunction of consecutive elements from endpoint elements is noted by:

{ωi, ωj}o = {ωi, ωi+1, . . . , ωj−1, ωj}, with 1 ≤ i ≤ j ≤ n (1)

Hence, the ordered power set is given by:

oPSΩ = {∅, {{ωi, ωj}o}i,j=1,...,n} (2)

The number of elements of 2Ω is 2n, but it is smaller for oPSΩ.

Proposition. The number of elements of oPSΩ, with: Ω = {ω1, . . . , ωn} is:

1 +
n(n + 1)

2
(3)

Proof. The set oPSΩ contains the empty set and ordered elements determined by
the endpoint elements. The number of these elements is the number of pairs (i, j)
with 1 ≤ i ≤ j ≤ n. This number is n!

2!(n−2)! = n(n+1)
2 . So |oPSΩ| = 1+ n(n+1)

2 . ��
Let Ω = {ω1, . . . , ωn} be a frame of discernment of ordered, exclusive and

exhaustive elements ωi, i = 1, . . . , n. A mass function m is the mapping from
elements of the ordered power set oPSΩ onto [0, 1] such that:

∑

X∈oPSΩ

m(X) = 1. (4)
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A focal element X is an element of oPSΩ such that m(X) �= 0.
From this definition of mass function, all the definitions of special mass func-

tions are available (simple mass functions, non dogmatic, consonant, etc.). A
categorical mass function with m(X) = 1 is noted mX . Definitions of classical
belief functions such as credibility, plausibility and pignistic probability are also
available on the ordered power set oPSΩ. The credibility function is given for
all X ∈ oPSΩ by:

bel(X) =
∑

Y ⊆X,Y �=∅
m(Y ). (5)

The plausibility function is given for all X ∈ oPSΩ by:

pl(X) =
∑

Y ∈oPSΩ ,Y ∩X �=∅
m(Y ). (6)

However, it is not possible to compute this function as a dual of the credibility
function, because an ordered power set is not invariant by the complement.
Indeed, if we consider Ω = {ω1, ω2, ω3}, the complementary of ω2 is {ω1, ω3} /∈
oPSΩ. The pignistic probability [14] can be written for all ω ∈ Ω by:

BetP(ω) =
∑

X∈oPSΩ ,X �=∅,ω∈X

1
|X|

m(X)
1 − m(∅)

. (7)

3 Combination of Belief Functions on Ordered Power Set

When considering several mass functions on an ordered power set oPSΩ from
several sources or persons, we need to be able to combine them. The combination
operator must therefore produce a mass function in the same ordered power set
oPSΩ. Therefore, an ordered power set must be invariant by the combination
operator. There are a large number of combination operators [11] and not all of
them verify this property.

Proposition. An ordered power set is invariant by the conjunctive combinations
(normalized, not normalized, Yager [11]).

Proof. Let two focal elements of an ordered power set oPSΩ: {ωi1 , ωj1}o and
{ωi2 , ωj2}o. The intersection of these elements is empty or given by:

{max(ωi1 , ωi2),min(ωj1 , ωj2)}o ∈ oPSΩ

Therefore, an ordered power set is invariant by all conjunctive operators. ��
Proposition. An ordered power set is not invariant by the disjunctive combina-
tion.

Proof. Let two categorical mass functions mω1 and mω3 , with two non consec-
utive focal elements such as ω1 and ω3. The disjunctive combination of these
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two mass functions is the categorical mass function with {ω1, ω3} such as unique
focal element. As {ω1, ω3} /∈ oPSΩ, the ordered power set is not invariant by
the disjunctive combinations. ��

Thus, an ordered power set is not invariant by all the mixed combination
operators based on the disjunctive operator. Here we propose a new disjunctive
combination operator that makes an ordered power set invariant. Let two ele-
ments Yi and Yj ∈ oPSΩ, we note Yi = {ωi1 , ωini

}o and Yj = {ωj1 , ωjnj
}o. We

define the union of these two ordered elements by:

Yi

o∪Yj = {min(ωi1 , ωj1),max(ωini
, ωjnj

)}o (8)

The union of s ordered elements is given by the extension of the previous equation
or recursively by ((Y1

o∪ Y2)
o∪ Y3) . . .

o∪Ys.
Let two mass functions defined on the ordered power set oPSΩ, for all X ∈

oPSΩ, the disjunctive combination is given by:

moDis(X) =
∑

Yi

o∪ Yj=X

mi(Yi)mj(Yj). (9)

The disjunction combination of s mass functions on the ordered power set
oPSΩ, is given for all X ∈ oPSΩ by:

moDis(X) =
∑

Y1
o∪...

o∪ Ys=X

S∏

j=1

mj(Yj). (10)

where Yj ∈ oPSΩ is a focal element of the source Sj , and mj(Yj) the associated
mass function. We can thus rewrite the mixed combination operators [11], such
as the Dubois and Prade one [4] given for all X ∈ oPSΩ, X �= ∅ by:

moDP(X) =
∑

Y1∩...∩Ys=X

S∏

j=1

mj(Yj) +
∑

Y1

o∪ . . .
o∪Ys = X

Y1 ∩ . . . ∩ Ys = ∅

S∏

j=1

mj(Yj). (11)

Proposition. An ordered power set is stable by the average combination.

Proof. The proof is obvious, because the set of focal elements obtained by the
combination is the union of the sets focal elements from the mass functions to
be combined. ��

4 Distances on Belief Functions on Ordered Power Set

In the context of belief functions, we often use a distance between mass functions,
in order to measure similarity for clustering, to define some measures or to decide.
There are many distances that can be considered [7]. The most commonly used
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distance between the belief functions is the distance defined in [6]. This distance
can obviously be defined for two mass functions m1 and m2 on oPSΩ by:

dJ (m1,m2) =

√
1
2
(m1 − m2)T D(m1 − m2), (12)

where D is an 1 + n(n+1)
2 × 1 + n(n+1)

2 matrix based on Jaccard dissimilarity
whose elements are:

D(A,B) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, ifA = B = ∅,

|A ∩ B|
|A o∪ B|

, ∀A,B ∈ oPSΩ.
(13)

where |X| is the cardinality of X ∈ oPSΩ. Of course we have:

|A ∩ B|
|A o∪B|

=
|A ∩ B|
|A ∪ B|

because if A ∩ B �= ∅ then A
o∪ B = A ∪ B with A,B ∈ oPSΩ.

However, with this distance, we have without any distinction:

dJ(mω1 ,mω2) = dJ(mω1 ,mω3) = 1.

The value 1 is the maximum value of this distance.

4.1 Distance Between Ordered Elements

Let us take the example of the question about the distance between Paris and
Lannion. We have noticed that if someone answers 614km, the error is smaller
than if the answer given is 314 km. Thus, the distance between elements of an
ordered frame of discernment Ω can be considered differently according to their
order. On a Likert scale, we have the same argument. We can consider that the
minimal distance between two elements of Ω is that between two consecutive
elements. Inthe same way, the maximum distance between two elements of Ω is
the distance between the first ω1 and the last ωn element of Ω.

In order to have a distance with a normality property, we propose the fol-
lowing distance between two elements of Ω:

do(ωi, ωj) =
|i − j|
n − 1

(14)

where |x| is the absolute value of x = 1, . . . , n. This distance takes obviously its
values in [0, 1].

The distance between an element of Ω and an element X = {ω1x
, ωnx

}o of
oPSΩ can be defined by one of the following equations:

domin
(ωi,X) = min(do(ωi, ω1x

), do(ωi, ωnx
)) (15)
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domax
(ωi,X) = max(do(ωi, ω1x

), do(ωi, ωnx
)) (16)

doav
(ωi,X) =

1
[X|

nx∑

k=1x

do(ωi, ωk) (17)

The distance between two elements X = {ω1x
, ωnx

}o and Y = {ω1y
, ωny

}o

of oPSΩ can be defined by one of the following equations:

domin
(X,Y ) = min

ωyi
∈Y

domin
(X,ωyi

) (18)

domax
(X,Y ) = max

ωyi
∈Y

domax
(X,ωyi

) (19)

doav
(X,Y ) =

1
[XY |

nx∑

kx=1x

nx∑

ky=1y

do(ωkx
, ωky

) (20)

These distances take their values in [0, 1]. The use of one of these distances rather
than another may depend on the application. For the sake of simplicity, we will
note do in the following.

4.2 Distance Between Belief Functions

As we have seen, the Jousselme distance does not fit the ordered elements of
the frame of discernment. Indeed, with Jaccard dissimilarity, the dissimilarity is
zero if the intersection is empty. However, on ordered and exclusive elements,
the dissimilarity can be different depending on the order. Therefore, we modify
the dissimilarity of Jaccard on empty intersection elements from the distance
defined in the previous section. Since the minimum strictly positive value of the
Jaccard dissimilarity is 1

n , the proposed dissimilarity takes its values on [0, 1
n ].

Thus, we define a modified Jaccard dissimilarity for ordered elements by:

Do(A,B) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, ifA = B = ∅,

|A ∩ B|
|A o∪B|

+ (1 − Int(A,B))
1 − do(A,B)

n
, ∀A,B ∈ oPSΩ.

(21)

where Int is the intersection index defined such as in [7] by Int(A,B) = 1 if
A ∩ B �= ∅ and 0 otherwise.

According to [1], Do define a matrix positive definite. The distance obtained
is given for two mass functions m1 and m2 on oPSΩ by:

dJo(m1,m2) =

√
1
2
(m1 − m2)T Do(m1 − m2), (22)

where Do is given by Eq. (21).
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If we consider Ω = {ω1, ω2, ω3} and the distance given by Eq. (20), we obtain:

Do =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
0 1 1

6
1
2 0 1

2
1
3

0 1
6 1 1

2
1
6

1
2

1
3

0 1
2

1
2 1 1

12
1
3

2
3

0 0 1
6

1
12 1 1

2
1
3

0 1
12

1
2

1
3

1
2 1 2

3

0 1
3

1
3

2
3

1
3

2
3 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(23)

Hence:

dJo(mω1 ,mω2) =

√
5
6

� 0.91 and dJo(mω1 ,mω3) = 1 (24)

In this way, we show that we can take into account the proximity of ordered
elements in the distance.

The modification of the Jaccard dissimilarity, could induce an interpretation
of the non-exclusivity of the elements. We will discuss this in Sect. 6.

5 Decision and Conflict on Ordered Elements

After combining the mass functions, we generally want to make a decision about
the resulting mass function. This mass function with the operators seen in Sect. 3
takes its values on oPSΩ. It is common to make the decision on Ω by maximum
of credibility, plausibility or by compromise with the pignistic probability. We
have seen in Sect. 2, that we can calculate these belief functions in oPSΩ and if
we denote fd one of these functions the decision is made by:

ωd = argmax
ω∈Ω

(fd(ω)) . (25)

However, these functions do not consider the difference of proximity of the
elements of Ω and do not allow to decide on the disjunctions, i.e. on some
elements of oPSΩ. In [5], we introduced another decision process based on a
distance given by:

A = argmax
X∈D

(dJo(m,mX)) , (26)

where mX is the categorical mass function m(X) = 1, m is the mass function
coming from the combination rule and dJo is the distance introduced in Equa-
tion (22). The subset D ⊆ oPSΩ is the set of elements on which we want to
decide.

This last decision process also allows to decide on imprecise elements of the
ordered power set oPSΩ and to take into account with the distance the difference
of proximity of ordered element of Ω.

Let us take the example of the Paris-Lannion trip, if we get 3 categorical
answers from 3 people such as: Person 1 said: 314 km, person 2 said: 514 km,
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and person 3 said: 614 km. Person 1 disagrees more with person 2 than with
person 3. The distance introduced in Sect. 4 can measure this difference on the
ordered elements of the frame of discernment. Therefore, we can extend here the
conflict measure introduced in [10], between two mass functions m1 and m2 by:

Conf(m1,m2) = (1 − δinc(m1,m2))dJo(m1,m2) (27)

where dJo is the distance defined by equation (22) and δinc is a degree of inclusion
measuring how m1 and m2 and included each other. For more details on possible
degree of inclusion see [10]. To measure the conflict between more than two mass
functions, the average of the conflicts two by two can be considered.

6 Belief Functions on Ordered Fuzzy Elements

Now assume that the answers to the question about the distance between Lan-
nion and Paris are:

about 300 km, about 400 km, about 500 km, about 600 km

The possible answers are always ordered, and if they can always be considered
exclusive, they are fuzzy answers.

The link between belief functions and fuzzy sets has already been discussed
in different ways [2,3]. Here we wish to study the representation and the consid-
eration of ordered and fuzzy elements of the frame of discernment.

As we saw in Sect. 4 by redefining Jaccard’s dissimilarity, the exclusivity
of the ordered elements can be questioned. The fact of having ordered fuzzy
elements does not however call into question the exclusivity of the elements
and thus the intersection of the elements. Indeed, there is no semantic sense in
having about 400 km and about 500 km at the same time. On the other hand,
considering fuzzy elements allows to redefine the cardinality of the intersection
of the elements from the membership functions.

In [12], the cardinality of the intersection of ordered elements is defined from
a definition of the membership function, which allows them to propose another
modified version of Jaccard dissimilarity. Inspired by this work, we define here
the membership function of an element of ω ∈ Ω to a set of X ∈ oPSΩ by:

μX(ω) =

⎧
⎨

⎩

1, if ω ∈ X,

αe−γdJo(ω,X), otherwise,
(28)

with 0 ≤ α ≤ 1, 0 ≤ γ ≤ 1 two thresholds to control the membership function
and do the distance defined by Eq. (15), (16) or (17). Based on this membership
function, we define the cardinality of the intersection of two elements X and
Y ∈ oPSΩ by:

|X ∩ Y |o =
∑

ω∈X
o∪ Y,ω∈Ω

min(μX(ω), μY (ω)) (29)
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If α = 0 then |X ∩ Y |o = |X ∩ Y |.
Therefore, we define a modified Jaccard dissimilarity for ordered elements

by:

Do(A,B) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if A = B = ∅,

|A ∩ B|o
|A o∪ B|

, ∀A,B ∈ oPSΩ.
(30)

We have 0 ≤ Do(A,B) ≤ 1 and D(A,B) ≤ Do(A,B) [12]. A new distance dJo

between the ordered and fuzzy elements can thus be defined by Eq. (22).
The cardinality of the intersection defined by Eq. (29) allows its use in the

mixed rules [8] to regulate the conjunctive/disjunctive behaviour by taking into
account the partial combinations according to the cardinality of the elements.
The mixed rule is given for m1 and m2 for all X ∈ 2Ω by:

mMix(X) =
∑

Y1
o∪ Y2=X

δ1m1(Y1)m2(Y2)

+
∑

Y1∩Y2=X

δ2m1(Y1)m2(Y2).
(31)

The choice of δ1 = 1 − δ2 can also be made from Jaccard dissimilarity:

δ2(Y1, Y2) =
|Y1 ∩ Y2|o
|Y1

o∪Y2|
. (32)

Thus, if we have a partial conflict between Y1 and Y2, Y1 ∩ Y2 = ∅, the rule
transfers the mass on Y1

o∪Y2 according to the difference in order of the elements
of Ω constituting Y1 and Y2.

Questionnaires whose responses are in the form of a Likert scale can also be
modeled by a frame of discernment of ordered and fuzzy elements and thus use
the modified Jaccard dissimilarity defined by Eq. (30).

7 Conclusion

In this paper, we explored the modeling and integration of an ordered element
of frame of discernment by belief functions. The fact of considering ordered ele-
ments led us to redefine the power space of unions of ordered elements making
sense, called ordered power space. Thus, to consider disjunctive combination
rules leaving invariant the ordered power space, we defined the union of ordered
elements. From a distance between ordered elements we redefined a distance
between mass functions that can be used in a conflict measure and for decision
making. Without redefining the intersection of ordered elements, which we still
consider exclusive, we have redefined, from a membership function, the cardi-
nality of the intersection of ordered elements that can be considered fuzzy.
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A large number of applications can be addressed by modeling on ordered
sets of elements. We are thinking in particular of the answers to questionnaires
which very often use Likert scales. This type of questionnaire can, for example,
be used to evaluate the knowledge and skills of students allowing to consider the
closest answers in the sense of the order of the right answer, without considering
them as totally wrong. Concrete applications will be considered in future work.
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Abstract. We study the single source single destination shortest path
problem in a graph where information about arc weights is modelled by
a belief function. We consider three common criteria to compare paths
with respect to their weights in this setting: generalized Hurwicz, strong
dominance and weak dominance. We show that in the particular case
where the focal sets of the belief function are Cartesian products of inter-
vals, finding best, i.e., non-dominated, paths according to these criteria
amounts to solving known variants of the deterministic shortest path
problem, for which exact resolution algorithms exist.

Keywords: Shortest path · Belief function · Exact method

1 Introduction

The Shortest Path Problem (SPP) is one of the most studied problems in com-
binatorial optimization with a wide range of applications in, e.g., transportation
and telecommunications. In many realistic situations, uncertainty on arc weights
is encountered; for instance, the travel times between cities can be affected by
external factors such as weather conditions or traffic jams. Many approaches
have been proposed to model the uncertainty on arc weights. In particular,
robust optimization frameworks have represented uncertainty by discrete sce-
nario sets [3,15] and by intervals [3,10].

In this paper, we investigate the case where the uncertainty on arc weights is
evidential, i.e., modelled by a belief function [12]. More specifically, we assume
that each focal set of the considered belief function is a Cartesian product of
intervals with each interval describing possible values of each arc weight. Such
a belief function is a direct and natural generalization of the above-mentioned
interval-based uncertainty representation, which arises when considering prob-
abilities that the intervals hold. It can be illustrated as follows: in a network
with three cities A, B, and C, under good weather conditions, it may take 20 to
30 min to travel from A to B, and 10 to 20 min to travel from B to C; however
under bad weather conditions, the travel times from A to B (resp. B to C) takes
30 to 40 min (resp. 15 to 25 min) and the forecast tells us that the probability of
good weather (resp. bad weather) is 0.8 (resp. 0.2).
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In the presence of evidential uncertainty on arc weights, the notion of best,
i.e., shortest, paths becomes ill-defined. In a similar vein as [3] and using decision
theory under evidential uncertainty [2], best paths are defined in this paper as
the non-dominated ones with respect to a preference relation over paths, built
from some criterion relying on the notions of upper and lower expected weights
of paths. We consider in particular three common criteria, called generalized
Hurwicz, strong dominance and weak dominance; the first one induces a complete
preference relation while the latter two induce partial relations leading, as will
be seen, to more challenging optimisation problems.

Combinatorial optimization problems under evidential uncertainty have
received some attention recently. Notably, in [8,14], the authors studied dif-
ferent variants of the Vehicle Routing Problem (VRP) with different uncertainty
factors and with similar particular focal sets as in this paper. They proposed
approximate resolution methods based on metaheuristics to find non-dominated
solutions with respect to a complete relation built from a particular case of the
generalized Hurwicz criterion. Guillaume et al. [6] studied a general optimiza-
tion problem in which the coefficients in the objective function are subject to
uncertainty. They considered also the generalized Hurwicz criterion and provided
results about the complexity of finding a non-dominated solution.

In contrast to [8,14], we provide in this paper exact methods to find non-
dominated solutions with respect to both complete and partial relations, owing
to the fact that the SPP is much simpler than the VRP. Furthermore, although
Guillaume et al. [6] showed that in general it is intractable to find best solu-
tions, our results indicate that it can nonetheless be done when focal sets are of
a particular kind. Finally, we may note that the particular optimization prob-
lems that we consider allow us to take advantage of specialized (SPP-related)
algorithms, in contrast to [11] which also provides means to find best elements
according to some criteria, such as strong dominance, but which cannot benefit
from such specialized algorithms as it is framed in a more general setting.

The rest of this paper is organized as follows. Section 2 presents necessary
background material. Section 3 is devoted to the formalization and resolution of
the SPP with evidential weights. The paper ends with a conclusion in Sect. 4.

2 Preliminaries

In this section, we present basic elements necessary for the rest of the paper.

2.1 Deterministic Shortest Path Problem

Let G = (V,A) be a directed graph with set of vertices V , set of arcs A and
weight cij > 0 for each arc (i, j) in A. Let s and t be two vertices in V called
the source and the destination, respectively. Let X be the set of all s-t paths
in G with the assumption that X �= ∅. If all arc weights cij are known then
finding a s-t shortest path, i.e., a s-t path of lowest weight, can be modelled as
the following optimization problem
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min
∑

(i,j)∈A

cijpij (1)

∑

(s,i)∈A

psi −
∑

(j,s)∈A

pjs = 1 (2)

∑

(t,i)∈A

pti −
∑

(j,t)∈A

pjt = −1 (3)

∑

(k,i)∈A

pki −
∑

(j,k)∈A

pjk = 0, ∀k ∈ V \{s, t} (4)

pij ∈ {0, 1}, ∀(i, j) ∈ A (5)

where each path in X is identified with a set p = {pij |(i, j) ∈ A} of which
element pij = 1 if arc (i, j) is in the path and pij = 0 otherwise.

Example 1. Considering the directed graph depicted in Fig. 1, the set of all s-t
paths is X = {s-a-t, s-b-t, s-t} and s-a-t is the shortest s-t path with weight 2.

s

a

b

t

1 1

3

2 2

Fig. 1. Shortest path s-a-t between vertices s and t.

2.2 Belief Function Theory

Let Θ = {θ1, . . . , θn} be the set, called frame of discernment, of all possible
values of a variable θ. In belief function theory [12], partial knowledge about the
true (unknown) value of θ is represented by a mapping m : 2Θ �→ [0, 1] called
mass function and such that

∑
A⊆Θ m(A) = 1 and m(∅) = 0, where mass m(A)

quantifies the amount of belief allocated to the fact of knowing only that θ ∈ A.
A subset A ⊆ Θ is called a focal set of m if m(A) > 0.

Assume θ represents the state of nature and its true value is known in the
form of some mass function m. Assume further that a decision maker (DM)
needs to choose an act (decision) f from a finite set Q, where each act f ∈ Q
induces a cost l(f, θi) for each possible state of nature θi ∈ Θ. In this context,
the DM’s preference over acts is denoted by 	, where f 	 g means that act f is
preferred to act g. Relation 	 is complete if for any two acts f and g, f 	 g or
g 	 f , otherwise, it is partial. Furthermore, f is strictly (resp. equally) preferred
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to g, which is denoted by f ≺ g (resp. f ∼ g), if f 	 g but not g 	 f (resp. if
f 	 g and g 	 f).

Typically, the DM seeks elements in the set Opt of non-dominated acts:

Opt = {f ∈ Q : �g such that g ≺ f}. (6)

If relation 	 is complete, finding one element in Opt is enough since elements in
Opt are preferred equally between each other and strictly preferred to the rest
Q\Opt. In this case, elements in Opt are also called optimal acts. On the other
hand, if relation 	 is partial, the DM may need to identify all elements in Opt.

Usually, the DM constructs his preference over acts based on some criterion.
We denote by 	cr his preference according to some criterion cr and by Optcr its
associated set of non-dominated (or best) acts. In this paper, we consider three
common criteria defined as follows for any two acts f and g [2]:

1. Generalized Hurwicz criterion: f 	hu g if

αEm(f) + (1 − α)Em(f) ≤ αEm(g) + (1 − α)Em(g) (7)

for some fixed parameter α ∈ [0, 1], and where Em(f) and Em(f) denote,
respectively, the upper and lower expected costs of act f with respect to
mass function m defined as

Em(f) =
∑

A⊆Θ

m(A)max
θi∈A

l(f, θi), (8)

Em(f) =
∑

A⊆Θ

m(A) min
θi∈A

l(f, θi). (9)

Relation 	hu is complete and we have f ≺hu g if (7) is strict.
2. Strong dominance criterion: f 	str g if

Em(f) ≤ Em(g). (10)

Relation 	str is partial and we have f ≺str g if (10) is strict.
3. Weak dominance criterion: f 	weak g if

Em(f) ≤ Em(g) and Em(f) ≤ Em(g). (11)

Relation 	weak is partial and we have f ≺weak g if at least one inequality in
(11) is strict.

3 Shortest Path Problem with Evidential Weights

In this section, we formalize what we mean by best paths in a graph with evi-
dential weights and provide methods for finding such paths.
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3.1 Modelling

Let us assume that the arc weights cij , for all (i, j) ∈ A, of the graph introduced
in Sect. 2.1 are only partially known. More specifically, we consider the case where
information about arc weights is modelled by a mass function. Formally, let Ωij

denote the frame of discernment for the variable cij , i.e., the set of possible
values for the weight cij . We assume that Ωij ⊂ N>0. Let Ω := ×(i,j)∈AΩij . Any
c ∈ Ω will be called a scenario: it represents a possible assignment of values for
all the weights in the graph. A mass function m on Ω, with set of focals sets
denoted by F = {F1, . . . , FK}, represents then uncertainty about arc weights.

Example 2. Let c1 and c2 be the two scenarios represented by Figs. 2a and 2b,
respectively. The mass function m such that m(F1) = 0.4 and m(F2) = 0.6, with
F1 = {c1, c2} and F2 = {c1}, represents partial knowledge about arc weights.
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(a) Scenario c1

s

a

b

t

1 2

1

2 3

(b) Scenario c2

Fig. 2. Two possible assignments of values, i.e., two scenarios, for the arc weights.

As will be seen, making a particular assumption about the nature of the
focal sets of m is useful. This assumption, denoted CI for short, is the following:
each focal set of m can be expressed as a Cartesian product of intervals, i.e.,
Fr = ×(i,j)∈A[lrij , u

r
ij ] for all r ∈ {1, . . . , K}. Such a focal set is illustrated by

Example 3.

Example 3. Let F be the Cartesian product of intervals (depicted by Fig. 3):

F = [lsa, usa] × [lsb, usb] × [lst, ust] × [lat, uat] × [lbt, ubt]
= [1, 5] × [2, 4] × [2, 4] × [1, 3] × [2, 5].

F is a subset of Ω: it includes, for instance, the scenario c = {csa, csb, cst, cat, cbt}
with csa = 1, csb = 3, cst = 2, cat = 1, and cbt = 3.

When arc weights are evidential, i.e., there is some uncertainty about them
in the form of a mass function m on Ω, the preference over s-t paths with
respect to their (uncertain) weights can be established using the decision-making
framework recalled in Sect. 2.2. Specifically, the set Ω of scenarios represents the
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s
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b
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[1,5] [1,3]

[2,4]

[2,4] [2,5]

Fig. 3. Focal set as a Cartesian product of intervals.

possible states of nature. The set X of s-t paths represents the possible acts.
The weight

∑
(i,j)∈A cijpij of path p = {pij |(i, j) ∈ A} ∈ X under scenario

c = {cij |(i, j) ∈ A} ∈ Ω represents the cost l(p, c) of path (act) p for the
scenario (state of nature) c. The preference over s-t paths, and the associated
best s-t paths, can then be defined using any of the three criteria recalled in
Sect. 2.2. In the next section, we provide the main results of this paper, which
concern best s-t paths according to these three criteria and under assumption
CI.

3.2 Solving

In this section, methods for finding best paths according to, in turn, the general-
ized Hurwicz, strong dominance, and weak dominance criteria, are provided. We
can remark that these criteria rely on the notions of upper and lower expected
costs of acts, acts being here paths. These costs Em(p) and Em(p) of a path p
can be computed easily under assumption CI:

Proposition 1. Under assumption CI, we have

Em(p) =
∑

(i,j)∈A

ūijpij (12)

Em(p) =
∑

(i,j)∈A

l̄ijpij (13)

with ūij :=
∑K

r=1 m(Fr)ur
ij and l̄ij :=

∑K
r=1 m(Fr)lrij for all (i, j) ∈ A.

Proof. By definition, the upper and lower expected costs of path p are

Em(p) =
K∑

r=1

m(Fr) max
cr∈Fr

(
∑

(i,j)∈A

cr
ijpij), (14)

Em(p) =
K∑

r=1

m(Fr) min
cr∈Fr

(
∑

(i,j)∈A

cr
ijpij). (15)
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The inner maximum and minimum in (14) and (15) are obtained when each arc
weight cr

ij in scenario cr equals ur
ij and lrij , respectively. By regrouping terms we

get the desired result. ��
Proposition 1 is instrumental to uncover exacts methods finding best s-t paths.

Generalized Hurwicz Criterion. Since relation 	hu is complete, it is suffi-
cient to find one element of the set Opthu, as explained in Sect. 2.2. To find one
such element, i.e., best path according to the generalized Hurwicz criterion, we
need to solve the optimization problem

min αEm(p) + (1 − α)Em(p) (16)
p ∈ X . (17)

The complexity of the problem (16–17), in the case of general focal sets,
has been studied in the literature. If α = 1, the problem is weakly NP-hard
already in the case when mass function m has a single focal set containing two
elements [15]. If α = 0, the problem is even harder: it is strongly NP-hard and
not approximable [6, Theorem 1]. However, under assumption CI, the problem
(16–17) becomes much easier to solve:

Proposition 2. Under assumption CI, solving the problem (16–17) amounts to
solving the SPP in graph G = (V,A) with arc weights cij = αūij + (1 − α)l̄ij.

Proof. Using Proposition 1, the problem (16–17) becomes

min
∑

(i,j)∈A

(αūij + (1 − α)l̄ij)pij (18)

pij satisfies (2–5) ∀(i, j) ∈ A (19)

��
According to Proposition 2, to find one element in Opthu, we can use a fast
algorithm for the SPP such as [4].

Strong Dominance Criterion. Since relation 	str is partial, it may be nec-
essary to find all elements of the set Optstr, i.e., all best paths according to the
strong dominance criterion.

Proposition 3. Under assumption CI, finding all elements in Optstr amounts
to finding all paths, in graph G = (V,A) with arc weights cij = l̄ij, whose weights
are lower than or equal to d̄� := minq∈X Em(q).

Proof. By definition,

p ∈ Optstr ⇔ �q ∈ X such that Em(q) < Em(p) (20)

⇔ ∀q ∈ X then Em(q) ≥ Em(p) (21)

⇔ min
q∈X

Em(q) ≥ Em(p) (22)



146 T.-A. Vu et al.

As a special case of Proposition 2, when α = 1, minq∈X Em(q) is obtained
by solving the deterministic SPP in G with arc weights cij = ūij . From Proposi-
tion 1, we have Em(p) =

∑
(i,j)∈A l̄ijpij . Hence, to find p such that Em(p) ≤ d̄�,

we set arc weights cij of G to l̄ij and finding all elements in Optstr amounts to
finding all s-t paths in G whose weights are lower or equal than d̄�. ��

To find all elements in Optstr, we can use efficient algorithms such as the one
in [1], where the authors studied a problem of determining near optimal paths;
for example, they wished to find all s-t paths in a directed graph whose weights
do not exceed more than 10% the lowest weight, which is basically finding all
paths whose weights are lower than or equal to a given value.

Weak Dominance Criterion. Similarly as for the strong dominance criterion,
all elements of the set Optweak may need to be found since 	weak is partial.

There is a strong connection between the weak dominance criterion and bi-
objective optimization. A bi-objective optimization problem can be expressed as

min f1(x) (23)
min f2(x) (24)

x ∈ X (25)

As the objectives (23–24) are typically conflicting, there is usually no solution x
that minimizes simultaneously f1(x) and f2(x). Instead, we seek to find all so-
called efficient solutions of (23–25): a solution x is efficient if there is no feasible
solution y ∈ X such that f1(y) ≤ f1(x) and f2(y) ≤ f2(x) where at least one of
the inequalities is strict.

The bi-objective SPP is a particular bi-objective optimization problem.
Assume that each arc (i, j) in G has two deterministic attributes cij and tij
that describes, e.g., the distance and the travel time from i to j, respectively.
The goal is to find all efficient solutions, i.e., s-t paths of the following problem

min
∑

(i,j)∈A

cijpij (26)

min
∑

(i,j)∈A

tijpij (27)

pij satisfies (2–5) ∀(i, j) ∈ A. (28)

Proposition 4. Under assumption CI, finding all elements in Optweak amounts
to finding all efficient solutions of a bi-objective SPP in graph G where each arc
(i, j) ∈ A has two attributes ūij and l̄ij.

Proof. Finding all elements in Optweak is equivalent to finding all efficient solu-
tions p ∈ X of a bi-objective optimization problem with objectives f1(p) :=
Em(p) and f2(p) := Em(p), which, using Proposition 1, comes down to a bi-
objective SPP in graph G where each arc (i, j) has two attributes ūij , l̄ij . ��
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To find all elements in Optweak, we can apply fast algorithms developed for
the bi-objective SPP such as the one in [5].

We note that any generalized Hurwicz optimal solution for 0 < α < 1 is also
an element in Optweak, hence finding such solutions for various α will provide
an inner approximation of Optweak. This stems from bi-objective optimization
theory, where they are known as the supported efficient solutions, which are the
solutions of min{λ1f1(x) + λ2f2(x) : x ∈ X} for some λ1, λ2 > 0.

Example 4. Assume that mass function m has a single focal set, which is the one
in Fig. 3. There are three s-t paths with their lower and upper expected costs
indicated between parentheses: s-a-t : (2, 8) ; s-t : (2, 4); s-b-t : (4, 9). If α = 0,
the two optimal paths according to generalized Hurwicz criterion are s-a-t and
s-t with expected cost 2. If α = 0.5, s-t is the unique optimal path with expected
cost 3. We also have Optstr = {s-a-t, s-t, s-b-t} and Optweak = {s-t}.

3.3 Sizes of Optweak and Optstr

It is clear that if p ≺str q then p ≺weak q, and that the converse does not hold,
hence Optweak ⊆ Optstr. Example 4 showed that Optweak ⊂ Optstr in general.

The sets Optweak and Optstr can be huge so enumerating their elements can
be time-consuming. In fact, it is shown in [7, Theorem 1] that in the worst case,
the size of the set of efficient paths grows exponentially with |V |. Therefore, it is
useful to be able to know the size of these sets in advance, without enumerating
their elements explicitly. Proposition 5 is a first result in this direction:

Proposition 5. If d̄� and l̄ij in Proposition 3 are rational numbers, |Optstr|
(and thus an upper-bound of |Optweak|) can be computed in O(|V |2 × W ), with
W = d̄�×D where D is a common denominator of d̄� and of l̄ij, for all (i, j) ∈ A.

Proof. Hereafter, consider graph G with integer arc weights cij = l̄ij × D. It
is easy to show that |Optstr| is equal to the number of s-t paths in G whose
weights are lower than or equal to integer value W . Furthermore, let |V | = n
and assume, without loss of generality, that vertices are indexed by 0, . . . , n − 1,
with 0 and n − 1 the source and destination vertices, respectively. Denoting by
Nw(i) the number of paths in G from i to n − 1 whose weights are lower than
or equal to w, then we need to calculate NW (0) since it is equal to |Optstr|. We
have clearly, for all i ∈ {0, . . . , n − 2} and all w ∈ {1, . . . , W},

Nw(i) =
∑

j such that (i,j)∈A and cij≤w

Nw−cij (j), (29)

with N0(i) = 0 for all i ∈ {0, . . . , n−2} and Nw(n−1) = 1 for all w ∈ {0, . . . , W}.
Consider a (W + 1) × n 2-dimensional array M with each cell M [w][i], w ∈

{0, . . . , W}, i ∈ {0, . . . , n − 1}, storing Nw(i); by filling this array row-wise
starting with row w = 0, computing each row costs O(|V |2). This leads to the
desired complexity. ��
We note that given [9, Theorem 1] and the above proof, computing |Optstr| is
actually NP-hard. Nonetheless, in practice, W in Proposition 5 may not be too
big, so that computing |Optstr| may be quite fast.
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4 Conclusion

In this paper, we have considered the case where uncertainty about arc weights
in a graph is represented by a mass function. We have proposed extensions of
the notion of shortest path to this context, as the sets of non-dominated paths
according to the generalized Hurwicz, strong dominance, and weak dominance
criteria. We have shown that if the focal elements of the mass function are
Cartesian products of intervals, these sets can be found by applying algorithms
developed for variants of the deterministic SPP. Future works include considering
other criteria, such as maximality [2] or minimization of expected costs according
to Shenoy’s expectation operator [13].
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Abstract. Multi-source fusion is an efficient strategy in complex image
target recognition since it can exploit the complementary knowledge in
different sources to improve the classification performance. In this paper,
we propose a new end-to-end framework for heterogeneous (i.e. visi-
ble & infrared) image fusion target recognition (HIFTR). Firstly, two
networks are built for the visible and infrared images respectively and
jointly trained based on mutual learning. It aims to transfer heteroge-
neous information mutually and improve the generalization performance
of the networks. Secondly, a weighted decision-level fusion method based
on evidence reasoning is developed to combine the classification results
of visible and infrared images for the final target recognition. In the
training process, the weight of each image is automatically optimized
in the networks. Finally, the performance of the proposed HIFTR has
been evaluated by comparing with other related methods, and the exper-
imental results show that the HIFTR method can efficiently improve the
classification accuracy.

Keywords: Heterogeneous image fusion · Evidence reasoning ·
Mutual learning · Target recognition

1 Introduction

Multi-source fusion plays an important role in the complex image target recogni-
tion [4–6] since the given images from different sensors can provide more or less
complementary information thereby improving the classification performance.
Visible and infrared images are two kinds of important sources, and we usu-
ally consider that visible detectors are consistent with the human visual system,
which can provide high spatial resolution and clear texture details. However,
they are susceptible to interference from environmental factors such as illumi-
nation and weather. In contrast, infrared detectors can distinguish the target
from the background based on the difference in radiation and can work well
in all-weather and all-day/night conditions [9], while infrared images have low
resolution and a relatively blurred. The fusion of these two kinds of heteroge-
neous images tends to complement each other’s strengths and thus improve the
performance of target recognition.
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Deep learning techniques are widely used in image target recognition due to
the ability to extract features automatically [7,10,14]. In training, the supervi-
sion information usually comes from the true class of the target (i.e. hard labels),
while the information contained in hard labels is often insufficient. Interestingly,
the deep mutual learning (DML) strategy [15] provides an alternative since it
enables a cohort of networks to be trained simultaneously. In this case, each
network in the queue is supervised by the true labels and constrained by the
posterior probabilities provided by its peer networks. Posterior probability can
be regarded as a kind of soft label, which reflects the intra-class and inter-class
relationship of the images. Therefore, mutual learning using visible and infrared
heterogeneous images can improve the performance of the networks in case of
the insufficient prior information.

In this paper, we propose an end-to-end DML framework for heterogeneous
(i.e. visible & infrared) image fusion target recognition (HIFTR) based on evi-
dence reasoning [11] due to its advantage in dealing with uncertain informa-
tion in the decision-level fusion. The proposed HIFTR consists of two networks
for recognizing visible and infrared images. During training, pairs of visible and
infrared images are input to the two networks, and the DML strategy is exploited
to realize the mutual supervision between the networks. The classification results
output by different networks are combined by a weighted fusion method based
on evidence reasoning to make the final decision, in particular, where the opti-
mization of weights is performed automatically in the training process.

The rest of this paper is organized as follows. A brief recall of evidence rea-
soning is given in Sect. 2. Section 3 describes the details of our proposed method.
Section 4 presents a detailed experimental evaluation and discusses the perfor-
mance of the proposed method. Section 5 makes some conclusions about this
paper.

2 Brief Recall of Evidence Reasoning

Evidence reasoning is established under the discernment framework represented
by Ω = {ω1, . . . , ωn}. The power set of Ω is denoted as 2Ω , which contains
all the subsets of Ω . The basic belief assignment (BBA) of the discernment
framework, also known as the mass function, is a mapping function from 2Ω to
[0,1]. It satisfies the conditions expressed by

⎧
⎨

⎩

∑

A∈2Ω

m(A) = 1

m(∅) = 0
(1)

where A represents a focal element in 2Ω when m(A)> 0. In classification tasks,
if all focal elements of BBA are singleton classes, m(A) represents the probability
that the target belongs to A.

In image target recognition problem, each classification result can be consid-
ered as a piece of evidence denoted as a BBA. Dempster-Shafer (DS) rule [2] is
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widely exploited to combine multiple BBA’s due to its commutative and associa-
tive properties, which makes it relatively easy for implementation [8]. Assuming
that there are two BBA’s denoted as m1 and m2 (mi = mi(.)), and B,C ∈ 2Ω ,
the combination of m1 and m2 by DS rule is defined by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m(A) = m1 ⊕ m2

=
∑

B∩C=A m1(B)m2(C)
1 − ∑

B∩C=∅ m1(B)m2(C)
, A �= ∅

m(∅) = 0

(2)

where ⊕ represents DS rule. It is can be seen that DS rule is applicable only
when the conflicting mass

∑
B∩C=∅ m1(B)m2(C)<1.

When pieces of evidence have different reliabilities, the Shafer’s discounting
method [11] is used to reduce their weights in the fusion process. For a BBA
with the reliability denoted as α, the discounted BBA is given by

{
αm(A) = α · m(A), A �= Ω
αm(Ω) = 1 − α + α · m(Ω).

(3)

In Eq. (3), the mass values of all focal elements are proportionally redistributed
to the ignorant element Ω. By doing this, the influence of each evidence in the
fusion can be well controlled.

3 Heterogeneous Image Fusion for Target Recognition

In this section, we design an end-to-end framework for visible and infrared
image fusion target recognition. The architecture of our framework is shown
in Fig. 1. The whole model is divided into two streams, which are the visible
stream for recognizing visible images and the infrared stream for recognizing
infrared images. For convenience, the images input to the two streams are rep-
resented by XV IS = {x1

V IS , . . . , xN
V IS} and XIR = {x1

IR, . . . , xN
IR}, respectively.

The patterns in XV IS and XIR are paired, and N represents the number of
patterns. The label set is denoted as L = {ω1, . . . , ωK}, where K represents the
number of classes. The networks of the visible and infrared streams are denoted
as θV IS and θIR, respectively. Their predicted labels for XV IS and XIR are
written as YV IS = {y1

V IS , . . . , yN
V IS} and YIR = {y1

IR, . . . , yN
IR}. pV IS and pIR

are the probabilistic predictions for the target by θV IS and θIR. Moreover, the
probability that the pattern x belongs to class ωk is denoted as pk(x), where
k = 1, . . . , K. The networks θV IS and θIR are jointly trained, where pV IS and
pIR are used as the additional information to supervise θIR and θV IS.. Then,
two classification results (i.e. probabilistic predictions) for the target can be
obtained by θV IS and θIR. Finally, the discounted results with proper weights
are combined by DS rule to get the final classification result. The weights for
visible and infrared images are obtained by minimizing an error criterion.
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Fig. 1. The architecture of the proposed framework.

3.1 Mutual Learning of the Networks for Heterogeneous Images

The information in heterogeneous images can be transferred to each other
through the mutual learning of the networks. This strategy is beneficial to get
more robust classification results. When training the networks with the deep
mutual learning strategy, the loss of each network consists of two parts. One
is the gap between the predicted values and the true values, and the other is
the gap between the predicted values from different sources. The following will
describe how to calculate the loss using the visible stream as an example.

In multi-classification tasks, the cross-entropy loss is usually utilized as the
objective function to evaluate the difference between the predicted values and
the true values, so it is applied as the traditional supervised loss of the networks
in this work. The cross-entropy loss of θV IS denoted as LCV IS

is calculated by

LCV IS
= −

N∑

n=1

K∑

k=1

I(yn
V IS , ωk)log(pk(xn

V IS)) (4)

where xn
V IS represents the nth pattern in XV IS and pk(xn

V IS) denotes the prob-
ability that the xn

V IS belongs to class ωk. yn
V IS represents the predicted label for

xn
V IS by θV IS . The indicator function I in Eq. (4) is defined by

I(yn
V IS , ωk) =

{
1, yn

V IS = ωk

0, yn
V IS �= ωk.

(5)

The purpose of the mutual learning between θV IS and θIR is to exploit the
posterior probabilities of the peer networks for extra supervision information. It
aims to make the distributions of pV IS and pIR as similar as possible. Kullback-
Leible Divergence (KLD) can evaluate the difference between two distributions,
so it is used here to measure the gap between the pV IS and pIR. For the visible
stream, the KLD between pV IS and pIR is represented as DKL(pIR ‖ pV IS),
which is given by
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DKL(pIR ‖ pV IS) =
N∑

n=1

K∑

k=1

pk(xn
IR)log

pk(xn
V IS)

pk(xn
IR)

(6)

where xn
IR represents the nth pattern in XIR and pk(xn

IR) denotes the probability
that the xn

IR belongs to class ωk. Here, xn
V IS and xn

IR are paired. DKL(pIR ‖
pV IS) will be close to zero when pV IS and pIR are very similar.

The loss of the visible stream is the sum of the LCV IS
and DKL(pIR ‖ pV IS),

which can be expressed by

LθV IS
= LCV IS

+ DKL(pV IS ‖ pIR). (7)

Similarly, the loss of the infrared stream can be written as

LθIR
= LCIR

+ DKL(pIR ‖ pV IS). (8)

Two classification results about one target can be obtained with θV IS and
θIR. The next step to consider is how to combine them efficiently to improve the
classification performance, and it is represented in the next subsection.

