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Abstract. Nominal rewriting was introduced as an extension of first-
order term rewriting by a binding mechanism based on the nominal app-
roach. A distinctive feature of nominal rewriting is that α-equivalence is
not implicitly dealt with at the meta-level but explicitly dealt with at
the object-level. In this paper, we introduce the notion of strong com-
mutation modulo α-equivalence and give a sufficient condition for it.
Using the condition, we present a new criterion for confluence modulo
α-equivalence (on ground terms) of possibly non-terminating left-linear
nominal rewriting systems.

1 Introduction

In languages with variable binding and variable names, α-equivalence needs to
be treated. Usually α-equivalence is implicitly dealt with at the meta-level, but
in the literature some authors seriously take it into account at the object-level
(e.g. [6,20]). The nominal approach [5,13] is one of such studies, where variables
that are possibly bound are called atoms. It deals with α-equivalence explicitly
at the object-level, incorporating permutations and freshness constraints as basic
ingredients.

Nominal rewriting [3,4] is a framework introduced as an extension of first-
order term rewriting by a binding mechanism based on the nominal approach.
It has a device to avoid accidental capture of free atoms on the way of rewriting,
using the explicit α-equivalence and freshness constraints in rewrite rules.

Confluence is a fundamental property of rewriting systems that guarantees
uniqueness of results of computation. Confluence of nominal rewriting systems
has been discussed in [1,3,9,16,17]. Their aim is to provide confluence criteria
for particular classes of nominal rewriting systems in the same way as discussed
in the field of first-order term rewriting.

In the present paper, we study confluence of nominal rewriting systems that
are defined by rewrite rules with atom-variables in the style of [10], where rewrit-
ing is performed only on ground nominal terms (so confluence properties dis-
cussed in this paper correspond to ground confluence etc. in terms of traditional
nominal rewriting). In previous work [8], we have proved (ground) confluence
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for this style of nominal rewriting systems whose rewrite rules have no overlaps
which are computed using nominal unification with atom-variables [15]. In this
paper, we present a sufficient condition for (ground) confluence of the same style
of nominal rewriting systems possibly with overlaps of rewrite rules.

To discuss confluence in nominal rewriting, it is necessary to examine whether
two terms can rewrite to α-equivalent terms. For doing this, we make use of suit-
able notions that are defined modulo an equivalence relation in terms of abstract
reduction systems [11,12]. Such an approach was suggested in [20] (page 220).
Precisely speaking, we present a sufficient condition for (ground) Church-Rosser
modulo α-equivalence rather than confluence. The proof method using the suffi-
cient condition can be seen as a generalisation of that for confluence of first-order
term rewriting systems using the lemma of Hindley [6] and Rosen [14]. We will
explain details of the methods in Sect. 3.

Contributions of the Paper. The contributions of the present paper are sum-
marised as follows:

– We introduce the notion of strong commutation modulo α-equivalence and
give a sufficient condition for it in left-linear uniform nominal rewriting sys-
tems. This notion has not been treated in [11,12] (in the case of a general
equivalence relation ∼).

– Using the sufficient condition, we present a new criterion for Church-Rosser
modulo α-equivalence (on ground nominal terms) of left-linear uniform nom-
inal rewriting systems that are possibly non-terminating and may have over-
laps of rewrite rules.

Organisation of the Paper. The present paper is organised as follows. In Sect. 2,
we explain basic notions of nominal rewriting systems with atom-variables.
In Sect. 3, we give a sufficient condition for strong commutation modulo α-
equivalence, and use it to present a criterion for Church-Rosser modulo α-
equivalence. In Sect. 4, we conclude with suggestions for further work.

2 Nominal Rewriting Systems with Atom-Variables

Nominal rewriting [3,4] is a framework that extends first-order term rewriting
by a binding mechanism. In this section, we recall basic notions and notations
concerning nominal rewriting systems with atom-variables [10]. For differences
from the system of [3], see [8]. For simplicity, we treat a subset of the systems
in [8,10].

2.1 Preliminaries

We fix a countably infinite set X of variables ranged over by X,Y, . . . , a count-
ably infinite set A of atoms ranged over by a, b, . . . , and a countably infinite set
XA of atom-variables ranged over by A,B, . . . . A nominal signature Σ is a set of
function symbols ranged over by f, g, . . . . Each f ∈ Σ has a unique non-negative



Ground Confluence and Strong Commutation in Nominal Rewriting 257

integer arity(f). We assume that X , A, XA and Σ are pairwise disjoint. Unless
otherwise stated, different meta-variables for objects in X , A, XA or Σ denote
different objects.

The domain dom(φ) of a mapping φ : D → E is defined as the set {d ∈ D |
φ(d) �= d} if D ⊆ E, and D otherwise. A mapping φ : D → E is finite if its
domain dom(φ) is a finite set.

Let �� be a binary relation. We write ��= for the reflexive closure and ��∗ for
the reflexive transitive closure. If �� is written using →, then the inverse ��−1 is
written using ←. We use ◦ for the composition of two binary relations.

2.2 Ground Nominal Terms

In this subsection, we introduce the set of ground nominal terms, which we call
NLa following [8,10,15].

