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Abstract. The semantics of probabilistic languages has been extensively studied,
but specification languages for their properties have received little attention. This
paper introduces the probabilistic dynamic logic pDL, a specification logic for
programs in the probabilistic guarded command language (pGCL) of McIver and
Morgan. The proposed logic pDL can express both first-order state properties and
probabilistic reachability properties, addressing both the non-deterministic and
probabilistic choice operators of pGCL. In order to precisely explain the meaning
of specifications, we formally define the satisfaction relation for pDL. Since pDL
embeds pGCL programs in its box-modality operator, pDL satisfiability builds on a
formal MDP semantics for pGCL programs. The satisfaction relation is modeled
after PCTL, but extended from propositional to first-order setting of dynamic
logic, and also embedding program fragments. We study basic properties of pDL,
such as weakening and distribution, that can support reasoning systems. Finally,
we demonstrate the use of pDL to reason about program behavior.

1 Introduction

This paper introduces a specification language for probabilistic programs. Probabilistic
programming techniques and systems are becoming increasingly important not only for
machine-learning applications but also for, e.g., random algorithms, symmetry break-
ing in distributed algorithms and in the modelling of fault tolerance. The semantics of
probabilistic languages has been extensively studied, from Kozen’s seminal work [1]
to recent research [2–5], but specification languages for their properties have received
little attention (but see, e.g., [6]).

The specification language we define in this paper is the probabilistic dynamic logic
pDL, a specification logic for programs in the probabilistic guarded command language
pGCL of McIver and Morgan [7]. This programming language combines the guarded
command language of Dijkstra [8], in which the non-deterministic scheduling of threads
is guarded by Boolean assertions, with state-dependent probabilistic choice. Whereas
guarded commands can be seen as a core language for concurrent execution, pGCL can
be seen as a core language for probabilistic and non-deterministic execution.

The proposed logic pDL can express both first-order state properties and reachability
properties, addressing the non-deterministic as well as the probabilistic choice operators
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of pGCL. Technically, pDL is a probabilistic extension of (first-order) dynamic logic [9], a
modal logic in which programs can occur within the modalities of logical formulae. The
semantics of dynamic logic is defined as a Kripke-structure over the set of valuations
of program variables. Dynamic logic allows reachability properties to be expressed for
given (non-probabilistic) programs by means of modalities. The probabilistic extension
pDL allows probabilistic reachability properties to be similarly expressed.

In order to precisely explain the meaning of specifications expressed in pDL, we for-
mally define the semantics of this logic in terms of a satisfaction relation for pDL formu-
lae (a model-theoretic semantics). The satisfaction relation is modeled after PCTL [10],
but extended from a propositional to a first-order setting of dynamic logic, embedding
program fragments in the modalities. Since pDL embeds pGCL programs in its formulae,
the formalization of pDL satisfiability builds on a formal semantics for pGCL programs,
which is defined by Markov Decision Processes (MDP) [11]. The formalization of pDL
satisfiability allows us to study basic properties of specifications, such as weakening
and distribution. Finally, we demonstrate how pDL can be used to specify and reason
about program behavior. The main contributions of this paper are:

– The specification logic pDL to syntactically express probabilistic properties of
stochastic non-deterministic programs written in pGCL;

– A model-theoretic semantics for pDL over a simple MDP semantics for pGCL pro-
grams; the satisfaction relation is modeled after PCTL, but extended from a propo-
sitional to a first-order setting of dynamic logics with embedded pGCL programs;
and

– A study of basic properties of pDL and a demonstration of how pDL can be used to
specify and reason about pGCL programs.

Our motivation for this work is ultimately to define a proof system which allows us
to mechanically verify high-level properties for programs written in probabilistic pro-
gramming languages. Dynamic logic has proven to be a particularly successful logic
for such verification systems in the case of regular (non-probabilistic) programs; in par-
ticular, KeY [12], which is based on forward reasoning over DL formulae, has been
used for breakthrough results such as the verification of the TimSort algorithm [13].
The specification language introduced in this paper constitutes a step in this direction,
especially by embedding probabilistic programs into the modalities of the specification
language. Further, the semantic properties of pDL form a semantic basis for proof rules,
to be formalized, proven correct, and implemented in future work.

The proofs of the theorems below can be found in the extended version [14].

2 State of the Art

Verification of probabilistic algorithms has been addressed with abstract interpreta-
tion [15], symbolic execution [16], or probabilistic model checking [17]. Here, we
focus on logical reasoning about probabilistic algorithms using dynamic logic. Exist-
ing dynamic logics for probabilistic programs are Kozen’s PPDL and PrDL of Feldman
and Harel. Kozen introduces probability by drawing variable values from distributions,
while propositions are measurable real-valued functions [18]. The program semantics
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is purely probabilistic; PPDL does not include demonic choice. Probabilistic Dynamic
Logic (PrDL) relies on the same notion of state, but introduces probabilistic transi-
tions using a random choice operator [19]. Since neither PPDL nor PrDL include non-
determinism, to reason about non-deterministic stochastic programs in a program logic
we need a new specification language. We aim to develop a first-order dynamic logic
for programs (PPDL was propositional) with demonic and probabilistic choice.