3.2 Weighted Fusion of Multiple Classification Results

In this subsection, evidence reasoning is used to combine the classification results
of θV IS and θIR. Moreover, each result will be weighted according to its reliabil-
ity. The classification results of θV IS and θIR can be regarded as BBAs, and DS
rule is used to combine them. Because the reliability of different sources varies,
it is necessary to assign a weight to each classification result for a good fusion
result. The weights for visible and infrared images can be represented by a vector
(α, β). The process of fusion is denoted as

pn = αpn
V IS ⊕ βpn

IR (9)

where pn represents the fusion result obtained by combining the classification
results of the nth patterns in XV IS and XIR. The class with the highest probabil-
ity in pn is the label predicted by the model. pn

V IS and pn
IR are the probabilistic

outputs of the peer networks θV IS and θIR for the nth training patterns in XV IS

and XIR.
The optimal weights should make the fusion results as close as possible to

the true values, so (α, β) can be estimated by minimizing the distances between
the fusion results and the ground truth of the training patterns, as shown in

{α, β} = arg min
α,β

N∑

n=1

|| αpn
V IS ⊕ βpn

IR − tn||2 (10)

where ||.||2 represents the Euclidean distance. Note that the images in XV IS

and XIR are paired, so pn
V IS and pn

IR are predictions for the same target. tn

denotes the ground-truth vector of the nth target, written as a one-hot vector
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tn = (tn1, tn2, . . . , tnk). If the true label of the target is ωi, the value of the ith
element in tn = (tn1, tn2, . . . , tnk) is equal to 1, and the values of the remaining
elements are 0. The optimal α and β can be obtained when the distance is
minimized. Moreover, the values of the weights satisfy α ∈ [0, 1] and β ∈ [0, 1].
The optimization process shown in Eq. (10) is a classical constrained least squares
problem. Here, the sequential least squares programming (SLSQP) optimization
algorithm is used to optimize the weights.

The ultimate goal of the proposed method is to make the final classification
result as accurate as possible, so the gap between the fusion results and the
ground truth of the patterns should be taken into account. To this end, a fusion
loss LF is additionally applied to train the model. The cross-entropy loss is also
utilized here to calculate LF , and it is given by

LF = −
N∑

n=1

K∑

k=1

I(yn, ωk)log(pk(xn)) (11)

where xn represents the target corresponding to the nth pair of visible and
infrared images. yn is the predicted label obtained by pn in Eq. (9). pk(xn)
denotes the probability that the target belongs to class ωk. I(yn, ωk) is an indi-
cator function, which has the similar form as Eq. (5).

The total losses of the visible and infrared streams are denoted as LθV IS
and

LθIR
, calculated by

{
LθV IS

= LCV IS
+ DKL(pV IS ‖ pIR) + LF

LθIR
= LCIR

+ DKL(pIR ‖ pV IS) + LF .
(12)

4 Experiment

4.1 Datasets and Preprocessing

We apply our method on ship image classification and scene image classification
to valid the efficiency and performance. Both the VAIS ship image dataset [13]
and the RGB-NIR scene image dataset [1] contain paired visible and infrared
images. The specific division of two kinds of images is shown in Table 1 and
Table 2. The nighttime test set in Table 1 contains only infrared images. We use
bilateral interpolation to resize the images to 224 × 224 pixels before feeding
them into the model. Because the infrared image is a single-channel image, we
replicate the single channel three times to obtain a pseudo RGB image.
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Table 1. The division of each class in the VAIS ship dataset

No. Class Train Test

Daytime Nighttime

0 Cargo 83 63 34

1 Medium-other 62 76 14

2 Passenger 58 59 12

3 Sailing 148 136 15

4 Small 158 195 30

5 Tug 30 20 49

Table 2. The division of each class in the RGB-NIR scene dataset

No Class Train Test

0 Country 41 11

1 Field 40 11

2 Forest 42 11

3 Indoor 45 11

4 Mountain 44 11

5 Old building 40 11

6 Street 39 11

7 Urban 47 11

8 Water 40 11

4.2 Experimental Environment and Parameter Settings

The hardware environment includes Intel(R) Xeon(R) Silver4210R CPU@
2.40GHz processor and NVIDIA GeForce GTX 3080Ti GPU. All the experiments
were performed on Pytorch framework. Stochastic Gradient Descent(SGD) is
used as the optimization method. The learning rate, batch size and momentum
parameter are set to 0.001, 16 and 0.92. For the VAIS ship dataset and the RGB-
NIR scene dataset, the epoch is set to 70 and 30. Pre-trained VGG16 [12] and
ResNet50 [3] are utilized as the backbone of the model, respectively. We repeat
the experiment 5 times and the average accuracy is reported.

4.3 Effectiveness of the Mutual Learning of Heterogeneous Images

To demonstrate the information can be transferred using the mutual learning
strategy, we train the model with paired visible and infrared images in the VAIS
ship dataset and use the images in the test set to verify the performance. The
fusion loss LF is not added to the training loss in this part of the experiments.
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Table 3. Comparison of classification accuracy of infrared and visible images before
and after using the mutual learning strategy (in %)

Method Infrared images Visible images

Daytime Nighttime All-day

VGG16 69.47± 1.13 66.62± 1.18 68.43± 0.26 87.47± 0.47

VGG16 (ML) 70.27±2.73 68.05±2.27 69.79±2.53 87.76±1.65

ResNet50 72.93± 1.18 53.90± 4.00 68.76± 1.40 85.28± 1.25

ResNet50 (ML) 72.93± 1.08 57.14±2.72 69.47±0.76 86.01±0.69

In Table 3, VGG16 and ResNet50 represent fine-tuning of models pre-trained
on ImageNet. We use VGG16 (ML) and ResNet50 (ML) to denote models based
on VGG16 and ResNet50 using mutual learning strategy, respectively. VGG16
(ML) and ResNet50 (ML) also involve fine-tuning of the VGG16 and ResNet50.
We can see from the table that the classification accuracy of VGG16 (ML) and
ResNet50 (ML) is higher than that of VGG16 and ResNet50. Moreover, it is
worth noting that there are no nighttime images in the training patterns, but
the classification accuracy of nighttime infrared images is still improved. The
experimental results show that the mutual learning of heterogeneous images
plays a positive role in the training process.

4.4 Results and Analysis

For the VAIS ship dataset, we choose 7 methods for comparison. VGG16-IR,
VGG16-VIS, ResNet50-IR and ResNet50-VIS represent the classification results
of infrared and visible images obtained by fine-tuned VGG16 and ResNet50.
Pixel-level average method fuses the two images before they are fed into the
network, and it only needs to optimize a single network. We utilize VGG16
and ResNet50 to classify fused images, respectively. CNN+Gnostic Fields is the
baseline of this dataset and is a decision-level fusion method. As shown in Table 4,
it is difficult to obtain relatively good classification results with a single source.
The poor quality of infrared images leads to low classification accuracy. Fusion
of heterogeneous images is a good way to improve accuracy. The HIFTR method
based on VGG16 achieves highest classification accuracy, indicating that the new
method can effectively improve the classification performance.

For the RGB-NIR scene dataset, we select 7 methods for comparison.
VGG16-IR, VGG16-VIS, ResNet50-IR, ResNet50-VIS, Pixel-level average and
the HIFTR method all utilize deep neural networks to automatically learn fea-
tures. MSIFT (PCA) [1] learns features manually and it is the baseline of this
dataset. As shown in Table 4, methods utilizing deep neural networks outper-
form the methods that extract features manually, which indicates that deep
neural networks have strong feature extraction ability to produce good results.
Moreover, the HIFTR method based on ResNet50 outperforms the comparative
methods, reflecting its effectiveness and superiority.
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Table 4. Classification accuracy of VAIS ship dataset and RGB-NIR scene dataset
using different methods (in %)

Method VAIS ship dataset RGB-NIR scene dataset

ResNet50-IR 72.93 84.65

ResNet50-VIS 85.28 89.50

VGG16-IR 69.47 84.44

VGG16-VIS 87.47 88.49

Pixel-level average (ResNet50) 85.65 88.69

Pixel-level average (VGG16) 87.36 88.08

CNN+Gnostic Fields 87.4 –

MSIFT (PCA) – 73.1

HIFTR (ResNet50) 89.22 90.51

HIFTR (VGG16) 90.09 89.09

5 Conclusion

In this paper, an end-to-end framework for heterogeneous (i.e.visible & infrared)
image fusion target recognition is proposed. The heterogeneous information is
transferred between the networks using the mutual learning strategy, so that
the generalization performance of the networks is enhanced. The classification
results of visible and infrared images are combined by DS rule using the opti-
mal weights for a more accurate result. The experimental results show that our
HIFTR method is able to improve classification accuracy comparing with other
related method. In the future work, we will deal with a more severe case where
patterns of some classes in different sources are missing.
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Abstract. Two algorithms for the body of evidence clustering are devel-
oped and studied in this paper. The first algorithm is based on the use
of the distribution density function of conflicting focal elements of the
body of evidence. The second algorithm is similar to the k-means algo-
rithm, but it uses the external conflict measure instead of the metric. It
is shown that cluster decomposition can be used to evaluate the internal
conflict of the body of evidence.

Keywords: Body of evidence · Measure of conflict · Decomposition of
evidence

1 Introduction

The body of evidence may have a complex structure in applied problems of the
theory of belief functions. For example, it may consist of many focal elements
with a complex intersection structure. Such evidence is difficult to interpret. In
addition, since many of the operations of the theory of belief functions (for exam-
ple, combined rules) are computationally difficult, applying these operations to
evidence bodies with many focal elements also becomes computationally difficult.

Therefore, the following tasks are relevant: 1) analysis of the structure of
the set of focal elements A of the body of evidence F = (A,m) (m is the mass
function); 2) finding an enlarged (simplified) structure of the set of focal elements
˜A; 3) redistribution of masses of focal elements of the set A to focal elements
from ˜A. As a result, we obtain a new mass function m̃, etc.

The paper proposes to solve these problems based on the clustering of a set
of focal elements. We suggest that the complex structure of the body of evidence
may be the result of aggregation of heterogeneous information. This information,
which is obtained from various sources, may be contradictory (conflict). There-
fore, the general approach to clustering the body of evidence can be as follows.
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The inconsistency should be minimal within clusters and maximal between clus-
ters in the resulting partition into clusters of the original set of focal elements.
This approach is similar to the compactness principle in cluster analysis. Dis-
tances should be minimal between elements of the same cluster and maximal
between clusters. But in this article, we will use the measure of external conflict
(contradiction) between evidence bodies [8] as a proximity functional between
clusters instead of a metric, and/or the measure of internal conflict of evidence
bodies [9] as the proximity functional of focal elements within a cluster.

The idea of approximating the body of evidence F by a simpler body of
evidence ˜F using hierarchical clustering of focal elements was proposed in [6,10]
and developed in [5]. Clustering was carried out by union and intersection of
‘close’ focal elements and summing their masses. A clustering algorithm based
on the concept of conflict density was proposed in [2].

In the general case, we get a partition (or coverage) {A1, . . . ,Al} of the set
of focal elements A as a result of its clustering, which can be associated with
the set of bodies of evidence {F1, ..., Fl}, where Fi = (Ai,mi), i = 1, ..., l.

In addition to revealing the structure and simplifying the body of evi-
dence, clustering can be used to evaluate the internal conflict Conin(F ) of the
original body of evidence F = (A,m) according to the formula Conin(F ) =
Con(F1, ..., Fl), where Con is a measure of external conflict.

Two algorithms for clustering the body of evidence are proposed in the article.
The first algorithm is based on the use of the conflict distribution density func-
tion. The second algorithm is analogous to the k-means algorithm, but instead
of a metric, a measure of external conflict is used.

2 Basic Concepts of the Evidence Theory

Let us briefly recall the basic concepts of evidence theory [4,12]. Let X be a
finite set, 2X be the set of all subsets on X. A body of evidence on the set X
is a pair F = (A,m), where A is a set of non-empty subsets (focal elements)
from the X, m : 2X → [0, 1] is a mass function that satisfies the conditions:
m(A) > 0 ⇔ A ∈ A,

∑

A m(A) = 1. Let F(X) be the set of all bodies of
evidence on the X.

Special cases of bodies of evidence are categorical evidence FA = ({A}, 1),
vacuous evidence FX = ({X}, 1), simple evidence Fα

A = αFA + (1 − α)FX ,
α ∈ [0, 1]. An arbitrary body of evidence F = (A,m) can be represented in the
form F =

∑

A∈A m(A)FA.
Some set functions are associated with the body of evidence F = (A,m):

belief function Bel(A) =
∑

B⊆A m(B), plausibility function Pl(A) = 1 −
Bel(¬A) =

∑

A∩B �=∅ m(B), etc. These functions uniquely define the entire body
of evidence.

Inconsistency (conflict) is an important joint characteristic of two or more
bodies of evidence. The external conflict of two evidence bodies F1 = (A1,m1)
and F2 = (A2,m2) is some measure Con(F1, F2) : F(X) × F(X) → [0, 1],
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which takes on a greater value in the case of the existence of a large num-
ber of pairs (A,B) with large masses of non-overlapping focal elements of
two bodies of evidence: A ∈ A1, B ∈ A2, A ∩ B = ∅. An overview of
articles on external conflict measures can be found in [8]. Below we will use
the canonical measure of external conflict associated with the Dempster rule:
Con(F1, F2) =

∑

A∩B=∅ m1(A)m2(B).
Along with the measure of external conflict between several bodies of evi-

dence, the inconsistency of information provided by one body of evidence is also
considered. An evidence body that results from combining multiple bodies of
conflicting evidence bodies can have a large internal conflict. The inconsistency
of the body of evidence F = (A,m) is evaluated using some internal conflict
measure Conin(F ) : F(X) → [0, 1] [9].

3 Evidence Clustering

3.1 Restriction and Extension of the Mass Function

Let F = (A,m) be the body of evidence, where A is the set of focal elements of
this evidence. Let’s consider some subset A′ ⊆ A. The set function m′ : 2X →
[0, 1], m′(A) = m(A) ∀ A ∈ A′ and m′(A) = 0 ∀ A /∈ A′ is called the restriction
of the mass function m to the set A′ ⊆ A.

In the general case, the mass function m′ does not satisfy the normalization
condition

∑

A m′(A) = 1. Therefore, the pair (A′,m′) does not define any body
of evidence. It is necessary to extend the set function m′ to the mass function
m̃′ so that this extension reflects the distribution of the m′.

This can be done in many ways. Examples of some extensions:

1) proportional extension: m̃′(A) = m′(A)
/
∑

B∈A′ m′(B) ∀A ∈ A′.
2) vacuous extension: m̃′(A) = m′(A), m̃′(X) = m′(X) + 1 − ∑

B∈A′ m′(B).

Note that various extensions of the set function to the mass function of some
body of evidence are used in the combination rules. For example, proportional
extension is used in Dempster’s rule [4], and inconsistent continuation is used in
Yager’s rule [13].

If a certain rule for the extension of the mass function is fixed, then the new
body of evidence F ′ = (A′, m̃′) will be uniquely determined by the original body
of evidence F = (A,m) by the set A′ ⊆ A. Therefore, such a body of evidence
will be denoted as F (A′) = (A′, m̃′).

In particular, if the vacuous extension is used, then the body of evidence
F ({A}) = F

m(A)
A = m(A)FA + (1 − m(A))FX will be simple for any set A ∈ A.

3.2 Statement of the Problem of Clustering the Body of Evidence
Based on Conflict Optimization

Various formulations of the clustering problem are possible. Let’s note some of
them. Suppose we have a body of evidence F = (A,m). It is required to find a
partition of the set of all focal elements A into subsets {A1, . . . ,Al} such that:
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1) maximize external conflict between bodies of evidence (clusters):
Con(F (A1), . . . , F (Al)) → max, where Con is a measure of external conflict;

2) minimize total internal conflict within clusters
∑l

i=1 Conin(F (Ai)) → min, where Conin is a measure of internal conflict;
3) minimize the overall conflict between the centers of clusters and the bodies

of evidence formed by the focal elements of these clusters
∑l

i=1

∑

B∈Ai
Con (F ({B}), Ci) → min, where Ci is the reference body of

evidence corresponding to the i-th cluster, i = 1, ..., l.

In a more general setting, it is required to find a covering of the set of focal
elements A instead of a partition.

3.3 Cluster Decomposition of Evidence Based on the Conflict
Density Function

Density Function. The concept of conflict density was introduced in [2]. Let
F = (A,m) be the body of evidence. A mapping ψF : 2X → [0, 1] is called a
conflict density function of the body of evidence F if it satisfies the following
conditions:

1) ψF (A) = 0, if B ∩ A 	= ∅ ∀B ∈ A;
2) ψF (A) = 1, if B ∩ A = ∅ ∀B ∈ A;
3) ψαF1+βF2 = αψF1 + βψF2 ∀F1, F2 ∈ F(X), where α + β = 1, α ≥ 0, β ≥ 0.

It is easy to show [2] that a set function satisfying conditions 1)–3) is equal to
ψF (A) =

∑

B:A∩B=∅ m(B) = 1 − Pl(A). Note that the function was considered
in [11] and was called the inconsistency function.

The main idea of the clustering algorithm for a set of focal elements A based
on the conflict density function is that the ‘centers’ of the clusters should have
a large value of the conflict density function.

We will use the function ϕF (A) = m(A)ψF (A), A ∈ A instead of the density
function ψF itself. The function ϕF will take on large values for those focal
elements that have not only a high density, but also a large mass.

Algorithm for Cluster Decomposition of Evidence Based on Conflict
Density Functions. This algorithm will consist of the following steps.

Algorithm 1

1. Let’s calculate the values of the set function ϕF (A), A ∈ A. If we have
ϕF (A) = 0 for all A ∈ A, then we stop the algorithm. In this case, we have
non-conflict body of evidence A: B ∩ A 	= ∅ ∀A,B ∈ A. Therefore, there will
be no clustering.

2. If there are A ∈ A for which ϕF (A) > 0, then we arrange such focal elements
in descending order of function values ϕF : ϕF (A1) ≥ ϕF (A2) ≥ .... We choose
the number of clusters l by analyzing the rate of decrease of the sequence
{ϕF (Ai)}. Selected focal elements will be initial clusters: A(0)

i = {Ai}, i =
1, ..., l.
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3. The remaining focal elements are redistributed among clusters A(0)
1 , ...,A(0)

l

according to the principle of maximizing the conflict between evidence clus-
ters. We will assign a focal element B ∈ A\

{

A(0)
1 , ...,A(0)

l

}

to the cluster

A(0)
i for which the maximum conflict measure is reached:

A(0)
i = arg max

j:B∈A(0)
j

Con
(

F
(

A(0)
1

)

, ..., F
(

A(0)
j ∪ {B}

)

, ..., F
(

A(0)
l

))

.

If equal maximum values of the conflict are obtained by assigning B to several
clusters A(0)

j , j ∈ J , then we include B in all these clusters, and the mass value
m(B) is evenly distributed among the updated clusters. In this case, B will be
included in each cluster with weight m(B)/|J |. As a result, we obtain a coverage
{A1, . . . ,Al} of the set of all focal elements A. The values of the mass function
mi on the Ai, i = 1, ..., l are calculated using the given restriction and extension
procedures.

Example 1. Let we have X = {1, 2, 3} and the body of evidence F = 0.3F{1} +
0.2F{2} + 0.3F{1,3} + 0.2F{2,3} is given on X, i.e. A = {{1}, {2}, {1, 3}, {2, 3}}.

Step 1. Find the values of the function ϕF : ϕF ({1}) = ϕF ({2}) = 0.12,
ϕF ({1, 3}, {2, 3}) = 0.06.

Step 2. Let us assign the number of clusters l = 2 and A(0)
1 = {{1}}, A(0)

2 =
{{2}}.

Step 3. Let’s distribute the remaining two focal elements among clusters.
We have for B = {1, 3}. If B ∈ A1, then F

(

{B} ∪ A(0)
1

)

=

0.3F{1} + 0.3F{1,3} + 0.4FX , F
(

A(0)
2

)

= 0.2F{2} + 0.8FX . Consequently

Con
(

F
(

{B} ∪ A(0)
1

)

, F
(

A(0)
2

))

= 0.12. But if B ∈ A2, then F
(

A(0)
1

)

=

0.3F{1} + 0.7FX , F
(

{B} ∪ A(0)
2

)

= 0.2F{2} + 0.3F{1,3} + 0.5FX and

Con
(

F
(

A(0)
1

)

, F
(

{B} ∪ A(0)
2

))

= 0.06. Thus, we assign B = {1, 3} to the
cluster A1.

We have for focal element B = {2, 3}. If B ∈ A1, then
F

(

{B} ∪ A(0)
1

)

= 0.3F{1} + 0.2F{2,3} + 0.5FX , F
(

A(0)
2

)

= 0.2F{2} +

0.8FX and Con
(

F
(

{B} ∪ A(0)
1

)

, F
(

A(0)
2

))

= 0.06. But if B ∈ A2, then

F
(

A(0)
1

)

= 0.3F{1} + 0.7FX , F
(

{B} ∪ A(0)
2

)

= 0.2F{2} + 0.2F{2,3} + 0.6FX

and Con
(

F
(

A(0)
1

)

, F
(

{B} ∪ A(0)
2

))

= 0.12. Thus, we assign B = {2, 3} to
the cluster A2 and we get the final focal element clustering A1 = {{1}, {1, 3}},
A2 = {{2}, {2, 3}}.

Remark 1. The distance between the selected focal elements can also be con-
sidered at step 2 of the algorithm in addition to calculating the conflict den-
sity (function ϕF ), as was done in [2]. In this case, the focal elements are
selected in descending order of the function ϕF . If A′ is a set of already selected
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focal elements, then the next element Ak is added to this set, provided that
minA∈A′ d(F ({A}), F ({Ak})) > h, where d is some metric on the set of evidence
bodies [7], h is the threshold value.

3.4 The k-Means Algorithm for the Body of Evidence

Let F = (A,m) be the body of evidence. It is required to find such a coverage of
the set of all focal elements A by subsets (clusters) C = {A1, . . . ,Al} that would
minimize intracluster conflict. We will use the concept of center of a set (cluster)
of focal elements by analogy with the classical k-means algorithm. By the center
of the i-th cluster Ai, we mean some body of evidence Ci constructed from
the pair (Ai,mi), where mi is the restriction of the mass function to Ai ⊆ A,
i = 1, . . . , l. We will consider the total conflict between the centers of clusters
and the bodies of evidence generated by the focal elements of these clusters as
a minimized functional by analogy with the k-means algorithm:

Φ =
l

∑

i=1

∑

B∈Ai

Con (F ({B}), Ci), (1)

where F ({B}) is the evidence generated from the set {B} using the restric-
tion and extension procedures (see Subsect. 3.1). In particular, if the vacuous
extension is chosen, then F ({B}) = m(B)FB + (1 − m(B))FX .

In this algorithm, the number of evidence bodies l into which the evidence
body F = (A,m) is decomposed will be considered predetermined (it is deter-
mined from some other heuristic considerations). Also, the method of extension
the mass function will be considered predetermined.

Let us assume that the covering C = {A1, . . . ,Al} is fixed and the center of
the i-th cluster has the form

Ci =
∑

A∈Ai

αi(A)FA, (2)

where αi = (αi(A))A∈Ai
∈ S|Ai|, Sk =

{

(t1, ..., tk) : ti ≥ 0, i= 1, ..., k,
∑k

i=1 ti = 1
}

is the k-dimensional simplex. Then we have for the vacuous extension

Φ =
l

∑

i=1

∑

B∈Ai

Con (F ({B}), Ci) =
l

∑

i=1

∑

B∈Ai

m(B)
∑

A∈Ai:
A∩B=∅

αi(A)

=
l

∑

i=1

∑

B∈Ai

m(B)

⎛

⎜

⎜

⎝

1 −
∑

A∈Ai:
A∩B �=∅

αi(A)

⎞

⎟

⎟

⎠

= kC −
l

∑

i=1

Qi(αi),

where kC =
∑l

i=1

∑

B∈Ai
m(B) ≥ 1 (kC = 1 ⇔ C = {A1, . . . ,Al} is the partition

of the set of focal elements), Qi(αi) =
∑

A∈Ai
αi(A)PlAi

(A) and PlAi
(A) =
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∑

B∈Ai:
A∩B �=∅

m(B) is the restriction of the plausibility function to the set Ai. The

minimum of the functional Φ for a fixed coverage C = {A1, . . . ,Al} will be
achieved when the linear functions Qi(αi) reach maxima on the simplices S|Ai|,
i = 1, . . . , l. But

max
α∈S|Ai|

Qi(α) = max
A∈Ai

PlAi
(A), i = 1, . . . , l.

Let Ai =
{

A ∈ Ai : A = arg max
A∈Ai

PlAi
(A)

}

. If

Ci =
∑

A∈Ai

αi(A)FA, αi = (αi(A))A∈Ai
∈ S|Ai|, i = 1, . . . , l, (3)

then the functional Φ will reach a minimum in the case of a fixed coverage
C = {A1, . . . ,Al} with such a choice of cluster centers. This minimum will be

min Φ = kC −
l

∑

i=1

max
A∈Ai

PlAi
(A) (4)

and does not depend on the choice of parameters αi = (αi(A))A∈Ai
∈ S|Ai|,

i = 1, . . . , l.
Then the evidence body clustering algorithm, by analogy with the classical

k-means algorithm, will be as follows.

Algorithm 2

1. Let’s choose and fix the number of clusters l. Let’s assign some evidence bodies
as initial cluster centers C

(0)
i , i = 1, ..., l. We fix the threshold of maximum

conflict within clusters Conmax ∈ [0, 1]. We install s = 0.
2. We redistribute focal elements among clusters according to the princi-

ple of minimizing the conflict between evidence clusters and cluster cen-
ters. The focal element B ∈ A is assigned to the cluster A(s)

i =

arg minjCon
(

F ({B}), C(s)
j

)

and miniCon
(

F ({B}), C(s)
i

)

≤ Conmax. If

miniCon
(

F ({B}), C(s)
i

)

> Conmax, then the focal element B is assigned

as the center of the new cluster. As a result, we get clusters A(s)
i , i = 1, ..., l.

3. Let us calculate new cluster centers using the formula. We increase the counter
s ← s + 1.

4. Steps 2 and 3 are repeated until the clusters (or their centers) stabilize.

Proposition 1. Algorithm2 converges in a finite number of steps.

The proof follows from the fact that the functional Φ does not increase at
the 2nd and 3rd steps of the algorithm and we have a finite number of possible
configurations.
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Remark 2. Evidence bodies C
(0)
i = FAi

, i = 1, ..., l can be chosen as the initial
centers of clusters at the 1st step of the algorithm, where focal elements Ai,
i = 1, ..., l are chosen arbitrarily or, for example, using the density maximization
algorithm.

Remark 3. Cluster centers may depend on parameters α = (α(A))A∈Ai
∈ S|Ai|

(see formula (3)). In this case, it is necessary to use additional procedures for
choosing parameters at the 2nd or 3rd steps of the algorithm. The selection
criteria can be considered, for example:

1) coverage minimization, i.e., we choose the parameters at the 2nd step of the
algorithm so that the coverage C = {A1, . . . ,Al} is ‘closer’ to the partition.
For example,

∑l
i=1 |Ai| → min.

2) minimizing the uncertainty of evidence-centers of clusters Ci, i = 1, ..., l.
This procedure is applied at the 3rd step of the algorithm. The uncertainty of
evidence can be assessed using one of the imprecision indices [1]. For example,
it can be the generalized Hartley measure H(Ci) =

∑

A∈Ai
αi(A) ln |A|.

3) minimizing the distance between cluster centers and the original evidence
body with respect to some metric between evidence bodies [7]: d(Ci, F ) →
min, i = 1, ..., l;

4) maximizing distance between cluster centers d(Ci, Cj) → max or maximizing
conflict Con(Ci, Cj) → max, i, j = 1, ..., l (i 	= j) etc.

Remark 4. One way to evaluate the internal conflict [9] of a body of evidence F
on the X is based on finding the maximum of the contour function [3]: Con(F ) =
1 − maxx∈XPl(x). Then formula (4) can be interpreted as a total intra-cluster
internal conflict.

Remark 5. It is possible to search for cluster centers Ci, i = 1, ..., l in the
form (2), minimizing the functional (1) with a fixed coverage C = {A1, . . . ,Al}
and under the condition that uncertainties of cluster centers Ci are bounded:

H(Ci) =
∑

A∈Ai

αi(A) ln |A| ≤ ui, i = 1, ..., l,

where ui, i = 1, ..., l are some threshold values. Then the problem of minimizing
the functional (1) for a fixed coverage C = {A1, . . . ,Al} is reduced to solving l
linear programming problems:

∑

A∈Ai

αi(A)PlAi
(A) → max

subject to αi = (αi(A))A∈Ai
∈ S|Ai|,

∑

A∈Ai

αi(A) ln |A| ≤ ui, i = 1, ..., l.

Example 2. Algorithm 2 will give the following result of clustering the body of
evidence from Example 1 (X = {1, 2, 3}, F = 0.3F{1} + 0.2F{2} + 0.3F{1,3} +
0.2F{2,3} into two clusters and the vacuous extension.
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Step 1. We have l = 2. Let the initial centers of the clusters be equal to
C

(0)
1 = F{1}, C

(0)
2 = F{2}; s = 0.

Step 2. We have Con
(

F ({1}), C(0)
1

)

= Con
(

F ({1, 3}), C(0)
1

)

= 0,

Con
(

F ({2}), C(0)
1

)

= Con
(

F ({2, 3}), C(0)
1

)

= 0.2,

Con
(

F ({1}), C(0)
2

)

= Con
(

F ({1, 3}), C(0)
2

)

= 0.3, Con
(

F ({2}), C(0)
2

)

=

Con
(

F ({2, 3}), C(0)
2

)

= 0 (for example, Con
(

F ({1, 3}), C(0)
2

)

=

Con
(

0.3F{1,3} + 0.7FX , F{2}
)

= 0.3).
Therefore, according to the principle of minimizing the conflict between

evidence clusters and cluster centers, the initial clustering will have the form
A(0)

1 = {{1}, {1, 3}}, A(0)
2 = {{2}, {2, 3}}.

Step 3. Let us calculate the new cluster centers using the formula (3):
PlA(0)

1
({1}) = 0.3 + 0.3 = 0.6, PlA(0)

1
({1, 3}) = 0.3 + 0.3 = 0.6, PlA(0)

2
({2}) =

0.2 + 0.2 = 0.4, PlA(0)
2

({2, 3}) = 0.2 + 0.2 = 0.4.

Therefore C
(1)
1 = αF{1} + (1 − α)F{1,3} and C

(1)
2 = βF{2} + (1 − β)F{2,3},

α, β ∈ [0, 1].
If we require the minimization of the generalized Hartley measure (see

Remark 2), we get C
(1)
1 = arg min

0≤α≤1
H

(

αF{1} + (1 − α)F{1,3}
)

= F{1}, C
(1)
2 =

arg min
0≤β≤1

H
(

βF{2} + (1 − β)F{2,3}
)

= F{2} and the algorithm will stop its work,

since the centers of the clusters have not changed. If, however, we apply the
coverage minimization rule (see Remark 3), we move on to the next step.

Step 4. We redistribute focal elements according to the criterion of least
conflict with new centers:

Con
(

F ({1}), C(1)
1

)

= Con
(

F ({1, 3}), C(1)
1

)

= 0, Con
(

F ({2}), C(1)
1

)

=
0.2,

Con
(

F ({2, 3}), C(1)
1

)

= 0.2α, Con
(

F ({1}), C(1)
2

)

= 0.3,

Con
(

F ({1, 3}), C(1)
2

)

= 0.3β, Con
(

F ({2}), C(1)
2

)

= Con
(

F ({2, 3}), C(1)
2

)

= 0.
We will get clusters A(1)

1 = {{1}, {1, 3}}, A(1)
2 = {{2}, {2, 3}} after applying

the coverage minimization rule (see Remark 3). Clusters have stabilized. Stop of
the algorithm.

As a result, we get, in fact, a new body of evidence defined on the base set
A, the found coverage sets (clusters) C = {A1, . . . ,Al} will be focal elements,
the mass function will be equal to m(Ai) =

∑

B∈Ai
m(B)/n(B), where n(B) =

|{Ai : B ∈ Ai}| (the number of clusters containing the set B). Such a body of
evidence can be considered second-order evidence, which reflects the enlarged
structure of the original evidence.
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4 Evaluation of the Internal Conflict of the Body
of Evidence Based on Its Clustering

Let us assume that in one way or another, a cluster coverage C = {A1, . . . ,Al}
(in a particular case, partitioning) of the body of evidence F = (A,m) is
obtained. Then we can offer the following ways to evaluate the internal con-
flict of this body of evidence using some measure of external conflict Con:

1) Con1(F ) = Con(F (A1), . . . , F (Al));
2) Con2(F ) = Con(C1, . . . , Cl), where C1, . . . , Cl are centers of clusters

A1, . . . ,Al respectively.

For example, we will obtain the following estimates of the internal conflict for
the body of evidence considered in Example 2, the vacuous extension, and
the canonical measure of the external conflict. We have A1 = {{1}, {1, 3}},
A2 = {{2}, {2, 3}} and Con1(F ) = Con(F (A1), F (A2)) = 0.18, Con2(F ) =
Con(C1, C2) = α + (1 − α)β, α, β ∈ [0, 1].

Proposition 2. The following equality is true

Con1(F ) = Con(F (A1), . . . , F (Al)) =
∑

A1∈A1,...,Al∈Al

Con(F ({A1}), . . . , F ({Al})).

5 Conclusion

Two methods of evidence body clustering are discussed in this paper. Each of
these methods assumes that weakly conflicting focal elements should belong to
one cluster, and strongly conflicting focal elements should belong to different
clusters. This requirement is similar to the basic principle of compactness in
cluster analysis: the distances between elements of one cluster should be minimal,
and between clusters should be maximum.

The first algorithm is based on the use of the distribution density function of
conflicting focal elements. The second algorithm implements the idea of the k-
means method. In this case, the cluster centers are formed in some optimal way.
Further, focal elements are redistributed according to the principle of minimizing
conflict with cluster centers.

It shows how clustering can be used to evaluate the internal conflict of a
body of evidence.
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Abstract. Intelligent Vehicles can exchange their perception informa-
tion using wireless technology in a cooperative and decentralized manner.
This has the potential to extend the range of perception and thus improve
anticipation for complex driving maneuvers and decision making. How-
ever, information received from other peers can be erroneous and has to
be used carefully. In this paper, we present a method that allows each
peer to assign a trust in the information received from other peers based
on comparisons with its current knowledge of the world. We describe
how this process is managed using the Dempster-Shafer theory. We also
present how positive and negative evidence cues can be developed in
this problem, in particular by using detectability grids. An experimental
evaluation, carried out with real vehicles, is reported to show that this
formalism behaves correctly.

Keywords: Cooperative perception · Trust · Multi-robot system ·
Belief functions

1 Introduction

In order to navigate safely, intelligent vehicles need to perceive their environment.
Their on-board sensors, such as cameras or LiDARs, are generally sufficient for
local navigation tasks but not for more complex maneuvers because of the limited
range of the sensors and because there are occlusions in their Field Of Views
(FOVs). For example, in Fig. 1, v1 cannot see if a vehicle is coming from behind
the building on its right and will thus have to either be cautious and engage
slowly or break strongly once the vehicle becomes visible. Cooperative Perception
(CP) aims at improving the navigation performance in such situations by taking
advantage of perceptual information captured by others. Indeed, using upcoming
wireless technologies, it is possible for vehicles and the infrastructure to exchange
perceptual information with each other. By integrating this information to its
own, one’s knowledge of its surroundings can be extended further and behind
obstructions. For example, in Fig. 1, v3 could warn v1 of its presence and v2 could
warn v1 that a vehicle is present in front of it. However, although the authenticity
of peers can be cryptographically guaranteed using public-private key pairs [5],
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Le Hégarat-Mascle et al. (Eds.): BELIEF 2022, LNAI 13506, pp. 174–183, 2022.
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Fig. 1. Three cooperative vehicles at an intersection. v1 cannot see v3 because it is
hidden by a building but v2 and v3 can see each other.

security vulnerabilities or perception malfunctions (e.g. sensors failures) can still
generate erroneous information that should not be incorporated to one’s own.

To prevent this, we propose an information processing and data fusion system
that confronts the information received and the information from the embedded
system to estimate the trustworthiness of the peers. This information can then
be used in a cooperative tracker to attenuate or ignore information from untrust-
worthy peers. This process is done locally by each peer, without communicating
its trust, by verifying that the received information matches with its knowledge
of the world. For example, detecting objects at the same location creates trust-
worthiness while mismatching or illogical information creates untrustworthiness.
In Fig. 1, because v1 partially shares objects and FOV with v2 and v3, it will
trust them and thus anticipate v3 earlier.

After a review of related works in Sect. 2, we will introduce the problem at
hand using a dense representation of the detectable or undetectable space from
the point of view of different peers in Sect. 3. In Sect. 4, trustworthiness estima-
tion will be formulated. Finally in Sect. 5, a simulation study and experimental
results based on real data will be given and analyzed.

2 Related Works

The field of Cooperative Perception began with [7] demonstrating its poten-
tial for safety in intelligent transportation systems. Since then, the European
Telecommunications Standards Institute (ETSI) standardized the Cooperative
Perception Message (CPM) [6], composed of the sender position, sensor descrip-
tions and a list of objects. It is used in many cooperative approaches, as studied
in [4].

A part of the research effort is focused on preventing attacks as CP works
on a public network. The most common form of attack prevention is misbe-
havior detection, as reviewed in [8]. In this paper, the authors list and classify
numerous approaches as being standalone or shared, distributed or centralized
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Fig. 2. Decentralized cooperative perception with trustworthiness estimation.

and node or data centric. For example, in [12], errors are detected by comparing
received positions with detections from embedded sensors. In [3], four levels of
checks ranging from simple bound check to object comparison are used to emit
reports on misbehaving peers. When enough reports are received about a faulty
peer, their certificate is revoked, excluding them from communication. In [2], a
probability of trustworthiness is estimated for each pair of peers, by checking
the consistency of their object lists and their respective detection probabilities
across space. More recently, [11] compared occupied or free space in the form of
grids and verified that detected objects matched with these grids. In [1], sensors
estimate a probability of existence for each object. When fusing object from
multiple sensors, they switch to an evidential representation and use a persis-
tence probability to model the field of view of fused sensors. A trust parameter
representing the sensor’s information reliability is fixed for each sensors.

Our method can be seen as an unification of [2,3,11] where fault detection
generates untrustworthiness and confirmation creates trustworthiness.

3 Problem Statement with Object Detectability

Consider a driving situation composed of N vehicles v1, v2 . . . . Every cooperative
vehicle perceives surrounding objects o ∈ O and Free Space FS. Objects can be
any kind of road user (e.g.: pedestrians, cooperative or non-cooperative vehicles)
or static features (e.g.: traffic signs) whereas FS are areas explicitly characterized
as being free. Objects and FS are broadcast to peers in the communication
range, supposed to be further than the perception range. In addition, the Fields
Of View (FOV) of the sensors are shared as per the CPM such that all exchanged
information is vectorial in order to reduce the amount of data exchanged. Upon
reception, each peer assesses the trustworthiness of the sender, as illustrated in
Fig. 2.

As the problem at hand combines multiple point of views, a method to define
which area was seen by the cooperating peers is needed. For this, we extend the
detection probability of [2] with the capacity to state that there cannot be objects
in the measured FS by using an evidential representation. In this representation,
the ground plane is divided into cells of fixed size that contain a mass function
imD

x,y defined on 2ΩD
where ΩD = {Di,��D}. Di represents that peer i can detect
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Fig. 3. Illustration of a detectability grid from the point of view of v1. (a) Hidden area
in grey, FS in red and detectable in green. (b) Resulting grid: non-detectability in red,
detectability in blue and unknown in grey. (Color figure online)

an object in the cell at position [x, y]T and ��D that an object cannot be detected
at that point. Conversely, the global grid is noted mD and the detectability of
an object is mD

o = mD
xo,yo

.
This grid (called detectability grid) is built with the process illustrated in

Fig. 3. Outside the FOVs and behind buildings, the state is unknown. The FS
characterized by local sensors (e.g. LiDAR points that hit the ground) is used
to express the impossibility to detect objects within it. In space neither free nor
unknown, an object is likely to be detected.

Object detectability is used in two different ways when receiving informa-
tion. First, the sender’s detectability grid is reconstructed to assess its objects
coherency (e.g. there is no object in the FS or out of the FOV). Then, the
receiver’s detectability grid is constructed to verify the coherency of received
objects and to only compare objects that are detectable by it and the sender.

4 Evidential Trustworthiness Estimation

Trustworthiness in the information sent by other peers is estimated by every
peer individually as a mass function noted mT

j about peer j. It is designed to be
used in a subsequent cooperative fusion to ignore or discount objects originating
from untrustworthy peers. As such, it is defined on 2ΩT

with ΩT = {T,�T} to
express that information from j is trustworthy and can be integrated without
hesitation or conversely not integrated at all. In the rest of this paper, trust mass
functions are normalized and will be given in the following order: T , �T , ΩT .

Mass functions are particularly adapted to the problem at hand for several
reasons. Firstly, similar to humans, trust evolves over time and can be forgotten
when peers are not interacting anymore, which can be managed with discounting.
Secondly, as new peers have an unknown degree of trustworthiness, choosing a
wrong prior could lead to ignoring good information or including misleading one
during transient phases. Finally, this provides more information for a subsequent
cooperative tracker to make more or less cautious decisions when peers are only
partly trustworthy (because their information contains both valid and invalid
values).
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Fig. 4. Evidential network for trustworthiness computation at time t. Red arrows only
convey untrustworthiness, green trustworthiness, and orange both. (Color figure online)

Trustworthiness is sequentially estimated using an evidential network. Sim-
ilar to state filtering, the current estimate at time t mT

j (t|t) is derived as the
combination of the previous estimate mT

j (t − 1|t − 1) and new evidence about
“Coherency”, “Consistency” and “Confirmation” as illustrated in Fig. 4. They are
respectively denoted mcohe

j , mcons
j and mconf

j , defined on 2ΩT
and group leaves of

the network as described later on. Those leaves express simple and non-dogmatic
constraints on either trustworthiness or non-trustworthiness based on different
aspects of the received information.

In the combination process, every term is discounted by an associated factor
that is not be explicitly noted here for the sake of clarity. Therefore, leaves always
express some degree of belief on m(ΩT ). Dempster’s rule +© is well adapted in
this case and is used for combination:

mT
j (t|t) =

ΛΔt
mT

j (t − 1|t − 1) +© mcohe
j +© mcons

j +© mconf
j (1)

where ΛΔt is a discounting factor that depends on the elapsed time Δt, moving
an ΛΔt-proportion of every focal set to the unknown [9].

4.1 Coherency

mcohe models that the information contained in a message has to be coherent
within itself. Multiple constraints are combined using Dempster’s rule, three of
them are given here as an example:

mcohe
j = mobd

j +© matc
j +© mspc

j (2)

mobd
j expresses that objects cannot exist inside the FS or outside the perception

range of the peer. For this, the detectability measure jmD of the sending peer j
is used. For example, an object that is in the FS is by definition undetectable and
its detectability will be low. Similarly objects outside the FOV are unknown and
will have a low detectability. We use a constant Dmin threshold to assign a mass
on the untrustworthiness parametrized with a constant βpen for such objects:

mobd
j = +©

o∈Oj
jmD

o (D)<Dmin

[
0 βpen 1 − βpen] (3)
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Fig. 5. Sigmoid function Φ(x) with parameters μ = 2, σ = 0.25 and δ = 2 producing
an arbitrary mass function m.

matc
j expresses that object attributes have to be likely. For example, the speed

vo of the object o has to be coherent with a normal behaviour which is handled
by a scalar sigmoid function Φ illustrated in Fig. 5 with parameters μv, σv and
δv chosen to reflect speed limits:

matc
j = +©

o∈Oj

Φ(vo, μ
v, σv, δv) (4)

with

Φ(x, μ, σ, δ) =
[
m1 =

1−CDF
(

x−μ−2σ

σ
√

2

)

2 m2 =
1+CDF

(
x−μ−2σ−δ

σ
√

2

)

2 1− m1 − m2

]
(5)

mspc
j expresses that objects have to be spatially coherent. For example, cars

should be close to the road network. Again a scalar metric is computed and
used as input to a sigmoid function Φ. For instance, let Cj be the subset of Oj

classified as cars and do the distance between a car o and the road. With adapted
parameters μd, σd and δd, the mass is:

mspc
j = +©

o∈Cj

Φ(do, μ
d, σd, δd) (6)

Please note that other constraints can be added following the same formalism,
such as modeling that object sizes or covariances should be of reasonable values.

4.2 Consistency

mcons models that objects must follow coherent trajectories in time and not
change their dynamics in an unpredictable way (by making improbable position
jumps between two messages for instance). For this, previously received objects
are predicted Oj(t|t−1) and associated with newly received objects Oj using an
assignment function noted A. The similarity function described in [13] is used to
compare objects and is noted mS

a,b. It compares different characteristics of the
objects and yields a mass function defined on ΩS = {S,�S} to express that a and
b can correspond to the same physical object or to two different ones:

mS
Oj = +©

o(t−1),o∈A(Oj(t|t−1),Oj)

mS
o(t−1),o

mcons
j =

[
0 mS

Oj({�S}) 1 − mS
Oj({�S})]

(7)
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Thus mcons
j expresses untrustworthiness when objects mismatch with their past

but is vacuous otherwise.
As we have seen, the coherency and consistency constraints (mcohe

j and mcons
j )

can only express untrustworthiness. Therefore, other criteria have to be used to
allow trustworthiness to increase.

4.3 Confirmation Through Free Space and Objects

mconf models that received objects and FS should match with the current knowl-
edge of the world of the receiving peer. For this, the detectability mD of the
receiving and sending peers are used to represent that peers have different FOVs
and that comparisons cannot be made on non-overlapping areas.

mconf
j = mosi

j +© modi
j +© mofi

j +© mfsi
j (8)

mosi
j and mfsi

j model that trustworthy information should match with the local
one. The received FS is compared using the method of [11] in mfsi

j . Received
objects Oj are matched using an assignment function noted A and compared
using the similarity function mS defined in [13]. The local object detectability
grid mD is used as a discounting factor to only compare objects that are locally
detectable:

mosi
Oj = +©

o,oj∈A(O,Oj)
(1−mD

oj(D))m
S
o,oj

mosi
j =

[
mosi

Oj(S) 0 1 − mosi
Oj(S)

] (9)

Conversely, modi
j models that received objects must not mis-match local ones

O. For this, the j-detectability of objects not matched with the assignment
function A is used:

modi
Oj = +©

o∈�A(O,Oj)
(1−mD

o (D))
jmD

o

modi
j =

[
0 modi

Oj (D) 1 − modi
Oj (D)

] (10)

Similarly mofi
j models that the received objects Oj must not be inconsistent

with the free space FS estimated locally:

mofi
j = +©

oj∈Oj

[
0 mD

oj(��D) 1 − mD
oj(��D)

]
(11)

5 Results

In order to illustrate and validate our approach, we implemented the equations
detailed in Sect. 4, first in a simple situation in Sect. 5.1 then on real data in
Sect. 5.2.
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(a) (b) (c)

Fig. 6. Simulation results: Trustworthiness between two vehicles with different levels of
object detectability in (a), number of ghost objects in (b) and number of objects with
incoherent sizes in (c). Continuous lines are m(T ) and dashed lines are m(T ) +m(�T ).