The set NLa of ground nominal terms, or simply ground terms, is generated
by the following grammar:

t, s ::= a | [a]t | f〈t1, . . . , tn〉

where n = arity(f). Ground terms of the forms in the right-hand side are
called, respectively, atoms, abstractions and function applications. We assume
that function applications bind more strongly than abstractions. We abbreviate
f〈 〉 as f , and refer to it as a constant. An abstraction [a]t is intended to represent
t with a bound. The set FA(t) of free atoms occurring in t is defined as follows:
FA(a) = {a}; FA([a]t) = FA(t) \ {a}; FA(f〈t1, . . . , tn〉) =

⋃
i FA(ti).

Example 1. The nominal signature of the lambda calculus has two function sym-
bols lam with arity(lam) = 1, and app with arity(app) = 2. The ground nominal
term app〈lam〈[a]lam〈[b]app〈b, a〉〉〉, b〉 represents the lambda term (λa.λb.ba)b in
the usual notation. For this ground term t, we have FA(t) = {b}. ��

A swapping is a pair of atoms, written (a b). Permutations π are bijec-
tions on A such that dom(π) is finite. Permutations are represented by lists of
swappings applied in the right-to-left order. For example, ((b c)(a b))(a) = c,
((b c)(a b))(b) = a, ((b c)(a b))(c) = b. The permutation action π·t, which
operates on terms extending a permutation on atoms, is defined as follows:
π·a = π(a); π·([a]t) = [π·a](π·t); π·(f〈t1, . . . , tn〉) = f〈π·t1, . . . , π·tn〉.

Positions are finite sequences of positive integers. The empty sequence is
denoted by ε. The set Pos(t) of positions in a ground term t is defined as follows:
Pos(a) = {ε}; Pos([a]t) = {1p | p ∈ Pos(t)} ∪ {ε}; Pos(f〈t1, . . . , tn〉) =

⋃
i{ip |

p ∈ Pos(ti)} ∪ {ε}. The subterm of t at a position p ∈ Pos(t) is written as t|p.
For positions p and q, we say that p is deeper than q if there exists a position o
such that p = qo. In that case, o is denoted by p \ q.

A context is a ground term in which a distinguished constant � occurs. The
ground term obtained from a context C by replacing each � at positions pi by
ground terms ti is written as C[t1, . . . , tn]p1,...,pn

or simply C[t1, . . . , tn].
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�NLa a#b

�NLa a#[a]t

�NLa a#t1 · · · �NLa a#tn

�NLa a#f〈t1, . . . , tn〉
�NLa a#t

�NLa a#[b]t

Fig. 1. Rules for freshness relations on NLa

�NLa a ≈α a

�NLa t1 ≈α s1 · · · �NLa tn ≈α sn

�NLa f〈t1, . . . , tn〉 ≈α f〈s1, . . . , sn〉
�NLa t ≈α s

�NLa [a]t ≈α [a]s
�NLa (a b)·t ≈α s �NLa b#t

�NLa [a]t ≈α [b]s

Fig. 2. Rules for α-equivalence on NLa

A pair a#t of an atom a and a ground term t is called a freshness relation.
The rules in Fig. 1 define the validity of freshness relations. Note that the defined
�NLa

a#t coincides with a /∈ FA(t).
The rules in Fig. 2 define the relation �NLa

t ≈α s. This is a congruence
relation [3] and coincides with usual α-equivalence (i.e. the relation reached by
renamings of bound atoms) [5]. The bottom-right rule in the figure is about the
case where the ground terms t and s are abstracted by different atoms. In (a b)·t,
the free occurrences of a in t are replaced by b which is fresh in t under the right
premise of the rule. We often write t ≈α s for �NLa

t ≈α s.
The following properties are shown in [3,19].

Proposition 1. 1. �NLa
a#t if and only if �NLa

π·a#π·t.
2. �NLa

t ≈α s if and only if �NLa
π·t ≈α π·s.

3. If �NLa a#t and �NLa t ≈α s then �NLa a#s.

2.3 Nominal Term Expressions

Next we introduce the set of term expressions, which we call NLAX . Each rewrite
rule is defined using them to represent a schema of rules.

The set NLAX of nominal term expressions, or simply term expressions, is
generated by the following grammar:

e ::= A | X | [A]e | f〈e1, . . . , en〉

where n = arity(f). We write VarX (e) and VarXA
(e) for the sets of variables

and atom-variables occurring in a term expression e, respectively. Also, we write
VarX,XA

(e) for VarX (e) ∪VarXA
(e). A term expression e is linear if each variable

X ∈ VarX (e) occurs only once in e.
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The set Pos(e) of positions in a term expression e is defined similarly to that
for a ground term (using atom-variables for atoms) with the additional clause
that Pos(X) = {ε}. The subexpression of e at a position p ∈ Pos(e) is written
as e|p. A position p ∈ Pos(e) is called a variable position if e|p is a variable, and
a non-variable position otherwise.

A ground substitution is a finite mapping that assigns ground terms to vari-
ables and atoms to atom-variables. We use σ, δ for ground substitutions. We write
σX and σXA

for ground substitutions obtained from σ by restricting the domain
to dom(σ) ∩ X and dom(σ) ∩ XA, respectively. When VarX,XA

(e) ⊆ dom(σ), the
application of σ on e is written as eσ and called a ground instance of e. The
application of σ simply replaces the variables X and atom-variables A occurring
in e by σ(X) and σ(A), respectively, without considering capture of free atoms.
Then we have eσ ∈ NLa for every ground instance eσ.

