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Preface

After more than two years of COVID-19, the pandemic seems, at the time of writing,
more or less under control - suggesting a return to having in-person conferences as before
the pandemic. However, the current war in Ukraine and its potential expansion towards
Georgia also rendered this year’s edition of ICTAC a challenge.

This volume contains the papers presented at ICTAC 2022: the 19th International
Colloquium on Theoretical Aspects of Computing held during September 27–30, 2022,
in Tbilisi, Georgia. The International Colloquia on Theoretical Aspects of Computing
(ICTAC) is a series of annual events founded in 2003 by the United Nations University
International Institute for Software Technology. Its purpose is to bring together prac-
titioners and researchers from academia, industry, and government to present research
results and exchange experience and ideas. Beyond these scholarly goals, another main
purpose is to promote cooperation in research and education between participants and
their institutions from developing and industrial regions.

This year ICTAC was part of the Computational Logic Autumn Summit (CLAS),
which took place in Tbilisi - the capital ofGeorgia.As a venuewe had Ivane Javakhishvili
Tbilisi State University (TSU), the oldest and most prominent educational and research
institution in Georgia, and the whole South Caucasus. TSU was founded in 1918 and
has now more than 22,000 students. CLAS was organized by TSU together with the
Kurt Gödel Society and sponsored by Amazon, AnyDesk, Runtime Verification Inc, and
Springer. We were honored to have six distinguished guests as invited speakers:

– Volker Diekert and Manfred Kufleitner (University of Stuttgart, Germany)
– Miaomiao Zhang (Tongji University, China)
– Marsha Chechik (University of Toronto, Canada)
– Bernhard Beckert (Karlsruhe Institute of Technology, Germany)
– Dmitriy Traytel (University of Copenhagen, Denmark).

ICTAC 2022 received 52 submissions (including eight short papers) from authors in
27 different countries. Each submission received between two and four reviews, where
the average was 2.9. Out of all submissions, 23 full-length papers were accepted. The
committee also accepted two short papers. Apart from the paper presentations and invited
talks, ICTAC 2022 continued the tradition of previous ICTAC conferences in holding
a five-day school on eight important topics in theoretical aspects of computing, formal
methods and verification, formal models of concurrency, and security in concurrency.
These courses were as follows:

– Gödel logics - the dominance of order, given by Matthias Baaz (TU Wien, Austria)
– Parity Games, given by Volker Diekert and Manfred Kufleitner (University of
Stuttgart, Germany)

– Nominal techniques, given by Maribel Fernandez (King’s College London, UK)
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– A logical basis for the verification of imperative programs, given by Tudor Jebelean
(RISC, Johannes Kepler University Linz, Austria)

– The semantically reflected digital twin, given by Einar Broch Johnsen (University of
Oslo, Norway)

– Learning meets verification, given by Martin Leucker (University of Lübeck,
Germany)

– Logical framework with union and intersection types, given by Luigi Liquori (Inria,
France)

– To prove with a proof assistant or not to prove, given by Dmitriy Traytel (University
of Copenhagen, Denmark)

We thank all the authors for submitting their papers to the conference, and the
Program Committee members and external reviewers for their excellent work in the
review, discussion, and selection process. We are indebted to all the members of the
Organizing Committee for their hard work in all phases of the conference. We also
acknowledge our gratitude to the Steering Committee for their constant support.

We are also indebted to EasyChair, which greatly simplified the assignment and
reviewing of the submissions aswell as the production of thematerial for the proceedings.
Finally, we thank Springer for their cooperation in publishing the proceedings.

August 2022 Helmut Seidl
Zhiming Liu

Corina S. Pasareanu
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On Safety, Assurance and Reliability: A Software
Engineering Perspective (Abstract of Invited Talk)

Marsha Chechik

Department of Computer Science, University of Toronto, Canada
chechik@cs.toronto.edu

Abstract. From financial services platforms to social networks to vehicle
control, software has come to mediate many activities of daily life. Gov-
erning bodies and standards organizations have responded to this trend
by creating regulations and standards to address issues such as safety,
security and privacy. In this environment, the compliance of software
development to standards and regulations has emerged as a key require-
ment. Compliance claims and arguments are often captured in assurance
cases, with linked evidence of compliance. Evidence can come from test
cases, verification proofs, human judgement, or a combination of these.
That is, we try to build (safety-critical) systems carefully according to
well justified methods and articulate these justifications in an assurance
case that is ultimately judged by a human.

Building safety arguments for traditional software systems is diffi-
cult—they are lengthy and expensive to maintain, especially as software
undergoes change. Safety is also notoriously noncompositional—each
subsystem might be safe but together they may create unsafe behaviors.
It is also easy to miss cases, which in the simplest case would mean
developing an argument for when a condition is true but missing arguing
for a false condition. Furthermore, many ML-based systems are becom-
ing safety-critical. For example, recent Tesla self-driving cars misclassi-
fied emergency vehicles and caused multiple crashes. ML-based systems
typically do not have precisely specified and machine-verifiable require-
ments. While some safety requirements can be stated clearly: “the sys-
tem should detect all pedestrians at a crossing”, these requirements are
for the entire system, making them too high-level for safety analysis of
individual components. Thus, systemswithML components (MLCs) add
a significant layer of complexity for safety assurance.

I argue that safety assurance should be an integral part of build-
ing safe and reliable software systems, but this process needs support
from advanced software engineering and software analysis. In this talk, I
outline a few approaches for development of principled, tool-supported
methodologies for creating and managing assurance arguments. I then
describe some of the recent work on specifying and verifying reliability
requirements formachine-learned components in safety-critical domains.
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Contents xiii

Card-Minimal Protocols for Symmetric Boolean Functions of More
than Seven Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

Hayato Shikata, Kodai Toyoda, Daiki Miyahara, and Takaaki Mizuki

Runners for Interleaving Algebraic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Niels F. W. Voorneveld

Formal Grammars for Turn-Bounded Deterministic Context-Free
Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

Tomoyuki Yamakami

Towards a Unifying Logical Framework for Neural Networks . . . . . . . . . . . . . . . . 442
Xiyue Zhang, Xiaohong Chen, and Meng Sun

Type Inference for Rank-2 Intersection Types Using Set Unification . . . . . . . . . . 462
Pedro Ângelo and Mário Florido

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481



VeriMon: A Formally Verified Monitoring
Tool

David Basin1 , Thibault Dardinier1 , Nico Hauser1, Lukas Heimes1,
Jonathan Julián Huerta y Munive2 , Nicolas Kaletsch1, Srđan Krstić1 ,

Emanuele Marsicano1, Martin Raszyk3 , Joshua Schneider1 ,
Dawit Legesse Tirore4 , Dmitriy Traytel2(B) , and Sheila Zingg1

1 Department of Computer Science, ETH Zürich, Zurich, Switzerland
2 Department of Computer Science, University of Copenhagen,

Copenhagen, Denmark
traytel@di.ku.dk

3 DFINITY Foundation, Zurich, Switzerland
4 Computer Science Department, IT University of Copenhagen,

Copenhagen, Denmark

Abstract. A runtime monitor observes a running system and checks
whether the sequence of events the system generates satisfies a given
specification. We describe the evolution of VeriMon: an expressive and
efficient monitor that has been formally verified using the Isabelle proof
assistant.

1 Introduction

The goal of runtime verification (RV) is to gain confidence in the correctness of a
given execution of a running system. This is a lightweight alternative to full formal
verification which must consider all possible executions. In RV, monitors are tools
that take as input an execution represented as a sequence of events called trace,
analyze the trace with respect to a given specification, and output verdicts, i.e.,
satisfactions or violations of the specification. Monitors support a wide range of
specification languages [8], including automaton-based, (temporal-)logic-based,
and (recursive-)rule-based formalisms.

A monitor’s specification language must be expressive to allow users to for-
mulate the desired properties in a concise, natural, and intuitive way. At the
same time and often in direct conflict with the expressiveness requirement, mon-
itors must be time- and memory-efficient. Expressive and efficient monitors use
complex, optimized algorithms, whose correctness is not obvious. Yet a monitor
must be trustworthy to be used as a verification tool.

VeriMon [1,18,20] is an expressive, efficient, and trustworthy monitor. Its
specification language is based on the expressive metric first-order temporal logic
(MFOTL) [2], but it additionally incorporates automata-based and rule-based
features. It uses efficient algorithms for evaluating the temporal operators Since
and Until, n-ary conjunctions (as multi-way joins), and aggregations such as
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Seidl et al. (Eds.): ICTAC 2022, LNCS 13572, pp. 1–6, 2022.
https://doi.org/10.1007/978-3-031-17715-6_1
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sums or averages. Finally, it is trustworthy as it has been formally verified using
the Isabelle/HOL proof assistant [15]. Proof assistants are tools that mechan-
ically check the correctness of human-written mathematical proofs, e.g., of an
algorithm’s correctness. They are built around a small, well-understood infer-
ence kernel through which all reasoning must pass, which provides the highest
level of trustworthiness.

Here, we describe VeriMon’s origins and evolution, outline some planned next
steps, and discuss the advantages of formally verifying monitors.

2 Evolution

VeriMon originated from a certain dissatisfaction with existing monitoring tools.
Specifically, we have been using the efficient MFOTL monitor MonPoly [2,3] for
years. But every so often, we would discover and fix an implementation bug.
While annoying, this was not the most pressing issue. More importantly, Mon-
Poly became an impenetrable black box: extending its specification language or
improving its algorithms became extremely difficult for us as the implementation
included various undocumented and non-obvious performance optimizations and
the original implementors had moved on. (A typical fate of academic software!)

Eventually, we decided to start from scratch aiming at establishing the cor-
rectness of a much simplified algorithm, which did not include performance
optimizations and supported a restricted specification language. To this end,
we formulated in Isabelle the syntax and semantics of MFOTL, defined a core
monitoring algorithm as a functional program, and proved the algorithm sound
(all produced verdicts are correct according to the semantics) and complete (all
verdicts that hold under the semantics are eventually produced). To obtain an
executable program, we used Isabelle’s code generator [10] to extract 2 800 lines
of OCaml code from our formalization consisting of 3 000 lines of Isabelle defi-
nitions and proofs. The extracted code included two main functions (and their
dependencies): init that initialized the monitor’s state for a given abstract syntax
tree of an MFOTL specification and step that updates the monitor’s state upon
incoming events while outputting verdicts. The first version of VeriMon [18] aug-
mented this verified core with MonPoly’s unverified specification and log parsers
and modules for type-checking, rewriting, and preprocessing specifications and
for printing verdicts.

After this kick-start, the first target was to align VeriMon’s variant of
MFOTL with MonPoly’s, which included inequalities and aggregation operators.
Having formally established and thus understood the algorithmic invariants for
other non-temporal operators made these extensions straightforward [1, §2–3].
At that point, we were in the position of extending VeriMon, one feature at
a time, often carried out mostly by undergraduate students. Today, VeriMon
incorporates:

– Regular expression matching operators generalizing MFOTL’s temporal oper-
ators and representing a form of automaton-based specifications [1, §4];

– A non-recursive let operator, invaluable for structuring policies [20, §3];
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– A recursive let operator that requires all recursive occurrences to be guarded
by past temporal operators and can encode rule-based specifications [20, §4].

We are currently working on adding support for dual temporal operators (Release
and Trigger) [13]. All these extensions do not only introduce new operators, but
also extend the correctness proof to cover the new features.

The first version of VeriMon was extremely inefficient. We have spent consid-
erable time and energy on verifying performance optimizations. VeriMon became
the incubator for developing and proving correct algorithms for the evaluation of
Since and Until [1, §6][16, §4.4] and aggregations over those that asymptotically
improved over MonPoly’s algorithms. We also used insights from databases and
incorporated a worst-case optimal multi-way join algorithm [1, §5]. Overall, Ver-
iMon still tends to be slower and use more memory than MonPoly, but it is easy
to construct examples in which the better algorithms reverse the picture. In the
meantime, some of these algorithms have also found their way into MonPoly.

We have also made progress on reducing the amount of VeriMon’s unverified
code by verifying a type inference algorithm and a specification rewriting module.

Since the first version, VeriMon’s publicly available code base1 grew signifi-
cantly. The formalization now spans over 45 000 lines of Isabelle definitions and
proofs. The extracted code amounts to over 11 000 lines of OCaml. Thanks to the
transpiler js_of_ocaml [19], we can now run VeriMon in every web browser.2
This is not recommended for realistic applications (due to the suboptimal per-
formance and the increased trusted code base which then includes js_of_ocaml
and the browser’s JavaScript engine), but extremely useful for demonstrations.

3 Future Directions

We plan to improve VeriMon along the three discussed dimensions. For trust-
worthiness, the missing ingredients are the specification and log parsers. Once
verified, they will allow us to run VeriMon without relying on MonPoly’s unver-
ified code.

To further improve efficiency, we will use database-style indices to speed
up joins and other operations on tables, the main computations in VeriMon
aside from the temporal operator evaluation. Furthermore, we plan to lift the
recently developed algorithms for the regular expression matching operators in
the propositional metric temporal logic setting [16, §3] to VeriMon’s first-order
setting.

In terms of expressiveness, we aim to generalize VeriMon’s time domain from
natural numbers to an arbitrary domain meeting minimal well-formedness con-
ditions. This will improve the flexibility of VeriMon’s metric intervals used to
express quantitative temporal constraints. We also intend to verify and incor-
porate algorithms for a Datalog-style recursive let operator. Finally, VeriMon,
like MonPoly, operates on finite tables and thus can only handle the monitorable

1 https://bitbucket.org/jshs/monpoly/src/master/.
2 https://traytel.bitbucket.io/verimon.

https://bitbucket.org/jshs/monpoly/src/master/
https://traytel.bitbucket.io/verimon
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fragment of MFOTL [2, §4.2]. While other approaches, which can handle full
MFOTL by replacing tables with automatic structures or binary decision dia-
grams, exist [2,11,12], we believe that working with finite tables is a major
source of efficiency for VeriMon. Thus, we plan to verify and integrate in Veri-
Mon the recent approach of rewriting arbitrary MFOTL specifications into the
monitorable fragment [16, §4.3].

4 Discussion

The obvious benefit of working with a formally verified algorithm is the absence
of bugs. This benefit is no longer given when the verified code is combined with
unverified code. Indeed, we found and fixed several issues in the unverified glue
code connecting VeriMon’s data structures to MonPoly’s in VeriMon’s early days.
Yet, the glue code is only a few hundred lines and it is much easier to localize
the problem there compared to the thousands of lines of code comprising the
actual monitor.

A bigger danger for verified tools are misunderstandings in the semantics.
For example, VeriMon used to compute averages as a + b/2 because it reused
the same faulty Isabelle definition in the semantics and the algorithm, which
omitted a pair of parentheses by mistake. To avoid such issues, the formalized
semantics of the specification language must be carefully inspected, including all
auxiliary definitions. Fortunately, and again in contrast to the actual monitoring
algorithm, VeriMon’s semantics comprises only a few hundred lines of Isabelle
definitions.

A major asset for VeriMon’s usability is its tight integration with MonPoly.
Both tools are compiled into a single binary, which distinguishes the used algo-
rithm via a flag. This resulted in a standard workflow, in which users run Mon-
Poly and rerun using VeriMon in case MonPoly’s output looks suspicious. We
have also performed such a comparative execution on a larger scale on random
inputs. This differential testing revealed discrepancies [1,18,20] pointing to bugs
and an unusual (but specified) semantics in the unverified tools MonPoly and
DejaVu [12].

We see extensibility as the main advantage of a formally verified monitor. The
verification of the first version of VeriMon has already identified several notions
and their properties central to the verification. Adding new features then reduced
to extending these notions while updating the proofs of their properties. Along
similar lines, we replaced inefficient algorithms by efficient ones using refinement,
which allowed us to reuse the proofs of the inefficient algorithms’ correctness.

Several of VeriMon’s features, such as the non-recursive let operator and
the improved algorithms for Since and Until, have been propagated back to
MonPoly and have guided the design of a new monitoring tool implemented in
C++, CPPMon.3

We are happy to start seeing other work in the community that uses proof
assistants [4–6,17], deductive verifiers [9], or SMT solvers [7,14] to improve the
3 https://github.com/matthieugras/cppmon.

https://github.com/matthieugras/cppmon
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trustworthiness of monitors. We believe that formal verification is the only way
towards a landscape of tools that are reliable and maintainable: not just one-
paper wonders.

Acknowledgments. Research on VeriMon has been supported by the Swiss National
Science Foundation grant “Big Data Monitoring” (167162), the US Air Force grant
“Monitoring at Any Cost” (FA9550-17-1-0306), and a Novo Nordisk Foundation Start
Package grant (NNF20OC0063462). The authors are listed in alphabetical order regard-
less of individual contributions or seniority.
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Abstract. We give an overview of Generalized Test Tables (GTTs), a
specification language derived from existing table-based test case descrip-
tion methods commonly used in the domain of automated production
systems. We cover syntax and semantics of GTTs as well as their use for
formal verification, and introduce an extension, Relational Test Tables
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1 Introduction

Motivation. Over the past few decades, the reach and power of formal software
verification have increased considerably, driven by advances in the domains of
satisfiability (SAT) and satisfiability modulo theories (SMT) solving. We have
seen tremendous progress in the verification of real-word systems. For example,
deductive verification has successfully been used to verify relevant library code [4,
6] (and to discover subtle and relevant bugs during the process [12]). At the same
time, it has become increasingly clear that full functional verification is an elusive
goal for almost all application scenarios. In practice, the validation of software
remains dominated by testing and simulation.

Verification methods and tools are available that fully cover industrial lan-
guages and can handle realistic systems, but their effective application requires
considerable training on part of the user. The main challenge to their success-
ful practical use is the need for formal specification: It is exceedingly difficult
and time consuming to specify real systems’ functionalities. Not verification, but
specification is the real bottleneck in functional verification.

A formal specification must capture the desired properties (requirements)
precisely. In addition, the user must provide auxiliary specifications such as
interfaces of modules or components, loop invariants etc. Typically, the size of
required specifications is a multiple of that of the code to be verified. To avoid
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the need for specifications, one may (a) use pre-defined requirements (e.g., “no
arithmetic overflow occurs”), (b) use bounded verification, which requires fewer
auxiliary specifications, and (c) use regression verification, where the old version
of a program is used as specification of the new version. But all these approaches
compromise on full functional verification. Full functional verification still needs
a full formal specification.

One promising way to alleviate the difficulties with writing specifications are
domain-specific specification languages that are adapted to the specifics of an
application domain both with regard to system properties and to the methods
commonly used in that domain to describe them. For example, assertion lan-
guages such as the Java Modeling Language (JML) [13] or SPEC# [1] adopt the
syntax of the specified programming language, which is an important step, but
fall short of adapting to the specification methodology of a particular domain.

Overview. In the following, we give an overview of Generalized Test Tables
(GTTs) [3], which are a specification language derived from existing table-based
test case descriptions commonly used in the domain of automated production
systems. We cover syntax and semantics of GTTs as well as their use for formal
verification (Sect. 3). We also introduce Relational Test Tables [15], which extend
GTTs to specify the relation of code variants and versions (Sect. 4).

2 The Domain of Automated Production Systems

Automated Production Systems (aPS) drive safety- and mission-critical indus-
trial processes, e.g., energy systems or automated manufacturing systems. The
logic of an aPS is defined in software that is executed on real-time capable con-
trollers. These controllers periodically read sensor stimuli and cyclically execute
the same program to produce actuator signals (i.e., they are sample-based reac-
tive systems). Software for aPS are commonly written using special-purpose lan-
guages from IEC61131-3, which defines five textual and graphical programming
languages for the domain of programmable logic controllers.

In practice, the quality assurance of aPS software is dominated by testing and
simulation of individual test cases. These test cases are described in form of test
tables defining a sequence of concrete inputs and the expected outputs. Com-
monly, these test tables are written and maintained in a spreadsheet application.
Each test table corresponds to a single concrete run of the system.

3 Generalized Test Tables

GTTs are an extension of the concept of (concrete) test tables for the speci-
fication of correct functional behavior, where each GTT describes a family of
concrete test tables. The main idea is to replace the concrete values in the table
cells by abstract expressions, thus enabling a table to capture not just a single
test case but many similar test cases, i.e., a scenario. Despite the additional
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Fig. 1. A GTT for a heating system [16].

syntax, we aim to preserve the intuitiveness and comprehensibility of concrete
test tables. In particular for system design engineers who are experts in test case
specification but are not familiar with formal temporal and first-order logic,
this eases writing specifications. As the engineers are used to maintaining test
tables with spreadsheet applications, we use a mixture of expressions common
in spreadsheets and the IEC standard.

Figure 1 shows a GTT for a heating system consisting of a solar thermal
collector and an auxiliary gas burner, and Fig. 2 shows a concrete test table that
is an instance of this GTT. The GTT describes the scenario in which the water
temperature Tt (input variable) in the water tank is insufficient. The system is
designed to target a temperature between 60−d and 60+d ◦C. The temperature
Tt can be increased either by pumping warm water from the collector (output
variable P ) or activating the gas burner (output variable B). We decide to use
the collector if the temperature in the collector Tc (input variable) is above Tt
(by more than d ◦C). If so, we pump hot water from the collector to the tank
(row 1) increasing the tank temperature and decreasing the collector temperature
(row 2). Otherwise, if the collector temperature is insufficient (lower than Tc <
Tt), we use the gas burner (row 3 and 4). The system has to use the gas burner
if the tank temperature is below 60 − d ◦C for at least 30 s., and the system
is allowed to use the gas burner if the temperature is below 60 + d ◦C. Row 5
specifies that the system should stand still if the target temperature has been
reached. The process is repeated indefinitely.

Fig. 2. A concrete test table for the GTT for a heating system in Fig. 1.
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Typically, the columns of GTT belong to one of two categories: one for the
input variables and one for the output variables—or, more abstractly, one for
assumptions and one for assertions. Each cell contains (comma separated) con-
straints on the designated column variable. Each constraint is a complete or
abbreviated Boolean expression. The expressions may contain the input and
output variables and global parameters and are evaluated using the semantics of
IEC61131-3. For example, the constraint “[10, 60 + d]” restricts the boiler tem-
perature Tt (column variable) to the depicted range and is an abbreviation for
10 ≤ Tt ∧ Tt ≤ 60 + d for an arbitrary d. The variable d is a global parameter
(with an arbitrary value that is fixed for the table). A system needs to con-
form to every possible instantiation of a global parameter, in the sense of an
universal quantification. A “don’t-care” (“—”) constraint signals that the value
may be chosen arbitrarily. References to values of past I/O cycles can be made
using square brackets, e.g., “< Tc[−1]” specifies that the collector temperature
is strictly decreasing compared to the last cycle.

The table rows form the steps of a (test) protocol which are consecutively
applied from top to bottom, considering the “duration column” on the right of
the table. The duration column defines how often a row or a group of rows
can be repeated, e.g., “—” denotes a (finite) repetition for zero-or-more cycles,
“[1,—]” a repetition for at least one cycle, and “—∞” is the infinite repetition
(ω). If multiple successor rows are “active”, i.e., can be chosen next, the protocol
branches non-deterministically.

Informally, a software system is not compliant with a GTT, if the software
responds with an output which violates all currently active table rows—assuming
that all inputs (up to the current point in time) have always fulfilled the input
constraints of at least one row that was active when the input occurred. Formally,
the compliance of software to a GTT is defined as a two-party turn-based game
in which the challenger (the environment) chooses the input values and the
system computes the output values. The first party who plays a faulty turn, i. e.„
emitting an input or output which does not satisfy any current assumptions or
assertions, looses the game. The software complies to a GTT if it implements a
winning strategy, i.e., never loses this game.

Our main purpose for GTTs is the static verification with a model-checker [3,
9], but they are also suitable for runtime verification [16], and for the generation
of concrete test cases [17].

4 Relational Test Tables

Not every required property is functional, i. e., a property that specifies the
behavior for single program runs, e. g., an invariant that needs to hold in every
reachable state or an LTL formula that needs to hold for any execution trace.
Properties like regression verification [7], information flow or the behavior after a
restart define the relation between multiple runs [5]1. Such relational properties
1 Or sometimes called multi-property [11] or hyper-properties [10] if all program runs

origin from the same program.
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Fig. 3. This RTT specifies that resetting with Reset results into the same behavior, as
running the system from its initial state. The program runs a and b are from the same
program.

are expressible with Relational Test Tables RTTs [15], which are an extension of
GTTs.

There is an implicit universal quantification over the program runs, which
arise by the execution of the same or of different programs. This allows us to
express various kinds of properties like

Absence of regression. The new system behaves exactly as the old system
modulo the intended changes (bug fixes etc.).

(Secure) information flow. A stored secret is never leaked into observable
output variables.

Robustness. Two similar input values result in similar output.

Most important for the engineer is that relational properties allow the use of
existing software for functional specification. Instead of writing multiple GTTs,
the engineer can use existing similar programs, and describe how the verification
subject should behave in relation to them.

RTTs are an extension of GTTs to allow the specification of relational prop-
erties [15], which extend the syntax of GTTs to cope with the multiple program
runs. Figure 3 shows an RTT, which specifies that a given software is robust
after a software reset. The reset is triggered by setting the input variable Reset
to true. After a reset, the program should behave identically to the system as
started in the initial state (hard reset). Hence, we verify that every variable is
correctly reset.

RTTs have a new column type, called control columns: Control columns define
the name and number of program runs. Their cell content controls the associated
runs. One can normally execute , pause the program run (stuttering), or reset
its state back to that of a previous table row r . Control commands allow to
break up the synchronous (lock-step) execution of program runs. In addition to
GTTs, each program variable is qualified with the identifier of the corresponding
program run.

The RTT in Fig. 3 uses two program runs (a, b) of the same program. The
first row describes that both runs behaves equally (equality = on O) as long as
the input variables (equality on = on I) and the Reset are equal for at least one
cycle. The reset is triggered after an arbitrary amount of time by switching to
row 2: Then, Reset is set to true in program run b, while the program state of
program run a is set to the initial state (as it was at the beginning of row 1).
Equality of input and output should remain the same. The table requires that,
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after the hard reset for a and the soft reset for b, the output remains the same
if the input remains the same. Because of the row group, we repeat this process
infinitely often.

The semantics of RTTs is defined by reduction to GTTs using product pro-
grams [2]. The control commands are handled by program transformation of the
original software. Application on typical examples from software engineering can
be found in [15].

5 Conclusion

GTTs and RTTs arise from the idea to re-use an already established language for
the specification and verification of reactive systems. This includes capturing the
original semantics of test tables and extending it to use in formal tools. If this
process succeeds, we gain a domain specific language that preserves intuitiveness
and comprehensibility of the original language but allows formal specification
and verification. A complete explanation of GTTs and RTTs can be found in [14].
Their integration into the development process for aPS is discussed in [8].
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Abstract. Parity games are positionally determined. This is a funda-
mental and classical result. In 2010, Calude et al. showed a breakthrough
result for finite parity games: the winning regions and their positional
winning strategies can be computed in quasi-polynomial time.

In the present paper we give a self-contained and detailed proofs for
both results. The results in this paper are not meant to be original. The
positional determinacy result is shown for possibly infinite parity games
using the ideas of Zielonka which he published in 1998. In order to show
quasi-polynomial time, we follow Lehtinen’s register games, which she
introduced in 2018. Although the time complexity of Lehtinen’s algo-
rithm is not optimal, register games are conceptually simple and inter-
esting in their own right. Various of our proofs are either new or simpli-
fications of the original proofs. The topics in this paper include the defi-
nition and the computation of optimal attractors for reachability games,
too.

1 Introduction

A game on a graph is played by two players who move from one vertex to another.
The vertices are often called positions. Every move needs to follow an edge in
the graph. Each position belongs to one of the players and the owner of the
position chooses the next move. The resulting sequence of moves can be finite
or infinite. Basically, there can be two reasons for a game to be finite: the game
ends in a sink (i.e., a vertex where no moves are possible) or one of the players
has won the game. The other situation is that the game continues indefinitely.
Infinite games also have a winner; the winner depends on the sequence of vertices
visited during the game or, alternatively, on the sequence of moves (i.e., edges)
taken by the players. When considering infinite duration games, then a typical
approach in the literature is to avoid finite games by disallowing both sinks and
finite winning sequences. In this paper, we take a slightly different approach.
We allow game graphs to be infinite and to have sinks, and we consider winning
conditions which allow both finite and infinite games. This way, we are able to
discuss reachability games and parity games in a uniform way.

A strategy is a rule for choosing a player’s next move; the chosen move can
depend on the current position (i.e., the current vertex in the graph) and all
previous moves. Players follow a strategy if, whenever it is their turn, they
always use the strategy’s suggestion as their next move. A strategy is winning
if, by following the strategy, the player wins against all possible replies of the
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opponent. This depends on the starting position; there might be some starting
positions where the strategy is winning and others where it is not winning. A
game is determined if for every starting position exactly one of the players has
a winning strategy. Not all games are determined; the example by Gale and
Stewart of a non-determined game relies on the axiom of choice [6].

After introducing a general framework for games on graphs, we consider
reachability games and parity games in more depth. The objective for one of the
players in a reachability game is to eventually visit a position in a given target
set R; the objective of the other player is to never visit a position in R. In a parity
game, there is a finite set of non-negative integers and each vertex is colored with
one of these integers; the colors are also called priorities. A game which ends in
a sink is losing for the owner of the sink (i.e., a player loses immediately if they
cannot move); all other games are infinite. In an infinite game, the largest color
which is seen infinitely often determines the winner. One player wins if this color
is even and the other player wins if it is odd. Among the numerous applications
of parity games, we mention the following two: parity games play an important
role in model-checking modal μ-calculus [7, Part V], and they can be used for
proving the complementation lemma in Rabin’s Tree Theorem [15]; see e.g. [16].

Martin’s Determinacy Theorem shows that if the winning condition in a
game on graphs is a Borel set, then the game is determined [11]. This includes
both reachability games and parity games. However, the winning strategies from
the Borel Determinacy Theorem need to store all the previous moves. Gurevich
and Harrington proved that finite-memory strategies suffice for parity games
over finite game graphs [8]: at every starting position, exactly one of the players
has a winning strategy which only takes into account the current position and
a fixed number of bits of information about the past (and this fixed number of
bits can be updated move by move). Independently of one another, Emerson and
Jutla [3] and Mostowski [13] further improved this result by showing positional
determinacy (or memoryless determinacy) of finite parity games. In a positional
strategy, the next move only depends on the current position. Positional strate-
gies are also known as memoryless. Positional determinacy means that, for every
starting position, exactly one of the players has a positional winning strategy.
Zielonka showed memoryless determinacy for infinite parity games in which every
vertex has only a finite number of successors [18], but he also observed that only
some minor adjustments are necessary to generalize this result to arbitrary infi-
nite graphs. Therefore we consider parity games over arbitrary graphs confirming
his observation. The present proof is based on notes of the first author when he
attended a lecture by Zielonka held in Paris on January 19th, 1996. As a tool
for our proof, we show that reachability games are positionally determined. The
result is well-known and considered to be folklore. For the sake of completeness,
we include the proof.

Algorithmically solving a game usually means one of two things. Firstly,
given a starting position, one wants to know the winner of the game (i.e., the
player with a winning strategy). And secondly, we can solve a game by computing
winning regions and winning strategies for the two players. Since a solution to the
first problem typically also involves the computation of a winning strategy, the
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two problems are equivalent in practice. We only consider solutions of games with
finite game graphs. It is folklore that reachability games can be solved in time
O(n+m) for game graphs with n vertices and m edges; see e.g. [7, Exercise 2.6].
We give a version of this algorithm which computes optimal strategies. There
is a large and increasing number of algorithms for solving parity games; we
refer to the Oink project by van Dijk [17] for an overview. Nowadays, Zielonka’s
algorithm [18] is considered to be the most classical one. It is relatively easy
to describe and it is often fast in practice [5]. However, Friedmann showed that
there are instances where Zielonka’s algorithm uses an exponential number of
steps [4]. In the same paper, Friedmann gave an upper bound of O(nd) on the
number of recursive calls in Zielonka’s algorithms for parity games with n vertices
and d colors. Since every recursive call involves solving two reachability games,
this yields a running time of O(nd(n + m)) ⊆ O(nd+2). We give an analysis of
Zielonka’s algorithm which shows that its running time is in O(nd−1(n + m)) ⊆
O(nd+1).

Calude et al. [1] showed that parity games with n vertices can be solved
in quasi-polynomial time 2log

O(1)(n). This led to a series of quasi-polynomial
algorithms; see e.g. [10,14] for brief overviews. We give a version of Lehtinen’s
algorithm [9]. Her quasi-polynomial time algorithm is conceptually simpler than
the algorithm by Calude et al. but less efficient in the worst case. Lehtinen’s algo-
rithm uses Zielonka’s algorithm on a larger game graph but with 2 + 2 �log2 n�
colors, only. The resulting running time is nO(log n)dO(log2 n) for a game with
n vertices and largest color d. This is not optimal. For instance, the recent
modification of Zielonka’s algorithm [10, Theorem 3.3] has a running time of
O

(
n6.9+2 log(1+ d

2 log n )
)
.

As usual, we use random access machines to measure the time complexity of
algorithms; see e.g. [2, Chapter 2.2].

2 Games on Graphs

A game graph G = (V0, V1, E) is a directed graph such that the vertices V =
V0 ∪ V1 are partitioned into two sets V0 and V1 with V0 ∩ V1 = ∅. We allow
V to be infinite. The set of edges is E ⊆ V × V . Depending on the setting,
the game graph might have additional information such as labeled edges or a
coloring of the vertices. A sink is a vertex v ∈ V without outgoing edges. The
set of all finite paths in the graph (V,E) is denoted by E∗; and E∞ is the set
of all finite of infinite paths. We consider E∞ to be a subset of V + ∪ V ω, i.e., a
path α ∈ E∞ is either a non-empty finite sequence α = v1 · · · vk or an infinite
sequence α = v1v2 · · · of vertices vj such that any two consecutive vertices
vj , vj+1 satisfying the edge relation (vj , vj+1) ∈ E. Similarly, we have E∗ ⊆ V +.
There are two players, player 0 and player 1. The vertices in Vi belong to player
i ∈ {0, 1}. A position is a vertex u ∈ V . At position u, player i ∈ {0, 1} with
u ∈ Vi chooses v ∈ V with (u, v) ∈ E. The next position is v and the game
continues at this position. This is called a move of player i. We use the term
position rather than vertex for an element v ∈ V to emphasize that v is part of



Reachability Games and Parity Games 17

a sequence of moves; on the other hand, for graph properties such as paths we
use the term vertex.

A set of games C is a subset of E∞ such that every path in E∞ has a unique
prefix in C. This prefix does not need to be proper. Note that no path in C has
a proper prefix in C; i.e., either a game is infinite or the game immediately ends
as soon as a finite sequence of moves defines a path in C. A winning condition
is a partition C = C0 ∪ C1. Here, Ci is the set of games which player i wins,
and we have C0 ∩ C1 = ∅. The winning condition Ci of player i does not depend
on finite prefixes if for every pβ ∈ C, we have that β ∈ Ci implies pβ ∈ Ci.
We note that this property of Ci also depends on C1−i because we consider all
games in C = C0 ∪ C1. A game (G, u,C0, C1) consists of a game graph G, an
initial position u ∈ V , and a winning condition C0, C1. The latter gives the set
of games as C = C0 ∪ C1. If the winning condition is clear from the context,
then the game is denoted by (G, u); if G = (V0, V1, E), then we usually do not
distinguish between (G, u) and (V0, V1, E, u) in the sense that both describe the
same game. Remember that, by abuse of notation, a game is also a sequence in
C. A game (in the sense of a sequence in C) on (G, u) is created by moves of the
players, starting at position u; the game is either infinitely long, or it finishes
immediately if the current sequence of positions yields a path in C ∩ E∗. Note
that every game has a unique winner i ∈ {0, 1} because if the game reaches a
sink (in particular, there was no previous point at which a player has won the
game), then the path leading to this sink needs to be in C.

Intuitively, a strategy for player i defines its next move; this move can depend
on the current position vk ∈ Vi as well as the sequence of the previous positions
v1, . . . , vk−1. More formally, it is a partial map σ : E∗ → V such that after the
moves v1 · · · vk with vk ∈ Vi, the next move of player i is vk+1 = σ(v1 · · · vk).
In particular, the strategy is required to satisfy (vk, vk+1) ∈ E. It does not
have to be defined on all paths in V ∗Vi because some configurations might not
be reachable if player i always moves according to the strategy. Moreover, we
sometimes do not care for certain positions how player i moves. This is the case if
all moves at this position lead to winning games, or if all games at this position
immediately end. In this paper, we are mostly interested in strategies which
do not take the previous moves into account and only depend on the current
position: A positional strategy for player i is a partial map σ : W → W for
W ⊆ V such that if σ(w) is defined, then w ∈ W ∩ Vi and (w, σ(w)) ∈ E; i.e.,
the strategy only suggests legal moves and only for player i. The set W is called
the support of σ. A path α = v1v2 · · · ∈ E∞ with v1 ∈ W follows a strategy
σ : W → W for player i if for all prefixes v1 · · · vjvj+1 of α such that σ(vj)
is defined, we have vj+1 = σ(vj). In other words, whenever possible, player i
applies σ for choosing their next move. Remember that if σ(vj) is defined, then
vj ∈ W ∩Vi. Note that we allow α to leave and re-enter W . A positional strategy
σ : W → W for player i is winning if all games α which start in W and follow
σ are in Ci. In this case, we say that σ is a i-strategy. If σ : W → W is an
i-strategy and σ(w) is not defined for w ∈ W ∩Vi, then all games starting in W ,
following i, and visiting w at some point are winning for player i. This means
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that the only reason for σ to be undefined at a position w ∈ W ∩ Vi is that the
choice of the next move does not matter. For instance, this is the case if player
i wins as soon as the position w is reached. If σ0 : W0 → W0 is a 0-strategy and
σ1 : W1 → W1 is a 1-strategy, then W0 ∩ W1 = ∅; otherwise, a game starting in
W0 ∩ W1 and following both strategies would be winning for both players.

