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Abstract. This paper introduces and studies a new model of compu-
tation called an Alternating Automatic Register Machine (AARM). An
AARM possesses the basic features of a conventional register machine
and an alternating Turing machine, but can carry out computations
using bounded automatic relations in a single step. One finding is
that an AARM can recognise some NP-complete problems, including
CNF-SAT (using a particular coding), in log∗ n + O(1) steps. On the
other hand, if all problems in P can be solved by an AARM in O(log∗ n)
rounds, then P ⊂ PSPACE.

Furthermore, we study an even more computationally powerful
machine, called a Polynomial-Size Padded Alternating Automatic Reg-
ister Machine (PAARM), which allows the input to be padded with a
polynomial-size string. It is shown that the polynomial hierarchy can
be characterised as the languages that are recognised by a PAARM in
log∗ n+O(1) steps. These results illustrate the power of alternation when
combined with computations involving automatic relations, and uncover
a finer gradation between known complexity classes.

Keywords: Theory of computation · Computational complexity ·
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1 Introduction

Automatic structures generalise the notion of regularity for languages to
other mathematical objects such as functions, relations and groups, and were
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discovered independently by Hodgson [10,11], Khoussainov and Nerode [14] as
well as Blumensath and Grädel [1,2]. One of the original motivations for study-
ing automaticity in general structures came from computable structure theory,
in particular the problem of classifying the isomorphism types of computable
structures and identifying isomorphism invariants. In computer science, auto-
matic structures arise in the area of infinite state model checking; for exam-
ple, Regular Model Checking, a symbolic framework for modelling and verify-
ing infinite-state systems, can be expressed in Existential Second-Order Logic
over automatic structures [17]. Although finite-state transducers are a somewhat
more popular extension of ordinary finite-state automata for defining relations
between sets of strings, there are several advantages of working with automatic
relations, including the following: (1) in general, automatic relations enjoy bet-
ter decidability properties than finite-state transducers; for example, equivalence
between ordinary automata is decidable while this is not so for finite-state trans-
ducers; (2) automatic relations are closed under first-order definability [11,13,14]
while finite-state transducers are not closed under certain simple operations such
as intersection and complementation.

In this paper, we introduce a new model of computation, called an Alternat-
ing Automatic Register Machine (AARM), that is analogous to an alternating
Turing machine but may incorporate bounded automatic relations1 into each
computation step. The main motivation is to try to discover new interesting
complexity classes defined via machines where automatic relations are taken as
primitive steps, and use them to understand relationships between fundamental
complexity classes such as P, PSPACE and NP. More powerful computational
models are often obtained by giving the computing device more workspace or
by allowing non-deterministic or alternating computations, where alternation is
a well-known generalisation of non-determinism. We take up both approaches in
this work, extending the notion of alternation to automatic relation computa-
tions. An AARM is similar to a conventional register machine in that it consists
of a register R containing a string over a fixed alphabet at any point in time, and
the contents of R may be updated in response to instructions. One novel feature
of an AARM is that the contents of the register can be non-deterministically
updated using an automatic relation. Specifically, an instruction J is an auto-
matic relation. Executing the instruction, when the content of the register R is
r, means that the contents of R is updated to any x in {x : (x, r) ∈ J}; if there
is no such x, then the program halts. Each AARM contains two finite classes,
denoted here as A and B, of instructions; during a computation, instructions are
selected alternately from A and B and executed.

To further explain how a computation of an AARM is carried out, we first
recall the notion of an alternating Turing machine as formulated by Chandra,
Kozen and Stockmeyer [5]. As mentioned earlier, alternation is a generalisation

1 Here an update relation is bounded if there is a constant such that each possible
output is at most that constant longer than the longest input parameter; see Sect. 2.
Since we only consider bounded automatic relations in this paper, such relations will
occasionally be called “automatic relations”.
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of non-determinism, and it is useful for understanding the relationships between
various complexity classes such as those in the polynomial hierarchy (PH). The
computation of an alternating Turing machine can be viewed as a game in which
two players – Anke and Boris – make moves (not necessarily strictly alternating)
beginning in the start configuration of the machine with a given input w [8].
Anke and Boris move alternating with each having specific win configurations.
A language L is in AAL[f(n)] if there is an AARM such that, for each input
x, one player can force a win in f(|x|) many steps. Then x is in L if Anke can
force the win. In general, we are for natural choices of f interested in the class
AAL[f(n) + O(1)] and our results indicate that f(n) = log∗ n is an important
choice allowing interesting results; smaller functions f only lead to the class of
regular languages. Furthermore, we found that the picture becomes much more
interesting by allowing only such automatic relations which permit a player to
choose between finitely many options. We call such automatic relations bounded
and for each bounded automatic relation R there is a constant c such that R(x, y)
can only be satisfied if |y| ≤ |x| + c; here y is the value chosen by the player in
dependence of a register content x. We also introduce and study Polynomial-Size
Padded Bounded Alternating Automatic Register Machines (PAARMs), which
allow a polynomial-size padding to the input of an AARM.