A pair A#e of an atom-variable A and a term expression e is called a freshness
constraint. A finite set of freshness constraints is called a freshness context. For
a freshness context ∇, we define VarX,XA

(∇) =
⋃

A#e∈∇({A} ∪ VarX,XA
(e)) and

∇σ = {Aσ#eσ | A#e ∈ ∇}.

2.4 Nominal Rewriting Systems with Atom-Variables

Next we define nominal rewrite rules and nominal rewriting systems with atom-
variables.

Definition 1. A nominal rewrite rule with atom-variables, or simply rewrite
rule, is a triple of a freshness context ∇ and term expressions l, r ∈ NLAX such
that VarX,XA

(∇) ∪ VarX,XA
(r) ⊆ VarX,XA

(l) and l is not a variable. We write
∇ � l → r for a rewrite rule, and identify rewrite rules modulo renaming of
variables and atom-variables. A rewrite rule ∇ � l → r is left-linear if l is linear.

Definition 2 (Nominal rewriting system with atom-variables). A nom-
inal rewriting system with atom-variables (NRSAX for short) is a finite set of
rewrite rules. An NRSAX is left-linear if so are all its rewrite rules.

The following example of an NRSAX corresponds to the system in Exam-
ple 43 of [3] written in the style of traditional nominal rewriting. Note that the
freshness constraint A#B in the rule (sublam) below is used to mean that the
atom-variables A and B should be instantiated by distinct atoms.

Example 2. We extend the nominal signature in Example 1 by a function symbol
sub with arity(sub) = 2. By sub〈[a]t, s〉, we represent an explicit substitution
t〈a := s〉. Then, an NRSAX to perform β-reduction is defined by the rule (Beta):

� app〈lam〈[A]X〉, Y 〉 → sub〈[A]X,Y 〉 (Beta)

together with an NRSAX Rsub to execute substitution:

� sub〈[A]app〈X,Y 〉, Z〉 → app〈sub〈[A]X,Z〉, sub〈[A]Y,Z〉〉 (subapp)
� sub〈[A]A,X〉 → X (subvar)

A#X � sub〈[A]X,Y 〉 → X (subε)
A#B,B#Y � sub〈[A]lam〈[B]X〉, Y 〉 → lam〈[B]sub〈[A]X,Y 〉〉 (sublam)
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In a standard notation, the system Rsub is represented as follows:

� (XY )〈A := Z〉 → (X〈A := Z〉)(Y 〈A := Z〉) (subapp)
� A〈A := X〉 → X (subvar)

A#X � X〈A := Y 〉 → X (subε)
A#B,B#Y � (λB.X)〈A := Y 〉 → λB.(X〈A := Y 〉) (sublam)

��
In the sequel, �NLa is extended to mean to hold for all members of the set

in the right-hand side.

Definition 3 (Rewrite relation). Let R = ∇ � l → r be a rewrite rule. For
ground terms s, t ∈ NLa, the rewrite relation is defined by

s →〈R,p,σ〉 t
def⇐⇒ �NLa ∇σ, s = C[s′]p, �NLa s′ ≈α lσ, t = C[rσ]p

Here the subterm s′ of s is called the R-redex, or simply redex if R is understood.
We write s

p→R t if there exists σ such that s →〈R,p,σ〉 t. We write s →R t if
there exist p and σ such that s →〈R,p,σ〉 t. For an NRSAX R, we write s →R t
if there exists R ∈ R such that s →R t.

An example of rewriting can be found in Example 4 of [8].

Lemma 1. Let R = ∇ � l → r be a rewrite rule, and let s, t be ground terms.
If p ∈ Pos(s) and s

p→R t then π·s p→R π·t for every permutation π.

Proof. This is proved in the same way as Lemma 2 of [8]. ��

2.5 Overlaps

The notion of overlap is useful for analysing confluence properties of rewriting
systems. In the setting of the present paper, it can be defined using nominal
unification with atom-variables [15]. Here we restrict the language of unification
problems to NLAX .

Definition 4 (Variable-atom nominal unification problem). Let Γ be a
finite set of equations of the form e1 ≈ e2 where e1 and e2 are term expressions,
and let ∇ be a freshness context. Then the pair (Γ,∇) is called a variable-atom
nominal unification problem (VANUP for short).

Definition 5 (Solution of a VANUP). A ground substitution σ is a solution
of a VANUP (Γ,∇) if �NLa

e1σ ≈α e2σ for every equation e1 ≈ e2 ∈ Γ and
�NLa

Aσ#eσ for every freshness constraint A#e ∈ ∇. A VANUP (Γ,∇) is
solvable if there exists a solution of (Γ,∇).

Example 3. Consider the nominal signature of the lambda calculus in Example 1,
and let P be the VANUP ({lam〈[A]app〈X,A〉〉 ≈ lam〈[B]Y 〉}, {A#X}). Then,
the ground substitution [A := a,B := b,X := c, Y := app〈c, b〉] is a solution of
P . ��
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Definition 6 (Overlap). Let Ri = ∇i � li → ri (i = 1, 2) be rewrite rules.
We assume without loss of generality that VarX,XA

(l1) ∩ VarX,XA
(l2) = ∅. If the

variable-atom nominal unification problem ({l1 ≈ l2|p},∇1 ∪ ∇2) is solvable for
some non-variable position p of l2, then we say that R1 overlaps on R2, and the
situation is called an overlap of R1 on R2. If R1 and R2 are identical modulo
renaming of variables and atom-variables, and p = ε, then the overlap is said to
be self-rooted. An overlap that is not self-rooted is said to be proper.