We can identify a positional strategy σ : W → W with the subgraph (W,F )
where the set of edges is F = {(w, σ(w)) | σ(w) is defined }; note that F ⊆ E.
Similarly, a positional strategy can be built-in into the game graph by replacing
the edges E by E′ = F ∪{(u, v) ∈ E | σ(u) is not defined }. We order i-strategies
by (W ′, F ′) ≤ (W,F ) if W ′ ⊆ W and F ′ ⊆ F . By Zorn’s Lemma, there exist
maximal i-strategies. Maximal i-strategies (W,F ) have the following property:
Whenever, for a position w ∈ W ∩ Vi, the set of neighbors {v ∈ W | (w, v) ∈ E }
in W is nonempty, then there exists an edge (w, v) ∈ F . Otherwise, all possible
(W,F )-following continuations (even those leaving W ) from w would lead to
winning games for player i. By adding an edge (w, v) to F which stays inside W ,
the resulting strategy would generate a subset of those continuations but with
more edges, thereby contradicting the maximality of (W,F ). Therefore, maximal
strategies always choose a move except if w ∈ W ∩ Vi is a sink or if all outgoing
edges leave W .

Proposition 1. If the winning condition Ci does not depend on finite prefixes,
then the support of maximal i-strategies is unique. This means, if (W1, F1) is
maximal and (W2, F2) is an arbitrary i-strategy, then we have W2 ⊆ W1.

Proof. Let (W1, F1) be maximal and (W2, F2) be an arbitrary i-strategy. Let
W3 = W1 ∪ W2 and F3 = F1 ∪ {(u, v) ∈ F2 | u ∈ W2 \ W1 }, i.e., at positions
in W1 ∩ W2, we give preference to the strategy (W1, F1). Consider a game α
which starts in W3 and follows (W3, F3). If α never visits a position in W1,
then α follows the i-strategy (W2, F2). Hence, α ∈ Ci in this case. If α = pβ
such that β starts at a position in W1, then β follows the i-strategy (W1, F1). As
before, we see that β ∈ Ci. Since the winning condition does not depend on finite
prefixes, we have α = pβ ∈ Ci. Thus, (W3, F3) is an i-strategy. By maximality of
(W1, F1) and since (W1, F1) ≤ (W3, F3), we have (W1, F1) = (W3, F3) and thus
W2 ⊆ W3 = W1. ��

In the above situation, the support of a maximal i-strategy is called the win-
ning region of player i. A game is positionally determined if, for i ∈ {0, 1}, there
exist i-strategies (Wi, Fi) such that V = W0 ∪ W1. Since W0 and W1 are the
supports of winning strategies for different players, we have W0 ∩ W1 = ∅. Posi-
tional determinacy is also known as memoryless determinacy in the literature. If
a game G is positionally determined and player i has an arbitrary (not necessar-
ily positional) winning strategy for (G, v), then i also has a positional winning
strategy for (G, v): the opponent 1− i cannot win (G, v) with a positional strat-
egy against player i’s arbitrary strategy. Since G is positionally determined, one
of the players has a positional winning strategy for (G, v); and this has to be
player i because it is not player 1 − i. By solving a game (G, v), we mean decid-
ing which player has a winning strategy (if it exists at all); if G is positionally
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determined, then exactly one of the players has a positional winning strategy
(and the other player loses no matter which strategy they use).

Remark 1. Sometimes one needs to distinguish whether there is one winning
strategy for all starting positions in the winning region or whether for every
starting position in the winning region there exists an individual winning strat-
egy. Proposition 1 shows that these two properties are equivalent for positional
strategies and winning conditions which do not depend on finite prefixes. ♦

3 Reachability Games and Attractors

Let G = (V0, V1, E) be a game graph, and let V = V0 ∪ V1. Let M ⊆ E∞ be the
paths which cannot be extended to the right (the identifier M is for maximal
paths). In other words, we have α ∈ M if either α is infinite or α ends in a
sink. In a reachability game, the objective of one of the players is to reach a
position in R ⊆ V . Suppose that player i wins at all positions in R in which
case we call R the target set of player i. More formally, the winning condition
for player i is Ci = (V \ R)∗R ∩ E∗, and the winning condition for player 1 − i
is C1−i = M ∩ (V \ R)∞. The winning conditions does not depend on finite
prefixes.

Theorem 1. Reachability games are positionally determined.

Proof. Let (Wi, Fi) be a maximal i-strategy. Note that R ⊆ Wi. Let W1−i =
V \ Wi. It remains to show that player 1 − i has a positional winning strategy
with support W1−i. If u ∈ W1−i ∩ Vi, then there exists no edge (u, v) ∈ E with
v ∈ Wi; otherwise (Wi ∪ {u} , Fi ∪ {(u, v}) is a bigger i-strategy than (Wi, Fi).
Next, we consider u ∈ W1−i ∩ V1−i. If u is a sink, then all games ending in u
are winning for player 1 − i since it is impossible to reach a position in R. If
u is not a sink, then there exists an edge (u, v) ∈ E with v ∈ W1−i; otherwise
(Wi ∪ {v} , Fi) is a bigger i-strategy than (Wi, Fi). We set σ(u) = v. This leads
to a strategy σ : W1−i → W1−i such that σ(u) is defined for all u ∈ W1−i ∩ V1−i

which are not a sink. Every game α starting in W1−i and following σ never leaves
W1−i. It follows that α cannot enter a position in R and, hence, α ∈ C1−i. ��
Example 1. We consider the following reachability game with vertices V0 =
{a, c, e} and V1 = {b, d, f }, edges E = {ad, da, be, eb, de, ed, bc, ef, fc} where
xy denotes the pair (x, y), and target set R = {c, f } of player 0. A graphical
representation is

a b c

d e f

W1 W0
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Round vertices belong to player 0 and square vertices belong to player 1. Double
borders are used for states in the target set. The winning regions are W0 =
{b, c, e, f } and W1 = {a, d} and the (in this case unique) positional strategies
are (Wi, Fi) with F0 = {da} and F1 = {ef}, indicated by thicker arrows. ♦

The proof of Theorem 1 suggests that the winning regions of the two players
can be defined more explicitly. A set of vertices A ⊆ V is i-attracting if the
following two conditions hold:

1. If u ∈ Vi and there exists an edge (u, v) ∈ E with v ∈ A, then u ∈ A.
2. If u ∈ V1−i is not a sink and all edges (u, v) ∈ E satisfy v ∈ A, then u ∈ A.

The i-attractor of R ⊆ V is the smallest set of vertices which is i-attracting and
contains R. It is well-defined because V is i-attracting, and the intersection of
all sets which both contain R and are i-attracting also satisfies both properties.
The i-attractor of R in a game graph G is denoted by attri(G,R).

Proposition 2. Let (W,F ) be a maximal i-strategy for reaching the target set R
within a game graph G. Then we have W = attri(G,R).

Proof. Let A = attri(G,R) and B = V \ A. Since (W,F ) is maximal, the set W
is i-attracting and it contains R; see the proof of Theorem 1 for details. This
shows A ⊆ W . For the converse, we show B ⊆ V \W by giving a (1− i)-strategy
σ : B → B. Consider a position u ∈ B. We have u ∈ R because R ⊆ A. In
particular, if u is a sink, then reaching u is winning for player 1 − i. Therefore,
we can assume that u is not a sink. If u ∈ Vi, then there is no edge (u, v) ∈ E
with v ∈ A because A is i-attracting. Similarly, if u ∈ V1−i, then there exists
an edge (u, v) ∈ E with v ∈ A and we can set σ(u) = v. Every game which
starts in B and follows the strategy σ stays in B. Therefore, player 1 − i wins
at all positions in B since he can avoid reaching a position in R. This shows
B ⊆ V \ W and, hence, W ⊆ A. ��

A consequence of Theorem 1 and Proposition 2 is that player 1 − i wins at
all positions in V \ attri(G,R).

4 Optimal Strategies for Reachability Games

In this section, we consider reachability games where the set of positions V is
finite. We still assume that player i’s winning objective is to reach a position
in R ⊆ V . Let (Wi, Fi) be a maximal i-strategy. Then for all starting positions
u ∈ Wi, there is a maximal number of moves which are necessary for games
which follows (Wi, Fi) to reach a position in R. We are interested in a strategy for
player i which minimizes this number. We do not aim at optimizing maximal (1−
i)-strategies (W1−i, F1−i) because usually games starting in W1−i and following
(W1−i, F1−i) are infinite; the only other case is that the game ends in a sink and
if we would want to optimize the number of moves when targeting a sink, we
could apply the same algorithms as below for player 1 − i reaching this set of
sinks.
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The winning distance is a function d : V → N ∪ {∞} defined by:

– d(u) = 0 for u ∈ R,
– d(u) = min {1 + d(v) | (u, v) ∈ E } for u ∈ Vi \ R,
– d(u) = max {1 + d(v) | (u, v) ∈ E } for u ∈ V1−i \ R.

Here, we let min ∅ = max ∅ = ∞ and 1 + ∞ = ∞. A similar concept as the
winning distance is the rank of a position which is only defined for elements of
the attractor [18, p.146]. Since d occurs on both sides of the definition, we need
to show that the winning distance is well-defined.

Lemma 1. The winning distance is unique and well-defined. Moreover, we have
d(u) < ∞ if and only if u ∈ Wi.

Proof. A straightforward induction on n ∈ N shows that if d(u) ≤ n, then
u ∈ Wi. Next, we show that u ∈ Wi implies d(u) < ∞. Since V is finite, the
i-attractor of R can be computed by starting with R and successively adding
positions which contradict the current set to be i-attracting; this is repeated
until the set does not change anymore. By using this naive algorithm, every time
we add a position u, we can define d(u) < ∞ (and possibly update previously
defined values d(v); these updates only affects positions v satisfying d(v) > d(u)
before and after the update). Since Wi = attri(G,R), we have d(u) < ∞ for all
u ∈ Wi. This concludes the second part of the lemma. Moreover, we have shown
that there exists at least one winning distance.

Suppose that d and d′ are two different winning distances. Then there exists
u ∈ V with d(u) = d′(u). At least one of d(u) and d′(u) is in N; therefore,
we have u ∈ Wi which shows that both d(u) and d′(u) are in N. Among all
u ∈ V with d(u) = d′(u), let n be minimal such that either d(u) > n = d′(u) or
d′(u) > n = d(u). Without loss of generality, suppose that d′(u) > n = d(u). We
have u ∈ R because d′(u) > 0. If u ∈ Vi \ R, then there exists an edge (u, v) ∈ E
with n−1 = d(v) = d′(v); the latter equality holds by minimality of n. This edge
yields d′(u) ≤ n, a contradiction. Let now u ∈ V1−i, then all edges (u, v) ∈ E
satisfy d(v) ≤ n− 1 and hence d(v) = d′(v), again by minimality of n. Note that
there exists at least one such edge since max ∅ = ∞ but d(u) < ∞. As before,
this shows d′(u) ≤ n, a contradiction. Therefore d(u) = d′(u) is not possible. ��

The following example shows that the second claim of Lemma 1 does not
directly hold for infinite graphs. For finite game graphs, attractors are often
defined as

⋃
k≥0 {v ∈ V | d(v) ≤ k }; see e.g. [18, p.145]. The example also shows

that this approach does not work directly for graphs where positions can have
infinitely many successors. Depending on the purpose, ordinal numbers might
be used for a generalization of the winning distance towards infinite graphs.

Example 2. Let V = V1 = N ∪ {a, b}, i.e., all positions belong to player
1. Let R = {0} ⊆ N be the target set of player 0. The edges are{
(i + 1, i) ∈ N

2
∣∣ i ≥ 0

} ∪ {(b, i) | i ∈ N } ∪ {(a, b)}.
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a b

0 1 2 3 · · ·

· · ·

All positions in V are winning for player 0: all paths eventually end in 0 because N

is well-ordered. The winning distance of the vertex n ∈ N is d(n) = n; in partic-
ular, the winning distances of the successors of b are unbounded. Therefore, the
winning distance of b cannot be a natural number. Also note that the winning
distance of a would need to be greater than d(b). ♦

Lemma 2. Let (Wi, Fi) be a maximal i-strategy for a reachability game in a
finite game graph and let d : V → N ∪ {∞} be the winning distance. For every
u ∈ Wi, there exists a game α starting in u and following (Wi, Fi) which uses at
least d(u) moves.

Proof. This is trivial if d(u) = 0. Let now d(u) > 0; in particular u ∈ R. First,
consider the case u ∈ Vi. Let (u, v) ∈ Fi. Then 1+d(v) ≥ d(u) and, by induction,
there exists a game β starting at v and following (Wi, Fi) such that β uses at
least d(v) moves. Then α = uβ is a game which starts at u and which follows
(Wi, Fi) and uses at least 1 + d(v) ≥ d(u) moves.

Next, let u ∈ V1−i. Then there exists at least one edge (u, v) ∈ E because
u ∈ Wi \ R. Among the neighbors of u, we choose v with d(u) = 1 + d(v);
the position v exists by definition of d(u). By induction, there exists a game
β starting at v and following (Wi, Fi) such that β uses at least d(v) moves; as
before, α = uβ is the desired game. ��

When trying to optimize the worst-case number of moves necessary to
reach R, then Lemma 2 shows that one cannot be better than the winning
distance. A maximal i-strategy σ : Wi → Wi actually achieves this bound if and
only if for all u ∈ Wi ∩ Vi we have that σ(u) = v implies d(u) = 1 + d(v). In this
case, we say that σ is optimal. For player 1 − i, every maximal winning strategy
is optimal.

Proposition 3. Consider a reachability game with n vertices and m edges. Then
we can compute optimal positional winning strategies for both players in time
O(n + m). In particular, this computation yields attractors.

Proof. We basically use an adaption of the breadth-first search algorithm (and if
all positions belong to player i, then it actually is the usual breadth-first search
algorithm; see e.g. [2, Chapter 20.2]). Our algorithm uses the following data
structures:

– A set P which is initialized as P =
{( {u ∈ V | (u, v) ∈ E } , v

) ∣∣ v ∈ V
}
. For

every v ∈ V , the set P gives access to its predecessors. We assume that for a
given v ∈ V , we have access to the pair

(
U, v

) ∈ P in constant time. We will
successively remove edges in P such that the remaining edges define strategies
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for the respective players. If we say that we remove an edge (u, v) from P,
then what we actually do is replacing the pair (U, v) ∈ P by (U \ u, v).

– A function n : V1−i → N which gives the number of neighbors (i.e., successors,
not predecessors) of a vertex in V1−i in the graph defined by P. Initially, we
let n(u) be the out-degree of u.

– A function D : V → N ∪ {∞} which is the current estimate of the winning
distance d. Initially, we have D(u) = 0 for u ∈ R and D(u) = ∞ for u ∈ R.
For each vertex u, the value D(u) is assigned a new value at most once; if
such an assignment occurs, then before this assignment, we have D(u) = ∞
and after this assignment we have D(u) = d(u) < ∞. If at some point we
have D(u) < ∞ for u ∈ V1−i \ R, then n(u) = 0.

– A FIFO queue Q of vertices in V . Initially, Q contains the vertices in R in
some arbitrary order. The queue Q contains the vertices which still need to
propagate their distance D to their predecessors. An invariant of Q will be
that it only contains vertices v with D(v) = d(v) < ∞ and that vertices with
smaller winning distance are closer to the front of the queue than vertices
with larger winning distance.

After this initialization, the algorithm proceeds as follows. While Q = ∅ do:

1. v ← delete-first(Q) and let (U, v) ∈ P.
2. For all u ∈ U do

– If u ∈ Vi, then
(a) If D(u) = ∞, then D(u) ← 1 + D(v) and append u to Q;
(b) else we remove the edge (u, v) from P.

– If u ∈ V1−i, then
(c) We remove the edge (u, v) from P and set n(u) ← n(u) − 1.
(d) If n(u) = 0, then D(u) ← 1 + D(v) and append u to Q.

For u ∈ Vi, we set D(u) = 1 + D(v) when considering the first edge (u, v); and
for u ∈ V1−i, we set D(u) = 1 + D(v) when considering the last remaining edge
(u, v). In both cases, the invariant on the order of the elements in Q ensures that
D(u) = d(u). In step 2d, if n(u) = 0, we could remember the move (u, v) since,
even though it is losing for player 1 − i, always choosing these moves achieves
a maximal winning distance for player i (it might be a natural desire of player
1 − i to delay the defeat for as long as possible).

Every vertex v ∈ V is added at most once to the queue Q. In the sum of
all iterations of the loop in step 2, we consider every edge of the graph at most
once. Since the initialization is also possible in linear time, the running time of
the above algorithm is O(n + m).

After running the algorithm, D = d is the winning distance and thus the win-
ning positions are Wi = {u ∈ V | D(u) < ∞ } and W1−i = {u ∈ V | D(u) = ∞ }.
The winning strategy σi : Wi → Wi for player i at a position u ∈ (Wi ∩ Vi) \ R
is given by σi(u) = v with (u, v) ∈ E and D(u) = 1 + D(v); note that in this
case, after the algorithm stops, there exists exactly one pair (U, v) ∈ P such that
D(v) < ∞ and u ∈ U . The winning strategy σ1−i : W1−i → W1−i for player 1−i
at a non-sink position u ∈ W1−i ∩ V1−i is given by σ1−i(u) = v with (u, v) ∈ E
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such that v ∈ W1−i; note that if u is not a sink, then there exists at least one
such edge because n(u) > 0. Moreover, after the algorithm terminates, every
such edge is represented by a pair (U, v) ∈ P with u ∈ U . In other words, win-
ning strategies for both player i and 1 − i are given by the edges in P; however,
for player i, we need to exclude the edges leading to positions outside Wi. ��

5 Parity Games

The game graph G = (V0, V1, E, χ) of a parity game is equipped with a vertex
coloring χ : V → {1, . . . , d} for an integer d ≥ 1. The coloring χ helps to
formulate the winning conditions of the players. Sometimes, if we prefer the
smallest color to be even, the coloring has the form χ : V → {0, . . . , d − 1}. The
identifier d is for dimension. In the literature, the colors are called priorities,
too. The subgraph of G induced by a set of vertices W ⊆ V is G[W ] = (V0 ∩
W,V1 ∩ W,E′, χ′) with E′ = {(u, v) ∈ E | u, v ∈ W } and χ′ : W → {1, . . . , d} is
the restriction of χ. Similarly, G − W is the subgraph of G induced by V \ W .
In a parity game, player 0 is called Even and player 1 is called Odd. The set of
games C contains all infinite paths and all finite paths ending in a sink. Even
wins all finite games which end in a sink in V1 and infinite games where the
largest color which is seen infinitely often is even. Symmetrically, Odd wins all
finite games which end in a sink in V0 and all infinite games where the largest
color which is seen infinitely often is odd. The winning condition regarding sinks
means that if players cannot move, they lose immediately.

Whenever there are two colors q and q+2 such that there is no position with
color q+1, then we can identify q and q+2 (for instance, by using the color q for
all vertices with color q + 2). In particular, we can assume that the dimension d
is the number of different colors in the game graph.

Remark 2. In Sect. 7, we consider edge colorings for parity games. In this setting,
a game graph has the form G = (V0, V1, E, χ) with χ : E → {1, . . . , d}. As before,
if the owner of a position cannot move, the owner loses immediately. Otherwise,
in an infinite game player i wins if the largest number q, which is seen infinitely
often on the edges, satisfies q ≡ i mod 2. A parity game with vertex coloring χ
can be transformed into a game with edge coloring χ′ simply by defining χ′(e)
by χ(u) if u is the source of e. For the other direction we introduce a smallest
color 0, and we subdivide every edge e = (u, v) into a path u → ve → v for a
new vertex ve. The old vertices are colored with 0 and the color of ve is the color
of e. ♦
Remark 3. Reachability games can be encoded as parity games with two colors.
Let G = (V0, V1, E) be the game graph of a reachability game where (w.l.o.g.)
it is player 0’s objective to reach R ⊆ V . For all v ∈ R, we remove all outgoing
edges. Then for all sinks v (which now includes all positions in R), we introduce a
self-loop (v, v). After these two modifications, the resulting edge set is called E′.
We let χ(v) = 2 if v ∈ R; otherwise, we set χ(v) = 1. The parity game G′ =
(V0, V1, E

′, χ) now has the following property: player 0 wins the reachability game
(G, v) with target set R if and only if player 0 wins the parity game (G′, v). ♦
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As noticed in Remark 3, we can eliminate all sinks in a parity game by intro-
ducing self-loops: let G = (V0, V1, E, χ) be a parity game with vertex coloring
χ : V → {1, . . . , d}. Let Si ⊆ Vi be the sinks belonging to player i. For every
position v ∈ S0 ∪ S1, we introduce a self-loop (v, v). The resulting edge set is
called E′. Let χ′ : V → {1, . . . ,max {2, d}} be a re-coloring of the vertices with

χ′(v) =

{
i + 1 if v ∈ Si for i ∈ {0, 1} ,

χ(v) otherwise.

Then (G, v) and (G′, v) for G′ = (V0, V1, E
′, χ′) have the same winner. The

advantage is that the game graph G′ is without sinks. However, this construction
introduces new edges and for d = 1 it increases the number of colors, in general.

A long sequence of results culminated in the following theorem [3,8,12,13,18].

Theorem 2. Parity games are positionally determined.

Proof. Let G = (V0, V1, E, χ) be the game graph of a parity game with coloring
χ : V → {1, . . . , d}. We proceed by induction on d. If d = 1, then Even wins at
all positions in attr0(G,S1) where S1 are the sinks in V1; all other positions are
winning for Odd. Let now d > 1 and suppose that d ≡ i mod 2 for i ∈ {0, 1}.
Let W1−i be the support of a maximal (1 − i)-strategy and let Wi = V \ W1−i.
We need to show that there exists an i-strategy with support Wi. The sinks in
Vi are all in W1−i. On positions in attr1−i(G,W1−i) \ W1−i, player 1 − i can
force the game to visit a position in W1−i (see Proposition 2) and from there
on, player 1 − i can follow the (1 − i)-strategy with support W1−i. Therefore,
attr1−i(G,W1−i) is the support of a winning strategy and, by maximality of
W1−i, we have W1−i = attr1−i(G,W1−i). It follows that all outgoing edges of
positions in Wi ∩ V1−i lead to positions in Wi, and every position in Wi ∩ Vi has
at least one outgoing edge to a position in Wi.

Let H be the subgraph of G induced by Wi, let Ud = {v ∈ Wi | χ(v) = d },
let A = attri(H,Ud) and let G′ be the subgraph of H induced by Wi \ A.

A
Ud

Wi \ A

Wi W1−i

H

G′

G

A (1 − i)-strategy with nonempty support W ′
1−i on the game graph G′ yields

a (1 − i)-strategy with support W1−i ∪ W ′
1−i on G. Therefore, there is no

nonempty (1 − i)-strategy on G′. By induction on the number of colors, there
exists a maximal i-strategy σ′ on G′ with support Wi \ A. This leads to the
following strategy for player i on positions in Wi within the game graph G:
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– At positions in Ud ∩ Vi, player i moves to a position in Wi.
– At positions in (A\Ud)∩Vi, player i moves according to the positional strategy

for reaching Ud; see Proposition 2.
– At positions in (Wi \ A) ∩ Vi, player i moves according to σ′.

The rules above define a positional strategy σ for player i with support Wi. To
see that it is winning, consider any game α starting at a position in Wi which
follows σ. Since player i never makes a move to W1−i and since player 1 − i can
never make a move to W1−i, all positions of α are in Wi. If α is finite, then it
ends in a sink in V1−i because there are no sinks in Vi ∩ Wi; in particular, α is
winning for player i in this case. We can therefore assume that α is infinite. If α
enters A infinitely often, then α infinitely often visits a position in Ud. Therefore,
the maximal color d is seen infinitely often; therefore, α is winning for player i.
If, after some finite prefix, α stays in G′, then α is winning for player i by choice
of σ′. This shows that σ is an i-strategy. ��
Example 3. We consider the following parity game. Round vertices belong to
Even, square vertices belong to Odd. The label x:n means that the name of the
vertex is x and its color is n.

a:2 b:4 c:5 d:1

e:2 f :3 g:2 h:1

W1W0

Even’s winning region is W0 = {a, b, c, e, f, g, h} and Odd’s winning region is
W1 = {d}. The respective winning strategies are indicated using thicker edges.
We note that Even’s winning strategy is not unique since the strategy’s move
(a, b) could be replaced by (a, e). ♦

Let the maximal color satisfy d ≡ i mod 2 for i ∈ {0, 1}. The proof of Theo-
rem 2 shows that as soon as we know the winning positions of player 1 − i, we
can easily compute a winning strategy for player i. However, the proof implicitly
also gives an algorithm for computing the winning positions W1−i of player 1−i.
Let X ⊆ V be minimal such that

– X contains all sinks in Vi,
– X = attr1−i(G,X), and
– (using the subgraph G′ from the proof of Theorem 2) if W ′

1−i are the winning
positions of player 1 − i in the game G′, then W ′

1−i ⊆ X.

The support W1−i of a maximal (1 − i)-strategy satisfies the above properties;
therefore we have X ⊆ W1−i. On the other hand, the proof of Theorem 2 gives
a winning strategy for player i for all positions in V \ X. This yields X = W1.
In the next section, we consider this approach for solving finite parity games.



Reachability Games and Parity Games 27

6 Zielonka’s Algorithm for Parity Games

Let the number of positions V in G be finite and suppose that the largest color
d satisfies d ≡ i mod 2 for i ∈ {0, 1}. We can assume that there is at least one
vertex with color d; otherwise, we decrease the dimension d. We initialize W1−i =
attr1−i(G,Si) where Si are the sinks belonging to player i. Then we iterate the
following steps until W1−i does not increase anymore (i.e., until W ′

1−i = ∅ or
W1−i = V ):

1. Wi ← V \ W1−i and H ← G[Wi]
2. Ud ← {v ∈ Wi | χ(v) = d }
3. A ← attri(H,Ud)
4. G′ ← G[Wi \ A]
5. Let W ′

1−i be the winning positions of Odd in G′.
6. W1−i ← W1−i ∪ W ′

1−i

7. W1−i ← attr1−i(G,W1−i)

Note that Step 5 consists of a recursive call for a game graph with fewer vertices
(since there is at least one vertex v ∈ V with χ(v) = d) and colors {1, . . . , d − 1}.
There is no recursive call if G′ is empty.

After the algorithm terminates, the winning regions of the two players are Wi

and W1−i; note that the correctness of the algorithm was proven in the previous
section. The above algorithm can also compute a (1 − i)-strategy with support
W1−i: Initially, the strategy with support W1−i is the strategy for winning a
reachability game. If W1−i is increased in Step 6, then we unite the two winning
strategies (the strategy for W1−i before the assignment and the strategy for
W ′

1−i). If W1−i is increased in Step 7, then on the new positions we play according
to the strategy for reaching the positions in W1−i before this assignment.

The i-strategy with support Wi can be computed as follows: During the last
iteration of the loop, we have W ′

1−i = ∅; moreover, we can assume that the
recursive call in Step 5 also returns an i-strategy σ′ with support Wi \ A. As in
the proof of Theorem 2, a winning strategy for player i is as follows: at position
in Ud, player i makes some arbitrary move to a position in Wi; at positions
in A \ Ud, player i moves according to the positional strategy for reaching Ud;
and at positions in W0 \ A, player i moves according to σ′. Without any signif-
icant additional effort, we can therefore assume that the above algorithm also
computes the corresponding winning strategies. This approach for computing
maximal positional winning strategies is known as Zielonka’s algorithm.

Theorem 3. Let G be a parity game with n vertices, m edges, and d colors.
Then Zielonka’s algorithm computes maximal winning strategies for both players
in time O(

nd−1(n + m)
)
and, thus, in time O(

nd+1
)
.

Proof. Let c ≥ 1 be a constant such that the initialization and one iteration of
the loop when omitting the time for the recursive call in Step 5 takes time at
most c · (n + m); see Proposition 3. Let f(n, d) · c · (n + m) be the running time
of the algorithm. It suffices to show that f(n, 1) ≤ 1 and f(n, d) ≤ 2nd−1 for
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d ≥ 2. This is true for d = 1 because there is no recursive call. Let now d ≥ 2.
The game graph G′ is always smaller than G. Since the size of H decreases with
every iteration, there are at most n iterations of the loop. Every recursive call
in Step 5 uses at most n − 1 positions and d − 1 colors. Hence, the worst-case
running time satisfies

f(n, d) · c · (n + m) ≤ n · (
f(n − 1, d − 1) · c · (n + m) + c · (n + m)

)

Dividing by c · (n + m) yields

f(n, d) ≤ n · (f(n − 1, d − 1) + 1
)

(1)

For d = 2, we obtain f(n, 2) ≤ n
(
f(n − 1, 1) + 1

) ≤ 2n = 2nd−1 because
f(n − 1, 1) ≤ 1. Let now d > 2. Using Eq. (1), we see that

f(n, d) ≤ n · (2(n − 1)d−2 + 1
)

by induction hypothesis

≤ n · (2(n − 1)nd−3 + 1
)

since d ≥ 3

= n · (2nd−2 − 2nd−3 + 1
)

≤ 2nd−1 since −2nd−3 + 1 < 0

The second part of the statement follows since O(n + m) ⊆ O(n2). ��
Example 4. Consider the following parity game with 2n vertices and 2 col-
ors. Even’s positions are V0 = {a1, . . . , an} and Odd’s positions are V1 =
{b1, . . . , bn}. All vertices in V0 have the color 1 and all vertices in V1 have the
color 2. We have loops (ai, ai) and edges (bi, ai) for all i as well as edges (ai, bj)
for all i < j. All positions are winning for Odd. The game graph for n = 4 is:

b1:2 a1:1 b2:2 a2:1 b3:2 a3:1 b4:2 a4:1

Initially, we have W1 = ∅. In the first iteration of Zielonka’s algorithm, we com-
pute the 0-attractor of U2 = V1 which is V \ {an}. This computation uses a
quadratic number of steps; see Proposition 3. Then the recursive call returns
W ′

1 = {an}, after which we have W1 = {an, bn} by computing the 1-attractor.
The next iteration is similar, but with n decreased by 1. Since we have n iter-
ations, this yields a cubic running time of Zielonka’s algorithm. For d = 2, this
shows that the bound of O(n3) on the running time of Zielonka’s algorithm is
tight. ♦
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7 Lehtinen’s Algorithm for Parity Games

The idea of Lehtinen’s algorithm is to translate a given parity game into another
parity game such that solutions of the new game yield solutions of the original
game. Moreover, applying Zielonka’s algorithm to the new parity game yields a
quasi-polynomial running time 2log

O(1) n.
We need the following notions for graphs. A nonempty set of vertices U ⊆ V

is strongly connected if for all u, v ∈ U there exists a path from u to v. Every
singleton subset {v} ⊆ V is strongly connected. A strongly connected component
is a maximal strongly connected subset; i.e., U is a strongly connected component
if there is no strongly connected subset U ′ with U � U ′ ⊆ V . Every graph can
be partitioned into strongly connected components; if U and U ′ are different
strongly connected components, then there cannot exist paths both from U to U ′

and from U ′ to U . Therefore, by successively moving from one strongly connected
component to another strongly connected component, one cannot visit the same
strongly connected component twice. In particular, in a finite graph, there exist
strongly connected components U such that one cannot reach any other strongly
connected; in this case U is called terminal.

Let G = (V0, V1, E, χ) be the game graph of a parity game with vertices
V = V0 ∪V1 and vertex coloring χ : V → {1, . . . , d}. The r-register graph Rr(G)
of G is again a game graph, but with an edge coloring, see Remark 2. To avoid
confusion, the vertices of Rr(G) are called states. The states are the elements
(v, x, p) ∈ V × N

r × {s, t} where x = x1 · · · xr satisfies x1 ≤ · · · ≤ xr. States
with p = s are called reset states; states with p = t are called transition states.
All reset states belong to Even, every transition state (v, x, t) belongs to the
owner of v. For every register j ∈ {1, . . . , r} and every reset state (v, x, s), there
is an outgoing edge with label reset(j). The target state is (v, y, t) with y =
(0, x1, . . . , xj−1, xj+1, . . . , xr). Formally, the label of the edge is not important it
helps with reasoning about the game. If there is an outgoing edge at a transition
state (v, x, t), then its target is a reset state (w, y, s) with (v, w) ∈ E and yj =
max(χ(w), xj). The first kind of edges are called resets and the second kind of
edges are called transitions. All paths alternate between resets and transitions.
The color of all transitions is 0; the color of an edge with label reset(j) is 2j if
the value xj of register j before the reset is even and 2j + 1 if xj is odd. The
r-register game Rr(G, v, x) is the parity game with initial state (v, x, s); its game
graph is the subgraph of Rr(G) induced by the states reachable from (v, x, s). For
every game α in Rr(G) starting at a state (u, x, p) there exists a corresponding
game αG in G starting at u. The game αG is the sequence of first components
at the transition states of α. Note that register games are not symmetric for
the two players: Firstly, all reset states belong to Even. And secondly, resets of
register j can have even and odd colors, but the odd color 2j + 1 is larger than
the corresponding even color 2j. It is this second property which leads to the
following lemma.

Lemma 3. Let r ≥ 1, let α be a game in Rr(G) and let αG be the corresponding
game in G. If αG is winning for Odd, then so is α.
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Proof. Let αG be winning for Odd. The game α ends in the sink (v, x, t) if and
only if αG ends in the sink v. In particular, both sinks (v, x, t) and v then belong
to the same player. Also note that reset states cannot be sinks. Since αG is
winning for Odd, we can assume that α is infinite (otherwise, α would end in a
sink belonging to Even and therefore be winning for Odd, as desired).

Let q be the largest color which is seen infinitely often during the game αG,
and let j be the largest register such that Even infinitely often plays reset(j) in
the game α. There is a point in αG after which no color larger than q occurs. At
the corresponding point in α, we can wait for j resets of register j. From then
onwards, the value xj of register j is at most q. In particular, whenever we then
see the color q in αG, the contents of register j is q, and it stays q at least until
the next reset of register j. Therefore, there are infinitely many resets of register
j when its value is q. Since αG is winning for Odd, the number q is odd. We
therefore infinitely often see the number 2j +1 in the colors of α. Since all larger
registers are reset only finitely often, 2j +1 is the largest color of α which is seen
infinitely often. Therefore, α is winning for Odd. ��
Lemma 4. If Odd wins (G, v), then Odd wins Rr(G, v, x) for all r ≥ 1 and
all x ∈ N

r.

Proof. If Odd wins (G, v), then there exists a positional strategy (V, F ) such that
Odd wins (G, v) by following this strategy. We adapt this strategy to Rr(G):
at a state (u, y, t) with u ∈ V1, Odd moves to (u′, y′, s) with (u, u′) ∈ F . It
remains to show that this strategy is winning for Odd in the register game
Rr(G, v, x). Let α be a game starting at (v, x, s) and following the above strategy.
The corresponding game αG in G starts at v and follows the strategy (V, F ).
Therefore αG is winning for Odd. By Lemma 3, Odd wins the game α. ��
Remark 4. Positional determinacy of parity games (Theorem 2) leads to the
following consequence of Lemma 4: if Even wins Rr(G, v, x) for some r ≥ 1
and x ∈ N

r, then Even wins (G, v). When following an analogous approach
as above, then a direct proof for this consequence would need to translate a
winning strategy for the register game Rr(G, v, x) into a winning strategy for
(G, v). However, even if Even’s winning strategy for Rr(G, v, x) is positional,
the resulting strategy for (G, v) might not be positional because some different
contents of the registers could lead to different moves at a given position in G.

♦

For a weak converse of Lemma 4, we will use induction on the number of
vertices. During this induction, smaller register games occur. Here, “smaller”
either refers to the size of the corresponding game graph G or the number of
registers. If G′ is a subgraph of G, then Rr(G′) is a subgraph of Rr(G). If q ≤ r,
then every positional strategy on Rq(G) for Even defines a strategy on Rr(G)
in which Even never plays reset(j) for j > q.

During the proof of the following proposition, we will use a slightly different
notion of a positional strategy. Instead of just the support, we assume that a
positional strategy σ : V → V for player i is defined for all v ∈ Vi which are not
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sinks (i.e., σ is also defined for the positions outside the support). Moreover, the
proof will use defensive strategies. A strategy for Even in Rr(G) is defensive if
reset(r) is never played when the contents of register r is odd.

Proposition 4. If Even wins (G, v) and |V | < 2r, then Even wins Rr(G, v, x)
for all x ∈ N

r.

Proof. We assume without restriction that all vertices in G are reachable from
v. We proceed by induction on |V |. First, suppose that V = {v}. If v is a sink,
then it belongs to Odd because Even wins; in this case, after playing reset(1)
at state (v, x, s), the game in Rr(G) also ends in a sink belonging to Odd. If v
is not a sink, then there is a self-loop and the color χ(v) is even (again because
Even is wins). Even again always plays reset(1) and after the first reset (in
which case the color depends on x), the color of all resets is 2. Since all other
colors are 0, Even wins the register game. If r = 1, then |V | = 1 and this case
was already considered. In the remainder of the proof, we can therefore assume
that r > 1 and |V | > 1.

We fix a positional winning strategy for Even for (G, v). At transition states
in the register game, Even always moves according to her strategy for G. We
can remove all edges starting at Even’s positions in G which are not part of
the winning strategy. Since now, all reachable positions belonging to Even have
exactly one outgoing edge, we can transfer ownership of these positions to Odd.
In particular, now all transition states of Rr(G, v, x) belong to Odd and the
game alternates between Even’s resets and Odd’s transitions.