5.1 Simulation Study

In this section, trustworthiness estimates are obtained by running simulations
implementing Fig. 2 on the situation of Fig. 1 for 2 seconds with varying param-
eters. Curves of Fig. 6 correspond to the trustworthiness a vehicle attributed
to another one under different conditions. Simulation results about a particular
parameter are plotted on top of each other to compare its impact, while others
remain unchanged and optimal.

One can see in Fig. 6a that the object detectability value plays a major role.
When it is low, trustworthiness converges more slowly, which is a desired behav-
ior. In Fig. 6b, the presence of objects that do not exist creates untrustworthiness
while matched objects creates trustworthiness. The same can be seen in Fig. 6c,
where erroneous sizes generate untrustworthiness.

5.2 Experimental Results

To validate our approach, it has been applied to real-world data using the same
dataset as in [10]. In it, three vehicles v1, v2 and v3 were driven in an busy
roundabout with v1 stopped at one of the roundabout entrance while v2 and
v3 followed each other inside of it. In post-processing, LiDAR point clouds and
RTK GNSS receivers have been processed to generate object lists and FSs. The
different parameters (e.g. discounting factors) have been tuned on some prelimi-
naries tests to get smooth trust variations. Figure 7 shows the trust estimated by
the three vehicles in each other over the course of 22 seconds. At the beginning,
trustworthiness in the others is completely unknown. Exchanged information is
faithful up to time t = 12 s when v3 starts sending erroneous information (inco-
herent sizes, omitted and ghosts objects) then stops at time t = 16 s. In this case,
v3 is voluntary lying to v1 and v2 but its internal information remains correct.

Note that v2 and v3 always share perceived areas, but only do with v1 from
t = 6 to t = 12 s. As a result, v1 is uncertain in the trustworthiness of v2 and v3
and reciprocally when they do not share objects, while v2 and v3 trust each other
rapidly. A transient phase can be observed when v1 starts perceiving common
areas with v2 and v3. At first, only untrustworthiness is expressed because small
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Fig. 7. Real data: Estimated trustworthiness of v1, v2 and v3 in each other, where imT
j

denotes the trust of i in j. The green curve is m(T ) and the red curve m(T ) + m(�T ).

inconsistencies between objects at the boundary of their FOVs accumulate with-
out enough positive information to counteract. Once enough FS and objects are
shared, trustworthiness can increase.

When v3 sends erroneous information, one can see on 1mT
3 and 2mT

3 that it
is detected by v1 and v2, with untrustworthiness being rapidly estimated and
maintained. Once v3 stops sending erroneous information at t = 16 s, v1 and v2
increase their trustworthiness in it.

These results illustrate well that to have trustworthiness in another peer,
overlapping and coherent objects and free space are necessary. In our opinion,
the laws of physics of the real world are the most reliable way to induce trust.
Finally, by comparing 2mT

1 with 3mT
1 and 1mT

3 with 2mT
3 , one can see that the

trustworthiness estimated about a particular peer differs from the other due to
different points of view. This is another consequence of our choice to manage
trust in a decentralized way.

In terms of computation performance, the trustworthiness estimation
can take up to 500 ms per iteration with our current implementation in
Python/C++. As such, it cannot run in real time as communications are at
10 Hz. However, this is not necessarily an issue as this process can be run asyn-
chronously at lower frequencies.

6 Conclusion

In this paper, we have proposed a method to estimate trustworthiness in other
peers in the context of decentralized cooperative perception. This formulation
combines misbehavior detection techniques and positive confirmation thanks to
mass functions to express trustworthiness, untrustworthiness or lack of informa-
tion about another peer. The trust information that peers create in others is
personal and never shared. Thus, two peers will have different trusts in a third
peer. The convergence of the method has been illustrated in a simple simula-
tion, then confirmed on a real-world situation. It has shown to react quickly to
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erroneous information to prevent its propagation. In future work, the interaction
trust and object estimation will be studied. In addition, a cooperative dataset
with a ground truth on the existence of objects will be acquired to illustrate the
effectiveness of this formulation and the impact of trustworthiness estimation on
the non-propagation of erroneous information.

Acknowledgments. This work was carried out within SIVALab, a shared laboratory
between Renault and Heudiasyc (UTC/CNRS).
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Abstract. During the analysis and management of flood events, the
issue of time is crucial. In fact, such events require accurate knowledge
of the time of their occurrence and their temporal relationships. However,
in most cases, temporal information about flood events are uncertain. In
this paper, we propose an intelligent system for managing the temporal
uncertainty of these events. The modeling of this uncertainty is based on
the belief functions theory and Allen’s Interval Algebra. In fact, an uncer-
tain flood event is represented using temporal intervals. Each interval is
associated with a belief mass. If there is different uncertain information
provided from different sources, a reasoning phase is carried out on these
data in order to obtain more reliable information.

Keywords: Flood · Uncertainty · Temporal representation and
reasoning · Belief functions theory · Allen’s interval algebra

1 Introduction

The concept of time is extremely significant in our daily lives. Indeed, we must
always be aware of the time, duration, and temporal relationships of events that
occur around us. Flood events are among those events for which one must be
particularly aware of their date of occurrence. This allows us to analyze these
events and thus avoid many risks and damages and prepare well for this type of
natural disaster.

However temporal information about flood events are often uncertain. In fact,
this type of information is typically obtained through remote sensing or provided
by experts. In the first case, coverage during periods of significant flooding, poor
sun light, temporal resolution and mixed pixel and image quality are all factors
that influence information. In the second case, information are subjective. Both
cases explain and provide insight into the causes of information uncertainty. This
uncertainty is problematic in terms of time representation and reasoning.

In the literature, several works have been proposed for modeling, reasoning
about and managing uncertain temporal information. Dyreson and Snodgrass
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[1] proposed a probabilistic approach to representing the indeterminacy of an
event’s occurrence time. The probability that an indeterminate instant i occurs
during chronon a is expressed by a probability mass function. In [2], Dubois and
Prade suggest a method for modeling uncertain times based on possibility theory
[3,4]. The possibility distribution in this work represents the degree of likelihood
that the date a is equals to the instant t. Nagypal and Motik [5] propose a fuzzy
set theory-based approach [6] to deal with the subjectivity and uncertainty of
historical information. This uncertainty arises from the fact that such data are
often graduel. In [7], Dutta uses fuzzy sets to represent uncertain events with
the membership function defining the possibility of an event occurring in a given
time interval.

The purpose of this article is to manage the uncertainty of temporal infor-
mation on the one hand and user requests on the other hand. In fact, in this
work, we propose a question/answer system that allows the administrator to
represent uncertain beliefs about the date of the flood using the theory of belief
functions and the users to express their temporal queries in a non-rigorous way
using Allen’s temporal relations.

This article is organized as follows: Section 2 reviews the basic concepts
needed to understand the following sections, Sect. 3 presents our method of mod-
eling and reasoning about uncertain temporal information, Sect. 4 introduces the
proposed system for handling uncertain temporal information and user queries
before concluding in Sect. 5.

2 Preliminaries

In this section, we give a brief recall on the theory of belief functions (This
section is mainly taken from the article [8]), and on the Allen’s interval algebra.

2.1 Theory of Belief Functions

The theory of belief functions, also called Dempster-Shafer theory, was first
introduced by Dempster [9] and mathematically formalized by Shafer [10]. This
theory models imprecise, uncertain and missing data.

In the theory of belief functions, a frame of discernment, noted
Θ = {H1, ...,HN}, is a set of N exhaustive and mutually exclusive hypothe-
ses Hi, 1 ≤ i ≤ N where only one of them is likely to be true.

The power set, 2Θ = {A/A ⊆ Θ} = {∅,H1, ...,HN ,H1 ∪ H2, ..., Θ}, enumer-
ates 2N sub-assemblies of Θ. It includes not only hypotheses of Θ, but also,
disjunctions of these hypotheses.

The true hypothesis in Θ is unknown; thus, a degree of belief is assessed to
subsets of 2Θ reflecting our degree of faith on the truth of each subset of 2Θ.
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A basic belief assignment (bba), also called mass function, is noted mΘ and
defined such that:

mΘ : 2Θ → [0, 1]

mΘ(∅) = 0
∑

A⊆Θ

m(A) = 1
(1)

The mass mΘ(A) represents the degree of belief on the truth of A ∈ 2Θ. When
mΘ(A) > 0, A is called focal element.

2.2 Allen’s Interval Algebra

Allen’s interval algebra [12] is a well-known formalism often used in temporal
reasoning. This algebra consists of thirteen primitive and mutually exclusive
relationships that can be applied between two time intervals A = [a, a

′
] and

B = [b, b
′
]. These relationships are: before (b), meets (m), overlaps (o), starts (s),

during (d), finishes (f), after (bi), met by (mi), overlapped by (oi), started by (si),
contains (di), finished by (fi) and equals (e). Each of these relations corresponds
to a specific order of the four bounds of the two intervals. For example, the
statement A overlaps B (A o B) corresponds to (a < b) ∧ (b < a

′
) ∧ (a

′
< b

′
)

(Table 1).

3 Temporal Representation and Reasoning Under
Uncertainty

3.1 Modeling Uncertain Temporal Flood Events

In this work, temporal uncertainty means that the flood date is uncertain, which
means that various dates are possible. Let X the frame of discernment over which
temporal intervals are defined. An interval-based approach is used to represent
uncertain flood events. This representation consists of a less certain exterior
interval TLC of the flood date and a more certain interior interval TMC . The
modeling of the temporal uncertainty is done by means of a mass function m
which represents the degree of certainty on each of these two intervals where:

TU = {TLC = [TLC1, TLC2],m(TLC);TMC = [TMC1, TMC2],m(TMC)}
with TMC ⊆ TLC and m(TLC) = m̄(TMC) = 1 − m(TMC)

3.2 Temporal Reasoning Under Uncertainty

Similarity of Flood Events. In many applications, in particular those
intended for the management of flood risks, the comparison of the similarity
of temporal information can help in judgment or decision making. In addition,
if two information are similar, merging them will provide more reliable informa-
tion. Here, we present our approach to determine the similarity of flood events.
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Table 1. Allen’s temporal relations

Fig. 1. Temporal uncertainty.

This approach is based on the relationship between the interior or exterior time
intervals which each represent temporal information on the flood event.
Let I1 and I2 be two intervals, and any intersection between them is the interval
INT . We base the similarity measure on the relationship between the length of
INT and the length of I1 and I2. We therefore have for Sim(I1, I2)
Sim(I1, I2) = (|INT |/|I1| + |INT |/|I2|)/2
Since the interior intervals of flood events are more certain, we can rely on
them to determine the degree of similarity between events. The exterior intervals
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can also be taken into account to determine the similarity of events, but as a
secondary factor since they are less certain. It should be noted that if we have a
strong belief in interior intervals, we can overlook the exterior intervals’ similarity
and say that E1 and E2 are thought to be quite comparable events.

Aggregation of Events. If the events’ similarity is assessed and they appear to
be considerably similar, then a combination of events could be considered. As a
result, we obtain the aggregated event T12U . The merge operation is performed
by applying the operator max on the upper limits of the interior or exterior
intervals of the two events and min on the lower limits. The mass of a combined
interval is equal to the mass of the first interval multiplied by the mass of the
second interval. To satisfy the condition of sum of belief masses, it is necessary
to normalize them to be equal to 1. Let I1 = [I1a, I1b] and I2 = [I2a, I2b] be
two time intervals, we therefore have for T12U

T12U = [min[I1a, I2a], max[I1b, I2b]]; m(T12I) = norm( m(T1I) ∗ m(T2I))
When there is more than one source of information, the similarity measurements
are performed for each pair of sources. After that, all the similar sources are
grouped together in order to combine the information from these sources. This
method is used to avoid quickly obtaining a very large uncertainty after several
aggregation steps.

4 Intelligent Query-Answering System

In this section, we propose a system that allows its users to view answers to their
flood-related queries.

User queries are often intended to display floods events that have occurred
over a certain period of time or rather events such as their flood start dates
are included in a given time interval. In general, the system allows the user to
visualize flood events according to the nature of the relationship he has chosen
with the time interval he has entered. On the other hand, the system allowing its
administrators to store and manage flood events which are often of an uncertain
nature. Uncertain temporal information on floods events can be provided by
several sources.

4.1 System Architecture

The architecture of the proposed system is presented in this section. Figure 2
shows an overview of the system architecture and the different modules needed
for the management of uncertain flood events and the processing of user requests
It consists of two major parts, each of which contains a set of modules. Each
module’s functions are summarized below:
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Fig. 2. System architecture.

Query Processing: In the “Interface” module, the user chooses a temporal
interval and a temporal relation using a graphical interface. Then, the system
transmits the request to the “Query interpretation” module which transforms the
request into an SQL query. This request is then sent to the database management
system in order to select the records meeting the criteria of the temporal request.
The returned results are attached with degrees of belief and then displayed on
the user interface.

Management of uncertain flood events: In the “temporal representation”
module, the system administrator stores each flood event in the temporal
database with their degree of belief as follows: exterior flood start date, exterior
flood end date, exterior interval mass, interior flood start date, interior flood
end date, interior interval mass. If there is more than one source of information,
which is expected, a reasoning phase is necessary, the system calls the “Reason-
ing” module. This module uses the proposed reasoning mechanisms and calcu-
lates the degree of similarity. Depending on this degree a combination operation
will be performed or not.

4.2 Illustrative Examples

In our work, we are interested in the events of the floods that occurred in Chad.
In fact, floods are a common occurrence in this country. Many areas, particularly
those on the shores of Lake Chad or traversed by the Logone or Chari rivers, are
subject to flooding, causing displacement, loss of life and destruction of property.
Flood risk management requires the availability of temporal information about
the flood. It is critical to estimate the date of the flood in order to provide
information and recommendations on the best flood-response strategies. This
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estimate is based on an examination of previous floods in the same area. In
addition to the fact that the dates of floods, i.e. temporal information in general,
are often uncertain in nature, these estimates are always subject to a certain
degree of uncertainty. In this section, we show how our proposed system is very
useful for modeling, reasoning and visualizing uncertain temporal information.
To make our proposition more clear, we have included some examples below.

Example 1 : Let X the frame of discernment over which temporal intervals are
defined. Suppose an expert has an uncertain judgment on the date of a flood
event E1 that occurred in Chad in 2014. Table 2 presents this uncertain temporal
information.

Table 2. The temporal information provided by the source S1

Record Source Flood
event

More uncertain
flood time interval
I1

Mass of I1 Less uncertain
flood time interval
I2

Mass of I2

1 S1 E1 [29/07/2014–
05/09/2014]

0.41 [14/08/2014–
21/08/2014]

0.59

If a user asks to display flood events that occurred in Chad in 2014, the
system will automatically display the record E1.

Example 2 : Suppose another source of information provides a different and
uncertain judgment on the date of the flood that occurred in Chad in 2014.
Table 3 presents this uncertain temporal information.

If a user asks to display flood events that occurred in Chad in 2014, the
system must go through a reasoning phase before displaying the response to the
user. This passage is mandatory since we have different information from more
than one source of information on the same flood event. As indicated in Sect. 3,
the temporal reasoning phase consists of two steps: measuring the similarity and
combining the information.

In this example, the similarity between the information provided by sources s1
and s2, based on the most certain time intervals is: Sim(I1, I2) = (|INT |/|I1|+
|INT |/|I2|)/2 = (7/8 + 7/9)/2 = (0, 88 + 0.78)/2 = 0.83.

We notice that there is a very great similarity between the two pieces of
information. It is then very interesting to carry out a combination operation on
these uncertain information. The combined information is:

T12U = [min[I1a, I2a], max[I1b, I2b]]; m(T12I) = norm( m(T1I) ∗ m(T2I))

T12U = [min[14/08, 12/08], max[21/08, 20/08]]; m(T12I) = norm(0.59 ∗ 0.55) =

0.3245 + 0, 2455 = 0.57

T12U = [12/08, 20/08]; m(T12I) = 0.57

Then, the system displays this aggregate information to the user which is
more reliable than the two other information provided separately. In fact, this



An Intelligent System for Managing Uncertain Temporal Flood Events 191

Table 3. The temporal information provided by the source S2

Record Source Flood
event

More uncertain
flood time interval
I1

Mass of I1 Less uncertain
flood time interval
I2

Mass of I2

3 S3 E1 [29/07/2014–

05/09/2014]

0.45 [12/08/2014–

20/08/2014]

0.55

combined information is the closest to reality (see Table 4). Table 4 presents a
row of a real database of floods that occurred in Chad between 2012 and 2015.

Table 4. Flood event database

Dates of flood events Flood end dates Duration of floods Extent of floods (km)

13/08/2014 19/08/2014 6 312

This information can be very useful to estimate the future date of the flood
and then adopt the best response strategies to possible future floods.

Example 3 : Suppose that the second source S2 provides the information pre-
sented in Table 5 and not that presented in Table 3.

As in the second example, if a user asks to display flood events that occurred
in Chad in 2014, the system must go through a reasoning phase before display-
ing the response to the user since we have two different information about the
same flood event from two different information sources. Except that in this
example the system will perform the combination operation on the two pieces
of information without going through the similarity measurement step.

Then combined information is:

T12U = [min[I1a, I2a], max[I1b, I2b]]; m(T12I) = norm( m(T1I) ∗ m(T2I))
T12I = [min[14/08, 30/07], max[21/08, 02/09]]; m(T12I) = norm(0.59 ∗ 0.7) =
0, 413 + 0.2056 = 0.62
T12I = [30/07, 02/09]; m(T12I) = 0.62

We note here that the resulting information is far from reality. We then
deduce that by ignoring the step of calculating the similarity, we can have false
results. Then, it is very important to go through the measurement of the sim-
ilarity before proceeding to the combination of information. It is even possible
to set the similarity threshold from which this information can be combined.

Table 6 summarizes all these examples about the date of the flood event E1
that occurred in Chad in 2014 and shows that the combination process pro-
vides information that is more reliable and closer to reality provided there is a
similarity between information.
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Table 5. The supposed temporal information provided by the source S2

Record Source Flood
event

More uncertain
flood time interval
I1

Mass of I1 Less uncertain
flood time interval
I2

Mass of I2

2 S2 E1 [20/07/2014–

10/09/2014]

0.3 [30/07/2014–

2/09/2014]

0.7

Table 6. Summary of illustrative examples results

Uncertain tempoal
information T1U

Combination of T1U
with a non-similar
information T2U

Combination of T1U
with another similar
information T2U

Real date of
flood event

T1MC = [14/08, 21/08];
m(T1MC) = 0.59

T12I = [30/07, 02/09];
m(T12I) = 0.62

T12U = [12/08, 20/08];
m(T12I) = 0.57

[13/08, 19/08]

5 Conclusions and Future Work

In this article we propose a system for managing uncertain temporal informa-
tion. The proposed idea can be applied in several fields such as medical diagnosis,
archeology, and so on. In this work, we are interested in the field of natural dis-
asters more specifically, floods. Our method makes it possible to express uncer-
tain temporal knowledge about flood events, store and manage these uncertain
information and display it to the user who can then analyze it and draw infer-
ences and predictions about possible flood events. In fact, uncertain information
about the date of flood events are represented using belief function theory. In the
case of several pieces of information coming from several sources, an operation
to measure the similarity of these information provided is carried out. If these
information are similar then a combination operation is performed in order to
obtain more reliable information. As future work, we plan to apply our approach
on real data.
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Abstract. This paper considers statistical inference in contexts where
only incomplete prior information is available. We develop a practical
construction of a suitably valid inferential model (IM) that (a) takes the
form of a possibility measure, and (b) depends mainly on the likelihood
and partial prior. We also propose a general computational algorithm
through which the proposed IM can be evaluated in applications.
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1 Introduction

Many—including Fisher, Popper, etc.—would argue that inductive inference is
not a domain of application suited for ordinary/precise probability. In fact, none
of the “standard” statistical methods used day-to-day by practitioners making
inductive inferences involve direct probability statements about the unknowns.
For example, on tests of significance, Fisher (1973, p. 63) writes

[probability and p-values] should none the less be distinguished, for valid
tests of significance at all levels may exist without the possibility of deduc-
ing by an accurate argument, a probability distribution for the unknown
parameter.

If it is not the familiar probabilistic reasoning behind those classical statistical
methods, then what is it? Martin (2021) gave a possibility-theoretic characteriza-
tion, showing that behind every statistical method having exact frequentist error
rate control lies a so-called inferential model (IM) that is valid (see below) and
takes the mathematical form of a possibility measure. Therefore, the reasoning
behind those classical statistical methods must be possibilistic.
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Towards advancing this understanding that possibility theory plays a fun-
damental role in statistical inference, there is one key observation. The classi-
cal/frequentist setting should not be interpreted as one in which there is “no
prior”. Instead, the vacuous prior information state means that no prior distri-
bution can be ruled out. In other words, the frequentist’s credal set consists of
every prior. If the frequentist extreme is “every prior” and the Bayesian extreme
is “one prior”, then this suggests a spectrum of different scenarios indexed by the
extent of partial prior information available to the data analyst. This concrete
understanding of frequentist and Bayesian as opposite ends of a spectrum pro-
vides an opportunity for meaningful unification between the two schools as well
as for the development of new and improved methods. Moreover, the fact that
this spectrum is indexed by partial beliefs highlights how statistical inference
fits squarely in the world of imprecise probability.

Martin (2022) formulates this notion of partial priors using credal sets, Q,
i.e., sets of prior probability distributions compatible with available prior infor-
mation, and develops a notion of validity relative to Q which is crucial to the
Fisherian logic of statistical inference. He also discusses several approaches to
constructing a valid IM in this context. In Sect. 4 we build on these develop-
ments in a different direction. We propose a general construction that employs
an imprecise probability-to-possibility transform (Hose and Hanss 2021) that com-
bines the likelihood function and partial prior information—encoded as a possi-
bility measure—to get an IM that is a possibility measure and provably valid. We
also present a general, Monte Carlo strategy to implement this new partial-prior
IM framework in practical applications. One illustration is presented in Sect. 5
and some concluding remarks are given in Sect. 6.

2 Background

Here we will assume that the reader is familiar with the basics of possibility
theory, e.g., that possibility measures are consonant plausibility functions and
their numerical values assigned to general assertions is determined by maximizing
an associated possibility contour function over a relevant set.

Suppose that observable data Y is available from a statistical model PY |θ
indexed by an unknown parameter θ ∈ T. The classical situation, in which there
is insufficient information available to rule out any specific prior distribution, has
been treated recently by the authors—see, e.g., Martin and Liu (2015), Martin
(2019) and Hose (2022)—in the context of possibility theory. In particular, for
inference on θ in light of an observation Y = y from the posited statistical
model, they construct a so-called inferential model (IM), which is a y-dependent
lower and upper probability pair, denoted by (Πy,Πy). The constructions vary,
e.g., Martin and Liu (2015) employ nested random sets to get it while Liu and
Martin (2021) directly use possibility contours, but the end result is an IM whose
mathematical form is that of a possibility measure determined by a contour
function πy. That is, the IM’s upper probability, which is a possibility measure
in this case, are determined by πy and the relationship
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Πy(A) = sup
ϑ∈T

πy(ϑ), A ⊆ T.

The lower probability, a necessity measure, is given by Πy(A) = 1 − Πy(Ac).
There is nothing inherent about the use of possibility measures or imprecise

probabilities more generally that makes the IM output meaningful; its meaning-
fulness is determined by the statistical properties it satisfies. Indeed, through the
specifics of its construction, the IM satisfies a so-called validity property (Martin
and Liu 2013, 2015) which states that

sup
θ∈A

PY |θ{ΠY (A) ≤ α} ≤ α, for all A ⊆ T and all α ∈ [0, 1]. (1)

Intuitively, an IM would not be useful for quantification of uncertainty if its
upper probability tended to be relatively small for assertions about θ that are
true. The validity property in (1) rules this out, and justifies interpreting Πy(A)
and Πy(A) as measures of the degrees of belief and plausibility, respectively, in
the truthfulness of the assertion “θ ∈ A” based on the observation Y = y:

The force with which such a conclusion is supported is logically that of the
simple disjunction: Either an exceptionally rare chance has occurred, or
[the assertion] is not true (Fisher 1973, p. 42).

There is an equivalent and more economical definition of validity ideally
suited to IMs that take the form of possibility measures. An IM determined by
the possibility contour πy is valid if

sup
θ

PY |θ{πY (θ) ≤ α} ≤ α, for all α ∈ [0, 1]. (2)

An immediate and practically relevant conclusion is that, for any α ∈ [0, 1],
the IM’s possibility contour can be used to construct a 100(1 − α)% plausibility
region, Cα(y) = {ϑ : πy(ϑ) > α}, and that this is a nominal 100(1 − α)%
confidence set in the classical/frequentist sense, i.e.,

sup
θ

PY |θ{Cα(Y ) �� θ} ≤ α, (3)

or, in words, the coverage probability of Cα(Y ) is at least 1 − α.

3 Valid Inference Under Partial Priors

3.1 Partial Priors

Now consider a more general situation where, instead of prior information being
vacuous, suppose we do know something. Here, the “something” is what we refer
to as partial prior information. For example, perhaps a reliable expert says “I’m
50% confident that the unknown parameter is in the interval [a, b]”. How should
such information be used? Frequentists nor Bayesians have a natural way to
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treat this kind of partial information—they will typically ignore it or elaborate
on it to the extent that it becomes unbelievable. However, thanks to our broader
view on probability, this is relatively straightforward for us here.

Martin (2022) proposed to encode this partial prior information via a credal
set Q of probability distribution supported on T. Generic members of the credal
set, denoted by Q, can be interpreted as Bayesian priors for the unknown param-
eter. Since we will have occasion to think of θ as having a prior distribution,
we will use the notation Θ when it is to be understood as a random variable.
The credal set provides partial prior information about θ in the sense that, for
each assertion A ⊆ T, there is a (possibly trivial) range of probabilities, from
Q(A) = inf{Q(A) : Q ∈ Q} to Q(A) = sup{Q(A) : Q ∈ Q}.

In Sect. 4, we will focus on cases where Q is a possibility measure on T. Then
it is completely determined by its contour function q : T → [0, 1], via

Q(A) = sup
ϑ∈A

q(ϑ), A ⊆ T.

This covers the vacuous prior case, with q(ϑ) ≡ 1, along with many others; in
fact, possibility measures are sufficiently general to cover all the statistical appli-
cations we have considered so far. There are credal sets whose upper envelopes
are not possibility measures, but we will discuss these elsewhere.

3.2 Validity and Its Consequences

Let PQ denote the upper envelope for the collection of joint distributions for
(Y,Θ) induced by the credal set Q and the statistical model PY |θ. That is,

PQ (Y ∈ B, Θ ∈ A) = sup
Q∈Q

PY,Θ|Q(Y ∈ B, Θ ∈ A)

= sup
Q∈Q

∫
A

PY |θ(B)Q(dθ), A ⊆ T, B ⊆ Y.

For a partial prior-dependent IM with upper probability Πy,Q , Martin defined
validity with respect to Q to mean that

PQ{ΠY (A) ≤ α, Θ ∈ A} ≤ α, all α ∈ [0, 1] and all A ⊆ T. (4)

This generalizes (1) and the rationale—Fisher’s “disjunction”—is the same here
as above. There is an analogue to (2) when, as we consider here, the partial-prior
IM’s output is a possibility measure with contour function πy,Q . Indeed, Martin
(2022) defines the IM to be strongly valid with respect to Q if

PQ{πY,Q (Θ) ≤ α} ≤ α, for allα ∈ [0, 1]. (5)

While (1) and (2) are equivalent in the vacuous-prior case, strong validity in
(5) is genuinely stronger than validity in (4). This is not immediate from the
formulas, but see Definition 3 and the subsequent lemma in Martin (2022).
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Martin goes on to establish several relevant consequences of (strong) validity.
On the statistical side, Martin’s main result is that, if the partial-prior IM is
strongly valid, then the set Cα(y;Q) = {ϑ : πy,Q (ϑ) > α} is a 100(1 − α)%
confidence set in the sense that PQ{Cα(Y ;Q) �� Θ} ≤ α, for α ∈ [0, 1]. This
generalizes (3) to coverage probability guarantees under cases where the prior
information is not necessarily vacuous.

3.3 How to Achieve (Strong) Validity

Martin (2022) presents a few different ways partial prior validity can be achieved.
For brevity, here we will focus on just one that is directly relevant for what we
propose in Sect. 4 below; this is the strategy Martin referred to as validifica-
tion. The basic idea is to define a suitable “plausibility ordering”, i.e., a data-
dependent ranking of the candidate parameter values, and then adjust this in a
suitable way, if necessary, so that strong validity is achieved. More concretely,
let (y, ϑ) 	→ hy(ϑ) be a map from Y×T to, say, [0, 1], such that for each y, there
exists θy such that hy(θy) = 1. The interpretation is that, if hy(ϑ1) < hy(ϑ2),
then ϑ2 is more compatible with observation y than ϑ1. Of course, whether this
ranking is real-world meaningful depends on the choice of h, and we present our
recommendation—and justification—in Sect. 4.1 below.

Once h is specified, the validification strategy is conceptually straightforward.
Indeed, inspired by the imprecise-probability-to-possibility transform (Hose 2022;
Hose and Hanss 2021), we define a data-dependent possibility contour as

πy,Q (ϑ) = PQ{hY (Θ) ≤ hy(ϑ)}. (6)

We claim that the interpretation of the partial-prior IM determined by Πy,Q is
the same as that determined by Πy in Sect. 2. For this interpretation to hold,
however, in the sense of Fisher’s logic of a simple disjunction, we need calibra-
tion. It turns out that this partial-prior IM is provably strongly valid, thereby
supporting both its statistical and behavioral interpretation.

Theorem 1. The partial-prior IM with contour function (6) is strongly valid
relative to Q in the sense of (5).

The proof in Martin (2022) is straightforward, but we will not reproduce it
here. Instead, we say a few words about what is actually happening. The h func-
tion determines a plausibility ordering, but that particular possibility contour
may not determine a strongly valid partial-prior IM because the level sets are not
of the right size. Then the validification transformation in (6) simply modifies
the level sets of h to make them the correct size to achieve strong validity.

4 Practical IM Construction

4.1 Likelihood-Based Contour

As indicated above, we will focus here on cases where the prior credal set’s
upper probability, Q, is a possibility measure determined by its corresponding
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possibility contour function q. Next, let Ly denote the likelihood function for θ
determined by the data Y = y and the posited statistical model. Recall that
ϑ 	→ Ly(ϑ) is a minimal sufficient statistic for the posited model so, in a certain
sense, this is the most economical summary of the data. Our proposal here is to
combine the prior contour q and the likelihood function Ly—in a straightforward
and almost-familiar way—to create an h-contour function as in Sect. 3.3 for which
strong validity relative to Q can be achieved according to Theorem 1.

Our specific proposal is to define the h-contour as

hy(ϑ) =
Ly(ϑ) q(ϑ)

supt∈T
{Ly(t) q(t)} , t ∈ T. (7)

This has a strong similarity to the familiar Bayesian “likelihood times prior”
updating/combination operation, the key difference is in the normalization—the
h above has unit maximum rather than unit integral. For another perspective,
write ry(ϑ) = Ly(ϑ)/ supt Ly(t) for the relative likelihood (e.g., Denoeux 2014).
If it is not trivially 0, then the h function in (7) is numerically equivalent to
that with Ly replaced by ry. After making that replacement, (7) resembles one
of those combination rules commonly used in the possibility theory literature,
e.g., Dubois and Prade (1988), motivated by fuzzy set intersection. While the
interpretation of h is important, it is the statistical properties of the IM in (6),
i.e., strong validity, that make it useful for statistical inference.

To us, what motivates this likelihood-driven contour h in (7) is that it is
simple, it incorporates all the information in the data via the likelihood, and
that it allows the prior contour to perform its main function: regularization.
Consequently, the partial-prior IM contour πy,Q in (6) depends on the two rele-
vant pieces of evidence about θ: the (data, model) pair and the (partial) prior.
We also have some ideas for why this choice is “best” in a certain sense, or at
least nearly so, but those details will be reported elsewhere. In any case, while
the choice of h is important, it is the strong validity property we get for (6) in
Theorem 1 that makes it useful for basing statistical inference on.

4.2 Computation

Computation of the expression in (6) is non-trivial. At first glance, it appears to
require optimization over Q, which could easily be intractable. When the upper
envelope Q is a possibility measure, however, some crucial simplifications can be
made, allowing for efficient numerical evaluation. This section describes these
simplifications and puts forth a general computational strategy.

From a broader perspective, (6) is a Choquet integral. But since Q is deter-
mined by a possibility measure, this Choquet integral can be greatly simplified.
Indeed, if we write Iη(t) = PY |t{hY (t) ≤ η} for the distribution function of the
random variable hY (t) under the model Y ∼ PY |t for t ∈ T, then it follows from
Proposition 7.14 in Troffaes and de Cooman (2014) that the Choquet integral
becomes an ordinary Riemann integral of a supremum:

πy,Q (ϑ) =
∫ 1

0

sup
t∈T : q(t)>α

Ihy(ϑ)(t) dα. (8)
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Again, this simplified expression of the Choquet integral holds only for Q deter-
mined by a possibility measure with contour function q.

The inner expression Iη(t) is a simple probability integral which, depending
on the statistical model, can be evaluated in closed-form or, more realistically,
with efficient Monte Carlo algorithms. In general, there is a vanilla Monte-Carlo
quadrature rule (Hose 2022, Ch. 5) that can be followed, which gives

Iη(t) ≈ J−1
J∑

j=1

1{hY (j)(t) ≤ η},

where 1{·} denotes the indicator function and {Y (j) : j = 1, . . . , J} are indepen-
dent and identically distributed samples drawn from PY |t. Since h only depends
on data through a minimal sufficient statistic, the Y (j)’s can be replaced by
draws of that minimal sufficient statistic if those are readily available.

Evaluating the outer expression in (8) is slightly more involved but can be
achieved numerically by replacing the (typically continuous) prior possibility
contour q by a discretized version q̃. This approximation is non-zero only at a
finite number of parameter candidates ϑ1, . . . , ϑM ∈ T, where it coincides with
the values qm = q(ϑm), m = 1, . . . ,M , respectively, and is zero everywhere else.

One might think of these tuples (ϑm, qm)M
m=1 as samples of Θ with impre-

cise weights. If we had a precise prior Q, then one of the most basic ways to
numerically represent it would be via the samples Θ(1), . . . , Θ(M) ∼ Q, or, more
generally, via a set of weighted samples (ϑm, wm)M

m=1, such that the prior prob-
ability of Θ ∈ A for A ⊆ T is approximated via Q(A) ≈ ∑M

m=1 wm 1{ϑm ∈ A}.
The advantage of the latter is that ϑ1, . . . , ϑm ∈ T can be drawn according to
some other sampling procedure, such as Latin hypercube sampling, and need
not be sampled from Q. The challenge is in finding the appropriate probability
weights (w1, . . . , wM ) in the simplex ΔM . In our imprecise prior setting, the
prior Q is to be contained in the credal set of the possibility contour q, more
precisely in that of its approximation q̃. A necessary and sufficient criterion for
this credal set membership is given by the system of affine constraints

α ≥ Q{q̃(Θ) ≤ α} =
M∑

m=1

wm 1{qm ≤ α}, for all α ∈ {q1, . . . , qM} (9)

on these probability weights. That is, we approximate the credal set Q of q by
the credal set Q̃ of q̃, which is simply a set of weighted samples

Q̃ ≡ {(ϑm, wm)M
m=1 : (w1, . . . , wM ) ∈ W},

where W = {(w1, . . . , wM ) ∈ ΔM : (w1, . . . , wM ) satisfies (9)} is a convex set.
Therefore, we call (ϑm, qm)M

m=1 imprecisely weighted samples.
Without loss of generality, we now assume that ϑ1, . . . , ϑM are ordered such

that their prior possibilities are strictly increasing, q1 ≤ . . . ≤ qM = 1, and we
formally define q0 = 0. Replacing q by q̃ in the right-hand side of (8) produces
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∫ 1

0

sup
t∈T : q(t)>α

Ihy(ϑ)(t) dα ≈
M∑

m=1

(qm − qm−1) · max
k=m,...,M

Ihy(ϑ)(ϑk). (10)

The latter expression is straightforward to evaluate numerically by following the
steps outlined below.

1. Sample ϑ1, . . . , ϑM−1 on T, e.g., via uniform or Latin hypercube sampling.
2. Find ϑM = arg supϑ∈T

q(ϑ), such that q(ϑM ) = 1.
3. For all m = 1, . . . ,M ,

(a) compute qm = q(ϑm) and rearrange the indices such that q1 ≤ . . . ≤ qM ,
(b) draw J iid samples Y (m,1), . . . , Y (m,J) iid∼ PY |ϑm

, and
(c) evaluate Im = J−1

∑J
j=1 1{hY (m,j)(ϑm) ≤ hy(ϑ)}.

4. Approximate the valid IM’s possibility contour by

πy,Q (ϑ) ≈
M∑

m=1

(qm − qm−1) · max
k=m,...,M

Ik,

where q0 = 0. This will, typically, underestimate πy,Q (ϑ) slightly.

5 Illustration

A practically important problem is that of comparing the means of two normal
populations. Suppose that Xj,1, . . . , Xj,nj

are iid N(μj , σ
2
j ) for j = 1, 2. To keep

things relatively simple at this point, we assume that the variances, σ2
1 and

σ2
2 , are known; the only unknown parameters are the means, μ1 and μ2. The

quantity of interest is θ = μ2 − μ1, the difference in the populations means.
This would be relevant if, for example, μj represents the mean weight loss of
patients on diet j, so that θ = μ2 − μ1 represents the diet or, more generally,
the treatment effect. Our goal is to construct a suitably valid IM for inference on
the treatment effect θ. Of course, under the stated assumptions, the model can
be simplified considerably. Indeed, if X̄j denote the sample mean from group
j, then Y = X̄2 − X̄2 is a minimal sufficient statistic and, itself, has a normal
distribution with mean θ and variance τ2 = n−1

1 σ2
1 + n−1

2 σ2
2 .

From here, the classical/frequentist solutions to the inference problem are
standard. On the Bayesian side, with incomplete prior information, one is likely
to choose a non- or weakly-informative prior distribution, which amounts to tak-
ing the prior for θ to have a density that is relatively flat over the entire real
line. Here we consider an alternative approach based on different interpretation
and processing of the kind of partial prior information that is often available.
Suppose that Treatment 2 is newly developed and Treatment 1 is the standard.
Since progress tends to be incremental, researchers may not expect the new treat-
ment to be drastically different—better or worse—than the standard treatment.
In particular, suppose the researchers expect |θ| ≤ 1. Following Dubois et al.
(2004), this incomplete/partial prior knowledge can be modeled via a so-called
Markov prior which has possibility contour

q(ϑ) = min(1, |ϑ|−1), ϑ ∈ T = R.
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Fig. 1. Inference on the treatment effect, θ = μ2 − μ1.

The corresponding credal set Q consists of all priors Q for which
∫ |θ|Q(dθ) ≤

1. It is in this sense that q is compatible with the available prior knowledge.
Specifically, this partial prior finds all increments or decrements smaller than
unity to be entirely plausible, but the plausibility decreases steeply for anything
larger than that; but it does not entirely rule out cases where the new treatment
is substantially better or worse than the standard treatment.

Following our proposal, we consider the likelihood-driven contour h as in (7).
In this case, h can be evaluated in closed-form so it remains to evaluate the IM’s
possibility contour using the strategy presented in Sect. 4.2. Below we use the
proposed Monte-Carlo approximation with J = 103 samples and M = 400 Latin
hypercube samples on T = [−20, 20]. Figure 1 shows the posterior possibility
contours obtained for different observations Y = y, where τ2 = 2, compared to
the relative likelihood ry(ϑ) = Ly(ϑ)/ supt Ly(t). Panel (a) shows a case where
the data y = 0.5 is consistent with the partial prior information and there we
see an efficiency gain relative to standard methods that ignore this partial prior
information. Indeed, the textbook 95% confidence interval is {ϑ : ry(ϑ) > c},
with c = exp{− 1

2χ2
1(0.95)} ≈ 0.147, which is noticeably wider than the valid,

partial-prior IM’s 95% plausibility interval {ϑ : πy,Q (ϑ) > 0.05}. On the other
hand, Panel (b) shows a case where the data, y = 5.0, borderline disagrees with
the partial prior information. In this case, as expected, we see some shrinkage
of the IM’s contour towards the prior center, but little or no reduction in the
contour’s spread compared to that of the relative likelihood. Further illustrations
and comparisons will be presented elsewhere.

6 Conclusion

This paper builds on recent work in Martin (2022), developing a practical and
general framework for valid statistical inference when partial prior information
is available. Importantly, this framework falls squarely in the scope of possibil-
ity theory, highlighting the fundamental importance of possibilistic reasoning
to statistical/scientific inference. It remains to consider applications where θ
is high-dimensional, where the common/necessary low-dimensional structural
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assumptions (e.g., sparsity) can be naturally encoded as partial prior informa-
tion. The validity properties discussed here are not dimension-dependent, so the
question boils down to computation: can algorithms like the one proposed here
scale up efficiently to handle modern high-dimensional problems?

Details aside, inference under partial priors is territory that neither Bayesians
nor frequentists are equipped to handle. Of course, there are still open questions,
but we are very excited about the “possibilities” (pun intended)!
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Abstract. The primary goal is to define conditional belief functions in
the Dempster-Shafer theory. We do so similar to the notion of condi-
tional probability tables in probability theory. Conditional belief func-
tions are necessary for constructing directed graphical belief function
models in the same sense as conditional probability tables for construct-
ing Bayesian networks. Besides defining conditional belief functions, we
state and prove a few basic properties of conditionals. We provide sev-
eral examples of conditional belief functions, including those obtained by
Smets’ conditional embedding.

Keywords: Dempster-Shafer belief function theory · Conditional
belief functions · Smets’ conditional embedding

1 Introduction

The main goal of this article is to review the concept of conditional belief func-
tions in the Dempster-Shafer (D-S) theory of belief functions [4,13], provide a
formal definition, state some basic properties, and provide some examples.

Several theories of belief functions use the representation of belief functions
but differ in the combination rules and corresponding semantics. The D-S the-
ory uses Dempster’s combination rule. [5] proposes an alternative combination
rule interpreting belief functions as credal sets [7]. These two theories of belief
functions are different. A comparison of these two theories is outside the scope
of this paper. Here, we are concerned exclusively with the D-S theory.

One of the earliest to define conditional belief functions for the D-S theory
is Smets [18]. Other contributions on conditional belief functions are (in chrono-
logical order) Shafer [14,15], Cano et al. [3], Shenoy [16], Almond [1], and Xu
and Smets [19].

Shafer [14] is concerned about parametric models. There is a discrete param-
eter variable Θ and a data variable X. We have a prior basic probability assign-
ment (BPA) mΘ for Θ. We have a conditional model for the data, BPA mX|θ
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for X given θ ∈ ΩΘ. Based on a dataset of n independent observations of X, the
task is to compute the posterior belief function for Θ. The BPAs mX|θ for X
given θ ∈ Θ are converted to a conditional BPA mθ,X for (Θ,X) using Smets’
conditional embedding. The marginal of mθ,X for Θ is vacuous. For all θ ∈ ΩΘ,
the conditionals BPA mθ,X are then combined using Dempster’s rule resulting
in the conditional mX|Θ. This assumes that the BPAs mθ,X are distinct, which
may be reasonable if the number of elements of ΩΘ is small. Shafer also looks at
the case where BPAs mθ,X are not independent, and some known distributions
describe the dependency.

Shafer [15] discusses conditionals abstractly as potentials that extend the
domain of a potential. He calls conditionals ‘continuers.’ Thus, ψ is a continuer
of σ from a to a ∪ b if and only if σ↓a⊕ψ = σ↓a∪b. Here, σ↓a denotes the marginal
of σ for a, ⊕ denotes Dempster’s combination operator, and a and b are disjoint
subsets of variables. The paper’s focus is on the computation of marginals, but
there are some interesting properties of continuers stated.

Cano et al. [3] define conditionals abstractly in the framework of valuation-
based systems, but they do require that the marginal m(b|a)↓a of conditional
m(b|a) is a vacuous valuation for a. The focus is on finding marginals by prop-
agating conditional valuations in a directed acyclic graph.

Shenoy [16] describes conditional valuations using the removal operator,
which is an inverse of the combination operator. For the D-S theory, the removal
operator corresponds to pointwise division of commonality functions followed by
normalization. If σ is a BPA for subset s of variables, and a and b are disjoint
subsets of s, then conditional belief function σ(b|a) is defined as σ↓a∪b � σ↓a. A
consequence of this definition is that the marginal of σ(b|a) for a is vacuous for
a. One disadvantage of this definition is that conditionals are defined starting
from the joint. This is not helpful in constructing joint belief functions. We say
σ↓a is included in σ↓a∪b if σ↓a∪b = σ↓a ⊕ σ(b|a). Another disadvantage is that if
σ↓a is not included in σ↓a∪b, σ(b|a) may result in a BPA with negative masses.
Such BPAs are called quasi-BPAs1.