Example 4. Let R1 and R2 be the rules (Eta) A#X � lam〈[A]app〈X,A〉〉 → X
and (Beta) � app〈lam〈[B]Y 〉, Z〉 → sub〈[B]Y,Z〉, respectively. Then, R1 over-
laps on R2, since the VANUP ({lam〈[A]app〈X,A〉〉 ≈ app〈lam〈[B]Y 〉, Z〉|1(=
lam〈[B]Y 〉)}, {A#X}) is solvable as seen in Example 3. This overlap is proper. ��
Example 5. There exists a self-rooted overlap of the rule (Beta) on its renamed
variant, since the VANUP ({app〈lam〈[A]X〉, Y 〉 ≈ app〈lam〈[B]Z〉,W 〉}, ∅) is
solvable by taking the ground substitution [A := a,B := b,X := a, Y := c, Z :=
b,W := c] as a solution. ��

Unlike in first-order term rewriting, self-rooted overlaps need to be analysed
in the case of nominal rewriting (cf. [1,16]). We check the cases corresponding
to self-rooted overlaps too in the sufficient conditions given in the next section.

2.6 Parallel Reduction

A key notion for proving confluence of left-linear rewriting systems is parallel
reduction. Here we define it inductively, using grammatical contexts [8,16].

Definition 7. The grammatical contexts, ranged over by G, are the contexts
defined by

G ::= a | [a]� | f〈�1, . . . ,�n〉
where n = arity(f). For each rewrite rule R, the relation −→� R is defined induc-
tively by the following rules:

s
ε→R t

s −→� R t
(B)

s1 −→� R t1 · · · sn −→� R tn
G[s1, . . . , sn] −→� R G[t1, . . . , tn]

(C)

where n (≥ 0) depends on the form of G.

The following properties of parallel reduction hold.

Lemma 2. 1. s −→� R s.
2. If s −→� R t then C[s] −→� R C[t].
3. If s →〈R,p,σ〉 t then s −→� R t.
4. If s −→� R t then s →∗

R t.

Proof. 1. By induction on the structure of s.
2. By induction on the context C.
3. By 2 and the rule (B).
4. By induction on the derivation of s −→� R t. ��
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3 Confluence Criteria by Strong Commutation

In this section, we present a proof method for confluence of left-linear NRSAX ’s
using strong commutation modulo α-equivalence. First we review a basic proof
method in rewriting systems with first-order rules. Then we introduce notions
to discuss confluence in nominal rewriting, and give a criterion for NRSAX ’s.

3.1 Proof Method for Confluence by Strong Commutation

In this subsection, we survey the proof method for confluence by strong commu-
tation. For first-order TRS ’s, the method is known, e.g. in [18]. Here we consider
a restricted class of NRSAX ’s consisting only of first-order rules. Note however
that the rewrite relation is still defined for ground nominal terms in NLa.

Definition 8. An NRSAX R is called a TRSAX if for every ∇ � l → r ∈ R, ∇ =
∅, and l and r are term expressions with neither atom-variables nor abstractions.

For a TRSAX , we restrict the rewrite relation to the one with matching by
identity instead of modulo α-equivalence (i.e. s′ = lσ instead of �NLa

s′ ≈α lσ
in Definition 3).

Definition 9. Let R be a TRSAX . →R is confluent if for all ground terms s
and t, s (←∗

R ◦ →∗
R) t implies s (→∗

R ◦ ←∗
R) t.

The basic strategy in the proof method is to show commutation of any com-
bination of two rules of the TRSAX . We recall definitions and lemmas on com-
mutation (cf. [2, pp. 31–33]).

Definition 10. Let R1 and R2 be rewrite rules of a TRSAX .

1. →R1 and →R2 commute iff for all ground terms s1 and s2,
if s1 (←∗

R1
◦ →∗

R2
) s2 then s1 (→∗

R2
◦ ←∗

R1
) s2.

2. →R1 strongly commutes with −→� R2 iff for all ground terms s1 and s2,
if s1 (←R1 ◦−→� R2) s2 then s1 (−→� R2◦ ←∗

R1
) s2.

By Hindley’s results [6] and the properties shown in Lemma 2, we have the
following.

Lemma 3. If →R1 strongly commutes with −→� R2 then →R1 and →R2 com-
mute.

Lemma 4. Let R be a TRSAX . If →Ri
and →Rj

commute for every Ri, Rj ∈
R then →R is confluent.

By Lemmas 3 and 4, to prove confluence of →R, it is sufficient to show that
for every combination of two rules Ri, Rj ∈ R (including the case Ri = Rj),
→Ri

strongly commutes with −→� Rj
, or →Rj

strongly commutes with −→� Ri
.

Next we give conditions for strong commutation of →R1 with −→� R2 .
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Definition 11. Let R1 and R2(= � l2 → r2) be rewrite rules of a TRSAX . The
conditions sc1(R1, R2) and sc2(R1, R2) are defined as follows:

sc1(R1, R2)
def⇐⇒ If s

ε→R1 s1 and s −→� R2 s2 is derived with (C) as the last
applied rule, then there exists t such that s1 −→� R2 t and
s2 →∗

R1
t.

sc2(R1, R2)
def⇐⇒ If s

p→R1 s1 and s
ε→R2 s2 where p is a non-variable position

of l2, then there exists t such that s1 −→� R2 t and s2 →∗
R1

t.