We show that Even can win Rr(G, v, x) against every positional strategy of
Odd. Let T be the transitions defining Odd’s strategy. Consider is a strongly
connected subgraph G′ of G and let w be a vertex of G′ such that (w, y, s) is a
state of Rr(G, v, x). Then Rr(G′, w, y) is a subgraph of Rr(G, v, x). We say that a
positional strategy of Even for Rr(G′, w, y) is leaving this subgraph if, starting
at (w, y, s) in Rr(G, v, x), alternating between Even’s strategy for resets and
Odd’s strategy T for transitions eventually leads to a state outside Rr(G′, w, y).

As before for the graph G and Even’s strategy, we can remove all transitions
from the register game except for those in Odd’s strategy T . We cannot transfer
ownership because there might be sinks owned by Odd. However, there is never
any choice to be made by Odd. Even, starting from (v, x, s), moves to some
terminal strongly connected component H of Rr(G, v, x); this means that there
is no other strongly connected component which is reachable from H. In general,
Even’s strategy for reaching H is not defensive. The underlying positions (i.e.,
first components) of states in H form a strongly connected subgraph G′ of G.
If G′ consists of a single sink, then this sink belongs to Odd (and, thus, Even
also wins the corresponding register game). We can therefore assume that G′ is
not a sink. Since every position in G′ lies on some non-trivial loop, the largest
color d of G′ is even. Since H is a terminal strongly connected component, all
registers have only values which appear in G′ (otherwise, Even could move to
another strongly connected component by playing reset(r)). Next, Even goes
to one of the vertices (w, y, s) such that χ(w) = d. We now have y = (d, . . . , d);
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therefore, we can apply the following claim which then completes the proof of
the proposition because H cannot be left.

Claim: Let G′ be a strongly connected subgraph of G which is not a single sink.
Let d be the largest color of the vertices of G′. Let w be a vertex of G′. Let
y = (y1, . . . , yr) be such that yr ≥ d and yr is even, and yj ≤ d for all j < r.
Then Even has a defensive strategy for Rr(G′, w, y) which is either winning or
which is leaving Rr(G′, w, y).

Proof of the Claim: The color d is even because Even wins (G, v). The proof is
by induction on the number of vertices in G′. If G′ contains a single vertex, then
Even always plays reset(1) with color 2. This either yields an infinite game with
the maximal infinite color being 2, or it ends in a sink belonging to Odd, or it
leaves Rr(G′, w, y). In either case, the claim is true. Let now G′ have at least
two vertices. Let Ud consist of all vertices of G′ with color d. Let G1, . . . , Gk be
the strongly connected components of G′ − Ud. Some of the components might
be sinks – even if G′ does not have any sinks. If Gj has less than 2r−1 vertices,
then the induction hypothesis in the proof of the proposition yields a winning
strategy for the (r−1)-register game on Gj . Since G has less than 2r vertices, at
most one component has ≥ 2r−1 vertices. Let this component be G1; (it might be
that there is no such component, in which case we can simply assume that G1 is
never visited). It remains to give winning strategies for Even for register games
on G1 and on Ud. Suppose that we have such strategies, then Even always plays
these winning strategies until Odd’s strategy T forces her to move to

– a register game on another strongly component G1, . . . , Gk,
– a register game on Ud, or
– to leave Rr(G′, v, x).

In the first two cases, Even again applies the winning strategy of the corre-
sponding register game. If the last case occurs, then the claim is true. Note that
every path in G′ from Gj to G� and back to Gj with j = � visits Ud at some
point before re-entering Gj .

Next, we describe the winning strategies for the register games on G1 and on
Ud. We will maintain the following invariants: Firstly, whenever we are leaving
G1, the contents of register r will either be even or less than d. And secondly,
whenever we are leaving Ud, the contents of register r will be d. All other reg-
isters always have values ≤ d. The components G2, . . . , Gk do not affect these
invariants because the colors are ≤ d and the strategies never play reset(r).

At reset states (u, y, s) with u ∈ Ud, Even plays reset(r) and moves to a
transition state (u, y′, t). When entering (u, y, s), the invariants ensure that the
contents yr of register r is an even number ≥ d and yj = d for all j < r.
Therefore, the color of this reset edge is 2r and the value y′

r of register r after
the reset is yr−1 = d because r ≥ 2.

It remains to consider the component G1. Even plays reset(r − 1) until all
registers except for register r have a value which occurs in G1 or until we are
leaving G1, whichever happens first. If we are leaving G1, then all colors of the
resets are ≤ 2r − 1. Otherwise, the induction hypothesis in the proof of the
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claim yields a defensive winning strategy for the register game on G1, and Even
continues by following this strategy. Note that all resets in following a defensive
strategy have colors ≤ 2r. Odd’s strategy T might force us to leave G1 with a
register configuration where the top register is smaller than d (and this value
could even be over-written by another number smaller than d in one of the other
components G2, . . . , Gk) but it will again be d when re-entering G1 since we
need to visit Ud before re-entering.

A game which follows Even’s strategy and which does not leave G′ can fall
into one of two categories. The first category is that it infinitely often visits states
(u, y, s) with u ∈ Ud. Then we have infinitely many resets with color 2r and all
other resets have colors ≤ 2r. Therefore, this game is winning for Even. The
second category is that after some time, the game stays in one of the components
Gj (i.e., all states (u, y, p) after some finite prefix have first components u in Gj).
In this case, the game is winning because (after some finite prefix) it follows a
strategy for Gj which is winning for Even. This completes the proof of the claim
and, hence, the proof of the proposition. ��
Theorem 4 (Lehtinen [9]). Let G be a parity game with n vertices and let
r ≥ 1 such that n < 2r. Then for every position v and every x ∈ N

r, the games
(G, v) and Rr(G, v, x) have the same winner.

Proof. If Odd wins (G, v), then Odd wins Rr(G, v, x) by Lemma 4. If Even
wins (G, v), then Even wins Rr(G, v, x) by Proposition 4. The claim follows by
Theorem 2. ��
Remark 5. Lehtinen shows that there are parity games with n vertices such
that Even wins at every vertex but she needs Ω(log n) registers to win the
corresponding register game [9, Lemma 4.4]. We revisit Lehtinen’s example in
terms of vertex colorings: We inductively construct a game graph Gr with 2r+1−2
vertices all belonging to Odd, with largest color 2r, and such that there is exactly
one position with color 2r and one with color 2r − 1. Even wins (Gr, v) at all
starting positions v but no register game Rr(Gr, v, x). Moreover, Even wins
Rr+1(Gr, v, x) for all v ∈ V and all x ∈ N

r+1. We let R1 be the following game
graph with colors {1, 2}:

1 2

The graph Gr for r > 1 is constructed from two copies of Gr−1 and two new
vertices with colors 2r − 1 and 2r, respectively:

2(r − 1)

2r − 1

2r

2(r − 1)

Gr−1 Gr−1

Gr
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We briefly describe Odd’s winning strategy for the r-register game in terms of
the underlying graph. As long as Even only resets registers ≤ r−1, Odd always
stays within one of graphs Gr−1. After Even resets register r at least r times,
Odd changes to the other copy of Gr−1 via one of the vertices with color 2r − 1
or 2r. Even wins the (r + 1)-register game, basically by resetting register j + 1
at positions with color 2j and register 1 at all other positions. ♦

Theorem 5 (Calude, Jain, Khoussainov, Li, and Stephan [1]). If G is a
parity game with n vertices, then we can decide the winner of (G, v) in quasi-
polynomial time 2log

O(1)(n).

Proof. Let the vertex coloring be χ : V → {1, . . . , d}. Let r ≥ 1 be mini-
mal such that n < 2r. Then r ∈ O(log n). By Theorem 4, it suffices to solve
Rr(G, v,0) for 0 = (0, . . . , 0) in quasi-polynomial time to decide the winner of
(G, v). The positions of Rr(G, v,0) are all in V × {0, . . . , d}r × {s, t}. In par-
ticular, there are at most 2n(d + 1)r positions in the register game with colors
{0}∪{2, . . . , 2r + 1}. We can solve this game using Zielonka’s algorithm in time
nO(r)dO(r2), see Remark 2. This yields a running time of nO(log n)dO(log2 n) since
r ∈ O(log n). We can assume that d ≤ n + 1 which yields a quasi-polynomial
running time nO(log2 n) = 2O(log3(n)). ��

8 Conclusion

In this survey paper, we revisit Lehtinen’s quasi-polynomial algorithm for solving
parity games [9], and we provide all necessary preliminary results with full proofs.
This includes the following topics:

– attractors and positional determinacy of reachability games,
– the computation of optimal winning strategies for reachability games,
– positional determinacy of parity games,
– an analysis of Zielonka’s algorithm for solving parity games,
– and Lehtinen’s register games.

Both determinacy results are proven for arbitrary game graphs; in particular,
the graphs are allowed to be infinite. While reachability games can end after
finitely many moves if the target set is reached, typical parity games have an
infinite duration (except if they end in a sink). For a uniform treatment, we use
a framework which includes both finite and infinite durations.

It would be interesting to have a tighter analysis of Zielonka’s algorithm.
Friedmann gives a game with a linear number of vertices and colors such that
the running time of Zielonka’s algorithm on this game takes time at least Fn

for the n-th Fibonacci number [4]. There is still a significant gap between this
lower bound and the upper bound in Sect. 6. Whether finite parity games can
be solved in polynomial time is still the main open problem is this area.
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A cyber-physical system (CPS) is now well understood as an integration of hier-
archical composition digital computing (or information processing) systems and
physical systems [3,10,14]. The constituent components are CPSs too, and they
are supposed to be heterogeneous, namely, they can be developed by different
teams with different programming languages and technology platforms. These
components are inherently distributed and run in concurrency. The underly-
ing computational theory is the theory of hybrid I/O automata [17]. The widely
appreciated model of system architecture is the layered components composition
based on interface contracts [8,15,20], which supports interface based black-box
orchestration, substitution, plug-and-play extension, and component-wise refine-
ment by contract.

The advances in research on CPSs and increasing practice in their applica-
tions show the importance of the human in the loop of the CPS. This is because
not all control tasks can be fully automated and control needs to switch between
humans and machines, and there are social and ethical considerations. Having
humans in the control loop introduces many potential problems for which we do
not yet know the solutions. These problems are considered as potential causes
of accidents in the two Boeing Max accidents which happened in October 2018
and March 2019 [11,12]. Therefore, extensions to CPSs with the consideration
of human knowledge and behaviours, human-cyber and human-physical interac-
tions and collaborations are proposed with the notion of human-cyber-physical
systems (HCPSs) [16,19,21,22]. We computer scientists all clearly understand
that the study and development of any newly emerged computing systems require
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(a) Overview of an HCPS.

(b) Modelling framework.

Fig. 1. Overview of an HCPS and the modelling framework.

to establish its associated theory of computation. For example, we have the the-
ory of automata (and Turing Machines [9]) for classical sequential computing,
theory of I/O automata for concurrent and distributed computing [13], theory of
timed automata [1,2,5] for real-time computing, probabilistic automata [18] for
probabilistic computing, and hybrid I/O automata for CPSs (or hybrid systems).
Therefore, Liu and Wang [16] strongly argue that there is an urgent need to
develop a theory of human-cyber-physical computing or a theory of human-cyber-
physical automata (HCPA). The reason for this need is from the fact that there
does not exist a computational model which characterizes human knowledge and
behaviours, the mechanisms of interactions between humans and machines, and
between humans and the physical world. They further discuss methods of speci-
fication, design, and verification of HCPS, such as the model interface-contracts
of human-cyber-physical components, which can only be developed on such an
underlying theory of HCPA.

1 The Basic Model of HCPA

In this talk, we discuss our initial progress in our project on “Theory of Modelling
and Software Defined Method for Human-Cyber-Physical Computing” which is
supported by the Chinese Nature Science Foundation. We start with a simple
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and fundamental form of HCPSs1, as shown in Fig. 1(a), consisting of three
parts: a human model, a cyber system, and a physical system. In this model,
the human and the cyber system jointly control the physical system. To do so,
the human and the cyber system generate their own policies by sensing and ana-
lyzing the information of the physical system and then controlling the physical
system in cooperation. In reality, a human can take the role of making control
decisions and directly execute the control operation on the physical system or
delegate the control operation to the cyber system. The model needs to consider
that the human has the capability of automatic learning during the operation
of the HCPS, and may make mistakes. The model of HCPA that we propose
focuses on these characteristics of humans in an HCPS and the mechanism of
control switching between the human and the cyber system. We give the formal
definition of the basic models of HCPA we propose, which is shown in Fig. 1(b).
It is important to note that we do not intend (we do not believe it is now theo-
retically feasible) to model generic human intelligence, but propose a modelling
framework for representing the learning capability and process in an application-
specific HCPS by machine learning model.

2 Synthesis of HCPS

Fig. 1(b) also illustrates the approach to constructing a model of HCPA. An
HCPA of an HCPS is a composition of two automata, a cyber-physical system
automaton (CPSA) and a human-physical system automaton (HPSA). The for-
mer characterizes the behaviour of the CPS in the HCPS according to given rules
of state transitions, and the latter simulates behaviour of the human-physical
system (HPS) in the HCPS and the behaviour of the physical system accord-
ing to the control decisions made by the human. To characterize the learning
ability of the human, we introduce a human oracle, which learns the interac-
tion behaviour of the human with the physical system and updates and outputs
human decisions. We further use another oracle which represents the control
switching between the CPSA and the HPSA.

At any particular moment of time during its execution, an HCPA is in a
state under the model of human control or the model of cyber control (also
called machine control). A problem is that a human has learning capability and
it can make mistakes in its decision making. This implies that the behaviour
of performing control actions and state changes is probabilistic, and we cannot
statically define the rules (or policies) in the process of human decision making
and the conditions for switching from one mode to another. Furthermore, the
requirements or properties required for analysis are in general probabilistic and
can be specified by a logic formula, say in the linear temporal logic (LTL). We
thus propose a synthesis method for automatic generation of the conditions for
control mode switching and the policies to ensure that the HCPA satisfies a
given objective with maximum probability. We use two Markov Decision Pro-
cesses (MDPs) [4] to simulate the behaviours of the automata HPSA and CPSA,
1 More humans, machines and physical systems are involved in a multi-layered HCPS.
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respectively, and we extended the reinforcement learning algorithm of Bozkurt et
al. [6] to implement the synthesis. We have evaluated our model and the method
of synthesis with two case studies. The first is a grid-world motion planning case
[6], and the second is a lunar landing case [7]. The results of our experiments
show that the approach is effective in finding the policy that satisfies the given
objective with maximum probability in an HCPA.

3 Concluding Remarks

In this talk, we propose research on the theory of computation for the new
paradigm of human-cyber-physical computing. The grand goal is to support
the design, development, operation, and maintenance of HCPSs, or the very
closed notion of cyber-physical-societal systems (CPSSs). As the first step of the
research, we assume an HCPS consists of a human-cyber system and a CPS in
which a human operator and the cyber machine in the CPS jointly control the
physical processes and define a basic model of human-cyber-physical automata
(HCPA). An HCPA defines a composition of an automaton that models the
behaviour of a human-physical system and an automaton that models a CPS.
The model captures the key features that the human has learning and prob-
abilistic behaviour, and provides abstractions for the interactions between the
human and the cyber machines and between the human and the physical system.
We also propose an approach to synthesize an HCPA to satisfy a given objective
with maximum probability.

The basic model only assumes one human operator and one cyber machine in
the system. The immediate further work includes the definition of compositions
of a number of the HCPAs so as to form a multi-layered hierarchical HCPA. More
future work includes the study of the properties, express power, and feasibility
of implementation of this model. The development of a full theory of HCPA also
involves fundamental and interdisciplinary research problems. For example, we
can build the relation of different HCPA with different machine learning models
so as to answer the question if and when an HCPA is equivalent to a machine
learning model ; and how we can define an operational semantics of a program
with the mixture of machine learning programs and traditional programs.

Acknowledgments. We thank to our project colleagues Professor Wei Dong, Profes-
sor. Guanjun Liu and Dr. Hengjun Zhao for their comments. We express our thanks
to Dr. Qiao Ke. She read the earlier version of the paper and provided good comments
on the improvement of the paper.
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Abstract. We consider partial order semantics of concurrent systems in
which local reconfigurations may have global side effects. That is, local
changes happening to an entity may block or unblock events relating to
others, namely, events in which the entity does not participate. We show
that partial order computations need to capture additional restrictions
about event ordering, i.e., restrictions that arise from such reconfigura-
tions. This introduces ambiguity where different partial orders represent
exactly the same events with the same participants happening in differ-
ent orders, thus defeating the purpose of using partial order semantics.
To remove this ambiguity, we suggest an extension of partial orders called
glued partial orders. We show that glued partial orders capture all possi-
ble forced reordering arising from said reconfigurations. Furthermore, we
show that computations belonging to different glued partial orders are
only different due to non-determinism. We consider channeled transition
systems and Petri-nets with inhibiting arcs as examples.

1 Introduction

The most common way to represent computations is by considering linear
sequences of events. When reasoning about concurrent systems, the linear order
semantics of computation does not capture important information about par-
ticipation in events and the interdependence of events. In order to capture
this extra information in computations, instead of linear order, partial order
semantics needs to be used. Existing approaches to partial order semantics (cf.
Process semantics of Petri nets [18,21,23] and Mazurkiewicz traces of Zielonka
automata [13,17,25]) proved useful in recovering information about the partici-
pants of events and (in)dependence of concurrent events.

In this paper, we are interested in concurrenct systems where events are
affected by changes happening to non-participants. This situation, which we call
in general reconfiguration, arises in two types of very different models of concu-
crrent systems: Channeled Transition Systems (CTS) [4,5]1 and Petri net with
inhibitor arcs (PTI-nets) [9,12,16]. In the first, processes connect and disconnect
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to channels during execution and by doing so disable and enable communications
on these channels in which they ultimately do not participate. In the second,
tokens enter and exit places that inhibit transitions and by doing so disable
and enable said transitions without participating in the transitions themselves.
In these two settings, dependencies among events emerge dynamically as side-
effects of interaction, leading to difficulties in capturing these emergencies in
partial-order semantics.

It is possible to suggest a partial order semantics of such types of systems.
Indeed, we give a partial order semantics to both types of systems (cf. [15] for
an alternative partial order semantics of PTI-nets). However, we recognise that
reconfiguration induces another dimension of nondeterminism in these systems.
Reconfiguration creates a situation where some events must be ordered with
respect to sequences of other events dynamically during execution, and thus
forcing interleaving in a non-trivial way. That is, from the point of an event, a
sequence of other events is considered as a single block and can only happen
before or after it.2 Just like multiple linear sequences correspond to different
interleavings arising from the same partial order, reconfigurations lead to mul-
tiple partial order computations corresponding to exactly the same events with
exactly the same participants happening along a computation just in different
orders.

To resolve that, we propose an extension of partial orders with additional
objects called glue. Using these structures we can define semantics that char-
acterises reconfiguration. Both reconfiguration points and their corresponding
scheduling decisions are captured in a single structure, while preserving a true-
concurrent execution of independent events.
Contributions. We show how to give partial order semantics to these two types
of systems in a way that captures reconfigurations. We use a specialised version
of partial orders, that we call labelled partial orders (LPO for short). We show
how to construct an LPO representing the computations of a specific system.
Such LPOs consider only the local views of individual processes/indistinguishable
tokens and their interaction information. An LPO captures participation in
events and the relations between events. In the spirit of Mazurkiewicz traces,
the states of different processes/distinguishable tokens are (strictly) incompara-
ble, that is there is no notion of a global state. This way we can easily single
out finite sequences of computation steps where a process (or a group of pro-
cesses)/tokens execute independently. We can also distinguish individual events
from joint ones. As mentioned, despite the fact that an LPO may refer to reconfig-
uration points, it cannot fully characterise reconfiguration in a single structure.
For this reason, we introduce glued labeled partial orders (g-LPO, for short), that
is an extension of LPO with glue to separate a non-deterministic choice from

2 Note that reconfiguration is an internal event, and is totally hidden from the per-
spective of an external observer [20] who may only observe message-/token-passing.
Indeed, messages or tokens can only indicate the occurrence of exchange but cannot
help with noticing that a reconfiguration has happened and what are the conse-
quences of reconfiguration.
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forced scheduling due to reconfiguration. We show that a g-LPO is sufficient to
represent LPO computations that differ in scheduling due to reconfiguration. We
also show that LPO computations belonging to different g-LPO(s) are different
due to nondeterministic selection of independent events.

The paper is organised as follows: In Sect. 2, we informally present our partial
order semantics and in Sect. 3, we introduce the necessary background. In Sect. 4,
we provide the LPO semantics and in Sect. 5 we define the glued partial orders.
In Sect. 6 we prove important results on g-LPO with respect to reconfiguration
and nondeterminism. In Sect. 7 we present concluding remarks.

2 Labelled Partial Order Computations in a Nutshell

We use the CTS formalism to informally illustrate the LPO semantics under
reconfiguration and the idea behind g-LPO. The example is kept simple to aid
the reader, but our semantics can handle much more intricate cases where depen-
dencies are nontrivial.

We consider the CTSs in Fig. 1(a-c) where each CTS Ti for i ∈ {1, 2, 3}
represents an individual agent and their parallel composition defines the system
behaviour as we will explain shortly. A CTS Ti consists of a set of states and
transitions. We will use the notation Ti,k to denote that agent Ti is currently
in state k. A state is labelled with a dynamic listening function to define the
set of channels that the agent is connected to, including a special nonblocking
broadcast channel �. All other channels are blocking multicast. An agent cannot
disconnect from the broadcast channel. Each transition is labelled with a message
of the form (υ, r, ch) where υ is the message contents, r ∈ {!, ?} is the role of the
transition either send ! or receive ?, and ch is a channel name.

The system behaviour is defined as follows: if there exists an agent with a
send transition on a specific channel then for all other agents: In case of broad-
cast: the sender cannot be blocked and all agents who can supply a matching
receive transition participate. In case of multicast: all agents who are listening
to the channel must participate by supplying their matching receive transition
or otherwise the sender is blocked. For instance, agent T2 can initially (i.e., in
state T2,1 ) send the message (v2, !, d) and move to T2,2 and only agent T3 is
initially listening to channel d in T3,1. Thus, T3 participates (and moves from
T3,1 to T3,2) while T1 stays still as it cannot observe the communication. After
the joint transition T2 starts listening to c (in T2,2) while T3 disconnects from d
and starts listening to e (in T2,2).

Agents can reconfigure their interaction interfaces by updating their listening
functions as in the previous example. The side effects of such reconfiguration may
change the ordering of events at system level even though the reconfiguration
happened internally. For instance, after sending message (v2, !, d), agent T2 starts
listening to channel c (in state T2,2) but cannot supply a receive transition for this
channel. Thus, agent T1 is now blocked until T2 exits state T2,2 and disconnects
from c. That is, if (v2, !, d) happened before (v1, !, c) then (v1, !, c) may only
happen after (v3, !, e). In other words, (v1, !, c) is now ordered with respect to the
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Fig. 1. Channel Transition System CTS

sequence (v2, !, d),(v3, !, e). It should be noted that initially (from T1,1 and T2,1)
there were no dependencies between (v1, !, c) and (v2, !, d), but such dependencies
arose as side effects of internal reconfiguration of agent T2.

Moreover, agent T3 (from T3,2) may inhibit the sending of message (v3, !, e)
by nondeterministically choosing to send (v4, !, b) instead and moving to state
T3,4. Note that T3 still listens to e (in T3,4), but cannot supply a matching receive
transition, and thus permanently blocks T2 (in T2,2).

By restricting attention to the interleavings, we have that (v1, !, c) considers
both (v2, !, d) and (v3, !, e) as a single block, and their execution cannot be inter-
rupted. Namely, the only viable interleavings (in case (v3, !, e) is scheduled later)
are (v1, !, c), (v2, !, d), (v3, !, e) or (v2, !, d), (v3, !, e), (v1, !, c). Note that this is only
from the point of view of (v1, !, c) and has no implications for other messages.
This creates a forced interleaving in a non-trivial way due to the occurrence of
non-observable reconfigurations that we cannot reason about from a global per-
spective. These dependencies among events emerge dynamically as side-effects
of interaction, and thus put the correctness of partial order semantics at stake.

To handle this issue, we introduce a partial order semantics of computations
under reconfiguration. We illustrate our LPO and g-LPO semantics in Fig. 1(d),
which characterises all possible (maximal) computations of the composed system.
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Here, we use the dashed arrow ��� to indicate a happen before relation (or an
interleaving order →i as we will see later).

The two diagrams succinctly encode three possible LPOs: (i) the LPO
obtained from Fig. 1(d) left structure with the dashed arrow from (v1, !, c) to
(v2, !, d); (ii) the LPO obtained from Fig. 1(d) left structure with the dashed
arrow from (v3, !, e) to (v1, !, c); and (iii) the LPO obtained from Fig. 1(d) right
structure with the dashed arrow from (v1, !, c) to (v2, !, d).

LPOs (i) and (ii) agree that agent T3 (in state T3,2) nondeterministically
chooses to send (v3, !, e) while in (iii) T3 nondeterministically chooses (v4, !, b).
All LPOs capture information about interaction and interdependence among
events. Indeed, in all cases we see that both states T2,1 and T3,1 synchronise
through the transition (v2, !, d). States that are not strictly ordered with respect
to a common transition are considered concurrent (or unordered). Thus, as in
Mazurkiewicz traces there is no notion of a global state. Notice that LPOs (i)
and (ii) differ only in the forced interleaving of (v1, !, c) with respect to the block
(v2, !, d), (v3, !, e).

Note that both LPOs (i) and (ii) have information both on reconfiguration
and nondeterminism, but each individually cannot be used to distinguish the
hidden reconfiguration. In fact, (v1, !, c) ��� (v2, !, d) in (i) indicates that (v1, !, c)
happened before a reconfiguration caused by (v2, !, d), and (v3, !, e) ��� (v1, !, c)
in (ii) indicates that (v1, !, c) happened after the reconfiguration. In (iii), due to
the different nondeterminsitic choice, the only possible case we have to consider
is that of (v1, !, c) happening before (v2, !, d).

This suggests that we can actually isolate reconfiguration from nondeter-
minism by using a more sophisticated structure than LPO, and thus expose
the difference in a way that allows reasoning about these hidden events from a
global perspective. For this reason, we define g-LPO computations, that are an
extension of LPO with a notion of glue.

In this simple example, a g-LPO simply drops strict ordering of events with
respect to each other (like (v1, !, c) ��� (v2, !, d) or (v3, !, e) ��� (v1, !, c)), and
instead assigns each event a (possibly empty) glue relation defining the glued
elements from the point of view of that event. The glue relation is defined based
on reconfiguration points in CTS, and on inhibitor arcs in Petri nets.

Consider now the structures in Fig. 1(d) without the dashed arrows and, now,
with an explanation of the red arrows. These two structures are each a g-LPO.
For the one on the left, since T2,2 inhibits (v1, !, c) all existing incoming and
outgoing edges from T2,2 are glued to T2,2. Thus, (v1, !, c)’s glue relation includes
these edges (in red). All other transitions have empty glue relations because
they are not inhibited. As they are not inhibited, their interdependence is well-
captured statically based on their communication. Note that the glue relation is
not required to be transitive and the glue only relates states and transitions. In
the structure on the right of the figure, (v2, !, d) is glued only to T3,2. As (v4, !, b)
is scheduled rather than (v3, !, e), then T2,2 remains as a maximal element.

As we show later, a single g-LPO can be used to characterise reconfiguration
and separate it from other sources of nondeterminism in the system.



A PO Characterisation of Reconfiguration 47

3 Preliminaries

3.1 Partial Orders and Labeled Partial Orders

We use a specialised form of partial orders to represent computations.
A partial order (PO, for short) is a binary relation ≤ over a set O that is

reflexive, antisymmetric, and transitive. We use a < b for a ≤ b and a �= b. We
use a#b for a �≤ b and b �≤ a, i.e., a and b are incomparable.

A labelled partial order (LPO, for short) is (O,→c,→i, Σ, Υ, L), where O =
V

⊎
E is a set of elements partitioned to nodes and edges, respectively, →c and

→i are disjoint, anti-reflexive, anti-symmetric, and non-transitive communica-
tion and interleaving order relations over O. We have →c⊆ V × E ∪ E × V and
→i⊆ E × E. When →i= ∅ we omit it from the tuple. We denote →=→c ∪ →i.
The relation ≤ is the reflexive and transitive closure of →. We require that ≤ is
a partial order. The labelling function L : O → Σ ∪ Υ satisfies L(V ) ⊆ Σ and
L(E) ⊆ Υ , where Σ is a node alphabet and Υ is an edge alphabet. Given an
element a ∈ O we write •a for {b | b → a} and a• for {b | a → b}.

Intuitively, for CTS, elements in V relate to execution histories of individual
agents and elements in E to communication events. Thus, a history belongs to
an individual agent and a transition corresponds to either an individual com-
putational step or a synchronisation point among multiple agents. The relation
→c captures participation in communication and the relation →i captures order
requirements.

For PTI-nets, elements in V correspond to a history of a token or multi-
ple tokens with the same history and elements in E correspond to transitions.
Similarly, →c captures participation in transitions and →i captures order.

3.2 Channelled Transition Systems (CTS)

We present Channeled Transition Systems [4,5]. A Channelled Transition System
(CTS) is a tuple of the form T = 〈C,Λ,B, S, S0, R, L, ls〉, where C is a set
of channels, including the broadcast channel (�), Λ is a state alphabet, B is
a transition alphabet, S is a set of states, S0 ⊆ S is a set of initial states,
R ⊆ S × B × S is a transition relation, L : S → Λ is a labelling function, and
ls : S → 2C is a channel-listening function such that for every s ∈ S we have
� ∈ ls(s). That is, a CTS is listening to the broadcast channel in every state.
We assume that B = B+ ×{!, ?}×C, for some set B+. That is, every transition
labeled with some b ∈ B is either a message send (!) or a message receive (?) on
some channel c ∈ C. We write B! for B+ × {!} × C and B? for B+ × {?} × C.

Given (b+, !, c) ∈ B we write ?(b+, !, c) for (b+, ?, c) and ch(b+,−, c) for c.
That is, ?(b) is the corresponding receive transition of a send transition b and
ch(b) is the channel of b.

For a receive transition b = (b+, ?, c) and a state s ∈ S we write s →b if
c ∈ ls(s) and there is some s′ such that (s, b, s′) ∈ R. That is, s is listening on
channel c and can participate, i.e., has an outgoing receive transition for b. We
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Fig. 2. Petri net with inhibitor arcs

write s �→b if c ∈ ls(s) and it is not the case that s →b. That is, s is listening
on channel c and is not able to participate.

A history h = s0, . . . , sn is a finite sequence of states such that s0 ∈ S0 and for
every 0 ≤ i < n we have that (si, bi, si+1) ∈ R for some bi ∈ B. The length of h is
n+1, denoted |h|. For convenience we generalise notations applying to states to
apply to histories. For example, we write c ∈ ls(h) when c ∈ ls(sn), h →b when
sn →b and h �→b for sn �→b. Similarly, if h = s0, . . . , sn and h′ = s0, . . . , sn, sn+1

where (sn, bn, si+1) ∈ R, we write (h, bn, h′) ∈ R. Let hist(T ) be the set of all
histories of T .

Consider a system S = T1 ‖ · · · ‖ Tn with n CTSs, where Ti = 〈Ci, Λi, Bi, Si,
Si
0, Ri, Li, lsi〉 is a CTS. We denote C =

⋃
i Ci, and B =

⋃
i Bi and B! =

⋃
i B!

i.
A global state of S is S =

∏
i Si and S0 =

∏
i Si

0 is the set of initial states. The
global linear order transition relation Δ ⊆ S × B! × S is defined as follows:

Δ =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎝
(s1, . . . , sn),

(υ, !, c),
(s′

1, . . . , s′
n)

⎞

⎠

∣
∣
∣
∣
∣
∣
∣
∣

∃i . (si, (υ, !, c), s′
i) ∈ Ri and ∀j �= i .

(1) (sj , (υ, ?, c), s′
j) ∈ Rj and c ∈ lsj(sj) or

(2) c /∈ lsj(sj) and s′
j = sj or

(3) c = �, s′
j = sj , and ∀s′′ . (sj , (υ, ?, c), s′′) /∈ Rj

⎫
⎪⎪⎬

⎪⎪⎭

Intuitively, there exists one sender and potentially multiple receivers. Multicast
channels are blocking, i.e., (1) all agents who are listening to the channel must
be able to participate in the communication in order for a send to be possible;
(2) agents that are not listening ignore the message. The broadcast channel
is non-blocking and agents always listen to it, i.e., (1) if they can participate,
each supplies a receive transition and receives the message; (3) if they cannot
participate in a communication it still goes on without them.

3.3 Petri Nets with Inhibitor Arcs (PTI-nets)

We present Petri Nets with inhibitor arcs [9,12,16]. A Petri net N with
inhibitor arcs is a bipartite directed graph N = 〈P, T, F, I〉, where P and T are
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the set of places and transitions such that P ∩T = ∅, F : (P ×T )∪(T ×P ) → N is
the flow relation, and I ⊆ (P ×T ) is the inhibiting relation. We write (s, s′) ∈ F
for F (s, s′) > 0. Without loss of generality, we restrict attention to Petri nets
where all transitions have a non-empty preset and a non-empty post-set.

The configuration of a Petri net at a time instant is defined by a marking.
Formally, let N be a Petri net with a set of places P = {p1, . . . , pk}. A marking
is a function m : P → N, where m(pi) corresponds to the number of tokens in
pi, for i = 1, . . . , k. Functions can be added, subtracted, and compared in the
usual way. We assume some initial marking m0. For p ∈ P let p be the function
p : P → {0, 1} such that p(p) = 1 and p(p′) = 0 for every p′ �= p. Let M denote
the set of all markings.

For a transition t ∈ T we define the pre-function of t, denoted by •t, to be
•t(p) = F (pi, t). Similarly, the post-function of t is t• = F (t, pi).

An inhibitor arc from a place to a transition means that the transition can
only fire if no token is on that place. The inhibitor set of a transition t is the set
◦t = {p ∈ P | (p, t) ∈ I}, and represents the places to be “tested for absence” of
tokens. That is, an inhibiting place allows to prevent the transition firing.

A transition t is enabled at m if for every p we have m(p) ≥ F (p, t) and all
inhibitor places are empty, i.e., for every p ∈ ◦t we have m(p) = 0. Note that if
for some t and p ∈ ◦t we have (p, t) ∈ F then t can never fire, i.e., it is blocked.

The running example and the corresponding LPOs and g-LPOs can be mod-
elled in PTI-Nets as in Fig. 2 where the multiplicities for all edges is 1. Intuitively,
the inhibitor arc plays the role of a CTS state that listens to a message but does
not supply a receive transition.3

4 LPO Semantics

In this section, we provide CTSs and PTI-nets with a labelled partial order
semantics. The labelled partial order semantics of CTSs is novel while the one
of Petri nets extends occurrence nets [18] with event-to-event connections that
allow to capture reconfigurations.

4.1 Channelled Transition Systems (CTS)

Consider a system S = T1 ‖ · · · ‖ Tn, where Ti = 〈Ci, Λi, Bi, Si, S
i
0, Ri, Li, lsi〉.

We denote C =
⋃

i Ci, and B =
⋃

i Bi.

Definition 1 (LPO-computation). A computation of S is an LPO (O,→c

,→i, Σ, Υ, L), where V ⊆
⋃

i hist(Ti), Σ = V , →c=→s

⊎
→r is the disjoint

union of the send and receive relations, Υ = {(υ, !, c) ∈ B} are the set of message
sends, and for h ∈ V we have L(h) = h. In addition we require the following:

C1. The edge eε such that L(eε) = (b, !, �) is the unique minimal element accord-
ing to ≤. For every i, we have s0i ∈ V and eε →r s0i .

3 A general translation of CTS to PTI-nets is quite involved and loses the distinction
between channels and processes.



50 Y. Abd Alrahman et al.

C2. If h ∈ V ∩ hist(Ti) there is a unique e ∈ E such that e →c h. If |h| >
1, there is also a unique h′ ∈ V ∩ hist(Ti) such that h′ →c e and either
(h′, L(e), h) ∈ Ri or (h′, ?(L(e)), h) ∈ Ri.

C3. For every h ∈ V there is at most one e ∈ E such that h →c e.
That is, h participates in at most one communication.

C4. For every e ∈ E \ {eε} there is I ⊆ [n] such that all the following hold:
(a) For every i ∈ I we have |•e ∩ hist(Ti)| = 1 and |e• ∩ hist(Ti)| = 1.

That is, for each agent that participates in a communication the edge
connects exactly to one predecessor history and one successor history.

(b) There is a unique i ∈ I and h, h′ ∈ V ∩hist(Ti) such that (h,L(e), h′) ∈
Ri and h →s e →s h′ and for every i′ ∈ I \ {i} there are h′′, h′′′ ∈
V ∩ hist(Ti′) such that (h′′, ?(L(e), h′′′) ∈ Ri′ and h′′ →r e →r h′′′.
That is, every communication has a unique sender and the rest are
receivers. All these connections satisfy the respective agent transitions.

(c) If L(e) = (υ, !, c) for c �= � then for every h ∈ V such that c ∈ ls(h) we
have h ≤ e or e ≤ h.
That is, a communication on a multicast channel is ordered with respect
to every history that listens to the same channel. Thus, the history either
participates in the communication or happens before or after it.

(d) If L(e) = (υ, !, �) then for every h ∈ V such that h →?(L(e)) we have
h ≤ e or e ≤ h.
That is, a communication on the broadcast channel is ordered with
respect to every history that could participate in the communication.