Almond [1] defines conditional belief functions as those obtained from a joint
BPA by Dempster’s conditioning and marginalization. Suppose mX,Y is a BPA
for (X,Y ). He defines the corresponding conditional BPA mY |x, where x ∈ ΩX as
follows. Suppose mX=x is a deterministic BPA for X such that mX=x({x}) = 1.
Then mY |x is defined as (mX,Y ⊕ mX=x)↓X . He then discusses the problem
of going from conditionals to joint and argues that there isn’t a unique joint
associated with a group of conditionals, e.g., {mY |x}x∈ΩX

. Smets’ conditional
embedding is discussed whereby a conditional BPA mY |x for Y is embedded into
a BPA mx,Y for (X,Y ) (details of Smets’ conditional embedding are discussed in
Sect. 3). Next, BPA mY |X for (X,Y ) is constructed from conditional embeddings
mx,Y for x ∈ ΩX as follows:

mY |X = ⊕{mx,Y : x ∈ ΩX}. (1)

1 This phenomenon has been observed, e.g., in [11,16], and [12]. An example is given
in [10].
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Equation (1) implicitly assumes that the conditionally embedded BPAs mx,Y

are distinct. Almond claims this assumption is unrealistic except for the case
where we start from conditional BPAs mY |x that are Bayesian.

Xu and Smets [19] discuss conditionals mY |a for Y when proposition a is
observed, where ∅ �= a ∈ 2ΩX . Let ma,Y denote the BPA for (X,Y ) after con-
ditional embedding of mY |a. [1] and [19] discuss Dempster’s combination of all
such conditionals:

⊕ {ma,Y : ∅ �= a ∈ 2ΩX }. (2)

While it may be reasonable to assume that mx,Y for x ∈ ΩX are distinct as
in Eq. (1), assuming that all BPAs ma,Y for ∅ �= a ∈ 2ΩX are distinct may be
unreasonable. The focus of [19] is on computing marginals.

We do not start with a joint BPA when constructing a directed graphical
belief function model. Instead, we construct a joint BPA using priors and condi-
tionals. In this context, the current definitions in the literature are not helpful.
What exactly is a conditional BPA? What are their properties? This is the pri-
mary goal of this article.

An outline of the remainder of the paper is as follows. In Sect. 2, we review
the basics of D-S theory. In Sect. 3, we define conditional belief functions, and
state some properties. Also, we describe where conditionals come from, including
Smets’ conditional embedding. We describe Almond’s captain’s problem [1], a
directed graphical belief function model with several examples of conditionals.
In Sect. 4, we conclude with a summary.

2 Basics of D-S Theory of Belief Functions

This section sketches the basics of the D-S theory of belief functions [4,13].
Knowledge is represented by basic probability assignments, belief functions,

plausibility functions, commonality functions, credal sets, etc. Here we focus only
on basic probability assignments and commonality functions.

Consider a set s of variables. For each X ∈ s, let ΩX denote its finite state
space, and let Ωs denote ×X∈sΩX . Let 2Ωs denote the set of all subsets of Ωs.
A basic probability assignment (BPA) m for s is a function m : 2Ωs → [0, 1] such
that

m(∅) = 0, and
∑

∅�=a∈2Ωs

m(a) = 1. (3)

m represents some knowledge about variables in s, and we say the domain of
m is s. m(a) is the probability assigned to the proposition represented by the
subset a of Ωs. Subsets a such that m(a) > 0 are called focal elements of m. If
m has only one focal element (with probability 1), we say m is deterministic. If
the focal element of a deterministic BPA is Ωs, we say m is vacuous.

The knowledge encoded in a BPA m can be represented by a corresponding
commonality function. The commonality function (CF) Qm corresponding to
BPA m for s is such that for all a ∈ 2Ωs ,

Qm(a) =
∑

b⊇a

m(b). (4)
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Qm(a) represents the probability mass that could move to every state in a. Qm

has exactly the same information as m. Given a CF Q for s, we can recover the
corresponding BPA mQ for s as follows [13]: For all a ∈ 2Ωs ,

mQ(a) =
∑

b∈2Ωs :b⊇a

(−1)|b\a|Q(b). (5)

Thus, Q : 2Ωs → [0, 1] is a CF for s if and only if

Q(∅) = 1 (6)
∑

b∈2Ωs :b⊇a

(−1)|b\a|Q(b) ≥ 0 for all ∅ �= a ∈ 2Ωs , and (7)

∑

∅�=a∈2Ωs

(−1)|a|+1 Q(a) = 1. (8)

Equation (6) follows from Eq. (4), Eq. (7) corresponds to non-negativity of BPA
values, and Eq. (8) corresponds to the second equation in Eq. (3).

There are two basic inference operators in the D-S theory, marginalization
and combination.

Suppose m is a BPA for a set of variables r with state space Ωr = ×X∈rΩX

and suppose s ⊆ r. The marginalization operator transforms a BPA m for r to
a BPA m↓s for s by eliminating variables in r \ s. Projection of states means
dropping some coordinates. If (x, y) ∈ ΩX,Y , then (x, y)↓X = x. Projection of
subset of states is achieved by projecting every state in the subset. Suppose
a ∈ 2ΩX,Y . Then, a↓X = {x ∈ 2ΩX : (x, y) ∈ a}. Suppose m is a BPA for r.
Then, the marginal of m for s ⊆ r, denoted by m↓s, is a BPA for s such that for
each a ∈ 2Ωs ,

m↓s(a) =
∑

b∈2Ωr :b↓s=a

m(b). (9)

Dempster’s combination rule is described using commonality functions. Con-
sider two distinct BPAs m1 for r and m2 for s, and let Q1 and Q2 denote the cor-
responding commonality functions. Then, as showed in [13], for all ∅ �= a ∈ 2Ωr∪s

(Q1 ⊕ Q2)(a) = K−1Q1(a↓r)Q2(a↓s), (10)

where K is a normalization constant defined as follows:

K =
∑

∅�=a∈Ωr∪s

(−1)|a|+1Q1(a↓r)Q2(a↓s). (11)

(1 − K) can be regarded as a measure of conflict between m1 and m2. If K =
1, there is no conflict, and if K = 0, there is total conflict and Dempster’s
combination Q1 ⊕ Q2 is undefined.

It is easy to show that Dempster’s combination is commutative and associa-
tive: m1 ⊕ m2 = m2 ⊕ m1, and (m1 ⊕ m2) ⊕ m3 = m1 ⊕ (m2 ⊕ m3).

There is an important property satisfied by marginalization and Dempster’s
combination rule called the local computation property [17]. Suppose m1 is a
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BPA for r and m2 is a BPA for s (subsets r and s may not be disjoint) and
suppose X ∈ r and X /∈ s. Then,

(m1 ⊕ m2)↓(r∪s)\{X} = (m1)↓r\{X} ⊕ m2 (12)

This property is the basis of computing marginals of joint belief functions. [6]
describes an implementation of a local computation algorithm for computing
marginals of graphical belief function models.

Next, we define the removal operator, which is motivated by the following
situation in probability theory. Suppose PX,Y is a joint probability mass function
(PMF) for (X,Y ), and we need to compute the conditional probability table
(CPT) PY |X . We know that PX,Y = PX ⊗ PY |X , where PX = (PX,Y )↓X is the
marginal PMF for X, and ⊗ is the probabilistic combination operator pointwise
multiplication followed by normalization. This suggests that PY |X = PX,Y �PX ,
where � is the inverse combination operator, pointwise division followed by
normalization. If PX(x) = 0, then PX,Y (x, y) must also be zero, and we can
consider 0/0 as undefined (using the symbol 0/0 = ?) or define it as 1. Thus, if
we regard combination ⊗ as aggregation of knowledge, then � can be regarded as
removal of knowledge, and computing a CPT PY |X is removing PX from PX,Y .

As we saw in Eq. (10), Dempster’s combination is pointwise multiplication of
CFs followed by normalization. Thus, removal in the D-S theory can be defined
as pointwise division of CFs followed by normalization. Formally, suppose QX,Y

is a joint CF for (X,Y ), and let QX = (QX,Y )↓X denote the marginal CF for
X. Then, we define removal of QX from QX,Y as follows: For all ∅ �= a ∈ 2ΩX,Y ,

(QX,Y � QX)(a) = K−1 QX,Y (a)/QX(a↓X), (13)

where K is a normalization constant given by:

K =
∑

∅�=a∈2ΩX,Y

(−1)|a|+1 QX,Y (a)/QX(a↓X) (14)

As in the probabilistic case, if QX(a↓X) = 0, then QX,Y (a) must also be 0, and
we can define 0/0 as 1.

Unlike probability theory, if we start with an arbitrary joint CF QX,Y , then
QX,Y � QX may fail to be a CF because the corresponding BPA has negative
masses adding to 12. In the next section, we state a proposition that characterizes
when removal results in a well-defined CF.

3 Conditional Belief Functions

This section defines a conditional belief function similar to a conditional proba-
bility table in probability theory without starting from a joint distribution. Our
task is constructing a joint using conditional belief functions as in a graphical
model. We begin with the probabilistic case.
2 An example is given in [10].
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Suppose PX denotes a PMF of X, and we wish to construct a joint PMF
PX,Y of (X,Y ) such that PX is the marginal of PX,Y for X (as is typically done
in a probabilistic graphical model). One way to do this is to define a PMF of
Y for each x ∈ ΩX such that3 PX(x) > 0. Let PY |x : ΩY → [0, 1] denote a
PMF of Y when X is known to be x, i.e., for all y ∈ ΩY , PY |x(y) ≥ 0 and∑

y∈ΩY
PY |x(y) = 1. We can embed all PMFs PY |x of Y for each x ∈ ΩX

into a function PY |X : ΩX,Y → [0, 1] such that PY |X(x, y) = PY |x(y). In the
Bayesian network literature, the function PY |X is called a CPT. The joint PMF
PX,Y of (X,Y ) can now be defined as PX,Y (x, y) = PX(x) · PY |X(x, y). Some
observations:

1. Notice that if we marginalize the CPT PY |X to X, then we get a potential
that is identically 1 for all values of x ∈ ΩX , which is the vacuous potential
in probability theory.

2. If we consider probabilistic combination operator ⊗ as pointwise multiplica-
tion followed by normalization, then we can write PX,Y = PX ⊗ PY |X . The
normalization constant is 1 for this combination.

3. It follows from the first observation that the marginal of PX,Y for X is PX .
So, the CPT PY |X is used to extend PX to PX,Y such that the marginal
(PX,Y )↓X = PX .

A formal definition of a conditional belief function for Y given X in the D-S
theory follows.

Definition 1. Suppose mY |X is a BPA for (X,Y ), where X and Y are distinct
variables. We say mY |X is a conditional BPA for Y given X if and only if

1. (mY |X)↓X is a vacuous BPA for X, and
2. for any BPA mX for X, mX and mY |X are distinct. Thus, mX ⊕ mY |X is a

BPA for (X,Y ).

The first condition says that mY |X tells us nothing about X. We will refer to
the BPA mX ⊕ mY |X as the joint BPA for (X,Y ) and denote it by mX,Y .
It follows from the local computation property (Eq. (12)) that (mX,Y )↓X =
(mX ⊕ mY |X)↓X = mX ⊕ (mY |X)↓X = mX . Thus, the second condition says
the conditional mY |X allows us to extend any BPA mX for X to a joint BPA
mX,Y for (X,Y ) without changing its marginal for X. Notice that mX and
mY |X are non-conflicting, i.e., the normalization constant K in mX ⊕ mY |X is
1 (Eq. (11)).

Given a conditional BPA mY |X for Y given X, we will refer to Y as the head
of the conditional, and X as the tail. A conditional describes the dependency
between the head and tail variables. Although we have defined a conditional BPA
with the head and tail being single variables, the definition generalizes when the
head and tail are disjoint subsets of variables.

3 If PX(x) = 0, then the conditional has no effect on the joint, and 0/0 can be left
undefined, or defined as 1.
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Definition 2. Suppose r and s are disjoint subsets of variables, and ms|r is a
BPA for r ∪ s. We say ms|r is a conditional BPA for s given r if and only if

1. (ms|r)↓r is a vacuous BPA for r, and
2. for any BPA mr for r, mr and ms|r are distinct. Thus, mr ⊕ ms|r is a BPA

for r ∪ s.

In a directed graphical belief function model, we have a conditional associated
with each variable X in the model. The head of the associated condition is X,
and the tail consists of the parents of X. For variables with no parents, we have
priors associated with such variables. For convenience, we can consider priors as
conditionals with empty tails. For such BPAs, the first condition in the definition
is trivially true as the sum of the probability masses in a BPA is 1.

Properties of Conditionals. The following lemma was stated in [16] where condi-
tionals were defined using an inverse of the combination operator called removal.
Here we prove the same results using the definition of conditionals above that
include only combination and marginalization.

Lemma 1. Suppose r, s, and t are disjoint subsets of variables. Let mr denote
a BPA for r, ms|r denote a conditional BPA with head s and tail r, etc. Then,
the following statements are true.

1. mr ⊕ ms|r ⊕ mt|r∪s = mr∪s∪t.
2. ms|r ⊕ mt|r∪s = ms∪t|r.
3. Suppose s′ ⊆ s. Then, (ms|r)↓r∪s′

= ms′|r.
4. (ms|r ⊕ mt|r∪s)↓r∪t = mt|r.

Proof. 1. mr, ms|r, and mt|r∪s are all distinct by definition of conditionals.
Thus,
mr ⊕ ms|r ⊕ mt|r∪s = (mr ⊕ ms|r) ⊕ mt|r∪s = mr∪s ⊕ mt|r∪s = mr∪s∪t.

2. Let ιr denote the vacuous BPA for r. Using the local computation property,

(ms|r ⊕ mt|r∪s)↓r = ((ms|r ⊕ mt|r∪s)↓r∪s)↓r = (ms|r ⊕ (mt|r∪s)↓r∪s)↓r

= (ms|r ⊕ ιr∪s)↓r = (ms|r)↓r = ιr.

Suppose mr is a BPA for r. Then, it follows from Statement 1 that mr ⊕
(ms|r ⊕ mt|r∪s) = mr∪s∪t.

3. First, notice that ((ms|r)↓r∪s′
)↓r = (ms|r)↓r = ιr. Suppose mr is a BPA

for r. As mr and ms|r are distinct, mr and ms′|r are distinct. Thus, mr ⊕
(ms|r)↓r∪s′

= mr∪s′ .
4. Using the local computation property,

((ms|r ⊕ mt|r∪s)↓r∪t)↓r = ((ms|r ⊕ mt|r∪s)↓r∪s)↓r = (ms|r ⊕ (mt|r∪s)↓r∪s)↓r

= ((ms|r ⊕ ιr∪s)↓r = (ms|r)↓r = ιr.

Suppose mr is a BPA for r. As mr, ms|r, and mt|r∪s are all distinct,

mr ⊕ (ms|r ⊕mt|r∪s)↓r∪t = (mr ⊕ms|r ⊕mt|r∪s)↓r∪t = (mr∪s∪t)↓r∪t = mr∪t.

�
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Where do Conditionals Come From? A conditional BPA mr|s describes the
relationship between the variables in r and s. One source of conditionals is
Smets’ conditional embedding [18]. To describe conditional embedding, consider
the case of two variables X and Y . To describe the dependency between X and
Y , suppose that when X = x, our belief in Y is described by a BPA mY |x for
Y . Thus, mY |x : 2ΩY → [0, 1] such that

∑
a∈2ΩY mY |x(a) = 1. The BPA mY |x

for Y needs to be embedded into a BPA mx,Y for (X,Y ) such that

1. mx,Y is a conditional BPA for (X,Y ), i.e., (mx,Y )↓X is vacuous BPA for X,
and

2. when we add the belief that X = x and marginalize the result to Y , we obtain
mY |x.

One way to do this is to take each focal element b ∈ 2ΩY of mY |x, and convert
it to the corresponding focal element

({x} × b) ∪ ((ΩX \ {x}) × ΩY ) ∈ 2ΩX,Y (15)

of BPA mx,Y for (X,Y ) with the same mass. It is easy to confirm that this
method of embedding satisfies both conditions mentioned above. If we have sev-
eral distinct conditionals, e.g., mY |x1 , mY |x2 , etc., where x1, and x2 are distinct
values of X, then we do conditional embedding of each of these BPAs and then
combine the embeddings by Dempster’s combination rule to obtain mY |X . An
example of conditional embedding follows.

Example 1 (Conditional embedding). Consider binary variables X and Y , with
ΩX = {x, x̄} and ΩY = {y, ȳ}. Suppose we have a BPA mY |x for Y given X = x
as follows:

mY |x(y) = 0.8, mY |x(ΩY ) = 0.2,

then its conditional embedding into the conditional BPA mx,Y for (X,Y ) is as
follows:

mx,Y ({(x, y), (x̄, y), (x̄, ȳ)}) = 0.8, mx,Y (ΩX,Y ) = 0.2.

Similarly, if we have a BPA mY |x̄ for Y given X = x̄ as follows:

mY |x̄(ȳ) = 0.3, mY |x̄(ΩY ) = 0.7,

then its conditional embedding into the conditional BPA mx̄,Y for (X,Y ) is as
follows:

mx̄,Y ({(x, y), (x, ȳ), (x̄, ȳ)}) = 0.3, mx̄,Y (ΩX,Y ) = 0.7.

Assuming we have these two BPAs, and their corresponding embeddings, it
is clear that the two BPA mx,Y and mx̄,Y are distinct, and can be combined
with Dempster’s rule of combination, resulting in the conditional BPA mY |X =
mx,Y ⊕ mx̄,Y for (X,Y ). mY |X has the following properties. First, (mY |X)↓X =
ιX , where ιX denotes the vacuous BPA for X. Second, if we combine mY |X with
deterministic BPA mX=x({x}) = 1 for X, and marginalize the combination to Y ,
then we get mY |x, i.e., (mY |X ⊕mX=x)↓Y = mY |x. Third, (mY |X ⊕mX=x̄)↓Y =
mY |x̄. mY |X is the belief function equivalent of CPT PY |X in probability theory.

�
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In probability theory, a joint distribution PX,Y can always be factored into
marginal PX = (PX,Y )↓X and a conditional PY |X such that PX,Y = PX ⊗PY |X .
This is not true in the D-S theory. The following proposition describes when a
joint belief function can be factored into a marginal and a conditional.

Proposition 1. Suppose mX,Y is a BPA for {X,Y } with corresponding CF
QmX,Y

. Let mX denote the marginal of mX,Y for X, i.e., mX = (mX,Y )↓X .
Then, QmX,Y

� QmX
is a CF if and only if there exists a BPA m for {X,Y }

such that mX,Y = mX ⊕ m, and m is a conditional for Y given X.

A proof of this proposition can be found in [8]. The proposition states that if we
remove BPA mX from mX,Y such that mX is included in mX,Y in the sense that
mX,Y is Dempster’s combination of the marginal mX for X and a conditional
m for Y given X, then such removal always results in a well-defined CF.

Smets’ conditional embedding is only one way to obtain conditionals. Black
and Laskey [2] propose other methods to get conditionals. The following example
from [1], called the captain’s problem, has many examples of conditionals. The
description of Almond’s captain’s problem is taken from [9].

Example 2 (Captain’s problem). A ship’s captain is concerned about how many
days his ship may be delayed before arrival at a destination. The arrival delay is
the sum of departure delay and sailing delay. Departure delay may be a result of
maintenance (at most one day), loading delay (at most one day), or a forecast
of bad weather (at most one day). Sailing delays may result from bad weather
(at most one day) and whether repairs are needed at sea (at most one day).
If maintenance is done before sailing, chances of repairs at sea are less likely.
The forecast is 80% reliable. The captain knows the loading delay and whether
maintenance is done before departure.

Fig. 1. The directed acyclic graph for the captain’s problem. The Greek alphabets
adjacent to a variable denote the prior or conditional or evidence associated with the
variable.



216 R. Jiroušek et al.

Table 1. The variables, their state spaces, and associated conditionals in the captain’s
problem.

Variable Name State space, Ω Associated conditional

W Actual weather {gw, bw} vacuous for W

F Forecasted weather {gf , bf} φ1 for F |W
L Loading delay? {tl, fl} λ for L

M Maintenance done? {tm, fm} μ for M

R Repair at sea needed? {tr, fr} ρ1, ρ2 for R given M = tm, tf , resp.

D Departure delay (in days) {0, 1, 2, 3} δ for D|{F, L, M}
S Sailing delay (in days) {0, 1, 2, 3} σ for S|{W, R}
A Arrival delay (in days) {0, 1, 2, 3, 4, 5, 6} α for A|{D, S}

Table 1 describes the variables, their state spaces, and associated condition-
als, and Fig. 1 shows the directed acyclic graph associated with this problem.
The details of some of the conditional BPAs are as follows.

1. Weather forecast is 80% accurate. φ1 is a conditional BPA for F given W .

φ1({(gw, gf ), (bw, bf )}) = 0.8, φ1(ΩW,F ) = 0.2.

2. Bad weather and repair at sea each adds a day to sailing delay. This propo-
sition is true 90% of the time. σ is a conditional for S given (W,R).

σ({(gw, fr, 0), (bw, fr, 1), (gw, tr, 1), (bw, tr, 2)}) = 0.9, σ(ΩW,R,S) = 0.1.

3. Departure delay may be a result of maintenance (at most 1 day), loading
delay (at most 1 day), or a forecast of bad weather (at most 1 day). δ is a
deterministic conditional BPA for D given {F,L,M}.

δ({(gf , fl, fm, 0), (bf , fl, fm, 1), (gf , tl, fm, 1), (gf , fl, tm, 1),
(bf , tl, fm, 2), (bf , fl, tm, 2), (gf , tl, tm, 2), (bf , tl, tm, 3)}) = 1.

4. The arrival delay is the sum of departure delay and sailing delay. α is a
deterministic conditional BPA for A given {D,S}.

α({(0, 0, 0), (0, 1, 1), (0, 2, 2), (0, 3, 3), (1, 0, 1), (1, 1, 2), (1, 2, 3), (1, 3, 4),

(2, 0, 2), (2, 1, 3), (2, 2, 4), (2, 3, 5), (3, 0, 3), (3, 1, 4), (3, 2, 5), (3, 3, 6)}) = 1.

4 Summary and Conclusions

We have explicitly defined conditionals in the D-S theory using only the
marginalization and Dempster’s combination operators. The main goal of the
definition is to enable the construction of directed graphical belief function
models. Conditional belief functions are also defined in [16] using an inverse of
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Dempster’s combination operator called removal. Since Dempster’s combination
is pointwise multiplication of commonality functions followed by normalization,
removal consists of division of commonality functions followed by normalization.
Thus, mY |X = mX,Y � mX . One issue with this definition is that a conditional
BPA is defined starting from a joint BPA, which is not useful in constructing
a joint BPA. Another issue is that if mX is not already included in mX,Y , the
removal operation may result in a BPA with negative masses. We have stated
some properties of conditionals given in [16] and these properties remain valid
using our definition. Smets’ conditional embedding [18] is one way to obtain
conditionals. There are other ways to obtain conditionals, and some examples of
conditionals are described using Almond’s captain’s problem [1].
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Abstract. Bayesians and frequentists are now largely focused on devel-
oping methods that perform well in a frequentist sense. But the widely-
publicized replication crisis suggests that performance guarantees are
not enough for good science. In addition to reliably detecting hypotheses
that are incompatible with data, users require methods that can probe
for hypotheses that are actually supported by the data. In this paper, we
demonstrate that valid inferential models achieve both performance and
probativeness properties. We also draw important connections between
inferential models and Deborah Mayo’s severe testing.

Keywords: Bayesian · Frequentist · p-value · Possibility measure ·
Severity

1 Introduction

Important decisions affecting our everyday experiences are increasingly data-
driven. But is data helping us make better decisions? The widely-publicized
replication crisis in science raises serious concerns, e.g., the American Statistical
Association’s president commissioned a formal Statement on Statistical Signifi-
cance and Replicability.1 The lack of any clear guidance in that statement reveals
that there are important and fundamental questions concerning the foundations
of statistical inference that remain unanswered:

Should probability enter to capture degrees of belief about claims? ... Or
to ensure we won’t reach mistaken interpretations of data too often in the
long run of experience? (Mayo 2018, p. xi)

The two distinct roles of probability above correspond to the classical frequen-
tist and Bayesian schools of statistical inference, which have two fundamentally
different priorities, referred to here as performance and probativeness, respec-
tively. Over the last 50+ years, however, the lines between the two perspectives
1 https://magazine.amstat.org/blog/2021/08/01/task-force-statement-p-value/.
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and their distinct priorities have been blurred. Indeed, both Bayesians and fre-
quentists now focus almost exclusively on performance. Such considerations are
genuinely important for the logic of statistical inference:

even if an empirical frequency-based view of probability is not used directly
as a basis for inference, it is unacceptable if a procedure. . . of representing
uncertain knowledge would, if used repeatedly, give systematically mislead-
ing conclusions (Reid and Cox 2015, p. 295).

As the replication crisis has taught us, there is more to inference than achieving,
say, Type I and II error rate control. Beyond performance, we are also concerned
with probativeness, i.e., can methods probe for hypotheses that are genuinely
supported by the observed data? Modern statistical methods cannot achieve both
performance and probativeness objectives, so a fully satisfactory framework for
scientific inferences requires new perspectives.

To set the scene, denote the observable data by Y . The statistical model
for Y will be denoted by PY |θ, where θ ∈ Θ is an unknown model parameter.
Note that the setup here is quite general: Y , θ, or both can be scalars, vectors,
or something else. We focus here on the typical case where no genuine prior
information is available/assumed. So, given only the model {PY |θ : θ ∈ Θ} and
the observed data Y = y, the goal is to quantify uncertainty about the unknown θ
for the purpose of making inference. For concreteness, we will interpret “making
inference” as making (data-driven) judgments about hypotheses concerning θ.
Let H denote a collection of subsets of Θ, containing the singletons and closed
under complementation, and associate H ∈ H with a hypothesis about θ.

Section 2.1 briefly describes the Bayesian vs. frequentist two-theory problem in
our context of hypothesis testing. There we justify our above claim that modern
statistical methods fail to meet both the performance and probativeness objec-
tives. This includes the default-prior Bayes solution that aims to strike a balance
between the two theories. What holds the default-prior Bayes solution back from
meeting the performance and probativeness objectives is its lack of calibration,
which is directly related to the constraint that the posterior distribution be a
precise probability. Fortunately, the relatively new inferential model (IM) frame-
work, reviewed briefly in Sect. 2.2 below, is able to achieve greater flexibility by
embracing a certain degree of imprecision in its construction. Our main contri-
bution here, in Sect. 3, is to highlight the IM’s ability to simultaneously achieve
both performance and probabitiveness. Two illustrations are presented in Sect. 4
and some concluding remarks are given in Sect. 5.

The probativeness conclusion is a direct consequence of the IM output’s
imprecision. That the additional flexibility of imprecision creates opportunities
for more nuanced judgments is one of the motivations for accounting for impre-
cision, so this is no big surprise. But our contribution here is valuable for several
reasons. First, the statistical community is aware of this need to see beyond basic
performance criteria (e.g., Mayo 2018), but no clear, general, and easy-to-follow
guidance has been offered. What we are suggesting here, however, is simple: just
follow the general theory of valid IMs and you get both performance and pro-
bativeness assurances. Second, it showcases the importance of the role of belief
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functions and imprecise probability more generally, by reinforcing the key point
that imprecision is not due to an inadequate formulation of the problem, but,
rather, an essential part of the complete solution.

2 Background

2.1 Two-Theory Problem

In a nutshell, the two dominant schools of thought in statistics are as follows.

Bayesian. Uncertainty is quantified directly through specification of a prior
probability distribution for θ, representing the data analyst’s a priori degrees
of belief. Bayes’s theorem is then used to update the prior to a data-dependent
posterior distribution for θ. The posterior probability of a hypothesis H rep-
resents the analyst’s degree of belief in the truthfulness of H, given data, and
would be essential for inference concerning H. That is, the magnitudes of the
posterior probabilities naturally drive the data analyst’s judgments about which
hypotheses are supported by the data and which are not.

Frequentist. Uncertainty is quantified indirectly through the use of reliable
procedures that control error rates. Consider, e.g., a p-value for testing a hypoth-
esis H. What makes such a p-value meaningful is that, by construction, it tends
to be not-small when H is true. Therefore, observing a small p-value gives the
data analyst reason to doubt the truthfulness of H:

The force with which such a conclusion is supported is logically that of the
simple disjunction: Either an exceptionally rare chance has occurred, or
[the hypothesis] is not true (Fisher 1973, p. 42).

The p-value does not represent the “probability of H” in any sense. So, a
not-small (resp. small) p-value cannot be interpreted as direct support for H
(resp. Hc) or any sub-hypothesis thereof.

The point is that, at least in principle, Bayesians focus on probativeness
whereas frequentists focus on performance. But the line between frequentist and
modern Bayesian practice is not so clear. Even Bayesians typically assume little
or no prior information, as we have assumed here, so default priors are the norm
(e.g., Berger 2006; Jeffreys 1946). But with a default prior, the “degree of belief”
interpretation or the posterior probabilities is lost,

[Bayes’s theorem] does not create real probabilities from hypothetical prob-
abilities (Fraser 2014, p. 249)

and, along with it, the probative nature of inferences based on them,

...any serious mathematician would surely ask how you could use [Bayes’s
theorem] with one premise missing by making up an ingredient and think-
ing that the conclusions of the [theorem] were still available (Fraser 2011,
p. 329).
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The default-prior Bayes posterior probabilities could still have performance
assurances if they were suitably calibrated. But the false confidence theorem
of Balch et al. (2019) shows that this is not the case: there exists false hypothe-
ses to which the posterior distribution tends to assign large probabilities. This
implies that inferences based on the magnitudes of default-prior Bayes posterior
probabilities can be “systematically misleading” (cf. Reid and Cox). This is per-
haps why modern Bayesian analysis focuses less on the posterior probabilities
and more on the performance of procedures (tests and credible sets) derived from
the posterior. Hence modern Bayesians and frequentists are not so different.

The key take-away message is as follows. Frequentist methods focus on detect-
ing incompatibility between data and hypotheses (performance), so they do not
offer any guidance on how to identify hypotheses actually supported by the
data (probativeness). Default-prior Bayesian methods are effectively no differ-
ent, so this critique applies to them too. More specifically, the default-prior Bayes
posterior probabilities lack the calibration necessary to reliably check for either
incompatibility or support. Therefore, neither of the dominant schools of thought
in statistical inference are able to simultaneously achieve both the performance
and probativeness objectives.

2.2 Inferential Models Overview

Inferential models (IMs) were first developed in Martin and Liu (2013, 2015) to
balance the Bayesians’ desire for belief assignments and the frequentists’ desire
for error rate control. A key distinction between IMs and the familiar Bayesian
and frequentist frameworks is that the output is an imprecise probability or, more
specifically, a necessity–possibility measure pair. This imprecision, however, is
not the result of an inability to precisely specify a model, etc., it is a necessary
condition for inference to be valid in the sense defined in Sect. 3 below.

Possibility is an entirely different idea from probability, and it is some-
times, we maintain, a more efficient and powerful uncertainty variable,
able to perform semantic tasks which the other cannot (Shackle 1961,
p. 103).

The false confidence theorem establishes that validity cannot be achieved via
ordinary probability. More recently it has been shown that the possibility-
theoretic formulation is key to achieving the relevant performance-related prop-
erties.

The original IM construction put forward in Martin and Liu (2013) relied on
suitable random sets, whereas Liu and Martin (2021) recently offered a direct
construction using possibility measures. The latter construction starts by associ-
ating data Y and unknown parameter θ with an unobservable auxiliary variable
U with known distribution PU via the formula

A(Y, θ, U) = 0, U ∼ PU .

Let π denote a plausibility contour on the U -space such that the corresponding
possibility measure is consistent with PU in the sense that PU (B) ≤ supu∈B π(u)
for all subsets B. Now define its extension to Θ as
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πy(ϑ) = sup
u:A(y,ϑ,u)=0

π(u), ϑ ∈ Θ.

Assuming this is a genuine/normal contour, then it defines an IM for θ having
the mathematical form of a possibility measure with upper probability

Πy(H) = sup
ϑ∈H

πy(ϑ), H ⊆ Θ,

and lower probability Πy(H) = 1 − Πy(Hc). The IM’s output is meaningful
thanks to the properties it satisfies, which we discuss in Sect. 3. The performance-
related properties have been the focus in previous work, but it is interesting that
the performance properties together with the inherent imprecision in the IM’s
possibilistic output leads to probativeness properties too.

3 Two P’s in the Same Pod

3.1 Performance

As discussed above, the property that gets the most attention in the statistics
literature is performance, i.e., procedures developed for the purpose of making
inference-related decisions (e.g., accept or reject a hypothesis) have error rate
control guarantees. This is genuinely important: if statistical methods are not
even reliable, then they have no hope of helping to advance science.

Our main result here, which is not new, is that procedures derived from a
valid IM achieve the desired performance-related properties. As presented in the
reference given in Sect. 2.2 above, we say that an IM without lower and upper
probability output y �→ (Πy,Πy) is valid if

sup
θ∈H

PY |θ{ΠY (H) ≤ α} ≤ α, for all α ∈ [0, 1] and allH ∈ H. (1)

This means that, with respect to the model PY |θ, it is a relatively rare event
that the IM assigns relatively small upper probability to a true hypothesis about
θ. Property (1) closely resembles the defining stochastically-no-smaller-than-
uniform property of p-values. As such, Fisher’s “logical disjunction” argument
also applies to the valid IM’s output, giving it objective meaning.

Although we are not aware of Fisher ever making such a statement, we believe
that Fisher’s disdain for the Neyman-style behavioral approach to statistical
inference at least partially stemmed from the fact that such properties would
be immediate consequences of the calibration needed for his “disjunction” argu-
ment to apply. So if Fisher’s calibration is satisfied, then Neyman’s error rate
control is a corollary. Indeed, if the IM with output (Πy,Πy), with corresponding
plausibility contour πy, is valid in the sense of (1), then

– for any fixed α ∈ (0, 1), the test “reject H if and only if Πy(H) ≤ α” controls
the frequentist Type I error probability at level α, and



224 L. Cella and R. Martin

– for any fixed α ∈ (0, 1), the set Cα(y) = {ϑ : πy(ϑ) > α} is a 100(1 − α)%
confidence set, i.e., its frequentist coverage probability at least 1 − α.

These claims are almost immediate consequences of (1); see, e.g., Martin (2021)
for a proof. Therefore, valid IMs offer performance guarantees.

Here it is also worth briefly pointing out that the connection between valid
IMs and performance guarantees is even more fundamental. It was recently
shown in Martin (2021) that every procedure with provable frequentist per-
formance guarantees has, working behind the scenes, a valid IM with the form
of a possibility measure. So, not only does the IM framework offer performance
guarantees, it is really the only framework that does so. This also highlights the
deep connections between frequentist inference and possibility theory.

3.2 Probativeness

The literature on IMs has largely focused on performance, i.e., that (1) implies
that the output is suitably calibrated which leads to the results quoted in
Sect. 3.1 above. While the IM output does, as discussed above, represent lower
and upper probabilities, or degrees of necessity/support and possibility, a clear
explanation of their post-data interpretation, and why non-additivity is valuable,
has yet to be given. This section aims to fill that gap.

Standard performance metrics, such as Type I and Type II error probabilities,
are not data-dependent and, therefore, cannot directly speak to whether the
actual observed data offer any direct support to a particular hypothesis. The IM
output returns both lower and upper probabilities but, so far, the literature has
largely only focused on one of these, typically the upper probability. Perhaps the
lower probability will be of some value after all.

Suppose that the data y is such that Πy(H) is relatively large, i.e., the data
are not incompatible with the hypothesis H. If, instead, Πy(H) were small, then
we can apply all of what we are about to describe to Hc instead of H. If we
determine that the data are not incompatible with H, then a natural follow-up
question is to ask if the data actually support the hypothesis H or any proper
subset, say, H ′ ⊂ H. For this, we propose to consider the lower probability

Πy(H ′) = 1 − Πy(H ′c) = 1 − sup{πy(ϑ) : ϑ 	∈ H ′},

where the right-most expression is exclusive to the case where the IM output
takes the form of a possibility measure, as we consider here. Coincidentally or
not, Shafer (1976, Ch. 11) refers to the lower probability function, H �→ Πy(H),
as a support function, which is consistent with how we propose to use it here. If
Πy(H) is not small, then Πy(H ′) ≤ Πy(H) can be small or (relatively) large, and
its magnitude determines the extent to which the data supports the truthfulness
of H ′, beyond just compatibility or plausibility. On the one hand, if Πy(H ′) is
small and Πy(H) is relatively large, then H ′ is plausible—or not incompatible—
with the data y but there is little direct support in y for its truthfulness. This
corresponds to a case with relatively large “don’t know” in the sense of Dempster
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(2008). On the other hand, if both Πy(H ′) and Πy(H) are relatively large, then
y is not only compatible with H, it also directly supports H ′.

What makes the “if Πy(H ′) is relatively large, then infer H ′” judgment
warranted? Readers familiar with imprecise probability might be surprised by
this question—this is precisely what lower probabilities are designed for—but
remember that Πy is not a subjective assessment of the data analyst’s degrees
of belief. So the data analyst should require, à la Reid and Cox, that their IM
will tend not to lead them to erroneous judgments. Like Πy is the dual to Πy,
there is a corresponding dual to the validity property (1):

sup
θ �∈H

PY |θ{ΠY (H) > 1 − α} ≤ α, for all α ∈ [0, 1] and allH ∈ H. (2)

It is easy to verify that (2) and (1) are equivalent, but it is worth considering both
versions because, while the latter refers primarily to assessments of compatibility
between data and hypotheses, the former is relevant to judgments about when
data actually support a certain hypothesis.

In Sect. 1, we remarked that there have been recent efforts by statisticians
to supplement the standard p-values, etc. with measures designed to probe for
hypotheses supported by the data. In particular, Mayo (2018) proposes a so-
called severity measure but only gives one concrete example. If we extrapolate
her suggestion beyond that one example, then it boils down to what we described
above. That is, the map H ′ �→ Πy(H ′) on subcollections of H can be used to
probe for hypotheses that are actually supported by the data.

There is, however, a minor difference between ours and Mayo’s perspective.
On the one hand, Mayo is thinking in terms of a specific test of a particular
hypothesis, so her severity measure is intended to describe how severe the test
is, how deep that tests probes for actual support in the data beyond just compat-
ibility or lack thereof. On the other hand, we are thinking in terms of big-picture
uncertainty quantification. In light of the fundamental connection between valid
IMs and frequentist inference, perhaps it is no surprise that Mayo’s proposal,
despite coming from a slightly different perspective, ends up directly aligning
with what the valid IM does automatically; see Sect. 4.1. It is now clear that
probabitiveness is inherent in the valid IM—no supplements needed!

4 Illustrations

4.1 Normal Mean

Mayo (2018, p. 142) describes a hypothetical water plant where the water it
discharges is intended to be roughly 150◦ Fahrenheit. More specifically, under
ideal settings, water temperature measurements ought to be normally distributed
with mean 150◦ and standard deviation 10◦. To test the water plant’s settings, a
sample Y = (Y1, . . . , Yn) of n = 100 water temperature measurements are taken;
then the sample mean, Ȳ , is N(150, 1). Since water temperatures higher than
150◦ might damage the ecosystem, of primary interest are hypotheses Hϑ =
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Fig. 1. Results of the valid IM applied to Mayo’s normal mean example; the red dots
correspond to the values in Table 3.1 of Mayo (2018) (Color figure online)

(−∞, ϑ] for ϑ near 150. For hypotheses of this form, the “optimal” IM (Martin
and Liu 2013, Sect. 4.3) has upper probability

Πy(Hϑ) = 1 − Φ(ȳ − ϑ), ϑ ∈ R,

where Φ denotes the standard normal distribution function.
Suppose we observe ȳ = 152, which is potentially incompatible with the

hypothesis H150. Indeed, a plot of the upper probability is shown in Fig. 1(a)
and we see that, at ϑ = 150, the upper probability is smaller than 0.05, so we
would be inclined to reject the hypothesis θ ≤ 150. To probe for support of
subsets of the alternative hypothesis, we also plot the lower probability

Πy(Hc
ϑ) = Φ(ȳ − ϑ), ϑ ∈ R,

and we see that there is, in fact, non-negligible support in the data for, say,
Hc

151 = (151,∞). These results agree exactly with the analysis presented in
Mayo (2018) based on her supplement of the ordinary p-value with a severity
measure. Mayo elaborates on this example in a couple different ways but, for the
sake of space, suffice it to say that our analysis perfectly agrees with hers.

4.2 Bivariate Normal Correlation

Suppose that Y consists of n independent and identically distributed pairs Yi =
(Y1,i, Y2,i) having a bivariate normal distribution with zero means, unit variances,
and correlation θ ∈ [−1, 1]. Let PY |θ denote the corresponding joint distribution.
An asymptotic pivot based on the maximum likelihood estimator, θ̂, can be
constructed and the corresponding Wald test would look very similar to that
in Sect. 4.1. This bivariate normal correlation problem, however, corresponds to
one of those “curved exponential families” where θ̂ is not a sufficient statistic
so some efficiency is lost in the Wald test for finite n. So we take a different
approach here, which extends us beyond the cases Mayo considers.
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Fig. 2. Results of the valid IM applied to Efron’s law school admissions data.

Let ϑ �→ Ly(ϑ) denote the likelihood function for θ based on data y. Follow-
ing Martin (2015, 2018), a valid IM can be constructed based on the relative
likelihood, ry(ϑ) = Ly(ϑ)/Ly(θ̂), with plausibility contour function

πy(ϑ) = PY |ϑ{rY (ϑ) ≤ ry(ϑ)}, ϑ ∈ [−1, 1].

This resembles the p-value function for a suitable likelihood ratio test. The IM’s
output, (Πy,Πy), is determined by optimizing the contour function.

As an illustration of the ideas presented above, consider the law school admis-
sions data analyzed in Efron (1982), which consists of n = 15 data pairs with
Y1 = LSAT scores and Y2 = undergrad GPA. For our analysis, we standardize
these so that the mean zero–unit variance is appropriate. Of course, this stan-
dardization has no effect on the correlation, which is our object of interest. In
this case, the sample correlation is 0.776; the maximum likelihood estimator,
which has no closed-form expression, is θ̂ = 0.789. A plot of the plausibility
contour πy for this data is shown in Fig. 2(a). The horizontal line at α = 0.05
determines the 95% plausibility interval, which is an exact 95% confidence inter-
val. It is clear that the data shows virtually no support for θ = 0, but there is
some marginal support for the hypothesis H = (0.5, 1]. To probe this further,
consider the class of sub-hypotheses Hϑ = (ϑ, 1], ϑ > 0.5. A plot of the function
ϑ �→ Πy(Hϑ) is shown in Fig. 2(b). As expected from Panel (a), the latter func-
tion is decreasing in ϑ and we clearly see no support for Hϑ as soon as ϑ ≥ θ̂.
But there is non-negligible support for Hϑ with ϑ less than, say, 0.65–0.70.

5 Conclusion

Here we showed that there is more to the IM framework than what has been pre-
sented in the existing literature. Specifically, the validity property, together with
its inherent imprecision implies both performance and probativeness assurances.
This is of special interest to the belief function/possibility theory community as
it showcases the fundamental importance of its brand of imprecision.
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We also identified a connection between IMs and Mayo’s severe testing frame-
work. This is beneficial to severe testers, as the IM construction exposed in
Sect. 2.2 provides a general recipe for assessing severity in a wide range of mod-
ern applications. We also find it attractive that the IM framework has this
notion of probativeness built in, as opposed to being an add-on to classical test-
ing. Illustrations in cases beyond the simple, low dimensional problems above
will be reported elsewhere, as well as the extension of the notion of probative-
ness/severity to statistical learning problems.
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Abstract. Critical systems such as those developed in the aerospace,
railway or automotive industries need official documents to certify their
safety via convincing arguments. However, informal tools used in cer-
tification documents seldom cover the uncertainty that pervades safety
cases. Several works use quantitative approaches based on belief func-
tions to model and propagate confidence/uncertainty in the argument
structures (particularly those using goal structuring notation). However
the numerical uncertainty information is often a naive encoding of quali-
tative expert inputs. In this paper, we outline a qualitative substitute to
Dempster-Shafer theory and suggest new qualitative confidence propaga-
tion models. We also propose a more faithful encoding of expert inputs.

Keywords: Goal Structuring Notation · Argument structures ·
Confidence elicitation · Dempster-Shafer theory · Qualitative capacities

1 Introduction

As the use of artificial intelligence (AI) in systems increases, the need for safety
assessment methods in the latter is also increasing. However, the lack of confi-
dence can jeopardize the social acceptance of these systems and therefore their
existence. Several approaches are used to assess confidence/uncertainty in such
systems (especially, the safety critical ones).

Many papers addressing the assessment of safety of systems rely on the
graphical representation of an argument structure like GSN (Goal Structuring
Notation), plus quantitative representations of uncertainty. Typically, probabil-
ity theory is often used in Bayesian network models of GSNs. In order to address
the issue of incomplete information, Dempster-Shafer theory (DST) is also pro-
posed. In the latter case, argument trees can be modelled in classical logic using
if-then rules [6,7].

However the quantification of uncertainty is often problematic, when it relies
on expert assessments. In many cases, experts supply qualitative assessments
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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https://doi.org/10.1007/978-3-031-17801-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17801-6_22&domain=pdf
https://doi.org/10.1007/978-3-031-17801-6_22


232 Y. Idmessaoud et al.

using linguistic values like probable, very probable, unlikely, etc., which are then
translated into numbers on the [0, 1] scale. This translation is somewhat arbi-
trary. So, a legitimate question is whether a purely qualitative approach to uncer-
tainty, that would be a counterpart to the belief function approach, could be
promising. The idea is to avoid the quantitative encoding of qualitative esti-
mates. It makes all the more sense as numerical degrees of belief obtained via
uncertainty propagation are often translated back to the qualitative scale, so as
to make the results more palatable. So it is legitimate to investigate a qualitative
approach.