Note that the conditional part of sc2(R1, R2) arises only when R1 overlaps
on R2.

The next lemma guarantees that sc1(R1, R2) and sc2(R1, R2) are a sufficient
condition for strong commutation of →R1 with −→� R2 . In Subsect. 3.3, we present
a version of this lemma generalised to the case of NRSAX .

Lemma 5. Let R1 and R2 be left-linear rewrite rules of a TRSAX . If the con-
ditions sc1(R1, R2) and sc2(R1, R2) hold, then →R1 strongly commutes with
−→� R2 :

s

s1

s2

t

R1

�

R2

�

R2

∗
R1

Proof. We prove by induction on the derivation of s −→� R2 s2 that if s →R1 s1
and s −→� R2 s2 then there exists t such that s1 −→� R2 t and s2 →∗

R1
t.

– Suppose that the last part of the derivation of s −→� R2 s2 has the form

u1 −→� R2 v1 · · · un −→� R2 vn

G[u1, . . . , un] −→� R2 G[v1, . . . , vn]
(C)

• First we consider the case where the reduction s →R1 s1 takes place
in G[u1, . . . , un] with ui →R1 u′

i for some i ∈ {1, . . . , n}. Then by the
induction hypothesis, there exists v′

i such that u′
i −→� R2 v′

i and vi →∗
R1

v′
i.

Hence by applying the rule (C), we have

s1 = G[u1, . . . , u
′
i, . . . , un] −→� R2 G[v1, . . . , v′

i, . . . , vn]

Also, from vi →∗
R1

v′
i we have

s2 = G[v1, . . . , vi, . . . , vn] →∗
R1

G[v1, . . . , v′
i, . . . , vn]

Thus the claim follows by taking t = G[v1, . . . , v′
i, . . . , vn].

• Next we consider the case where the redex of s →R1 s1 is not in any ui of
G[u1, . . . , un]. Then we can assume that the R1-redex is at the root (i.e.
s

ε→R1 s1). Hence the claim follows from the condition sc1(R1, R2).
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– Suppose that s −→� R2 s2 is derived by the rule (B)

s
ε→R2 s2

s −→� R2 s2
(B)

where R2 = � l2 → r2. Then by the definition of rewrite relation, there exists
σ such that s = l2σ and s2 = r2σ.

• First we consider the case where the reduction s →R1 s1 takes place in s
with Xσ →R1 Xδ for some X ∈ VarX (l2), and Y σ = Y δ for all Y (�= X) ∈
VarX (l2). Then by the left-linearity of R2, we have s1 = l2δ

ε→R2 r2δ, and
so s1 −→� R2 r2δ by the rule (B). Also, we have s2 = r2σ →∗

R1
r2δ. Hence

the claim follows by taking t = r2δ.
• Otherwise, the reduction s →R1 s1 takes place in s with s

p→R1 s1 where p
is a non-variable position of l2. Then the claim follows from the condition
sc2(R1, R2). ��

By Lemmas 3, 4 and 5, we have the following theorem.

Theorem 1. Let R be a left-linear TRSAX . If for every Ri, Rj ∈ R, sc1(Ri, Rj)
and sc2(Ri, Rj), or sc1(Rj , Ri) and sc2(Rj , Ri), then →R is confluent.

We give an example of application of the theorem.

Example 6. We extend the nominal signature in Example 1 by function symbols
(constants) S and K. Consider the TRSAX RCL consisting of the rewrite rules of
combinatory logic (CL):

� app〈app〈app〈S,X〉, Y 〉, Z〉 → app〈app〈X,Z〉, app〈Y,Z〉〉 (S)
� app〈app〈K,X〉, Y 〉 → X (K)

We check the condition sc1((S), (K)). Suppose app〈app〈app〈S, u1〉, u2〉, u3〉 ε→S

app〈app〈u1, u3〉, app〈u2, u3〉〉 and app〈app〈app〈S, u1〉, u2〉, u3〉 −→� K s2 with its
last applied rule (C). Then the derivation of the latter must have the form

S −→� K S
(C)

.... D1

u1 −→� K v1
app〈S, u1〉 −→� K app〈S, v1〉 (C)

.... D2

u2 −→� K v2

app〈app〈S, u1〉, u2〉 −→� K app〈app〈S, v1〉, v2〉 (C)
.... D3

u3 −→� K v3

app〈app〈app〈S, u1〉, u2〉, u3〉 −→� K app〈app〈app〈S, v1〉, v2〉, v3〉 (= s2)
(C)

Hence we can construct a derivation of app〈app〈u1, u3〉, app〈u2, u3〉〉−→� K

app〈app〈v1, v3〉, app〈v2, v3〉〉 from D1,D2 and D3 by using the rule (C). We also
have s2 = app〈app〈app〈S, v1〉, v2〉, v3〉 →S app〈app〈v1, v3〉, app〈v2, v3〉〉, and so
the condition sc1((S), (K)) is satisfied. On the other hand, it is seen that the
condition sc2((S), (K)) is vacuously satisfied.