C5. For every e �= e′ such that ch(e) = ch(e′) we have e ≤ e′ or e′ ≤ e.
That is, all communications on the same channel are ordered.

C6. If e →i e′ then there is some h = s0, . . . , sj and one of what follows holds:
(a) ch(e) = ch(e′).
(b) L(e′) = (υ, !, c) for c �= �, h →c e and ch(L(e′)) ∈ ls(h).
(c) L(e) = (υ, !, c) for c �= �, e′ →c h and ch(L(e′)) ∈ ls(h).
(d) L(e′) = (υ, !, �), h →c e and h →?(L(e′)).
(e) L(e) = (υ, !, �), e′ →c h and h →?(L(e)).
That is, we only allow connections between two edges in order to capture
the ordering in a single channel (a), to capture the order between multi-cast
messages and histories that could be listening to them (b,c), or to capture the
order between broadcasts and histories that could participate in them (d,e).

That is, a computation starts from a unique broadcast that initiates all the
initial states of Ti for all i (C1). Every history has a unique communication that
leads to it and (if it is not the initial state) the communication connects a unique
previous history of the same agent according to the transition of the agent (C2).
Every history participates in at most one communication (C3). For every transi-
tion there exists a set of agents participating in it (C4). Each agent participates
in the communication exactly once (C4a), has one sender and all the rest are
receivers (C4b), is ordered with respect to all places that could participate in it
(C4c,d). Then, all communications on the same channel are ordered (C5). Inter-
leaving (C4c,d and C5) is captured by interleaving relation. Communications on
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the same channel can be ordered (C6a). For a multicast, a history h that could
participate in the multicast already participated in a communication (C6b), or
the communication leading to h happens after the multicast (C6c). For a broad-
cast, a history h that could participate in the broadcast already participated in
a communication (C6d), or the communication leading to h happens after the
broadcast (C6e).

Note that an LPO computation relates histories of individual CTSs, and thus
allows to draw relations among finite sequences of individual computation steps
of one CTS (or a group of CTSs) with respect to others; Furthermore, a CTS
is always listening to the broadcast channel, and thus, it becomes mandatory to
order broadcast messages that enable/disable participation to each other.

We will use comp(S) to denote the set of LPO computations of S.

4.2 Petri Nets with Inhibitor Arcs (PTI-nets)

We now define the LPO semantics of PTI-nets. We start with a definition of
histories and then use them to define the vertices and edges of an LPO.

Definition 2 (History). We define the set of histories of a net N by induction.
We define a special transition tε such that tε

• = m0. The pair (∅, tε) is a
t-history. Note that tε is not a transition in T .

For a place p, let h = (S, t) be a t-history such that t•(p) > 0. Then we have
(h, p, t•(p)) is a p-history. That is, given a t-history h ending in transition t,
where p is in t•, then the combination of h, p, and the number of tokes that t
puts in p form a p-history.

Consider a transition t ∈ T . A t-history is a pair (S, t), where S = {(h1, i1),
. . . , (hn, in)} is a multiset satisfying the following. For every j we have hj =
(−, p, cj) is a p-history, where cj ≥ ij and •t =

∑
j ij · pj . That is, the t-history

identifies the p-histories from which t takes tokens and the number of occurrences
of a p-history in the multiset is the number of tokens taken from it.

Let hist(N) be the set of all histories of N partitioned to histp(N) and
histt(N) in the obvious way. Given a t-history h = (S, t) and a p-history h′ we
write h(h′) for the number of appearances of h′ in the multiset S.

We define the labelled partial order semantics of a PTI-net as follows.

Definition 3 (LPO-computation). A computation of N is an LPO (O,→c

,→i, Σ, Υ, L), where V ⊆ histp(N), E ⊆ histt(N), Σ = P , Υ = T , for a p-
history v = (−, p, i) we have L(v) = p and for a t-history (S, t) we have L(e) = t,
and such that:

N1. The t-history (∅, tε) is the unique minimal element according to ≤.
N2. For a p-history v = (e, p, i) ∈ V we have e ∈ E and e is the unique edge

such that e →c v.
N3. For a p-history v = (h, p, i) ∈ V , let e1, . . . , ej be the t-histories such that

v →c ej. Then, for every k we have ek(v) > 0 and
∑

k ek(v) ≤ i.
That is, v leads to t-histories that contain it with the multiplicity of v being
respected.
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N4. For every e ∈ E, where e = ({(v1, i1), . . . , (vn, in)}, t), all the following hold:
(a) •e ∩ V = {v1, . . . , vn} and e• ∩ V = {(e, p, t•(p)) | t•(p) > 0}.

That is, the connections of a t-history respect the structure of the net.
(b) For every v = (h, p, i) ∈ V such that p ∈ ◦L(e) we have e ≤ v or, where

e1, . . . , ej are all the edges such that v →c ek, we have
∑

k ek(v) = i and
for every k, ek < e.
That is, if a place inhibits a transition, then either the transition happens
before the place is visited or all the tokens are taken from the place before
the transition happens.

(c) If e →i e′ then there is some v such that either (i) v →c e and
(L(v), L(e′)) ∈ I or (ii) e′ →c v and (L(v), L(e)) ∈ I.
That is, we only allow connection between two t-histories to capture the
forced interleaving due to inhibition.

That is, a computation starts from the dummy transition tε, which establishes
the initial marking (N1) Every other transition is a t-history that connects the
p-histories that it contains (N3) to those that contain it (N2). If a place inhibits a
transition then either the transition happens before a token arrives to the place or
after all tokens left that place (N4b). Namely, if p inhibits t then either t happens
before the transition putting token in p or after the transitions taking the tokens
from p (N4b). This is possible by adding direct interleaving dependencies (→i)
between edges (N4c).

We will use comp(N) to denote the set of LPO computations of N .

5 Partial Order with Glue

We extend labeled partial orders with glue. Intuitively, two elements are glued
from the point of view of another element if they both happen either before or
after said element.

Definition 4 (Glue). A Glue over a set O and a relation →c⊆ O × O is a
relation R ⊆→c.

Intuitively, a glue relation R over the set O and a relation →c defines pairs
of elements that are glued together.

Definition 5 (Glued LPO). A glued LPO (g-LPO, for short) is lpg =
(P,G, E), where P = (O = V

⊎
E,→c,→i, Σ, Υ, L) is an LPO, G = {G1, . . . , Gk}

is a set of Glue relations over O and →c, and E : Υ ↪→ G labels elements in E
(with their edge labels) by glue relations.

Definition 6 (g-LPO-refinement). An LPO lpo = (O,→c,→i, Σ, Υ, L) where
O = V

⊎
E refines a g-LPO lpg = (Pg,G, E), denoted lpo � lpg, where Pg =

(O,→c,→g
i Σ,Υ, L) if the following conditions hold:

– For every e ∈ E and (a, b) ∈ E(L(e)) we have e ≤ a or b ≤ e.
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– →g
i ⊆ →i and (e, e′) ∈ (→i \ →g

i ) implies (e′, v) ∈ E(L(e))or (v, e) ∈
E(L(e′))for some v.

That is, the two share the relation →c, the relation →g
i is preserved and

extended by extra interleaving to capture the glue. In order to respect the glue,
an edge that is glued to a pair (a, b) must happen either before a or after b.

We show now that g-LPOs enable to remove parts of the interleaving order
relation for both PTI-nets and CTSs. g-LPOs capture better reconfiguration by
combining multiple orderings due to the same reconfiguration in the same g-LPO.

5.1 Glue Computations for CTSs

Consider a system S = T1 ‖ · · · ‖ Tn, where Ti = 〈Ci, Λi, Bi, Si, S
i
0, Ri, Li, lsi〉.

We denote C =
⋃

i Ci and B =
⋃

i Bi.
We now define a g-computation for CTS. The differences from the definition

of LPO (Definition 1) are highlighted with a “∗” (C4.(c-d) and C6.(b-e) are
removed and ∗C7 is new).

Definition 7 (g-computation). A g-computation of S is a g-LPO (P,G, E),
where P = (O,→i,→c, Σ, Υ, LV , LE) and V , E, Σ, Υ , and L are as before,
→c=→s

⊎
→r, where:

C1. The edge eε such that L(eε) = (b, !, �) is the unique minimal element accord-
ing to ≤. For every i, we have s0i ∈ V and eε →r s0i .

C2. If h ∈ V ∩ hist(Ti) there is a unique e ∈ E such that e →c h. If |h| > 1,
there is also a unique h′ ∈ V such that h′ →c e and either (h′, L(e), h) ∈ Ri

or (h′, ?(L(e)), h) ∈ Ri.
C3. For every h ∈ V there is at most one e ∈ E such that h →c e.

*C4. For every e ∈ E \ {eε} there is I ⊆ [n] such that all the following hold:
(a) For every i ∈ I we have |•e ∩ hist(Ti)| = 1 and |e• ∩ hist(Ti)| = 1.
(b) There is a unique i ∈ I and h, h′ ∈ V ∩hist(Ti) such that (h,L(e), h′) ∈

Ri and h →s e →s h′ and for every i′ ∈ I \ {i} there are h′′, h′′′ ∈
V ∩ hist(Ti′) such that h′′ →r e →r h′′′ and (h′′, ?(L(e), h′′′) ∈ Ri′ .

C5. For every e �= e′ such that ch(e) = ch(e′) we have e ≤ e′ or e′ ≤ e.
*C6. If e →i e′ then the following holds:

(a) ch(e) = ch(e′).
*C7. For every (υ, !, c) ∈ B then

E((υ, !, c)) = {(h, e) | for c = �, h →c e and h →?(υ,!,c)} ∪
{(e, h) | for c = �, e →c h and h →?(υ,!,c)} ∪
{(h, e) | for c �= �, h →c e and c ∈ ls(h)} ∪
{(e, h) | for c �= �, e →c h and c ∈ ls(h)}

We drop from the interleaving relation all order relations that correspond to
reconfiguration and keep only those that correspond to the usage of a common
resource. Furthermore, we assign each broadcast and multicast message with a
glue relation. That is, for every broadcast b add all existing ingoing and outgoing
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messages of histories that may participate in m. The rationale is that if such his-
tories can participate in a broadcast then they cannot be enabled independently
from the broadcast as they would participate in it. For every multicast m add all
existing ingoing and outgoing messages of histories that either block m or could
participate in m. The rationale is that such histories cannot be independent from
the multicast as they either block it or would participate in it. Note that ∗C7
adds one glue for every multicast channel but one for every broadcast.

We use compg(S) to denote the set of g-computations of CTS S and show
that it indeed captures the same notion of computation.

Theorem 1. Given a CTS T , comp(T ) = {π | π � πg ∧ πg ∈ compg(T )}.

5.2 Glue Computations for PTI-nets

Let N = 〈P, T, F, I〉 be a PTI-net and m0 its initial marking. We now define a g-
computation. The differences from the definition of LPO (Def. 3) are highlighted
with a “∗” (N4.(b-c) are removed and ∗N5 is new).

Definition 8 (g-computation). A g-computation of N is a g-LPO (P,G, E),
where P = (O,→c, Σ, Υ, L), the components V , E, Σ, Υ , and L are as for LPO,
and the following holds.

N1. The t-history (∅, tε) is the unique minimal element according to ≤.
N2. For a p-history v = (e, p, i) ∈ V we have e ∈ E and e is the unique edge

such that e →c v.
N3. For a p-history v = (h, p, i) ∈ V , let e1, . . . , ej be the t-histories such that

v →c ej. Then, for every j we have ej(v) > 0 and
∑

j ej(v) ≤ i.
That is, v leads to t-histories that contain it with the number of tokens in
v being respected.

*N4. For every e ∈ E, where e = ({(v1, i1), . . . , (vn, in)}, t) the following holds:
*(a) •e = {v1, . . . , vn} and e• = {(e, p, t•(p)) | t•(p) > 0}.

*N5. We define a predicate capturing that a place is left without tokens. For a
p-history v = (h, p, i), let e1, . . . , ej be the t-histories such that v →c ej. If∑

j ej(v) = i we write f(v). Otherwise, it is the case that ¬f(v).
For every t ∈ T we have:

E(t) = {(v, e) | v →c e and (L(v), t) ∈ I} ∪
{(e, v) | e →c v and (L(v), t) ∈ I} ∪
{(v, e) | ∃v′ . (L(v′), t) ∈ I, ¬f(v′), v′ ≤ v, and v →c e} ∪
{(e, v) | ∃v′ . (L(v′), t) ∈ I, ¬f(v′), v′ ≤ e, and e →c v}

That is, for a transition t, add all existing ingoing and outgoing transitions
of places that inhibit t to t’s glue. Moreover, if some place that inhibits t
has some tokens left in it, then whatever happens after that place is glued
as well.



A PO Characterisation of Reconfiguration 55

That is, we drop →i and assign each inhibited transition with a glue relation.
We use compg(N) to denote the set of g-computations of Petri net N and

show that it indeed captures the same notion of computation.

Theorem 2. Given a PTI-net N , comp(N) = {π | π � πg ∧ πg ∈ compg(N)}.

6 Separating Choice and Forced Interleaving

We show that g-LPOs distinguish nondeterministic choice, which corresponds to
different g-LPOs, and interleaving choices due to reconfiguration, which corre-
spond to different ways to refer to glue. For both CTS and PTI-nets, we show
that distinct g-LPOs contain different nondeterministic or order choices. Thus,
we manage to define one structure that captures all possible interleavings and
reconfigurations together.

6.1 Choice vs Reconfiguration-Forced Interleaving in CTSs

A choice that distinguishes two computations for a CTS is either (a) a situation
where all the agents have exactly the same history and at least one agent partic-
ipates in a different interaction or (b) communications on the same channel are
ordered differentently. Note that as channels are global resources, the case that
changing the order of communications on a channel does not have side effects is
accidental. Indeed, such a change of order could have side effects and constitutes
a different choice.

We show that every two distinct g-computations of the same CTS have a
joint history of some agent that “sees the difference” or a channel that transfers
messages in a different order. Difference for a history is either maximality in
one and not the other or extension by different communications in the two g-
computations.

Theorem 3. Given a CTS T and two different g-LPOs G1, G2 ∈ compg(N)
then one of the following holds:

1. For some agent i there exists a history hi in both G1 and G2 such that either
hi is maximal in Gα and not maximal G3−α, where α ∈ {1, 2};

2. For some agent i there exists a history hi in both G1 and G2 such that for the
edges e1 and e2 such that hi →c1 e1 and hi →c2 e2 we have L1(e1) �= L2(e2);

3. or; There is a pair of agents i and i′ and histories hi and hi′ in both G1 and
G2 such that the order between the communications of i and i′ is different
in G1 and G2.

Theorem 3 is not true for LPOs as shown by the LPOs and g-LPO of the CTS
in Fig. 1. We note that by the proof of Theorem 1 all the LPOs that disagree
only on forced interleavings are refined by the same g-LPO.
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6.2 Choice vs Interleaving in PTI-nets

A choice that distinguishes two computations is a situation where a set of tokens
have exactly the same history and they do a different exchange. We show that
every two distinct g-computations of the same net have a set of tokens that
“see the difference”. That is, they participate in a different transition in the two
g-computations. This includes the option of tokens in one g-computation partic-
ipating in a transition and tokens in the other g-computation not continuing.

Theorem 4. Given a Petri net P and two different g-LPOs G1, G2 ∈
compg(N) then one of the following holds:

1. There is a node vi in both G1 and G2 such that the number of tokens not
taken from vi in G1 and G2 is different.

2. There is a set of p-histories v1, . . . , vn in both G1 and G2 that participate in
some transition t in Gα but not in G3−α, where α ∈ {1, 2}.

Note that item 2 includes the case where the transition t happens in both G1

and G2 but takes a different number of tokens from every node. This difference
is significant as the nodes communicate via the identified transition and share
the knowledge about the difference.

Theorem 4 is not true for LPOs. This is already shown by the very simple
examples in Fig. 2(b). Indeed, in the two LPOs demonstrated by the dashed arcs
in the figure, all sets of nodes participate in exactly the same transitions.

We note that by the proof of Theorem 2 all the LPOs that disagree only on
forced interleavings are refined by the same g-LPO.

7 Concluding Remarks

We laid down the basis to reason about systems in which events are affected also
by non-participants. We showed how to isolate forced interleaving decisions of the
system due to such effects, and other decisions due to standard concurrent exe-
cution of independent events. This was shown for CTS [4,5] and PTI-nets [9,12],
which cover a wide range of interaction capabilities from two different schools
of concurrency. In particular, CTS capture channel communication and require
order of events without flow of information (captured through the interleav-
ing relation) while PTI-nets are unbounded and more general. We proposed,
for both, a partial order semantics, named LPO, of computations under recon-
figuration. An LPO supports event-to-event connections that allows to refer to
reconfiguration points. Moreover, to fully characterise reconfiguration in a single
structure, we proposed a glued LPO semantics, named g-LPO. The latter is able
to fully isolate scheduling decisions due to reconfiguration from the ones due to
standard concurrency. We show that any LPO computation is only a refinement
of some g-LPO of the same system. Finally, we prove important results on g-LPO
with respect to reconfiguration and nondeterminism.
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Perspectives and Future Work: Capturing all possible interleavings in a
single structure offers opportunities in terms of specification and verification.
For example, using languages of linear sequences as a specification language
for concurrent system requires some care. Indeed, languages that include certain
interleavings of the same computation and exclude others are obviously inappro-
priate as specifications: there is no system that satisfies them. Invariability under
interleaving without reconfiguration is easy to check using some representations
of languages (deterministic automata) but harder using other representations
(temporal logic). We do not know to characterise languages of linear sequences
that capture all possible interleavings with reconfiguration. Thus, creating struc-
tures that capture precisely such behaviour is important for the definition of
appropriate specification languages. Studying g-LPOs could give us insights into
the properties of languages of linear sequences that are appropriate to specify
concurrent systems with reconfigurations. We can exploit g-LPO semantics to
define specifications over g-LPO computations (rather than linear sequences or
LPOs).
Related Works: The prevalent approach to semantics of reconfigurable inter-
actions is based on linear order semantics (cf. Pi-calculus [11,19], Mobile Ambi-
ents [10], Applied Pi-calculus [1], Psi-calculus [7,8], concurrent constraint pro-
gramming [14,22], fusion calculus [24], the AbC calculus [2,3], ReCiPe [4] etc.).
This semantics cannot distinguish the different choices of the system from a
global perspective. It hides information about interactions and possible inter-
dependence among events. In fact, linear order semantics ignores the possible
concurrency of events, which can be important e.g. for judging the temporal effi-
ciency of the system [23]. Linear order semantics comes even shorter to capture
information about reconfiguration from an external observer’s point of view.

Partial order semantics (cf. Process Semantics of Petri nets [18,21,23] and
Mazurkiewicz traces of Zielonka automata [13,17,25]), on the other hand, is able
to refer to the interaction and event dependencies, but does not deal very well
with reconfiguration. This is because the latter formalisms have fixed interac-
tion structures, and thus the interdependence of events is defined structurally.
Reconfiguration, on the other hand, enforces reordering of events dynamically in
non-trivial ways, and thus makes defining correct partial order semantics very
challenging. As shown in [15], some aspects of concurrency are almost impossible
to tackle in either linear-order or partial-order causality-based models, and one
of them is PTI-nets [12]. In fact, reconfiguration increases the expressive power
of the formalism, e.g., adding inhibitor arcs to Petri nets makes them Turing
Powerful [6]. However, this expressive power does not come without a cost. It
prevents most analysis techniques for standard Petri nets [9].

Partial order semantics for PTI-nets are given in [16] and [15]. Much like
our LPOs, they represent different forced interleavings separately. As they use
occurrence nets they have many more ways to represent essentially the same
computation due to symmetry between tokens. Relational Structures [15] add
an additional “not later than” relation to partial orders. Their emphasis is on
providing a general semantic framework for concurrent systems. Thus, relational
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structures handle issues like priority and error recovery, which we do not handle.
However, they are not concerned with uniqueness of representation. So the two
works serve different purposes and it would be interesting to investigate mutual
extensions.
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Abstract. In this paper we define several notions of term expansion,
used to define terms with less sharing, but with the same computational
properties of terms typable in an intersection type system. Expansion
relates terms typed by associative, commutative and idempotent inter-
sections with terms typed in the Curry type system and the relevant type
system; terms typed by non-idempotent intersections with terms typed
in the affine and linear type systems; and terms typed by non-idempotent
and non-commutative intersections with terms typed in an ordered type
system.
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1 Introduction

In the Curry Type System [11,24] each assumption about the types of free
variables may be used several times or not used at all. This can be achieved
either by considering a set of type assumptions used in the type derivation,
or a list of type assumptions and the existence of three structural rules in the
type system: exchange, weakening and contraction. The exchange rule guarantees
that the order in which we write variables in the basis is irrelevant. The second
structural rule, weakening, indicates that we may safely add extra (unneeded)
assumptions to the basis. The third structural rule, contraction, states that if a
term is typed using two identical assumptions then it is also typed using a single
assumption. This led to the definition of a substructural type system as type
systems where the use of type assumptions is limited by the lack of one or more
of the structural rules. Substructural type systems in general, have a precise
relation (by the Curry-Howard correspondence) with substructural logics [34].
A substructural logic is a logic where also one or more of the structural rules do
not hold. Examples of well-known substructural logics include linear logic [23]
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and relevant logic [3]. A survey of prescriptive substructural type systems (a la
Church) and its use to the control of memory resources can be found in [37].
Here we will use a descriptive view (á la Curry) of substructural type systems.
Being restrictions to the Curry Type System, substructural type systems type
less terms than the Curry Type System.

In the opposite direction we have Intersection Type Systems [6,9,10], which
characterise exactly the set of strongly normalising terms. Applications of Inter-
section Type Systems in programming language theory cover a variety of diverse
topics including the design of programming languages [35], program analysis
[31], program synthesis [20], and extensions such as refinement and union types
[15,16,21]. But the huge expressive power of intersection types comes with a
price: problems such as type inference and inhabitation are undecidable in gen-
eral [5,36].

In this paper we will address the following problem: to which extent can we
approximate a term typed in the intersection type system by terms typable in
a simpler type system, such as the Curry Type System or a substructural type
system?

Let us look at the term T ≡ (λx.xx)I, where I is the identity function λx.x.
This term has type α → α, which does not involve intersections, although it is
not typable in the Curry Type System nor in any substructural type system,
because it has a non-typable subterm. The problem is the sharing of variable x
in xx, where the two shared occurrences have non-unifiable types. Now notice
that there is a term, (λx1x2.x1x2)II, typable with the same type in the Curry
Type System and several substructural type systems. This term uses less sharing
than (λx.xx)I in the sense that each occurrence of a shared variable in (λx.xx)I
corresponds to a distinct variable in (λx1x2.x1x2)II.

A relation between terms typable by intersection types and versions with less
sharing, and thus typable in a simpler type system, was made in [8], defining a
translation from derivations in an intersection type system with associative (A),
commutative (C) and idempotent (I) intersections, to terms typable in the Curry
type system. Our ACI-expansion simplifies this translation using an inductive
definition on the terms. In [25] Kfoury defined a relation with a linear calcu-
lus typed by an intersection type system where intersection was associative but
neither commutative nor idempotent. Kfoury’s calculus was the early stage of
development of several lines of work including non-idempotent intersection types
[7,14] and the linear polyadic calculus [27], and it also inspired and is related
to our work. Main differences from our work are that Kfoury changed the cal-
culus and we do not leave the λ-calculus. Also we consider different expansions
for non-idempotent and non-commutative intersection types, which leads to dif-
ferent known substructural type systems. Several other works studied the link
between non-idempotency and linearity [13,14,18,22,30]. Here we extend the
work in [18] defining term expansion also for idempotent and non-commutative
types. Another related line of research studied linear approximations of terms
in the λ-calculus [17,27–29]. In [28] linear polyadic approximations by terms
typed in several type systems, including some of the type systems considered in
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our paper, were defined by carefully designing an approximation theory based
on category theory. However, the specification of these linear approximations is
difficult to understand for experts and non-experts alike. Being more general
and mathematically quite elegant, it is more complicated than the expansion
operations defined here, requiring advanced notions from category theory. Sur-
prisingly, it turns out that the essence of these approximations, when applied
only to the four known substructural type systems, can be captured by a much
simpler notion of expansion, which can be defined easily by induction. One con-
tribution of our work is to recast the linear approximations when applied to the
substructural type systems, and extend them to the ordered case, into a simpler
mold and to disentangle its categorical construction of types from the properties
actually needed by the expansion processes. We believe this leads to an app-
roach that is better well suited for designers of type systems and programming
languages. The present work borrows some inspiration from previous works on
linearization of the λ-calculus [1,17,18,25,28] and aims to contribute to this line
of research providing a simple uniform framework for addressing linearization
related problems. Picking up on work in [18] here we extend the notion of term
expansion to the Curry Type System and four substructural type systems: rel-
evant, affine, linear and ordered type systems. Under this uniform framework
we show that one can define terms with less sharing, but with the same com-
putational properties of terms typable in an intersection type system. We will
then show how we can tune the degree of sharing by choosing different algebraic
properties of the intersection operator. A version of this paper with complete
proofs can be found in [2].

2 Type Systems

The type systems used here are defined for the λ-calculus. We will first recall the
Curry Type System [11,12] using a logic with explicit structural rules and lists
of assumptions instead of the usual presentation without structural rules but
using sets of assumptions. From now on, in the rest of the paper, terms of the
λ-calculus are considered module α-equivalence and we assume that in a term M
no variable is bound more than once and no variable occurs both free and bound
in M . An infinite sequence of type-variables is assumed to be given. Simple types
are expressions defined thus: (1) each type-variable is a simple type; (2) if σ and
τ are simple types then (τ → σ) is a simple type. Type-variables are denoted by
α, β and arbitrary types are denoted by τ, σ. In both cases we may use or not
number subscripts. Parentheses will often be omitted from types, assuming that
the arrow is right associative. A finite list of pairs of the form x : τ (here called
assumptions), where x is a term variable and τ is a simple type, is consistent if
and only if the term variables are all distinct. A basis is a consistent finite list
of pairs of assumptions. The “,” operator appends a pair to the end of the list.
The list (Γ1, Γ2) is the list that results from appending Γ2 onto the end of Γ1.
We will use the notation M : σ meaning that term M has type σ and Γ � M : σ
to denote that M : σ holds assuming the assumptions in the basis Γ .
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The Curry Type System is defined by the following rules:

Axiom and Structural Rules:

x : τ � x : τ (ax)
Γ1, Γ2 � M : σ

Γ1, x : τ, Γ2 � M : σ
(weak)

Γ1, x : τ1, y : τ2, Γ2 � M : σ

Γ1, y : τ2, x : τ1, Γ2 � M : σ
(ex)

Γ1, x1 : τ, x2 : τ, Γ2 � M : σ

Γ1, x : τ, Γ2 � [x/x1, x/x2]M : σ
(ctr)

Logical Rules:

Γ, x : τ1 � M : τ2

Γ � λx.M : τ1 → τ2
(→ i)

Γ1 � M : τ → σ Γ2 � N : τ

Γ1, Γ2 � MN : σ
(→ e)

The Exchange rule (ex) guarantees that the order in which we write variables
in the basis is irrelevant. Weakening (weak), indicates that we may safely add
extra (unneeded) assumptions to the basis. Contraction (ctr), states that if a
term is typed using two identical assumptions then it is also typed using a single
assumption.

The lack of one or more of the structural rules leds to the definition of
substructural type systems. There are four main substructural systems based in
their logical counterparts: the Relevant Type System has only two structural rules
(Exchange and Contraction); the Affine Type System has also two structural
rules (Exchange and Weakening); the Linear Type System has only the Exchange
structural rule; and finally, the Ordered Type System does not have any of the
structural rules.

Relevant Types. In the Relevant Type System every assumption in the basis is
used to type a term. This is guaranteed by not using the Weakening type rule.
Thus the Relevant Type System corresponds to the Curry Type System without
the Weakening rule.

Theorem 1. If a term M is typed in the Relevant Type System, then M is a
λI-term.

This theorem shows that relevant types are related to the λI-calculus, a
restriction to the λ-calulus where in every term M , for each subterm of form
λx.N in M , x occurs free in N at least once.

Affine Types. In the Affine Type System there is no Contraction rule. This
guarantees that function parameters are used at most once. Thus the Affine
Type System corresponds to the Curry Type System without the Contraction
rule. The following subset of λ-terms is related to the set of terms typed in the
Affine Type System.

An affine λ-term is a λ-term M such that for each subterm of λx.N of M , x
occurs free in N at most once and each free variable of M has just one occurrence
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free in M . The following theorems show that the set of terms typed in the Affine
Type System is exactly the set of affine terms.

Theorem 2. A term M is typed in the Affine Type System, if and only if M
is an Affine λ-term.

Linear Types. The Linear Type System corresponds to the implicational frag-
ment of linear logic [23] confined with implication as its single connective. In the
Linear Type System each assumption must be used exactly once. This means
that if Γ � M : τ is a valid typing in the Linear Type System, then each term
variable in Γ occurs free exactly once in M . The Linear Type System does not
have the Contraction rule, to guarantee that assumptions are used at most once,
nor the Weakening rule, meaning that assumptions are used exactly once. We
will follow the standard linear logic notation for functional linear types, written
τ1−◦τ2. As expected, the set of terms typed in the Linear Type System is exactly
the set of linear terms. A linear λ-term is a λ-term M such that for each subterm
of λx.N of M , x occurs free in N exactly once and each free variable of M has
just one occurrence free in M .

Theorem 3. A term M is typed in the Linear Type System, if and only if M
is a linear λ-term.

Ordered Types. Many computational concepts are order sensitive (consider,
for example, managing memory allocated on a stack). Ordered Type Systems
provide a foundation for order sensitive computational problems. The central
idea is that by avoiding the exchange rule, we are able to guarantee that program
evaluation follows a pre-determined order. Ordered type systems are inspired by
Lambek ordered logic [26] which has several applications to natural language
processing. Ordered logic was further developed by Polakow and Pfenning [33].

The Ordered Type System has: no Contraction, thus it is linear; no Weakening,
thus it is also a relevant system; and no Exchange, thus the order of use of
assumptions matter.

Definition 1. Let α range over an infinite set of type variables. Ordered Types
are defined as τ :: = α | τ1 −◦l τ2 | τ1 −◦r τ2.

The definition of the Ordered Type System follows:

Axiom:

x : τ �o x : τ
(ax)

Logical Rules:

x : τ1, Γ �o M : τ2

Γ �o λx.M : τ1 −◦l τ2
(→ il)

Γ, x : τ1 �o M : τ2

Γ �o λx.M : τ1 −◦r τ2
(→ ir)

Γ2 �o N : τ Γ1 �o M : τ −◦l σ

Γ2, Γ1 �o MN : σ
(→ el)

Γ1 �o M : τ −◦r σ Γ2 �o N : τ

Γ1, Γ2 �o MN : σ
(→ er)



Structural Rules and Algebraic Properties of Intersection Types 65

Note that the different arrow types guide type derivations to guarantee that the
order of assumptions is used consistently during typing. For example consider the
term (λx.xz2)z1. The two different typings z1 : α −◦r β, z2 : α �o (λx.xz2)z1 : β
and z2 : α, z1 : α −◦l β �o (λx.xz2)z1 : β are valid. Note that if we change the
order of the assumptions the typings are no longer valid, i.e. z2 : α, z1 : α−◦rβ ��o

(λx.xz2)z1 : β and z1 : α −◦l β, z2 : α ��o (λx.xz2)z1 : β.

Intersection Types. Intersection types originate in the works of Barendregt,
Coppo and Dezani [4,9] and give us a characterization of the strongly normal-
izable terms. Here we define an Intersection Type System where every type
declared in the environment is used in the type derivation, a property which is
going to be crucial in subsequent results.

Definition 2. Let α range over an infinite set of type variables, and n > 0.
Intersection types are defined thus σ:: = α | σ1 ∩ · · · ∩ σn → σ.

Note that there is no empty intersection type (the ω type in Coppo-Dezani tra-
dition). The original Coppo-Dezani Intersection Type System [9] considers inter-
section ∩ as an associative, commutative and idempotent operator. There are
other works that consider non idempotent intersections [7,18,25]. To avoid ambi-
guities of notation we will use ACI-intersection to denote associative, commu-
tative and idempotent intersections, AC-intersection to denote non-idempotent
intersections and A-intersection to denote non-idempotent and non-commutative
intersections. If we write only intersection we mean ACI-intersection. A type envi-
ronment is a finite set of pairs of the form x : τ1 ∩ · · · ∩ τn, where x is a term
variable, τ1, . . . , τn are types, and the term variables are all distinct.

Definition 3. Let Γ1 and Γ2 be two type environments. Then Γ1∧Γ2 is the new
environment where x : σ ∈ Γ1 ∧ Γ2 if and only if σ is defined thus:

σ =

⎧
⎨

⎩

σ1 ∩ σ2 if x : σ1 ∈ Γ1 and x : σ2 ∈ Γ2

σ1 if x : σ1 ∈ Γ1 and ¬∃σ.x : σ ∈ Γ2

σ2 if x : σ2 ∈ Γ2 and ¬∃σ.x : σ ∈ Γ1

The Intersection Type System used here is defined thus:

{x : τ} �∩ x : τ (ax)

Γ ∪ {x : τ1 ∩ · · · ∩ τn} �∩ M : σ

Γ �∩ λx.M : τ1 ∩ · · · ∩ τn → σ
(→ i)

Γ �∩ M : σ x �∈ fv(M)
Γ �∩ λx.M : τ → σ

(→ iK)

Γ0 �∩ M : τ1 ∩ · · · ∩ τm → σ (Γi �∩ N : τi)i=1...m

Γ0 ∧ Γ1 ∧ · · · ∧ Γm �∩ MN : σ
(→ e)

The two different → i rules are necessary because in this system if there is
a derivation of Γ � M : σ and x does not occur free in M , then there is not a
type declaration for x in Γ .
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3 Term Expansion

We will now present the notion of term expansion, which generalises expansion
as used in [18] to linearize the strongly normalizable terms. Expansion consists
of replacing occurrences of variable in a term, typed with different types, by a
new variable typed with the corresponding types. If x is expanded k times in
(λx.M)N then N has to be copied k times. However if the expansion is inside
N then M may be changed, because possible arguments of x may have to be
copied. To define expansion we face one key problem: the expansion of MN is
a term of the form M0N1 . . . Nk where M0 is the expansion of M and N1 . . . Nk

are expansions of N . The problem is to find the right k. It is easy to determinate
the number of new arguments when M is of the form λx.M ′ (just check how
many fresh variables replace x), but if M is itself an application this information
depends on expansions made inside M . This is where intersection types play a
crucial role. If M has type τ1 ∩ · · · ∩ τk → σ in an intersection type system we
know that MN will be expanded to a term of the form M0N1 . . . Nk.

From Intersection Types to Simple Types: ACI-Expansion. In a previous
work [18] we related terms typed by non-idempotent intersections with the affine
λ-calculus. In this section we extend the results of [18] to relate terms typed by
idempotent intersections with the Curry and the Relevant Type Systems. We
will define the new notion of ACI-expansion of a λ-term. Let us first formalize
the expansion of free variables. A variable expansion is an expression of the form
x : S where x is a variable and S is a set of pairs of the form y : τ where y
is a variable and τ an intersection type. (x : S should be read informally as
“x expands to the variables in S”). An expansion context A is any finite set of
variable expansions A = {x1 : S1, . . . , xn : Sn} where the variables {x1, . . . , xn}
are all different and the Si are disjoint. We now define an operation that appends
two expansion contexts.

Definition 4. Let A1 and A2 be two expansion contexts. Then A1�A2 is a new
context such that x : S ∈ A1 � A2 if and only if

S =

⎧
⎨

⎩

S1 ∪ S2 if x : S1 ∈ A1 and x : S2 ∈ A2

S1 if x : S1 ∈ A1 and ¬∃S.x : S ∈ A2

S2 if x : S2 ∈ A2 and ¬∃S.x : S ∈ A1

From now on when we write A � {x : S} we assume that x does not occur in A.
We are now able to formalize the notion of term expansion.

Definition 5. Given a pair M : σ, where M is a term and σ an ACI-
intersection type, a term N and an expansion context A we define here a relation
EI(M : σ) � (N,A) called ACI-expansion. If A is empty we will sometimes omit
it and write just EI(M : σ) � N . Expansion is defined by:
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EI(x : τ) � (y, {x : {y : τ}})
if x �= y

EI(λx.M : τ1 ∩ · · · ∩ τn → σ) � (λx1 . . . xn.M∗, A)
if x occurs in M and
EI(M : σ)�(M∗, A∪{x : {x1 : τ1, . . . , xn : τn}})

EI(λx.M : τ → σ) � (λy.M∗, A)
if x does not occur in M ,
y is a fresh variable and
EI(M : σ) � (M∗, A)

EI(MN : σ) � (M0N1 . . . Nk, A0 � A1 � · · · � Ak)
if for some k > 0 and τ1, . . . τk,
EI(M : τ1 ∩ · · · ∩ τk → σ) � (M0, A0) and
EI(N : τi) � (Ni, Ai), (1 ≤ i ≤ k)

From now on if EI(M : σ) � (N,A) we will refer to N as an expanded version
of M .

We will now present an illustrating example. Let I ≡ λx.x and M ≡ λx.xx.
Let us show step by step how to calculate an expansion of (MI : α → α).