This paper is a first step in this direction. It is structured as follows. Section 2
presents theoretical background on qualitative capacities that can be viewed as
a qualitative counterpart of belief functions, based on [5]. Section 3 deals with
the elicitation of qualitative capacities, based on an existing method where lin-
guistic term scales were mapped to belief functions. Section 4 use qualitative
belief measures on classical inference patterns. Section 5 recalls the a graphical
representation called Goal Structuring Notation (GSN), dedicated to argument
structures for safety cases. This section applies the qualitative uncertainty prop-
agation method from premises to conclusions of several types arguments. In
Sect. 6, a preliminary comparison of qualitative and quantitative uncertainty
propagation is proposed via an example.

2 From Belief Functions to Qualitative Capacities

As a generalization of probability theory, Dempster-Shafer theory [8](DST) offers
tools to model and propagate both aleatory (due to random events) and epis-
temic (due to incomplete information) uncertainty.

A mass function, or basic belief assignment (BBA), is a probability distri-
bution over the power set of the universe of possibilities (W ), known as the
frame of discernment. Formally, a mass function m : 2W → [0, 1] is such that∑

E⊆W m(E) = 1, and m(∅) = 0. Any subset E of W such as m(E) > 0 is called
a focal set of m. m(E) quantifies the probability that we only know that the
truth lies in E; in particular m(W ) quantifies the amount of ignorance.

A mass assignment induces a so-called belief function Bel : 2W → [0, 1],
defined by: Bel(A) =

∑
E⊆A m(E). It represents the sum of all the masses

supporting a statement A. The degree of belief in the negation ¬A of the
statement A is called disbelief: Disb(A) = Bel(¬A); the value Uncer(A) =
1 − Bel(A) − Disb(A) quantifies the lack of information about A.

The conjunctive rule of combination combines multiple pieces of evidence
(represented by mass functions mi, with i = 1, 2) coming from independent
sources of information: m∩ = m1 ⊗m2 such that: m∩(A) =

∑
E1∩E2=A m1(E1) ·

m2(E2). In DST, an additional step eliminates conflict that may exist by means
of a normalization factor (dividing m∩ by 1 − m∩(∅)). This is Dempster rule of
combination [8], which is associative.

In contrast, we outline the qualitative approach in [3–5]. Let L be a finite
totally ordered set representing certainty levels. A qualitative capacity (q-
capacity, for short) is a function γ : 2W → L such that:
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γ(∅) = 0; γ(W ) = 1; A ⊆ B ⇒ γ(A) ≤ γ(B). Any q-capacity can be put in
the form:

γ(A) = max
∅�=B⊆A

ρ(B),∀A ⊆ W, (1)

where ρ is formally a basic possibility assignment (BΠA) [3], namely, a possibility
distribution ρ : 2W → L on the power set of W , such that maxB⊆W ρ(B) = 1
and ρ(∅) = 0. The value ρ(B) is the strength of piece of evidence B. Several
BΠA’s can generate the same γ, the least of which is the qualitative Moebius
transform (QMT) of γ such that:

γ#(A) =

{
γ(A) if γ(A) > γ(A \ {w}),∀w ∈ A;
0 otherwise.

(2)

The value γ(A) (resp. γ(¬A)) qualifies the support in favor of (resp. against)
A, i.e. belief (resp. disbelief) in A using an element in the qualitative scale L.
The pair (γ(A), γ(¬A)) thus describes our epistemic stance with respect to A
in terms of belief and disbelief, ranging from no information (i.e., (0, 0)), to full
conflicting information (i.e., (1, 1)), from full belief (i.e., (1, 0)) to full disbelief
(i.e., (0, 1)). This is more general than possibility theory where the case (1, 1) is
not allowed.

Figure 1 presents the credibility and information orderings on pairs (belief,
disbelief) including extreme cases [5]. A proposition A is at least as credible as
B if γ(A) ≥ γ(B) and γ(¬A) ≤ γ(¬B) (solid arrows from B to A), thus ranging
from certainty of falsity (0, 1) up to certainty of truth (1, 0). A proposition A is
at least as informed as B if γ(A) ≥ γ(B) and γ(¬A) ≥ γ(¬B) (dotted arrows
from B to A), thus ranging from ignorance ((0, 0), no information) up to conflict
((1, 1), full contradictory information). In this situation, the amount of evidence
supporting the conclusion is equal to the one rejecting it. The set L × L is then
equipped with a bilattice structure. In order to qualitatively combine pieces of
evidence represented by possibilistic mass functions, i.e., BΠA’s ρi, coming from
several sources of information, the qualitative counterpart of the conjunctive rule
of combination for belief functions is: ρ∩ = ρ1 ⊕ ρ2 such that:
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Fig. 1. Evolution of certainty and information in pairs (belief, disbelief)
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ρ∩(A) = max
E1∩E2=A

{min[ρ1(E1), ρ2(E2)]} (3)

Due to the use of the (idempotent) minimum operation, the combined pieces
of evidence are not supposed to be independent. The result is not always a BΠA,
strictly speaking. First we may have that ρ∩(A) < 1 for all A. So we must add
the condition ρ∩(W ) = 1. This will not occur if we restrict to non-dogmatic
BΠA’s such that ρi(W ) = 1, which we assume in this paper. Besides, we may
have that ρ∩(∅) > 0, indicating conflict between the pieces of evidence.

3 Expert Elicitation Approach

In order to elicit qualitative capacities, we borrow from a methodology by Cyra
and Gorski [2]. Two types of information are collected from experts about a
statement A: A so-called decision and a level of confidence associated to it.
Then, these pieces of information are numerically encoded, and transformed to
belief and disbelief degrees in the sense of Shafer (see also [7]). More precisely:

– The decision index denoted by Dec(A), describes which side the assessor leans
towards, i.e., acceptance or rejection of A. It is associated with a bipolar scale
D = {0D = d−k, dk−1, . . . , d0 = e, d1, . . . dk = 1D} with 2k + 1 values, the
bottom of which (0D) expressing rejection, the top (1D) acceptance, and the
midpoint (e) a neutral position. Here we assume k = 2.

– The confidence index denoted by Conf(A) reflects the amount of information
an assessor possesses to support the decision. It uses a positive uni-polar scale
K with k + 1 values (the top 1K expresses full confidence, the bottom 0K is
neutral - no information). For k = 2: these levels mean: lack of confidence
(C0 = 0K), moderate confidence (C1) and full confidence (C2 = 1K).

The bipolar scale D is equipped with an order-reversing map νD such that
νD(d−i) = di. Especially we have that νD(Dec(A)) = Dec(¬A). The unipolar
scale K is isomorphic to the positive part of D. This assumption makes K and
D commensurate. K is equipped with an order-reversing map νK such that:
νK(Ci) = Ck−i.

In order to switch from a (Dec(A), Conf(A)) pair to (γ(A), γ(¬A)), we use
a transformation that maps D × K to the belief-disbelief scale L × L containing
pairs (γ(A), γ(¬A)). The scale L has the same number of elements as K (i.e., 3
here). The mapping f : D × K → L × L: must satisfy some conditions [5]:

– If the expert declares lack of confidence, the result is f(Dec(A), 0) = (0, 0),
whatever the trend expressed on the decision scale.

– If the expert is fully confident, then f(1, 1) = (γ(A), γ(¬A)) = (1, 0), f(0, 1) =
(0, 1), f(e, 1) = (1, 1). Indeed, for the latter, there is a total conflict: the expert
is maximally informed (Conf(A) = 1), and cannot decide between A and its
negation (Dec(A) = e).

– max(γ(A), γ(¬A)) = Conf(A): the belief in A or its negation cannot be
stronger than the confidence.
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– if Dec(A) is the midpoint of D, then γ(A) = γ(¬A)(= Conf(A)) (no reason
to take side).

– if Dec(A) is less than the midpoint of D, then γ(A) < γ(¬A) = Conf(A),
and the smaller Dec(A), the smaller γ(A).

– if Dec(A) is greater than the midpoint of D, then γ(A) = Conf(A) > γ(¬A),
and the greater Dec(A), the smaller γ(¬A).

These conditions lead to propose the following translation formulas [5]:

if Dec(A) < e, γ(A) = min[νK(Dec(¬A)), Conf(A)] and γ(¬A) = Conf(A);
if Dec(A) > e, γ(A) = Conf(A) and γ(¬A) = min[νK(Dec(A)), Conf(A)];
if Dec(A) = Dec(¬A) = e, γ(A) = γ(¬A) = Conf(A).

In Table 1, we grouped all possible (Dec, Conf) pairs on premises with their
appropriate counterparts (γ(A), γ(¬A))∈ L × L, using the formulas above. We
can notice an anti-symmetry between belief and disbelief degrees regarding the
central column (D0 = e: no decision). We also notice that when no information
is available (C0: Lack of confidence), no matter what choice is made the degrees
of belief and disbelief take a minimal value. On the other hand, in the case
of a fully informed expert (C2: Full confidence) the decision value varies from
rejection to acceptance.

Table 1. Values from (Dec, Conf) to (Bel, Disb) pairs on premises

Conf Dec

D−2 (Rej) D−1 (Opp) D0(ND) D1 (Tol) D2 (Acc)

C0 (Lack of confidence) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

C1 (Moderate confidence) (0, λ) (λ, λ) (λ, λ) (λ, λ) (λ, 0)

C2 (Full confidence) (0, 1) (λ, 1) (1, 1) (1, λ) (1, 0)

4 Logical Inference for Qualitative Capacities

Logical reasoning and numerical belief functions are not often put together. An
approach to reasoning with Dempster rule of combination was proposed in [1].
In this approach each formula in a knowledge base is viewed as a simple support
function and combined with other formulas in the knowledge base. Besides, the
application of belief functions to argument structures has been studied in [2,7,10]
to build models for uncertainty propagation. For instance in [7], we assign mass
functions to logical expressions such as facts pi, ¬pi, and rules pi ⇒ C, ¬pi ⇒
¬C, (∧n

i=1pi) ⇒ C and (∧n
i=1¬pi) ⇒ ¬C, in order to deduce the belief on

the conclusions C and ¬C. Here we develop the same approach, albeit using
qualitative capacities.

The simplest pattern is modus ponens, i.e. inferring C from p and p ⇒ C.
We assume two BΠA’s ρp on {p,¬p} with values in L, say ρp(p) = αp, ρp(¬p) =
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αp, ρp() = 1, and a simple support function ρ⇒ with ρ⇒(p ⇒ C) = β⇒,
ρ⇒() = 1, where  stands for the tautology. The capacity γC is obtained via
projection for the conclusion C by the q-conjunctive rule has a BΠA ρC such
that: γC(C) = ρC(p∧C) = min(ρp(p), ρ⇒(p ⇒ C)) = min(αp, β⇒), γC(¬C) = 0.

If p =
∧n

i=1 pi, then the above formula holds with ρp(p) = minn
i=1 ρip(pi).

If there is also a BΠA ρ⇐ assigning a weight β⇐ to the reversed implication
¬p ⇒ ¬C there is an additional weight on ¬C via the combination ρp⊕ρ⇒ ⊕ρ⇐
using Eq. (3) and projection on C’s universe.

γC(¬C) = ρC(¬p ∧ ¬C) = min(ρp(¬p), ρ⇐(p ⇐ C)) = min(αp, β⇐).

Consider the case with more than one premise. Suppose we have to merge BΠA’s
ρip on pi, ρi⇒, ρi⇐, i = 1, . . . n. As in its quantitative counterpart, the BΠA
pertaining to the conclusion C obtained from this fusion may assign a mass to
the contradiction. Conflict always appears when four items are merged of the
form: pi and pi ⇒ C with ¬pj and ¬pj ⇒ ¬C, j �= i, whose conjunction is a
contradiction ∅ with mass:

ρijC (∅) = min[ρiC(pi ∧ C), ρjC(¬pj ∧ ¬C)]

= min[ρip(pi), ρ
i
⇒(pi ⇒ C), ρjp(¬pj), ρj⇒(¬pj ⇒ ¬C)]]

For two premises, the final mass on contradiction is ρC(∅) =
max(ρ12C (∅), ρ21C (∅)). Besides, using (1) we get: γC(C) = max[ρC(p1∧C), ρC(p2∧
C)] ≥ ρC(∅) and γC(¬C) = max[ρC(¬p1 ∧ ¬C), ρC(¬p2 ∧ ¬C)] ≥ ρC(∅).

5 Application to Safety Cases

Goal structuring notation (GSN) is a graphical notation/language which rep-
resents argument structures (i.e., safety and assurance cases) in the form of
directed acyclic graphs (directed trees or arborescences). It breaks down a top
claim, called “goal”, into elementary sub-goals following a specific strategy and
in accordance with a particular context. Each sub-goal is associated with pieces
of evidence, called solutions, which support the conclusion. Despite the fact that
it presents all the evidence supporting the safety of the system, GSN fails to
show how premises support the conclusion and the confidence that can be given
to them. Both questions bring uncertainty to arguments, which may affect their
merits. To address this issue, confidence propagation schemes were proposed to
complement GSN patterns.

Some approaches use DST to model and propagate confidence in GSN pat-
terns in the literature [2,7,9]. These papers consider a number of argument types
and associate confidence propagation formulas to each of them. In practice, they
also devise transformation formulas that turn uncertainty assessments of experts
(on a qualitative scale) about premises to numerical belief and disbelief degrees.
This transformation is a source of uncertainty. Indeed, qualitative inputs are
often naively translated into equidistant values in the unit interval. Therefore,
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the qualitative approach to uncertainty developed in [3–5], and the elicitation
and the inference methods of Sects. 3 and 4 may lead to more robust confidence
assessment approaches.

Here, we use the argument types defined in [7]. An argument type describes
the interaction between premises to support a conclusion. This type of interac-
tion is either a conjunction (C-Arg), a disjunction (D-Arg), or a combination of
both (H-Arg, a hybrid type). We can translate each argument type into logical
expressions often called rules. Since we use only implication to describe links
between the universe of premises (Wp = {p,¬p}) and that of the conclusion
(WC = {C,¬C}), two kinds of rules are used: direct rules, which model the
acceptance of the conclusion (C), and reverse rules which model its rejection
(¬C). Then, to each rule, we assigned a simple support function (a mass on the
rule, and another on the tautology). We also assigned masses to the premises
and their negation. Finally the propagation formulas, for each type, are obtained
using the qualitative combination rule (3). Below, we recall our argument types
and associate to each of them to qualitative uncertainty propagation formula.

Simple Argument (S-Arg): This argument describes the case of a conclusion (C)
supported by a single premise (p), hence the name “simple”. If the premise is
true, then so is the conclusion: p ⇒ C. Note that only the information about the
acceptance of the conclusion can be inferred in this situation. Since we work on
a three-state paradigm (belief, disbelief and uncertainty), the reverse rule ¬p ⇒
¬C is introduced to add conditions for the possible denial of the conclusion.
Then, we associate to the direct and reverse rules simple BΠA’s (resp., ρ⇒ and
ρ⇐), and a BΠA on the premise space, as done above. We can prove:

S-Arg :
{

γC(C) = min[γp(p), γ⇒(p ⇒ C)]
γC(¬C) = min[γp(¬p), γ⇐(¬p ⇒ ¬C)] (4)

We can notice that the belief γC(C) depends only on the direct rule and the
acceptance of the premise, while the disbelief γC(¬C) only depends on the reverse
rule and the disbelief of the premise.

Conjunctive Argument (C-Arg): This argument type describes the situation
when two premises or more are jointly needed to support a conclusion. We
formally defined its direct and reverse rules (resp.) by: (∧n

i=1pi) ⇒ C and
∧n
i=1(¬pi ⇒ ¬C). Following the same reasoning of the previous argument type,

we put a simple BΠA on each rule (ρ⇒ and ρi⇐), and another BΠA on each
premise (ρip). Then we combine them with the rule of combination (ρ = ρr ⊕ ρp,
with ρp = ρ1p ⊕ ... ⊕ ρnp and ρr = ρ⇒ ⊕ (⊕n

i=1ρ
i
⇐)) and get:

C-Arg :
{

γC(C) = min{minn
i=1 γi

p(pi), γ⇒([∧n
i=1pi] ⇒ C)}

γC(¬C) = maxn
i=1{min[γi

p(¬pi), γi
⇐(¬pi ⇒ ¬C)]} (5)

In the formulas of the quantitative approach [7] operations a + b − ab and
ab replace max,min, respectively, thus highlighting the similarity between the
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results obtained from each model. Indeed, we can notice that the C-Arg, like its
quantitative counterpart, favors the propagation of the premise with the least
strength (minimal belief, with a maximal disbelief degree).

Disjunctive Argument (D-Arg): In this situation, each premise can support alone
the whole conclusion. Formally, the direct and reverse rules are defined as follows:
∧n
i=1(pi ⇒ C) and (∧n

i=1¬pi) ⇒ ¬C. The calculation of γC(C) and γC(¬C) is
identical to the one above, swapping the two expressions:

D-Arg :
{

γC(C) = maxn
i=1{min[γi

p(pi), γ
i
⇒(pi ⇒ C)]}

γC(¬C) = min{minn
i=1 γi

p(¬pi), γ⇐([∧n
i=1¬pi] ⇒ ¬C)} (6)

We can notice that this model, as its quantitative counterpart [7], favors
the propagation of the premise with the greatest strength (maximal belief and
minimal disbelief degree).

Hybrid Argument (H-Arg): This argument type describes the situation where
each premise supports the conclusion to some degree, but their conjunction does
it to a larger one. Therefore, all conjunctive and disjunctive rules will be used
in this argument type. Thus, we obtain:

H-Arg :

⎧
⎪⎪⎨

⎪⎪⎩

γC(C) = max{min[minn
i=1 γi

p(pi), γ⇒([∧n
i=1pi] ⇒ C)],

maxn
i=1(min[γi

p(pi), γ
i
⇒(pi ⇒ C)]}

γC(¬C) = max{min[minn
i=1 γi

p(¬pi), γ⇐([∧n
i=1¬pi] ⇒ ¬C)],

maxn
i=1 min[γi

p(¬pi), γi
⇐(¬pi ⇒ ¬C)]}

(7)

We can notice that Eq. (7), presents a combination between C-Arg formulas
(5), and D-Arg (6). Assuming a maximal belief (=1) (resp. disbelief) on premises,
it is enough that the simple direct rules take a null value (resp. the reversed
conjunctive one) to get the conjunctive argument type. And conversely, to get
the disjunctive argument type, put null values on direct conjunctive and simple
reversed rules. The S-Arg, represent a special case when only one premise is
available (n = 1). In the following, only the H-Arg will be used since it covers
the four types.

6 Application Example

On an artificial example (Fig. 3) that displays three argument types (C-Arg, D-
Arg and H-Arg), we apply our approach in order to see how each type affects
the propagation of uncertainty from premises to the overall goal (conclusion).
We also apply the quantitative approach presented in [7] on the same example.
To compare results from both approaches, we will use the same decision and
confidence scales (see Fig. 2).

Regarding elicitation, we use the evaluation matrix in Fig. 2 to collect expert
opinions, and transform them using formulas in Sect. 3 to get belief and disbelief
on premises. Regarding the elicitation of belief weight on rules, we benefit from
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D-2 : Rejectable D-1 : Opposable    D0 : No Decision    D1 : Tolerable   D2 : Acceptable
C2 : For sure

C1 : Moderate 
confidence

C0 :  Lack of 
Confidence

Confidence scale

Decision scale

Fig. 2. Evaluation matrix

G

G1 G2

P1 P2 P3 P4

H-Arg

C-Arg D-Arg

Fig. 3. GSN artificial example

an observation made on the quantitative models [7]. Indeed, we notice that
under some assumptions for the premises, the value of the conclusion is the
value of the rule. For instance, assuming full support (resp. positive or negative)
on all premises gives the value of the conjunctive rule (resp. direct and reversed):
γC(C) = γ⇒([∧n

i=1pi] ⇒ C) or γC(¬C) = γ⇐([∧n
i=1¬pi] ⇒ ¬C). On the other

hand, assuming a total support (resp. positive or negative) on one premise (pi)
and total ignorance on the other gives the value of the appropriate disjunctive
rule: γC(C) = γi

⇒(pi ⇒ C) or γC(¬C) = γi
⇐(¬pi ⇒ ¬C). So, we will use

the same Table 1 to transform the assessment to rules. However, to avoid the
negation of rules, the assessor can only choose between the positive decision
(from “no decision” to “acceptable”) for direct rules; only negative decisions
(from “rejectable” to “no decision”) for the reversed ones. Indeed, rules can only
infer uncertainty on one side of the decision scale.

The example in Fig. 3, presents a top-goal (G) supported by two sub-goals
(G1) and (G2) through a hybrid argument type (H-Arg). Each one of them is
also supported, respectively, by two premises. Goal (G1) is supported by the
premises (P1) and (P2) related by a conjunctive argument type (C-Arg). On the
other hand, goal (G2) is supported by the premises (P3) and (P4) related by
a disjunctive argument type (D-Arg). For simplicity, we set all masses on rules
to their maximal values (=1). Then, we use four settings with different premise
values and compute the confidence in the top goal.

Table 2. Pairs (decision, confidence) according to both qualitative (Qual.) and quan-
titative [7] (Quant.) methods for the example (see Fig. 2 for the meaning of symbols)

Meth. 1st 2nd 3th 4th

P1 - (Opp;C2) (Tol ;C2) (Tol ;C2) (Opp;C2)

P2 - (Tol ;C2) (Tol ;C2) (Tol ;C2) (Opp;C2)

P3 - (Tol ;C2) (Tol ;C2) (Tol ;C2) (Opp;C2)

P4 - (Tol ;C2) (Opp;C2) (Tol ;C2) (Opp;C2)

G Quant. (ND ;C0) (Tol ;C1) (Tol ;C1) (Opp;C1)

Qual. (ND ;C2) (Tol ;C2) (Tol ;C2) (Opp;C2)
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In general, we can see from Table 2 that both approaches give close results
which fit well with our expectations. The only difference is in the confidence
values. We can say that, in this case the qualitative approach gives results with
higher levels of confidence than the quantitative one.

We notice from Table 2 that the first case gives a “no decision”. This result is
explained by the fact that we end up with two opposite judgments in the H-Arg
(conflict situation) due to C-Arg that propagates the premise with least strength
(opposable) to G1 (G2: tolerable). On the contrary, in the 2nd column, we get
a “tolerable” decision, because the D-Arg favors the propagation of the premise
with the greatest weight (tolerable) to G2 (G1: tolerable). In the 3th and 4th

columns we can notice, as expected, that the top goal keeps the same decision
as premises respectively: “tolerable” and “opposable”.

The difference in the degree of confidence between qualitative and quantita-
tive approaches is due to the nature of the operations used. For example, the
C-Arg favors the propagation of the weakest premise (weaker belief and stronger
disbelief). In the quantitative setting, we use the product and the probabilistic
sum. And in the qualitative case, we use min and max, which does not model
attenuation or reinforcement effects in case of independent pieces of information.
This is one limitation of the qualitative approach.

7 Conclusion

In this paper, we propose a qualitative confidence assessment approach. We
provide formulas to propagate confidence in GSN from the premises to the top-
goal using qualitative mass functions. Each of these functions is collected from
experts in the form of a decision and the associated confidence degree, and then
transformed into a q-capacity. By sticking to qualitative values, the possible
arbitrariness of the transformation of expert opinions into quantitative values
(used in some previous approaches) is eliminated. Furthermore, it seems that the
qualitative approach gives results similar to the quantitative one in [7]. However,
more experiments are needed to confirm this conclusion.
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2. Cyra, L., Górski, J.: Support for argument structures review and assessment.
Reliab. Eng. Syst. Saf. 96(1), 26–37 (2011)

3. Dubois, D., Faux, F., Prade, H., Rico, A.: A possibilistic counterpart to Shafer evi-
dence theory. In: IEEE International Conference on Fuzzy Systems (FUZZIEEE)
(2019)

4. Dubois, D., Faux, F., Prade, H., Rico, A.: Qualitative capacities and their infor-
mational comparison. In: Proceedings 12th Conference of the European Society for
Fuzzy Logic and Technology (EUSFLAT 2021), pp. 19–24 (2021)

5. Dubois, D., Faux, F., Prade, H., Rico, A.: Qualitative capacities: basic notions and
potential applications. Int. J. Approximate Reasoning (2022, in press)



Qualitative Uncertainty in Safety Cases 241

6. Idmessaoud, Y., Dubois, D., Guiochet, J.: Belief functions for safety arguments
confidence estimation: a comparative study. In: Davis, J., Tabia, K. (eds.) SUM
2020. LNCS (LNAI), vol. 12322, pp. 141–155. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58449-8 10

7. Idmessaoud, Y., Dubois, D., Guiochet, J.: Quantifying confidence of safety cases
with belief functions. In: Denœux, T., Lefèvre, E., Liu, Z., Pichon, F. (eds.)
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Abstract. Dempster’s aggregation rule plays an important role in the
theory of belief functions. Recently, the concept of a generalized credal
set has been introduced that allows us to model uncertainty caused by
imprecision, conflict and contradiction in information. This concept gen-
eralizes in some sense constructions used in evidence theory and impre-
cise probabilities. In this paper, we show that Dempster’s rule can be
viewed as the average conditional of a given plausibility function w.r.t.
a random set. This allows us to define the extension of this rule into a
wider family of uncertainty models presented by generalized credal sets.

Keywords: Belief functions · Conditional generalized credal sets ·
Dempster’s combination rule

1 Introduction

Although there are some common features between evidence theory [8,10] and
imprecise probabilities [1,12], some researchers [2,12] argue that the basic con-
structions of evidence theory, like Dempster’s combination rule, do not have a
solid justification based on the probabilistic interpretation. On the other hand,
the theory of belief functions has strong capabilities providing merging informa-
tion from several sources with the conflict management. This is possible, because
we can model the contradiction in the information if we allow the belief function
to assign a strictly positive value to the empty set [11]. The analogous idea is
exploited in generalized credal sets [4–7], where sets of probability measures are
given with the corresponding amount of contradiction or likelihood.

In the paper, we consider the result of Dempster’s rule as the average con-
ditional plausibility function describing the first source of information, given a
random set describing the second source of information. Using this interpreta-
tion, we extend Dempster’s rule for the case, when the first source of information
is described by a generalized credal set.

The paper has the following structure. Sections 2 and 3 give us the basic
notions concerning belief functions and imprecise probabilities. In Sect. 4 and 5,
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we give the necessary information about generalized credal sets concerning their
representation and updating information based on them. In Sect. 6, we analyze
the expression for Dempster’s rule, that helps us to view it as the average con-
ditional w.r.t. a random set. We finish our paper with the conclusion about the
obtained results.

2 Basic Notions Concerning Monotone Measures
and Belief Functions

Let X be a finite set and let 2X be the powerset of X. A set function μ : 2X →
[0, 1] is called a monotone measure [9] if 1) μ(∅) = 0, μ(X) = 1; 2) μ(A) � μ(B)
if A ⊆ B. The set of all monotone measures is denoted by Mmon(X).

We will use the following relations and operations on Mmon(X):

1) μ1 � μ2 for μ1, μ2 ∈ Mmon(X) if μ1(A) � μ2(A) for all A ∈ 2X ;
2) μ = aμ1 + (1 − a)μ2 for a ∈ [0, 1] and μ1, μ2 ∈ Mmon(X) if μ(A) = aμ1(A) +

(1 − a)μ2(A);
3) μd is called the dual of μ ∈ Mmon(X) if μd(A) = 1 − μ(Ac) for all A ∈ 2X ,

where Ac denotes the complement of A.

A Bel ∈ Mmon(X) is called a belief function if there is a m : 2X → [0, 1]
called the basic belief assignment (bba) such that

1)
∑

B∈2X m(B) = 1;
2) Bel(A) =

∑
B⊆A|B∈2X m(B) for every A ∈ 2X .

The dual Pl of a belief function Bel is called the plausibility function. It can be
computed through the bba m as

Pl(A) =
∑

A∩B �=∅|B∈2X
m(B), A ∈ 2X .

Note that the belief function Bel, and the corresponding m and Pl are equivalent
representations of the same uncertain information. If Bel(∅) = 0 (or equivalently
m(∅) = 0, Pl(X) = 1), Bel, m, Pl are called normalized. With the help of
m(∅) > 0, we can model the contradiction in information, and this subject will
be discussed later.

Consider an arbitrary belief function Bel with the bba m. An A ∈ 2X is called
a focal element if m(A) > 0. The set of all focal elements for Bel is called the
body of evidence. If the body of evidence contains only one focal element, then
Bel is called categorical. The categorical belief function with the focal element
B ∈ 2X is denoted by η〈B〉 and it is easy to see that η〈B〉(A) = 1 if B ⊆ A
and η〈B〉(A) = 0 otherwise. Every belief function Bel with the bba m can be
represented as a convex sum of categorical belief functions as

Bel =
∑

B∈2X

m(B)η〈B〉.

A normalized belief function is called Bayesian if its body of evidence consists
of singletons. Formally, every Bayesian belief function is a probability measure.
We will use the following notations:
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– Mbel(X) is the set of all normalized belief functions on 2X ;
– Mpr(X) is the set of all (normalized) probability measures on 2X .

Assume that M ⊆ Mmon(X), then Md = {μd|μ ∈ M}. Using this notation,
we can denote, for example, the set of all plausibility functions on 2X by Md

bel(X).

3 Modelling Uncertainty by Belief Functions
and Imprecise Probabilities

If we use the probabilistic interpretation of (normalized) belief functions, then
every Bel ∈ Mbel(X) defines the credal set (the non-empty set of probability
measures) defined by

P(Bel) = {P ∈ Mpr(X)|P � Bel}.

Therefore, using belief functions, we can model two types of uncertainty [3]:
conflict that is inherent to probability measures and non-specificity that charac-
terizes the possible choice of a probability measure in P(Bel).

More generally, a credal set P is a convex and closed subset of Mpr(X).
In other words, if X = {x1, ..., xn}, then { (P ({x1}), ..., P ({xn}))| P ∈ P} is a
convex and closed subset of Rn. Unfortunately, there are credal sets, which are
not representable by belief functions [1,12]. In this case, we can represent credal
sets by lower or upper previsions.

Let F be the set of all real valued functions on X and K ⊆ F . Then every P :
K → R can be viewed as a lower prevision if P (f) � max

x∈X
f(x) for every f ∈ K.

Formally, values of P can be considered as lower bounds of expectations. Assume
that P ∈ Mpr(X) and EP (f) =

∑
x∈X f(x)P ({x}). Then a lower prevision

P : K → R is called non-contradictory (consistent) if it defines the non-empty
set of probability measures (credal set)

P(P ) = {P ∈ Mpr(X)|∀f ∈ K : P (f) � EP (f)}.

Analogously, we can associate the lower prevision

EP(f) = inf{EP (f)|P ∈ P}, f ∈ F , (1)

with any possible credal set P ⊆ Mpr(X). There is the bijection between credal
sets and lower previsions defined by (1). A non-contradictory lower prevision
P : K → R is called coherent if there is a credal set P ⊆ Mpr(X) such that
P (f) = EP(f) for all f ∈ K.

It is possible to transform every non-contradictory lower prevision P : K → R

to the coherent lower prevision P ′ : K → R computed as P ′(f) = EP(P )(f),
f ∈ K. This transform is called the natural extension.

We can also model uncertainty using upper previsions. In this case, the func-
tional P : K → R can be viewed as an upper prevision if P (f) � min

x∈X
f(x); values
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of P can be viewed as upper bounds of expectations and P is non-contradictory
if it defines the credal set

P(P ) = {P ∈ Mpr(X)|∀f ∈ K : P (f) � EP (f)}.

It is easy to see that if P : K → R is an non-contradictory lower prevision,
then the upper prevision P : K′ → R, where K′ = −f |finK, defined by P (f) =
−P (−f), f ∈ K′, defines the same credal set, i.e. P(P ) = P(P ). This allows
us to say that uncertainty models based on lower and upper probabilities, and
convex, closed credal sets have the same expressive capabilities. We use the
analogous terminology and notations for upper previsions: if P ⊆ Mpr(X), then
the corresponding coherent upper prevision on F is EP(f) = sup{EP (f)|P ∈
P}, f ∈ F . An upper non-contradictory prevision P : K → R is coherent if
P (f) = EP(P )(f) for all f ∈ K. We can define the natural extension for upper
previsions analogously as for lower previsions.

4 Contradictory Upper Previsions and Generalized
Credal Sets

Definition 1. Let P : K → R be an upper prevision. The amount of contradic-
tion in P is the real number computed as

Con(P ) = inf{a ∈ [0, 1]|P = (1 − a)P
(1)

+ aP
(2)},

where the disaggregation P = (1 − a)P
(1)

+ aP
(2)

is produced over all possible
P (i) : K → R, i = 1, 2, where P

(1)
is an non-contradictory upper prevision, and

P
(2)

is a contradictory upper prevision.

An upper prevision P : K → R is called fully contradictory iff Con(P ) = 1.
In the next, we will consider mostly two cases, when K = F or K = {1A}A∈2X ,
where 1A is the characteristic function of the set A. If K = F , then the
fully contradictory upper prevision is P (f) = min

x∈X
f(x). In the case, when

K = {1A}A∈2X , we describe uncertainty information by monotone measures
called upper probabilities, and their values are viewed as upper bounds of proba-
bilities. Therefore, every μ ∈ Mmon(X) can be an upper probability, and it can
be described by the upper prevision P (1A) = μ(A) for all A ∈ 2X . Analogously,
if K = {1A}A∈2X , then the fully contradiction is described by monotone measure
P (1A) = min

x∈X
1A(x) = η〈X〉(A), A ∈ 2X .

Assume that X = {x1, ..., xn} and consider monotone measures of the type:

P = a0η〈X〉 +
n∑

i=1

aiη〈{xi}〉, (2)
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where ai ∈ [0, 1], i = 0, ..., n,
∑n

i=0 ai = 1. If they are viewed as upper probabili-
ties, then Con(P ) = a0, and in the case, when a0 < 1, we have the following dis-

aggregation: P = (1−a0)P (1)+a0η〈X〉, where P (1) = 1
1−a0

n∑

i=1

aiη〈{xi}〉 is a prob-

ability measure and η〈X〉 describes the contradiction in P . The same information
can be described by an upper prevision P (f) = (1 − a0)EP (1)(f) + a0 min

x∈X
f(x),

or

P (f) =
n∑

i=1

aif(xi) + a0 min
x∈X

f(x). (3)

Notice that the right part of (3) is the Choquet integral w.r.t. P , and we further
denote the P (f) in (3) by EP (f). We see that the meaningful information in (2)
is contained in the probability measure P (1) and the term a0η〈X〉 only gives us
the degree of contradiction. Therefore, using monotone measures from (2), we
can model conflict and contradiction in information. The set of all such measures
on 2X is denoted by Mcpr(X).

Definition 2. An non-empty subset P ⊆ Mcpr(X) is called a lower generalized
credal set (LG-credal set) if

1) P is convex and closed;
2) P1 � P2 for P1 ∈ Mcpr(X) and P2 ∈ P implies P1 ∈ P.

Every P = a0η〈X〉 +
n∑

i=1

aiη〈{xi}〉 in Mcpr(X) can be represented as a point

(a1, ..., an) in R
n. Therefore, we can write P = (a1, ..., an) for the measure defined

by (2). Then we see that a LG-credal set is represented as a convex and closed
subset of {(a1, ..., an) ∈ R

n|ai � 0, i = 1, ..., n;
∑n

i=1 ai � 1}.
Additionally, it is easy to show that P1 � P2 for measures Pj = (a(j)

1 , ..., a
(j)
n ),

j = 1, 2, defined by (2) iff a
(1)
i � a

(2)
i , i = 1, ..., n.

When we use generalized credal sets, we assume that all useful information
is contained in their profiles. Let P ⊆ Mcpr(X) is a LG-credal set, then its
profile denoted by profile(P) is the set of all maximal elements in P w.r.t.
�. Obviously, the profile of a LG-credal set P ⊆ Mcpr(X) defines it uniquely
since P = {P ∈ Mcpr(X)|∃Q ∈ profile(P) : P � Q}. Every usual credal
set P′ ⊆ Mpr(X) can be represented as the LG-credal set P ⊆ Mcpr(X) with
profile(P) = P′.

The amount of contradiction in a LG-credal set P ⊆ Mcpr(X) is defined as

Con(P) = inf{Con(P )|P ∈ P}.

Every upper prevision P : K → R can be described by a LG-credal set

P(P ) = {P ∈ Mcpr|∀f ∈ K : EP (f) � P (f)}. (4)

Proposition 1. Let P : K → R be a an upper prevision, and let P(P ) be the
LG-credal set defined by (4), then Con(P(P )) = Con(P ).
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An upper prevision P : K → R is called coherent w.r.t. LG-credal sets (LG-
coherent) if there is a LG-credal set P ⊆ Mcpr(X) such that P (f) = EP(f)
for all f ∈ K, where EP(f) = sup{EP (f)|P ∈ P}. Every P : K → R can
be transformed to the LG-coherent upper prevision P ′ : K → R as P ′(f) =
EP(P )(f) for all f ∈ K. The last transformation is called the natural extension
based on LG-credal sets.

In [5], a reader can find the necessary and sufficient conditions, when an
upper prevision P : F → R is LG-coherent. We recall one simple property of
P : P (f + c) = P (f) + c for every f ∈ F and c ∈ R. This allows us to define
such functionals only on f ∈ F normalized from below, i.e. functions f ∈ F
such that min

x∈X
f(x) = 0. Therefore, any function f ∈ F can be normalized:

f(x) = f(x) − min
x∈X

f(x), x ∈ X, and P (f) = P (f) + min
x∈X

f(x) for every f ∈ F .

The set of all normalized functions in F is denoted by F .

5 Updating Information Based on LG-Credal Sets

Updating information based on LG-credal sets consists of two stages:

1) the conjunction of two information sources;
2) the contradiction correction.

The conjunction of two LG-credal sets is simply their intersection. Let us
describe the first stage. Assume that a prior information is described by a LG-
credal set P ⊆ Mcpr(X) and we need to find the description of the posterior
information given B ∈ 2X . The occurrence of an event B can be described
by the upper probability ηd

〈B〉 or by the LG-credal set P(ηd
〈B〉) that consists of

a0η〈X〉 +
∑n

i=1 aiη〈{xi}〉 in Mcpr(X), in which ai = 0 if xi /∈ B.

Lemma 1. Consider a LG-credal set P ⊆ Mcpr(X) with a profile(P) =
{P}, where P = a0η〈X〉 +

∑n
i=1 aiη〈{xi}〉. Then PB = P ∩ P(ηd

〈B〉), where
profile(PB) = {PB} and PB = b0η〈X〉 +

∑n
i=1 biη〈{xi}〉 is such that b0 =

a0 +
∑

xi∈X\B ai, bi = ai if xi ∈ B, and bi = 0 if xi ∈ X\B.

Proposition 2. Assume that we use the notations from Lemma 1, P ⊆
Mcpr(X) is a LG-credal set and PB = P ∩ P(ηd

〈B〉). Then PB = {PB |P ∈ P}.

Proposition 2 implies that profile(PB) ⊆ {PB |P ∈ profile(P)}. The way of
finding the description of PB for P with a finite number of extreme points can
be found in [6]. The next proposition shows, how the conditioning is produced
for coherent upper previsions w.r.t. LG-credal sets.

Proposition 3. Let P : F → R be a LG-coherent upper prevision and B ∈ 2X .
Let us denote P = P(P ) and PB(f) = P (1Bf), f ∈ F . Then PB = P(PB). In
addition, PB is also the LG-coherent upper prevision.
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Proposition 3 can be extended to LG-coherent upper probabilities as follows.
Assume that μ ∈ Mmon(X) is an LG-coherent upper probability. Then its con-
ditioning μB given B ∈ 2X is μB(A) = μ(A ∩ B) + (1 − μ(B))η〈X〉(A), A ∈ 2X .
In addition, μB is an LG-coherent upper probability. Formally, the formula for
μB repeats the result formulated in Proposition 3, since μB(A) = μ(A ∩ B),
A ∈ 2X\{X}.

The contradiction correction should be produced before the moment, when
we need to make a decision. During this stage, we transform a LG-credal set
to the usual model of imprecise probabilities (credal set) without contradiction.
In [6], two possible transformations are introduced that guarantee usual condi-
tioning used for probability measures:

1) Φ1(P) = {ϕ(P )|P ∈ P, Con(P ) = Con(P)};
2) Φ2(P) = {ϕ(P )|P ∈ profile(P)};

where ϕ(P ) is defined for all P ∈ Mcpr(X) with Con(P ) < 1 such that

ϕ(P ) = 1
1−a0

n∑

i=1

aiη〈{xi}〉 if P = a0η〈X〉 +
∑n

i=1 aiη〈{xi}〉.

Assume that information is described by a plausibility function Pl on 2X . Con-
sider how to define its conditioning given B ∈ 2X . In this case, PlB is defined
by

PlB(A) = Pl(A ∩ B) + (1 − Pl(B))η〈X〉(A), A ∈ 2X .

In [6], we show that after the contradiction correction, the updated infor-
mation is described by the plausibility function Pl|B(A) = Pl(A ∩ B)/P l(B),
A ∈ 2X , after both possible transformations Φi, i = 1, 2.

6 Generalized Credal Sets and Dempster’s Rule

Consider firstly the conjunctive rule [11] that can be applied to so called inde-
pendent sources of information, given by bbas mi : 2X → [0, 1] and corre-
sponding plausibility functions Pli, i = 1, 2. Then their conjunction has the bba
m(D) =

∑

C,B∈2X |C∩B=D

m1(C)m2(B), D ∈ 2X , and the corresponding belief and

plausibility functions are defined as

Bel =
∑

C,B∈2X

m1(C)m2(B)η〈C∩B〉, Pl =
∑

C,B∈2X

m1(C)m2(B)ηd
〈C∩B〉.

Since

Pl(A) =
∑

C,B∈2X

m1(C)m2(B)ηd
〈C∩B〉(A) =

∑

C,B∈2X

m1(C)m2(B)ηd
〈C〉(A ∩ B) =

∑

B∈2X

m2(B)
∑

C∈2X

m1(C)ηd
〈C〉(A ∩ B) =

∑

B∈2X

m2(B)Pl1(A ∩ B).
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In the last expression, the set function (Pl1)B(A) = Pl1(A ∩ B), A ∈ 2X , can
be considered as the conditioning of Pl given B. Therefore, we can write

Pl =
∑

B∈2X
m2(B)(Pl1)B . (5)

It should noticed in the transferable belief model [11], the fully contradiction is
modelled by the set function η〈∅〉 that is identical to one if we represent informa-
tion by belief functions, and the set function ηd

〈∅〉 that is identical to zero if we rep-
resent information by plausibility functions. This implies that amount of contra-
diction in Pl is Con(Pl) = 1−∑

B∈2X m(B)Pl1(B). We can express the amount
of contradiction in Pl using bbas as Con(Pl) =

∑

B,C∈2X |B∩C=∅
m1(B)m2(C). If

we produce the contradiction correction in Pl using Φ1 and Φ2, then in both
cases, we get the plausibility function generated by Dempster’s aggregation rule.

The expression (5) can be viewed as the average conditional of Pl1 w.r.t.
a random set Ξ defined by probabilities Pr(Ξ = B) = m2(B), i.e. we can use
the notation PL = (Pl1)Ξ. This interpretation allows us to extend the average
conditionals w.r.t. a random set Ξ for an arbitrary LG-credal set P ⊆ Mcpr(X)
as PΞ =

∑
B∈2X Pr(Ξ = B)PB or for a LG-coherent upper prevision P : F → R

as PΞ =
∑

B∈2X

Pr(Ξ = B)PB .

7 Conclusion

As we see from Sect. 6, Dempster’s rule of aggregation has the probabilistic
interpretation based on generalized credal sets, and this allows to investigate its
applicability in some cases. It is also possible to extend Dempster’s rule for the
case, when both sources of information are described by generalized credal sets
using approximations of generalized credal sets, but this problem is the topic for
the future research.
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Abstract. This work highlights the connections between fuzzy ortho-
partitions and credal partitions, which are both mathematical structures.
It is shown that fuzzy orthopartitions are a more general way to represent
partitions with uncertainty than credal partitions.

Keywords: Fuzzy orthopartitions · Credal partitions · Bayesian bbas

1 Introduction

Credal partitions are relevant structures in evidential clustering used to rep-
resent partitions in cases of partial knowledge concerning the membership of
elements [1] to classes. Assuming that C = {C1, . . . , Cn} is a standard parti-
tion of a universe U = {u1, . . . , ul}, a credal partition is mathematically defined
as a collection m = {m1, . . . , ml} of basic belief assignments. By a basic belief
assignment (bba), we mean a function mi : 2C → [0, 1] verifying the condition∑

A⊆C mi(A) = 11. Let A ⊆ C, mi(A) called mass of belief, quantifies the evi-
dence supporting the claim “ui belongs to a block of A” [2,3]. Credal partitions
subsume the concept of fuzzy probabilistic partitions, which are composed of all
Bayesian bbas, i.e., bbas assigning a non-zero degree only to the singletons of
2U [4].