The idea of defining computing devices capable of performing single-step
operations that are more sophisticated than the basic operations of Turing
machines is not new. For example, Floyd and Knuth [7] studied addition
machines, which are finite register machines that can carry out addition, subtrac-
tion and comparison as primitive steps. Unlimited register machines, introduced
by Shepherdson and Sturgis [18], can copy the number in a register to any register
in a single step. Bordihn, Fernau, Holzer, Manca and Mart́ın-Vide [3] investi-
gated another kind of language generating device called an iterated sequential
transducer, whose complexity is usually measured by its number of states (or
state complexity). More recently, Kutrib, Malcher, Mereghetti and Palano [15]
proposed a variant of an iterated sequential transducer that performs length-
preserving transductions on left-to-right sweeps. Automatic relations are more
expressive than arithmetic operations such as addition or subtraction, and yet
they are not too complex in that even one-tape linear-time Turing machines
are computationally more powerful; for instance, the function that erases all
leading 0’s in any given binary word can be computed by a one-tape Turing
machine in linear time but it is not automatic [20]. Despite the computational
limits of automatic relations, we show in Theorem 6 below that the NP-complete
Boolean satisfiability problem can be recognised by an AARM in log∗ n + O(1)
steps, where n is the length of the formula. The results not only show a proof-
of-concept for the use of automatic relations in models of computation, but also
shed new light on the relationships between known complexity classes.

For an extended version of this paper that presents examples and additional
basic results on AARMs and PAARMs, please refer to [9].
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2 Preliminaries

Let Σ denote a finite alphabet. We consider set operations including union (∪),
concatenation (·), Kleene star (∗), intersection (∩) and complement (¬). Let Σ∗

denote the set of all strings over Σ. A language is a set of strings. Let the empty
string be denoted by ε. For a string w ∈ Σ∗, let |w| denote the length of w
and w = w1w2...w|w| where wi ∈ Σ denotes the i-th symbol of w. Fix a special
symbol # not in Σ. Let x, y ∈ Σ∗ such that x = x1x2 . . . xm and y = y1y2 . . . yn.
Let x′ = x′

1x
′
2 . . . x′

r and y′ = y′
1y

′
2 . . . y′

r where r = max(m,n), x′
i = xi if i ≤ m

else #, and y′
i = yi if i ≤ n else #. Then, the convolution of x and y is a string

over (Σ ∪ {#}) × (Σ ∪ {#}), defined as conv(x, y) = (x′
1, y

′
1)(x

′
2, y

′
2) . . . (x′

r, y
′
r).

A relation J ⊆ X × Y is automatic if the set {conv(x, y) : (x, y) ∈ J} is regular,
where the alphabet is (Σ ∪ {#}) × (Σ ∪ {#}). Likewise, a function f : X → Y
is automatic if the relation {(x, y) : x ∈ domain(f) ∧ y = f(x)} is automatic
[21]. An automatic relation J is bounded if ∃ constant c such that ∀(x, y) ∈
J, abs(|y|−|x|) ≤ c. On the other hand, an unbounded automatic relation has no
such restriction. The problem of determining satisfiability of any given Boolean
formula in conjunctive normal form will be denoted by CNF-SAT. Automatic
functions and relations have a particularly nice feature as shown in the following
theorem.

Theorem 1 ([11,14]). Every function or relation which is first-order definable
from a finite number of automatic functions and relations is automatic, and the
corresponding automaton can be effectively computed from the given automata.

3 Alternating Automatic Register Machines

An Alternating Automatic Register Machine (AARM) consists of a register R and
two finite sets A and B of instructions. A and B are not necessarily disjoint. For-
mally, we denote an AARM by M and represent it as a quadruple (Γ,Σ,A,B).
(An equivalent model may allow for multiple registers.) At any point in time,
the register contains a string, possibly empty, over a fixed alphabet Γ called the
register alphabet. The current string in R is denoted by r. Initially, R contains
an input string over Σ, an input alphabet with Σ ⊆ Γ . Strings over Σ will some-
times be called words. The contents of the register may be changed in response
to an instruction. An instruction J ⊆ Γ ∗ × Γ ∗ is a bounded automatic relation;
this changes the contents of R to some x such that (x, r) ∈ J (if such an x
exists). The instructions in A and B are labelled I1, I2, . . . , (in no particular
order and not necessarily distinct). A configuration is a triple (�, w, r), where
I� is the current instruction’s label and w, r ∈ Γ ∗. Instructions are generally
nondeterministic, that is, there may be more than one way in which the string
in R is changed from a given configuration in response to an instruction. A com-
putation history of an AARM with input w for any w ∈ Σ∗ is a finite or infinite
sequence c1, c2, c3, . . . of configurations such that the following conditions hold.
Let ci = (�i, wi, ri) for all i.
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– r1 = w. We call c1 the initial configuration of the computation history.
– For all i, (wi, ri) ∈ I�i . This means that I�i can be carried out using the

current register contents, changing the contents of R to wi.
– Instructions executed at odd terms of the sequence belong to A, while those

executed at even terms belong to B:

I�i ∈
{

A if i is odd;
B if i is even.

– If ci+1 is defined, then ri+1 = wi. In other words, the contents of R are (non-
deterministically) updated according to the instruction and register contents
of the previous configuration.

– Suppose i is odd (resp. even) and ci = (I�i , wi, ri) is defined. If there is some
I� ∈ B (resp. I� ∈ A) with {x : (x,wi) ∈ I�} nonempty, then ci+1 is defined.
In other words, the computation continues so long as it is possible to execute
an instruction from the appropriate set, either A or B, at the current term.