EI(x : (α → α) → (α → α)) � (x1, {x : {x1 : (α → α) → (α → α)}}) and
EI(x : α → α)� (x2, {x : {x2 : α → α}}), thus EI(xx : α → α)� (x1x2, {x : {x1 :
(α → α) → (α → α), x2 : α → α}}) and EI(λx.xx : (((α → α) → (α → α)) ∩
(α → α)) → α → α) � λx1x2.x1x2. It easy to show that EI(I : α → α) � I and
EI(I : (α → α) → (α → α))� I. Thus EI(((λx.xx)I) : α → α)� (λx1x2.x1x2)II.
Note that if EI(xx : α → α) � (x1x2, {x : {x1 : (α → α) → (α → α), x2 :
α → α}}) it is also true that EI(xx : α → α) � (x1x2, {x : {x2 : α → α, x1 :
(α → α) → (α → α)}}), because {x1 : (α → α) → (α → α), x2 : α → α} is a
set and thus there is not a fixed order among its elements. Thus we also have
EI(λx.xx : ((α → α) ∩ ((α → α) → (α → α)))) → α → α) � λx2x1.x1x2 and
consequently EI(((λx.xx)I) : α → α) � (λx2x1.x1x2)II. Note that the result
of ACI-expansion is a term typable in the Curry Type System, not necessarily
linear. For example the expansion of λfx.f(fx) using type (α → α) → α → α
is the term λf1x1.f1(f1x1).

We now show that terms that we can expand are exactly the terms typable
in an Intersection Type System i.e. the strongly normalizable terms. Let us first
define two functions that transform expansion contexts into type environments
and vice versa. Let Γ be a type environment and {x1, . . . , xn} be fresh term
variables. Then e(Γ ) is the expansion context defined as e(Γ ) = {x : {x1 :
τ1, . . . , xn : τn} | x : τ1 ∩ · · · ∩ τn ∈ Γ}. Let A be an expansion context. Then
l(A) is the type environment defined as l(A) = {x : τ1 ∩ · · · ∩ τn | x : {x1 :
τ1, . . . , xn : τn} ∈ A}.

Lemma 1. Let Γ1 and Γ2 be type environments. Then e(Γ1)�e(Γ2) = e(Γ1∧Γ2).

Lemma 2. Let A1 and A2 be two expansion contexts. Then l(A1) ∧ l(A2) =
l(A1 � A2).
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We will now proceed with some auxiliary lemmas before presenting the main
theorem.

Lemma 3. Let EI(M : σ) � (N,A � {x : {x1 : τ1, . . . , xk : τk}}). Then the
number of free occurrences of x in M is greater or equal than k.

Theorem 4. Let M be a λ-term such that there is an environment Γ and an
intersection type σ such that Γ �∩ M : σ. Then there is a term N such that
EI(M : σ) � (N, e(Γ )).

Lemma 4. Let M be a λ-term such that there is an expansion context A, an
intersection type σ, and a term N such that EI(M : σ) � (N,A). Then l(A) �∩
M : σ.

Theorem 5. Let M be a λ-term. Then M is strongly normalizable if and only
if there are a term N , an expansion context A and a type σ such that EI(M :
σ) � (N,A).

ACI-Expansion and the Curry Type System. In [8] a translation from
intersection types to simple types was given and used to show that derivations
in an intersection type system with idempotent intersections can be transformed
into terms typed in the Curry Type System. Here we show that our definition of
ACI-expansion also preserves this translation. In fact, let T be the translation
from intersection types to simple types defined in [8]. Then, if M is typable in
the intersection type system with type σ, and EI(M : σ) � (N,A) then N is
typable in the Curry Type System with type T (σ).

Definition 6. T is a translation from intersection types to simple types defined
by: 1) T (α) = α, if α is a type variable; 2) T ((τ1 ∩ · · · ∩ τn) → σ) = T (τ1) →
· · · → T (τn) → T (σ).

T will be used later in the paper also for similar functions applied to linear and
ordered types. Their use is clear in each context. The previous definition can be
extended to expansion contexts:

Definition 7. Let Te be a translation from expansion contexts to bases defined
as: Te(∅) = ∅ and Te(A ∪ {x : {x1 : τ1, . . . , xn : τn}}) = Te(A) ∪ {x1 :
T (τ1), . . . , xn : T (τn)}.

Theorem 6. Let EI(M : σ) � (N,A). Then Te(A) �C N : T (σ), where �C

stands for type derivation in the Curry Type System.

Theorem 7. Let M be a λ-term such that Γ �∩ M : σ in the Intersection Type
System. Then there is a basis ΓC and a term N such that ΓC �C N : T (σ),
where �C stands for type derivation in the Curry Type System.

This theorem has, as a corollary, that if a term M is typable in the Intersec-
tion Type System with a simple type, then there is an expanded term with the
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same type derivable in the Curry Type System. Just notice that T (σ) = σ when
σ is a simple type.

Weak Head Reduction. We will now show that ACI-expansion is preserved
by a notion of reduction that is used in the implementation of functional pro-
gramming languages: weak head reduction. This guarantees that the weak head
normal form of a term M has an expanded version, which is a weak head normal
form of an expanded version of M . We first present one lemma that is going to
be used in the study of the preservation of expansion by reduction.

Lemma 5. Let EI(M : σ) � (M0, A0 � {x : {x1 : τ1, . . . , xk : τk}})
and EI(N : τi) � (Ni, Ai) for i ∈ {1, . . . , k}. Then EI(M [N/x] : σ) �
(M0[N1/x1, . . . , Nk/xk], A0 � · · · � Ak)

Functional language compilers [32] consider only weak-head reduction and
stop evaluation when a weak-head normal form (a constant or a λ-abstraction)
is reached. Weak-head normal forms are sufficient because printable results only
belong to basic domains. The following definition of weak head reduction appears
in [19]: Weak head reduction →

w
is defined by (λx.M)N →

w
M [N/x] and MN →

w

M ′N if M →
w

M ′. We denote by �
w

the reflexive and transitive closure of →
w

.
Closed weak head normal forms are abstractions λx.M .

We first define an inclusion relation between expansion contexts as follows:

Definition 8. Let A1 and A2 be two expansion contexts. A1 � A2 if and only
if x : S1 ∈ A1 ⇒ x : S2 ∈ A2 and S1 ⊆ S2.

We will now show that ACI-Expansion preserves weak head reduction in the
sense that the following diagram commutes:

M1 w
��

EI

��

M2

EI

��
N1 w

�� �� N2

For this we need some auxiliary lemmas.

Lemma 6. Let (λx.M)N be a redex in the λ-calculus. Let EI((λx.M)N : σ) �
(N1, A1) Then there is a term N2 such that EI(M [N/x] : σ)�(N2, A2), A2 � A1

and N1 �
β

N2.

Theorem 8. Let EI(M1 : σ) � (N1, A1) and M1 →
w

M2. Then there is a term

N2 such that EI(M2 : σ) � (N2, A2), N1 �
w

N2 and A2 � A1.

Definition 9. Let t and u be w-reductions starting, respectively, by M0 and N0:

t : M0 →
w

M1 →
w

M2 →
w

· · ·

u : N0 �
w

N1 �
w

N2 �
w

· · ·

We say that u is an expansion of t if there are expansion contexts A0, . . . , Ak

and a type σ such that A0 � A1 � A2 � · · · and EI(Mi : σ) � (Ni, Ai) for i ≥ 0.
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The following corollary of Theorem8 makes explicit the simple fact that every
finite w-reduction can be expanded. It holds trivially by successive applications
of Theorem 8 to every w-reduction step in t.

Corollary 1 (of Theorem 8). Every finite w-reduction t, can be expanded to
another w-reduction (not necessarily unique).

We saw that expansion is preserved by weak head reduction. This does not
happen with β-reduction. In fact we may have M1 →

β
M2, EI(M1 : σ)� (N1, A1)

and there is not a type τ such that EI(M2 : τ)�(N2, A2) and N1 �
β

N2. Note that

there is an expanded version, P , of M2 (because M1 is strongly normalizable thus
M2 is also strongly normalizable and thus, by Theorem 5, it has an expanded
version). The point here is that N1 ��

β
P for no expanded version P of M2. To

see this let M1 ≡ λx.(λy.z)xx and M2 ≡ λx.zx. We have λx.(λy.z)xx →
β

λx.zx,

E(λx.(λy.z)xx : α1 ∩ α2 → β) � (λx1x2.(λy1.z1)x1x2, {z : {z1 : α2 → β}}) and
λx1x2.(λy1.z1)x1x2 →

β
λx1x2.z1x2. Now note that, as x occurs in zx once, it

follows from Lemma 3 that any expansion of λx.zx is of the form λx1.M where
M is one expansion of zx. Thus λx1x2.z1x2 cannot be an expansion of λx.zx
for any type. If preservation of expansion by β-reduction is not viewed as a goal
by itself, then the lack of this property is not a problem, because it holds for a
notion of reduction that is used in practice.

ACI-Expansion and the Relevant Type System. Here we will study ACI-
expansion applied only to λI-terms. Note that it is the same relation, EI , defined
in the previous section, but we now restrict its domain to the set of λI-terms.
Thus the same symbol EI will be used, overloaded, in this section to evoke this
analogy.

The λI-calculus is a restriction of the λ-calculus where in terms of the form
λx.M , x occurs free in M . We now show that terms in the range of EI , when its
domain is the λI-calculus, are typed in the Relevant Type System.

Theorem 9. Let M be a λI-term such that EI(M : σ)� (N,A). Then Te(A) �R

N : T (σ), where �R stands for type derivation in the Relevant Type System.

Theorem 10. Let M be a λI-term such that Γ �∩ M : σ in the Intersection
Type System. Then there is a basis ΓR and a term N such that ΓR �R N : T (σ),
where �R stands for type derivation in the Relevant Type System.

This theorem has, as a corollary, that if a λI-term M is typable in the
Intersection Type System with a simple type, then there is an expanded term
with the same type derivable in the Relevant Type System. Just notice that
T (σ) = σ when σ is a Curry type.

Reduction. We now show that β-reduction is preserved by ACI-expansion for
the λI-calculus, where erasing is not allowed. This means that for the λI-calculus
the following diagram commutes:
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M1
β

��

EI

��

M2

EI

��
N1

β
�� �� N2

Lemma 7. Let (λx.M)N be a redex in the λI-calculus. Let EI((λx.M)N : σ) �
(N1, A). Then there is a term N2 such that EI(M [N/x] : σ)� (N2, A) and N1 �

β

N2.

Theorem 11. Let M1 and M2 be two terms in the λI-calculus. Let EI(M1 : σ)�
(N1, A) and M1 →

β
M2. Then there is a term N2 such that E(M2 : σ) � (N2, A)

and N1 �
β

N2.

From Intersection Types to Linear Types: AC-Expansion. This expan-
sion (AC) was first defined in [18] to linearize the strongly normalizable terms.
AC-expansion relies on the use of non-idempotent intersection types, which give
us a one-to-one relation between the number of types in an intersection and the
number of occurrences of a formal parameter x in a function λx.M . This means
that expanded terms will be affine or linear terms (depending on the range of
expansion). Thus the definition of AC-Expansion (which can be found in [18]) is
similar to ACI-Expansion, using non idempotent intersections and the following
different expansion rule for variables:

EC(x : τ) � (y, {x : {y : τ}})
if x is a variable and y is a fresh variable

Proofs of theorems in this subsection about the relation between AC-expansion
and Affine Types can be found in [18].

From now on, to stress that expanded versions are affine or linear, when we
have EC(M : σ) � (N,A) we will refer to N as one linear version of M .

AC-Expansion and the Affine Type System

Definition 10. T is a translation from intersection types to linear types defined
by T (α) = α, if α is a type variable and T ((τ1 ∩ · · ·∩ τn) → σ) = T (τ1)−◦ · · ·−◦
T (τn) −◦ T (σ).

Theorem 1. Let EC(M : σ) � (N,A). Then Te(A) �A N : T (σ), where �A

stands for type derivation in the Affine Type System.

Theorem 2. Let M be a λ-term such that Γ �∩ M : σ in the Intersection Type
System. Then there is a basis ΓA and a term N such that ΓA �A N : T (σ),
where �A stands for type derivation in the Affine Type System.

Weak-Head Reduction. AC-expansion is also preserved by weak head reduc-
tion. This guarantees that the weak head normal form of a term M has an
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expanded version, which is a weak head normal form of an expanded version
of M . We first present one lemma that is going to be used in the study of the
preservation of expansion by reduction.

Lemma 8. Let EC(M : σ) � (M0, A0 � {x : {x1 : τ1, . . . , xk : τk}}) and EC(N :
τi) � (Ni, Ai) for i ∈ {1, . . . , k}. Then

EC(M [N/x] : σ) � (M0[N1/x1, . . . , Nk/xk], A0 � · · · � Ak)

AC-Expansion preserves weak head reduction, thus the following diagram
commutes:

M1 w
��

EC

��

M2

EC

��
N1 w

�� �� N2

Theorem 3. Let EC(M1 : σ)� (N1, A1) and M1 →
w

M2. Then there is an affine

term N2 such that EC(M2 : σ) � (N2, A2), N1 �
w

N2 and A2 � A1.

We saw that AC-expansion was preserved by weak head reduction. The same
example used to prove that β-reduction is not preserved by ACI-expansion holds
to show the lack of the same property for AC-expansion.

AC-Expansion and the Linear Type System. Here we will study AC-
expansion applied only to λI-terms. Note that it is the same relation, EC , defined
in the previous section, but we now restrict its domain to the set of λI-terms.
Thus the same symbol EC will be used overloaded.

We show that terms in the range of EC when its domain is the λI-calculus
are typed in the Linear Type System.

Theorem 12. Let M be a λI-term such that EC(M : σ) � (N,A). Then
Te(A) �L N : T (σ), where �L stands for type derivation in the Linear Type
System.

Theorem 13. Let M be a λI-term such that Γ �∩ M : σ in the Intersection
Type System. Then there is a basis ΓL and a term N such that ΓL �L N : T (σ),
where �L stands for type derivation in the Linear Type System.

Reduction. We show that β-reduction is preserved by AC-expansion for the
λI-calculus, where erasing is not allowed. This means that for the λI-calculus
the following diagram commutes:

M1
β

��

EC

��

M2

EC

��
N1

β
�� �� N2
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Lemma 9. Let (λx.M)N be a redex in the λI-calculus. Let EC((λx.M)N : σ)�
(N1, A) Then there is a linear term N2 such that EC(M [N/x] : σ)� (N2, A) and
N1 �

β
N2.

Theorem 14. Let M1 and M2 be two terms in the λI-calculus. Let EC(M1 : σ)�
(N1, A) and M1 →

β
M2. Then there is a term N2 such that EC(M2 : σ)� (N2, A)

and N1 �
β

N2.

From Intersection Types to Ordered Types: Ordered Expansion. Here
we define the new notion of ordered expansion, which relates terms typable by
non-idempotent and non-commutative intersections with terms typable in the
ordered type system. As order now matters, expansion contexts will be defined
as lists.

Definition 11. T is a translation from intersection types to ordered types
defined by T (α) = α, if α is a type variable and T ((τ1 ∩ · · · ∩ τn) → σ) =
T (τ1) −◦r · · · −◦r T (τn) −◦r T (σ).

Definition 12. A variable expansion is an expression of the form x : S where
x is a variable and S is a list of pairs of the form y : τ where y is a variable
and τ an intersection type (x : S should be read informally as “x expands to the
variables in S”).

Definition 13. An expansion context A is a finite list of variable expansions,
A = [x1 : S1, . . . , xn : Sn], where the variables {x1, . . . , xn} are all different and
the Si have no elements in common.

We now define an operation that appends two expansion contexts.

Definition 14. Let A1 and A2 be two expansion contexts. Then A1 + A2 is a
new expansion context define inductively as:

A1+A2 =

⎧
⎨

⎩

A1 if A2 = [ ]
(A′

1, x : S1, S2, A
′′
1) + A′

2 if A1 = A′
1, x : S1, A

′′
1 and A2 = x : S2, A

′
2

(A1, x : S2) + A′
2 otherwise

From now on when we write A + [x : S] we assume that x does not occur in A.
We are now able to formalize the notion of ordered expansion:

Definition 15 (Ordered Expansion). The ordered expansion relation
Eo(M : σ) 	 (Nτ , A) for M,N (pure) λ-terms, σ an intersection type and A
an expansion context is inductively defined by:
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Eo(x : σ) � (yσ, [x : [y : σ]]), y fresh

Eo(λx.M : σ1 ∩ · · · ∩ σn −◦ σ) � (λy1 . . . yn.Mσ1−◦r···−◦rσn−◦rσ
0 , A),

if x ∈ fv(M) and

Eo(M : σ) � (Mσ
0 , A + [x : [x1 : σ1, . . . , xn : σn]])

Eo(λx.M : σ1 ∩ · · · ∩ σn −◦ σ) � (λx1 . . . xn.M
σ1−◦l···−◦lσn−◦lσ
0 , A),

if x ∈ fv(M) and

Eo(M : σ) � (Mσ
0 , [x : [xn : σn, . . . , x1 : σ1]] + A)

Eo(MN : σ) � ((M0N1 . . . Nm)σ, A0 + A1 + · · · + Am),

if for some m > 0 and σ1, . . . , σm

Eo(M : σ1 ∩ · · · ∩ σm −◦ σ) � (Mσ1−◦r···−◦rσm−◦rσ
0 , A0)

and (Eo(N : σi) � (Nσi
i , Ai))i=1...m

Eo(MN : σ) � ((M0N1 . . . Nm)σ, Am + · · · + A1 + A0),

if for some m > 0 and σ1, . . . , σm

Eo(M : σ1 ∩ · · · ∩ σm −◦ σ) � (Mσ1−◦l···−◦lσm−◦lσ
0 , A0)

and (Eo(N : σi) � (Nσi
i , Ai))i=1...m

Ordered Expansion and Ordered Types

Definition 16. Let Te be a translation from expansion contexts to bases defined
as Te(ε) = ε and Te(A + [x : [x1 : τ1, . . . , xn : τn]]) = Te(A), x1 : τ1, . . . , xn : τn.

Theorem 15. Let M be a λI-term. If Eo(M : σ) 	 (NT (σ), A), then Te(A) �o

N : T (σ).

We will now present an example illustrating Definition 15 and Theorem 15.
Example 1. Let M ≡ (λx.xz)z. The ordered expansion of M is calculated step
by step as:

Eo((λx.xz)z : β) = (((λx1.x1z1)z2)β , [z : [z2 : α →r β, z1 : α]])
Eo(λx.xz : (α → β) → β) = ((λx1.x1z1)(α→rβ)→lβ , [z : [z1 : α]])

Eo(xz : β) = ((x1z1)β , [x : [x1 : α →r β], z : [z1 : α]])
Eo(x : α →r β) = (xα→rβ

1 , [x : [x1 : α →r β]])
Eo(z : β) = (zβ

1 , [z : [z1 : β]])
Eo(z : α → β) = (zα→rβ

2 , [z : [z2 : α →r β]])

Theorem 15 guarantees that the expanded version of M is typable in the ordered
type system (in this case with the same type). The corresponding type derivation
follows:

[x1 : α →r β] �o x1 : α →r β [z1 : α] �o z1 : β

[x1 : α →r β, z1 : α] �o x1z1 : β

[z1 : α] �o (λx1.x1z1) : (α →r β) →l β [z2 : α →r β] �o z2 : α →r β

[z2 : α →r β, z1 : α] �o (λx1.x1z1)z2) : β
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Reduction. As it happens with ACI-expansion and AC-expansion, ordered
expansion is also preserved by β-reduction for λI-terms.

Lemma 10. Let Eo(M,σ) 	 (N,A1 + [x : [x1 : τ1, . . . , xn : τn]] + A2), then there
exist n occurrences of x in M .

Lemma 11. Let Eo(M,σ) 	 (MT (σ)
0 , A0 + [x : [x1 : T (τ1), . . . , xn : T (τn)]] +

An+1) and (
Eo(N, τi) 	 (NT (τi)

i , Ai)
)

i=1...n

then Eo(M [N/x], σ) 	 ((M0[N1/x1, . . . , Nn/xn])T (σ), A0 +i=1...n Ai + An+1).

Lemma 12. Let (λx.M)N be a redex in the λI-calculus. Let Eo((λx.M)N :
σ)	(Nτ1

1 , A). Then there is a linear term N2 and a type τ2 such that Eo(M [N/x] :
σ) � (Nτ2

2 , A) and N1 �
β

N2.

Theorem 16. Let M1 and M2 be two terms in the λI-calculus. Let Eo(M1 :
σ) 	 (Nτ1

1 , A) and M1 →
β

M2. Then there is a term N2 and a type τ2 such that

Eo(M2 : σ) 	 (Nτ2
2 , A) and N1 �

β
N2.

4 Conclusions

This paper highlights a clear relation between algebraic properties of intersec-
tion types and the substructural rules: idempotent intersection is related with
the contraction rule and commutative intersection with the exchange rule. The
following table relates the algebraic properties of the intersection operator used
in expansion with the different type systems obtained.

∩ Source Target Preserves reductions

ACI λ Simple Types Weak Head Reduction

ACI λI Relevant Types β-reduction

AC λ Affine Types Weak Head Reduction

AC λI Linear Types β-reduction

A λI Ordered Types β-reduction
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Abstract. Weak linearisation was defined years ago through a static
characterization of the intuitive notion of virtual redex, based on (legal)
paths computed from the (syntactical) term tree. Weak-linear terms
impose a linearity condition only on functions that are applied (consumed
by reduction) and functions that are not applied (therefore persist in the
term along any reduction) can be non-linear. This class of terms was
shown to be strongly normalising with deciding typability in polynomial
time. We revisit this notion through non-idempotent intersection types
(also called quantitative types). By using an effective characterisation of
minimal typings, based on the notion of tightness, we are able to dis-
tinguish between “consumed” and “persistent” term constructors, which
allows us to define an expansion relation, between general λ-terms and
weak-linear λ-terms, whilst preserving normal forms by reduction.

Keywords: Intersection types · Linearisation · Minimal typings

1 Introduction

The notion of linearisation of the λ-calculus, as a process of transforming (or
simulating) non-linear terms into (or using) “equivalent” linear terms, was first
introduced in [27], and has since been used as a transformation technique in
different settings [19,20,31]. From the computational point of view, linear terms
have nice properties: there are no infinite reduction sequences starting from linear
terms, there is no duplication of terms upon function evaluation, and every linear
term is typable in the simple type system [22] thus it is typable in polynomial
time. Regarding implementation issues of linear programs, both inline expansion
and updating of structures in place, can be done safely. Several abstract machines
for functional calculi have been designed to take into account and optimise the
computation in the case of linear functions (see for instance [5,28,30,33]). Linear
functions are also naturally occurring in hardware compilation [19]. Circuits are
static (i.e., they cannot be copied at run-time), so linear computations are more
naturally compiled into hardware.
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In this paper we revisit the notion of weak-linearisation, as defined in [6],
through a notion of expansion based on non-idempotent intersection types and
the notion of minimal typings [1]. Non-idempotent intersections were indepen-
dently introduced by Gardner [18] and Kfoury [27], and turned out to be cru-
cial in several resource aware consumption investigations [2,3,7,9,12,24,26]. The
foundation for resource aware reasoning dates back to Girard’s seminal work
on resource management in proof theory that lead to the definition of linear
logic [21]. The quantitative feature of the non-idempotent intersections was high-
lighted in De Carvalho’s thesis [16] where its relation with linear logic [21] and
quantitative relational models has been deeply explored. In the intersection types
discipline [14], objects are allowed to be typed with distinct types combined by
means of an intersection operator. If this intersection operator (∩) does not enjoy
idempotency (that is, it distinguishes τ ∩τ from τ), then besides providing quali-
tative information on how objects are used, it also gives quantitative information
on how many times they are used. For that reason, these type systems are called
(nowadays) quantitative type systems.

Kfoury [27], used non-idempotent intersections to define a linear λ-calculus
and the notion of linearisation. Kfoury’s linear calculus, denoted Λ∧, came with
a new notion of reduction, called β∧. Linearisation was defined indirectly by
means of the notion of contraction, such that well-formed terms of the new
calculus were those for which there was a contracted term in the λ-calculus.
The relation between linearisation and intersection types was further explored
by Florido and Damas in [17], introducing a notion of expansion of terms in
the λ-calculus into linear terms, such that, any term typable using intersection
types [14] is related with a term typable using simple types [15]. In other words,
any typable term can be expanded to a simply typable linear term. For instance,
the term δI –where δ ≡ λx.xx and I ≡ λx.x– is typable in such an intersection
type system and is related with term (λx1x2.x1x2) I I, also said to be a linear
expansion of the former. Expansion is preserved by weak-head reduction1, in the
sense that reduction commutes with expansion.

An operational notion of linearisation, called weak-linearisation, was defined
by Alves and Florido [6], based on the notion of legal paths. Legal paths were
introduced by Asperti and Laneve [8] as a characterisation based on paths of
Lévy’s redex families in the context of optimal reductions for the λ-calculus [29],
providing a static characterisation of the intuitive notion of virtual redex. Weak
linear λ-terms are strongly normalising, typable in polynomial time, and the
transformation of general terms into weak linear terms was shown to preserve
normal forms. A term t is weak linear if in any reduction sequence from t,
when there is a contraction of a β-redex (λx.u)v, then x occurs free in u at
most once, therefore only functions that are applied to an argument in some
reduction process are required to be linear. Although this class of terms is often
called affine, whereas linear is used for terms λx.t where x occurs free exactly
once in t, the definition of linear function used here follows [17,27]. Notice that
the definition of weak linear term refers to all the abstractions λx.u that are

1 A notion of reduction used in functional programming languages implementation,
which does not evaluate inside values, i.e. under abstractions.
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going to play the function part of a β-redex along the reduction of t, and legal
paths were used to identify these virtual redexes. For example t ≡ (I δ)k is
not weak linear, since (δ k) is a redex in a reduction sequence from t, whereas
u ≡ ((λxy.yx) δ)k is weak-linear, since the only duplicating abstraction δ is never
applied during (any) reduction from u. Note also that we require the capability to
distinguish functions that are going to be applied, therefore “consumed” by (any)
reduction, from the ones that are going to “persist” in the term. For example
in δ I, only one of the copies of I is going to play the function part of a β-
redex, whereas the other is going to remain in the normal form. This dichotomy
of consumed/persistent terms has been highlighted in [25] for the λμ-calculus,
and adapted to a pattern-calculus in [7], using a quantitative typing system
extended with the notion of tight types. Tight-typings, which provide an effective
characterisation of minimal typings, have been applied to the λ-calculus [1] to
extract exact bounds for different evaluation strategies, and in particular for a
maximal reduction strategy.

In this paper we combine the notion of expansion relation, as defined by
Florido and Damas in [17], with the notion of tight types in a non-idempotent
intersection type system following [1], and define a new expansion relation that
captures the operational notion of weak-linearisation. We prove that expansion
commutes with β-reduction and that expanded terms are weak-linear in the sense
of [6], and therefore typable in polynomial time. Furthermore, because we base
our expansion relation on a quantitative type system that characterises strong
normalisation, we are able to show that all strong-normalising λ-terms can be
simulated by a weak-linear λ-term, with the same β-normal form. This is a major
breakthrough with respect to the approach based on legal paths [4,6], where such
relation was left as a conjecture. Note that Kfoury also conjectured that strongly
normalisable λ-terms are those that can be simulated by a corresponding well-
formed term in Λ∧ [27]. Additionally, using tight-types we are able to give a
typing characterisation of expanded terms, by introducing a linear restriction of
the typing system in [1], such that weak linear λ-terms are exactly the terms
typed in this system.

Overview: The rest of the paper is structured as follows. In Sect. 2 we give
some preliminary notions on the λ-calculus and discuss some properties of the
non-deterministic maximal reduction strategy that we are using in this paper.
In Sect. 3, we recall the non-idempotent type system for a maximal reduction
strategy given in [1], together with some properties that we adapt to our non-
deterministic strategy. Our expansion relation is developed in Sect. 4, where we
prove its relation with our maximal reduction strategy. In Sect. 5, we give a
typing characterisation of weak-linear terms, by means of a linear system with
tight-typings. We discuss some related work in Sect. 6 and finally conclude and
discuss future work in Sect. 7.

2 Terms and Reductions

We start by recalling some basic definitions on the λ-calculus. For a detailed
reference see [10]. The set of λ-terms, denoted by Λ, is inductively defined by
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means of the following grammar: t, u :: = x | λx.t | t u ; here x, y, z, w . . . range
over an infinite countable set of variables. The term x is called a variable, λx.t
is an abstraction and tu is an application. We write abs(t), to denote that t is a
term of the form λx.u. The size |t| of a term is defined by: |x| = 0; |λx.u| = 1+|u|
and |uv| = |u| + |v| + 1. Free variables of terms are defined as: fv(x) := {x},
fv(λx.t) := fv(t) \ {x} and fv(tu) := fv(t) ∪ fv(u).

Terms are considered modulo α-conversion, so that for example λxy.xz =α

λx′y′.x′z, but λx.xz �=α λz.zz. We use t{x/u} to denote the meta-level sub-
stitution operation which replaces all the free occurrences of x in t by the term
u. As usual, this operation is performed modulo α-conversion so that capture
of free variables is avoided. Throughout the paper, whenever necessary, we will
assume Barendregt’s Variable Convention (BVC), regarding the use of free and
bound variables (see [10]).

We now present an inductive definition of a non-deterministic maximal reduc-
tion strategy, denoted →nmx, that is closely related to the deterministic maximal
reduction strategy →mx in [1]. A maximal strategy computes the longest reduc-
tion sequence to a normal form, whenever such a reduction exists, obtaining an
infinite reduction sequence otherwise. The →mx reduction strategy is based on a
maximal strategy defined by [11] and further developed in [32]. This reduction
was used in [32] to reason about strong normalisation, in [6] to prove strong
normalization of weak-linear λ-terms and in [1] to reason about quantitative
measures for reduction.

The →nmx reduction strategy on λ-terms is defined in Fig. 1. Superscript e
in e−→nmx denotes the size of a term erased in reduction and is mostly omitted from
notation throughout the paper. The definition of →nmx relies on the notion of
head-neutral normal forms. An inductive definition of head-neutral normal
forms, denoted by t ∈ Nhd, and (nmx)-normal forms, denoted by t ∈ M, is
given by the following grammars:

Nhd :: = x | Nhd Λ N :: = x | N M M :: = N | λx.M

A term t ∈ N is called a neutral normal form. Note that N ⊆ Nhd.
The reflexive-transitive closure of →nmx, is defined by:

t
0−→

0

nmx t

t
r1−→nmx v v

r2−→
k

nmx u

t
r1+r2−−−−→

k+1

nmx u

t
r−→k

nmx u

t
r−→∗

nmx u

The only difference between →mx and →nmx is that →mx last rule is defined
with t ∈ N , i.e. in a term of the form xu1 . . . un, while ui will be reduced only
when xu1 . . . ui−1 ∈ N in the former, i.e. uj ∈ M for each 1 ≤ j < i, any ui is
reduced independently in the latter. For instance, let t = x (I I) (I I), then t can
only be →mx-reduced to x I (I I) while it can also be →nmx-reduced to x (I I) I.
Therefore, →mx⊆→nmx.

We establish some necessary properties about →nmx and normal forms.
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x ∈ fv(t)

(λx.t)u 0−→nmx t{x/u}
u

r−→nmx u′ x /∈ fv(t)

(λx.t)u r−→nmx (λx.t)u′
u �→nmx x /∈ fv(t)

(λx.t)u
|u|−−→nmx t

t
r−→nmx t′

λx.t
r−→nmx λx.t′

¬abs(t) t
r−→nmx t′

tu
r−→nmx t′u

t ∈ Nhd u
r−→nmx u′

tu
r−→nmx tu′

Fig. 1. Non-deterministic maximal reduction strategy

Proposition 1. Let t be a λ-term:

1. If t ∈ Nhd then ¬abs(t). In particular, t ∈ N implies that ¬abs(t).
2. t ∈ M iff t �→nmx.
3. If t ∈ Nhd and t →nmx t′ then t′ ∈ Nhd.

Proof. 1. Follows directly from the definition of Nhd.
2. (⇒): By induction on t ∈ M. (⇐): A a slightly stronger result is proved by

induction on t : If t �→nmx then ¬abs(t) implies t ∈ N otherwise t ∈ M.
3. By induction on t ∈ Nhd.

We prove that →nmx has the diamond property (DP) thus is also maximal.

Lemma 1 (nmx-reduction has DP). Let t be a term. If u nmx
e′

←− t
e−→nmx v,

with u �= v, then there is w s.t. u
e−→nmx w nmx

e′
←− v.

Proof. By induction on t. We present the case for t = t1t2 where ¬abs(t1):
– If t1 ∈ N , in which case (by Proposition 1.2) t1 �→nmx, then u = t1u2 and

v = t1v2 where u2 nmx
e′

←− t2
e−→nmx v2. By the i.h. there is w2 s.t. u2

e−→nmx

w2 nmx
e′

←− v2. Therefore u
e−→nmx w nmx

e′
←− v for w = t1w2.

– If t1 /∈ N , but t1 ∈ Nhd then there are two subcases:
• If u = u1t2 where t1

e′
−→nmx u1, then u1 ∈ Nhd (Proposition 1.3.) and there

are two possibilities:
* If v = t1v2 where t2

e−→nmx v2 then, for w = u1v2 we have that
u

e−→nmx w nmx
e′

←− v.
* If v = v1t2 where t1

e−→nmx v1 then by the i.h. there is w1 s.t. u1
e−→nmx

w1 nmx
e′

←− v1. Since v1 ∈ Nhd (Proposition 1.3.), we have that u
e−→nmx

w nmx
e′

←− v for w = w1t2.
• If u = t1u2 where t2

e′
−→nmx u2 then the cases are similar as above.

– If t1 /∈ Nhd then u = u1t2 and v = v1t2 where u1 nmx
e′

←− t1
e−→nmx v1. By the i.h.

there is w1 s.t. u1
e−→nmx w1 nmx

e′
←− v1. If abs(u1) then either t1 = (λx.t11)t12

and u1 = t11{x/t12} or t1 = (λx.t11)t12 and u1 = t11. In either case we
would have that u = v. Then, the only diverging case is when ¬abs(u1) and

¬abs(v1), therefore u
e−→nmx w nmx

e′
←− v for w = w1t2.

Corollary 1. →nmx is maximal.
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3 Types

In this section we recall the non-idempotent type system for a maximal reduc-
tion strategy given in [1], which we will refer to as MX . This can be seen as an
extension of Gardner’s system [18], but in which tight types are used to identify
persistent term constructors, that is constructors that are not going to be con-
sumed by reduction. The sets of types (T ) and multi-types are given by the
following grammars:

(tight-types) t :: = •M | •N (types) σ, τ :: = t | A→σ
(multi-types) A :: = [σk]k∈K

where t denotes tight-types: the constants •M and •N denote the type of any
term reducing to a term in M and N , respectively. A multiset type (multi-types)
is an unordered list of (not necessarily different) elements where K denotes a
(possibly empty) finite set of indexes. We use [ ] to denote the empty multiset.
We write |A| to denote the number of elements of the multiset A. For example
[•N , [•N ] → •N , •N ] is a multi-type of 3 elements, representing the intersection
type •N ∩ ([•N ] → •N ) ∩ •N , where ∩ is an associative, commutative and non-
idempotent intersection type constructor. We write  to denote multiset union.
As usual the arrow constructor is right-associative.

A typing context Γ is a map from variables to multi-types, such that only
finitely many variables are not mapped to the empty multiset [ ]. We write
dom(Γ ) to denote the domain of Γ , which is the set {x | Γ (x) �= [ ]}. We may
write Γ#Δ if and only if dom(Γ ) and dom(Δ) are disjoint. Given typing contexts
{Γk}k∈K we write +k∈KΓk for the context that maps x to k∈KΓk(x). One
particular case is Γ + Δ. We sometimes write Γ ;Δ instead of Γ + Δ, when
Γ#Δ, and we do not distinguish Γ ;x : [ ] from Γ . Context inclusion relation
is defined by: Δ ⊆ Γ iff ∃Γ ′,Δ+Γ ′ = Γ . The typing context Γ\\ x is defined by
(Γ\\ x)(y) = Γ (y) if y �= x and [ ] otherwise.

We write tight(σ), if σ is of the form •M or •N . We extend this notion to
multi-types and typing contexts as expected, that is, tight([σi]i∈I) if tight(σi)
for all i ∈ I, and tight(Γ ) if tight(Γ (x)), for all x ∈ dom(Γ ).

The typing assignment system MX is given in Fig. 2. Indexes in the pair (b, r)
in a typing Γ �(b,r)

mx t : τ are related with the number of →nmx steps and the size
of corresponding normal form, respectively, (see Example 1) and will be mostly
ommitted throughout the paper. We use Φ�Γ �mx t : σ (resp. Φ�Γ �mx t : A)
to denote a type derivation ending with the sequent Γ �mx t : σ (resp. Γ �mx

t : A). The size of a derivation Φ, denoted by sz(Φ), is the number of all typing
rules but many>0 and none used in Φ. Note that rule (none) demands typability
of the premise, not allowing arguments of erasing-functions to be untyped thus
preventing divergent terms as arguments.

System MX is relevant: if Φ � Γ �mx t : τ then dom(Γ ) = fv(t). In other
words, no weakening is allowed in the typing system. Given a derivation Φ �
Γ �mx t : τ , we say Φ is garbage-tight if tight(σ) in every application of rule
(none); and is (maximal) tight, denoted by tight(Φ), if it is garbage-tight,
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Fig. 2. System MX

tight(Γ ) and tight(τ). Tightness is the key notion in the typing system, in
which persistent and consumable (term) constructors are discriminated. Such
classification allows one to give precise measures on both number of steps and
size of the corresponding normal form.