Next we consider the case where both rules are the rule (S). The condi-
tion sc1((S), (S)) can be checked similarly to the above case. For the condition
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sc2((S), (S)), we only have to check the case where both redexes are at the root,
and in that case the claim clearly holds.

The case where both rules are the rule (K) can be checked similarly.
Therefore by Theorem 1, →RCL

(= →S ∪ →K) is confluent. ��
Note that ground terms here include countably many atoms (cf. Subsects.

2.1 and 2.2). By considering atoms as variables (rather than constants), we can
see that confluence of a TRSAX discussed above is an extension of confluence of
the standard first-order TRS with the same function symbols and rewrite rules
(so it is a property stronger than ground confluence of the first-order TRS ). The
TRSAX RCL in Example 6 treats ground terms with atoms, and this is natural
when considering an operator like λ∗ (Definition 2.14 of [7]).

3.2 Confluence Properties in Nominal Rewriting

To discuss confluence in nominal rewriting, it is necessary to examine whether
two terms can rewrite to the same term modulo α-equivalence. For doing this,
we make use of suitable notions that are defined modulo an equivalence relation
in terms of abstract reduction systems [11,12].

Definition 12. Let R be an NRSAX .

1. →R is confluent modulo ≈α iff for all ground terms s and t,
if s (←∗

R ◦ →∗
R) t then s (→∗

R ◦ ≈α ◦ ←∗
R) t.

2. →R is Church-Rosser modulo ≈α iff for all ground terms s and t,
if s (←R ∪ →R ∪ ≈α)∗

t then s (→∗
R ◦ ≈α ◦ ←∗

R) t.

In general, Church-Rosser modulo an equivalence relation ∼ is a stronger
property than confluence modulo ∼ [11]. So, in the rest of this section, we aim to
give a sufficient condition for Church-Rosser modulo ≈α of left-linear NRSAX ’s.

To this end, we restrict the class of NRSAX ’s further by (an adaptation of)
the uniformity condition [3]. Intuitively, uniformity means that if an atom a is
not free in s and s rewrites to t then a is not free in t.

Definition 13. A rewrite rule ∇ � l → r is uniform if the following holds: for
every atom a and every ground substitution σ such that VarX,XA

(l) ⊆ dom(σ),
if �NLa

∇σ and �NLa
a#lσ then �NLa

a#rσ. A rewriting system is uniform if
so are all its rewrite rules.

For uniform rewrite rules, the following properties hold.

Lemma 6. Suppose s →R t for a uniform rewrite rule R. Then, for every atom
a, if �NLa

a#s then �NLa
a#t.

Proof. This is proved in the same way as Proposition 2 of [8]. ��
Definition 14. A relation → on ground terms is strongly compatible with ≈α

iff for all ground terms s and t, if s (≈α ◦ →) t then s (→= ◦ ≈α) t.

Lemma 7. If R is a uniform rewrite rule, then →R is strongly compatible with
≈α and −→� R is strongly compatible with ≈α.

Proof. This is proved in the same way as Lemmas 3 and 8 of [8]. ��
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3.3 A Sufficient Condition for Church-Rosser Modulo α-equivalence

Now we present a sufficient condition for Church-Rosser modulo ≈α extending
the sufficient condition for confluence in Theorem 1. First we introduce the
notions of commutation and strong commutation modulo ≈α. The latter is not
treated in [11,12] (in the case of a general equivalence relation ∼).

Definition 15. Let R1 and R2 be rewrite rules of an NRSAX .

1. →R1 and →R2 commute modulo ≈α iff for all ground terms s1 and s2,
if s1 (←∗

R1
◦ →∗

R2
) s2 then s1 (→∗

R2
◦ ≈α ◦ ←∗

R1
) s2.

2. →R1 strongly commutes with −→� R2 modulo ≈α iff for all ground terms s1
and s2, if s1 (←R1 ◦−→� R2) s2 then s1 (−→� R2◦ ≈α ◦ ←∗

R1
) s2.

The following lemmas are counterparts of Lemmas 3 and 4 in Subsect. 3.1.

Lemma 8. If →R1 strongly commutes with −→� R2 modulo ≈α, and both →R1

and −→� R2 are strongly compatible with ≈α, then →R1 and →R2 commute mod-
ulo ≈α.

Proof. First we consider the claim that for all ground terms s, s1 and s2, if
s1 ←∗

R1
s−→� R2s2 then there exist ground terms t1 and t2 such that s1−→� R2t1 ≈α

t2 ←∗
R1

s2. This is proved by induction on the length of the steps of s1 ←∗
R1

s.
Next we show that for all ground terms s, s1 and s2, if s1 ←∗

R1
s −→� ∗

R2
s2

then there exist ground terms t1 and t2 such that s1−→� ∗
R2

t1 ≈α t2 ←∗
R1

s2. This
is proved by induction on the length of the steps of s −→� ∗

R2
s2. By Lemma 2,

−→� ∗
R2

= →∗
R2

, so we have that →R1 and →R2 commute modulo ≈α. ��
Lemma 9. Let R be a uniform NRSAX . If →Ri

and →Rj
commute modulo

≈α for every Ri, Rj ∈ R, then →R is Church-Rosser modulo ≈α.

Proof. By Lemma 7, →Ri
is strongly compatible with ≈α for every Ri ∈ R.