The main alternative for logical reasoning about probabilistic programs is the weak-
est pre-expectation calculus, proposed by McIver and Morgan for the probabilistic
guarded command language (pGCL) [7]. The language contains explicit probabilistic
and demonic choice. Program states are modeled by classical (non-probabilistic) vari-
able assignments, and probabilities are introduced by an explicit probabilistic choice.
Assertions are real-valued functions over program state capturing expectations, where
a Boolean embedding is used to derive expectations from logical assertions. Reasoning
in pGCL follows a backwards expectation transformer semantics. McIver and Morgan
define an axiomatic semantics given by the weakest pre-expectation calculus over pGCL
programs, but do not introduce an operational semantics for the language. Also they
do not provide a specification language for pGCL assertions, i.e., real-valued functions,
beyond the Boolean embedding (cf. [20]). In this work, we want to build on this tra-
dition. However, we think there is a need for a specification language with classical
model-theoretical semantics known from logics—a satisfaction semantics. Dynamic
logics is a good basis for such a development, since it is strictly more expressive than
Hoare logic and weakest precondition calculi—both can be embedded in dynamic logic
[21]. In contrast to these calculi, dynamic logics are closed under logical operators such
as first-order connectives and quantifiers; for example, program equivalence, relative to
state formulae ϕ and ψ, can be expressed by the formula ϕ ⇒ [s1]ψ ⇐⇒ ϕ ⇒ [s2]ψ.

As mentioned, the original pGCL lacked operational semantics. Since semantics is
needed for a traditional definition of satisfaction in a modal logic, we propose to use
the MDP semantics similar to the one of Gretz et al. [22], where post-expectations are
rewards in final states. An alternative could be Kaminski’s computation tree semantics
[3], but we find it more complex and less standard for our purpose (deviating further
from traditions of simpler logics like PCTL).

Termination analysis of probabilistic programs [2,23] considers probabilistic reach-
ability properties. This and other directions of related work, such as separation logic for
probabilistic programs [24], expected run-time analysis for probabilistic programs [25]
and relational reasoning over probabilistic programs for sensitivity analysis [26], are
orthogonal to the goal of defining a specification language for programs, and thus out-
side of scope of interest for this particular paper. Generally all these approaches rely on
the backwards pre-expectation transformer semantics of McIver and Morgan [7].

3 Preliminaries

We review the basic semantic notions used in the main part of the paper.

Definition 1 (Markov Decision Process). A Markov Decision Process (MDP) is a
tuple M =(State,Act,P) where (i) State is a countable set of states, (ii) Act is a count-
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able set of actions, (iii) P : State×Act ⇀ Dist(State) is a partial transition probability
function.

Let σ denote the states and a the actions of an MDP. A state σ is final if no further
transitions are possible from it, i.e. (σ, a) �∈ dom(P) for any a. A path, denoted σ, is
a sequence of states σ1, . . . , σn such that σn is final and there are actions a1, . . . , an−1

such that P(σi, ai)(σi+1) ≥ 0 for 1 ≤ i < n. Let final(σ) denote the final state of a
path σ.

For a given state, the set of applicable actions of P defines the demonic choices
between successor state distributions. A positional policy π is a function that maps
states to actions, so π : State → Act. We assume π to be consistent with P, so
P(σ, π(σ)) is defined. Given a policy π, we define a transition relation

·−→π⊆ State ×
[0, 1] × State on states that resolves all the demonic choices in P and write:

σ
p−→π σ′ iff P(σ, π(σ))(σ′) = p. (1)

For a given policy π, we let
p−→∗

π ⊆ State × [0, 1] × State denote the reflexive and
transitive closure of the transition relation, and define the probability of a path σ =
σ1, . . . , σn by

p = Pr(σ) = 1 · p1 · · · pn where σ1
p1−→π · · · pn−→π σn. (2)

Thus, a path with no transitions consists of a single state σ, and Pr(σ) = 1. Let
pathsπ(σ) denote the set of all paths with policy π from σ to final states.

In this paper we assume that MDPs (and the programs we derive them from) arrive
at final states with probability 1 under all policies. This means that the logic pDL that
we will be defining and interpreting over these MDPs can only talk about properties
of almost surely terminating programs, so in general it cannot be used to reason about
termination without adaptation. This is what corresponds to the notion of partial cor-
rectness in non-probabilistic proof systems.

An MDP may have an associated reward function r : State → [0, 1] that assigns a
real value r(σ) to any final state σ ∈ State. (In this paper we assume that rewards are
zero everywhere but in the final states.) We define the expectation of the reward starting
in a state σ as the greatest lower bound on the expected value of the reward over all
policies; so the real valued function defined as

Eσ(r) = inf
π

Eσ,π(r) = inf
π

∑

σ∈pathsπ(σ)

Pr(σ) r(final(σ)) , (3)

where Eσ,π(r) stands for the expected value of the random variable induced by the
reward function under the given policy, known as the expected reward. Note that the
expectation Eσ(r) always exists and it is well defined. First, for a given policy the
expected value Eσ,π(r) is guaranteed to exist, as we only consider terminating execu-
tions and our reward functions are bounded, non-negative, and non-zero in final states
only. The set of possible positional policies that we are minimizing over might be infi-
nite, but the values we are minimizing over are bounded from below by zero, so the set
of expected values has a well defined infimum. Finally, because the MDPs considered
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Fig. 1. The syntax of the probabilistic guarded command language pGCL

here almost surely arrive at a final state, we do not need to condition the expectations
on terminating paths to re-normalize probability distributions, which greatly simplifies
the technical machinery.

To avoid confusing expectations and scalar values, we use bold font for expectations
in the sequel. For instance, p represents an unknown expectation from the state space
into [0, 1], and 0 represents a constant expectation function, equal to zero everywhere.

We use characteristic functions to define rewards for the semantics of pGCL pro-
grams, consistently with McIver & Morgan [7]. For a formula ϕ in some logic with
the corresponding satisfaction relation, a characteristic function [[ϕ]], also known as a
Boolean embedding or an indicator function, assigns 1 to states satisfying ϕ and 0 oth-
erwise. In this paper, models will be program states, and also states of an MDP. In
general, characteristic functions can be replaced by arbitrary real-valued functions [3],
but this is not needed to interpret logical specifications, so we leave this to future work.

Finally, given a formula ϕ that can be interpreted over a state space of an MDP, we
define the truncation of a reward function p as the function (p↓ϕ)(σ) = p(σ) · [[ϕ]](σ).
The truncation of p to ϕ maintains the original value of p for states satisfying ϕ and
gives zero otherwise. Note that p↓ϕ remains a valid reward function if p was.