We interpret a computation history of an AARM as a sequential game between
two players, Anke and Boris, where Anke moves during odd turns and Boris
moves during even turns. During Anke’s turn, she must pick some instruction J
from A such that {x : (x, r) ∈ J} is nonempty and select some w ∈ {x : (x, r) ∈
J}; if no such instruction exists, then the game terminates. The contents of
R are then changed to w at the start of the next turn. The moving rules for
Boris are defined analogously, except that he must pick instructions only from
B. Anke wins if the game terminates after a finite number of turns and she is
the last player to execute an instruction; in other words, Boris is no longer able
to carry out an instruction in B and the length of the game (or computation
history), measured by the total number of turns up to and including the last
turn, is odd. Boris wins the game if Anke does not win (this includes the case
that Anke does not make any move). The AARM accepts a word w if Anke can
move in such a way that she will always win a game with an initial configuration
(�, v, w) for some I� ∈ A and v ∈ Γ ∗, regardless of how Boris moves. To state this
acceptance condition more formally, one could define Anke’s and Boris’ strategies
to be functions A and B respectively with A : (N×Γ ∗ ×Γ ∗)∗ ×Γ ∗ �→ A×Γ ∗ and
B : (N × Γ ∗ × Γ ∗)∗ × Γ ∗ �→ B × Γ ∗, which map each segment of a computation
history together with the current contents of R to a pair specifying an instruction
as well as the new contents of R at the start of the next round according to the
moving rules given earlier. The AARM accepts w if there is an A such that for
every B, there is a finite computation history 〈c1, . . . , c2n+1〉 where

– ci = (�i, wi, ri) for each i,
– r1 = w,
– A((〈ci : i < 2j + 1〉, r2j+1)) = (I�2j+1 , w2j+1) for each j ∈ {0, . . . , n},
– B((〈ci : i < 2k〉, r2k)) = (I�2k , w2k) for each k ∈ {1, . . . , n};
– there is no move for B in c2n+1, that is no instruction in B contains a pair

of the form (·, w2n+1).

Here 〈ci : i < k〉 denotes the sequence 〈c1, . . . , ck−1〉, which is empty if k ≤ 1.
Such an A is called a winning strategy for Anke with respect to (M,w). Given
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a winning strategy A for Anke with respect to (M,w) and any strategy B, the
corresponding computation history of M with input w is unique and will be
denoted by H(A,B,M,w). In most subsequent proofs, A and B will generally
not be defined so formally. Set

L(M) := {w ∈ Σ∗ : M accepts w};

one says that M recognises L(M). Note that a constant amount of extra state
information can be stored in the register.

Definition 2 (Alternating Automatic Register Machine Complexity).
Let M = (Γ,Σ,A,B) be an AARM and let t ∈ N0. For each w ∈ Σ∗, M accepts
w in time t if Anke has a winning strategy A with respect to (M,w) such that
for any strategy B played by Boris, the length of H(A,B,M,w) is not more than
t. (As defined earlier, H(A,B,M,w) is the computation history of M with input
w when A and B are applied.) An AARM decides a language L in f(n) steps
for a function f depending on the length n of the input if for all x ∈ {0, 1}n,
both players can enforce that the game terminates within f(n) steps by playing
optimally and one player has a winning strategy needing at most f(n) moves and
x ∈ L if Anke is the player with the winning strategy. AAL[f(n)] denotes the
family of languages decided by AARMs that decide in time f(n).

It can be shown that AARMs recognise precisely the family of all recursively
enumerable languages [9, Theorem 7], and that AAL[O(f(n))] is closed under
the usual set-theoretic Boolean operations as well as the regular operations [9,
Theorem 4].

We recall that an alternating Turing machine that decides in O(f(n)) time
can be simulated by a deterministic Turing machine using O(f(n)) space. The
following theorem gives a similar connection between the time complexity of
AARMs and the space complexity of deterministic Turing machines.

Theorem 3. For any f such that f(n) ≥ n, AAL[O(f(n))] ⊆ DSPACE[O((n+
f(n))f(n))] = DSPACE[O(f(n)2)].

Proof. Given an AARM M , there is a constant c such that each register update
by an automatic relation used to define an instruction of M increases the length
of the register’s contents by at most c. Thus, after O(f(n)) steps, the length
of the register’s contents is O(n + f(n)). As implied by [4, Theorem 2.4], each
computation of an automatic relation with an input of length O(n + f(n)) can
be simulated by a nondeterministic Turing machine in O(n + f(n)) steps; this
machine can then be converted to a deterministic space O(n + f(n)) Turing
machine. If M accepts an input w, then there are O(f(n)) register updates by
automatic relations when Anke applies a winning strategy, and so there is a
deterministic Turing machine simulating M ’s computation with input w using
space O((n + f(n))f(n)). ��
As a consequence, one obtains the following analogue of the equality between
AP (classes of languages that are decided by alternating polynomial time Turing
machines) and PSPACE.
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Corollary 4.
⋃

k AAL[O(nk)] = PSPACE.

Proof. The containment relation AAL[O(f(n))] ⊆ DSPACE[O((n+ f(n))f(n))]
in Theorem 3 holds whether or not the condition f(n) ≥ n holds. Furthermore,
the computation of an alternating Turing machine can be simulated using an
AARM, where the transitions from existential (respectively, universal) states
correspond to the instructions for Anke (respectively, Boris), and each compu-
tation step of the alternating Turing machine corresponds to a move by either
player. Therefore PSPACE, which is equal to AP, is contained in

⋃
k AAL[nk]. ��

We come next to a somewhat surprising result: an AARM-program can recognise
3SAT using just log∗ n+O(1) steps. To prove the theorem, we give the following
lemma, which illustrates most of the power of AARMs.

Lemma 5 (Log-Star Lemma). Let u, v ∈ Σ∗. Let #, $ �∈ Σ. Then both
languages {u′$v′ : u′ ∈ #∗u#∗, v′ ∈ #∗v#∗ and u = v} and {u′$v′ : u′ ∈
#∗u#∗, v′ ∈ #∗v#∗ and u �= v} are in AAL[log∗ n + O(1)].