Then the claim follows by Corollary 2.6.5 of [12]. ��
Next we give conditions for strong commutation of →R1 with −→� R2 modulo

≈α.

Definition 16. Let R1 and R2 (= ∇ � l2 → r2) be rewrite rules of an NRSAX .
The conditions sc1(R1, R2,≈α) and sc2(R1, R2,≈α) are defined as follows:

sc1(R1, R2,≈α) def⇐⇒ If s
ε→R1 s1 and s −→� R2 s2 is derived with (C) as the

last applied rule, then there exist t1 and t2 such that
s1 −→� R2 t1, s2 →∗

R1
t2 and t1 ≈α t2.

sc2(R1, R2,≈α) def⇐⇒ If s
p→R1 s1 and s

ε→R2 s2 where p is a non-variable
position of l2, then there exist t1 and t2 such that
s1 −→� R2 t1, s2 →∗

R1
t2 and t1 ≈α t2.
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Note that the conditional part of sc2(R1, R2,≈α) arises only when R1 over-
laps on R2.

The next lemma guarantees that sc1(R1, R2,≈α) and sc2(R1, R2,≈α) are a
sufficient condition for strong commutation of →R1 with −→� R2 modulo ≈α.

Lemma 10. Let R1 and R2 be left-linear uniform rewrite rules of an NRSAX .
If the conditions sc1(R1, R2,≈α) and sc2(R1, R2,≈α) hold, then →R1 strongly
commutes with −→� R2 modulo ≈α:

s

s1

s2

t1 ≈α t2

R1

�

R2

�

R2

∗
R1

Proof. We prove by induction on the derivation of s −→� R2 s2 that if s →R1 s1
and s −→� R2 s2 then there exist t1 and t2 such that s1 −→� R2 t1, s2 →∗

R1
t2 and

t1 ≈α t2.

– Suppose that the last part of the derivation of s −→� R2 s2 has the form

u1 −→� R2 v1 · · · un −→� R2 vn

G[u1, . . . , un] −→� R2 G[v1, . . . , vn]
(C)

• First we consider the case where the reduction s →R1 s1 takes place
in G[u1, . . . , un] with ui →R1 u′

i for some i ∈ {1, . . . , n}. Then by the
induction hypothesis, there exist v′

i1 and v′
i2 such that u′

i−→� R2v
′
i1, vi →∗

R1

v′
i2 and v′

i1 ≈α v′
i2. Hence by applying the rule (C), we have

s1 = G[u1, . . . , u
′
i, . . . , un] −→� R2 G[v1, . . . , v′

i1, . . . , vn]

Also, from vi →∗
R1

v′
i2 we have

s2 = G[v1, . . . , vi, . . . , vn] →∗
R1

G[v1, . . . , v′
i2, . . . , vn]

Thus the claim follows by taking t1 = G[v1, . . . , v′
i1, . . . , vn] and t2 =

G[v1, . . . , v′
i2, . . . , vn].

• Next we consider the case where the redex of s →R1 s1 is not in any ui of
G[u1, . . . , un]. Then we can assume that the R1-redex is at the root (i.e.
s

ε→R1 s1). Hence the claim follows from the condition sc1(R1, R2,≈α).
– Suppose that s −→� R2 s2 is derived by the rule (B)

s
ε→R2 s2

s −→� R2 s2
(B)

where R2 = ∇ � l2 → r2. Then by the definition of rewrite relation, there
exists σ such that �NLa

∇σ, �NLa
s ≈α l2σ and s2 = r2σ.
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• First we consider the case where the reduction s
p→R1 s1 takes place at a

position p that is a variable position q of l2 or deeper. Let l2|q = X. Then
by Lemma 11 below, there exists δ such that �NLa

s1 ≈α l2δ, Xσ →R1 Xδ
and Y σ = Y δ for all Y (�= X) ∈ VarX (l2). Since we can see �NLa

∇δ using
Lemma 6 (cf. Lemma 7(2) of [8]), we have s1

ε→R2 r2δ, and so s1−→� R2 r2δ
by the rule (B). Also, we have s2 = r2σ →∗

R1
r2δ. Hence the claim follows

by taking t1 = t2 = r2δ.
• Otherwise, the reduction s →R1 s1 takes place in s with s

p→R1 s1 where p
is a non-variable position of l2. Then the claim follows from the condition
sc2(R1, R2,≈α). ��

Lemma 11. Let R1 and R2 (= ∇ � l2 → r2) be left-linear uniform rewrite
rules of an NRSAX . Suppose that σ is a ground substitution with VarX,XA

(l2) ⊆
dom(σ) and �NLa

∇σ. Suppose also that a reduction s
p→R1 s1 takes place at a

position p that is a variable position q of l2 or deeper, and l2|q = X. Then, for
every position q′ from ε to q, if �NLa s|q′ ≈α l2|q′σ then there exists δ such that
�NLa

s1|q′ ≈α l2|q′δ, Xσ →R1 Xδ, and Y σ = Y δ for all Y (�= X) ∈ VarX (l2).

Proof. By induction on the length of q \ q′.
First we consider the case q′ = q. Then l2|q′ = l2|q = X. Suppose �NLa

s|q′ ≈α l2|q′σ = Xσ. Since s
p→R1 s1 with a deeper position p than q, we have

s|q →R1 s1|q. So by the strong compatibility of →R1 (with →R1 instead of →=
R1

)
there exists t such that Xσ →R1 t ≈α s1|q. Hence we can take δ with Xδ = t
and �NLa s1|q ≈α Xδ = l2|qδ.