Example 1. Consider t ≡ (λx.xIx)Δ, with I ≡ λz.z and Δ ≡ λy.yy. Let B =
[[[•M]→•M]→ [•M]→•M
︸ ︷︷ ︸

τ1

, [•M]→•M
︸ ︷︷ ︸

τ2

] and A = [•M,B → [•M]→•M]. Let Φ

be:

x : [•N ] �(0,0) x : •N x : [•N ] �(0,0) x : •N
x : [•N , •N ] �(0,1) xx : •N

�(0,2) Δ : •M

x : [τ1] �(0,0) x : τ1

x : [τ2] �(0,0) x : τ2

x : [τ2] �(0,0) x : [τ2]

x : B �(1,0) xx : [•M]→•M
�(2,0) Δ : B→ [•M]→•M

�(2,2) Δ : A

and ΦI be:
x : [τ2] �(0,0) x : τ2

�(1,0) I : τ1

y : [•M] �(0,0) y : •M

�(1,0) I : τ2

�(2,0) I : B
We have the following tight derivation for t:

x : [B→ [•M]→•M] �(0,0) x : B→ [•M]→•M (ΦI)(2,0)

x : [B→ [•M]→•M] �(3,0) xI : [•M]→•M

x : [•M] �(0,0) x : •M
x : [•M] �(0,0) x : [•M]

x : A �(4,0) xIx : •M
�(5,0) (λx.xIx) : A→•M Φ(2,2)

�(8,2) (λx.xIx)Δ : •M

Moreover, t →nmx ΔIΔ →nmx IIΔ →nmx IΔ →nmx Δ. In other words, t →nmx-
normalization has 4 = 8/2 steps with normal form |Δ| = 2. Notice that the Δ
copy typed with •M in Φ characterizes its abstraction constructor as persistent,
not consumed during normalisation, i.e. its λ is not applied and, in this case,
occurs in t’s normal form.
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We now recall some properties from [1] that are relevant to our work. Prop-
erties regarding normal forms2, such as typability with a tight derivation, and
(Anti) Substitution Lemmas do not depend on the reduction strategy and thus
trivially holds in the current presentation. Below we present one of such proper-
ties, which play a role when considering nmx-reductions.

Lemma 2 (Tight spreading on neutral terms for MX [1]). If t ∈ Nhd and
Φ � Γ �mx t : τ s.t. tight(Γ ) then tight(τ).

Proposition 2 (Quantitative Subject Reduction). If Φ � Γ �(b,r)
mx t : τ

is tight and t
e−→nmx t′ then there is a Γ ′ ⊆ Γ and a tight derivation Φ′ s.t.

Γ ′ �(b−2,r−e)
mx t′ : τ .

Proof. As in [1], the proof is by induction on t
e−→nmx t′ of a stronger property:

Let t
e−→nmx t′, Φ � Γ �(b,r)

mx t : τ garbage-tight, tight(Γ ) and either tight(τ)
or ¬abs(t). Then there are a tight(Γ ′) s.t. Γ ′ ⊆ Γ and a garbage-tight typing
Φ′�Γ ′ �(b−2,r−e)

mx t′ : τ . It is sufficient to analyse the only case in which reduction
→nmx differs from the deterministic strategy in [1]. Lemma 2 is used in this case,
which holds for terms in Nhd. Therefore, the proof steps are the same as in [1].

We can then establish the corresponding subject expansion property with a
similar consideration regarding Lemma 2.

Proposition 3 (Quantitative Subject Expansion). If Φ � Γ �(b,r)
mx t : τ

is tight and t′ e−→nmx t then there is a Γ ⊆ Γ ′ and a tight derivation Φ′ s.t.
Γ ′ �(b+2,r+e)

mx t′ : τ .

Given that (quantitative) subject reduction and expansion properties still
hold for nmx-reduction, tight correctness and completeness is proved as in [1].

Theorem 1 (Tight Correctness for nmx). Let Φ � Γ �(b,r)
mx t : τ be a tight

derivation. Then there is an integer e and a term u ∈ M s.t. t
e−→b/2

nmx u and
|u| + e = r. Moreover, if τ = •N then u ∈ N .

Theorem 2 (Tight Completeness for nmx). If t
e−→k

nmx u with u ∈ M, then
there exists a tight typing Φ � Γ �(2k,|u|+e)

mx t : τ . Moreover, if u ∈ N then
τ = •N , and if abs(u) then τ = •M.

Remark that, by the correctness and completeness results, an abstraction
typed with •M in a tight derivation is in fact persistent. In other words, it
occurs either in the normal form –contributing with |u|– or in some normal form
erased along the reduction –contributing with e in the corresponding step.

2 Both deterministic and non-deterministic strategies have the same normal forms.
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Fig. 3. Expansion E

4 Weak-Linearisation for Strongly Normalising Terms

In this section we present our expansion relation, following the relation by Florido
and Damas [17]. The expansion relation E , associates to a λ-term t typed with
a non-idempotent type σ in MX , an expanded (weak-linear) λ-term u and an
expansion context A.

An expansion context A is a map from variables to multisets of the form
[y1 : σ1, . . . , ym : σm], where yi is variable and σi is a type, and such that
only finitely many variables are not mapped to the empty multiset [ ]. As for
typing contexts, we define dom(A) to denote the domain of A, which is the set
{x | A(x) �= [ ]}. The notions of +k∈KAk, and A1;A2, are defined as in the case
of typing contexts but taking multisets of pairs x : σ, instead of multisets of
types. The expansion relation E (t : σ) � (u,A) is inductively defined in Fig. 3.

Example 2. Considering t ≡ (λx.xIx)Δ from Example 1, with (tight) typing
Ψ � �(8,2)

mx (λx.xIx)Δ : •M. See Fig. 4 for the complete expansion of t, where
A = [•M,B→ [•M]→•M] and B = [[[•M]→•M]→ [•M]→•M, [•M]→•M].

We now prove some basic properties on E .

Lemma 3 (Basic properties of E ). If E (t : σ) � (u,A), then:

1. If ¬abs(t) then ¬abs(u).
2. If t ∈ Nhd then u ∈ Nhd.
3. If t �→nmx then u �→nmx.
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Fig. 4. An expansion for (λx.xIx)Δ : •M

Proof. 1. Follows by contraposition from the fact that the result of E is an
abstraction only when the initial term was itself an abstraction.

2. By induction on t ∈ Nhd.
3. It suffices to prove that if E (t : σ) � (u,A), then t ∈ M implies u ∈ M. A

slightly stronger result is then proved by induction on t: (1) If t ∈ N then
u ∈ N ; (2) If t ∈ M then u ∈ M.

Let A be an expansion context. The typing context associated to A,
denoted ΓA, is defined by:

Γ{x:[x:t1,...,x:tn]} = {x : [t1, . . . , tn]} ΓA+B = ΓA + ΓB

Γ{x:[x1:τ1,...,xn:τn]} = {x : [τ1, . . . , τn]}

We say that A is tight, denoted by tight(A), if tight(ΓA).

Lemma 4. If E (t : σ) � (t1, A), then Φ � ΓA �mx t : σ. If Φ is (garbage-)tight
then we say that the expansion is (garbage-)tight.

Corollary 2. If E (t : σ) � (t1, A), then x ∈ dom(A) iff x ∈ fv(t).

Lemma 5. If Φ � Γ �mx t : σ then there are u and A, s.t. E (t : σ) � (u,A),
where ΓA = Γ .

Proof. By induction on Φ. We present the case for rule (funb): Γ\\ x �mx λx.t :
Γ (x)→τ follows from Γ �mx t : τ . We have two cases:

– If Γ (x) = [τi]i=1...n, thus Γ = Γ ′;x : [τi]i=1...n then by the i.h., there exists
u and A, such that E (t : τ) � (u,A) with ΓA = Γ . Then A = A′; {x : [x1 :
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τ1, . . . , xn : τn]}, with some x1, . . . , xn fresh variables and ΓA′ = Γ ′. From
which we get E (λx.t : [τi]i=1...n → τ)�(λx1 . . . xn.u, A′), and ΓA′ = Γ ′ = Γ\\ x
as required.

– If Γ (x) = [ ], then by the i.h., there exists u and A, such that E (t : τ) � (u,A)
with ΓA = Γ . Note that, by relevance of MX , x /∈ fv(t), therefore, E (λx.t :
[ ] → τ) � (λx.u,A), and ΓA = Γ as expected.

Lemma 6. If E (t : σ) � (t0, A0; {x : [x1 : τ1, . . . , xn : τn]}), then x occurs n
times in t.

Lemma 7. If E (t : σ)�(t0, A0; {x : [x1 : τ1, . . . , xn : τn]}) and E (u : τi)�(ui, Ai)
for i = 1 . . . n with n > 0, then E (t{u/x} : σ) � (t0{u1/x1, . . . , un/xn}, A0 +
A1 + · · ·+An). Moreover, if premise expansions are garbage-tight then so is the
resulting expansion.

Proof. By induction on t. We present the case for t = λy.t′ with its three sub-
cases:

– E (λy.t′ : [σi]i=1...m → σ) � (λy1 . . . ym.t∗, A; {x : [x1 : τ1, . . . , xn :
τn]}), follows from E (t′ : σ) � (t∗, A; {x : [x1 : τ1, . . . , xn : τn]}; {y :
[y1 : σ1, . . . , ym : σm]}), with y ∈ fv(t′) (which is guaranteed to be
garbage-tight whenever the main expansion is, by Lemma 4). By the i.h.
E (t′{u/x} : σ) � (t∗{u1/x1, . . . , un/xn}, A + A1 + · · · + An; {y : [y1 :
σ1, . . . , ym : σm]})3, from which follows E (λy.t′{u/x} : [σi]i=1...m → σ) �
(λy1 . . . ym.t∗{u1/x1, . . . , un/xn}, A + A1 + · · · + An).

– E (λy.t′ : [ ] → σ)�(λy.t∗, A; {x : [x1 : τ1, . . . , xn : τn]}), follows from E (t′ : σ)�
(t∗, A; {x : [x1 : τ1, . . . , xn : τn]}), with y /∈ fv(t′). By the i.h. E (t′{u/x} : σ)�
(t∗{u1/x1, . . . , un/xn}, A+A1+ · · ·+An), from which follows E (λy.t′{u/x} :
[ ] → σ) � (λy.t∗{u1/x1, . . . , un/xn}, A + A1 + · · · + An)4.

– E (λy.t′ : •M) � (λy.t∗, A; {x : [x1 : τ1, . . . , xn : τn]}), follows from E (t′ : t) �
(t∗, A; {x : [x1 : τ1, . . . , xn : τn]}; {y : [y : t1, . . . , y : tm]}). Then E (t′{u/x} :
t)� (t∗{u1/x1, . . . , un/xn}, A+A1+ · · ·+An; {y : [y : t1, . . . , y : tm]}) by the
i.h., from which follows E (λy.t′{u/x} : •M) � (λy.t∗{u1/x1, . . . , un/xn}, A +
A1 + · · · + An).

Theorem 3. Let E (t1 : t) � (u1, A1) be a tight expansion and t1 →nmx t2:

1. There is a term u2 such that E (t2 : t) � (u2, A2) is tight, u1 →∗
nmx u2 and

A2 ⊆ A1.
2. If ¬abs(u1) then for any u′ �= u2 s.t. u1 →∗

nmx u2 = u1 →∗
nmx u′ →∗

nmx u2,
¬abs(u′).

Proof. By induction on t1 →nmx t2 we prove a stronger first statement: if E (t1 :
σ) � (u1, A1) is garbage-tight, with tight(A1) and either tight(σ) or ¬abs(t1),
and t1 →nmx t2 then there is u2 such that E (t2 : σ) � (u2, A2) is garbage-tight
with tight(A2), A2 ⊆ A1 and u1 →∗

nmx u2. We present the case tu →nmx tu′, if
t ∈ Nhd and u →nmx u′, with its three subcases:
3 Note that (A; {y : [y1 : σ1, . . . , ym : σm]}) + A1 + · · · + An = A +A1 + · · · + An; {y :
[y1 : σ1, . . . , ym : σm]} since by BVC y /∈ fv(u) thus y /∈ dom(Ai) for each 1 ≤ i ≤ n.

4 y /∈ fv(t′) and by BVC y /∈ fv(u) thus y /∈ fv(t′{u/x}).
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– E (tu : σ) � (t0u1 . . . um,+j=0...mAj), if for some m > 0 and τ1, . . . , τm,
there are garbage-tight expansions E (t : [τj ]j=1...m → σ) � (t0, A0) and
(E (u : τj) � (uj , Aj))j=1...m with tight(Aj), j = 0 . . . m. By the i.h. for each
j = 1 . . . m, E (u′ : τj) � (u′

j , A
′
j), a garbage-tight expansion with tight(A′

j),
A′

j ⊆ Aj and uj →∗
nmx u′

j . Therefore, E (tu′ : σ) � (t0u′
1 . . . u′

m, A0 +j=1...m A′
j)

is a garbage-tight expansion with tight(A0+j=1...mA′
j) and A0+j=1...mA′

j ⊆
+j=0...mAj . By Lemma 3.2 we have t0 ∈ Nhd thus t0u

′
1 . . . u′

i ∈ Nhd for any
1 ≤ i ≤ m and t0u1 . . . um →∗

nmx t0u
′
1 . . . um →nmx . . . →∗

nmx t0u
′
1 . . . u′

m.
– E (tu : σ)� (t0u1, A0+A1), if for some tight τ1, there are garbage-tight expan-

sions E (t : [ ] → σ) � (t0, A0) and E (u : τ1) � (u1, A1) with tight(Ai), i = 0, 1.
By the i.h., E (u′ : τ1)�(u′

1, A
′
1) is garbage-tight with tight(A′

1) and A′
1 ⊆ A1

and u1 →∗
nmx u′

1. Therefore, E (tu′ : σ) � (t0u′
1, A

′
0 + A′

1) is a garbage-tight
expansion with tight(A0 + A′

1) and A0 + A′
1 ⊆ A0 + A1. By Lemma 3.2 we

have t0 ∈ Nhd thus t0u1 →∗
nmx t0u

′
1.

– E (tu : •N ) � (t∗u∗, A1 + A2), if for some tight type t there are garbage-tight
expansions E (t : •N ) � (t∗, A1) and E (u : t) � (u∗, A2) with tight(A1 + A2).
By the i.h., E (u′ : t) � (u′′, A′

2) is a garbage-tight expansion with tight(A′
2),

A′
2 ⊆ A2 and u∗ →∗

nmx u′′. Therefore, E (tu′ : •N ) � (t∗u′′, A1 + A′
2) is a

garbage-tight expansion with tight(A1 + A′
2) and A1 + A′

2 ⊆ A1 + A2. By
Lemma 3.2 we have t∗ ∈ Nhd thus t∗u∗ →∗

nmx t∗u′′.

5 A Characterisation of Weak-Linear Terms

In this section we introduce System WL, proving that a term is tight-expanded
if and only if its expansion is tight-typable in WL. Let WL be the typing system
with linear types, i.e. with types as in T where multi-types are restricted to either
empty or unitary multi-sets, i.e. with |K| ≤ 1. Recall that our notion of linear is
what is often referred to as affine, but given the relation of this work with [27]
and [17], we will continue to use their notion of linear function.

The typing assignment system WL is given by the rules in Fig. 5. System WL
is a restriction of System MX , i.e. if Γ �(b,r)

wl t : τ then Γ �(b,r)
mx t : τ where τ is

linear. (Garbage-) tightness of derivations in WL thus have the same properties,
allowing a characterisation of weak-linear terms as defined in [6]: A term t is
weak linear if in any reduction sequence of t, when there is a contraction of a
β-redex (λx.u)v, then x occurs free in u at most once.

Theorem 4 (Characterisation of Weak-Linear Terms). A term t is weak-
linear iff t is tight-typable in system WL.

Proof. Let Φ � Γ �(b,r)
wl t : τ . By induction on Φ we prove that any abstraction

λx.u in t where u has multiple free occurrences of x must be typed with rule
(funr). Since Φ is also a tight derivation in MX , by tight-correctness (Theo-
rem 1) such abstraction is either in the corresponding →nmx-normal form or is in
a normal form erased along normalisation, i.e. is not applied in any step along
the →nmx-normalisation. On the other hand, tight typability of normal forms
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Fig. 5. System WL

(see [1]) is still true for system WL. Therefore, by WL-typability of terms in M,
tight-completeness (Theorem 2) and observing that for any reduction step of a
weak-linear term the typing restriction in system WL is sufficient for a (quanti-
tative) subject expansion in the system, any weak-linear t is typable in system
WL.

In order to establish a relation between typings in MX and in WL, we introduce
a type translation and a mapping from expansion contexts, similarly to [17].

Type translation w(−) is defined by:

w(t) = t w([τj ]j=1...m) = [w(τj)]j=1...m

w([ ] → τ) = [ ] → w(τ) w([σi]i=1...m → τ) = [w(σ1)] → · · · → [w(σm)] → w(τ)

Extension of w(−) to typing contexts is straightforward. Expanded Context
Γ e

A is defined for any expansion context A by:

Γ e
{x:[x:t1,...,x:tn]} = {x : [t1, . . . , tn]} Γ e

A+B = Γ e
A + Γ e

B

Γ e
{x:[x1:τ1,...,xn:τn]} = {x1 : [w(τ1)], . . . , xn : [w(τn)]}

Example 3. Considering t ≡ (λx.xIx)Δ from Example 1, with (tight)
typing Ψ � �(8,2)

mx (λx.xIx)Δ : •M and expanded term t0 ≡
(λx3x4.x3IIx4)(λx1x2.x1x2)(λx.xx) (see Fig. 4), we present the WL typing cor-
responding to its expansion steps:

Unexpanded copy of Δ given by E (λx.xx : •M)�(λx.xx, ∅) has a WL typing
Φ no different from the corresponding MX typing:

x : [•N ] �(0,0)
wl x : •N x : [•N ] �(0,0)

wl x : •N

x : [•N , •N ] �(0,1)
wl xx : •N

�(0,2)
wl λx.xx : •M

On the other side, the expanded copy of Δ given by E (λx.xx : B →
[•M]→•M) � (λx1x2.x1x2, ∅) for B = [[[•M]→•M]→ [•M]→•M, [•M]→ •M]
has the corresponding WL typing Φ′, for ϕ1 = [•M] → •M, of the form:
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x1 : [[ϕ1] → ϕ1] �(0,0)
wl x1 : [ϕ1] → ϕ1

x2 : [ϕ1] �(0,0)
wl x2 : ϕ1

x2 : [ϕ1] �(0,0)
wl x2 : [ϕ1]

x2 : [ϕ1], x1 : [[ϕ1] → ϕ1] �(1,0)
wl x1x2 : ϕ1

x1 : [[ϕ1] → ϕ1] �(2,0)
wl λx2.x1x2 : [ϕ1] → ϕ1

�(3,0)
wl λx1x2.x1x2 : [[ϕ1] → ϕ1] → [ϕ1] → ϕ1

where w(B → [•M]→•M) = w([[ϕ1]→ϕ1, ϕ1] → ϕ1) = [[ϕ1] → ϕ1] → [ϕ1] → ϕ1.
Finally, given expansion E (λx.xIx : A → •M) � (λx3x4.x3IIx4, ∅) for A =

[•M,B → [•M]→•M], let ϕ2 = [ϕ1] → ϕ1 and ϕ3 = [ϕ2] → ϕ2. From WL
typings Ψ(ϕ1) and Ψ(•M):

x5 : [ϕ1] �(0,0)
wl x5 : ϕ1

�(1,0)
wl λx5.x5 : [ϕ1] → ϕ1

�(1,0)
wl λx5.x5 : [[ϕ1] → ϕ1]

x6 : [•M] �(0,0)
wl x6 : •M

�(1,0)
wl λx6.x6 : [•M] → •M

�(1,0)
wl λx6.x6 : [[•M] → •M]

we have derivation Ψ ′ of the form:

x3 : [ϕ3] �(0,0)
wl x3 : ϕ3 Ψ(ϕ1)

x3 : [ϕ3] �(2,0)
wl x3I : ϕ2 Ψ(•M)

x3 : [ϕ3] �(4,0)
wl x3II : ϕ1

x4 : [•M] �(0,0)
wl x4 : •M

x4 : [•M] �(0,0)
wl x4 : [•M]

x3 : [ϕ3], x4 : [•M] �(5,0)
wl x3IIx4 : •M

x3 : [ϕ3] �(6,0)
wl λx4.x3IIx4 : ϕ1

�(7,0)
wl λx3x4.x3IIx4 : [ϕ3] → ϕ1

where w(A→•M) = [ϕ3] → ϕ1. Then we get the (tight) typing Ψ � �(12,2)
wl t0 :

•M.

We prove that any expanded term is typable in system WL.

Lemma 8. If E (t : σ)�(t1, A), then there is a derivation Ψ �Γ e
A �(b,r)

wl t1 : w(σ).
Moreover, if the expansion is (garbage-)tight, so is Ψ .

Proof. By induction on t. We present the case when t = t′u′:

– E (t′u′ : σ) � (t0u′
1 . . . u′

m, B0 + · · · + Bm), if for some m > 0 and
σ1, . . . , σm, E (t′ : [σj ]j=1...m → σ)�(t0, B0) and

(

E (u′ : σj) � (u′
j , Bj)

)

j=1...m
.

By i.h., Γ e
B0

�(b0,r0) t0 : [w(σ1)] → · · · → [w(σm)] → w(σ) and(
Γ e
Bj

�(bj ,rj) u′
j : w(σj)

)
j=1...m

. Therefore +j=0...mΓ e
Bj

�(m+j=0...mbj ,+j=0...mrj)

t0u
′
1 . . . u′

m : w(σ) by m applications of rules (one) and (app), where
+j=0...mΓ e

Bj
= Γ e

+j=0...mBj
.

– E (t′u′ : σ)� (t0u′
1, B0+B1), if E (t′ : [ ] → σ)� (t0, B0) and E (u′ : τ)� (u′

1, B1)
for some type τ . By the i.h., Γ e

B0
�(b,r) t0 : [ ] → w(σ) and Γ e

B1
�(b′,r′)

u′
1 : w(τ). Therefore Γ e

B0
+ Γ e

B1
�(b+b′+1,r+r′) t0u

′
1 : w(σ) by rules (none) and

(appb), where Γ e
B0

+ Γ e
B1

= Γ e
B0+B1

.
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– E (t′u′ : •N ) � (t∗u∗, B1 + B2), follows from E (t′ : •N ) � (t∗, B1) and E (u′ :
t)�(u∗, B2). By i.h., Γ e

B1
�(b,r) t∗ : •N and Γ e

B2
�(b′,r′) u∗ : t. By rule (applo

r )
we have Γ e

B1
+ Γ e

B2
�(b+b′,r+r′+1) t∗u∗ : •N , where Γ e

B1
+ Γ e

B2
= Γ e

B1+B2
.

Theorem 5. If E (t : σ) � (t′, A) is tight, then t′ is weak-linear.

Proof. Let E (t : σ) � (t′, A) be a tight expansion. By Lemma 8 there is a tight
Φ � Γ e

A �(b,r)
wl t′ : w(σ), then by Theorem 4 t′ is weak-linear.

6 Related Works and Discussions

As we mentioned before, the notion of linearisation of the λ-calculus, was first
introduced in [27]. Directly related to this notion is the use of linearisation in
hardware compilation [19,20] for synthesising digital circuits, in which a notion of
serialization is defined to deal with contraction in concurrent contexts, based on
type information that indicates bounds for the usage of functions. Kfoury’s lin-
earisation is also closely related to the notion of affine approximations by Mazza
et al. [31], which identifies distinct occurrences of variables that apply linearly to
sequences of arguments. A λ-term admits a simply-typed affine approximation if
and only if it has an intersection type (in a non-idempotent and non-commutative
intersection type system).

Non-idempotent types are crucial in the notion of linearisation defined by
Kfoury, similarly to what happens in our work. However the linearisation process
defined in [27] was not presented as a direct encoding of λ-terms into terms
of the new calculus. Furthermore, intersections in Kfoury’s work are also non-
commutative, which differs from our approach and has the effect of excluding
valid expanded terms in the sense that they still provide an effective simulation
of the initial term: for example (λx1x2.x1x2)II and (λx1x2.x2x1)II can both be
considered valid expansions of the non-linear term (λx.xx)I. This leads to one
interesting open question regarding the relation between the two approaches.

Our notion of expansion is directly related to the notion of expansion defined
by Florido and Damas [17], where non-idempotent intersections were also consid-
ered and the target language was the linear λ-calculus. One of the implications
of the expansion relation in [17] is that, any term typable using intersection
types, can be expanded to a term typable using simple types, similarly to what
happens with affine approximations. Also, Bucciarelli et al. [13], have given a
translation of intersection typing derivations into Curry typeable terms, that
preserves β-reduction, since the target language is the simply typed λ-calculus.
The expansion relation in [17] is not preserved by β-reduction, but it is preserved
by weak-head reduction. Note that taking into account different algebraic prop-
erties of ∩, can lead to different expansion relations and different properties on
preservation of reduction.

Our goal here is to have preservation of normal forms and our target is the
weak linear λ-calculus, introduced in [6], in which the notion of linearity is an
operational one: functions are required to be linear, if they are ever applied.
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Redexes that are eventually contracted, which correspond to the notion of vir-
tual redexes, are as paths in the initial term, deriving from Lévy’s definition
of labelled reduction [29]. In this work, unlike the approach by Kfoury, the λ-
calculus is simulated by a proper linear subset of the calculus, rather than by a
non-standard calculus. Weak linear terms have good properties: non-duplicating
reduction, therefore strong normalisation; it is decidable to know if a λ-term is
weak linear; and type inference for weak linear terms is both decidable and poly-
nomial. Linearisation from standard λ-terms into weak linear terms was defined
by computing legal paths [8] on the initial term, identifying virtual redexes. The
linearisation procedure preserves β-normal forms, provided that paths are cho-
sen in the right way. Furthermore, if the procedure terminates then it yields a
weak linear λ-term. However, there is a conjecture regarding termination: the
linearisation procedure is a total function for the strongly normalising λ-calculus.
Note that a similar conjecture exists for Kfoury’s linearisation.

Our expansion relies on a quantitative type system that was used in [1] to
extract exact measures for a maximal reduction strategy, which is closely related
to the reduction strategy used in this paper. Both typing system and strategy
in [1] are annotated with measures, which are not relevant to our expansion pro-
cess, but which are essential to prove some properties of our expansion. We also
believe they can provide an appropriate framework to reason about quantitative
aspects of the expansion relation.

In [6], weak linear λ-terms proved to be typable in polynomial time. This
was achieved by the definition of a typing system, which we will refer to as WA,
and a corresponding type inference algorithm that proved to type any weak
linear λ-term in polynomial time. System WA can be seen as a generalization
of Hindley’s system of simple types [22,23]. A tight version of system WA,
where tight types are used to type functions that are not applied, can be seen
as an intermediate system between WL and WA. Translations can be defined
between the systems where tight-types, which can be seen as type constants
with no particular meaning, can be replaced by an appropriate type, therefore
typability in polynomial time is also a property of the class of terms obtained
by our expansion relation.

7 Conclusions and Future Work

In this paper we have defined an expansion relation between strongly normalising
λ-terms and weak linear λ-terms with the same normal form. This expansion
relation relies on a quantitative typing system and on the notion of tight typings,
which were also used to give an exact typing characterisation of the class of weak
linear λ-terms. This work provided an answer to a conjecture that stated that
all strongly normalising λ-terms can be encoded as weak linear λ-terms.

To guide our expansion we used a quantitative typing system that provides
measures for reduction sequences as well as the size of corresponding normal
forms. One interesting question that is left for future work is to investigate how
the expansion process affects these measures. Due to its operational linearity,
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weak linear λ-terms reduce in linear time, but the size of the expanded terms
can be exponential with respect to the size of the term. Our intuition is that this
could potentially show a nice interplay between time and space in computation.

Another relevant question that is left for future work is the relation between
the approach by Kfoury and our approach. As mentioned before, Kfoury relies
on non-commutative intersection types, so there is possibly a class of weak linear
terms corresponding to a unique expanded term in Λ∧. Establishing a relation
between the two approaches could also provide an answer to the conjecture
in [27].
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Abstract. Cyber-Physical Systems (CPS) are used to perform complex,
safety-critical missions autonomously. Examples include applications of
autonomous vehicles and drones. Given the complexity of these systems,
CPS must be able to adapt to possible changes during mission execu-
tion, such as regulatory updates or changes in mission objectives. This
capability is informally referred to as resilience. We formalize the intu-
itive notion of resilience as a formal verification property using timed
multiset rewriting. An important innovation in our formalization is the
distinction between rules that are under the control of the CPS and those
that are not. We also study the computational complexity of resilience
problems. Although undecidable in general, we show that these problems
are PSPACE-complete for a class of bounded systems, more precisely,
balanced systems where the rules do not affect the number of facts of
the configurations and where facts are of bounded size.

Keywords: Resilience · Planning · Formal methods · Verification ·
Multiset rewriting · Computational complexity

1 Introduction

Cyber-physical systems (CPS) are being deployed to perform complex, safety-
critical tasks, often with limited or no human intervention and in disruptive or
hostile environments. Autonomous vehicles [25], for example, are a topic of intense
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debate among researchers, industry experts, and certification bodies, primarily
due to safety concerns and the unpredictability of the environment in which they
operate. The same is true for autonomous applications using unmanned aerial
vehicles (UAVs) [22]. A key challenge is to ensure that these systems can perform
their assigned mission even when faced with changes, such as faults and unex-
pected changes to the mission, such as changes in goals or changes in operational
constraints. This ability to adapt is often referred to as resilience.

The main goal of this paper is to formalize the intuitive notion of resilience
as a verification problem for CPS. We start from our previous work [13,14], in
which we proposed a Timed Multiset Rewriting (MSR) framework suitable for
specification and verification of CPSes. The work addressed properties without
assuming changes and considered only task realization under nominal condi-
tions, with fixed goals and fixed regulations and policies. A key challenge is
the formalization of changes against which a CPS has to be resilient. This is
accomplished by distinguishing between rules that are under the control of the
system and rules that are not. The latter rules specify the changes in system
conditions, e.g., mission objectives, to which the system may need to adapt. The
main contributions of the paper to the formalization of resilience are:

1. Extension of Timed MSR to include update rules that model changes that
occur during plan execution but are outside the control of the system itself,
such as changes in regulations or system goals;

2. Formal definitions for resilience as verification problems for Timed MSR sys-
tems. Intuitively, a CPS is resilient to changes if it can always accomplish its
missions, even if a bounded number of changes to the mission or system have
occurred;

3. Study of the complexity of resilience problems. We show that for the class
of balanced systems with facts of bounded size [12], the resilience problems
are in PSPACE. The PSPACE hardness follows from the complexity of the
planning problem [13].

We end this section with a discussion of related work. In Sect. 2 we motivate
the study of resilience. Section 3 gives a short overview of the timed MSR used
in Sect. 4 to specify systems and in Sect. 5 to define formal resilience properties.
In Sect. 6 we investigate the complexity of verification problems. In Sect. 7 we
conclude with a discussion of future work.

1.1 Related Work

There are many informal definitions of resilience [2,4–6,8–10,15,23,30]. In the
broadest sense, resilience is “the ability of a system to adapt and respond to
changes (both in the environment and internal)” [5]. NIST [24] provides a more
precise definition of resilience: “The ability to anticipate, withstand, recover, and
adapt to adverse conditions, stresses, attacks or compromises on systems that use
or are enabled by cyber resources.” The formalization of the concept of resilience
proposed in this paper captures the essence of most formulations in the literature
and distinguishes it from similar concepts such as robustness, recoverability,
fault tolerance, reliability, etc. Robustness, for example, “is the strength, or the
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ability of elements, systems, and other units of analysis to withstand a given
level of stress or demand without suffering degradation or loss of function” [6].
Therefore, the main difference between robustness and resilience is that robust
systems do not suffer under changes in the conditions, while resilient systems
may temporarily be affected, but are capable of recovering.

There have been several attempts in the literature to formally define
resilience. However, these attempts tend to focus only on specific (sometimes
narrow) interpretations of resilience that are relevant to the particular applica-
tion domain being considered. For instance, in the context of faulty hardware
or unreliable communication media, formalizations of resilience focus on formal-
izing the ability of the system to compute the correct values. For example, in
[27], models of resilience are defined using predicate abstraction, where a pro-
gram is annotated with state abstractions that over-approximate the effects of
errors on computations. A similar approach is proposed in [19], where behaviors
are encoded in the system states and resilience is defined as CTL/LTL proper-
ties. Again, the properties need to be specific to the system being analyzed, and
are checked using explicit-state model checking. The notion of resilience these
methods capture is very narrow and rigid.

In [11], resilience (and robustness) are defined formally as constrained opti-
mization problems in the context of learning-enabled state estimation systems in
the presence of an attack. The systems are modelled using a specialized form of
labelled transition systems, and the resilience property is specified as the nega-
tion of a minimization objective to be achieved within a given threshold. This
formalization is used to show that the complexity of the verification problem of
resilience is NP-complete. The modelling approach presented, however, is spe-
cific to a class of labelled transition systems inspired by the requirements of
the application domain, and it is not clear how it can be made applicable to a
wider range of systems. Furthermore, the formalization of the property is rather
coarse-grained. It does not allow distinguishing active attacks from changes in
goals, or define execution traces that show operationally how a resilient system
may lose functionality temporarily and then recover. A similar coarse-grained,
optimization-based formalization of resilience against attacks, but in the context
of software obfuscation, appeared earlier in [3].

In [16,17], resilience is formally specified as pre-condition and post-condition
assertions in “Resilient Contracts” (RC), which are contracts from the contract-
based design methodology whose assertions can be probabilistic and incomplete.
The definition is given in the context of multi-UAV swarm control systems.
Measures of deviation from the target objective of the swarm system are encoded
in the system’s transition system, and used to analyze recoverability at varying
degrees of achievable deviations. Similar limitations to the ones explained above
apply to the RC methodology.

Our interest in resilience has been renewed by a recent talk by Vardi [31]
in which he emphasised that computer science needs to recognize the tradeoff
between efficiency and resilience. As our simple example will illustrate, resilience
is the ability of a system to bounce back, to respond to changes that affect its
correct operation and goals.
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Fig. 1. Illustration of CPS resilience to mission change. Gray areas denote no-fly zones,
boxes the points that the drone shall visit, and H the home base of the drone.

2 Motivating Example Involving Drones

Resilience is actively being pursued for the development of autonomous CPS (as
described in the Introduction). We illustrate the concepts used in our definitions
by considering unmanned aerial vehicles (UAV), also called drones. Consider a
package delivery scenario [18]. The task of the UAV is to visit a set of locations
to deliver packages while complying with the policies and constraints, specifying
e.g., that all points of interest should be visited within a specified time period (or
deadline); that an UAV may return to home base to recharge so that it does not
run out of energy; that UAV shall not fly over no-fly zones, e.g., near airports;
etc. There is no particular order in which locations should be visited. However,
performance quality and capability may be affected by unforeseen events, exter-
nal changes, or updates that include the following: i) regulatory changes, e.g.,
updates to drone flight altitude restrictions; ii) policy changes, e.g., limiting
energy consumption; iii) task changes, e.g., change in points to be visited; iv)
deadline for accomplishing the task. A resilient drone system should be able to
respond to such events by adapting and completing the task according to the
new policy.

Figure 1 illustrates a mission change. A drone started with the original mis-
sion to visit points p1, p2, and p3 without flying over the grey area, which is a
no-fly zone. During execution, the mission is updated, as depicted in the figure
on the right. The points to visit are now p2 and p4, but with a newly established
no-fly zone. Moreover, it may be the case that the system is not robust, i.e., that
it cannot be avoided that the drone flies over the new no-fly zone.

To model resilience, some requirements may be associated to updates. For
example, a drone mission update will also impose that the drone has at most T
time units to leave a no-fly zone. According to the informal definitions described
in Sect. 1.1, a resilient system of drones is able to adapt to such updates and
still successfully execute the mission. In this example, the drone would be able
to exit the no-fly zone within T time units, visit points p2 and p4 and return to
home base without exhausting its energy.
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Different resilience requirements may demand more or less powerful CPSes,
e.g., drones with larger or smaller batteries, or more or fewer drones, which will
affect the overall cost of CPS. For example, if the mission change shown in Fig. 1
places point p4 too far from home base, the drone may not have enough battery
capacity to complete the new mission. Similarly, if the drone is not fast enough,
it may not be able to guarantee that it will leave the no-fly zone within the
required time interval T . Therefore, it is important to determine during design
time at which level of resilience a CPS is in relation to mission updates. A more
resilient CPS will require more powerful capabilities and therefore higher costs.

The above example also illustrates the differences between resilience and
reliability. Reliability (as in reliability engineering) addresses the problem of
how often failures, typically in hardware, can occur and solutions to mitigate
such failures, e.g., by introducing redundant hardware. In the example above,
the drone system may be reliable but not resilient. For example, the drone may
not be able to complete an updated mission even though there is no hardware
failure, such as a motor that is not working properly. Therefore, it is not possible
to directly use the rich literature on reliability to reason about the resilience of
CPS.