4 pGCL: A Probabilistic Guarded Command Language

The probabilistic guarded command language pGCL [7], extends Dijkstra’s guarded
command language [8] with probabilistic choice. Figure 1 gives the syntax of pGCL.
We let x range over the set X of program variables, v over primitive values, and e over
expressions Exp. Expressions e are constructed over program variables x and primitive
values v by means of unary and binary operators op (including logical operators ¬,∧,∨
and arithmetic operators +,−, ∗, /). Expressions are assumed to be well-formed.

Statements s include the non-deterministic (or demonic) choice s1 �s2 between the
branches s1 and s2. We write s e⊕s′ for the probabilistic choice between the branches s
and s′; if the expression e evaluates to a value p given the current values for the program
variables, then s and s′ have probability p and 1 − p of being selected, respectively. In
many cases e will be a constant, but in general it can be an expression over the state
variables (i.e., e ∈ Exp), so its semantics will be an real-valued function. Sequential
composition, skip, assignment, if-then-else and while are standard (e.g., [8]).

The semantics of pGCL programs s is defined as an MDP Ms (cf. [22]), and its
executions are captured by the partial transition probability function for a given policy
π, which induces the relation

p−→π for some probability p, (Eq. (1)). A state σ of Ms is
a pair of a valuation and a program, so σ = 〈ε, s〉 where the valuation ε is a mapping
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Fig. 2. An MDP-semantics for pGCL.

from all the program variables in s to concrete values (sometimes we omit the program
part, if it is unambiguous in the context). The state 〈ε, s〉 represents an initial state of
the program s given some initial valuation ε and the state 〈ε, skip〉 represents a final
state in which the program has terminated with the valuation ε.

The rules defining the partial transition probability function for a given policy π are
shown in Fig. 2. We denote by 〈ε, s〉 p−→π 〈ε′, s′〉 the transition from 〈ε, s〉 to 〈ε′, s′〉 by
action α = π(〈ε, s〉), where p is the resulting probability. Note that for demonic choice,
the policy π fixes the action choice between the distributions 0, 1 and 1, 0; for all other
statements, there is already a single successor distribution. The transitive closure of this
relation, denoted 〈ε0, s0〉 p−→∗

π〈εn, sn〉, expresses that there is a sequence of zero or more
such transitions from 〈ε0, s0〉 to 〈εn, sn〉 with corresponding actions αi = π(εi, si) and
probability pi for 0 < i ≤ n, such that p = 1 · p1 · · · pn.

Remark that the rules in Fig. 2 allow programs to get stuck, for instance if an expres-
sion e evaluates to a value outside [0, 1] (PROBCHOICE). Since we are interested in
partial correctness, we henceforth rule out such programs and only consider programs
that successfully reduce to a single skip statement under all policies with probability 1.

5 Probabilistic Dynamic Logic

Formulae and Satisfiability. Given sets X of program variables and L of logical vari-
ables disjoint from X , let ATF denote the well-formed atomic formulae built using con-
stants, program and logical variables. For every l ∈ L, let dom l denote the domain of
l. We extend valuations to also map logical variables l ∈ L to values in dom l and let
ε |=ATF ϕ denote standard satisfaction, expressing that ϕ ∈ ATF holds in valuation ε.
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The formulae of probabilistic dynamic logic (pDL) are defined inductively as the
smallest set generated by the following grammar:

ϕ ::= ATF | ¬ϕ | ϕ1 ∧ ϕ2 | ∀l · ϕ | [s]p ϕ (4)

where ϕ ranges over pDL formulae, l ∈ L over logical variables, s is a pGCL program
with variables in X , and p is an expectation assigning values in [0, 1] to initial states of
the program s. The logical operators →, ∨ and ∃ are derived in terms of ¬, ∧ and ∀ as
usual.

The last operator in Eq. (4) is known as the box-operator in dynamic logics, but
now we give it a probabilistic interpretation along with the name “p-box.” Given a
pGCL program s, we write [s]p ϕ to express that the expectation that a formula ϕ holds
after successfully executing s is at least p; i.e., the function p represents the expectation
for ϕ in the current state of Ms using [[ϕ]] as the reward function (see Sect. 3). For the
reader familiar with the CTL/PCTL terminology, the p-box formulae are path formulae,
and all other formulae are state formulae.

We define semantics of well-formed formulae in pDL, so formulae with no free log-
ical variables—all occurrences of logical variables are captured by a quantifier. The
definition extends the standard satisfaction relation of dynamic logic [9] to the proba-
bilistic case:

Definition 2 (Satisfaction of pDL Formulae). Let ϕ be a well-formed pDL formula, π
range over policies, l∈L, p : State → [0, 1] be an expectation lower bound, and ε be a
valuation defined for all variables mentioned in ϕ. The satisfiability of a formula ϕ in
a model ε, denoted ε |= ϕ, is defined inductively as follows:

ε |= ϕ iff ε |=ATF ϕ for ϕ ∈ ATF
ε |= ϕ1 ∧ ϕ2 iff ε |= ϕ1 and ε |= ϕ2

ε |= ¬ϕ iff not ε |= ϕ

ε |= ∀l · ϕ iff ε |= ϕ[l := v] for each v ∈ dom l

ε |= [s]pϕ iff p(ε) ≤ Eε[[ϕ]] where the expectation is taken in Ms

For ϕ ∈ ATF, |=ATF can be used to check satisfaction just against the valuation of pro-
gram variables since ϕ is well-formed. In the case of universal quantification, the sub-
stitution replaces logical variables with constants. The last case (p-box) is implicitly
recursive, since the characteristic function [[ϕ]] refers to the satisfaction of ϕ in the final
states of s.