The Log-Star Lemma essentially states that a comparison of two substrings
can be done by an AARM in log∗ n + O(1) time. This is done by ignoring the
unnecessary symbols in the register by replacing them with #’s and adding a
separator ($) between the two strings.

Proof. We now prove the Log-Star Lemma. The algorithm below recursively
reduces the problem to smaller sizes of u, v in constant number of steps (the
maximum of the length of u, v is reduced logarithmically in constant number of
steps). For the base case, if size of u or v is bounded by a constant, then clearly
both languages can be recognized in one step.

For larger size u, v, the algorithm/protocol works as follows. For ease of
explanation, suppose Anke is trying to show that u = v (case of Anke showing
u �= v will be similar). Given input s = u′$v′, player Anke will try to give each
symbol except $’s a mark ∈ {0, 1, 2, 3} as follows:

1. For each # in u′ and v′, the mark of 3 will be given.
2. For the contiguous symbols of u, starting from the first symbol, the following

infinite marking will be given (whitespaces are for the ease of readability and
not part of marking):

20 21 200 201 210 211 2000 2001 2010 2011 2100 2101 2110 2111 20000 · · ·

Namely, a series of blocks of string in ascending length-lexicographical order.
Let T be the so defined infinite sequence. Given a string s = u′$v′, where
u′ ∈ #∗u#∗ and v′ ∈ #∗v#∗ for some u, v ∈ Σ∗, each contiguous subsequence
of u (resp. v) whose sequence of positions is equal to the sequence of positions
of T of some string in 2{0, 1}∗ such that the next symbol in T is 2 will be
called a block. Each block starts with 2 followed by a binary string. Let k
(≥ 2) be the maximum size of a block. Summing the lengths of the blocks of
u gives that (k − 2) · 2k−1 + k ≤ n, and thus k ≤ log n.

3. For the contiguous symbols of v, the marking will be similar.
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The marking is considered valid if all above rules are satisfied. This is an example
of a valid marking of S = “#foobar##$foobar##”:

s # f o o b a r # # $ f o o b a r # #

Mark 3 2 0 2 1 2 0 3 3 $ 2 0 2 1 2 0 3 3

If u = v and the marking is valid, player Anke will guarantee that each symbol
of u and v will be marked with exactly the same marking. However if u �= v
and the marking is valid, either the length of u and v are different or there will
be at least a single block which differs on at least one symbol between u and v.
Therefore, player Boris can have the following choices of challenges:

1. Challenge that player Anke did not make a valid marking, or
2. |u| �= |v|, or
3. the string in a specified block differs on at least one symbol between u and v.

Notice that u = v if and only if player Boris could not successfully challenge
player Anke. The first challenge will ensure that player Anke gave a valid mark-
ing. There are three possible cases of invalid marking:

(a) There is a # in u′ or v′ which is not given by a mark of 3. In this case, player
Boris may point out its exact position. Here, player Boris needs 1 step.

(b) For u and v, the first block is not marked with “20”. This can also be easily
pointed out by player Boris. Here, player Boris needs 1 step.

(c) For u and v, a block is not followed by its successor. This can be pointed out
by player Boris by checking two things: the length of the ‘successor’ block
should be less than or equal to the length of the ‘predecessor’ block plus one,
and the ‘successor’ block indeed should be the successor of the ‘predecessor’
block. Also, we note that the last block may be incomplete.
(i) The length case can be checked by looking at how many symbols there

are between the pair of 2’s bordering each block. Let p and q be the
length of ‘predecessor’ block and the ‘successor’ block respectively. In
the case that the ‘successor’ block is not the last block (not incomplete),
player Boris may challenge if p �= q and p + 1 �= q. This can be done by
marking both blocks with 1 separated by $ and the rest with dummy
symbols # and then doing the protocol for equality of the modified u
and v recursively. As player Boris may try to find the ‘short’ challenge,
player Boris will find the earliest block which has the issue and thus
make sure that p is at most logarithmic in the maximum of the lengths
of u and v. As q may be much larger than p, player Boris may limit the
second block by taking at most p + 2 symbols.

(ii) The successor case can be checked by the following observation. A suc-
cessor of a binary string can be calculated by finding the last 0 symbol
and flipping all digits from that position to the end while maintaining
the previous digits. As an illustration, the successor of “101100111” will
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be “101101000” where the symbols are separated in 3 parts: the prefix
which is the same, the last 0 digit, which is underlined, becoming 1; and
all 1 digits on suffix becoming 0. Player Boris then may challenge the
first part not to be equal or the last part not to be the same length or not
all 1’s by providing the position of the last 0 on the ‘predecessor’ block
(or the last 1 on the ‘successor’ block, if any). Checking the equality of
two strings can be done recursively, also similarly applied for checking
the length. Notice a corner case of all 1’s which has the successor con-
sisting of 1 followed by 0’s with the same length, which can be handled
separately. Also notice that the ‘successor’ block may be incomplete if
it is the last block, which can also be handled in a similar manner as
above.

For the second challenge, player Boris can (assuming the marking is valid) check
whether the last two blocks of u and v are equal. Again, player Boris may limit
it for a ‘short’ challenge so the checking size is decreasing to its log. For the third
challenge, player Boris will specify the two blocks on u and v (same block on
both) which differ on at least one symbol between u and v. Again, same protocol
will apply and the size is decreasing to its log. Furthermore, both the marking
and selection of blocks are done in a single turn.