For the other cases, the proof is by case analysis according to the form of
l2|q′ . This is shown analogously to the case analysis in the proof of Lemma 10
of [8]. ��

By Lemmas 7, 8, 9 and 10, we have the following theorem.

Theorem 2. Let R be a left-linear uniform NRSAX . If for every Ri, Rj ∈ R,
sc1(Ri, Rj ,≈α) and sc2(Ri, Rj ,≈α), or sc1(Rj , Ri,≈α) and sc2(Rj , Ri,≈α) then
→R is Church-Rosser modulo ≈α.

In practice, if we know that R1 does not overlap on R2 and vice versa, we
may use, instead of Lemma 8, Theorem 1 of [8] to show commutation modulo
≈α of →R1 and →R2 . So, to apply Theorem 2, we can concentrate on Ri and
Rj such that there exists an overlap of Ri on Rj or Rj on Ri. Moreover, for
Ri = Rj , we may skip checking the case p = ε in sc2(Ri, Rj ,≈α) when Ri is
α-stable [16], so that we have only to check rules with proper overlaps when the
NRSAX is α-stable.

Definition 17 (α-stability). A rewrite rule R = ∇ � l → r is α-stable if
�NLa

s ≈α s′, s →〈R,ε,σ〉 t and s′ →〈R,ε,σ′〉 t′ imply �NLa
t ≈α t′. An NRSAX R

is α-stable if so are all its rewrite rules.

We demonstrate Theorem 2 on two examples.
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Example 7. The NRSAX Rsub in Example 2 is left-linear, uniform and α-stable.
In this NRSAX , there are two pairs of rules that have proper overlaps: ((subapp),
(subε)) and ((sublam), (subε)).

For the pair ((subapp), (subε)), we first check the condition sc1((subapp), (subε),
≈α). Suppose sub〈[a]app〈u1, u2〉, u3〉 ε→subapp app〈sub〈[a]u1, u3〉, sub〈[a]u2, u3〉〉
and sub〈[a]app〈u1, u2〉, u3〉 −→� subε

s2 with its last applied rule (C). Then the
derivation of the latter must have the form

.... D1

u1 −→� subε v1

.... D2

u2 −→� subε v2

app〈u1, u2〉 −→� subε app〈v1, v2〉 (C)

[a]app〈u1, u2〉 −→� subε [a]app〈v1, v2〉 (C)

.... D3

u3 −→� subε v3

sub〈[a]app〈u1, u2〉, u3〉 −→� subε sub〈[a]app〈v1, v2〉, v3〉 (= s2)
(C)

Hence we can construct a derivation of app〈sub〈[a]u1, u3〉, sub〈[a]u2, u3〉〉−→� subε

app〈sub〈[a]v1, v3〉, sub〈[a]v2, v3〉〉 from D1,D2 and D3 by using the rule (C). We
also have s2 = sub〈[a]app〈v1, v2〉, v3〉 →subapp app〈sub〈[a]v1, v3〉, sub〈[a]v2, v3〉〉,
and so the condition sc1((subapp), (subε)) is satisfied.

Next we check the condition sc2((subapp), (subε),≈α). Suppose sub〈[a]app〈
u1, u2〉, u3〉 ε→subapp app〈sub〈[a]u1, u3〉, sub〈[a]u2, u3〉〉 and sub〈[a]app〈u1, u2〉, u3〉
ε→subε

app〈u1, u2〉 (= s2). From the latter, we see �NLa
a#u1 and �NLa

a#u2,
and so we have sub〈[a]u1, u3〉 →subε u1 and sub〈[a]u2, u3〉 →subε u2. Hence we can
construct a derivation of app〈sub〈[a]u1, u3〉, sub〈[a]u2, u3〉〉 −→� subε

app〈u1, u2〉.
Thus sc2((subapp), (subε),≈α) holds by taking t1 = t2 = app〈u1, u2〉.

For the other pair of rules with a proper overlap, we can analogously check
sc1((sublam), (subε),≈α) and sc2((sublam), (subε),≈α).

Therefore by Theorem 2, we see that →Rsub
is Church-Rosser modulo ≈α. ��

Example 8. Consider the NRSAX Rsubdup obtained from Rsub in Example 2 by
adding the following rewrite rule:

A#Y � sub〈[A]X,Y 〉 → sub〈[A]sub〈[A]X,Y 〉, Y 〉 (subdup)

This NRSAX Rsubdup is left-linear, uniform and α-stable. Also we see that it is
non-terminating due to the rule (subdup). By applying Theorem 2, we can show
that →Rsubdup

is Church-Rosser modulo ≈α. ��

4 Conclusion

We presented a sufficient condition for Church-Rosser modulo α-equivalence (on
ground nominal terms) of left-linear uniform NRSAX ’s that may have overlaps
of rewrite rules and may be non-terminating. This was achieved by introducing
the notion of strong commutation modulo α-equivalence and giving a sufficient
condition for it.
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Currently, we are working on implementation of a tool that verifies sufficient
conditions as developed in this paper. To compute overlaps in NRSAX ’s and
extract useful information, it is necessary to construct an appropriate unification
procedure for variable-atom nominal unification problems.
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