The satisfaction of a p-box formula [s]p ϕ captures a lower bound on the probability
of ϕ holding after the program s. Consequently, pDL supports specification and reason-
ing about probabilistic reachability properties in almost surely terminating programs.

It is convenient to omit the valuation ε from the satisfaction judgement, meaning
that the judgement holds for all valuations (validity):

|= [s]p ϕ iff ε |= [s]p ϕ for all valuations ε (5)
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6 The P-Box Modality and Logical Connectives

We begin our investigation of pDL by exploring how the p-box operator interacts with
different expectations and the other connectives of pDL.

In a proof system, weakening is useful to allow adjusting proven facts to a format of
a syntactic proof rule. Since all operators of pDL, with the exception of p-box, behave
like in first order logic, the usual qualitative weakening properties apply for these oper-
ators at the top-level. For instance, ϕ1 ∧ ϕ2 can be weakened to ϕ1. These properties
follow directly from Definition 2. The following proposition states the key properties
for p-box:

Proposition 3 (Weakening). Let ε stand for a valuation, p,0 ∈ State → [0, 1] be
expectation lower bounds, s a pGCL program, and ϕ ∈ pDL. Then:

1. Universal lower bound: ε |= [s]0 ϕ
2. Quantitative weakening: ε |= [s]p1

ϕ then ε |= [s]p2
ϕ if p2 ≤ p1 everywhere

3. Weakening conjunctions: ε |= [s]p (ϕ1 ∧ ϕ2) then ε |= [s]p ϕi for i = 1, 2
4. Qualitative weakening: ε |= [s]p ϕ1 and |= ϕ1 → ϕ2 then ε |= [s]p ϕ2 .

The first point states that there is a limit to the usefulness of weakening the expecta-
tion: if you cannot guarantee that the lower bound is positive, then you do not have
any information at all. A zero lower-bound would hold for any property. The second
property is a probabilistic variant of weakening, which follows directly from the last
case of Definition 2; the lower bound on an expectation can always be lowered. The
last two properties are the probabilistic counterparts of weakening in standard (non-
probabilistic) dynamic logic; the third property is syntactic for conjunction, the last one
is general.

When building proofs with pDL, the other direction of reasoning seems more useful:
we would like to be able to derive a conjunction from two independently concluded
facts. For state formulae, this holds naturally, like in first-order logic. For p-box formu-
lae, we would like to use the expectations pi of two formulae ϕi to draw conclusions
about the expectation that their conjunction holds. It seems tempting to translate the
intuitions from the Boolean lattice to real numbers, and to suggest that a minimum of
the expectations for both formulae is a lower bound for their conjunction. To develop
some intuition, let us first consider an incorrect proposal using the following counterex-
ample:

Example 4. Consider the program , modeling a six-sided fair die:

(6)

Let ‘odd’ be an atomic formula stating that a value is odd, and ‘prime’ an atomic for-
mula stating that it is prime. Since the die is fair, the expectations for each of these after

are:

(7)
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The minimum of the two expectations is a constant function which equals 1/2 every-
where, but the expectation bound in [s]p(odd(x) ∧ prime(x)) can be at most 1/3 since
only two outcomes (x �→ 3 and x �→ 5) satisfy both predicates. Effectively, even if ε |=
[s]p1

ϕ1 and ε |= [s]p2 ϕ2 hold, we do not necessarily have ε |= [s]min(p1,p2)
ϕ1 ∧ ϕ2.

The reason is that the expectation bounds measure what is the lower bound on sat-
isfaction of a property, but not where in the execution space this probability mass is
placed. There is not enough information to see to what extent the two properties are
overlapping. ��
Similarly, p(ε) = p1(ε)p2(ε) is not a good candidate in Example 4, since it is only
guaranteed to be a lower bound for a conjunction when ϕi are independent events.
Unless p1=p2=1, combining proven facts with conjunction (or disjunction) weakens
the expectation:

Theorem 5. Let ε be a valuation, p,p1,p2 ∈ State → [0, 1] expectation lower bounds,
s a pGCL program, and ϕ1, ϕ2 ∈ pDL. Then:

1. p-box conjunction: if ε |= [s]p1
ϕ1 and ε |= [s]p2

ϕ2, then ε |= [s]p (ϕ1 ∧ϕ2) where
p = max(p1+p2 − 1, 0) everywhere.

2. p-box disjunction: if ε |= [s]p1
ϕ1 or ε |= [s]p2

ϕ2, then ε |= [s]p (ϕ1 ∨ ϕ2) where
p = min(p1,p2) everywhere.

Note the asymmetry between these cases: reasoning about conjunctions of low proba-
bility properties using Theorem 5.1 is inefficient, and quickly arrives at the lower bound
expectation 0, which, as observed in Proposition 3, holds vacuously. If both properties
have an expected probability lower than 1/2, then pDL cannot really see (in a composi-
tional manner) whether there is any chance that they can be satisfied simultaneously. In
contrast, compositional reasoning about disjunctions makes sense both for low and high
probability events. This is a consequence of using lower bounds on expectations. The
bounds in Theorem 5 are consistent with prior work by Baier et al. on LTL verification
of probabilistic systems [27].

The qualitative non-probabilistic specialization of Theorem 5.1 behaves reasonably:
when ϕ1 or ϕ2 hold almost surely, then the theorem reduces to a familiar format:

if ε |= [s]pϕ1 and ε |= [s]1ϕ2 then ε |= [s]p(ϕ1 ∧ ϕ2) (8)

Theorem 6. Let ε be a valuation, p ∈ State→ [0, 1] an expectation lower bound, s a
pGCL program, and ϕ ∈ pDL a well-formed formula.

1. If ε |= [s]p ∀l · ϕ then ε |= ∀l · [s]p ϕ, but not the other way around in general.
2. If ε |= ∃l · [s]p ϕ then ε |= [s]p ∃l · ϕ but not the other way around in general.