Thus, the above algorithm using one alternation of each of the players reduces
the problem to logarithmic in the size of the maximum of the lengths of u and
v. In particular, when the size of u and v are small enough, the checking will be
done in constant number of steps. Thus, the complexity of the problem satisfies:
T (mk+1) ≤ T (log mk), where mi denotes the maximum of the sizes of u and v at
step i. As the lengths of u, v at each step are bounded by the length of the whole
input string, the lemma follows. Note that either player can enforce that the
algorithm runs in log∗ n+O(1) steps. The player makes the own markings always
correct and challenges incorrect markings of the opponent at the first error so
that the logarithmic size descent is guaranteed. Challenged correct markings
always cause the size to go down once in a logarithmic scale. ��
Theorem 6. There is an NP-complete problem in AAL[log∗ n + O(1)].

Proof. Consider any encoding of a SAT formula in conjunctive normal form such
that after each variable occurrence there is a space for a symbol indicating the
truth value of that variable. For example, literals may be represented as + or
− followed by a variable name and then a space for the variable’s truth value,
clauses may be separated by semicolons, literals may be separated by commas
and a dot represents the end of the formula. Anke sets a truth value for each
variable occurrence in the formula and a dfa then checks whether or not between
any two semicolons, before the first semicolon and after the last semicolon there
is a true literal; if so, Boris can challenge that two identical variables received
different truth values. It is now player Anke’s job to prove that the two variables
picked by Boris are different. By the Log-Star Lemma, this verification needs
log∗ n + O(1) steps. Hence, CNF-SAT ∈ AAL[log∗ n + O(1)]. ��
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The Log-Star Lemma can also be applied, using a technique similar to that in
the proof of Theorem 6, to show that for any k ≥ 3, the NP-complete problem
k-COLOUR of deciding whether any given graph G is colourable with k colours
belongs to AAL[log∗ n + O(1)]. Using a suitable encoding of nodes, edges and
colours as strings, Anke first nondeterministically assigns any one of k colours to
each node and ensures that no two adjacent nodes are assigned the same colour;
Boris then challenges Anke on whether there are two substrings of the current
input that encode the same node but encode different colours.

The next theorem shows that the class AAL[log∗ n + O(1)] contains
NLOGSPACE.

Theorem 7. NLOGSPACE ⊆ AAL[log∗ n + O(1)].

Proof. Consider an NLOGSPACE computation that takes time nc. One creates
a new variable consisting of

√
n equal-sized blocks of length

√
n (so the overall

length is n) such that each block is used to store some configuration in the
history so that constantly many alternating rounds between two players allow
to check a LOGSPACE computation. Let s be the total number of steps on the
input. Anke guesses for each block the following information:

– The overall number of steps needed, s;
– The block number;
– The rounded number of steps done in this block (approximately s√

n
steps);

– The total number of steps done until this block;
– The starting configuration at this block;
– The ending configuration at this block.

Furthermore, the number of variables needed is 2c plus a constant.
Boris can now challenge that some configuration is too long or that the

number of digits is wrong or that the information at the end of one block does
not coincide with the information at the start of another block or that initial and
final configurations are not starting and ending configurations or select a block
whose computation has to be checked in the next round, again by distributing
the steps covered in this interval evenly onto

√
n blocks in the next variable.

By O(c) iterations, the distance of steps between two neighbouring config-
urations becomes 1. Now Boris can select two pieces of information copied to
check whether they are right or whether the LOGSPACE computation in the
last step read the symbol correctly out of the input word and so on. These checks
can all be done in log∗ n + O(1) steps. ��
As yet, we have no characterisation of those problems in NP which are in
AAL[O(log∗ n)] and we think that for each such problem it might depend heav-
ily on the way the problem is formatted. The reason is that it may be difficult
to even prove whether or not P is contained in AAL[O(log∗ n)], due to the fol-
lowing proposition. We will later show that the class PAAL[log∗ n+O(1)] which
is obtained from AAL[log∗ n + O(1)] by starting with one additional step which
generates a variable of polynomially sized length coincides with the polynomial
hierarchy (PH).
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Proposition 8. Assume that f is monotonically increasing and computed in
PSPACE and there is a polynomial p with f(n) ≤ p(n) for all n. Then
AAL[f(n)] ⊆ DSPACE[O(f(n) · (f(n) + n)] ⊆ DSPACE[O((n + f(n)) · f(n))] ⊆
DSPACE[O((n + p(n)) · p(n))] ⊂ PSPACE and P ⊆ AAL[f(n) + O(1)] implies
P ⊂ PSPACE.

Proof. This result follows from Theorem 3 (the condition f(n) ≥ n is not nec-
essary for the first inclusion relation to hold) and the space hierarchy theorem
[19, Corollary 9.4]. ��

4 Polynomial-Size Padded Alternating Automatic
Register Machine

An AARM is constrained by the use of bounded automatic relations during
each computation step. This is a real limitation: it can be shown that for any
f(n) = Ω(log log n), the class of languages recognised in time O(f(n)) by alter-
nating automatic register machines that use unbounded automatic relations con-
tains DSPACE

[
O(22

O(f(n))
)
]

[16], and so by Theorem 3 and the space hierarchy
theorem, this class properly contains AAL[O(f(n))]. In fact, the exponential
time hierarchy coincides with the class of languages recognised by AARMs using
unbounded automatic relations in log∗ n + O(1) steps.