Fuzzy orthopartitions have been introduced in [5,6] to model (fuzzy) Ruspini
partitions [7] including uncertainty, and are also a generalization of orthopar-
titions based on classical sets [8]. Mathematically, fuzzy orthopartitions are
defined as collections of Intuitionistic Fuzzy Sets (IFS) satisfying a specific list
of axioms2. Each IFS (μi, νi) of a fuzzy orthopartition represents a class to
which elements belong with a degree of [0,1] that is not precisely known: given
u ∈ U , then μi(u) and νi(u) are respectively the degrees of membership and
non-membership of u to the class i, and hi(u) = 1 − (μi(u) + νi(u)) is the
degree of indeterminacy (or uncertainty) of u to the class i. We can view a fuzzy
orthopartition where all degrees of indeterminacy equal 0 as a Ruspini partition,
1 We also assume here that mi is normalized, namely mi(∅) = 0.
2 By an intuitionistic fuzzy set on a universe U , we mean a pair of functions μi : U →

[0, 1] and νi : U → [0, 1] verifying the condition μi(u) + νi(u) ≤ 1 for each u ∈ U .
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which is formally a collection of fuzzy sets π1, . . . , πn : U → [0, 1] such that
π1(u) + . . . + πn(u) = 1 for each u ∈ U .

Here, to a fuzzy orthopartition we attach the following semantics. Let (μi, νi)
be an IFS on U , μi(u) and νi(u) are respectively the degrees of belief that “u
belongs to the class i” and “u does not belong to the class i”. Moreover, according
to this interpretation, pli(u) = 1 − νi(u) is the degree of plausibility that “u
belongs to the class i”. Therefore, fuzzy orthopartitions like credal partitions,
are understood as extensions of fuzzy probabilistic partitions.

This work principally explores the connections between fuzzy orthopartitions
and credal partitions. The article is organized as follows. The first section recalls
the notion of fuzzy orthopartitions and focuses on their interpretation based on
evidence theory. Moreover, we recall how fuzzy orthopartitions as well as credal
partitions, are a generalization of fuzzy probabilistic partitions. Section 3 is com-
posed of two subsections. In Subsect. 3.1, a fuzzy orthopartition O is mapped
into a class of credal partitions denoted with F(O). We show that F(O) can be
empty, made of one or infinite credal partitions. In reverse, Subsect. 3.2 aims to
assign a fuzzy orthopartition to each credal partition. This correspondence leads
to an equivalence relation on the set of all credal partitions (i.e., we say that two
credal partitions are equivalent if and only if they correspond to the same fuzzy
orthopartition). For these reasons, fuzzy orthopartitions can be considered more
general than credal partitions. In the last section, we present the conclusions of
this work.

2 Fuzzy Orthopartitions

In the sequel, we consider a standard partition C = {C1, . . . , Cn} of the universe
U = {u1, . . . , ul}3. Furthermore, we respectively use the symbols O and m to
indicate the fuzzy orthopartition {(μ1, ν1), . . . , (μn, νn)} of U and the credal
partition {m1, . . . , ml} of U , which represent C.

Definition 1. Let O = {(μ1, ν1), . . . , (μn, νn)} be a family of IFSs of U . Then,
O is a fuzzy orthopartition of U if and only if the following properties hold for
each u ∈ U :

a)
∑n

i=1 μi(u) ≤ 1,
b) μi(u) + hj(u) ≤ 1, ∀i �= j,
c)

∑n
i=1 μi(u) + hi(u) ≥ 1,

d) ∀i ∈ {1, . . . , n} with hi(u) > 0, ∃j �= i such that hj(u) > 0.

Each IFS (μi, νi) of a fuzzy orthopartition O describes the belief and plausi-
bility relating to the belonging of the elements to the class Ci. Then, μi(u) and
νi(u) are respectively interpreted as the degrees of belief attached to the claims
the true class of the object u is Ci and the true class of the object u is not Ci.
Moreover, pli(u) = 1 − νi(u) represents the degree of plausibility that u belongs
to Ci and hi(u) = pli(u) − μi(u).
3 Of course, we need to suppose that 2 ≤ n ≤ l.
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Let us underline that all properties of Definition 1 are fundamental to con-
sider fuzzy orthopartitions as an extension of standard partitions, and more
generally of the concept of orthopartitions based on classical sets as explained
in the following remark (see [5,6] for more details).

Remark 1. Let O be a fuzzy orthopartition of U where μ1, . . . , μn, ν1, . . . , νn are
Boolean functions (i.e., μi(u), νi(u) ∈ {0, 1} for each u ∈ U). Then, we have
proved in [6] that O is also a crisp orthopartition as defined in [8]. Therefore,
in this specific case, the fuzzy orthopartition O is understood as a partition
where the membership class of some elements is known with certainty (i.e., we
can find i ∈ {1, . . . , n} such that μi(u) = 1), whereas the membership class
of the remaining elements is completely unknown (i.e., μi(u) = 0 for each i ∈
{1, . . . , n}).

In the sequel, we show that a fuzzy orthopartition where all degrees of belief
and plausibility coincide, specifies a fuzzy probabilistic partition4.

Definition 2. Let O be a fuzzy orthopartition of U , we consider m1, . . . , ml :
2C → [0, 1] such that for A ∈ 2C ,

mi(A) =

{
μj(ui) if A = {Cj} with j ∈ {1, . . . , n},

0 otherwise.
(1)

Proposition 1. Let O be a fuzzy orthopartition of U such that μi(u) = pli(u)
for each u ∈ U and i ∈ {1, . . . , n}. Then, m1, . . . , ml given by Definition 2 form
a fuzzy probabilistic partition.

Proof. Let ui ∈ U , we intend to prove that mi is a bba, namely
∑

A⊆C mi(A) =
1. By hypothesis, hj(ui) = 0 for each j ∈ {1, . . . , n}. Then, by Definition 1 (items
(a) and (c)),

μ1(ui) + . . . + μn(ui) = 1. (2)

Moreover,
∑

A⊆C mi(A) = mi(C1)+. . . mi(Cn) by considering that mi is defined
by (1) (mi(A) = 0 for each A ∈ 2C that is not a singleton). Using (1) again,
we can notice that mi(C1) + . . . + mi(Cn) coincides with μ1(ui) + . . . + μn(ui),
which is equal to 1 from (2). Hence, we are sure that mi is a bba.

Finally, mi is trivially Bayesian due to Definition 2.

Vice versa, a fuzzy probabilistic partition can be seen as a special fuzzy
orthopartition where all degrees of belief and plausibility coincide.

Proposition 2. Let m be a fuzzy probabilistic partition of U , and let O =
{(μ1, ν1), . . . , (μn, νn)} such that

μi(uj) = mj(Ci) and νi(uj) = 1 − mj(Ci) ∀i ∈ {1, . . . , n} and j ∈ {1, . . . , l}.
(3)

4 Let us recall that a fuzzy probabilistic partition {m1, . . . , ml} of U is a collection of
Bayesian bbas, namely for each i ∈ {1, . . . , l},

∑
A⊆C mi(A) = 1 and mi(A) = 0 for

each A ⊆ C that is not a singleton.
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Then, O is a fuzzy orthopartition of U such that hi(uj) = 0 ∀i ∈ {1, . . . , n} and
j ∈ {1, . . . , l}.
Proof. Let i ∈ {1, . . . , n}. By (3), μi(u) + νi(u) = 1 for each u ∈ U . This
clearly implies that (μi, νi) is an IFS on U and hi(u) = 0 for each u ∈ U .
Moreover, {(μ1, ν1), . . . , (μn, νn)} satisfies all properties characterizing a fuzzy
orthopartition and listed in Definition 1. This can be demonstrated starting
from the definition of μi and νi given by (3) together with the assumptions that
mi is a Bayesian bba , hi(u) = 0 for each i ∈ {1, . . . , n}, and u ∈ U .

Then, the previous propositions lead to a first connection between fuzzy
orthopartitions and credal partitions: both coincide with fuzzy probabilistic par-
titions in special cases. That is, a fuzzy orthopartition where all degrees of uncer-
tainty are 0, can be viewed as a credal partition made of all Bayesian bbas.

Example 1. Let U = {u1, u2, u3}, consider a credal partition m = {m1,m2,m3}
and a fuzzy orthopartition O = {(μ1, ν1), (μ2, ν2)} of U defined in Table 1.

Table 1. Definition of the elements of O and m.

u μ1(u) ν1(u) μ2(u) ν2(u)

u1 0.2 0.8 0.8 0.2

u2 0.5 0.5 0.5 0.5

u3 0.6 0.4 0.4 0.6

A m1(A) m2(A) m3(A)

∅ 0 0 0

C1 0.2 0.5 0.6

C2 0.8 0.5 0.4

C 0 0 0

We can notice that O and m are equivalent since they can be obtained one
from each other employing Definition 2 and Proposition 2. Indeed, μ1(u2) =
m2(C1) = 0.5, μ2(u3) = m3(C2) = 0.4, and so on.

3 Connections Between Fuzzy Orthopartition and Credal
Partitions

This section explores the connections between fuzzy orthopartitions and credal
partitions. They can both be seen as a fuzzy partition under condition of uncer-
tainty. As such, a fuzzy ortho/credal partition can represent several fuzzy par-
titions, once the uncertainty is solved. More formally, we define the class of all
fuzzy partitions that could coincide with a given credal partition.

Definition 3. Let m be a credal partition of U . We say that a fuzzy probabilistic
partition m′ is compatible with m if and only if

mj({Ci}) ≤ m′
j({Ci}) ≤ ∑

{A | Ci∈A} mj(A)

for each i ∈ {1, . . . , n} and j ∈ {1, . . . , l}.
Similarly, we can define the class of all fuzzy partitions that could coincide

with a given fuzzy orthopartition.
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Definition 4. Let O be a fuzzy orthopartition of U . We say that a fuzzy prob-
abilistic partition m′ is compatible with O if and only if μi(uj) ≤ m′

j(Ci) ≤
pli(uj), for each i ∈ {1, . . . , n} and j ∈ {1, . . . , l}.

Such correspondences naturally arise in a dynamic situation, where knowl-
edge about the membership class of the elements is partial and increases over
the time so that fuzzy orthopartitions and credal partitions become fuzzy prob-
abilistic partitions. In this context, a credal partition {m1, . . . , ml} is trans-
formed in {m′

1, . . . , m
′
l} such that m′

i is a Bayesian bba and m′
i({Cj}) belongs

to the interval [mi({Cj}),
∑

{A | Cj∈A} mi(A)]. Therefore, if A = {C ′
1, . . . , C

′
k}

where C ′
1, . . . , C

′
k belong to C and k ≥ 2 (i.e., A is not a singleton), then

mi(A) is distributed among the masses of belief concerning C ′
1, . . . , C

′
k, i.e.,

the degrees m′
i(C

′
1), . . . , m

′
i(C

′
k) supporting the propositions “ui belongs to C ′

1”,
. . ., “ui belongs to C ′

k”. Moreover, the limit cases m′
i({Cj}) = mi({Cj}) and

m′
i({Cj}) =

∑
{A | Cj∈A} mi(A) respectively occur when

– “if Cj ⊂ A and ui belongs to A, then ui belongs to A \ {Cj}” and
– “if Cj ⊂ A and ui belongs to A, then ui belongs to Cj”.

Similarly, a fuzzy orthopartition O = {(μ1, ν1), . . . , (μn, νn)} is transformed
in a new fuzzy orthopartition O′ = {(π1, 1 − π1), . . . , (πn, 1 − πn)} where all
degrees of plausibility and belief coincide, and μi(uj) ≤ πi(uj) ≤ pli(uj). By
Proposition 1, O′ is equivalent to a fuzzy probabilistic partition {m′

1, . . . , m
′
l}

given by Definition 2 and so, it is true that μi(uj) ≤ m′
j(Ci) ≤ pli(uj).

In the sequel, we use the symbols CO and Cm to denote the collections of
all fuzzy probabilistic partitions that are respectively compatible with a fuzzy
orthopartition O and a credal partition m.

3.1 From a Fuzzy Orthopartition to a Class of Credal Partitions

In this subsection, we associate a given fuzzy orthopartition with a class of credal
partitions.

Suppose that O represents a partition C, we are interested in all credal
partitions that could correspond to C, according to the uncertainty contained
in O. In other words, if O is extracted from a given dataset D, then we intend
to determine the characteristics that a credal partition m has to satisfy to be
obtained from D and O.

Firstly, the degrees supporting the proposition “ui belongs to Cj” w.r.t. m
and O, have to coincide, i.e., it should hold that mj({Ci}) = μi(uj). Secondly,
the degrees reflecting the uncertainty about the proposition “ui belongs to Cj”
w.r.t. m and O, have to be equal, i.e., it holds that

∑
{A | {Cj}⊂A} mi(A) =

plj(ui) − μj(ui).
Formally, the class of credal partitions corresponding to a given fuzzy

orthopartition is defined as follows. For convenience, we denote the collection
of all credal partitions of l bbas with M.
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Definition 5. Let O be a fuzzy orthopartition of U . Then, we put

F(O) = {m ∈ M | mj({Ci}) = μi(uj) and
∑

{A | Ci∈A}
mj(A) = plj(ui)

∀i ∈ {1, . . . , n} and j ∈ {1, . . . , l}}. (4)

So, according with Eq. (4), given a fuzzy orthopair, for j ∈ {1, . . . , l}, we
set mj({C1}), . . . , mj({Cn}) to μ1(uj), . . . , μn(uj). Then, it remains to find the
value of every mj(A) with |A| ≥ 2 so that

∑
{A | C1∈A} mj(A) = pl1(uj), . . . ,

∑
{A | Cn∈A} mj(A) = pln(uj)

from (4), and
∑

A⊆C mj(A) = 1 since mj must be a bba.
Therefore, if we consider a variable xi

A for each A ⊆ C such that {Ci} ⊂ A
and i ∈ {1, . . . , n}, then the values of {mj(A) | |A| ≥ 2} form a solution of the
following system:

Sj =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μ1(uj) +
∑

{A | {C1}⊂A} x1
A = pl1(uj),

...
μn(uj) +

∑
{A | {Cn}⊂A} xn

A = pln(uj),
μ1(uj) + . . . + μn(uj) +

∑
x∈A x = 1,

(5)

where A is a set of variables of {xi
A | i ∈ {1, . . . , n} and |A| ≥ 2} such that

there exists a one-to-one correspondence between A and the respective values in
{mj(A) | |A| ≥ 2}. Let us notice that Sj is a linear system with n + 1 equations
and 2n −n− 1 variables, then it can admit zero, one or infinite solutions5. More
precisely, since each mj is determined by solving Sj , we can say that

– F(O) = ∅ if and only if there exists j ∈ {1, . . . , l} such that Sj is impossible.
– F(O) has infinite solutions if and only if S1, . . . , Sl are non-impossible and at

least one of them is indeterminate.
– F(O) has a unique solution if and only if S1, . . . , Sl are determinate.

The next examples show the existence of fuzzy orthopartitions associated
with one, none and infinite credal partitions.

Example 2. Let C = {C1, C2} be a partition of U = {u1, u2, u3} represented
by the fuzzy orthopartition O = {(μ1, ν1), (μ2, ν2)}, where μ1, ν1, μ2, and ν2 are
determined by Table 2. In order to find F(O), we need to consider the systems
S1, S2 and S3 having 3 equations and one variable. According to (5), we get

S1 =

⎧
⎪⎨

⎪⎩

0.3 + x1
C = 0.6,

0.4 + x1
C = 0.7,

0.3 + 0.4 + x1
C = 1.

S2 =

⎧
⎪⎨

⎪⎩

0.4 + x2
C = 0.5,

0.5 + x2
C = 0.6,

0.4 + 0.5 + x2
C = 1.

S3 =

⎧
⎪⎨

⎪⎩

0 + x3
C = 0.6,

0.4 + x3
C = 1,

0 + 0.4 + x3
C = 1.

(6)
5 We notice that the number of equations is less than or equal to the number of

variables in Sj , but this does not imply the existence of a solution. Indeed, if x =
(x1, . . . , xk) is a solution of Sj , it must hold that x1, . . . , xk ≥ 0 (i.e., xi cannot be
any real number).
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Table 2. Definition of the elements of O and {m1, m2, m3}.

u μ1(u) ν1(u) μ2(u) ν2(u)

u1 0.3 0.4 0.4 0.3

u2 0.4 0.5 0.5 0.4

u3 0 0.4 0.4 0

A m1(A) m2(A) m3(A)

∅ 0 0 0

C1 0.3 0.4 0

C2 0.4 0.5 0.4

C 0.3 0.1 0.6

Thus, S1, S2 and S3 have a unique solution: x1
C = 0.3, x2

C = 0.1, and x3
C = 0.6.

Consequently, F(O) = {{m1,m2,m3}}, where m1, m2 and m3 are defined by
Table 2.

Example 3. Let C = {C1, C2} be a partition of U = {u1, u2, u3} represented
by the fuzzy orthopartition O = {(μ1, ν1), (μ2, ν2)}, where μ1, ν1, μ2, and ν2 are
determined by Table 3.

Table 3. Definition of the elements of the fuzzy orthopartition of Example 3.

u μ1(u) ν1(u) μ2(u) ν2(u)

u1 0.3 0.5 0.2 0.3

u2 0.5 0.2 0.4 0.4

u3 0 0.4 0.4 0

Then, the systems S1, S2 and S3 associated with O have 3 equations and one
variable:

S1 =

⎧
⎪⎨

⎪⎩

0.3 + x1
C = 0.5,

0.2 + x1
C = 0.7,

0.3 + 0.2 + x1
C = 1.

S2 =

⎧
⎪⎨

⎪⎩

0.5 + x2
C = 0.8,

0.4 + x2
C = 0.6,

0 + 0.4 + x2
C = 1.

S3 =

⎧
⎪⎨

⎪⎩

0 + x3
C = 0.6,

0.4 + x3
C = 1,

0 + 0.4 + x3
C = 1.

(7)
We can immediately see that S1, S2 and S3 have no solutions, Hence, F(O) = ∅.

Example 4. Let C = {C1, C2, C3, C4} be a partition of U = {u1, u2, u3, u4} rep-
resented by the fuzzy orthopartition O = {(μ1, ν1), (μ2, ν2), (μ3, ν3), (μ4, ν4)},
where μ1, ν1, μ2, ν2, μ3, ν3, μ4, and ν4 are determined by Table 4. We can

Table 4. Definition of the elements of the fuzzy orthopartition of Example 4.

u μ1(u) ν1(u) μ2(u) ν2(u) μ3(u) ν3(u) μ4(u) ν4(u)

u1 0.1 0.5 0.1 0.7 0.25 0.45 0.15 0.55

u2 0.15 0.55 0.1 0.5 0.1 0.7 0.25 0.45

u3 0.3 0.5 0.2 0.7 0.2 0.65 0.1 0.75

u4 0.2 0.7 0.1 0.75 0.3 0.5 0.2 0.65
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verify that the systems S1, S2, S3 and S4 associated with O by using (5), have
infinite solutions. For example, the system S1 together with two of its solu-
tions m1 : 2C → [0, 1] and m2 : 2C → [0, 1] are defined by (8) and (9),
where C∗ = {{C1}, {C2}, {C1, C2, C3}, {C1, C2, C4}} and C∗∗ = {{C1}, {C2},
{C1, C3}, {C1, C4}}.

S1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.1 +
∑

{A | {C1}⊂A} x1
A = 0.5,

0.1 +
∑

{A | {C2}⊂A} x1
A = 0.3,

0.25 +
∑

{A | {C3}⊂A} x1
A = 0.55,

0.15 +
∑

{A | {C4}⊂A} x1
A = 0.45,

0.1 + 0.1 + 0.25 + 0.15 +
∑

x∈A x = 1.

(8)

m1(A) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.1 if A ∈ C∗,
0.2 if A = {C1, C3, C4},

0.25 if A = {C3},

0.15 if A = {C4},

0 otherwise,

m′
1(A) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.1 if A ∈ C∗∗,
0.2 if A = {C1, C2, C3, C4},

0.25 if A = {C3},

0.15 if A = {C4},

0 otherwise,
(9)

Hence, we can conclude that F(O) is made of infinite credal partitions.

As explained at the beginning of this section, a fuzzy orthopartition O rep-
resents the set of compatible fuzzy probabilistic partition CO. The next theorem
shows that the same set of fuzzy partitions is obtained as those compatible with
any credal partition m ∈ F(O).

Theorem 1. Let O be a fuzzy orthopartition of U , and let m ∈ F(O). Then,
Cm = CO.

Proof. If m′ ∈ Cm then mi({Cj}) ≤ m′
i({Cj}) ≤ ∑

{A|Cj∈A} mi(A) from
Definition 3. Moreover, m ∈ F(O) implies that mi({Cj}) = μj(ui) and∑

{A|Cj∈A} mi(A) ≤ plj(ui) from Definition 5. Then, Cm ⊆ CO clearly follows
from Definition 4. The case CO ⊆ Cm is symmetric and omitted.

3.2 From a Credal Partition to a Fuzzy Orthopartition

In this subsection, we explain how to associate a fuzzy orthopartition to a given
credal partition. The meaning of such correspondence is dual to that exhibited in
Subsect. 3.1. Given a credal partition m, we intend to consider a fuzzy orthopar-
tition O such that both m and O can be seen as the generalization of an initial
partition in the same conditions of uncertainty/knowledge.

Definition 6. Let m ∈ M. Then, we consider Om = {(μ1, ν1), . . . , (μn, νn)}
such that for each i ∈ {1, . . . , l} and j ∈ {1, . . . , n}, of course, we get plj(ui) =∑

{A | Cj∈A} mi(A).

μj(ui) = mi(Cj) and νj(ui) = 1 −
∑

{A | Cj∈A}
mi(A). (10)
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We can prove that the set of pairs assigned to a given credal partition (by
means of (10)) is a fuzzy orthopartition.

Theorem 2. Let m ∈ M. Then, Om is a fuzzy orthopartition.

Proof. First of all, we need to verify that (μi, νi) is an IFS. By Definition 6,

μj(ui) + νj(ui) = mi(Cj) + 1 − ∑
{A | Cj∈A} mi(A).

Since mi(Cj) ≤ ∑
{A | Cj∈A} mi(A), we have μj(ui) + νj(ui) ≤ 1. The latter

implies that (μi, νi) is an IFS. Then, we intend to prove that all properties of
Definition 1 hold for Om.

a) Let ui ∈ U . By hypothesis, mi is a bba. Then, mi(C1) + . . . + mi(Cn) ≤ 1.
Thus, μ1(ui)+ . . .+μn(ui) ≤ 1 by considering that μj(ui) = mi(Cj) for each
j ∈ {1, . . . , n}. Then, Property (a) of Definition 1 holds for Om.

b) Let ui ∈ U and let j, k ∈ {1, . . . , n} with j �= k, we want to prove that
μj(ui) + hk(ui) ≤ 1.
By Definition 6, we get μj(ui) + hk(ui) = μj(ui) + 1 − μk(ui) −
νk(ui) = mi(Cj) + 1 − mi(Ck) − (1 − ∑

{A | Ck∈A} mi(A)) = mi(Cj) +
∑

{A | {Ck}⊂A} mi(A). Since mi is a bba, it must be mi(Cj) +
∑

{A | {Ck}⊂A} mi(A) ≤ 1. Finally, we can conclude that μj(ui)+hk(ui) ≤ 1
and so, Property (b) of Definition 1 holds for Om.

c) Let ui ∈ U . Then, (μ1(ui) + h1(ui)) + . . . + (μn(ui) + hn(ui)) is equal to∑
{A | C1∈A} mi(A)+. . .+

∑
{A | Cn∈A} mi(A) due to Definition 6. Moreover,

the latter is greater than or equal to
∑

A⊆C mi(A), which is 1 because mi is
a bba. Then, Property (c) of Definition 1 holds for Om.

d) Firstly, by Definition 6, we can observe that hj(ui) =
∑

{A | {Cj}⊂A} mi(A)
for each i ∈ {1, . . . , l} and j ∈ {1, . . . , n}.
Given ui ∈ U , we suppose that there exists j ∈ {1, . . . , n} such that hj(ui) ≥
0. Equivalently,

∑
{A | {Cj}⊂A} mi(A) > 0. Hence, there exists a subset A′

of C such that {Cj} ⊂ A′ and mi(A′) > 0. This implies that hk(ui) =∑
{A | {Ck}⊂A} mi(A) > 0 when we consider Ck ∈ A′ such that Ck �= Cj .

Then, Property (d) of Definition 1 holds for Om.

By Definition 6, we can observe that different credal partitions can correspond
to a same fuzzy orthopartition. Therefore, we can define an equivalence relation
on M as follows: let m,m′ ∈ M, m ∼ m′ if and only if Om = Om′ . This section
ends by connecting the fuzzy orthopartitions and credal partitions provided by
Definitions 5 and 6.

Theorem 3. Let O be a fuzzy orthopartition of U and let m ∈ F(O). Then,
Om = O.

Proof. The thesis clearly follows from both Definitions 5 and 6.

In other words, we can start from a fuzzy orthopartition O, consider F(O) and
obtain O again by applying Definition 6 to any credal partition in F(O). Lastly,
it is important to notice that the previous theorem allows us to rewrite Equation
(4) as F(O) = {m ∈ M | Om = O} and see Om as a fuzzy orthopartition of U
verifying COm

= Cm (this result is dual to that provided by Theorem 1).
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4 Conclusions

We explored the connections between fuzzy orthopartitions and credal partitions.
In summary, we have shown that fuzzy orthopartitions and credal partitions
coincide when both are fuzzy probabilistic partitions. In the general case, fuzzy
orthopartitions are a more general construct than credal partitions. Indeed, fuzzy
orthopartitions are partitioned into three non-empty classes: {O | F(O) = ∅},
{O | F(O) = 1}, and {O | F(O) is infinite}. Finally, we have considered equiva-
lence classes on M composed of all credal partitions corresponding to the same
fuzzy orthopartition. We remark that we have focused on normalized bbas, how-
ever, our results can be extended in the more general case and this will enable
us to deal with the presence of outliers in clustering applications. Indeed, in
the case of fuzzy orthopartitions, outliers can be managed considering an IFS
(μ0, ν0) such that μ0(ui) = 0 and ν0(ui) = k ∈ (0, 1] if ui is an outlier, and
ν0(ui) = 1 otherwise. So, the correspondence shown in this paper will be gen-
eralized by modifying Definitions 5 and 6. As future developments, besides the
application of fuzzy orthopartitions to clustering, we will compare the existing
measures of uncertainty in both settings.
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Abstract. [3] and [7] generalize the notion of probability measures and
belief functions to Belnap-Dunn (BD) logic, respectively. This work aims
at providing an alternative way to treat contradictory information by
relying on a logic that was introduced to reason about incomplete and
contradictory information rather than on classical logic. In this article,
we study how to update belief functions over BD logic with new pieces
of information. We present a first approach via a frame semantics of BD
logic. This frame semantics relying on sets, we can use Bayesian update
and Dempster-Shafer combination rule over powerset algebras to define
their corresponding updates within the framework of BD logic.

Keywords: Belief functions · Belnap-Dunn logic · Bayesian update ·
Dempster-Shafer combination rule

1 Introduction

Belief functions were introduced to generalise the notion of probabilities to situ-
ations with incomplete information. They can be used to encode the information
given by one or many pieces of evidence. They were first introduced on Boolean
algebras [8], that is within the framework of classical reasoning. Dempster-Shafer
theory uses the equivalent representation of belief functions via their mass func-
tions to propose a method to aggregate the information conveyed by two belief
functions. Since, the theory of belief functions has been developed on distribu-
tive lattices [1,5,9] and finite lattices [4]. Notice that the definition of belief
functions (see Definition 3) relies only on the lattice structure of the algebra.
However, its dual notion, plausibility, is usually defined by combining a belief
function and the classical negation. In this framework, belief is interpreted as a
lower bound on the probability of an event and plausibility as an upper bound.
Similarly, Dempster-Shafer combination rule also relies strongly on the underly-
ing algebra being Boolean. In this article, we discuss the interpretation of belief
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and plausibility functions within the framework of Belnap-Dunn logic rather
than through classical logic, because it allows us to reason with incomplete and
contradictory information.

Belnap-Dunn logic was introduced to reason about information rather than
about truth. In classical logic a statement p is either true or false, meaning that p
is true (resp. false) iff the statement p is true (resp. false) in the world. In Belnap-
Dunn (BD) logic, a statement p is either “supported by the available information”,
or “contradicted by the available information”, or “neither supported nor contra-
dicted by the available information”, or “both supported and contradicted by the
available information”. These four truth values are respectively denoted t (true),
f (false), n (neither), b (both). [3] introduces belief functions over BD models and
presents a logic to reason with them. This work was motivated by the counterintu-
itive results that Dempster-Shafer (DS) theory can produce in presence of highly
contradictory pieces of information. Indeed, the strategy of Dempster-Shafer com-
bination rule is to ignore contradictory information rather than dealing with the
contradictions and saying something meaning full about them. Since BD logic is
a simple, well-established extension of classical logic that was introduced to for-
malise reasoning based on incomplete and contradictory information, it appeared
natural to adapt Dempster-Shafer theory over BD logic.

The next step is to look at taking new pieces of information into account by
updating the belief functions. [6] presents different ways to update belief and
plausibility functions in the classical framework. This article expends on [3] and
discusses how to adapt and interpret those results within the framework of belief
and plausibility functions over Belnap-Dunn logic.

Structure of the Paper. In Sect. 2, we present BD logic and non-standard prob-
abilities over BD logic, then we recall definitions and lemmas about belief and
plausibility functions and Dempster-Shafer combination rule, finally we present
existing proposals to update belief functions over Boolean algebras. In Sect. 3,
we introduce models for belief and plausibility over BD logic. We discuss how
to update belief and plausibility when getting a new piece of information. In
Sect. 4, we discuss further research.

2 Preliminaries

In this section, we first introduce the necessary definitions about BD logic and
non-standard probabilities. Then we recall useful definitions and lemmas about
belief and plausibility functions and Dempster-Shafer combination rule. Finally,
we present two ways to update belief functions on Boolean algebras.

In the reminder of the paper, we will always work with finite lattices. Recall
that a lattice is a tuple L = 〈L,∨,∧〉, such that ∨ and ∧ are binary, commutative,
associative, and idempotent operations that satisfy the following rules: x ∨ (x ∧
y) = x and x∧(x∨y) = x, for all x, y ∈ L. A lattice is bounded if it contains nullary
operators ⊥ and � that represent respectively its lower and upper bounds, i.e., for
every element x ∈ L, we have x∨� = � and x∧⊥ = ⊥. A lattice is distributive if
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(x∨y)∧z = (x∧z)∨(y∧z) holds for all x, y, z ∈ L. A (bounded) De Morgan algebra
is a (bounded) distributive lattice equipped with an additional unary operation ¬
such that ¬¬x = x and ¬(x∧y) = ¬x∨¬y for all x, y ∈ L. A Boolean algebra is a
bounded De Morgan algebra that satisfies the law of excluded middle (p∨¬p = �)
and the principle of explosion (p∧¬p = ⊥). A function μ : P(S) → [0, 1] is called
a (finitely additive) probability measure if it satisfies the following properties: (i)
μ(S) = 1, and (ii) μ(A ∪ B) = μ(A) + μ(B) for A,B disjoint.

2.1 Belnap-Dunn Logic

BD logic mentioned in the introduction was introduced by Nuel Belnap in [2].
His main aim was to design a logical system capable of dealing with inconsistent
or/and incomplete information. The language LBD of BD logic is defined via the
following grammar over a finite set of propositions Prop:

ϕ := p ∈ Prop | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ⊥ | �.

The constants ⊥ and � are not a standard part of the signature of LBD, we
include them for the sake of simplicity. Most of the results can be straightfor-
wardly adapted for the more general framework without the constants. Semantics
for BD logic can be provided in two equivalent ways. One possibility is to evaluate
the formulas directly into the set {t, f ,n,b}. We will use the second option based
on the idea of independence of positive and negative information. In particular,
a lack of positive support for a claim does not automatically mean a support for
its negation. This is formally represented by two valuations representing positive
(negative) support, respectively.

Definition 1 (Belnap-Dunn models). A Belnap-Dunn model (BD model)
is a tuple M = 〈S, v+, v−〉 where S �= ∅ is a finite set of states and v+, v− :
Prop → P(S) are positive, negative valuation functions respectively.

The valuations are extended to the corresponding satisfaction relations. Each
of them evaluates compound formulas in a way which is in fact classical: e.g. a
conjunction is supported positively in a state iff each of its conjuncts is, and it
is supported negatively if at least one of the conjuncts is.

Definition 2 (Frame semantics for BD). Let ϕ,ϕ′ ∈ LBD, M = 〈W, v+, v−〉
a BD model and w ∈ S. Then �+ and �− are defined as follows.

w �+ p iff w ∈ v+(p) w �− p iff w ∈ v−(p)

w �+ ¬ϕ iff w �− ϕ w �− ¬ϕ iff w �+ ϕ

w �+ ϕ ∧ ϕ′ iff w �+ ϕ and w �+ ϕ′ w �− ϕ ∧ ϕ′ iff w �− ϕ or w �− ϕ′

w �+ ϕ ∨ ϕ′ iff w �+ ϕ or w �+ ϕ′ w �− ϕ ∨ ϕ′ iff w �− ϕ and w �− ϕ′

We will make use of the notions of the positive extension of a formula (the
set of states supporting it): |ϕ|+ = {s ∈ S | s �+ ϕ}, and analogously the
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negative extension of a formula |ϕ|− = {s ∈ S | s �− ϕ}. Notice that in general
a negative extension is not a set theoretical complement of the corresponding
positive extension, i.e. |ϕ|+ ∪|ϕ|− � S (some states might support neither ϕ nor
¬ϕ) and |ϕ|+ ∩ |ϕ|− �= ∅ (states in the intersection support both ϕ and ¬ϕ).
Moreover, positive and negative extensions are mutually definable: |¬ϕ|+ = |ϕ|−.

When we define a measure on the formulas of some language, it is natural
to require that equivalent formulas have the same value (the probability of an
event should not depend on its name). Another option which is technically more
convenient is to work with equivalence classes of formulas directly. Two formulas
are equivalent, denoted ϕ ∼ ψ, if they are mutually derivable with respect to the
axiomatisation of BD logic (see e.g. [3, p. 5]). Formally, this structure is called the
Lindenbaum algebra of the logic. For BD logic, it is the free De Morgan algebra
generated by the set of atomic variables Prop. It is defined as LBD = (L,∧′,¬′)
such that L is the set of equivalence classes [ϕ] = {ψ | ψ ∼ ϕ}, [ϕ]∧′ [ψ] = [ϕ∧ψ]
and ¬′[ϕ] = [¬ϕ]. In what follows we will not distinguish between a formula and
its equivalence class.

Information might be incomplete or contradictory, but usually it is also uncer-
tain. There were several attempts to propose a probabilistic version of BD logic,
which extends the basic idea of independence of positive and negative infor-
mation to the probabilistic case. We build on the framework of non-standard
probabilities presented in [7]. We will use the notion of a probabilistic BD model,
M = 〈S, v+, v−, μ〉, which is a BD model equipped with a probability measure
μ on S. The probability of a statement expressed by a formula ϕ is defined
as the (classical) measure of its positive extension: p(ϕ) = μ(|ϕ|+). Although
the non-standard probability is defined using classical measure on a Boolean
algebra, it satisfies axioms weaker than the Kolomogorovian ones. In particular,
the additivity axiom does not hold, it is replaced by a weaker principle called
inclusion/exclusion : p(ϕ∨ψ) = p(ϕ)+ p(ψ)− p(ϕ∧ψ). As a consequence, some
classical principles are not valid any more: it might happen that p(ϕ)+p(¬ϕ) < 1
(probabilistic information is incomplete) and p(ϕ ∧ ¬ϕ) > 0 (probabilistic infor-
mation is contradictory).

2.2 Belief and Plausibility Functions

We recall the definitions of belief functions, plausibility functions and mass func-
tions. Usually those definitions are given on Boolean algebras, here, we directly
generalise them to lattices.

Definition 3 (Belief function). Let L be a a bounded lattice. A function bel :
L → [0, 1] is called a belief function if the following conditions hold: (i) bel(⊥) =
0 and bel(�) = 1 ; (ii) bel is monotone with respect to L, i.e. for every x, y ∈ L,
if x ≤L y, then bel(x) ≤ bel(y) ; (iii) bel is weakly totally monotone, i.e. for
every k ≥ 1 and every a1, . . . , ak ∈ L, it holds that

bel

⎛
⎝ ∨

1≤i≤k

ai

⎞
⎠ ≥

∑
J ⊆ {1, . . . , k}

J �= ∅

(−1)|J|+1 · bel
⎛
⎝∧

j∈J

aj

⎞
⎠ . (1)
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Definition 4 (Mass function). Let L �= ∅ be an arbitrary lattice. A mass
function on L is a function m : L → [0, 1] such that

∑
x∈L

m(x) = 1.

The following well-known lemma, see for example [9, Theorem 2.8], shows
the relation between mass functions and belief functions.

Lemma 1 (Mass function associated to a belief function). Let L be
a finite lattice and bel : L → [0, 1] a belief function. Then, there is a mass
function mbel : L → [0, 1], called the mass function associated to bel, such that,
for every x ∈ L, bel(x) =

∑
y≤x

mbel(y). Conversely, for any mass function m on

the lattice L, the function belm : L → [0, 1] defined as belm(x) =
∑
y≤x

m(y) is a

belief function.

Definition 5 (Plausibility functions). Let L be a bounded lattice. pl : L →
[0, 1] is called a plausibility function if the following conditions hold: (i) pl(⊥) =
0 and pl(�) = 1 ; (ii) pl is monotone with respect to L, (iii) for every k ≥ 1
and every a1, . . . , ak ∈ L, it holds that

pl

⎛
⎝ ∧

1≤i≤k

ai

⎞
⎠ ≤

∑
J ⊆ {1, . . . , k}

J �= ∅

(−1)|J|+1 · pl
⎛
⎝∨

j∈J

aj

⎞
⎠ . (2)

The following two lemmas from [3] show the mutual definability of belief,
plausibility and their mass functions on De Morgan algebras.

Lemma 2 (Plausibility function associated to a belief function). Let L
be a bounded De Morgan algebra and bel : L → [0, 1] a belief function. Then,
the function plbel : L → [0, 1] such that plbel(x) = 1 − bel(¬x) is a plausibility
function, called the plausibility function associated to bel.

Lemma 3 (Mass function associated to a plausibility function). Let L
be a bounded De Morgan algebra, and pl : L → [0, 1] a plausibility function.
Then, the function belpl : L → [0, 1] such that belpl(x) = 1 − pl(¬x) is a belief
function, called the belief function associated to pl. We denote mpl the mass
function associated to belpl and we call mpl the mass function associated to pl.
Then, pl(x) = 1 − ∑

y≤¬x mpl(y).

Notice that, like in the classical case, a mass function m gives rise to a belief belm
and a plausibility plm function such that plm(x) = 1 − belm(¬x). However, here,
since ¬ is not a Boolean negation, we cannot prove anymore that belm(x) ≤
plm(x). In addition, notice that contrary to the classical case, one cannot rewrite
the expression 1−∑

y≤¬x mpl(y) as
∑

y:y∧x>⊥ mpl(y). Indeed, for instance, ¬x ≤
¬x, but ¬x ∧ x �= ⊥.

Belief functions and their mass functions are used to reason about evidence.
Dempster-Shafer combination rule allows merging the information provided by
different sources, each source being described by a mass function.
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Definition 6 (Dempster-Shafer combination rule). Let m1 and m2 be two
mass functions on P(S). Dempster-Shafer combination rule computes their
aggregation m1 ⊕ m2 : P(S) → [0, 1] as follows.

X �→
⎧⎨
⎩

0 if X = ∅∑{m1(X1) · m2(X2) | X1 ∩ X2 = X}∑{m1(X1) · m2(X2) | X1 ∩ X2 �= ∅} otherwise.

2.3 Classical Updating of Uncertainty Measures

A probability function μ on a Boolean algebra P(S) represents the informa-
tion available about the subsets of S representing events. Observing B ∈ P(S)
changes the probabilities assigned to the elements of P(S) and leads to a new
probability measure μB . There are different strategies to define this new mea-
sure. Here we focus on Bayesian updating defined as μB(C) = μ(B∩C)

μ(B) , for every
C ∈ P(S). In this section, we present results from [6]. We recall how Bayesian
updating is used to define conditional upper and lower probabilities, and condi-
tional belief and plausibility, and how Dempster-Shafer combination rule can be
used to define conditional belief and plausibility. In this section, Pl denotes the
plausibility function associated to Bel.

Conditioning Upper and Lower Probabilities. Let A be a non-empty set
of probability measures defined over P(S). Then its lower and upper probabilities
(resp. A∗ and A∗) are functions defined on P(S) as follows, for every X ∈ P(S):
A∗(X) = inf{μ(X) : μ ∈ A} and A∗(X) = sup{μ(X) : μ ∈ A}. [6] proposes
the following way to update a set of probabilities A using Bayesian update. A
priori, observing B ∈ P(S) leads to the Bayesian updating μB of all probabilities
μ ∈ A such that μ(B) �= 0, that is, the probability measures consistent with that
observation. Therefore, the update of A is defined only if there is at least one
μ′ ∈ A such that μ′(B) > 0. We denote AB = {μB : μ ∈ A and μ(B) > 0}. We
define the conditional updating of A∗ and A∗ by B as follows: (A∗)B := (AB)∗

and (A∗)B := (AB)∗.

Conditioning Belief and Plausibility as Lower and Upper Probabili-
ties. In the classical case, [6] introduces two ways to update belief functions:
(1) via the representation of belief functions as lower probabilities (see Theorem
1), and (2) via their associated mass functions (see Proposition 2).

Theorem 1 [6, Theorem 2.6.1]. Let Bel be a belief function defined on P(S)
and MBel = {μ : μ(X) ≥ Bel(X), for all X ∈ P(S)}. Then Bel = (MBel)∗ and
Pl = (MBel)∗.

The set MBel can be updated when it contains at least one measure such
that μ(B) > 0, that is when PlBel(B) > 0.
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Definition 7. Let Bel : P(S) → [0, 1] be a belief function and Pl is associ-
ated plausibility function such that Pl(X) = 1 − Bel(X) for every X ∈ P(S).
Then conditioning of Bel and Pl on B is defined as follows: BelB(X) =
((MBel)∗)B(X) = ((MBel)B)∗(X) and PlB(X) = ((MBel)∗)B(X) =
((MBel)B)∗(X).

In Sect. 3.3, we will work with models containing belief and plausibility func-
tions that are not interdefinable. The following proposition characterises those
functions in terms of lower and upper probabilities.

Proposition 1 (Belief and plausibility as an upper/lower probability).
Let f be a function defined on P(S) and Mf = {μ : μ(X) ≥ f(X), for all X ∈
P(S)} and Nf = {μ : μ(X) ≤ f(X), for all X ∈ P(S)}. Now let Bel and Pl be
belief and plausibility functions defined independently on P(S). Then,

Pl = (MBelPl)
∗ = (NPl)∗ and Bel = (MBel)∗ = (NPlBel)∗

where BelPl and PlBel are respectively the belief and plausibility associated to Pl
and Bel (see Lemmas 2 and 3).

Proof. Recall that BelPl(X) = 1−Pl(X). Based on Theorem 1, we have BelPl =
(MBelPl)∗ and Pl = (MBelPl)

∗. Notice that, for every X ∈ P(S),

μ(X) ≤ Pl(X) ⇐⇒ μ(X) ≤ 1 − BelPl(X) ⇐⇒ BelPl(X) ≤ 1 − μ(X)

⇐⇒ BelPl(X) ≤ μ(X) ⇐⇒ BelPl(X) ≤ μ(X)
⇐⇒ BelPl(X) ≤ μ(X)

Therefore, MBelPl = NPl and (MBelPl)
∗ = (NPl)∗. The proof for Bel is similar.

Defining conditioning via lower and upper probabilities is not very practical
from a computational perspective. The following theorem gives us an explicit
formula.

Theorem 2. Let Bel : P(S) → [0, 1] be a belief function. Let Pl be its associated
plausibility function. Suppose that Pl(B) > 0. Then,

BelB(X) =

⎧⎪⎨
⎪⎩

1 if Pl(X ∩ B) = 0,

Bel(X ∩ B)
Bel(X ∩ B) + Pl(X ∩ B)

if Pl(X ∩ B) > 0.

PlB(X) =
Pl(X ∩ B)

Pl(X ∩ B) + Pl(X ∩ B)

Proof. [6, Theorem 3.8.2] proves the formula for Bel and the fact that

PlB(X) =

⎧⎪⎨
⎪⎩

0 if Pl(X ∩ B) = 0,

Pl(X ∩ B)
Pl(X ∩ B) + Pl(X ∩ B)

if Pl(X ∩ B) > 0.
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Notice that Pl(X ∩ B) + Pl(X ∩ B) > 0 for every X ∈ P(S). Indeed, since Pl
is a plausibility function, we have Pl(A ∪ C) ≤ Pl(A) + Pl(C) − Pl(A ∩ C) for
every A,C ∈ P(S). If A ∩ C = ∅, then Pl(A ∪ C) ≤ Pl(A) + Pl(C). Hence, if
A = X ∩ B and C = X ∩ B, we have Pl(B) ≤ Pl(X ∩ B) + Pl(X ∩ B). Since
Pl(B) > 0, we have Pl(X ∩B)+Pl(X ∩B) > 0, for every X ∈ P(S). Therefore,
if Pl(X ∩ B) = 0, we have Pl(X∩B)

Pl(X∩B)+Pl(X∩B)
= 0 as required.

Conditioning Belief and Plausibility via Mass Functions. In this case,
observing B is encoded via the mass function mB as mB(B) = 1 and 0 otherwise.
The update BelB of a belief function Bel by B is computed via Demspter-Shafer
combination rule and its associated mass function is mBel ⊕ mB . To distinguish
between this method and the above method we use BelB and PlB for the con-
ditional belief and plausibility obtained by the latter approach and we call it
DS-conditioning. We have the following explicit formulas for BelB and PlB .

Proposition 2 [6, Theorem 3.8.5]. BelB and PlB are defined if Pl(B) > 0.
For every X ∈ P(S), BelB(X) = Bel(X∪B)−Bel(B)

1−Bel(B)
andPlB(X) = Pl(X∩B)

Pl(B) .