The essence of the above two properties lies in the fact that quantifiers in pDL only
affect logical variables, programs cannot access logical variables, and we do not allow
quantification over expectation variables.

In a deductive proof system, one works with abstract states, not just concrete states.
A state abstraction can be introduced as a precondition, a pDL property that captures
the essence of an abstraction, and is satisfied by all the abstracted states sharing the
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property. If an abstract property is a precondition for a proof, it is naturally introduced
using implication. However, implication is unwieldy in an expectation calculus, so it
is practical to be able to eliminate it in the proof machinery. The following theorem
explains how a precondition can be folded into an expectation function:

Theorem 7 (Implication Elimination). Let s be a pGCL program, ϕi be pDL formulae,
and p a lower-bound function for expectations. Then:

|= ϕ1 → ([s]p ϕ2) iff |= [s]p↓ϕ1ϕ2

Note that we use validity naturally when working with abstract states, as the state is
replaced by the precondition in the formula.

Finally, negation in pDL is difficult to push over boxes. This is due to non-
determinism and the lower bound semantics of expectations it enforces. A p-box prop-
erty expresses a lower bound on probability of a post-condition holding after a program.
Naturally, a negation of a p-box property will express an upper-bound on a property, but
pDL has no upper-bound modality first-class. We return to this problem in Sect. 8, where
we discuss reasoning about upper-bounds in non-deterministic and in purely probabilis-
tic programs.

7 Expectations for Program Constructs

This section investigates how expectations are transformed by pGCL program constructs,
as opposed to logical constructs discussed above. We begin by looking at the composite
statements, which build the structure of the underlying MDP. The probabilistic choice
introduces a small expectation update, consistent with an expectation of a Bernoulli
variable (item 1). The demonic choice (item 2), requires that both sides provide the
same guarantee, which is consistent with worst-case reasoning.

Theorem 8 (Expectation and Choices). Let si be programs, ϕ a PDL formula, pi

lower bound functions for expectations into [0, 1], and ε a valuation of variables. Then:

1. If ε |= [s1]p1
ϕ and ε |= [s2]p2

ϕ then ε |= [s1 e⊕ s2]p ϕ
with p = ε(e)p1+(1−ε(e))p2

2. ε |= [s1]p ϕ and ε |= [s2]p ϕ if and only if ε |= [s1 � s2]p ϕ

Note that in the second case, demonic, we can always use weakening (Proposition 3.2)
to equalize the left-hand-side expectation lower-bounds using a point-wise minimum,
if the premises are established earlier for different lower bound functions.

Example 9. This example shows that a non-deterministic assignment is less informa-
tive than a probabilistic assignment. It shows that pDL can be used to make statements
that compare programs directly in the formal system—one of its distinctive features in
comparison with prior works (cf. Sect. 2). We check satisfaction of the following pDL
formula for any expectation lower bound p:

|= ∀δ · ∀p · 0 ≤ p ≤ 1 → ([x:=0 � x:=1]p(x ≥ δ) → [x:=0 p⊕ x:=1]p(x ≥ δ)) .
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For simplicity, we use the logical variable p directly in the rightmost program (this
can easily be encoded as an additional assumption equating a fresh logical variable
to a program variable). For the proof, we first simplify the formula using equivalence
rewrites:

|= ∀δ · ∀p · 0 ≤ p ≤ 1 → ([x:=0 � x:=1]p (x ≥ δ) → [x:=0 p⊕ x:=1]p (x ≥ δ))

iff for ε, δ, p we have

ε |= 0≤p≤1→([x:=0 � x:=1]p (x ≥ δ) → [x:=0 p⊕ x:=1]p (x ≥ δ)) (Sect. 5, Definition 2 ∀)

iff for ε, δ, p we have

ε |= ¬0≤p≤1∨¬[x:=0 � x:=1]p (x ≥ δ) ∨ [x:=0 p⊕ x:=1]p (x ≥ δ) (syntactic sugar)

iff for ε, δ, p we have

¬0≤p≤1 ∨ ¬p(ε) ≤ Eε(x ≥ δ) ∨ p(ε) ≤ Eε(x ≥ δ) (Definition 2, the box)

In the last line above the left expectation is taken in MDP Mx:=0�x:=1 and the right
one is taken in Mx:=0 p⊕x:=1.

Now the property is a disjunction of three cases. If the first or second disjunct hold
the formula holds vacuously (the assumptions in the statement are violated). We focus
on the last case, when the first two disjuncts are violated (so the assumptions hold). We
need to show that the last disjunct holds. We split the reasoning in two cases:

1. δ ≤ 0: Consider the right expectation Eε(x ≥ δ). In the right program this expec-
tation is equal to 1 because the formula always holds (both possible values of x are
greater or equal to δ). Consequently, any expectation lower bound p is correct for
this formula: p(ε) ≤ Eε(x ≥ δ) in the right program.

2. δ > 0: Consider the left expectation Eε(x ≥ δ). By Eq. (3) this expectation is equal
to zero (the policy that chooses the left branch in the program violates the property
as x = 0 < δ). Since p(ε) ≤ Eε(x ≥ δ) = 0, it must be that p(ε) = 0 in the
left program. By the universal lower bound property (Proposition 3.1), all properties
hold after any program with the expectation lower bound p, including the post-
condition of the right program. ��

For any program logic, it is essential that we can reason about composition of consec-
utive statements; allowing the post-condition of one to be used as a pre-condition for
the other. The following theorem demonstrates that sequencing in pGCL corresponds
to composition of expectations in the MDP domain. It uses implication elimination
(Theorem 7) to compute a post-condition for a sequence of programs. Crucially, the
new lower bound is computed using an expectation operation in the MDP of the first
program, using the lower-bound of the second program as a reward function. Here, the
expectation operation acts as a way to explore the program graph and accumulate values
in final states.