We study the effect of allowing a polynomial-size padding to the input of an
Alternating Automatic Register Machine on its time complexity; this new model
of computation will be called a Polynomial-Size Padded Bounded Alternating
Automatic Register Machine (PAARM). The additional feature of a polynomial-
size padding will sometimes be referred to informally as a “booster” step of the
PAARM. Intuitively, padding the input before the start of a computation allows
a larger amount of information to be packed into the register’s contents during a
computation history. We show two contrasting results: on the one hand, even a
booster step does not allow an PAARM with time complexity O(1) to recognise
non-regular languages; on the other hand, the class of languages recognised by
PAARMs in time log∗ n + O(1) coincides with the polynomial hierarchy.

Formally, a Polynomial-Size Padded Bounded Alternating Automatic Regis-
ter Machine (PAARM) M is represented as a quintuple (Γ,Σ,A,B, p), where Γ
is the register alphabet, Σ the input alphabet, A and B are two finite sets of
instructions and p is a polynomial. As with an AARM, the register R initially
contains an input string over Σ, and R’s contents may be changed in response
to an instruction, J ⊆ Γ ∗ × Γ ∗ which is a bounded automatic relation. A com-
putation history of a PAARM with input w for any w ∈ Σ∗ is defined in the
same way that was done for an AARM, except that the initial configuration is
(�, x, wv) for some I� ∈ A, some x, v ∈ Γ ∗, (x,wv) ∈ I�, where v = @k for a
special symbol @ ∈ Γ − Σ and k ≥ p(|w|). Think of @k as padding of the input.
Anke’s and Boris’ strategies, denoted by A and B respectively, are defined as
before. For any u ∈ Γ ∗, a winning strategy for Anke with respect to (M,u) is
also defined as before. Given any w ∈ Σ∗, M accepts w if for every v ∈ @∗, with
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|v| ≥ p(|w|), Anke has a winning strategy with respect to (M,wv). Similarly, M
rejects w if for every v ∈ @∗, with |v| ≥ p(|w|), Boris has a winning strategy with
respect to (M,wv). Note that the winning strategies need to be there for every
long enough padding. If Anke and Boris do not satisfy the above properties, then
(A,B) is not a valid pair.

Definition 9. (Polynomial-Size Padded Bounded Alternating Auto-
matic Register Machine Complexity). Let M = (Γ,Σ,A,B, p) be a
PAARM and let t ∈ N0. For each w ∈ Σ∗, M accepts w in time t if for every
v = @k, where k ≥ p(|w|) and @ ∈ Γ − Σ, Anke has a winning strategy A
with respect to (M,wv) and for any strategy B played by Boris, the length of
H(A,B,M,wv) is not more than t. For any function f , PAAL[f(n)] is defined
analogously to AAL[f(n)].

Remark 10. Note that a PAARM-program can trivially simulate an AARM-
program by ignoring the generated padding; thus AAL[O(f(n))]⊆PAAL
[O(f(n))]. On the other hand, to simulate a booster step, an AARM-program
needs O(p(n)) steps as each bounded automatic relation step can only increase
the length by a constant.

As with AAL[O(f(n))], the class PAAL[O(f(n))] is closed under the usual set-
theoretic Boolean operations as well as regular operations [9, Theorem 16]. Our
main result concerning PAARMs is a characterisation of the polynomial hierar-
chy as the class PAAL[log∗ n + O(1)].

Theorem 11. PH = PAAL[log∗ n + O(1)].

To help with the proof, we first extend the Log-Star Lemma as follows. Recall
that a configuration (or instantaneous description) of a Turing Machine is rep-
resented by a string xqw, where q is the current state of the machine and x and
w are strings over the tape alphabet, such that the current tape contents is xw
and the current head location is the first symbol of w [12].

Lemma 12. Checking the validity of a Turing Machine step, i.e., whether a
configuration of Turing Machine follows another configuration (given as input,
separated by a special separator symbol) can be done in AAL[log∗ n+O(1)], where
n is the length of the shorter of the two configurations.

Proof. Let the input be the two configurations of the Turing Machine, where
the second configuration is supposedly the successive step of the first one and
separated by a separator symbol. Now there are two things that need to be
checked: (1) The configuration is “copied” correctly from the previous step.
Note that a valid Turing Machine transition will change only the cell on the
tape head and/or both of its neighbour; thus “copied” here means the rest of
the tape content should be the same; (2) The local Turing step is correct.

For the first checking, the player who wants to verify, e.g. Anke, will give the
infinite valid marking as used in the Log-Star Lemma. In addition, Anke also
marks the position of the old tape head on the second configuration. Boris can
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then challenge the following: (a) The Log-Star Lemma marking is not valid; (b)
The old tape head position is not marked correctly (in the intended position) on
the second configuration; (c) The string in a specified block differs, but not the
symbols around the tape head; (d) The length difference of the configuration is
not bounded by a constant.

Challenge (a) can be done in log∗ n + O(1) steps; this follows from the Log-
Star Lemma. Challenge (b) can also be done in log∗ n + O(1) steps where both
players reduce the block to focus on that position, and finally check whether it
is on the same position or not. Challenge (c) can also be done in log∗ n + O(1)
steps; this follows again from the Log-Star Lemma. Note that if Boris falsely
challenges that the different symbol is around the tape head, Anke can counter-
challenge by pointing out that at least one of its neighbours is a tape head. For
challenge (d), note that a valid Turing Machine transition will only increase the
length by at most one. Thus, Boris can pinpoint the last character of the shorter
configuration and also its pair on another configuration, then check whether the
longer one is only increased by up to one in length. This again can be done in
log∗ n + O(1) steps.