3 Updating Belief and Plausibility over Belnap-Dunn
Logic

3.1 Models for Belief and Plausibility over Belnap-Dunn Logic

We define belief functions on BD logic similarly to how we defined probabilities,
that is, we use the notion of positive/negative extension.

Definition 8 (DS models and their associated belief functions). Let LBD

be the Lindenbaum algebra for BD logic over the set of propositional letters Prop.
A DS model is a tuple M = 〈S,P(S), Bel, v+, v−〉 such that 〈S, v+, v−〉 is a BD
model and Bel is a belief function on P(S). We denote bel+M : LBD → [0, 1] and
bel−

M : Lop
BD → [0, 1] the maps such that, for every ϕ ∈ LBD,

bel+M (ϕ) = Bel(|ϕ|+) and bel−
M (ϕ) = Bel(|ϕ|−) = Bel(|¬ϕ|+). (3)

We drop the subscript whenever there is no ambiguity on the model M we are
considering.

Notice that as we are defining belief of a formula via its extension, we obtain
mutual definability of positive and negative belief: bel−(ϕ) = bel+(¬ϕ). This
property mirrors how the negation works in BD logic and in non-standard prob-
abilities. It would be possible to define plausibility analogously to the classical
case, that is Pl(X) = 1 − Bel(X). The plausibility of ϕ would then be equal to
the sum of the masses of the sets of states that at least partially support ϕ, i.e.∑{m(A) | A ∩ |ϕ|+ �= ∅}. This definition does not have an intuitive interpreta-
tion, as in the sum (1) we can take into account sets of states that all positively



Toward Updating Belief Functions over Belnap-Dunn Logic 269

satisfy both ϕ and ¬ϕ and (2) we do not take into account sets of states that
satisfy neither ϕ nor ¬ϕ. However, not having information about ϕ, in general,
is not an argument to say that it is implausible. Therefore, we introduce models
where belief and plausibility are not inter-definable.

Definition 9 (DSpl models and their associated plausibility functions).
Let LBD be the Lindenbaum algebra for BD logic over the set of propositional

letters Prop. A DSpl model is a tuple M = (S,P(S), Bel, Pl, v+, v−) such that
(S,P(S), Bel, v+, v−) is a DS model, Pl is a plausibility function on P(S). We
denote pl+M : LBD → [0, 1] and pl−

M : Lop
BD → [0, 1] the maps such that, for every

ϕ ∈ LBD, pl+M (ϕ) = Pl(|ϕ|+)and pl−
M (ϕ) = Pl(|ϕ|−) = Pl(|¬ϕ|+). We drop the

subscript whenever there is no ambiguity on the model M we are considering.

In the standard approach both belief and plausibility use in fact the same
information represented by the mass function, but deal with it in a different way.
While we can see belief as the amount of information which directly supports
the statement in question, plausibility represents the amount of information
which does not contradict the statement. As Halpern says: “Plausm(U) can be
thought of as the sum of the probabilities of the evidence that is compatible
with the actual world being in U”. ([6], p. 38). This idea is captured in the
definition of plausibility via mass function: pl(A) =

∑
A∩B �=∅

m(B). We can also

see belief and plausibility as approximations, as a lower and an upper bound
for the ‘true’ probability: bel(A) ≤ p(A) ≤ pl(A). While in the classical case
all these readings coincide, in the case of BD logic they do not, which gives
us several possibilities of defining belief/plausibility pairs (see [3, Sect. 3.3] for a
more detailed discussion). Notice that, since A and ¬A are independent elements,
if we consider a belief function bel and its associated plausibility function plbel,
then we can have plbel(A) < bel(A). Therefore, asking for bel(A) ≤ pl(A)
usually implies that bel and pl are associated to different mass functions. This
can be interpreted as follows: an agent has a fixed set of pieces of evidences,
however, they do not read the evidence the same way when they ask themselves
“does the evidence strongly convince me that ϕ is the case?” or “is the evidence
coherent with the fact that ϕ might be the case?”. We discuss this more in details
in [3, Sect. 3.3.3].

3.2 Updating Belief

A natural question that arises is what is the behaviour of the positive and neg-
ative belief functions induced by the above models, when one learns a new piece
of information. Learning something about ϕ means finding a positive or neg-
ative piece of information or even a contradictory piece of information about
ϕ. Here, we directly adapt the conditioning on belief function proposed in [6].
Indeed, the belief function Bel in a DS models is defined on a powerset alge-
bra. The non-classical behaviour with respect to the negation of bel+ and bel−

comes from the non-classical interpretation of formulas. Recall that in BD logic,
|ϕ|− = |¬ϕ|+, therefore, we only study updating with the positive interpretation
of a formula.
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Conditioning Belief as Lower Measure. If we look at belief as the lower
approximation of the “real” probability function, then we know that the “real”
probability function is in the set MBel. Therefore, to update the belief after learn-
ing that ϕ is the case, one can compute the Bayesian update of every probability
in MBel. In that framework, this boils down to ignoring information states (that
is, the elements s ∈ S) not supporting ϕ. If (MBel)∗(|ϕ|+) = 1 − Bel(|ϕ|+) > 0,
then one can define the conditional belief on ϕ as follows: for every X ∈ P(S),
Bel|ϕ|+(X) = ((MBel)|ϕ|+)∗(X) which gives us the following conditional belief
function on formulas, for each ψ ∈ LBD, bel+|ϕ|+(ψ) = Bel|ϕ|+(|ψ|+) =
((MBel)|ϕ|+)∗(|ψ|+). In what follows, for sake of readability, we will write bel+|ϕ|
and Bel|ϕ| instead of Bel|ϕ|+ and bel+|ϕ|+ . Based on Theorem 2, we have the
following explicit formula

bel
+
|ϕ|(ψ) =

⎧
⎪⎨

⎪⎩

1 if Bel(|ϕ|+ ∪ |ψ|+) = 1,

Bel(|ψ|+ ∩ |ϕ|+)
1 + Bel(|ψ|+ ∩ |ϕ|+) − Bel(|ϕ|+ ∪ |ψ|+) if Bel(|ϕ|+ ∪ |ψ|+) < 1.

Notice that since the update is performed on Bel, both bel+ and bel− are
affected by the update. In addition, bel+|ϕ|(ϕ) = 1 as expected. However, in
general, bel+|ϕ|(¬ϕ) �= 0, because |ϕ|+ ∩ |¬ϕ|+ �= ∅.

Conditioning Belief via Mass Functions. If we interpret belief as represent-
ing the information coming from pieces of evidence, then one can also update
the belief function Bel via its associated mass function mBel and Dempster-
Shafer combination rule. We call that method DS conditioning. A piece of evi-
dence fully supporting exactly ϕ is usually represented by the mass function
m|ϕ|+ : P(S) → [0, 1] such that m|ϕ|+(|ϕ|+) = 1 and m|ϕ|+(X) = 0 otherwise.
Therefore, the updating of Bel by finding positive information about ϕ, denoted
(Bel)|ϕ|, is the belief function associated to the mass function mBel⊕m|ϕ|+ . Then,
based on Proposition 2, we have:

Proposition 3. The belief function (bel+)|ϕ| is defined if 1 − Bel(|ϕ|+) > 0,
and, for every ψ ∈ LBD,

(bel+)|ϕ|(ψ) = (Bel)|ϕ|(|ψ|+) =
Bel(|ψ|+ ∪ |ϕ|+) − Bel(|ϕ|+)

1 − Bel(|ϕ|+)
.

It is well-known that DS combination rule is associative and commutative
[8], therefore DS conditioning of belief functions is commutative and associative
as well. Notice that, for every ϕ,ψ ∈ LBD, we have m|ϕ|+ ⊕ m|ψ|+ = m|ψ|+ ⊕
m|ϕ|+ = m|ϕ|+∩|ψ|+ = m|ϕ∧ψ|+ , which implies that ((bel+)|ϕ|)|ψ| = ((bel+)|ψ|)|ϕ|

= ((bel+)|ϕ∧ψ|). This means that, with DS conditioning, finding both a piece of
information supporting ϕ and a piece of information supporting ¬ϕ is equivalent
to finding a contradictory piece of information about ϕ. Here again, notice that
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(bel+)|ϕ|(¬ϕ) can be different than 0 because some states s ∈ S can support
both ϕ and ¬ϕ. In addition, it is worth noticing, that Bel|ϕ|(X) ≤ Bel|ϕ|(X)
for every X ⊆ S (see [6, Theorem 3.8.6]). Therefore, bel+ϕ (X) ≤ (bel+)|ϕ|(X)
and bel−

ϕ (X) ≤ (bel−)|ϕ|(X).

3.3 Updating Plausibility

Recall that the interpretation of ϕ and ¬ϕ are independent, therefore, when we
consider a mass function m and its associated belief and plausibility functions
belm and plm, it is often the case that belm(ϕ) �≤ plm(ϕ) = 1−belm(¬ϕ). Hence, if
one wants to reason with a belief function and a plausibility function that provide
an interval that contains the probability of ϕ, one needs to consider a belief and
a plausibility function that are not associated to the same mass function. In [3,
Section 3.3.3], we discuss the interpretation of these mass functions. Then, the
question of updating the plausibility function directly, without going through
its associated belief function arises. To do so, we introduce DSpl models: M =
(S,P(S), Bel, Pl, v+, v−). As mentioned above, we can focus on updating based
on positive information about a formula ϕ.

Conditioning Plausibility as Upper Measure. Based on Proposition
1, Pl is an upper probability, that is, Pl = (MBelPl)

∗. So again, one can
define conditioning on a formula ϕ when Pl(ϕ) > 0 as follows: pl+|ϕ|(ψ) =
((MBelPl)|ϕ|+)∗(|ψ|+), for every ψ ∈ LBD. From Lemma 2, we have the following
explicit formula for updating plausibilities.

Proposition 4. Let ϕ be a formula such that Pl(|ϕ|+) > 0,

pl+|ϕ|(ψ) =
Pl(|ψ|+ ∩ |ϕ|+)

Pl(|ψ|+ ∩ |ϕ|+) + Pl(|ψ|+ ∩ |ϕ|+)

Notice that, as expected, pl+|ϕ|(ϕ) = 1 and, since |ψ|− = |¬ψ|+, we have:

pl−
|ϕ|(ψ) = ((MBelPl)|ϕ|+)∗(|ψ|−) = ((MBelPl)|ϕ|+)∗(|¬ψ|+) = pl+|ϕ|(¬ψ).

Conditioning Plausibility via Mass Function. DS conditioning can be
applied to plausibility functions via their associated mass functions mpl (see
Lemma 3). The mass function associated to the update of Pl based on some piece
of information positively supporting ϕ is computed via Dempster-Shafer combi-
nation rule as follows: mpl ⊕ m|ϕ|+ . Based on Proposition 2, we get the following
formula for the corresponding plausibility function (pl+)|ϕ| over formulas.

Proposition 5. The function (pl+)|ϕ| is defined if Pl(|ϕ|+) > 0, and, for every
ψ ∈ LBD, we have (pl+)|ϕ|(ψ) = Pl(|ψ|+∩|ϕ|+)

Pl(|ϕ|+) .
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4 Further Work and Conclusion

This article presents methods to update belief and plausibility functions within
the framework of BD logic. Recall that BD logic was introduced to reason about
incomplete and contradictory information. In DS models, even though the under-
lying logic is non-classical, namely BD logic, the belief and plausibility functions
are defined over the powerset of states. Therefore, we can import the techniques
for updating belief functions from the classical logic literature. This work is in
fact a first step. Indeed, we wish to look at belief and plausibility functions over
De Morgan algebras to get a better understanding of the implication of com-
bining belief functions and BD logic. Recall that De Morgan algebras provide
the algebraic semantics for BD logic, and that there is no duality between BD
models and De Morgan algebras. Therefore, there is no way to directly import
our results on frames to De Morgan algebras. A natural first step will be to study
the mathematical properties of belief and plausibility functions over De Morgan
algebras, and to establish whether they can be represented as lower and upper
probabilities over sets of non-standard probabilities. This would open various
options to update the belief. Indeed, [7] presents different ways to update non-
standard probabilities, among which two ways that generalise Bayesian update.
In addition, Dempster-Shafer combination rule can straight forwardly be trans-
ferred to De Morgan algebras (see [3]) which provides a natural way to update
belief functions over De Morgan algebras. However, it remains to be checked
whether this method is equivalent to DS conditioning on DS models.
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Abstract. The theory of belief functions allows the fusion of imperfect
data from different sources. Unfortunately, few real, imprecise and uncer-
tain datasets exist to test approaches using belief functions. We have
built real birds datasets thanks to the collection of numerous human con-
tributions that we make available to the scientific community. The inter-
est of our datasets is that they are made of human contributions, thus
the information is therefore naturally uncertain and imprecise. These
imperfections are given directly by the persons. This article presents the
data and their collection through crowdsourcing and how to obtain belief
functions from the data.

Keywords: Datasets · Imprecise · Uncertain

1 Introduction

The theory of belief functions allows for uncertainty and imprecision in the data.
However, there are very few real datasets available to consider belief functions. [4]
and [1] work on imprecise and uncertain real data that the authors have collected
but these data are not made available to the community. Similarly, [3] proposes
an MCQ that allows students to give imprecise and uncertain answers that can be
modeled with belief functions. However, the experimental data are not reported.
It was important to build real datasets to evaluate proposed methods in real
context [9]. To do so, we collected human contributions from crowdsourcing
campaigns, as human contributions are uncertain and imprecise information.

Crowdsourcing is the outsourcing of tasks to a crowd of contributors on a plat-
form dedicated to the domain [5]. The tasks that can be achieved through crowd-
sourcing are very diverse. In this paper, we presented to the contributors a picture
of a bird and asked them to identify the bird from a list of proposed names. We
use interfaces that allow us to collect imprecise and/or uncertain responses. We
conducted six crowdsourcing campaigns for bird photo annotation. For all these
campaigns the contributor had to give his certainty in his answer. Two of them
are only composed of precise contributions. For the four other campaigns, the con-
tributor can be imprecise and choose more bird names. For two of the imprecise

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Le Hégarat-Mascle et al. (Eds.): BELIEF 2022, LNAI 13506, pp. 275–285, 2022.
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campaigns, after the contributor has given his answer he is offered to enlarge or
restrict his selection consequently.

The rest of the paper is as follows, Sect. 2 introduces the belief functions.
Section 3 reviews the crowdsourcing campaigns and Sect. 4 presents the datasets.
We propose examples of modelisation thanks to the belief function Sect. 5.
Section 6 concludes the paper.

2 Belief Functions

The theory of belief functions, also called Dempster-Shafer theory [2,8], is used
in this study in order to model both data imprecision and uncertainty.

One considers Ω = {r1, . . . , rM} the frame of discernment for M exclusive
and exhaustive hypotheses. In this paper, Ω represents all possible bird species
of a given photo among M bird species. The power set 2Ω is the set of all subsets
of Ω. A basic belief assignment is the belief that a source may have about the
elements of the power set of Ω, this function assigns a mass to each element of
this power set such that the sum of all masses is equal to 1.

m : 2Ω → [0, 1]
∑

A∈2Ω

m(A) = 1 (1)

Focal element: An element of 2Ω with a non-null mass.
Simple support mass function: Only has two focal elements, and one of them

is the frame of discernment Ω.
Consonant mass function: Each focal element is nested.

3 Crowdsourcing Campaign

The main objective for these campaigns is always the same, a photo of a bird
is presented to the contributor with a set of species names (including the good
answer) and he has to select the right answer. The Wirk platform (Crowd-
panel1) is used to realize the crowdsourcing campaigns. As the users of the
platform live in France, the birds used for the campaigns are all of species vis-
ible in metropolitan France. For all the campaigns, the contributor has to give
his answer, then specify his certainty according to the following Likert scale:
“Totally uncertain”,“Uncertain”, “Rather uncertain”, “Neutral”, “Rather cer-
tain”, “Certain”, “Totally certain”. We explained to the contributors that there
is no penalty for being uncertain and/or imprecise in their answers. After having
given his answer and his certainty, he can validate his contribution in order to
move on to the next question.

1 https://crowdpanel.io/ (15/04/2022).

https://crowdpanel.io/
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(a) multi birds precise (b) multi birds imprecise

Fig. 1. Interfaces used for crowdsourcing campaigns multi birds

3.1 Campaigns Multi birds

For these two campaigns, five bird names are proposed to the contributor. The
names change from one question to another and a bird species is presented only
once. We have tried to introduce different levels of difficulty in the questions.
For example, for a difficult question, a photo of an eagle is presented to the con-
tributor and the five answer items are different species of eagles. Conversely, for
a simpler question, a photo of a gull is presented to the contributor and the four
other answers are names of duck species. For a single photo, responses were pre-
sented in random order to each contributor to avoid selection bias. In addition,
the questions were also asked in a random order, so that when a contributor c1
answers a question qi, c2 answers qj . These crowdsourcing campaigns include 3
attention questions for which the contributor is asked to give the same answer
as the one given in the previous question.

Multi birds precise. The interface used for this task is given Fig. 1(a). Par-
ticipants have to provide a precise answer by selecting a single bird name, and
a self-assessment of their certainty in this answer.

Multi birds imprecise. For this task the contributor can be imprecise and
select up to all of the bird names offered. The interface is given Fig. 1(b). The
contributors first must give his answers, validate it and then he is asked to give
his certainty in this answer.

For both campaigns the crowds are composed of 100 contributors, each one
must annotate 50 photos, for a total of 5000 contributions for each campaign. A
contributor allowed to do the first campaign cannot participate in the second.

3.2 Campaigns 10 birds

For these campaigns, ten bird species are selected and proposed as response
elements to the contributors. In order to observe the contributor’s ability to be
imprecise in case of hesitation, the ten birds presented are composed of subgroups
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Table 1. The ten bird species used in the 10 birds campaigns group by family

Muscicapidae Columbidae Paridae Corvidae

European robin Common wood pigeon Great tit European jackdaw

Rock pigeon Marsh tit Carrion crow

Coal tit Common raven

Rook crow

esicerpmi)b(esicerp)a(

Fig. 2. Interfaces used for crowdsourcing campaigns 10 birds precise and imprecise

from the same bird family given Table 1. The bird names are presented to each
contributor in a different order to avoid selection bias. This ordering of names
is nevertheless fixed for a contributor throughout the campaign. Such as the
campaigns multi birds, the questions are asked in a random order. The same scale
is used for certainty and 3 attention questions are also asked. The contributor
is no longer required to validate his answer before he can give his certainty.

10 birds precise. The contributor should select from the interface Fig. 2(a) a
unique bird name and then give his certainty about it.

10 birds imprecise. The contributor can choose thanks to the interface
Fig. 2(b) 1 to a maximum of 5 answers from the ten provided bird names. We
impose a maximum number of answers to 5 because we admit that if the con-
tributor hesitates it is between names of birds of the same family. He should not
hesitate between a pigeon and a chickadee for example. We have chosen to offer
the crowd a maximum selection of 5 names because we do not want to introduce
a bias and encourage him to choose exactly the 4 corvidaes in case of hesitation.

10 birds iterative. This campaign is called iterative because the contributor
is asked to expand or refine the contribution they have entered. To do so, in a
first step the contributor answer the question as shown Fig. 3(a) and then:

– If he is precise but not “totally certain” of his answer, he is offered to expand
his selection if he feels the need. In this case, the first selected answer is kept
in step 2 and he can complete it by selecting new names.
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2petsevitareti)b(1petsevitareti)a(

Fig. 3. Interfaces used for the campaigns 10 birds iterative and machine learning

– If he is imprecise in his contribution, he is asked in a second step if he is able to
restrict his choice of answer while giving his new certainty as in the example
Fig. 3(b). When he is offered to restrict his selection, only the previously
chosen answer elements are proposed again.

These interactions with the contributor increased the number of responses col-
lected, and therefore the time spent soliciting the contributor.

10 birds machine learning. For classification problems, a larger number of
observations is often required. This campaign provides imperfectly labeled obser-
vations that can be used for classification problems and more generally in
machine learning. This is a similar campaign to 10 birds iterative with more
photos per class and fewer responses per photo. A number of 20 photos per
bird species is used instead of 5. A total of 200 photos separated into 10 species
are then labelled. Contributors are only invited to give 20 answers, 2 randomly
selected per species of bird. No attention questions are asked in this campaign.

Each crowdsourcing campaign required a crowd of 50 contributors. As with
the other campaigns, a contributor who has participated in one experiment can-
not participate in another. For each of the ten bird that make up the proposed
answer set, a contributor is presented with 5 photos of a bird, so that he answers
50 questions. Thus 2500 data are collected for the experiments 10 birds precise,
with precise answers, and 10 birds imprecise, for which the contributor can
choose up to five answers. There is 2990 data collected for 10 birds iterative
because for this experiment, as there are 2550 first step answers and 440 s step
answers. Finally 1515 data are collected for 10 birds machine learning, with 1040
first step answers and 475 s step answers.

All crowdsourcing campaigns are summarized in Table 2 which includes the
name of the campaign, whether the data collected is accurate or inaccurate, the
number of contributors and the total number of contributions collected.
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Table 2. Summary of the crowdsourcing campaigns conducted, the certainty is asked
for all the answers

Campaign Answers Crowd size Number of answer

Multi birds precise Precise 100 5000

Multi birds imprecise Imprecise 100 5000

10 birds precise Precise 50 2500

10 birds imprecise Imprecise 50 2500

10 birds iterative Imprecise 51 2990

10 birds machine learning Imprecise 52 1515

4 Details of the Data Sets

The datasets are made available to the community on the INRIA git account
https://gitlab.inria.fr/cthierry/imprecise uncertain dataset. The repository is
structured as follows: a folder is associated with each crowdsourcing campaign
presented above, there is also a csv file named “answers multi birds.csv”. This
file is used as the answer set propose to the contributor of the multi birds cam-
paign. It includes the following variable:

– photo: the number of the bird photo display by the interface
– goodanswer: the true bird name of the photo
– answ1, answ2, answ3, answ4: other bird names propose as answer elements

to the contributor in addition of the true bird name
– difficulty: an hypothesis of the difficulty of the question according to the

author. Values range from 1 (easy question) to 5 (difficult question). In fact
the difficulty observed is not correlated to those one supposed by the author.

Thus, it is possible to use the file “answers multi birds.csv” to construct a frame
of discernment Ωq = {goodanswer, answ1, answ2, answ3, answ4} for each ques-
tion q of the multi birds campaigns. In the files named after the crowdsourcing
campaigns there are several files providing different information.

Data. This csv file includes the contribution from the crowd for the bird annota-
tion. The contribution includes therefore a selection of bird names and a certainty
associated. The file includes:

– log id: indicates the line of the file
– user: unique user ID for a contributor
– currenttrial: number of the question asked to the contributor
– img: number of the photos shown to the contributor
– goodanswer: the true name of the bird to identify
– answer: the set of bird names selected by the contributor (a unique answer

for the precise crowdsourcing campaign)
– answer: initial response from the contributor
– answerhistory: set of values checked/unchecked by the contributor to answer

the question

https://gitlab.inria.fr/cthierry/imprecise_uncertain_dataset
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– isgoodanswer: boolean indicated if the true bird name is include in the answer
set given by the contributor

– certitude: certainty given by the contributor to express his confidence in his
bird names selection

– certitudehistory: history of the certainty values for the answer
– timestamp: time recorded by the interface
– time: time of the contributor’s answer to the question

Some variables such as user are common to several files. For all the files, the
contributor certainty ranges from 1 (totally uncertain) to 7 (totally certain).

For the campaign multi birds imprecise 57.04% of the data includes in the
csv file are imprecise. And for the 10 birds campaigns we have the following
results: imprecise 55.64%, iterative 45.32% and machine learning 58.22%. Con-
tributors have made good use of the opportunity to be imprecise when possible.
On average, when contributors are imprecise they choose two answers.

Attention. In crowdsourcing campaigns, attention questions are asked to the
contributor in order to ensure its seriousness. This csv file includes the answers to
the three attention questions. These questions consist in asking the contributor
a previous question in order to get him to give exactly the same contribution.
The variables included in the file are the following:

– log id, user, currenttrial, answer, certitude, timestamp, time
– attention answer: contributor’s answer to the attention question
– answerhistory: set of values checked/unchecked by the contributor to answer

the attention question
– certainty: certainty of the first selected answer set
– certaintyhistory: history of checked/unchecked certainty values
– issamecertitude: boolean indicating if the certainty given to the attention

question is identical to the certainty given to the initial question
– issameanswer: boolean indicating if the set of bird names selected at the

attention question is identical to the set initially selected

Event. This file records the principal events of the platform named event type:
the connection to the platform (start), the beginning of the crowdsourcing cam-
paign (start xp), the ending question (questions) and the end of the campaign
(finish). It is possible that some contributors have started a crowdsourcing cam-
paign without having finished it, we have only a part of the answers for them.
To sort out the contributors (users) to be selected we recommend using the
event.csv or question.csv files described below to select the data of users who
have reached the final question phase and/or the finish event. When we talk
about the number of responses, it is only for contributors who have completed
the entire campaign. This file also includes the variables log id, user and time
which gives the date and time when the event took place.

Queries. At the end of the different crowdsourcing campaigns, a questionnaire is
sent to the contributors to get their feedback. This questionnaire varies between
campaigns. These files include the answers at the end of the campaign (Table 3).
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Table 3. Number of precise and then imprecise contributions (|X1| = 1 and |X2| > 1)
and imprecise then less imprecise (|X1| > |X2|)

Campaigns Size of the
dataset

Data subset Size of the
data subset

10 birds iterative 440 |X1| = 1 and |X2| > 1 88

|X1| > 1 and |X1| > |X2| 352

10 birds machine learning 475 |X1| = 1 and |X2| > 1 57

|X1| > 1 and |X1| > |X2| 418

Iteration. This csv file is present in the 10 birds machine learning and
10 birds iterative folders because it includes the contributors’ answers when they
expand or specify their answer in the second stage of questioning of these cam-
paigns. The next values are included into the file:

– log id, user
– trial: equals to currenttrial value of the same contributor (user) in data.csv
– new answer: new answer given by the contributor
– new certitude: new certainty given by the contributor
– cant answer: boolean that takes the value 1 if the contributor cannot modify

(refine or enlarge) his answer
– isImprecis: boolean which takes the value 1 if in his first answer the contrib-

utor is imprecise (i.e. he chooses several bird names)
– aHistory: equivalent to answerhistory
– cHistory: equivalent to certaintyhistory

The file for the campaign 10 birds iterative includes 1527 rows but for the
majority of them, the contributor did not modify his answer (cant answer =
1). Indeed, for this campaign only 440 responses were modified which repre-
sents 17% of the first step answers. More contributors edited their answer for
the 10 birds machine learning campaign, 475 responses were modified i.e. 46%
of the dataset. Thanks to the joint use of this file and data.csv it is possible to
build 440 consonant mass functions.

For campaigns with iteration we call X1 the first set of names given for a
photo. The values of X1 (answer) are present in the data.csv file with the asso-
ciated certainty. When the contributor is proposed to modify his contribution,
the new name selection X2 (new answer) and the new certainty (new certitude)
are registered in the iteration.csv file.

For the campaign 10 birds iterative there are 461 entries in the data.csv
file for which the contributor first selected a single answer |X1| = 1, and then
was offered to expand his selection so that |X2| > 1. Of these 461 times when
the contributor is offered to be imprecise, there are only 88 times when a second
answer X2 is given. Similarly, there are a total of 1066 times when the contributor
fills in an imprecise answer, |X1| > 1, and is offered to narrow his selection so
that |X1| > |X2|, a total of 352 contributions report a change in answer.
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During the 10 birds machine learning campaign contributors also tend to
give a second answer more precise than the first one, with 418 responses on
475 iterations, against 57 precise answers at firt step and less precise at second
step. Furthermore, 389 responses were listed as totally certain and 186 were
listed as totally certain and precise. Among those contributors who were certain
and precise, 91% hold the real answer. Of all the answers, 33 were listed as
inconsistent, which means that a contributor gave an answer including different
bird families, these 33 answers were generated by 15 different contributors.

The following section presents examples of modeling with mass functions.

5 Belief Functions from the Data

We propose a data modeling by simple support and consonant mass functions.

Simple Support Mass Function. This function can be computed for the
answer values and certainty of the six campaigns. Given a question q, the
set of answers associated to q compose the framework of discernment Ωq =
{r1, . . . , rK}. The question being closed, we consider the closed world. The con-
tributor c answers the question q by the contribution X ∈ 2Ωq , which can be
imprecise, and to which he associates a certainty of value certainty ∈ [1, 7] which
is transformed into a mass ωcq ∈ [0, 1] according to the equation:

ωcq =
certainty − 1

certaintymax − 1
(2)

For the crowdsourcing campaign introduce in this paper certaintymax = 7. A
mass function with simple support (Xωcq ) can be obtained from the contribution:

{
mΩq

cq (X) = ωcq with X ∈ 2Ωq \ Ωq

mΩq
cq (Ωq) = 1 − ωcq

(3)

Consonant Mass Function. During the 10 birds machine learning and
10 birds iterative campaigns, the same question q can be asked twice to the
contributor c who can then enlarge or specify his first answer X1 by a second
answer X2 if he wishes. Let Ωq be the set of proposed answers and X1,X2 ∈ 2Ω

q .
If the first answer of the contributor X1 is precise and he widens his second
answer X2 then X1 ⊂ X2, and conversely if X1 is more imprecise than X2 then
X2 ⊂ X1. At the time of his first selection X1, the contributor informs a degree
of certainty of numerical value ωcq1 ∈ [0, 1] compute thanks to Eq. (2). If he
chooses to fill in a second answer X2 he must indicate his new certainty whose
numerical value is noted ωcq2 ∈ [0, 1]. If the contributor is not asked to modify
his selection or if he does not wish to do so, the contribution is modeled by
a simple support mass function. In the case where the contributor changes its
response X1 to the response X2, with X1 ⊂ X2, then the contribution can be
modeled by a consonant mass function:

⎧
⎨

⎩

mΩq
cq (X1) = δ1 ∗ ωcq1

mΩq
cq (X2) = δ2 ∗ ωcq2

mΩq
cq (Ω) = 1 − δ1 ∗ ωcq1 − δ2 ∗ ωcq2

(4)
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In Eq. (4), the coefficients δ1 and δ2 ensure that the mass function belongs to the
interval [0, 1], thus: δ1 + δ2 = 1. If we want to give more importance to the first
contribution X1 rather than to the second contribution X2 then we must choose
δ1 such that δ1 > δ2. Another way to combine the two mass functions from the
two iterative responses is to use a combination rule that does not require the
assumption of source independence.

We have proposed a modeling of some data by belief functions but it is
possible to go further by using them for example to estimate the expertise of
the contributor as do [7]. The data can also be used to compare a probabilistic
approach to belief functions [6].

6 Conclusion

This paper presents some real credal datasets created through crowdsourcing
campaigns for bird photo annotation. To constitute these datasets six crowd-
sourcing campaigns have been realized. In these six campaigns, the contributor
is asked to give his certainty in his answer. For two campaigns the contributor is
forced to choose a single bird name as an answer, these data are therefore precise
and potentially uncertain. For the other four campaigns the contributor had the
possibility to be imprecise in case of hesitation on his answer, these data are
imprecise and/or uncertain. For these six crowdsourcing campaigns it is possible
to model the contributions by simple support mass functions. Finally, for two
of the four imprecise campaigns, the contributor is asked to modify the answer
already given by clarifying or expanding it. Thanks to these two campaigns it is
possible to model the contributions by consonant mass functions.
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in crowdsourcing platforms. In: Vejnarová, J., Kratochv́ıl, V. (eds.) BELIEF 2016.
LNCS (LNAI), vol. 9861, pp. 97–104. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-45559-4 10

8. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)
9. Thierry, C., Martin, A., Dubois, J.-C., Gall, Y.L.: Validation of smets’ hypothesis

in the crowdsourcing environment. In: Denœux, T., Lefèvre, E., Liu, Z., Pichon,
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Abstract. Motivated by a randomized reinsurance model we consider
the lower envelope of the set of bivariate joint probability distributions
having a precise discrete marginal and an ambiguous Bernoulli marginal.
Under an independence assumption, since the lower envelope fails 2-
monotonicity, inner/outer Dempster-Shafer approximations are provided
to model the lower expected insurer’s annual profit under reinsurance.
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1 Introduction

Uncertainty is usually modelled through a probability measure, however a
demand for more flexible models arises in different fields with the aim to pro-
vide tools able to manage partially specified information (imprecision) through
a class of compatible probability measures. This work is essentially motivated by
an application related to reinsurance and contains some preliminary results incor-
porating ambiguity in a simple model (see [1]) of reinsurance contract whose out-
come depends on both the (unknown) parameter p of an independent Bernoulli
distribution and the retention level d in a stop-loss treaty. Since the parameter p
of the Bernoulli distribution is partially specified, the aim of present paper is to
investigate the effect of ambiguity on the choice of the optimal retention level.
A random vector (X,Y ) is considered with X having a discrete distribution PX ,
whereas the distribution of Y belongs to a class PY of Bernoulli distributions,
where p ranges in a closed interval. Under the hypothesis of independence of the
two variables, meaning that under PX and any PY ∈ PY the two variables are
independent, we prove that the class of joint probability distributions generates
a class of probability measures (credal set) P that is closed and convex, but
whose lower envelope P is generally not 2-monotone. Moreover, the core of P
(i.e., the set of all probability measures dominating P ) strictly contains P.

Following the approach of [5–7], we first look for an inner Dempster-Shafer
approximation Beli of P showing that between the core of Beli and P no
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containment relationship may hold. For this, we move towards an outer
Dempster-Shafer approximation that preserves the marginal probability distri-
bution of X, namely Beloo. Both Beli and Beloo allow the computation of lower
expectations (with respect to their core) as Choquet expectations and are used
to model the lower expected insurer’s annual profit under reinsurance. We pro-
vide a numerical example showing the implications on the motivating reinsurance
application: even taking the outer approximation the optimization problem leads
to the same optimal retention level, that is greater than their respective values
without modelling ambiguity. We notice that, besides the Choquet integral, other
expectation operators could be considered inside Dempster-Shafer theory [10]:
this will be addressed in future research.

2 Preliminaries

Let Ω = {ω1, . . . , ωn} be a finite non-empty set and denote by 2Ω its power set.
A function P : 2Ω → [0, 1] such that P (∅) = 0 and P (Ω) = 1 is called a:

– (coherent) lower probability if there exists a closed set P of probability mea-
sures on 2Ω such that, for every A ∈ 2Ω ,

P (A) = min
P∈P

P (A);

– k-monotone lower probability with k ≥ 2 if for every A1, . . . , Ak ∈ 2Ω ,

P

(
k⋃

i=1

Ai

)
≥

∑
∅�=I⊆{1,...,k}

(−1)|I|−1P

(⋂
i∈I

Ai

)
.

A lower probability which is k-monotone for every k ≥ 2 is called a belief function
and is denoted as Bel [2,9].

Every lower probability P induces the closed (in the product topology) convex
set of probability measures on 2Ω , called core, defined as

core(P ) = {P : P is a probability measure on 2Ω , P ≥ P}. (1)

A belief function Bel is completely determined [4,9] by its Möbius inverse m :
2Ω → [0, 1] with m(∅) = 0, summing up to 1 and, for all A ∈ 2Ω ,

Bel(A) =
∑
B⊆A

m(B). (2)

Denoting by R
Ω the set of all random variables on Ω, the issue of introducing

a notion of expectation with respect to a closed set of probability measures P
can be faced in two different manners: either referring to the Choquet integral
with respect to the lower probability P or to the lower expectation functional
with respect to P. Given P and X ∈ R

Ω , the Choquet expectation of X with
respect to P (see, e.g., [3,4]) is defined through the Choquet integral
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CP [X] =
n∑

i=1

(X(ωσ(i)) − X(ωσ(i+1)))P (Eσ
i ), (3)

where σ is a permutation of Ω such that X(ωσ(1)) ≥ . . . ≥ X(ωσ(n)), Eσ
i =

{ωσ(1), . . . , ωσ(i)} for i = 1, . . . , n, and X(ωσ(n+1)) = 0.
In particular, if P reduces to a probability measure P , then CP [X] = EP [X],

where EP denotes the usual expectation operator with respect to P . On the
other hand, given P, the corresponding lower expectation of X ∈ R

Ω is

EP [X] = min
P∈P

EP [X]. (4)

In general [11,12], we have that CP [X] ≤ Ecore(P )[X] ≤ EP [X], where the two
inequalities can be strict. Nevertheless, in the particular case P is (at least)
2-monotone (see, e.g., [3,4]), then CP [X] = Ecore(P )[X].

3 DS-Approximation of Joint Lower Distributions
with an Independent Ambiguous Bernoulli Marginal

Let X,Y be discrete random variables taking values in X = {x1, . . . , xm} and
Y = {0, 1}. Assume that no logical relations (structural zeros) are present
between X and Y , therefore, we can simply identify X and Y with the pro-
jection maps on the product measurable space (X × Y, 2X×Y). We also denote
by 2̃X and 2̃Y the sub-algebras of 2X×Y isomorphic to 2X and 2Y , respectively.

Let PX : X → [0, 1] be a probability mass function for X and PY = {P p
Y :

Y → [0, 1] : p ∈ [p1, p2]} be a family of probability mass functions for Y , where

P p
Y (1) = p and P p

Y (0) = 1 − p, with 0 ≤ p1 < p2 ≤ 1.

Suppose that, for every P p
Y ∈ PY , the random variables X,Y are stochasti-

cally independent and the joint probability distribution P p : 2X×Y → [0, 1] of
the vector (X,Y ) is obtained extending by additivity the assessment

P p({(x, y)}) = PX(x) · P p
Y (y), for all (x, y) ∈ X × Y. (5)

Therefore, we get the family of joint distributions

P = {P p : P p is a joint distribution of (X,Y ) given by (5), p ∈ [p1, p2]}. (6)

Proposition 1. The set P is a closed and convex subset of [0, 1]2
X×Y

endowed
with the product topology, and its extreme points are ext(P) = {P p1 , P p2}.
Proof. The set PY of marginal probability mass functions for Y is a closed and
convex subset of [0, 1]Y endowed with the product topology, and P p(X ×{y}) =
P p

Y (y), for all p ∈ [p1, p2]. In turn, this implies that every sequence {P pn}n∈N in P
converging pointwise on 2X×Y has a limit P = P p ∈ P, the convex combination
of P p, P p′ ∈ P with α ∈ [0, 1] is such that P = αP p + (1 − α)P p′ ∈ P, and
ext(P) = {P p1 , P p2}.
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Let P = minP be the lower envelope of P. The following example shows
that P is generally not 2-monotone and we also have that P is strictly contained
in core(P ).

Example 1. For X = {x1, x2}, denote

X × Y = {(x1, 1)︸ ︷︷ ︸
=a1

, (x1, 0)︸ ︷︷ ︸
=a2

, (x2, 1)︸ ︷︷ ︸
=a3

, (x2, 0)︸ ︷︷ ︸
=a4

},

and let Ai = {ai}, Aij = {ai, aj}, Aijk = {ai, aj , ak} and A1234 = X × Y. Take
the marginal probability mass functions PX(x1) = 3

4 , PX(x2) = 1
4 , P p

Y (1) = p,
P p

Y (0) = 1− p, where p ∈ [
1
4 , 3

4

]
. The family P of joint probability distributions

for (X,Y ) has extreme points and lower envelope reported below

2X×Y ∅ A1 A2 A3 A4 A12 A13 A14 A23 A24 A34 A123 A124 A134 A234 A1234

P p1 0 3
16

9
16

1
16

3
16

12
16

4
16

6
16

10
16

12
16

4
16

13
16

15
16

7
16

13
16

1
P p2 0 9

16
3
16

3
16

1
16

12
16

12
16

10
16

6
16

4
16

4
16

15
16

13
16

13
16

7
16

1

P 0 3
16

3
16

1
16

1
16

12
16

4
16

6
16

6
16

4
16

4
16

13
16

13
16

7
16

7
16

1

The lower envelope is easily seen not to be 2-monotone since

P (A123) =
13
16

<
15
16

= P (A12) + P (A23) − P (A2).

We also have that P ⊂ core(P ) since ext(core(P )) = {P1, P2, P3, P4}, where,
identifying each probability distribution on 2X×Y with the vector of its values
on the atoms of 2X×Y we have

P1 = P p1 ≡ (
3
16 , 9

16 , 1
16 , 3

16

)
, P2 = P p2 ≡ (

9
16 , 3

16 , 3
16 , 1

16

)
,

P3 ≡ (
7
16 , 5

16 , 1
16 , 3

16

)
, P4 ≡ (

5
16 , 7

16 , 3
16 , 1

16

)
.

We now investigate the approximation of P with a belief function, referred
to as DS-approximation (where “DS” stands for Dempster and Shafer), by fol-
lowing [5–7]. Searching for an inner DS-approximation means to look for a belief
function Beli that dominates P , i.e., Beli ≥ P pointwise on 2X×Y , and is as
close as possible to P according to the squared Euclidean distance D2 defined
over the set of lower probabilities on 2X×Y :

minimize D2(P ,Bel)

subject to:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
B⊆A

m(B) ≥ P (A), for all A ∈ 2X×Y ,

∑
B⊆X×Y

m(B) = 1,

m(B) ≥ 0, for all B ∈ 2X×Y ,

m(∅) = 0.

(7)
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We have that D2, besides assuring uniqueness of the inner DS-approximation,
has a justification in terms of a penalty coherence condition for belief functions
[8]. Other distances besides D2 can be considered (see [5–7]).

It trivially holds that there are infinitely many inner DS-approximations
of P , as every P p will work, so problem (7) is always feasible. The following
Example 2 shows that the D2-optimal inner DS-approximation Beli of P is
generally non-additive, nevertheless, the same example shows that, even though
core(Beli) ⊂ core(P ), we have that core(Beli) � P and P � core(Beli).
This last fact has important consequences when computing lower expectations,
since no dominance relation can be established between the lower expectation
computed with respect to P and the Choquet integral with respect to Beli.

Example 2. Let P be as in Example 1. The D2-optimal inner DS-approximation
Beli of P and its Möbius inverse mi are reported below

2X×Y ∅ A1 A2 A3 A4 A12 A13 A14 A23 A24 A34 A123 A124 A134 A234 A1234

mi 0 4
16

4
16

2
16

2
16

4
16

0 0 0 0 0 0 0 0 0 0
Beli 0 4

16
4
16

2
16

2
16

12
16

6
16

6
16

6
16

6
16

4
16

14
16

14
16

8
16

8
16

1

We have that ext(core(Beli)) = {Q1, Q2} where

Q1 ≡ (
4
16 , 8

16 , 2
16 , 2

16

)
and Q2 ≡ (

8
16 , 4

16 , 2
16 , 2

16

)
.

Though core(Beli) ⊂ core(P ), since none between Q1, Q2 can be expressed
as the convex combination of P p1 , P p2 and vice versa, it follows that between
core(Beli) and P no containment relationship holds.

The previous example suggests to move towards an outer DS-approximation.
In this case, we search for a belief function Belo that is dominated by P , i.e.,
Belo ≤ P pointwise on 2X×Y , and is as close as possible to P according to
D2. We notice that P |˜2X coincides with the probability distribution of X and
this property is inherited by any inner approximation Beli but generally not
by an outer approximation Belo. Thus, we search for an outer approximation
Beloo such that Beloo

|˜2X coincides with the probability distribution of X. Such an
outer DS-approximation will be called X-preserving and can be found solving
the following optimization problem

minimize D2(P ,Bel)

subject to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
B⊆A

m(B) = P (A), for all A ∈ 2̃X ,

∑
B⊆A

m(B) ≤ P (A), for all A ∈ 2X×Y \ 2̃X ,

∑
B⊆X×Y

m(B) = 1,

m(B) ≥ 0, for all B ∈ 2X×Y ,

m(∅) = 0.

(8)



Addressing Ambiguity in Randomized Reinsurance Contracts 291

Denoting by PX∗ the inner measure induced by PX on 2X×Y , defined as

PX∗(A) = sup
{∑

x∈B
PX(x) : B × Y ⊆ A,B ∈ 2X

}
, for all A ∈ 2X×Y ,

(9)
PX∗ is an X-preserving outer DS-approximation of P . In turn, this implies that
problem (8) is always feasible and taking D2 it admits a unique optimal solution.

Example 3. Let P be as in Example 1. The D2-optimal X-preserving outer DS-
approximation Beloo of P and its Möbius inverse moo are reported below

2X×Y ∅ A1 A2 A3 A4 A12 A13 A14 A23 A24 A34 A123 A124 A134 A234 A1234

moo 0 3
16

3
16

1
16

1
16

6
16

0 0 0 0 2
16

0 0 0 0 0

Beloo 0 3
16

3
16

1
16

1
16

12
16

4
16

4
16

4
16

4
16

4
16

13
16

13
16

7
16

7
16

1

We have that ext(core(Beloo)) = {Q1, Q2, Q3, Q4} where

Q1 = P p1 ≡ (
3
16 , 9

16 , 1
16 , 3

16

)
, Q2 = P p2 ≡ (

9
16 , 3

16 , 3
16 , 1

16

)
,

Q3 ≡ (
3
16 , 9

16 , 3
16 , 1

16

)
, Q4 ≡ (

9
16 , 3

16 , 1
16 , 3

16

)
.

Both Beli and Beloo allow the following decomposition of the corresponding
Choquet expectation.

Proposition 2. For every f : X → R and g : X × Y → R we have:

(i) CBeli [f(X) + g(X,Y )] = EPX
[f(X)] + CBeli [g(X,Y )];

(ii) CBeloo [f(X) + g(X,Y )] = EPX
[f(X)] + CBeloo [g(X,Y )];

where EPX
denotes the expectation with respect to the marginal PX .

Proof. We only prove (i) since the proof of (ii) is analogous. Every P ∈ core(Beli)
is such that P|˜2X coincides with the marginal distribution of X, therefore

CBeli [f(X) + g(X,Y )] = min
P∈core(Beli)

EP [f(X) + g(X,Y )]

= min
P∈core(Beli)

(EPX
[f(X)] + EP [g(X,Y )])

= EPX
[f(X)] + CBeli [g(X,Y )].