Theorem 10 (Expectation and Sequencing). Let si be pGCL programs, ϕi be pDL
formulae, ε be a valuation, and p an expectation lower bound function.

If |= ϕ1 → ([s2]p ϕ2) then ε |= [s1; s2]E〈ε,s1〉(p↓ϕ1) ϕ2 ,

where the expectation E〈ε,s1〉(p↓ϕ1) is taken in Ms1 with p ↓ϕ1 as the reward func-
tion.
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For a piece of intuition, note that the above theorem captures the basic step of a back-
wards reachability algorithm for MDPs, but expressed in pDL; it accumulates expecta-
tions backwards over s1 from what is already known for s2.

We now move to investigating how simple statements translate expectations:

Theorem 11 (Unfolding Simple Statements). Let s be a pGCL program, ϕ a pDL
formula, p a function into [0, 1], a lower bound on expectations, and ε a valuation.
Then

1. ε |= [skip]1 ϕ iff ε |= ϕ
2. ε |= [s]p ϕ iff ε |= [skip; s]p ϕ
3. ε |= [x:=e; s]p ϕ iff ε[x �→ ε(e)] |= [s]p ϕ

The case of if-conditions below is rather classic (Theorem 12.3). For any given state, we
can evaluate the head condition and inherit the expectation from the selected branch. For
this to work we assume that the atomic formulae (ATF) satisfaction semantics in pDL is
consistent with the expression evaluation semantics in pGCL. The case of while loops is
much more interesting—indeed a plethora of works have emerged recently on propos-
ing sound reasoning rules for while loop invariants, post-conditions and termination
(see Sect. 2). In this paper, we show the simplest possible reasoning rule for loops that
performs a single unrolling, exactly along the operational semantics. Of course, we are
confident that many other rules for reasoning about while loops (involving invariants,
prefixes, or converging chains of probabilities) can also be proven sound in pDL—left
as future work.

Theorem 12 (Unfolding Loops and Conditionals). Let e be a program expression
(also an atomic pDL formula over program variables in X), ϕ be a pDL atomic formula,
si be pGCL programs, p an expectation lower bound function, and ε a valuation. Then:

1. If ε |= e ∧ [s1]p ϕ then ε |= [if e { s1 } else { s2 }]p ϕ
2. If ε |= ¬e ∧ [s2]p ϕ then ε |= [if e { s1 } else {s2 }]p ϕ
3. ε |= [if e { s; while e { s }} else {skip}]p ϕ iff ε |= [ while e { s }]p ϕ

8 Purely Probabilistic and Deterministic Programs

The main reason for the lower-bound expectation semantics in pDL (inherited from
McIver & Morgan) is the presence of demonic choice in pGCL. With non-determinism
in the language, calculating precise probabilities is not possible. However, this does not
mean that pDL cannot be used to reason about upper-bounds. The following theorem
explains:1

Theorem 13 (Joni’s Theorem). For a policy π, property ϕ, program s, and state ε: if
ε |= [s]p1

ϕ and ε |= [s]p2
¬ϕ then Eπ,ε[[ϕ]] ∈ [p1, 1 − p2].

1 The theorem is named as a tribute to the song Both sides now by Joni Mitchell.
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The theorem means that for a purely probabilistic program derived by fixing a policy
for a pGCL program s, the expected reward is bounded from below by the expectation
of this reward in s, and from above by the expectation of its negation in s. The theorem
follows directly from Eq. (3) and the negation case in Definition 2.

For deterministic programs, some surprising properties, follow from interaction of
probability and logics. For instance, we can conclude a conjunction of expectations
from an expectation of a disjunction.

Theorem 14. Let s be a purely probabilistic pGCL program (a program that does not
use the demonic choice), let ε stand for a valuation, p ∈ State → [0, 1] be an expecta-
tion function, and ϕi ∈ pDL properties. Then if ε |= [s]p (ϕ1 ∨ ϕ2) then there exist p1,
p2, p1 + p2 ≥ p everywhere, such that ε |= [s]p1

ϕ1 and ε |= [s]p2
ϕ2.

Intuitively, the property holds, because each of the measure of the space of final states of
the disjointed properties can be separated between the disjuncts. This separation would
not be possible with non-determinism, as shown in the following counterexample.

Example 15. Consider the program ::= x := H � x := T. The following holds for
any initial valuation ε:

ε |= [ ]1(x = H ∨ x = T)

This happens because disjunction is weakening and a weaker property is harder to
avoid, here impossible to avoid, for an adversary minimizing an expectation satisfac-
tion. However, at the same time: ε |= [ ]0(x = H) and ε |= [ ]0(x = T) and 0+0 < 1.
Importantly, zero is the tightest expectation lower bound possible here. ��

9 Program Analysis with pDL

In this section, we apply pDL to reason about two illustrative examples: the Monty Hall
game (Sect. 9.1), and convergence of a Bernoulli random variable (Sect. 9.2).

9.1 Monty Hall Game

In this section, we use pDL to compute the probability of winning the Monty Hall game.
In this game, a host presents 3 doors, one of which contains a prize and the others are
empty, and a contestant must figure out the door behind which the prize is hidden. To
this end, the host and contestant follow a peculiar sequence of steps. First, the loca-
tion of the prize is non-deterministically selected by the host. Secondly, the contestant
chooses a door. Then, the host opens an empty door from those that the contestant did
not choose. Finally, the contestant is asked whether she would like to switch doors. We
determine, using pDL, what option increases the chances of winning the prize (switching
or not).