For the second checking about the correctness of the Turing step, it can
be done in a constant number of checks as a finite automaton can check the
computation and determine whether the Turing steps are locally correct, that
is, each state is the successor state of the previous steps head position and the
symbol to the left or right of the new head position is the symbol following
from the transition to replace the old symbol and so on. Therefore, all-in-all the
validity of a Turing Machine step can be checked in AAL[log∗ n + O(1)] steps.��
Proof Sketch of Theorem 11. We first prove that PAAL[log∗ n + O(1)] ⊆ PH.
Define a binary function Tower recursively as follows:

Tower(0, c) = 1

Tower(d + 1, c) = 2c·Tower(d,c).

We prove by induction that for each c ≥ 1, there is a c′ such that for all d,
Tower(d+c′, 1) > Tower(d, c). When c = 1, Tower(d, c) gives the usual definition
of the tower function. In particular, when c = 1, one has Tower(d + 1, c) >
Tower(d, c) for all d, so the induction statement holds for all c = 1 and all d.
Suppose that c > 1. Then there is some c′ large enough so that Tower(c′, 1) >
c2 = c2 · Tower(0, c), and so the induction statement holds for d = 0. Assume
by induction that c > 1 and that Tower(c′′ + d, 1) > c2 · Tower(d, c). Then
2Tower(c′′+d,1) > 2c2·Tower(d,c) ≥ (2c·Tower(d,c))c > c2 · 2c·Tower(d,c), and therefore
Tower(c′′ + d + 1, 1) > c2 · Tower(d + 1, c). This completes the induction step.

Suppose that c is the number of states of the automaton M corresponding
to the update function for the configuration of an AAL algorithm. Then the
size of the dfa to recognise whether or not a player wins within k steps is at
most Tower(k + 3, c). We prove that a dfa of size Tower(k + 2, c) recognises
whether Anke (resp. Boris) wins within k steps when she (resp. Boris) starts.
(We can similarly show that a dfa of size Tower(k+2, c) recognises whether Boris



208 Z. Gao et al.

(resp. Anke) wins within k steps when Anke (resp. Boris) starts, so the union of
the two languages is recognised by a dfa of size at most Tower(k + 3, c).) Anke
wins in one step on input x iff for some y such that M accepts conv(y, x), for
all y′, M does not accept conv(y′, y); the latter condition can be checked with
a dfa of size 22

c

. She wins in zero steps on input x when Boris starts iff there
is no y such that M accepts (y, x), which can be checked with a dfa of size 2c.
So a dfa of size 2c+2c ≤ Tower(3, c) checks whether Anke wins within 1 step.
Assume inductively that there is a dfa Mk of size Tower(k + 2, c) accepting x iff
Anke wins within k steps on input x when Boris (resp. Anke) starts. Suppose
it is Anke’s turn to start and we need to check if she wins within k + 1 steps.
(A similar construction applies if it is Boris’ turn.) Define an nfa N as follows.
For each state p of M , make Tower(k + 2, c) states (p, q1), . . . , (p, qTower(k+2,c)),
where q1, . . . , qTower(k+2,c) are the states of Mk. Then each state (p, q) on input
x goes to each state (p′, q′) such that in M , there is a string y such that p
on conv(y, x) goes to p′ and in Mk, q on y goes to q′. The start state of N is
(p1, q1), where p1 and q1 are the start states of M and Mk respectively, and
the final states of N are states (pf , qf ) such that pf and qf are final states of
M and Mk respectively. Then N accepts x iff there is a string y such that M
accepts (y, x) and Anke wins within k steps on input y when Boris starts. The
nfa N , which is of size c · Tower(k + 2, c), can then be converted into a dfa M ′

of size 2c·Tower(k+2,c) = Tower(k + 3, c), as required. By the preceding result on
the function Tower, Tower(k + 3, c) is bounded by Tower(k + c′, 1) for some c′.
Thus any language in PAAL[log∗ n + O(1)] is recognised in a constant number
of alternating steps plus a predicate that can be computed by a dfa of size
Tower(log∗ n − 3, 1). This dfa can be computed in LOGSPACE since log∗ n can
be computed in logarithmic space. Then one constructs the dfa by determinizing
out the last step until it reaches size log log n. This happens only when only
constantly many steps are missing by the above tower result. These constantly
many steps can be left as a formula with alternating quantifiers followed by a
dfa computed in logarithmic space of size log log n. Thus the formula whether
Anke wins is in PH. Similarly for the formula whether Boris wins and so the
overall decision procedure is in PH.

For the proof that PH ⊆ PAAL[log∗ n + O(1)], we first note that PH can be
defined with alternating Turing machines [6]. We define ΣP

k to be the class of
languages recognised by alternating Turing Machine in polynomial time where
the machine alternates between existential and universal states k times starting
with existential state. We also define ΠP

k similarly but starting with universal
state. PH is then defined as the union of all ΣP