3 Timed Multiset Rewriting

Assume a finite first-order typed alphabet, Σ, with variables, constants, function
and predicate symbols. Terms and facts are constructed as usual (see [7]) by
applying symbols of correct type (or sort). For instance, if P is a predicate of
type τ1×τ2×· · ·×τn → o, where o is the type for propositions, and u1, . . . , un are
terms of types τ1, . . . , τn, respectively, then P (u1, . . . , un) is a fact. Timestamped
facts are of the form F@t, where F is a fact and t ∈ N is a natural number called
timestamp. There is a special predicate symbol Time with arity zero, which
will be used to represent global time. A configuration is a multiset of ground
timestamped facts, S = {Time@t, F1@t1, . . . , Fn@tn}, with a single occurrence
of a Time fact. Configurations are to be interpreted as states of the system.
Configurations are modified by multiset rewrite rules, which can be interpreted
as actions of the system. There is only one rule that modifies global time, Tick:

Time@T −→ Time@(T + 1) (1)

where T is a time variable. Tick rule advances global time, i.e., rewrites con-
figuration {Time@t, F1@t1, . . . , Fn@tn} to {Time@(t + 1), F1@t1, . . . , Fn@tn}.
For simplicity, in this work we consider discrete time. In our previous work [12],
we proposed timed MSR systems with dense time. We believe that the proposed
machinery for verifying resilience also applies to dense time, but this investigation
is left for future work. The remaining rules are instantaneous as they do not
modify global time, but may modify the remaining facts of configurations (those
different from Time). Instantaneous rules have the form:

Time@T,W, F1@T ′
1, . . . Fn@T ′

n | C −→
Time@T,W, Q1@(T + D1), . . . Qm@(T + Dm) (2)
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where D1, . . . , Dm are natural numbers, W = W1@T1, . . . ,Wn@Tn is a set of
timestamped predicates possibly with variables, and C is the guard of the action
which is a set of constraints involving the time variables appearing in the rule’s
pre-condition, i.e. the variables T, T1, . . . , Tp, T

′
1, . . . , T

′
n. Constraints are of the

form T > T ′ ± N and T = T ′ ± N , where T and T ′ are time variables, and
N ∈ N is a natural number. All variables in the guard of a rule appear in the
rule’s pre-condition. We use T ′ ≥ T ′±N to denote the disjunction of T > T ′±N
and T = T ′ ± N . A rule W | C −→ W ′ can be applied on a configuration S if
there is a ground substitution σ, such that Wσ ⊆ S and Cσ is true. The resulting
configuration is (S \ W ) ∪ W ′σ. We write S −→r S1 for the one-step relation
where configuration S is rewritten to S1 using an instance of rule r.

A trace of timed MSR rules A starting from an initial configuration S0 is a
sequence of configurations: S0 −→ S1 −→ S2 −→ · · · −→ Sn, such that for all
0 ≤ i ≤ n − 1, Si −→ri

Si+1 for some ri ∈ A.

Balanced Systems. Reachability problems for MSR systems are reduced to the
existence of traces over given rules from some initial configuration to some spec-
ified configuration. Since reachability problems are undecidable in general [12],
some restrictions are imposed in order to obtain decidability.1 In particular, we
use MSR systems with only balanced rules, i.e., rules for which the number of
facts appearing in its pre-condition and in its post-condition is the same. Sys-
tems containing only balanced rules represent an important class of balanced
systems, for which several reachability problems have been shown decidable [12].
Balanced systems are suitable, e.g., for modelling scenarios with a fixed amount
of total memory. Balanced systems have the following important property [12]:

Proposition 1. Let R be a set of balanced rules. Let S0 be a configuration with
exactly m facts. Let S0 −→ · · · −→ Sn be an arbitrary trace of rules R starting
from S0. Then for all 0 ≤ i ≤ n, Si has exactly m facts. In particular, any trace
without repetitions is of no more than exponential length. Moreover, the traces
of exponential length may occur.

Let count0 denote exponential upper bound on the length of traces indicated
in Proposition 1 stated above. In Sect. 6 we use the exponential upper bound
count0, to provide a termination for our NPSPACE procedures at least in count0
steps.

Also, for some of our complexity results, we will assume an upper-bound on
the size of facts, as in [12]. The size, |F@t|, of a timed fact F@t is the total
number of symbols in F , e.g., |M(a, b, f(a, b))@t| = 6.

4 Timed MSR for Resilient Systems

The proposed notion of resilience assumes two entities, a system and an external
entity, such as the environment or regulatory authorities that mandate changes

1 For a discussion on the form of rules and other conditions in the model that may
affect complexity, see [12,13].
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or updates to the policies that the system is supposed to comply with. We
consider it “crital”, i.e., unsatisfactory when the system does not adhere to such
rules and guidelines. To model the two entities, we split the description of the
whole scenario into a system part and a planning update part. Moreover, we
consider different types of updates, including those that affect the goals of the
system and those that regulate the expected behaviour of the system.

Definition 1 (Planning Configuration). We assume a set of predicate sym-
bols ΣP = ΣG � ΣC � ΣS � {Time} consisting of four pairwise disjoint sets of
predicates, ΣG, ΣC , ΣS and {Time}. Facts constructed using predicates from ΣG

are called goal facts, from ΣC critical facts, and from ΣS system facts. Facts
constructed using predicates from ΣC ∪ ΣG are called planning facts. Configu-
rations over ΣP predicates are called planning configurations.

For readability, we underline only planning predicates and refer to planning
configurations as configurations for short.

Example 1. Predicates ΣG = {Point,MinCov}, ΣC = {MinBat,MinTimeToVisit}
and ΣS = {Drone,Visited,NotVisited,At,BatStatus,NumVisited, Leq}, allow the
representation of information on visited points in the drone scenario with the
following planning configuration:

S = {Point(p(1, 2))@0,Point(p(4, 5))@0,MinBat(20)@0,MinCov(1)@0} ∪
{Time@4,Visited(p(1, 2))@2,At(p(3, 4))@4,BatStatus(95)@4,NumVisited(1)@4}

Remark 1. Note that the arithmetic comparisons in the MSR model are only
used in time constraints, i.e., over time variables. However, we encode arith-
metic conditions over non-timed variables using a binary system predicate Leq,
denoting the “less or equal” relation. That is, in the (initial) planning configu-
ration we include (persistent) facts Leq (0,0)@0, Leq (0,1)@0, Leq (1,1)@0, Leq
(0,2)@0, Leq (1,2)@0, . . . , for (N,M) such that N ≤ M up to some bound,
and the NLeq(X,Y ) facts for the remaining pairs (X,Y ), for X > Y .The bound
can be chosen to cover the numerical values of interest, such as the maximum
resource values, the coordinates of the area of interest, etc.

The behaviour of the system is represented by traces of MSR rules. A system
should achieve its goals while not violating certain regulations and policies, as
well as restrictions related to the physical environment, such as distances and
energy. This is modelled using the following concepts of goals and compliance.

Definition 2 (Critical/Goal Configurations). A critical configuration spec-
ification CS (resp. goal GS) is a set of pairs {〈S1, C1〉, . . . , 〈Sn, Cn〉}, with each
pair 〈Sj , Cj〉 being of the form 〈{F1@T1, . . . , Fp@Tpj

}, Cj〉, where T1, . . . , Tpj
are

time variables, F1, . . . , Fpj
contains at least one critical fact (resp. goal fact), and

Cj is a set of time constraints involving only variables T1, . . . , Tpj
. A configura-

tion S is a critical configuration w.r.t. CS (resp. a goal configuration w.r.t. GS)
if for some 1 ≤ i ≤ n, there is a grounding substitution, σ, such that Siσ ⊆ S
and Ciσ evaluates to true.
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Example 2. Goal {〈{NumVisited(N)@T1,MinCov(r)@T2, Leq(r,N)@T3}, ∅〉}
denotes that the specified minimal number of points must be visited.
Critical configuration specification {〈{BatStatus(E)@T1,MinBat(m)@T2, Leq
(E,m)@T3}, ∅〉, 〈{Time@T,NotVisited(P1)@T1,MinTimeToVisit(P1, d)@T2 , T >
T1+d}〉} denotes that the battery level should stay above the minimum allowed,
m, and that the points should be visited regularly, every d time units.

Definition 3 (Compliant Traces). Given critical configuration specification
CS, a trace T is compliant w.r.t. CS if T does not contain any critical configu-
ration w.r.t. CS.

Modelling Change. While system rules specify the behaviour of the system,
external influences that represent changes or updates that affect the system’s
plan execution are modelled through update rules. All the rules used in our
models are either of the form (Eq. 1) or (Eq. 2).

Definition 4 (System Rules). A system rule is either the Tick rule (Eq. 1)
or a rule of form (Eq. 2) such that if a planning fact is involved, then it is a
permanent fact, i.e., it is not consumed by the rule.

Definition 5 (Update Rules). Given a planning alphabet ΣP , a goal GS and
a critical configuration specification CS, an update rule is a rule of the form of
Eq. (2) that is of one of the following type: a) System update rule (SUR) such
that if a planning fact is involved, then it is a permanent fact; b) Goal update
rule (GUR) that either consumes or creates at least one goal fact. If a critical
fact is involved, then it is a permanent fact; c) Critical update rule (CUR) that
either consumes or creates at least one critical fact. If a goal fact is involved,
then it is a permanent fact.

Intuitively, GUR and CUR model external influence on the system, such as
regulatory changes, additional tasks, etc., while SUR model changes in the system
that are not due to intentions of the system’s agents, e.g., technical errors such
as a drone breaking down.

Example 3. The following GUR changes the location of the points that the drone
needs to visit by some given value dG:

Time@T,Point(X1,X2,X3)@T1,Visited(X1,X2,X3)@T2,NumVisited(Y + 1)@T3 −→
Time@T,Point(X1 + dG,X2,X3)@T,NotVisited(X1 + dG,X2,X3)@T,NumVisited(Y )@T

The following CUR changes the minimal time between visits by some value dC :
Time@T,MinTimeToVisit(P )@T1 −→ Time@T,MinTimeToVisit(P + dC)@T

Definition 6 (Planning Scenario). A planning scenario is a tuple
(R,GS, CS, E ,S0) where R is a set of system rules, GS is a goal, CS is a crit-
ical configuration specification, E is a set of update rules, and S0 is an initial
configuration.
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Recoverability Conditions. We use auxiliary relations to distinguish
resilience from similar properties such as robustness. Intuitively, recoverability
relations specify quantitative aspects of resilience. Namely, a resilient system
may not always withstand a suffered level of stress, but will recover from it in a
satisfactory manner, as specified by the recoverability conditions.

Definition 7. A recoverability condition δ is a binary relation over configura-
tions. (We assume that recoverability conditions can be checked in poly-time.)

Example 4. Recoverability conditions related to critical updates specify tran-
sitional policies before the system complies with the updated regulations and
policies. For example, the time required for a system to recover from a critical
situation may be bounded. After a CUR, which changes the allowed minimum
battery level, the drone’s energy level may be below the specified minimum. It
should recharge within d time units, as specified by the following relation:

{(S1,S2) | BatStatus(B1)@T1 ∈ S1 ∧
{MinBat(M2)@T2,BatStatus(B2)@T3, Leq(M2, B2)@0} ⊆ S2 ∧ T3 − T1 ≤ d}.

Example 5. Recoverability conditions related to goal updates specify how the
new goal relates to the original goal. For example, a GUR may change the min-
imum number of points to visit. If the minimum coverage is increased, drones
are given additional time d to complete the task, as specified by the relation:

{(S1,S2) | {Time@T0,MinCov(C1)@T1} ⊆ S1 ∧ Leq(C1, C2)@0 ∧
{NumVisited(V2)@T2,MinCov(C2)@T3, Leq(C2, V2)@0} ⊆ S2 ∧ T2 − T0 ≤ d}.

5 Verification Problems

The first problem we consider is the planning problem (or the compliance prob-
lem) which consists in checking the existence of a compliant trace showing that
a system can achieve the given goal considering the given critical configuration
specifications, without any updates.

Definition 8 (Compliant Planning Scenario. Planning Problem). A
planning scenario A = (R,GS, CS, E ,S0) is compliant if there exists a trace
τ using only R rules starting from S0 to a goal configuration w.r.t. GS that
is compliant w.r.t. CS. The planning problem consists in checking whether the
given planning scenario is compliant.

Resilience. In the next verification problems, we formalize resilience under
the assumption that changes do not happen too often, i.e., a resilient system
should handle a bounded number of updates. There are additional inputs to the
problems w.r.t. the compliance problem from Definition 8. These inputs include
the number of updates allowed and recoverability conditions (Definition 7).

The resilience problems defined below are considerably more intricate than
the planning problem. First, the system must be able to find a good trace,
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i.e., a compliant trace that reaches a goal for the given initial specification.
Moreover, at any point in this trace, any one of the update rules can be applied,
changing either the goal, critical configurations, or the state of the system itself.
The system should be able to handle such changes, recover within the specified
conditions, and find a new good trace. There may be a series of updates, and the
system should be able to handle any combination of such events. Hence, rather
than just finding one good trace, as in the planning problem, the system must be
able to create a set of good plans that ensures that the system can successfully
adapt and reschedule after any sequence of updates.

The problems are defined recursively on the number of allowed updates.

Definition 9 (n-Resilience w.r.t. System Updates). Given a natural num-
ber n, a planning scenario A = (R,GS, CS, E ,S0) is n-resilient w.r.t. system
updates if

1. n = 0, then A is compliant (see Definition 3);
2. n > 0, then there exists a compliant trace τ from S0 to a goal configuration Sk

using R such that if for any SUR r ∈ E applied on some configuration Si in
τ , where Si −→r S ′

i+1, there is a compliant trace τ ′ = S ′
i+1 −→ · · · −→ S ′

m

using R such that
– S ′

m is a goal configuration;
– the planning scenario (R,GS, CS, E ,S ′

i+1) is n − 1-resilient w.r.t. system
updates.

Note that any update rule may be applied to any enabling configuration at
any point in the trace. Following the change, a system should still be able to
reach a goal. Moreover, by changing system facts, a system update should not
affect compliance or otherwise the system will not be considered resilient. For
example, in low temperatures battery consumption may increase, but resources
should not fall to a critical level, i.e., below the minimum allowed. Similarly, if a
drone malfunctions due to its electronic components being exposed to very high
temperature, its performance may be degraded and the mission compromised.

The next resilience problem formalizes goal changes and involves a recover-
ability condition δ that relates the current goal and the new goal. A goal update
changes the goals that the system must reach. Consequently, the system must
provide a new trace that reaches the new goal within the conditions specified by
δ, which relate the old to the new goal, and may refer to time, resources, etc.
As with SUR, GUR should not compromise compliance, i.e., the newly scheduled
trace should adhere at all times to the regulations and policies specified by CS.

Definition 10 (δ, n-Resilience w.r.t. Goal Updates). Given a recoverability
condition δ and a natural number n, a planning scenario A = (R,GS, CS, E ,S0)
is δ, n-resilient w.r.t. goal updates if

1. n = 0, then A is compliant (see Definition 3);
2. n > 0, then there exists a compliant trace τ from S0 to a goal configuration

Sk using R such that if for any GUR r ∈ E applied on any configuration Si in
τ , where Si −→r S ′

i+1, there is a compliant trace τ ′ = S ′
i+1 −→ · · · −→ S ′

m

using R such that
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– S ′
m is a goal configuration;

– δ(Sk,S ′
m);

– the planning scenario (R,GS, CS, E ,S ′
i+1) is δ, n − 1-resilient w.r.t. goal

updates.

Note that a resilient system should be able to reschedule a plan at any point
and, following any of the possible updates, i.e., be ready for any update at any
point in its current plan. Hence, checking for the resilience of a system involves
checking the existence of multiple good traces obtained by applying the different
update rules from the planning scenario at different points along its current
plan. For example, if some additional points of interest need to be visited, the
UAV system can be given some extra time to complete the extended mission.
Regardless of when the GUR occurs during the original mission execution, a
resilient UAV system should be able to adapt and perform the updated task.

Resilience to critical updates takes into account the fact that the system may
find itself in a critical configuration due to a CUR. Hence, after a critical update,
a “grace period” allows the system to adapt. This “grace period” is specified by
the recoverability condition δ and is followed by a new compliant plan that takes
into account the updated critical facts.

Definition 11 (δ, n-Resilience w.r.t. Critical Updates).
Given a recoverability condition δ and a natural number n, a planning scenario
A = (R,GS, CS, E ,S0) is δ, n-resilient w.r.t. critical updates if

1. n = 0, then A is compliant (see Definition 3);
2. n > 0, then there exists a compliant trace τ from S0 to a goal configuration

using R such that if for any CUR r ∈ E applied on any configuration Si in τ ,
where Si −→r S ′

i+1, there is a trace τ ′ = S ′
i+1 −→ · · · −→ S ′

m −→ · · · −→
S ′

m+p using R such that
– for each j, m ≤ j ≤ m + p, S ′

j is not critical;
– S ′

m+p is a goal configuration;
– δ(Si,S ′

m);
– the planning scenario (R,GS, CS, E ,S ′

m) is δ, n−1-resilient w.r.t. critical
updates.

Note that the subtrace S ′
i+1 −→ · · · −→ S ′

m may not be compliant. This
distinguishes the defined property of resilience from the general notion of robust-
ness. Resilient systems may temporarily underperform because they are severely
affected by changes, but are able to adapt to updated critical specifications and
continue with a compliant plan S ′

m −→ · · · −→ S ′
m+p.

For example, if no-fly zone restrictions are updated by a CUR at a certain
stage of task execution. As shown in Fig. 1, it may not be possible for an UAV to
avoid a newly declared no-fly zone, breaching the flight regulations. Hence, the
system would reach a critical configuration. However, the recoverability condi-
tions may specify the transition period during which the system must adapt to
the new regulations. Thereafter, the resilient UAV system must comply with the
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new no-fly restrictions. Again, a resilient system should be able to adapt to any
such update at any stage of task execution.

The most complicated verification problem involves all types of updates.

Definition 12 (δC , δG, n-Resilience). Given recoverability conditions δC , δG

and a natural number n, a planning scenario A = (R,GS, CS, E ,S0) is δC , δG, n-
resilient if

1. n = 0, then A is compliant;
2. n > 0, then there exists a compliant trace τ from S0 to a goal configuration

Sk using R, such that if for any rule r ∈ E applied on any configuration Si

in τ , where Si −→r S ′
i+1, there is a trace τ ′ using R, τ ′ = S ′

i+1 −→ · · · −→
S ′

m −→ · · · −→ S ′
m+p, such that

– for each j, m ≤ j ≤ m + p, S ′
j is not critical;

– S ′
m+p is a goal configuration;

– δC(Si,S ′
m);

– δG(Sk,S ′
m+p);

– the planning scenario (R,GS, CS, E ,S ′
m) is δC , δG, n − 1-resilient.

In the above resilience problems, goals and/or critical configurations may
change during the trace since CUR and GUR change goal and critical facts. The
system must keep pace with these updates, meet the new goals and satisfy the
new requirements according to the given recoverability conditions.

Figure 1 illustrates a mission update involving both GUR and CUR, i.e.,
changes in the points to visit and in regulations involving no-fly zones.

Remark 2. Note that the δC , δG, n-resilience cannot be expressed directly as the
combination of resilience w.r.t. system, goal and critical updates. Any combi-
nation of updates affects the original and updated missions that involve goals
and critical specifications updated a multiple number of times. Note also that
for n = 0, all the resilience problems reduce to the planning problem.

Remark 3. In problems involving critical updates, we assume that updates are
not too frequent and/or that the system recovers reasonably efficiently. That is,
another update does not occur until the system has recovered from the previous
one. Namely, the last condition in Definitions 11 and 12 refers to resilience with
a reduced number of updates, n−1, and the planning scenario with a new initial
configuration denoting the system after the “grace period”.

Resilience problems check for the existence of a “good” trace that testifies
the corresponding resilience property of a given planning scenario.

Definition 13 (Resilience Problems). δC , δG, n-resilience problem (resp. n-
resilience w.r.t. system updates, δG, n-resilience w.r.t. goal updates, δC , n-resili-
ence w.r.t. critical updates) for a given planning scenario A = (R,GS, CS, E ,S0),
recoverability conditions δC , δG, and a natural number n, is the problem of deter-
mining whether A is δC , δG, n-resilient (resp. n-resilient w.r.t. system updates,
δG, n-resilient w.r.t. goal updates, δC , n-resilient w.r.t. critical updates).
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6 Computational Complexity Results

The PSPACE lower bound for the resilience problems can be inferred from the
complexity of the planning problem [13]. The aim of this section is to design
non-deterministic PSPACE procedures for the resilience problems from Sect. 5.

For the sake of perspicuity, we confine ourselves to the resilience problem
in Definition 14 below, which is the main ingredient taken from the recursive
definitions in Sect. 5. Recall, δG( ̂S,S ′

m) is supposed to relate the original goal ̂S
in the main trace τ and the ‘new’ goal S ′

m in the particular reaction trace τ ′,
the result of an update action.

Definition 14. Given a planning scenario A = (R,GS, CS, E ,S0) and a recov-
erability condition δG, let τ = S0 −→ S1 −→ · · · −→ Si −→ · · · −→ ̂S be a
compliant trace leading from an initial configuration S0 to a goal configuration,
̂S. We say that τ is a resilient trace against the update rules E and the recover-
ability condition δG, if for each update action caused by (r,Si), where an update
r ∈ E is applied to a configuration Si in τ , with Si −→r S ′

i+1, the following holds:
there is a compliant ‘reaction’ trace τ ′ = S ′

i+1 −→ S ′
i+2 −→ · · · −→ · · · −→ S ′

m,
from S ′

i+1 to a goal configuration S ′
m such that, in addition, δG( ̂S,S ′

m) is valid.

Remark 4. Intuitively, δG( ̂S,S ′
m) reads that S ′

m, the new goal configuration in
the particular reaction trace τ ′, is accepted as an adapted version of ̂S, the
original goal configuration in the main trace τ .

Remark 5. According to Definition 14, given an r, we have to investigate all pairs
(r,Si) so that Si must be available at any position inside τ . One may initially
believe that we need to store the whole trace τ , which, in principle, requires
exponential size, please see Proposition 1 in Sect. 3.

Remark 6. As explained in Sect. 3, to obtain decidability of the resilience prob-
lems, we consider balanced systems with facts of bounded size. In addition, to
obtain our complexity results, we assume that recoverability conditions are rec-
ognizable in time polynomial in the size of the system, see Definition 7.

Following Remarks 5 and 6, we can easily obtain the following result:

Proposition 2. There exists an exponential space decision procedure that deter-
mines whether, for any given planning scenario A = (R,GS, CS, E ,S0) with a
set of balanced rules R and an upper bound of size of facts, and a polynomial
time recognizable recoverability condition δG, there exists a compliant trace τ
leading from an initial configuration S0 to a goal configuration ̂S, such that τ
is a resilient trace against the update rules and recoverability conditions in the
sense of Definition 14.

Resilience problems could, therefore, be reduced to compliance by generating
a new compliance problem from the resilience problem. We note that while such
a reduction is possible, it would result in an exponential increase of the size
of the system. Notwithstanding previous points, we obtain Theorem 1, which
provides a better upper bound.
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Theorem 1. There exists a PSPACE decision procedure that determines whet-
her for any given planning scenario A = (R,GS, CS, E ,S0), with a set of balanced
rules R and an upper bound of size of facts, and a polynomial time recognizable
recoverability condition δG, there exists a compliant trace τ leading from an initial
configuration S0 to a goal configuration ̂S, such that τ is a resilient trace against
the update rules and recoverability conditions in the sense of Definition 14.

Proof Sketch. The main idea of the proof is a dynamic execution step-by-step,
not static. The following processes are run in parallel:

(a) The main process, to execute non-deterministically a main trace τ , step-by-
step.

(b) For each update, r ∈ E , a specific process to reschedule any branch τ ′ in
accordance with recoverability conditions.

Recalling that NPSPACE equals PSPACE [26], we define a non-deterministic
PSPACE procedure as follows: (Here, to exclude some cases, we will assume that
no r is applied to the initial configuration S0.) By count0 we denote exponential
upper bound on the length of traces indicated in Proposition 1 in Sect. 3.
begin

– S is the configuration at the current step, count is a counter to control ter-
mination, ok is a Boolean to control the success.

– Initially, S := S0, and count := count0, and ok := true
– Choose non-deterministically a goal configuration, ̂S. (We assume that the

goal configurations are recognizable in polynomial time.) The goal configura-
tion ̂S, defined at this initial step, is intended to be the correct goal configu-
ration appeared at the final step of our trace τ developed by induction.

repeat count := count − 1;

– If ok then, given the current S, guess non-deterministically a non-critical
configuration ˜S such that S −→ρ

˜S, for a regular system rule, ρ.
We assume a polynomial number of system rules ρ, each executing in polyno-
mial time, so we can check in polytime, if the set of such ˜S is empty or not. if
this set is empty, which means that we cannot continue our trace (deadlock)
then reset ok := false; else reset S := ˜S;
For each update, r, such that r is applied to the S at hand, with S −→r S ′,
if ok then we ‘generate’ the corresponding τ ′ as follows:

• Here H stands for the configuration at the current step, count′ is a counter
to control termination, ok is a Boolean to control the success.

• Initially, H := S ′, and count′ := count0.
• while ok = true, count′ > 0, and it is not true that

(H is a goal configuration, and δG( ̂S,H))
do count′ := count′ − 1.
If ok then, given the current H, guess non-deterministically a non-
critical configuration ˜H such that H −→ρ

˜H, for a system rule, ρ.
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if such ˜H does not exist (deadlock) then reset ok := false; else reset
H := ˜H;
od

• ok := false in the case where the current H is not a goal configuration
or ¬δG( ̂S,H).

until ok = false, or S = ̂S, or count ≤ 0.
return “success” if ok = true, and the current S is a goal configuration such
that S = ̂S.
end of the procedure.

Lemma 1. There is a non-deterministic branch terminated with “success” if and
only if there is a compliant trace τ leading from an initial configuration S0 to a
goal configuration, ̂S, such that τ is a resilient trace in the sense of Definition 14.

Bringing all together, we conclude Theorem 1. �

Remark 7. To verify that our NPSPACE procedure is correct, we play with two
orthogonal paradigms in our constructions:

(a) “one r vs. exponentially many candidates Si in a fixed τ ”;
Within Definition 14, for a fixed r we likely deal with an exponential number
of Si, candidates for a ‘good’ pair (r,Si) to provide a compliant trace τ ′

leading from S ′
i+1 to a goal configuration, S ′

m.
(b) “one S at a moment vs. polynomially many candidates r”;

Within our procedure, at any moment we deal with a unique S and polyno-
mial number of r’s, candidates for a ‘good’ pair (r,S) to initiate a compliant
trace τ ′ leading from the corresponding S ′ to a goal configuration, ˜S.

Compliance/reachability problem is to prove that there exists a good trace
τ such that a goal P is reachable. In resilience problems we are dealing with
alternating quantifiers - the problem is to prove that there exists a good trace
τ such that a goal P is reachable and that for all update rules applicable to
arbitrary intermediate states in τ , there exists an adapted reaction trace such
that for all update rules applicable to arbitrary intermediate states on each of the
adapted traces, there exists a further adapted reaction trace, etc. etc. In addition
to that, the algorithm has to provide, for instance, correlations between the new
goals on one level and the old goals on another level. Only for a fixed number n
of quantifier alternations we provide PSPACE complexity. If n is itself a part of
the input, we get in fact PSPACE to the power of n.

7 Conclusions

Resilience is of great importance in today’s civilization, from the Internet to
logistics, finance, and environmental science, not excluding computer science. In
this paper, we formalize resilience as a verification property of cyber-physical
systems in a timed multiset rewriting framework. By distinguishing the rules
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that are under the control of CPS from those that are not, we use specific sets of
traces involving changes and system recoverability to define a satisfactory system
response to the new conditions. We study the complexity of resilience problems.
Since the planning problem is undecidable in general [1], the resilience problems
are undecidable in general. In case of systems with balanced transition rules and
a bound on size of facts the PSPACE lower bound for the resilience problems
follows from the PSPACE lower bound for the planning problem [13]. We note
that many important cyber-physical systems are resource limited and can be
naturally modelled using balanced transition rules.

In this paper, we show that the resilience problem is PSPACE-complete for
the planning scenarios of Sects. 4 and 5. More precisely, we show PSPACE upper
bound for a version of resilience that encapsulates resilience with respect to
system updates and resilience with respect to goal updates. The case of resilience
with respect to critical updates is more involved because in this case we also
need to allow traces that are non-compliant during the grace periods following
updates. We plan to consider the complexity of this case in the future.

We also plan to consider the time bounded versions of resilience problems and
their complexity for the class of Progressing Time Systems [14]. Fragments of the
formal model with lower complexity of some resilience properties may be identi-
fied. Finally, we are also investigating how to automate resilience checking. The
Soft Agents (SA) framework has a builtin mechanism to model environmental
perturbations such as faults, weather, or obstacles [18,20,28,29]. This mecha-
nism corresponds to the use of rules not under the control of the system being
considered and is thus well suited to modeling and analyzing resilience proper-
ties of cyber-physical systems such as those proposed in this paper. We plan to
use SA to carry out a variety of experiments to better understand the practical
aspects of checking resilience properties for different types of CPS. Some of the
authors have recently proposed [21] the use of Rewriting Logic Modulo SMT
for automating the generation of safety proofs for CPSes. We believe that this
work can be extended so to generate resilience proofs based on the definitions
proposed here. While the basic SA framework is well-suited to modeling the
ability to achieve goals with acceptable outcomes, the Rewriting modulo STM
approach allows us to consider recoverability issues.

We intend to study similar properties of CPSes and other complex systems,
as well as compare formal definitions and computational complexities of these
properties, including the realizability, survivability, recoverability, and reliability
properties over infinite traces from our previous work [14]. Some of these proper-
ties could be interpreted using game theory. It would be interesting to compare
our rewriting approach to the problems with the game-theoretic approach.
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Abstract. We introduce Timed Multi-Lane Spatial Logic (TMLSL), a
logic to express spatial and timing properties in highway traffic. For
this purpose, we combine State-Clock Logic (SCL) and Multi-Lane Spa-
tial Logic with Scopes (MLSLS), using MLSLS formulae as the propo-
sitions from which SCL formulae are built. SCL enables one to state
through which phases a car has to pass when performing manoeuvres,
like changing lanes. The phases themselves are described in the spatial
logic MLSLS. Additionally, it is possible to express explicit timing con-
straints regarding the change of phases. Alongside the logic itself, we give
a procedure to semi–decide whether there exists a run for a given traffic
situation that satisfies a specification given in TMLSL.

Keywords: MLSL · Autonomous cars · Specifications · Timed
automata · Spatio-temporal reasoning · Decidability

1 Introduction

The automation of car driving is advancing rapidly, ranging from advanced driver
asssitance systems to (partially) autonomous cars. This poses the challenge to
establish that these systems satisfy desirable behavioural properties. Regarding
safety, it was observed in [1] that cars behave safely (avoid collisions) if at every
moment they occupy disjoint spaces on the road. This led to the introduction of
the Multi-Lane Spatial Logic (MLSL), where formulae are evaluated on traffic
snapshots in an abstract road model. In addition to purely spatial properties like
safety requirements, there is a need to express timing properties, e.g., whether
a car has set its turn signal to prepare a desired lane change within a certain
time bound. More generally, the question arises whether there exists a sequence
of actions by the car that allows for such a lane change. While this question is
easy to answer for some traffic snapshots (e.g., where each car has a free lane
next to it and all cars drive at the same speed), it is much more complicated
for others because in general one has to check whether the dynamical evolution
of the system allows for the desired change. In this paper, we reason about the
evolution of traffic snapshots as sequences of time-constrained phases.
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Our contributions are the following. First, we introduce Timed MLSL to
specify such evolutions. It is defined by combining State-Clock Logic (SCL) with
MLSL with Scopes (MLSLS), a variant of MLSL with a decidable satisfaction
problem. SCL enables one to state through which phases a car has to pass when
performing a manoeuvre, like changing lanes. The phases themselves are specified
in MLSLS. Second, we introduce and tackle the Timed Satisfiability Problem,
describing whether a specification written in Timed MLSL is satisfiable from
a given traffic snapshot onwards. A realistic restriction that we assume when
answering this question is a maximum acceleration and speed of the cars.

Related Work. MLSL was introduced in [1] to reason about traffic situations
in highway traffic. Since then, different extensions were proposed, such as [2],
which extends MLSL to country roads. Both turn out to be undecidable [3,4],
but decidable fragments were identified, like MLSLS [5]. The latest extension
of MLSL was towards urban traffic [6] to handle complex intersections. These
extensions allow for more complex topologies, including opening and ending of
lanes in highway traffic. However, each of them lacks the possibility to explicitly
express timing requirements. An exception is [3], where a branching time exten-
sion is considered. As a downside, it is only possible to express that formulae
are invariant under certain intervals.

There are several other approaches considered for autonomous and partially
autonomous traffic. Many of them, e.g. [7,8] concentrate on the part of estab-
lishing a safe (and optimal) adaptive cruise control for vehicles following each
other. [8] used weighted and stochastic timed automata and games for specifying
and games for solving the problem of generating a strategy for the cars to follow
each other. We refrain from using an automata model directly to specify desir-
able properties, and prefer a textual specification language because it is closer
to natural language and therefore should be easier to use. An approach that
uses a textual specification language is [9], where the authors employ Quantified
Hybrid Programs for the specification. In contrast to our approach, where the
entire specification uses only spatial and temporal fragments, they included the
dynamic behaviour of the system into the specification.

Structure of this Paper. Section 2 introduces the preliminaries of our approach:
MLSL for the spatial fragment of the specification, and SCL for the timing
fragment of the specification, as well as the First-Order Theory of Real-Closed
Fields (FORCF). Section 3 introduces a combination of SCL and MLSLS called
TMLSL and demonstrates its expressiveness using examples, before showing
that this logic is at least semi-decidable in Sect. 4, translating the satisfiability
problem to formulae of FORCF. Section 5 concludes the paper.

2 Preliminaries

First we recall the Multi-Lane Spatial Logic (with Scopes), consisting of the
model (Sect. 2.1) to formalise real-world situations, the evolution of them
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(Sect. 2.2) and the logic itself (Sect. 2.3) for expressing spatial properties on the
models. This is followed by Sect. 2.4 that introduces State-Clock Logic for the
timing aspect of highway traffic properties, and concludes with Sect. 2.5, where
we briefly describe a decidable theory which we use to show that the Timed
Satisfiability Problem is semi-decidable.

2.1 Abstract Model of Motorway Traffic

The model our work is based on is called a Traffic Snapshot [1]. It is defined over
a set of lanes L = {0, . . . , n} of an infinite length on which cars can claim and
reserve spaces of finite extension (length). A reservation in this context is the
actual space a car occupies (including its braking distance) when driving on one
or (in case of a lane change) two lanes, whereas a claim represents the space a
car would like to reserve in the future, which is the equivalent of setting the turn
signal for that lane. Traffic snapshots abstract from real-world scenarios s.t. for
every car from the set of car identifiers I = {A,B, . . . }, only its position, speed,
acceleration, reservation and claims are known. Figure 1 shows the graphical
representation of three traffic snapshots, where each of them has two lanes and
two cars, both of them in lane one, with car A behind car B. The pentagon in
front of the rectangle depicts the braking distance of the car. In the latter two
traffic snapshots, car A is preparing for a lane change: it has set its turn signal to
lane two, which is represented as a claim, shown as a dashed copy of its reserved
space on lane one, to that lane.

1

2

A B 1

2

A B 1

2

A B

cl(A, 2) 2.1

Fig. 1. A transition sequence including three traffic snapshots and two transitions.

Definition 1 (Traffic Snapshot).
A traffic snapshot is a tuple TS = (res, clm, pos , spd , acc) with

– res/clm : I → P(L), the lanes each car reserves/claims and
– pos/spd/acc : I → R, the position/speed/acceleration of each car.

We denote the set of all traffic snapshots as TS.

In [3], sanity conditions are introduced that prohibit some undesirable mod-
els, e.g. where a car has reservations on two non-adjacent lanes. We do not focus
on them here, as they can be expressed in the corresponding logic itself and are
thus only a further part of a specification.
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2.2 Evolution of a Traffic Snapshot

While a traffic snapshot describes a static situation at one point in time, this
situation may evolve whenever the cars in the traffic snapshot execute actions.
These actions can be the change of the acceleration or actions regarding the
change of the lane. In MLSL, changes that occur at a traffic snapshot are mod-
elled as transitions. We divide them into two types, one regarding the discrete
dynamics and one regarding the continuous dynamics of the evolution. We refer
to the first one as discrete actions. This type includes a car C claiming a lane
n (c(C, n)), withdrawing a claim (wd c(C)), reserving a formerly claimed lane
(r(C)), and withdrawing all reservations except the one on lane n (wd r(C, n)).
In [1] a formal definition of these actions is given. The second type of actions
regards the continuous evolution of the cars and thus the behaviour along the
lanes. These transitions handle the change of a car’s acceleration to some value a
(acc(C, a)) and the passing of t time units (t), where ⊕ is the overriding operator
of Z [10]:

T S t−→ T S ′ ⇔ T S ′ = (res, clm, pos ′, spd ′, acc)

∧ ∀C ∈ I : pos ′(C) = pos(C) + spd(C) · t +
1

2
acc(C) · t2

∧ ∀C ∈ I : spd ′(C) = spd(C) + acc(C) · t

T S acc(C,a)−−−−−→ T S ′ ⇔ T S ′ = (res, clm, pos, spd , acc′)

∧ acc′ = acc ⊕ {C �→ a},

In what follows, we will often refer to MLSL actions, meaning the transitions
just described, without the one regarding the passing of time. We denote this
set of transitions that are possible to a certain traffic snapshot as Act .

Figure 1 illustrates the evolution of a traffic snapshot along a transitions
sequence, where car A claims lane 2 and afterwards 2.1 time units pass, during
which the two cars move along the lanes with their speeds and accelerations.

We can define timed words on the actions Act :

Definition 2 (Timed words on MLSL actions). A timed word over the set
of MLSL actions is an infinite sequence � = 〈(α1, t1), (α2, t2), . . . 〉 with αi ∈ Act
and 〈t1, t2, . . . 〉 forming a real-time sequence, that is, a monotonically increasing
sequence of time stamps.

The term time-stamped action sequence is used as a synonym. We do not exclude
Zeno behaviour here, it is indirectly excluded in Definition 7.