Listing 1.1 shows a pGCL program, Monty_Hall, modeling the behavior of host
and contestant. There are 4 variables in this program: prize (door containing the
prize), choice (door selected by the contestant), open (door opened by the host), switch
(Boolean indicating whether the user switches in the last step). Note that the variable
switch is undefined in the program. The value of switch encodes the strategy of the
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contestant, so its value will be part of a pDL specification that we study below. Line 1
models the hosts’s non-deterministic choice of the door for the prize. Line 2 models
the door choice of the contestant (uniformly over the 3 doors). Lines 3–6 model the
selection of the door to open, from the non-selected doors by the contestant. Lines 7–10
model whether the contestant switches door or not. For clarity and to reduce the size
of the program, in lines 6 and 8, we use a shortcut to compute the door to open and to
switch, respectively. Note that for x, y ∈ {0, 1, 2} the expression z = (2x − y) mod 3
simply returns z ∈ {0, 1, 2} such that z �= x and z �= y. Similarly, in line 4, the expres-
sions y = (x + 1) mod 3, z = (x + 2) mod 3 ensure that y �= x, z �= x and y �= z.
This shortcut computes the doors that the host may open when the contestant’s choice
(line 2) is the door with the prize.

Listing 1.1. Monty Hall Program (Monty_Hall)

1 prize := 0 � (prize := 1 � prize := 2);
2 choice := 0 1/3⊕ (choice:=1 1/2⊕ choice:=2);
3 if (prize = choice)
4 open := (prize+1)%3 � open := (prize+2)%3;
5 else
6 open := (2*prize-choice)%3;
7 if (switch)
8 choice := (2*choice-open)%3
9 else

10 skip

We use pDL to find out the probability of the contestant selecting the door with the prize.
To this end, we check satisfaction of the following formula, and solve it for p.

ε[switch �→ true] |= [Monty_Hall]p(choice = prize). (9)

First, we show that p = min(p0,p1,p2) where each pi is the probability for the differ-
ent locations of the prize. Formally, we use Theorem 8.2 (twice) as follows

ε |= [prize:=0;...]p0
(choice = prize) and

ε |= [prize:=1;...]p1
(choice = prize) and

ε |= [prize:=2;...]p2
(choice = prize) imply

ε |= [Monty_Hall]min(p0,p1,p2)
(choice = prize)

For each pi, we compute the probability for each branch of the probabilistic choice. To
this end, we use Theorem 8.1 as follows:

ε |= [choice:=0;...]pi0
(choice = prize) and

ε |= [(choice:=1 1/2⊕ choice:=2);...]pi1
(choice = prize) imply

ε |= [choice:=0 1/3⊕ (choice:=1 1/2⊕ choice:=2);...]1/3·pi0+2/3·pi1
(choice = prize).
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and apply it again for pi1 to resolve the inner probabilistic choice:

ε |= [choice:=1;...]pi10
(choice = prize) and

ε |= [choice:=2;...]pi11
(choice = prize), implies

ε |= [(choice:=1 1/2⊕ choice:=2);...]1/2·pi10+1/2·pi11
(choice = prize)

These steps show that pi = 1/3 ·pi0 +2/3 ·1/2 ·pi10 +2/3 ·1/2 ·pi11 where pi0, pi10

and pi11 are the probabilities for the paths with choice equals to 0, 1 and 2, respectively.
Let us focus on the case p1. This is the case when the prize is behind door 1,

ε[prize �→ 1]. In what follows, we explore the three possible branches of the proba-
bilistic choice. Consider the case where the user chooses door 1, i.e., ε[choice �→ 1]
and

ε |= [if (prize = choice) {s0} else {s1};...]p110
(choice = prize)

where s0 and s1 correspond to lines 4 and 6 in Listing 1.1, respectively. Since ε |=
prize = choice holds and by Theorem 12.1 we derive that

ε |= [s0;...]p110
(choice = prize).

Note that p110 remains unchanged. Statement s1 contains a non-deterministic choice,
so we apply Theorem 8.2 to derive p110 = min(p1100,p1101) where each p110i

correspond to the cases where ε[open �→ 2] and ε[open �→ 0], respectively. Since
switch = true both branches execute line 8, and the probabilities remain the same (The-
orem 12.1). A simple calculation shows that after executing line 8 ε �|= (prize = choice)
for both cases. For instance, consider

ε[open �→ 0] |= [choice := (2*choice-open)%3]p1100
(prize = choice).

By Theorem 11.3 ε[choice �→ (2 ∗ 1 − 0)%3 = 2], which results in prize �= choice.
By the universal lower bound rule (Proposition 3.1) we derive p1100 = 0. The same
derivations show that p1101 = 0, and, consequently, p110 = 0.

The same reasoning shows that prize = choice holds for the cases where choice �= 1
in line 2, i.e., pi0 and pi11—we omit the details as they are analogous to the steps above.
In these cases, by Theorem 11.1 we derive that pi0 = 1 and pi11 = 1. Recall that
p110 = 0 (see above), then we derive that p1 = 1/3 · 1 + 2/3 · 1/2 · 0 + 2/3 · 1/2 · 1.
Consequently, p1 = 1/3 + 1/3 = 2/3. Analogous reasoning shows that all pi = 2/3.

To summarize, the probability of choosing the door with the prize when switch-
ing is at most 2/3. In other words, we have proven that switching door maximizes the
probability of winning the prize.

9.2 Convergence of a Bernoulli Random Variable

We use pDL to study the convergence of a program that estimates the expectation of a
Bernoulli random variable. To this end, we compute the probability that an estimated
expectation is above an error threshold δ > 0. This type of analysis may be of practical
value for verifying the implementation of estimators for statistical models.