k and ΠP
k for all k ≥ 0. We now

show ΣP
k ∪ ΠP

k ⊆ PAAL[log∗ n + O(1)] for any fixed constant k. As the alter-
nating Turing Machine runs in polynomial time on each alternation, the full
computation (i.e., sequence of configurations) in one single alternation can be
captured non-deterministically in p(m) Turing Machine steps, for some polyno-
mial p (which we assume to be bigger than linear), where m is the length of the
configuration at the start of the alternation. In a PAARM-program, Anke first
invokes a booster step to have a string of length at least pk(n). After that, Boris
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and Anke will alternately guess the full computation of the algorithm of length
p(pi(n)), i = 0, 1, . . ., in their respective alternation: Boris guesses the first p(n)
computations (the first alternation), Anke then guesses the next p(p(n)) com-
putations on top of it (the second alternation), etc. In addition, they also mark
the position of the read head and symbol it looks upon in each step. Ideally,
the PAARM-program will take k alternating steps to complete the overall algo-
rithm. Note that a PAARM can keep multiple variables in the register by using
convolution, as long as the number of variables is a constant. Thus, we could
store the k computations in k variables: v1, v2, · · · , vk. Now each player can have
the following choices of challenges to what the other player did: (1) Copied some
symbol wrongly from the input i.e. in v1; (2) Two successive Turing Machine
steps in the computation are not valid (at some vi); (3) The last Turing Machine
step on some computation (at some vi) does not follow-up with the first Turing
Machine step on the next computation (at vi+1). All the above challenges can be
done in log∗ n + O(1) steps by a slight modification of Lemma 12. In particular,
the third challenge needs one to compare the first Turing Machine configuration
of vi+1 and the last Turing Machine configuration vi, which can be done in a
way similar to the proof of Lemma 12. Thus, ΣP

k ∪ ΠP
k ⊆ PAAL[log∗ n + O(1)]

for every fixed constant k, therefore PH ⊆ PAAL[log∗ n + O(1)]. ��
Remark 13. As PAAL[log∗ n + O(1)] = PH, PAAL[log∗ n + O(1)] is closed
under polynomial time Turing reducibility. Similarly one can show that
PAAL[O(log∗ n)] is closed under polynomial time Turing reducibility. After Anke
invokes the booster step, Boris will guess the accepting computation together with
all of the oracle answers. Anke then can challenge Boris on either the validity of
the computation (without challenging the oracle) or challenge one of the oracle
answers. Both challenges can be done in the same fashion as in Theorem 11
but the latter needs one additional step to initiate the challenge of the oracle
algorithm.

In order to obtain the next corollary, we use the fact that the problem of deciding
TQBFf – the class of true quantified Boolean formulas with log∗ n+f(n)+O(1)
alternations – does not belong to any fixed level of the polynomial hierarchy (PH)
when PH does not collapse.

Corollary 14. If PH does not collapse and f is a logspace computable increasing
and unbounded function, then AAL[log∗ n + f(n) + O(1)] �⊆ PH.

Finally, we observe that if PH = PSPACE, then (i) by Theorem 11, PH =
PAAL[O(log∗ n)] = PSPACE; (ii) by Proposition 8, P �⊆ AAL[O(log∗ n)]; thus
AAL[O(log∗ n)] would be properly contained in PAAL[O(log∗ n)].

Proposition 15. If PH = PSPACE and f satisfies the precondition of Propo-
sition 8, then AAL[f(n)] ⊂ PAAL[log∗ n + O(1)] = PSPACE.

Theorem 16. If f is monotonically increasing and unbounded, then AAL[log∗ n
− f(n)] = REG.
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Proof. Assume that there is an AARM such that for each word w there is either
for Anke or for Boris a winning strategy of log∗ n−f(n) steps. Then by the tower
lemma, the resulting size of the dfa is O(log log n) for almost all n and input
words of length n. Thus the combined two dfas have at most size poly(log log n)
and there is no word w on which not exactly one accepts in the given time.
Now assume that for a given dfa of sufficient large n, there is a word w where
neither player succeeds in log∗ n − f(n) rounds, where the n is fixed. Due to the
pumping lemma, on words of arbitrary length with this property, one can pump
down these words until they have size below n. However, such short words with
this property do not exist by assumption. Thus for this fixed n, all words of
arbitrary length are accepted by computations of length log∗ n− f(n). Thus the
language is actually in AAL[O(1)] and in REG. ��
The main results on complexity classes defined by AARMs are summed up in
Fig. 1 while those on complexity classes defined by PAARMs are summed up in
Fig. 2. For any function f , AAL[f(n)] denotes the class of languages recognised
by an AARM in f(n) time. An arrow is labelled with (a) reference(s) to the
corresponding result(s) or definition(s) in the paper; folklore inclusions can be
found in [12,19]. Results not stated in the present section are proven in [9]. Note
that PSPACE =

⋃
k AAL[nk] by Corollary 4.

Fig. 1. Relationships between complexity classes/CNF-SAT. A solid arrow from X to
Y means that X is a proper subset of Y . A double-headed solid arrow between X and
Y means that X is equal to Y . If X is a subset of Y but it is not known whether they
are equal sets, then the arrow is dashed.

Fig. 2. Relationships between complexity classes.
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2. Blumensath, A., Grädel, E.: Automatic structures. In: Proceedings of IEEE Sym-
posium on Logic in Computer Science (LICS), pp. 51–62 (2000)

3. Bordihn, H., Fernau, H., Holzer, M., Manca, V., Mart́ın-Vide, C.: Iterated sequen-
tial transducers as language generating devices. Theor. Comput. Sci. 369, 67–81
(2006)

4. Case, J., Jain, S., Seah, S., Stephan, F.: Automatic functions, linear time and
learning. Log. Methods Comput. Sci. 9(3), (2013)

5. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. J. Assoc. Comput. Mach.
28(1), 114–133 (1981)

6. Chandra, A., Stockmeyer, L.: Alternation. In: 17th Annual Symposium on Foun-
dations of Computer Science (FOCS 1976), pp. 98–108 (1976)

7. Floyd, R., Knuth, D.: Addition machines. SIAM J. Comput. 19, 329–340 (1990)
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Montréal (1976)
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