4 Ambiguous Randomized Reinsurance Contracts

Referring to X,Y of Sect. 3, here variable X denotes the (non-negative) aggre-
gate loss of an insurer over one year, while Y is an ambiguous Bernoulli random
variable independent of X, indicating reinsurance. Let PX be the marginal prob-
ability mass function of X and let PY be the family of marginal probability mass
functions of Y . Consider the set P of joint distributions of (X,Y ) given by (6).
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Following [1], we consider a reinsurance contract in which the retained loss
of the insurer is singled out by the random variable

r(X,Y, d) =
{
min(X, d) if Y = 1,
X if Y = 0, (10)

where d ≥ 0 denotes the retention in a stop-loss treaty. For every P p ∈ P

EPp2 [r(X,Y, d)] ≤ EPp [r(X,Y, d)] ≤ EPp1 [r(X,Y, d)]. (11)

Let π(X) and πR(d) be, respectively, the total premium the insurer receives
from the policyholders for the aggregate loss X and the premium required from
the reinsurer. By adopting the expected value principle with safety loading θ > 0,
and assuming a pessimistic attitude towards ambiguity we set

πR(d) = (1+ θ)EP [X − r(X,Y, d)] = (1+ θ) (EPX
[X] + EP [−r(X,Y, d)]) . (12)

For α ∈ (0, 1), we further define the risk measure associated to r(X,Y, d) as

VaRα(r(X,Y, d)) := inf{x : F r(X,Y,d)(x) ≥ α}, (13)

where F r(X,Y,d)(x) := P (r(X,Y, d) ≤ x).
The insurer’s annual profit under reinsurance is

Z(X,Y, d) =
π(X) − πR(d)

1 − rcoc
− r(X,Y, d) − rcoc

1 − rcoc
VaRα(r(X,Y, d)), (14)

where rcoc denotes the cost of capital rate. Due to the translation invariance of
the lower expectation operator we get that

EP [Z(X,Y, d)] =
π(X) − πR(d)

1 − rcoc
+ EP [−r(X,Y, d)]

− rcoc

1 − rcoc
VaRα(r(X,Y, d)). (15)

Under this pessimistic attitude towards ambiguity, the issue is to maximize
EP [Z(X,Y, d)] seen as a function of d.

Example 4. Take X ranging in X = {0, 100, 1000} with probability mass func-
tion PX(0) = 9

10 , PX(100) = 6
100 , PX(1000) = 4

100 , and Y be an ambiguous
Bernoulli random variable with probability mass function PY (1) = p, PY (0) =
1 − p and p ∈ [

8
10 , 9

10

]
. Let P be defined as in (6) and P = minP pointwise on

2X×Y . Take α = 0.99, θ = 0.1, rcoc = 0.07, π(X) = (1 + 0.1)EPX
[X] = 50.6. Let

r(X,Y, d) be defined as in (10):

EP [−r(X,Y, d)] =

⎧⎪⎨
⎪⎩

−0.08d − 9.2 if 0 ≤ d < 100,

−0.032d − 14 if 100 ≤ d < 1000,

−46 if d ≥ 1000,
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therefore, we get

πR(d) =

⎧⎪⎨
⎪⎩

−0.088d + 40.48 if 0 ≤ d < 100,

−0.0352d + 35.2 if 100 ≤ d < 1000,

0 if d ≥ 1000.

Moreover, referring to the different definitions of F r(X,Y,d)(x), according to the
value of d, we have that

VaRα[r(X,Y, d)] =

⎧⎨
⎩

100 if 0 ≤ d < 100,
d if 100 ≤ d < 1000,
1000 if d ≥ 1000.

Thus we get that

EP [Z(X,Y, d)] =

⎧⎪⎨
⎪⎩

(
0.088
0.93 − 0.08

)
d +

(
3.12
0.93 − 9.2

)
if 0 ≤ d < 100,(− 0.0348

0.93 − 0.032
)
d +

(
15.4
0.93 − 14

)
if 100 ≤ d < 1000,

− 19.4
0.93 − 46 if d ≥ 1000.

It is immediate to verify that EP [Z(X,Y, d)], seen as a function of d, has a global
maximum at d∗ = 100. In the precise case the optimal retention level d∗ is 100
for p ∈ [0.8, 0.9) and 0 for p = 0.9. Thus, the optimal retention level in the
imprecise case is greater than or equal to that in the precise case.

Despite using P and the associated lower expectation functional EP , we
can consider the D2-optimal X-preserving outer DS-approximation Beloo of
P together with the corresponding Choquet expectation functional CBel00 . By
virtue of Proposition 2 the premium is

πoo
R (d) = (1 + θ) (EPX

[X] + CBeloo [−r(X,Y, d)]) , (16)

and the risk measure becomes

VaRoo
α (r(X,Y, d)) := inf{x : F oo

r(X,Y,d)(x) ≥ α}, (17)

where F oo
r(X,Y,d)(x) := Beloo(r(X,Y, d) ≤ x).

The insurer’s annual profit under reinsurance is then changed in

Zoo(X,Y, d) =
π(X) − πoo

R (d)
1 − rcoc

− r(X,Y, d) − rcoc

1 − rcoc
VaRoo

α (r(X,Y, d)), (18)

thus we get

CBeloo [Zoo(X,Y, d)] =
π(X) − πoo

R (d)
1 − rcoc

+ CBeloo [−r(X,Y, d)]

− rcoc

1 − rcoc
VaRoo

α (r(X,Y, d)). (19)

The issue is to maximize CBeloo [Zoo(X,Y, d)] seen as a function of d. Analo-
gously, we define πi

R(d), VaRi
α and Zi(X,Y, d) when we use Beli and CBeli .
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Example 5. Let X, Y , P, α, θ, rcoc, π(X) as in Example 4. Denote

X × Y = {(0, 1)︸ ︷︷ ︸
=a1

, (0, 0)︸ ︷︷ ︸
=a2

, (100, 1)︸ ︷︷ ︸
=a3

, (100, 0)︸ ︷︷ ︸
=a4

, (1000, 1)︸ ︷︷ ︸
=a5

, (1000, 0)︸ ︷︷ ︸
=a6

},

and let Ai1···ik = {ai1 , . . . , aik}.
The D2-optimal X-preserving outer DS-approximation Beloo of P has

Möbius inverse moo such that
moo(A1) = 720

1000 , moo(A2) = 90
1000 , moo(A12) = 90

1000 ,

moo(A3) = 48
1000 , moo(A4) = 6

1000 , moo(A34) = 6
1000 ,

moo(A5) = 32
1000 , moo(A6) = 4

1000 , moo(A56) = 4
1000 ,

and zero elsewhere. A straightforward computation shows that

CBeloo [−r(X,Y, d)] =

⎧⎪⎨
⎪⎩

−0.08d − 9.2 if 0 ≤ d < 100,

−0.032d − 14 if 100 ≤ d < 1000,

−46 if d ≥ 1000,

therefore, we get that πoo
R (d) = πR(d). Moreover, it is easy to verify that

F oo
r(X,Y,d)(x) has the same definitions of F r(X,Y,d)(x), according to the value of d.

Hence, it follows that VaRoo
α [r(X,Y, d)] = VaRα[r(X,Y, d)] and Zoo(X,Y, d) =

Z(X,Y, d). Finally, we obtain that CBeloo [Zoo(X,Y, d)] = EP [Z(X,Y, d)] that
has d∗ = 100 as unique maximizer.

The D2-optimal inner DS-approximation Beli of P has Möbius inverse mi

such that
mi(A1) = 725

1000 , mi(A2) = 95
1000 , mi(A12) = 80

1000 ,

mi(A3) = 51
1000 , mi(A4) = 9

1000 ,

mi(A5) = 34
1000 , mi(A6) = 6

1000 ,

and zero elsewhere. A straightforward computation shows that

CBeli [−r(X,Y, d)] =

⎧⎪⎨
⎪⎩

−0.085d − 6.9 if 0 ≤ d < 100,

−0.034d − 12 if 100 ≤ d < 1000,

−46 if d ≥ 1000,

therefore, we get

πi
R(d) =

⎧⎪⎨
⎪⎩

−0.0935d + 43.01 if 0 ≤ d < 100,

−0.0374d + 37.4 if 100 ≤ d < 1000,

0 if d ≥ 1000,

and, though the definitions of F i
r(X,Y,d)(x) differ from F oo

r(X,Y,d)(x), it holds that
VaRi

α[r(X,Y, d)] = VaRoo
α [r(X,Y, d)] = VaRα[r(X,Y, d)]. Thus we get that

CBeli [Zi(X,Y, d)] =

⎧⎪⎪⎨
⎪⎪⎩

(
0.0935
0.93 − 0.085

)
d +

(
0.59
0.93 − 6.9

)
if 0 ≤ d < 100,(− 0.0326

0.93 − 0.034
)
d +

(
13.2
0.93 − 12

)
if 100 ≤ d < 1000,

− 19.4
0.93 − 46 if d ≥ 1000.
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Fig. 1. Graph of CBeloo [Zoo(X,Y, d)] = EP [Z(X,Y, d)] and CBeli [Z
i(X,Y, d)] as func-

tions of d (left plot for d ∈ [0, 1100], right plot for d ∈ [0, 300])

From Fig. 1 it is easily seen that both CBeloo [Zoo(X,Y, d)] = EP [Z(X,Y, d)] and
CBeli [Zi(X,Y, d)] have a global maximum at d∗ = 100.

5 Conclusion

The present paper showed preliminary results on addressing ambiguity in a rein-
surance model, inside Dempster-Shafer theory. Future research will focus on: (i)
characterizing the optimal retention level d∗ under the different approximations
for a generic X; (ii) comparing the effect of the different approximations on d∗.
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Abstract. In the context of pressure ulcer prevention, this article deals
with the problem of detecting and analysing micro-movements in the
sacral area of bedridden patients on mattresses equipped with a network
of pressure sensors. The study is based on a series of pressure measure-
ments carried out on a cohort of patients lying on two types of mattress
at the Nı̂mes university hospital (France). A spatio-temporal model con-
siders first the local information of measurements from the array of sen-
sors using an evidential filter in order to remove spatial uncertainties or
measurement noise before micro-movement analysis. With a Detrended
Fluctuation Analysis (DFA), the complexity level of the time series com-
ing from the micro-movement model is finally estimated for different
noise filters.

Keywords: Bedsores prevention · Micromovements analysis ·
Spatio-temporal gradient · Pressure sensors · Detrended fluctuation
analysis

1 Introduction

Pressure ulcers, also known as ‘bedsores’, refer to a type of injury that necroses
the skin and underlying tissue because of large amount of pressure applied to
an area of skin over a short period. Due to their lack of muscle, elderly people
and individuals with severely compromised states of health are especially vul-
nerable to pressure sores [1]. Prevention of pressure ulcer formation is primarily
focused on minimizing episodes of prolonged pressure either by placing appro-
priate padding at pressure points or by frequent patient repositioning [10,12].

In 2015, the laboratory of Bio-Statistics, Clinical Epidemiology, Public
Health, Innovation and Methodology (BCPIM) attached to the Nı̂mes hospi-
tal (France) carried out a series of measurements using a connected pressure
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 1. Pressure image (patient 5, mattress Softform)

48 × 145 uniform sensor array sited on top of mattresses, over a period of 1
month, in order to evaluate the levels of pressure exerted by the mattress on
bed ridden patients. The pressure measurements lie in [0 mmHg, 100 mmHg]
with a precision of 0.1 mmHg. This study based on the statistical analysis of
pressure peaks has highlighted high variability and non-reproducibility between
measurements [13]. The measures have been carried out on a cohort of patients
spread over 3 centers located in Occitanie (France): CHU Nı̂mes, EHPAD9 La
Chimotaie, EHPAD Notre Dame des Pins. Each center realised measurements
on patients lying on two different mattress models: Softform or Airsoft. For
each measurement of 30 min, the software recorded the pressure values com-
ing from the sensor network at a frequency of one per second. Hence, we can
observe the profile of the patient lying on the bed every second (see Fig. 1). In
this paper we pursue this study by considering, instead of the pressure peaks,
the spatio-temporal distribution of pressure variations assumed to be caused by
micro-movements in the sacral region. These micro-movements are supposed to
result from many different processes such as blood pressure, muscular and neu-
ral impulsions, or mobility of the tissues when the patients remain immobile in
hospital beds. It turns out that the specificity of micro-movements is difficult
to observe. According to Descartes a movement refers to the action by which a
body moves from one place to another [3]. The concept of movement thus gener-
ally implies some shape preservation. In our context, the shape in movement is
poorly known, not rigid and deformable. Hence, classical image motion analysis
methods (optical flow) appears not applicable. Another difficulty raises in the
differentiation between micro-movements and disturbing noise due to sensors
uncertainties (imprecision, reliability). In the domain of image processing, many
approaches have been proposed to search for efficient image denoising [2]. In
the framework of Dempster-Shafer theory, this problem has been discussed by
Weeraddan et al. in [16] in order to process temporally and spatially distributed
multi modality sensor data. The authors extended Temporal Evidence Filtering
[6], that allows to merge multi-modalities evidence and to infer in the frequency
domain but they do not address the problem of noise buried in the information
clutter. In a study close to our problematic, carried out by Li et al. [11] in the
domain of visual tracking, the authors incorporate Dempster-Shafer information
fusion into the entire image sequence partitioned into spatially and temporally



Evidential Filtering for Bedsores Prevention 299

adjacent sub-sequences. However these models do not respond to our specific
context of sparse data, i.e., grey scale images containing many null values. The
model of micro-movements proposed in this paper integrates the uncertainty in
motion detection using a spatio-temporal gradient method and an evidential fil-
ter necessary to smooth, in an adequate way, pictures of pressure levels. Finally
a Detrended Fluctuation Analysis (DFA) is proposed to compare in term of
complexity the proposed micro-movements model in regards to classic filtering
techniques.

The organisation of the rest paper is as follows. In Sect. 2 we recall the neces-
sary basis of the belief function theory and we briefly recall the Detrended Fluc-
tuation Analysis (DFA) for time series complexity estimation. Section 3 presents
the evidential filter based on the EKNN model [5] and the micro-movements
quantification method. Experiments and results are detailed in Sect. 4 and finally
we present our concluding remarks and perspectives.

2 Necessary Background

2.1 Belief Function Theory

In Belief function theory [14], uncertainty regarding the value of a variable ω
defined on a finite set of possible values, called the frame of discernment Ω =
{ω1, . . . , ωN} is represented by a basic belief assignment (BBA) or mass function
m defined as a mapping m : 2Ω → [0, 1] verifying

∑

A⊆Ω

m(A) = 1.

The conjunctive combination of BBA’s mj derived from J distinct sources,

denoted by m ∩© is expressed by m ∩©(A) =
∑

A1∩...∩AJ=A

(∏J
j=1 mj(Aj)

)
.

Dempster’s rule, denoted by ⊕, is a normalized version of the conjunctive com-
bination rule and is defined such that: m⊕(∅) = 0 and m⊕(A) = K · m ∩© for
A �= ∅. The normalization factor K is of the form (1 − c(m1, . . . mJ))−1 where
c(m1, . . . mJ) =

∑

A1∩...∩AJ=∅

(∏J
j=1 mj(Aj)

)
represents the amount of conflict

between the sources. These two combination rules are commutative, associative,
and often used to combine BBAs from distinct sources.

The pignistic transformation [15] distributes the ignorance equally among
each singleton element in Ω such that:

BetP (ω) =
1

(
1 − m(∅)

)
∑

W⊆Ω:W�ω

m(W )
|W |

where |W | is the number of singletons in W , we have
∑

ω∈Ω

BetP (ω) = 1.

2.2 Detrended Fluctuation Analysis (DFA)

The complexity of biological signals has given rise to many research works [4,7,
17]. Among several alternatives (e.g. entropy), Detrended Fluctuation Analysis
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(DFA) provides fractality level estimators of any signal, even non-stationary
ones, and has shown to efficiently discriminate healthy and ill subjects [8,9].

The DFA algorithm works as follow, for a series x(i) of length N . The series
is first integrated, by computing for each i the accumulated departure from the

mean of the whole series: X(i) =
i∑

j=1

(
x(j) − x̄

)
where x̄ =

N∑

i=1

x(i).

This integrated series is then divided into k non-overlapping intervals of
length n. The last N − kn data points are excluded from analysis. Within each
interval, a least squares line is fitted to the data. The series X(i) is then locally
detrended by subtracting the theoretical values XTh(i) given by the regression.
For a given interval of length n, the characteristic size of fluctuation for this
integrated and detrended series is calculated by:

F (n) =

√
√
√
√ 1

N − kn

N−kn∑

i=1

(
X(i) − XTh(i)

)2

.

This computation is repeated over a large range of interval lengths. In the
present experiment, from n = 10 to n = 300, by steps of 1. A power law is
expected between n and the average fluctuation size F (n), as F (n) ∝ nα.

The exponent α is estimated as the slope of the double logarithmic plot of
F (n), as a linear function of n. Typically, α = 1 corresponds to an optimal com-
plexity level, generally encountered in healthy, and perennial systems. α = 0.5
reveals uncorrelated white noise series, and denotes a complete loss of complex-
ity in the underlying system. At the opposite, α ≈ 1.5 for quasi-deterministic
systems having almost no adaptability.

3 Method

In this section we present an evidential extension of the median (or mean) filter,
we propose a micro-movement measure and we explain how the filtering method
can impact the micro-movement complexity signal.

3.1 Evidential Filter

The median filter is one of the most famous approach to remove noise from
images. It is a non-linear filter which has the property of preserving edges while
removing noise. However it is not appropriate for sparse data, e.g. grey scale
images containing many null values. Indeed, in that context, the mean filter
seems to give better results (see Fig. 2) probably due to higher number of possible
estimate, especially for data with frequent values (0 or 1 often arise with pressure
sensors). In the bedsores problem, a grid pattern which comes from structural
sensors array defect, is visible on all pressure images. This type of perturbation
makes necessary some filtering upstream of any analysis.

The idea of our proposal is to use the local information of the sensors array
in order to denoise the images before micro-movement analysis and to asses to
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filter’s choice impact in terms of micro-movements and associated complexity.
The belief function framework is used in order to take advantage of its uncer-
tainty modelling and fusion abilities. Our model is based on the spatial uncer-
tainty model proposed by Denœux in [5] which extends the K-NN algorithm to
uncertain labels where neighbours are considered as information sources with a
reliability level that depends on their similarity to the prediction example. The
corresponding spatial uncertainty model is recalled hereafter:

{
ms,i(Cq) = α
ms,i(C) = 1 − α

with α = α0e
−γqdβ

(1)

where ms,i is the mass function representing the reliability of neighbour xi, in
regards to a new example xs to classify, yi is the label of xi, which is supposed to
belong to class Cq, C is the set of all possible classes and d stands for the distance
between xs and xi. The (α0, γq, β) coefficients are tuning hyper-parameters.

With pressure images, as for median and mean filters we slide windows and
replace the center of the window by a certain value which is neither the median
nor the mean value of the window but is computed as the pignistic expectation
of the conjunctive fusion of the window sensors. For a given pixel window, for
all pressure measurements a mass function is defined according to the EKNN
spatial uncertainty model (1) extended to the numerical context by replacing the
categorical focal elements Cq by numerical ones ωi which stands for the pressure
measurement of a pixel i. In our approach we chose to redefine the frame of
discernment Ω = {w1, ..., wK} ⊆ {p1, ..., pN} ⊂ R+ for each window of N pixels
as the set of K different observed pressure values. By definition, ∀i �= j : wi �= wj

but the observed pressures can be identical for several pixels of a window, we
have K ≤ N .

The adaptation of the EKNN spatial uncertainty model to the pressure
sensors context is given in Eq. (2).

∀i = 1, · · · , N :

{
mi (pi) = αi

mi (Ω) = 1 − αi
(2)

with αi = α0e
−γdβ

i . The distance di is computed between the ith pixel having
for pressure value pi and the center of the window.

The conjonctive combination of all the window pixels mass functions leads
to a final mass function m∗ having for focal elements all the window pixel single
values and Ω.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∀k = 1, ...,K :

m∗
(
{wk}

)
=

N∏

i=1
pi=wk

αi×
N∏

j=1
pj 
=wk

(1−αj)

1−κ

m∗
(
{w1, ..., wK}

)
=

N∏

i=1
(1−αi)

1−κ

(3)
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with

κ = 1 −
K∑

k=1

[ N∏

i=1
pi=wk

αi ×
N∏

j=1
pj �=wk

(1 − αj) +
N∏

i=1

(1 − αi)
]

As a first approach we propose to compute the pignistic transform BetP ∗ of
m∗ and to replace the central pixel s of the window by the expectation of an
unknown pressure value W according to the BetP ∗ probability.

Results of the pignistic transform applied to m∗ and the corresponding expec-
tation of an uncertain pressure value W are given in Eqs. (4) and (5).

∀k = 1, ...,K,

BetP ∗
(
{W = wk}

)
= m∗

(
{wk}

)
+

1

K
m∗

(
Ω

)
(4)

EBetP∗
[
W

]
=

K∑

k=1

wk ∗ BetP ∗
(
{W = wk}

)
(5)

The choice of redefining the frame of discernment Ω for each pixels window
comes from the local nature of the belief filter, we only take into account the
of pixels neighbors to smooth images. The fact that we consider discrete spaces
Ω is counterbalanced by the pignistic transform which can result in any value
between the elements of Ω (see Eq. (5)).

The belief filter we propose smooth the pressure images with a sliding win-
dow approach. For all pixel windows the central pixel is replaced by the pignistic
expectation of the (uncertain) pressure values of all its neighbors and their cor-
responding bbas which are defined according their distance to the central pixel
(see Eq. (3)). In the following subsection we propose a micro-movement indicator
which can be computed on any sets of pressure images, smoothed or not.

3.2 Micro-movements Quantification

Once all images have been smoothed with our belief filter, we quantify the
amount of micro-movement as the level of deformation enhanced by variations
of pressure on the sensor network. Indeed, all the information available about
these movements is provided by pressure sensors which provide grey intensity
images at each timestamp.

A sequence of pressure measurements images can be considered as a 3-
dimensional discrete spatio-temporal field: W

(x,y)
t , where x and y denote the

coordinates of an individual sensor in the sensor network, and t is the time index.
The gradient vector �∇(W (x,y)

t ) is defined such that �∇ = [∂/(∂x), (∂/∂y)]T . The
Sobel operator allows to calculate approximations of the horizontal and ver-
tical derivatives using two 3 × 3 kernels which are convolved with the orig-
inal source image W

(x,y)
t . The Sobel operator allows to calculate two images



Evidential Filtering for Bedsores Prevention 303

Sx(t) =

⎛

⎝
1 0 −1
2 0 −2
1 0 −1

⎞

⎠ 	 W
(x,y)
t and Sy(t) =

⎛

⎝
1 2 1
0 0 0

−1 −2 −1

⎞

⎠ 	 W
(x,y)
t which contain

respectively the horizontal and vertical approximations of the gradient vector
for each point (x, y). The 2-dimensional signal processing convolution operation
is denoted by 	.

The micro-movement measure μmvt is computed as the absolute value of
the spatio-temporal gradient of the videos corresponding to the set of pressure
images of one measurement of 30 min:

μmvt(t, x, y) =
∣
∣
∣
∂

∂t
S(t, x, y)

∣
∣
∣ (6)

where S(t, x, y) =
√

Sx(t)2 + Sy(t)2.
It is noticeable that micro-movements quantification can be computed inde-

pendently of the considered filter, even on raw image (without any filtering). In
the case of filtered images, the Sobel values S(t, x, y) are computed on images
that have been smothed according to Eqs. (3) and (5).

4 Experiment and Results

In this section the evaluation criteria considered in this study are detailed and
finally results are presented in terms of filtering, micro-movement and DFA.

The evidential filtering proposed in this work is first visually evaluated. The
micro-movement and complexity time series computed on raw and filtered images
are compared. This comparison is realised with the raw signals as reference,
i.e., the best denoising filters corresponding to the closest micro-movement and
complexity signals to the ones computed on raw images (without filtering).

Visual Evaluation of Filtering (Fig. 2). The median filtered images are very
smoothed which is not an optimal context for micro-movement analysis since
micro-movements are of very low intensity by definition. The belief filter gives
a less smoothed image than the mean filter (the grid has almost disappeared),
which is suitable for the analysis of of micro-movements that could become
undetectable with too strong smoothing.

Micro-movement Quantification
The micro-movement signal computed as in Eq. (6) contains large peaks which
do not correspond to micro-movement but are rather due to real movements
when the patient lies down on his bed. In order to extract those real movements
from the signal, we removed upstream all micro-movement data that were higher
than the 99th signal centile. The obtained micro-movement time series seems
stationary and rough enough for complexity computations.
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raw image median filter

mean filter belief filter

Fig. 2. Sacrum denoising

In terms of DFA
For three measurements, the evolution of complexity is presented in Fig. 3,
nevertheless all the following comments have been made on the set of 18
measurements.

We first observe that for all three filters (median, mean and belief) the same
curve shapes are observed. This means that the filter choice has no impact
on the complexity evolution shape. However, the filtered level of complexity
computations are generally biased from the ones computed on raw images and
these biases tend to decrease with time. On the set of 18 measurements we note
that the raw complexity signals lie almost always between filtered signals, except
for 2 or 3 cases when the raw complexity signal has especially large variations
probably due to some real movement track perturbations. In terms of DFA,
this seems to attenuate the filter choice importance and even the importance of
filtering itself which is sometimes a delicate pre-processing question for analysts
and researchers.

Finally, in terms of filtering, mean and belief filters curves are always very
close. However, significance test comparison have been made on the final levels
of complexity in order to compare the complexity estimation absolute errors (in
regards to the final complexity level computed on raw images). On the set of
18 measurement the median filters complexity estimator has the lowest error:
0.0154, the belief and mean filter having errors of 0.0161 and 0.0380. With a
risk of 5% there is no significant (Wilcoxon test) difference of complexity esti-
mation errors between median and belief filters (p = 0.290) whereas belief filter
estimation errors are significantly lower than mean filter one (p = 0.009).
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Fig. 3. Filtering vs complexity

5 Conclusion and Perspectives

In this paper a spatio-temporal model of micro-movement located in the sacral
area of bedridden patients has been proposed as weel as a study of the evolution
of complexity during the measurement (30 min). This preliminary work lays the
foundations for a micro-movement analysis integrating uncertainty/imprecision
management using an evidential filter. Results are encouraging.

In standard DFA, the complexity parameter α is computed on the whole
signal, i.e. once the measurement is complete. In our case we monitored the
evolution of complexity over time in order to estimate the necessary measurement
duration to get a relatively stable level of sacrum micro-movement complexity (α
coefficient). Concerning DFA, the measurement noise does not seem to impact
the estimates and it does not seem necessary to filter for complexity analysis.

In an industrial perspective this type of estimation could be of precious value
for connected mattresses and bedsores risk notifications (when the amount of
micro-movement is too low or the level of complexity seems abnormal).

The future works concern the search of a similarity measure able to dis-
criminate patients and mattresses from micro-movement and complexity signals
based on machine learning methods. In the evidential perspective, uncertainty
modeling should be improved with more complex fusion and decision rules and
finally it would be interesting to consider uncertainties at the complexity level
in the DFA model.
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Abstract. In the past few years, a high worldwide interest in Machine
learning (ML) algorithms, involving Artificial Immune Recognition Sys-
tem (AIRS) have increased rapidly. In fact, AIRS is a supervised learn-
ing technique inspired by the main concepts and methods of the human
immune system. It has shown a great success on broad range of classifica-
tion problems. AIRS includes different powerful versions for solving com-
plex problems and making appropriate decisions. Despite the high effi-
ciency of these AIRS versions, they suffer from some weaknesses, which
could affect the classification accuracy. Actually, some of these versions
are incapable to deal with uncertainty presented during the classification
procedure. This is treated as one of the most important challenges in real-
life classification difficulties. In this paper, we aim to overcome this issue
by handling uncertainty under AIRS using the belief function theory. In
addition, we aim to improve existing AIRS versions by proposing a new
hybrid AIRS approach. This hybrid approach combines a feature selec-
tion process as well as various optimization techniques such as Genetic
Algorithm (GA) and Gradient Descent. Furthermore, this novel proposed
AIRS includes a new enhanced belief classifier in order to increase the
classification accuracy. A comparison between diverse AIRS versions and
the suggested approach on real world data sets has been performed show-
ing the high efficiency of the proposed hybrid AIRS.

Keywords: Machine learning · Artificial immune recognition
systems · Uncertainty · Belief function theory · Genetic algorithm ·
Feature selection

1 Introduction

Artificial Immune Systems (AIS) constitute one of the new and motivated fields of
biologically inspired computing and natural computing. Artificial Immune Recog-
nition System (AIRS) [6] represents a powerful and robust AIS approach, which
has been successfully exploited as an efficient solution to different challenges in
computer science and engineering. It has been widely applied in diverse fields
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including optimization, data mining more specifically anomaly detection, pattern
classification and clustering, robotics and malware detection [7]. AIRS introduces
various versions such as AIRS2 [1] and AIRS3, which have shown a great suc-
cess in solving complex problems under a certain environment. However, under an
uncertain environment, these versions face some difficulties in dealing with uncer-
tainty that could deeply exist in the classification process. In order to overcome
this weakness, researchers have improved the basic AIRS versions by employing
various uncertainty theories such as the possibility theory and the fuzzy set [10].
The belief function theory (BFT) is a powerful modeling tool, which has been
introduced in 1976 by Shafer [8,9]. It is a rich and popular framework known by
its high ability in reasoning under uncertainty and modeling imprecise informa-
tion. It is also called Dempster-Shafer theory or the evidence theory. Relying on
this theory, new evidential versions of AIRS2 and AIRS3 [2] have been proposed.
Furthermore, an extension of evidential AIRS3 has been suggested in [3] where the
weight of the training patterns is considered during the learning reduction phase.
After that, a great optimization of this approach has been achieved in [4] where a
significant progress in classification accuracy has been made. Comparing [1] with
this optimized AIRS version, a high improvement has been proved. Yet, this latter
employs numerous user-predefined parameters which could negatively influence
the decision-making process. Moreover, this AIRS model involves a large number
of random methods in the several stages of the process which could degrade the
approach’s performance. So, to find a solution for these issues, a recent research
work has been introduced in [5] where authors employ the genetic algorithm dur-
ing the classification procedure. This approach has shown a success in terms of
classification accuracy. However, such approach is unable to select the relevant fea-
tures, it exploits all the features in the data set without excluding the redundant
and the unnecessary ones. This could decrease the efficiency of the AIRS model
and produce incorrect predictions. To solve this problem, a recent improved AIRS
approach has been proposed where a pre-processing phase was implemented. Dur-
ing this phase, a feature selection is performed and a reduction of data dimension
is achieved. Thanks to this improvement, the AIRS model has attain great classifi-
cation results. Despite the high effectiveness of this approach, it does not take into
account the number of classes during the classification process. It depends only on
limited parameters such as the number of training instances represented by each
pattern and the stimulation level between instances. In such approach, during the
classification process, all data sets with different number of classes are treated
equally and the number of classes is ignored. In order to alleviate this problem and
obtain more accurate and effective classification results, we propose an evidential
hybrid AIRS3 approach where we combine the optimized evidential AIRS3 with
genetic algorithm and feature selection and at the same time, we exploit the num-
ber of classes during the classification phase. Experiments of the new optimized
hybrid AIRS3 within the belief function theory, conducted on different public data
sets, have proven that the proposed approach outperforms all other AIRS versions
in terms of classification accuracy.

This paper is divided as follows: Sect. 2 represents the Artificial Immune
Recognition System. Our novel hybrid approach is detailed in Sect. 3. After that,
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obtained results accomplished on real-world data sets are described in Sect. 4.
At the end, Sect. 5 concludes the paper.

2 The Artificial Immune Recognition System

Artificial immune system (AIRS) is a supervised learning algorithm, which
employs the human immune system as inspiration [6]. In AIRS, objects are
represented as antigens and antibodies sharing the same data representation.
AIRS2 [1] is an improved version of AIRS, which starts with a normalization of
attributes and an initialization of the Memory cell (MC) pool and the Artificial
Recognition Ball(ARB) pool. The selection of the most stimulated cell denoted
by mc match is performed based on the affinity between the test antigen ag and
cells having the same class as ag. Then, clones from the mc match are generated
and added to the ARB pool and only the most stimulated ones are maintained.
The classification phase in AIRS2 is achieved relying on the basic K-Nearest
Neighbors (KNN) [12] algorithm. While, in the AIRS3 version, the classification
process is accomplished in a different way. The K value does not represent the
number of neighbors but it corresponds to the sum of number of training antigens
represented by each memory cell denoted by numRepAg. Finally, the unknown
antigen is attributed to the class owning the highest sum of numRepAg.

3 Optimized Hybrid Evidential AIRS3

In order to enhance the performance of the existing AIRS approaches, we pro-
pose an optimized hybrid method based on artificial immune recognition system
(AIRS) with a new belief classification process. We call this approach Hybrid-
EAIRS-BCKN. Unlike the majority of AIRS versions which employ the basic
K-Nearest Neighbors (KNN) [12], our approach adapts a new special belief C*K
neighbors classifier denoted by BCKN with C is the number of classes in the
whole training data set. The C*K factor represents the sum of numRepAg
related to each selected cell in the MC pool. The BCKN is characterized by
its simple implementation and its high efficiency in reasoning under uncertainty.
Its integration in the hybrid AIRS has highly improved the classification accu-
racy. The belief framework is known by its great robustness and flexibility in
dealing with imperfect information. In addition to that, the optimized hybrid
AIRS combines multiple optimization techniques such as the genetic algorithm
and the gradient descent in order to build an optimized and a powerful AIRS
model. The whole process is illustrated in the following flowchart in Fig. 1.

3.1 Notations

To give a better explanation of our proposed approach, basic notations are
defined in what follows:

– Θ = {c1, c2, · · · , cM}: The frame of discernment including a finite set of classes
where M refers to the number of classes.
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Fig. 1. Optimized hybrid Evidential AIRS3 process

– n: The number of the obtained memory cells after the execution of the BCKN
method.

– In = {I1, · · · , In}: corresponds to the indexes of the n obtained neighbors.
– MC = {mc(1),mc(2), · · · ,mc(n)}: represents the MC pool containing n mem-

ory cells (mc).
– m({cp}|mc): The basic belief mass related to the class cp.
– ω: represents the inverse of numRepAg corresponding to mc.
– ωd: corresponds to the weighted euclidean distance.

3.2 Stage 1: Data Pre-processing with Feature Selection Method

Feature selection is an important element of data pre-processing which aims
to improve the predictive model efficiency. Actually, this method reduces the
dimensions of data set by selecting only the most relevant features. It removes
noisy and redundant attributes. Among the numerous feature selection tech-
niques, we opt for the Infinite Latent Feature Selection (ILFS) algorithm since
it is considered as among the most powerful and robust probabilistic ranking
approaches [18].
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3.3 Stage 2: Learning Reduction with Genetic Algorithm

This stage of our contribution is divided into three fundamental phases:

– Memory cell recognition and parents selection
In this phase, we select the mc match as the most stimulated memory cell
owning an identical class as the antigen ag. This chosen cell and the training
antigen will be considered as the parental chromosomes. Inspired by genetic
algorithm concepts, each cell corresponds to a portion of chromosomes.

– Crossover and mutation
In genetic algorithm, crossover and mutation represents two fundamentals
stages. The main goal of the crossover is the generation of new offsprings
derived by the combination of the two parental chromosomes (the mc match
and the training antigen). In our approach, we opt for the linear combination
as one of the simplest and efficient crossover’s operators. After the crossover
step, the mutation is performed in order to introduce more efficient solutions.

– Candidate memory cell recognition and refresh of the memory cells
pool
During this phase, the selection of the appropriate candidate memory cell is
performed based on the various computed affinities and the stopping crite-
rion. We compare the affinity of the training antigen and the resulting off-
spring with the affinity threshold (AT ). In the case, this latter surpasses the
calculated affinity, this antigen will be designated as the candidate memory
denoted by mc candidate. In the contrary case, new solutions will be created
until meeting the stopping criterion. If the obtained mc candidate is paring
the presented antigen better than the actual mc match does, it will join oth-
ers cells in the MC pool and become a long-lived memory cell. Furthermore,
the mc match could be replaced by the mc candidate if the affinity between
them is less than the product of affinity threshold scalar and affinity threshold
and affinity threshold scalar.

3.4 Stage 3: Belief Parameters Optimization with Gradient Descent

The belief classification phase of AIRS depends on two main parameters which
are α and γ = (γ1, . . . , γp), where p ∈ {1, . . . , M}. In fact, α has the value of
0.95 which has been proved to produce the best classification precision [11]. For
the value of the parameter γ, it is computed using an evidential optimization
technique. In fact, a cost function is defined based on the computed basic belief
assignment(bba) is defined as:

E(mc(l)) =
∑

M
p=1(BetP (l)

p − t(l)p )2 (1)

With BetP (l) is the distribution associated to the bba m(l) such that:

BetP (l) = (BetP (l)({c1}), . . . , BetP (l)({cM})
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mc(l) represents a memory cell of the MC pool associated to class cp. Its related
class membership is encoded as a vector t(l) = (t(l)1 , ..., t

(l)
M ) of M binary indicator

variables t
(l)
j presented by t

(l)
1 = 1 if j = p and t

(l)
1 = 0 otherwise.

In the next step, a minimization of the Mean Squared Error (MSE) is per-
formed using the gradient descent. As a result, the optimum value of the param-
eter γ is selected. This latter as well as the value of α will be used in Eq. 2.

3.5 Stage 4: Belief Classification with BCKN Algorithm

The classification process of our proposed hybrid AIRS3 approach relies on the
Belief C*K neighbors method. We recall that the C*K value in the AIRS3 app-
roach is not the number of nearest selected neighbors but it is the sum of
numRepAg of all selected cells as follows

∑
numRepAg = C ∗ K. The cho-

sen cells in the classification process are those having the highest stimulation
values to the unlabeled antigen. This technique has achieved a great success in
improving the classification accuracy of the AIRS model. It involves two main
steps:

– Basic belief assignment’s generation
During this phase, traditional AIRS versions generate K basic belief assign-
ments (bba′s) corresponding to the chosen nearest neighbors. Nonetheless, in
some cases where the value of K is too large, this technique could be very
complicated and it makes performance of the model worse. So, we aim in our
work to alleviate such weakness by generating only the bba′s corresponding
to the C*K selected cells. Thus, the resulting memory cells will be considered
as sources of evidence. Relying on these pieces of evidences, the choice of the
adequate class will be performed. Then, during the computation process, con-
trary to the traditional AIRS methods, we do not employ the traditional γp as
the reciprocal of the mean distance between two cells owning the same class
cp, yet we rely on the optimal value of γ attained during the optimization
process. This value is designated by γ∗

p . Therefore, the generation of basic
belief assignment from the most stimulated selected antigens is accomplished
as follows:

m(.|mc(i)) =

{
m({cp}|mc(i)) = α e−(γ∗

p ·(ωd(i))
2)

m(Θ|mc(i)) = 1 − (α e−(γ∗
p ·(ωd(i))

2))
(2)

– Basic belief assignment’s fusion
Once the bba′s are induced for each selected memory cell, a fusion of these
bba′s is processed based on the Dempster rule of combination such that:

m = m(.|mc(i)) ⊕ ... ⊕ m(.|mc(n)) (3)

where n represents the number of selected memory cells
The main objective of the combination process is to obtain a final bba related
to the unknown antigen. To attain this goal, the evidence of the n selected
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memory cells are aggregated. In fact, this aggregation can be accomplished
relying on several rules such as conjunctive rule of combination introduced
by Smets [16], Combination With Adapted Conflict (CWAC) rule [17], the
Dezert-Smarandache Theory (DSmT) [13], the Dempster’s rule of combina-
tion [8], etc. In. In our approach, we opt for the Dempster’s rule of combina-
tion since we are inspired by the evidential K-nearest neighbors [15].

3.6 Stage 5: Decision Making with Pignistic Probability

The final stage of the optimized hybrid evidential AIRS3 is the decision making
process. At this level, the assignment of the suitable class to the test antigen is
accomplished relying on the pignistic transformation function [14], designated by
BetP . Based on the calculated BetP values, we assign to the unknown antigen
the class owning the highest value of pignistic probability.

4 Experimental Study

In order to evaluate the efficiency of our hybrid AIRS3 approach within the
belief function theory, we did numerous experiments where we compare our novel
approach with various other AIRS methods namely, AIRS2 denoted by A1 [1],
Fuzzy AIRS2 [10] denoted by A2, Evidential AIRS3 denoted [2] by A3, Weighted
Evidential AIRS3 [3] denoted by A4, Optimized Weighted Evidential AIRS3 [4]
denoted by A5, and Optimized Evidential AIRS3 with genetic algorithm [5]
denoted to A6.

4.1 The Framework

The different real data sets employed in our experiments are: Wine (W),
Cryotherapy (C), Fertility (F), Pima Indians Diabetes (PID) Hebernal (H) and
User Knowledge Modeling (UKM). Characteristics of each data set are presented
in Table 1, where # nbInstances is the number of antigens, # nbAttributes cor-
responds to the number of attributes and # nbclass is referred to the number of
class labels of a data set.

Table 1. The characteristics of used data sets

Data set #nbInstances #nbAttributes #nbClass

C 90 6 2

W 178 13 3

F 100 9 2

PID 768 8 2

H 306 3 2

UKM 403 5 4
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For all these data sets, we used the following parameter values for all the
diverse versions of AIRS employed in our comparison:

Clonal rate = 10, Mutation rate = 0.4, HyperClonal Rate = 2, Number of
resources = 200, Stimulation threshold = 0.3, Affinity threshold scalar = 0.2.

Furthermore we have tested with distinct values of K = [1, 2, 3, 5, 7, 10
and 12].

4.2 Evaluation Criteria

For the evaluation of our approach, we rely on four metrics which is the Per-
cent Correct Classification (PCC), the precision (P), the Recall (R) and the
F-measure also known by F1 score (F1). In addition, during our tests, we adopt
the cross-validation method to determine the effectiveness of our novel approach.
In fact, used the 10-fold cross-validation where we average the values derived in
all the 10 cases of cross validation.

Table 2. The mean PCC (%)

Data sets A1 A2 A3 A4 A5 A6 Hybrid EAIRS-BCKN

W 65.71 76.51 86.12 86.78 86.92 97 97.68

C 66.61 74.58 75.69 75.8 76.16 84.58 85.72

PID 63.4 65.75 69.2 69.44 69.6 71.97 73.66

F 82.45 84.87 85.26 85.53 85.69 87.24 87.86

H 64.52 61.21 64.66 64.81 65.08 68.07 69.88

UKM 62.63 63.99 48.23 51.39 62.63 86.37 86.8

Table 3. The mean Recall (%)

Data sets A1 A2 A3 A4 A5 A6 Hybrid EAIRS-BCKN

W 64.93 75.41 86.66 87.45 87.45 97.2 97.52

C 74.29 67.22 74.79 74.86 75.5 89.15 83.72

PID 71.98 71.23 81.06 81.26 81.31 77.4 79.12

F 92.39 93.72 94.13 94.33 94.33 97.35 98.52

H 77.98 70.13 78.56 78.7 77.01 87.22 90.57

UKM 58.75 61.26 46.8 53.47 59.78 81.15 81.2

4.3 Experimental Results

To prove the success of our contribution, we compared our proposed approach
with nine traditional AIRS versions. Our comparison is based on different popu-
lar evaluation measures including PCC, Recall, Precision and F −Measure of
the numerous used K-values. The different averages of these metrics are repre-
sented in Table 2, Table 3, Table 4 and Table 5. As shown in these four tables, our
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Table 4. The mean Precision (%)

Data sets A1 A2 A3 A4 A5 A6 Hybrid EAIRS-BCKN

W 61.76 72.72 86.31 87.01 87.01 97.17 97.84

C 67.07 78.5 78.78 78.84 79.02 80.63 87.19

PID 72.29 75.02 74.06 74.63 75.31 80 82.09

F 88.44 90.02 90.13 90.22 90.38 89.39 89.63

H 74.64 75.5 75.25 75.31 75.74 75.8 74.14

UKM 51,27 62,94 46,75 38,13 64,31 78,8 79,26

Table 5. The mean F −measure (%)

Data sets A1 A2 A3 A4 A5 A6 Hybrid EAIRS-BCKN

W 53.06 65.81 81.88 82.57 82.57 97.03 97.64

C 67.79 71.02 75.69 76.11 76.11 84.33 84,27

PID 71.04 72.71 77.23 77.51 81.81 78.42 80.45

F 90.12 91.39 91.74 91.83 91.91 93 93.79

H 75.69 72.28 76.4 76.59 76.18 81 81.43

UKM 43.43 54 39.72 23.78 57.77 77.25 73.43

approach hybrid evidential AIRS3 with BCKN achieve better results than most
other versions of AIRS in term of classification accuracy, F-measure, recall and
precision for all the employed data sets. Let’s take as instance the data set W,
our approach attain the best PCC with the value 97.68% compared to 65.71%
for A1, 76.51% for A2, 86.12 for A3, 86.78 for A4, 86.92 for A5, 97 for A6.

5 Conclusion

In this paper, we have developed a new hybrid evidential AIRS approach with
a new classification process named BCKN. It is so powerful that it handles the
uncertainty pervaded in the classification phase, optimizes the belief parameter,
selects only the relevant features, takes into account the number of represented
antigens by each memory cell denoted by numRepAg and finally, proceeds on
belief classification process based on numRepAg and the number of classes of
each data set. Experimental results have proved the high performance of our
approach in terms of PCC, Precision, Recall and F − measure against all the
AIRS methods described in this paper under certain and uncertain frameworks.
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