Consider the following pGCL program for estimating the expected value of a
Bernoulli random variable (Technically the program computes the number of successes
out of n trials, and we will put the estimation into the post-condition):
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Listing 1.2. Bernoulli Program (Bernoulli)

1 i := 0; c := 0;
2 while (i < n) {
3 s := 0 μ⊕ s := 1;
4 c := c + s;
5 i := i + 1
6 }

Intuitively, Bernoulli computes the average of n Bernoulli trials Xi with mean μ, i.e.,
X =

∑
i Xi/n. It is well-known that E[X] = μ (e.g., [28]). Each Xi can be seen

as a sample or measurement to estimate μ. A common way to study convergence is
to check the probability that the estimated mean X is within some distance δ > 0 of
μ, i.e., Pr(|X − μ| > δ). In Bernoulli, a sample Xi corresponds to the execution of
the probabilistic choice μ⊕ in line 3 of Listing 1.2. After running all loop iterations,
variable c contains the sum of all the samples, i.e., c =

∑
i Xi. Thus, X is equivalent

to c/n and the specification of convergence can be written as Pr(|c/n − μ| > δ). Note
that this specification is independent of the implementation of the program. The same
specification can be used for any program estimating μ—by simply replacing X with
the term estimating μ in the program.

In pDL, we can study the convergence of this estimator by checking

ε |= [Bernoulli]p(|c/n − μ| > δ)

for some value of μ ∈ [0, 1], δ > 0 and n ∈ N. Note that, since the program contains
no non-determinism, p = Pr(|X − μ| > δ). We describe the reasoning to compute p.

First, note that the while-loop in Bernoulli is bounded. Therefore, we can replace it
with a sequence of n iterations of the loop body. Let si denote the ith iteration of the
loop (lines 3–4 in Listing 1.2). We omit for brevity the assignments in line 1 of Listing
1.2 and directly proceed with a state ε[c �→ 0, i �→ 0]. Consider the first iteration of the
loop, i.e., i = 0. By Theorem 12.3 we can derive

ε |= [if (0 < n) {s0; while (i < n) {s1}} else {skip}}]p(|c/n − μ| > δ).

Assume ε |= 0 < n holds, then by Theorem 12.1 we derive

ε |= [s0; while (i < n) {s1}]p(|c/n − μ| > δ).

By applying the above rules repeatedly we can rewrite Bernoulli as

ε |= [s0;...;sn−1;skip]p(|c/n − μ| > δ)

with the skip added in the last iteration of the loop by Theorem 12.3 and 12.2.
Second, we compute the value of p for a possible path of Bernoulli. Consider the

case when c = 0 after executing the program. That is,

ε |= [s0;...;sn−1;skip]p(c = 0).

This only happens for the path where the probabilistic choice is resolved as c:=0 for all
loop iterations. Applying Theorem 10 we derive

If |= (c = 0) → [s1;. . .;sn−1;skip]p′(c = 0), then
ε |= [s0; . . . ; sn−1; skip]Eεp′↓(c=0)(c = 0).
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Here Eε is computed over Ms0 (cf. Theorem 10). For Bernoulli, this expectation is
computed over the two paths resulting from the probabilistic choice in Listing 1.2, line
3. Since only the left branch satisfies c = 0 and it is executed with probability μ,
then Eεp

′ = μp′. Applying this argument for each iteration of the loop we derive that
ε |= [s0;...;sn−1;skip;]p(c = 0) holds for p = μn. Similarly, consider the case where
c = 1 after running all iterations of the loop, due to the first iteration resulting in c:=1
and the rest c:=0. Then, we apply Theorem 10 as follows

If |= (c = 1) → [s1;. . .;sn−1;skip]p′(c = 1), then
ε |= [s0; . . . ; sn−1; skip]Eεp′↓(c=1)(c = 1).

In this case, Eεp
′ = (1−μ)p′, as the probability of c = 1 is (1−μ) (cf. Listing 1.2 line

3). Since, in this case, the remaining iterations of the loop result in c:=0, and from our
reasoning above, we derive that p′ = μn−1. Hence, p = (1 − μ)μn−1. In general,
by repeatedly applying these properties, we can derive that the probability of a path is
μi(1 − μ)j where i is the number loop iterations resulting in c:=0 and j the number of
loop iterations resulting in c:=1.

Fig. 3. Convergence of Bernoulli random variable with µ = 0.5.

Now we return to our original problem ε |= [Bernoulli]p(|c/n − μ| > δ). Recall
from Definition 2 that p is the sum of the probabilities over all the paths that satisfy
the post-condition. Bernoulli has 2n paths (two branches per loop iteration). Therefore,
we conclude that p =

∑
i∈Φ μzeros(i)(1 − μ)ones(i) where zeros(·), ones(·) are functions

returning the number of zeros and ones in the binary representation of the parameter,
respectively, and Φ = { i ∈ 2n | |ones(i)/n − μ| > δ } enumerates all paths in the
program satisfying the post-condition. Note that the binary representation of 0, . . . , 2n

conveniently captures each of the possible executions of Bernoulli.
The result above is useful to examine the convergence of Bernoulli. It allows

us to evaluate the probability of convergence for increasing number of samples and
different values of μ and δ. As an example, Fig. 3 shows the results for μ = 0.5,
δ ∈ {0.1, 0.2, 0.4} and up to n = 20 iterations of the loop. The dotted and dashed lines
in the figure show that with 20 iterations the probability of having an error δ > 0.2 is
less than 5%. However, for an error δ > 0.1 the probability increases to more than 20%.
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10 Conclusion

This paper has proposed pDL, a specification language for probabilistic programs—the
first dynamic logic for probabilistic programs written in pGCL. Like pGCL, pDL con-
tains probabilistic and demonic choice. Unlike pGCL, it includes programs as first-order
entities in specifications and allows forward reasoning capabilities as usual in dynamic
logic. We have defined the model-theoretic semantics of pDL and shown basic properties
of the newly introduced p-box modality. We demonstrated the reasoning capabilities on
two well-known examples of probabilistic programs. In the future, we plan to develop
a deductive proof system for pDL supported by tools for (semi-)automated reasoning
about pGCL programs. Furthermore, the current definition of pDL gives no syntax to
the expectations. Batz et al. propose a specification language for real-valued functions
that is closed under the construction of weakest pre-expectations [20]; such a language
could be used to express assertions for pGCL programs. It would be interesting to inte-
grate these advances into pDL.
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