Next, we introduce the logic MLSL to reason about traffic snapshots. The
semantics of MLSL in [1] considers the concept of a view to restrict the parts of
the street a car has knowledge about. We only point out that a view is a tuple
V = (L,X,E), with L the lanes visible to the view’s owner E, and X the finite
extension (length of the road) visible to E. We do not further concentrate on
this topic here and assume that our view is big enough that all formulae that
may occur can be evaluated.
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Additionally, a car’s knowledge is limited through its sensors, which is for-
malised trough a sensor function and a car’s safety envelope. A sensor function
is a function Ω : I×TS → R

≥0 and returns a car’s size plus its breaking distance
in a traffic snapshot. The safety envelope then is the space car C occupies in a
traffic snapshot TS, that is s(C, TS,Ω) = [pos(C), pos(C) + Ω(C, TS)].

2.3 MLSL with Scopes

In [5], a variant of MLSL with scopes (MLSLS) is proposed. The idea is to restrict
the formulae involving quantification or a free space to range over a finite domain
CS of car identifiers only. This is done using a subset cs ⊆ CVar (scope) of car
variables. The authors showed that the satisfaction problem of MLSLS is, in
contrast to pure MLSL, decidable. The syntax of MLSLS formulae is as follows:

Definition 3 (Syntax of MLSLS). Given γ, γ′ ∈ CVar , k ∈ R and cs ⊆ CVar
the syntax of MLSLS is given by

ϕ ::= γ = γ′ | free | re(γ) | cl(γ) | l = k | ∃c.ϕ | ϕ1 � ϕ2 | ϕ1

ϕ2
| cs : ϕ,

and standard Boolean combinations of such formulae.

Atomic formulae are checks for equality of two car variables, free denoting
free space on a lane, re(γ) and cl(γ) denoting a reservation and a claim of a car γ,
respectively, and a check for equality of the length of a segment against some
value k. Formulae can be combined by Boolean operations and quantification as
well as two chops, that is, if one formula holds in front of another formula or
if they hold on two neighbouring lanes. Also, the evaluation of formulae can be
restricted to a certain scope (finite subset) cs of cars. We denote the set of all
MLSLS formulae as ΦMLSLS .

Formulae are called well-scoped if every formula containing the atom free or
existential quantification has a scope and every scoped formula is followed by an
existential quantification or the atom free. For the moment, we require that the
scope of all formulae is the same.

Semantics. The semantics of a formula is evaluated with respect to a model
M consisting of a traffic snapshot TS , a scope CS , the car’s view V , and a
valuation ν assigning values to variables. Intuitively, a formula holds on such
a model if there is a partition of the visible excerpt of the traffic snapshots
that corresponds to the vertical and horizontal chops of the formula into its
subformulae. Then, these subformulae hold on the respective intervals if there
are claims and reservations as required by the subformulae. A detailed, formal
semantics can be found in [5].

We use some abbreviations to increase the readability. One of them is true,
which is defined in a standard manner and another one is the somewhere modality
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〈ϕ〉 := true �

⎛
⎝

true
ϕ

true

⎞
⎠ � true, which expresses that, at some position in the

model, the formula ϕ holds.
This abbreviation and the next examples use the horizontal (� ) and verti-

cal (stacked formula) chop operator. Both divide the view a traffic snapshot is
evaluated on into two parts. In case of the horizontal chop, this means finding a
“chopping” position along the lanes s.t. the first formula holds from the begin-
ning of the view up to that position and the second formula holds from that
position up to the end. The vertical chop operator, in contrast, searches for a
border between two lanes to split the view at, with an analogous semantics.

Consider two example formulae. The first one is
(

cl(A) � free
re(A) � free � re(B)

)
,

specifying that car A has a claim on the lane next to its reservation, there is
free space in front of both its claim and reservation, and there is another car B
in front of it. The second one is {a, b} : ¬∃c. 〈cl(c)〉, expressing that neither
the car ν(a) = A nor ν(b) = B have a claim somewhere. On the second traffic
snapshot depicted in Fig. 1, ϕ1 holds, but ϕ2 does not, as car A has a claim in
it.

Additionally, in [11], the author shows that the question whether a formula ϕ
holds globally through a given transition sequence � starting in a model M ,
denoted �(M) �seq �ϕ, is decidable, which we make use of later.

2.4 State-Clock Logic

Different logics have been proposed to deal with real–time requirements. We
decided to use State–Clock Logic (SCL) [12]. It enables the specification of both
the order in which phases need to be satisfied as well as explicit timing constraints
in between these phases.

We start with the syntax of SCL:

Definition 4 (Syntax of SCL).

ψ ::= p | ψ1 ∨ ψ2 | ¬ψ | ψ1Uψ2 | ψ1Sψ2 | �∼c ψ | �∼c ψ,

with ∼ ∈ {<,≤,=≥, >}.
Here p ranges over a set Σ of propositional symbols, which are used to

describe the phases. Apart from Boolean combinations and the usual tempo-
ral operators U (until) and S (since), there are two time dependent operators:
�∼c ψ describes that the time until ψ holds for the next time must satisfy the
constraint ∼ c, and �∼c ψ handles the analogous case for the past. We use also
some abbreviations, e.g. �[l,r) ψ for �≥l ψ∧ �<r ψ.

Semantics. Unlike in many other temporal logics such as LTL [13], where for-
mulae are evaluated on timed words, formulae of SCL are evaluated on timed
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sequences of states. This has a benefit when we e.g. specify some safety require-
ment that should hold throughout an evolution of a traffic snapshot. Using timed
sequences of states ensures that it is indeed satisfied at all points in time, not
just at the time points that a timed word considers. This is important, as some
dangerous situation might be encountered between two observations. We now
give a definition of timed sequences of states:

Definition 5 (Timed Sequences of states). A Timed Sequence of States is
a sequence m = 〈(s0, I0), (s1, I1), . . . 〉 where si ⊆ Σ and Ii is a real–valued non–
empty interval. It is required that any two neighbouring intervals are adjacent
and there is no Zeno behaviour, i.e. that time progresses beyond any bounds.

SCL formulae are evaluated on such timed sequences of states. The semantics
of boolean operators and U and S is as expected. The time-dependent operators
�∼c ψ (�∼c ψ) are true when the time until (since) ψ holds (held) for the next
(last) time complies to ∼ c. For �∼c ψ, this means tj − ti �∼ c, with tj being
the left border of the state where ψ holds for the next time and ti the time point
�∼c ψ is evaluated at. For a detailed, formal definition of the semantics, we refer
to [12]. There it is defined when an SCL formula ϕ holds in a timed sequence of
states m at position i and at time t ∈ Ii, abbreviated (m, i, t) � ϕ.

In [12], also a corresponding model of automata that accepts timed sequences
of states, called State-Clock Automata (SC Automata), is defined. We do not
introduce them here, but mention that SC automata use two different types of
clocks: one history clock xp and one prophecy clock yp for each proposition p
used. The task of the history clock is as usual, it denotes the time since p held
the last time, whereas yp denotes the time until p holds for the next time.

2.5 First–Order Theory of Real–Closed Fields

In Sect. 4, we show that the Timed Satisfaction Problem can be expressed as
formulae of the First-Order Theory of Real–Closed Fields (FORCF ) [14]. We
do not focus on that theory here, but would like to point out that it includes
formulae of a first–order logic with a signature {0, 1,+,−, ·,≤}. Quantification
over the reals is as well possible as over finite domains. The satisfaction problem
for FORCF–formulae is known to be decidable [14], with a double exponential
complexity with respect to the length of the formula [15]. As an example consider
the formula ∃x ∈ R : ∀c ∈ I : y ≤ pos(c) + x, asking if there exists a real-valued x
s.t. for all cars c their position plus the value x is at least y.

3 Timed MLSL

The basic idea of our extension to deal with timing requirements for highway
traffic is to use SCL based on MLSL(S) formulae as its set of propositions. Util-
ising SCL for this, we can express various kinds of desirable system properties.
First, it is possible to specify that phases follow each other, e.g. a car has first
a claim and then a reservation. Second, it is possible to express explicit timing
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requirements, e.g. how long such a state change is allowed to take. Additionally,
the satisfiability problem of SCL (for uninterpreted propositions) is decidable.
We start with the syntax of Timed MLSL (TMLSL):

Definition 6. TMLSL

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1Uϕ2 | ϕ1Sϕ2 | �∼c ϕ | �∼c ϕ

where p ∈ ΦMLSLS.

The only change to the standard definition of SCL is that we take MLSLS
formulae instead of arbitrary propositional symbols.

Note. In contrast to our choice of using MLSLS formulae as propositions,
one can argue that it would be a good idea to use MLSL actions instead. In this
case, TMLSL would be combination of an Event-Clock Logic [16] over the set of
MLSLS-actions. There are, however, some situations that can only be described
using formulae rather than actions. Additionally, from a modelling perspective,
one usually does not see the actual action taking place (e.g. accelerating) but
senses only the effect, that is, the satisfaction of a formula (e.g. the distance
between two cars more rapidly growing).

We give some examples of TMLSL formulae:

Example 1. (TMLSL Formulae).
〈

〈re(γ)〉 ∧ ¬
〈

re(γ)
re(γ)

〉〉
U 〈cl(γ)〉

(1)

cl(γ) =⇒ �[0,7)

〈
re(γ)
re(γ)

〉
(2)

¬(true U 〈re(γ) ∧ re(γ′)〉) (3)

�≥21 〈cl(γ)〉 =⇒ �[0,5) 〈cl(γ)〉 (4)

Formula (1) specifies part of the phases an overtaking manoeuvre may need,
in particular that a state where a car has only one reservation is followed by a
state where it has a claim. Formula (2) specifies that having two reservations
after having a claim takes less than 7 time units. Formula (3) specifies that
two cars never have an overlap in their reservations (specifying the absence of
collisions). Formula (4) specifies that a car has to claim a lane in less than 5
time units when the last claim occurred at least 21 time units ago. ��

Semantics of TMLSL. The semantics of TMLSL formulae is, as for SCL, defined
on timed sequences of states. The semantics of a formula of TMLSL is a direct
combination of the SCL semantics with MLSLS propositions evaluated in their
own semantics. We therefore restrain ourselves from showing the definition again
and instead give a sequence satisfying the formulae (1) and (2) from Example 1:

Example 2 (Timed Sequence of States). Consider the (prefixes of a) timed
sequences of states s0 and s1:

– s0 = 〈({〈re(A)〉}, [0, 2)), ({〈re(A)〉 , 〈cl(A)〉}, [2, 4]), ({
〈

re(A)
re(A)

〉
}, (4, 17])〉



122 C. Bischopink and E.-R. Olderog

– s1 = 〈({〈re(A)〉}, [0, 4]), ({〈re(A)〉 , 〈cl(A)〉}, (4, 17])〉
Then s0 satisfies the formulae (1) and (2) from Example 1 for γ = A if extended
appropriately, but s1 does not, as A does not have two reservations at most 7
time units after it claimed a lane.

To reason about the satisfaction of TMLSL formulae with respect to traffic
snapshots and actions, we lift the semantics to cover such cases:

Definition 7 (Semantics of TMLSL formulae on traffic snapshots) .

1. A timed sequence of states m is a model of ϕ iff (m, 0, 0) � ϕ, meaning that
the initial state and time of m satisfy ϕ.

2. A timed word of MLSL actions � and a traffic snapshot TS are a model of ϕ
iff there exists a timed sequence of states m = ((m1, I1), (m2, I2), . . . ) that is
a model of ϕ, where m contains only MLSLS propositions that ϕ is built from
and that are successively valid during the evolution of TS according to �, and
the sets mi consist of those propositions that are valid during Ii.

3. TS is a model of ϕ if there exists a timed word of MLSL actions � such that
� and TS are a model of ϕ.

4. ϕ is satisfiable if there is a TS such that TS is a model of ϕ.

We now provide a solution to the problem of finding suitable timed action
sequences � for point 3 and call it Timed Satisfiability Problem from TS on,
TMLSL–SAT for short.

4 Semi–decision Procedure for TMLSL

We now tackle the TMLSL-SAT problem just defined: Given a model M =
(CS,TS , Ω, V, ν) and a specification ϕ, is there a sequence of actions for the cars
to take s.t. these actions satisfy the specification ϕ? In answering this question,
we respect some more constraints regarding the dynamic behaviour of the cars,
namely an upper (accmax ) and lower (accmin) bound on the acceleration, as well
as a speed limit between 0 and a maximum speed (spdmax ).

Remember that we define a behaviour that should hold through an infinite
evolution of a traffic snapshot, so the sequence of actions we are searching for is
infinite. Infinite sequences may not be encountered in reality, but ensure that we
do not end up in a situation that is dangerous after a finite sequence. Luckily,
the abstract model [1] uses infinite lanes and thus allows for infinite sequences.

The idea of SCL, which TMLSL is based on, is finding accepting loops/runs
in a Region Automaton, which is a generalised Büchi automaton that accepts
sequences that are models of the corresponding formula. As SCL formulae are
built from uninterpreted propositions, it suffices for SCL to find a single loop
which visits one state from each Büchi-set (generalised Büchi-acceptance con-
dition) infinitely often. In case of TMLSL, where the propositions (i.e. MLSLS
formulae) are interpreted, this does not suffice. The reason for this is that, given
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an initial model and a sequence of actions that satisfy the SCL-part of the for-
mula, it can be the case that the cars cannot behave in a way that they are
supposed to, e.g. reach certain points without accelerations beyond the specified
physical bounds.

We solve this problem in two tiers: First, we generate the Region Automa-
ton R(ϕ) [12,17] from the entire specification ϕ, which accepts runs that are
potential solutions. These potential solutions dictate when the propositions need
to be satisfied. The system however may not be able to behave in a way that
the propositions (here MLSLS formulae) are indeed satisfied. As a consequence
and second step, we check for each potential solution if the system can actu-
ally behave in a way that the propositions (MLSLS formulae) are satisfied. We
formulate these checks as a FORCF-formula, which are decidable. Then, if the
FORCF-formula is satisfiable, so is the specification ϕ and our potential solution
is an actual one. If not, we proceed by checking whether the next (longer) poten-
tial solution is an actual solution, and so on. As we do not have a termination
criterion yet, our approach yields only a semi-decision procedure.

Structure of the Formalisation. The definitions and theorems that follow have
the following connection: Lemma 1 establishes that it is decidable what discrete
actions need to be executed to satisfy a property. The remainder concentrates
on the dynamic evolution of the system: Definition 8 states when two traffic
snapshots are equivalent. We search for such equivalent traffic snapshots that
occur along the potential solutions, as the actions between them are applicable
infinitely often (Lemma 2). Searching for equivalent traffic snapshots requires
the formalisation which traffic snapshots are reachable by the evolution between
two regions in a potential solution (Definition 9) and along a potential solution
(Definition 10). Whether such equivalent traffic snapshots are reachable in the
evolution along a potential solution (with a maximum number of allowed steps
in between) is decidable (Theorem 1). The question whether equivalent traffic
snapshots (without a bound on the allowed steps) are possible and the infinitely
often applicable part respects the specification is, due to a missing termination
criterion, semi-decidable (Theorem 3).

Before proceeding with the formalisms needed to prove this claim, we first
give a small running example that we will use throughout this section.

Example 3 (Region Automaton and initial Traffic Snapshot). Consider Fig. 2,
where a traffic snapshot TS with initial values for the cars and a (simplified)
region automaton R are depicted. The non-coloured states in R are placeholders
for possibly more states that we are not interested in. Initially, car B is 15 units
ahead of car A (ignoring size and braking distance of car A for simplicity). As
also shown in the table, car B is driving pretty slow while car A is driving faster.
We assume that in this example, the maximum speed cars can drive with is 13.
The maximum positive acceleration force a car can apply is 5 and the maximum
negative acceleration force is −10, as cars usually can decelerate stronger than
accelerate.
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The region automaton specifies that accepting runs of the systems are those
where both l1 and l3 are visited infinitely often and it is therefore infinitely often
the case that:

– The distance between the cars is equal to 15 (ϕ1 =
〈
re(A) � free15 � re(B)

〉
).

– The distance between the cars is equal to 21 (ϕ3 =
〈
re(A) � free21 � re(B)

〉
).

Including timing constrains that require the formulae to be satisfied alternately
within 4 resp. 5 time units, the specification the region automaton is build from
would include the TMLSL formulae ϕ1 =⇒ �=4 ϕ3 and ϕ3 =⇒ �=5 ϕ1. The
formula freed stands for free ∧ l = d, describing a free space of length d. ��
While this property might not be the most sensible one, we can depict most of
the following concepts using it and do so later.

1 A B

pos(A) = 0
spd(A) = 13
acc(A) = 0

pos(B) = 15
spd(B) = 4
acc(B) = 0

Δ
T S :

ϕ1
[ν1]

l1 l2

l4

ϕ3
[ν3]

l3

xϕ3 = 5
yϕ3 = 4

xϕ1 = 4
yϕ1 = 5

l0R :

Fig. 2. A traffic snapshot TS including values for the position, speed and acceleration
of both cars that we want to evolve in a way that it satisfies the specification translated
into the region automaton R. The two colours in R indicate different Büchi-sets that
these (final) states belong to. The other two states summarise more states, which we do
not depict for brevity. The constraints of the history clocks xϕ1 , xϕ3 and the prophecy
clocks yϕ1 , yϕ3 are described below l1 and l3, the regions ν0, ν2, ν4 are components of
l0, l2, l4, respectively.

In what follows, we assume that there is a region automaton Rϕ for our
specification ϕ, as the step of generating it is handled in [12]. A region [ν]
can be described as a set of constraints that restrict the values of both history
and prophecy clocks in this region, e.g. c1 < x < c2 or x = c1 for a clock x
and constants c1 and c2. We furthermore assume to have a finite sequence of
regions π = 〈[ν0], [ν1], . . . , [νn]〉, which has a suffix that can be repeated and
visits each accepting state of Rϕ infinitely often and is therefore a potential
solution.

There are two steps we use π for: First, we check if discrete actions need to
be executed from our initial traffic snapshot onwards. Second, we check the same
regarding the dynamic actions. We handle the easier (first) part in Lemma 1 and
afterwards focus on the more challenging second part.

Lemma 1 (Discrete Actions between Regions). Given a sequence of
regions π = 〈[ν0], [ν1], . . . [νn]〉 and a traffic snapshot TS 0, it is decidable if
there exist discrete actions that allow the traffic snapshot to evolve in a way
that respects π.
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Proof (sketched). It is only possible to have one discrete action at a time in
the MLSL model, so the difference between two adjacent regions can only be the
result of one discrete action. One can apply every possible discrete action (which
are finitely many as there are only finitely many cars and lanes in TS0) to the
corresponding first traffic snapshot and see if the result fits to the restrictions
imposed by formulae of the next state, concerning only reservations and claims
and ignoring the position of them along the lane. The time-stamps of the actions
are the borders of the regions, as executing an action changes which MLSLS
formulae are valid on the traffic snapshot and thus the state. ��

In Example 3 there are no discrete actions necessary or even possible between
the regions [ν1] and [ν3], as we only have one lane.

Both the part on finding discrete actions as well as the part on dynamic
actions have in common that we want to find actions that are applicable infinitely
often. For this purpose, we formalise when two traffic snapshots are equivalent.

Definition 8 (Equivalent Traffic Snapshots). Two traffic snapshots TS =
(res, clm, pos , spd , acc) and TS ′ = (res, clm, pos ′, spd , acc) are called equivalent
(TS ≡ TS ′) iff there exists some r ∈ R s.t for all cars c ∈ I : pos ′(c) = pos(c)+r.

Clearly, two equivalent traffic snapshots are indistinguishable by any MLSLS
formulae, because the reservations and claims of all cars are on the same lanes
in both of them and the distance between each two pair of cars is also the same.
Furthermore, if a sequence of actions � led from TS to TS ′ and TS ≡ TS ′, �
can be applied infinitely often:

Lemma 2 (Infinite applicability). A time-stamped action sequence � start-
ing in a traffic snapshot TS and ending in TS ′ with TS ≡ TS ′ is applicable to
TS infinitely often. Therefore, TS � ϕ iff TS ′ � ϕ for any MLSLS formula ϕ.

Proof. By induction over �. ��
Before focusing on the question whether potential solutions are actual solu-

tions and formalising this question by FORCF–formulae, we mention problems
that might occur and revisit the running example:

T1 Implicitly, we only consider sequences that start in initial states of R(ϕ),
where the constraints are satisfied by the initial traffic snapshot.

T2 From π = 〈[ν0], [ν1], . . . [νn]〉 and TS 0, we need to find a time-stamped
action sequence � s.t. ϕ holds along � from TS0 onwards and has a part that
is infinitely often applicable.

T3 Any two regions [ν] and [ν′] in π can represent the start resp. end of the
part of � that is applicable infinitely often . . .

T4 . . . as long as this part respects the region automaton’s acceptance condition.
T5 We still need to ensure that the dynamic evolution of the traffic snapshot

does not violate the state it is supposed to be in.
T6 It may be necessary that some cars change their acceleration not only once

but multiple times between two regions.
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Example 3 (cont’d). There is one further simplification here to keep the exam-
ple handy: we assume that car B’s acceleration is constantly 0, so we search
for actions regarding car A. Going through sequences of regions of increas-
ing length we check whether there exists a sequence of actions that satis-
fies it. The sequences are π0 = 〈[ν1], . . . , [ν3]〉, π1 = 〈[ν0][ν1], . . . , [ν3]〉 and
π2 = 〈[ν0][ν0][ν1], . . . , [ν3]〉. Additionally, we assume that we can stay in ν0 for 1
time unit.

– π0 (and any other sequence starting in [ν1]/l1) cannot be a solution because
it would require car A accelerate to −3.75 to have a distance of 21 to car B
within 4 time units, which would result in a negative speed in l3.

– π1 cannot be a solution because reducing the speed to maintain a distance
of 15 in 1 time unit would require to decelerate by −18, which is beyond our
border on the possible deceleration force.

– π2 is a solution, when car A makes one additional acceleration change in
between l1 and l3. All values regarding this solution are given in Table 1.

We considered both initial states as their constraints are satisfied by TS . The
sequence last considered gave the possibility to reach a traffic snapshot that is
equivalent to a previous one, while staying in the same region. Thus, the last
loop containing this state is applicable infinitely often and the sequence [ν0][ν0]
([ν1][ν2][ν3][ν4])ω satisfies our specification from TS onwards. The corre-
sponding sequence of timed actions is � = (acc(A,−10), 0), (acc(A,−1), 1),
(acc(A, 0.75), 3), (acc(A, 0.75), 7), (acc(A,−6), 11), (acc(A, 0.75), 12). ��

The next definition defines which traffic snapshots are reachable with i pos-
sible acceleration changes (T6) per car and time bound t. It is used when for-
malising the evolution that can occur to a traffic snapshot within a single region:

Definition 9 (Step). Given a traffic snapshot TS0, the number i of allowed
acceleration changes per car, an upper time bound t and a MLSLS-Formula ϕr

to be satisfied, step(TS 0, i, t, ϕr) is a traffic snapshot TSn s.t.

∃ac,i∃tc,i : TS 0
tA,1−−→ TS 1

acc(A,aA,1)−−−−−−−→ TS 2
tB,1−−→ TS 3

acc(B,aB,1)−−−−−−−−→ . . .
tA,m−−−→

TSn−3
acc(A,aA,m)−−−−−−−−→ TSn−2

tB,m−−−→ TSn−1
acc(B,aB,m)−−−−−−−−→ TSn ∧ �(TS 0) �seq �ϕr

∧ ∀ac,i : ac,i ∈ [amin, amax] ∧ ∀c ∈ I : ∀ti ≤ t : spd(c)@ti ∈ [0, spdmax]

with ac,i the acceleration of car c in step i,
∑

tc,i
= t, the overall time elapsed,

�(TS 0) is the transition sequence � = 〈(accA,aA,1 , tA,1), (accB,aB,1 , tB,1), . . . 〉
applied to TS 0 and spd(c)@ti the speed of car c at time ti.
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Location l0 l0 l1 l2 l3 l1
t 0 1 3 7 11 12
pos(A) 0 8 12 22 44 48
pos(B) 15 19 27 43 59 63
spd(A) 13 3 1 4 7 1
acc(A) −10 −1 0.75 0.75 −6 0.75

Table 1. Possible evolution of TS along
the accepting run π3.

The conjunct �(TS 0) �seq �ϕr was
mentioned in Sect. 2.3 and is used to
ensure that through the evolution along
the transition sequence, each traffic
snapshot still satisfies the MLSLS for-
mula ϕr given by the corresponding
region (T5). A detailed description of
how one can formalise these actions by
FORCF-formulae can be found in [11].
A formula we may want to be invariant
under such a sequence, and thus would
be part in every region, is that there is
never an overlap in the reservation of two cars, specifying collision freedom.

Unwinding the MLSLS transitions in step(TS 0, i, t, ϕr) and handling the
traffic snapshot’s functions in the points considered as variables, yields FORCF-
formulae like the one given below, where the colours correspond to the respective
parts in Definition 9. We ignore the handling of different lanes and claims and
reservations on them as well as the sensor function here:

∃ aA,1, aB,1, aA,2, . . . ∃tA,1, tB,1, tA,2, . . . ∃ pos1(A), pos2(A), . . . , posi(B), pos1(C), . . .
∃ spd1(A), spd3(A), . . . , spdi(B), spd1(C), · · · :

pos1(A) = pos0(A) + spd0(A) · tA,1 + 0.5 · tA,12 · acc0(A)
∧ pos3(A) = pos1(A) + spd1(A) · tB,1 + 0.5 · tB,12 · aA,1
∧ spd3(A) = spd1(A) + aA,1 · tB,1 ∧ · · · ∧ spd1(A) = spd0(A) + acc0(A) · tA,1
∧ 0 ≤ spd1(A) ≤ spdmax ∧ 0 ≤ spd1(B) ≤ spdmax ∧ . . .

The next definition formalises the outcome of an evolution of a traffic snapshot
along a sequence of regions rather than a single region, respecting that there
might be discrete actions that took place in between the regions:

Definition 10 (Reach). Given a sequence of regions π = 〈[ν0], [ν2], . . . , [νn]〉,
a traffic snapshot TS 0, and the maximum number j of acceleration actions per
car and step, we define reach(TS0, π, j) as a traffic snapshot TSn s.t.

step(TS 0, j, t0, ϕ0)
α0−→ TS 1 ∧ step(TS 1, j, t1, ϕ1) ∧ . . .

step(TSn−2, j, ti, ϕ1)
αi−→ TSn−1 ∧ step(TSn−1, j, ti+1, ϕ2) = TSn

where 〈(α0, t0), . . . , (αi, ti)〉 is a sequence of discrete actions and time stamps
that need to be executed according to Lemma 1, ϕi the formula that needs to be
satisfied in the regions [νi] and ti is the time one is allowed to stay in [νi].

Thus, reach defines all traffic snapshots that are reachable from a given traffic
snapshot onwards and respect the constraints given by a sequence of regions and
the constraints on the dynamics. For checking the satisfiability of our specifica-
tion, we are interested in these traffic snapshots that are equivalent to a previous
one and therefore restrict the outcome further, but first state that reach is cor-
rect:
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Lemma 3 (Correctness of reach). Given an initial and a final traffic snap-
shot TS resp. TS ′ and a sequence of regions π = 〈[ν0], [ν2], . . . , [νi]〉, there exists
a finite sequence of time-stamped actions � s.t. TS

�−→ TS ′ that respects the for-
mulae imposed by π, that is, the TMLSL formula ϕ holds along �, if and only if
there exists a j ∈ N s.t. TS ′ = reach(TS , π, j).

Proof. Due to Lemma 1, reach contains exactly the same discrete actions at
the same times as �. As � is a finite sequence, there is an upper bound for the
maximum number of acceleration actions in �, so there exists a j. Then, reach
quantifies over all possible combinations of acceleration and discrete actions that
do not violate ϕ or the dynamic restrictions, so iff TS

�−→ TS ′ then there exists
a j s.t. TS ′ = reach(TS , π, j) holds. ��
Theorem 1 (Decidability of reaching an equivalent traffic snapshot).
Given j ∈ N, two traffic snapshots TS and TS ′ and a sequence of regions

π = 〈[ν0], [ν2], . . . , [νn]〉, it is decidable if TS ′ ≡ reach(TS , π, j) holds.

Proof (sketched). After Definition 9, we sketched that step is expressible by
FORCF–formulae. Handling the discrete actions in between can be achieved by
extending the variables that respect the functions of the traffic snapshot tuple by
a component regarding the possible lanes and the type of the occupation (reser-
vation/claim). The result of this is again a FORCF–formula and thus decidable.
��

With this, we can now check if there exist sequences of transitions that are
infinitely often applicable to a traffic snapshot and respects the specification.

Definition 11 (Check). For a sequence of regions π = 〈[ν0], [ν1], . . . , [νn]〉 and
a traffic snapshot TS0 , we define check(TS0 , π) as

n∨
i,j=0

(reach(TS 0, (〈[ν0], . . . , [νi]〉), j) = TS ≡ reach(TS , 〈[νi+1], . . . , [νn]〉, j)

∧ 〈[ν0], . . . , [νi]〉 · 〈[νi], . . . , [νk]〉ω ∈ L(R(Aϕ)))

The disjunction over all i in the beginning ensures that we find the part of
the sequence that generates equivalent traffic snapshots (T3) and thus there
is an infinitely often applicable sequence of actions (T2). The disjunction over
j is to respect that a car may need to change its acceleration more than once
(T6). The second line ensures that the finite prefix concatenated with an infinite
repetition of the part we have found is indeed in the language of Rϕ (T4).

For Example 3, the correct instantiation of this predicate would be
the one yielding reach(TS0, (〈[ν0], [ν0], [ν0]〉), 1) ≡ reach(reach(TS0, (〈[ν0], [ν0],
[ν0]〉), 1), 〈[ν1], [ν2], [ν3], [ν4]〉, 1) with the solution given previously and thus
showing that the specification is satisfiable from TS0 on.

Theorem 2 (Correctness of Check). If there exists an n ∈ N s.t. for a traf-
fic snapshot TS 0 and a sequence of regions π = 〈[ν0], . . . , [νn]]〉, check(TS 0, π)
is satisfied, then there exists an infinite transition sequence that satisfies the
specified properties and respects the restrictions on both speed and acceleration.
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Proof (sketched). The disjunction over i ensures finding the part of the sequence
that is applicable infinitely often. Due to Lemma 3, the remainder of the first
line is true iff there exists a sequence of actions that leads to an equivalent
traffic snapshot. Due to Lemma 2, this sequence is infinitely often applicable.
The second line (Definition 11) is checking whether the infinite repetition of
〈[νi+1], . . . [νn]〉 complies to the language L(Rϕ). ��

By increasing the length of the sequences of regions and therefore the number
of steps executed between two states, one can search for sequences that are
long enough to allow for infinite applicability. As we do not have a criterion
for deciding when to end this search, for now this only shows that TMLSL is
semi–decidable:

Theorem 3 (Semi-Decidability of TMLSL–SAT).
The TMLSL–SAT Problem is semi–decidable.

5 Conclusion

Contribution. We combined SCL and MLSL(S) to form the logic TMLSL for
expressing timing requirements in highway traffic and illustrated its usefulness
on some examples. We showed how one can semi-decide whether a specification
given in this logic together with an initial traffic snapshot is satisfiable. To this
end, we used a prior approach [12] to find potential sequences of states that
could satisfy the given specifications and afterwards check if the traffic situation
can behave in a way that these states are actually reached in time.

Future Work. There are several possible directions of future work that we
would like to point out. It would be nice to have tool support to check whether
a specification is satisfiable from a given traffic snapshot onwards. An imple-
mentation of the procedure proposed here is under development, using Rust1

for generating potential solutions and the tool iSAT [18] for checking them. The
solution for the specification and traffic snapshot given in Example 3 was gener-
ated by iSAT. The number of locations of the region automaton is exponential
in the length of the formula and checking the potential solutions is double expo-
nential in the length of the FORCF-formula, who’s length is linear in the length
of the potential solution. Luckily, one can check multiple potential solutions at
once.

At the moment, we assume global knowledge of the whole traffic snap-
shot. Further investigation deserves the question, under which conditions the
autonomous vehicles can find a satisfying run for a traffic snapshot when they
only have partial knowledge about their surrounding, e.g. only have knowledge
about other cars’ reservations, claims and positions within some range (view).
In general, this should not be possible, as the satisfaction of a formulae might
depend on the behaviour of another car that one is not aware of at the moment.

1 https://www.rust-lang.org/.

https://www.rust-lang.org/
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To avoid such issues, communication between cars could be used. We therefore
plan to use our approach in an Runtime Enforcement [19,20] setting: based on
the specifications, for each car SC automata are synthesised that represent the
satisfaction of their specification up to that time. Whenever a car wants to exe-
cute an action, it broadcasts this desire to all other cars, which then, with help
of the SC automata, check whether this action might violate their specification
in the (near) future. If so, the requested action is denied. Still, this might lead
to problems if two cars compete for the same resource (segment of a lane) and
announce their resp. actions too late. Therefore cars could repeat these procedure
until they finally find a path that respects all cars specifications.

With a lower number of repetitions or communication delays, satisfaction
of a specification might not be guaranteed. Still, it would be interesting to see
how well the system performs, possibly with an implementation in an simulation
environment. While taking this step towards more realistic assumptions, other
assumptions might also be weakened, for example the assumption of perfect
communication, e.g. that communication between two cars never fails.
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Abstract. The Internet of Things (IoT) has been wildly used in various
fields of our lives, such as health care, smart environment, transporta-
tion, etc. However, the existing research on IoT mainly concentrates on
its practical applications, and there is still a lack of work on modelling
and reasoning about IoT systems from the perspective of formal meth-
ods. Therefore, the Calculus of the Internet of Things (CaIT) has been
proposed to model the interactions among components and verify the
network deployment to ensure the quality and reliability of IoT sys-
tems. Unfortunately, the CaIT calculus can only support point-to-point
communication, while broadcast communication is more common in IoT
systems. Therefore, this paper updates the CaIT calculus by replacing
its communication primitive with the broadcast. Based on the Unify-
ing Theories of Programming (UTP), we further explore its denotational
semantics and algebraic semantics, with a special focus on broadcast
communication, actions with the timeout (e.g. input actions and migra-
tion actions), and channel restriction. To facilitate the algebraic explo-
ration of parallel expansion laws, we further extend the CaIT calculus
with a new concept called guarded choice, which allows us to transform
each program into the guarded choice form.

Keywords: The CaIT calculus · IoT · UTP · Denotational
semantics · Algebraic semantics

1 Introduction

Equipped with “Things” capable of sensing, processing, and communicating,
smart devices in IoT systems can collect information from the Internet or the
physical environment anytime, anywhere, and provide advanced services to end
users. [1,2]. “Things” in IoT systems can be RFID tags that identify objects,
sensors that capture changes in the environment, and actuators that provide
information to the environment. With the increasing demand for applications
and technologies of IoT, a variety of promising technologies (e.g. 5G, high speed,
low latency networks, etc.) have been applied to the IoT paradigm. As a result,
IoT is rapidly evolving towards IoT 2.0 to further meet the demands of a series of
advanced technologies, such as machine learning, edge computing, and Industry
4.0 [3,4]. However, most of the existing studies on IoT are mainly focused on
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its practical applications, and little work has been done to model interactions
between components in IoT systems and to check IoT network deployments [5].

As a mathematics-based technique, the formal methods have been widely
used to specify, verify, and analyze software and hardware systems, thereby
ensuring the quality and reliability of systems. To the best of our knowledge,
Lanese et al. have presented the first calculus for IoT named IoT-calculus, which
aims to formalize a few fundamental characteristics of IoT systems: the partial
topology of communications and the interaction between sensors, actuators, and
computing processes [5]. Subsequently, Bodei et al. presented a secure untimed
process calculus called IoT-LYSA, which employs static analysis technologies to
track the sources and paths of IoT data and detect how they influence smart
objects [6]. However, the above two calculi do not consider the effect of time on
process actions. Thus, Lanotte et al. proposed the CaIT calculus with reduction
semantics and a labeled transition system [7]. In contrast, the CaIT calculus
can model discrete time behaviours with consistency and fairness properties by
equipping process actions with timeouts. However, the CaIT calculus can only
support point-to-point communication, rather than the more general broadcast
communication. Thus, this paper refines the original CaIT calculus by replacing
its point-to-point communication with broadcast communication [8].

The Unifying Theories of Programming (UTP) has been proposed by He and
Hoare in 1998 [9], which has three methods to represent the semantics of a pro-
graming language: operational semantics [10], denotational semantics [11], and
algebraic semantics [12]. The operational semantics of a programming language
provides a complete set of individual steps to simulate the execution, which
shows how a program works [10]. The denotational semantics gives meaning
to a programming language from a purely mathematical point of view, which
explains what a program does [11]. The algebraic semantics of a programming
language includes a series of algebraic laws, which is well suited to the symbolic
calculation of parameters and structures of an optimal design. The operational
semantics of the CaIT calculus has been explored in [7]. This paper investigates
the denotational and algebraic semantics of the CaIT calculus.

The main contributions of this paper are as follows:

• We enrich the CaIT calculus by replacing its point-to-point communication
with broadcast communication.

• We explore the denotational semantics of the CaIT calculus, involving the
basic commands, the guarded choice, the parallel composition, and channel
restriction.

• We investigate the algebraic semantics of the CaIT calculus, especially chan-
nel restriction. By establishing the algebraic laws for the parallel composition
of guarded choice components, we can describe any program as the guarded
choice form.

The rest of this paper is organized as follows. In Sect. 2, we introduce the
syntax of the CaIT calculus and the concept of guarded choice that is used to
investigate the parallel expansion laws. In Sect. 3, we explore the denotational
semantics of the CaIT calculus. In Sect. 4, we propose a set of algebraic laws for
the CaIT calculus. The conclusion and future work are in Sect. 5.
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2 The CaIT Calculus

In this section, we introduce the syntax of the CaIT calculus. To establish alge-
braic parallel expansion laws, we then give three kinds of guarded choices.

2.1 Syntax

Compared with the original CaIT calculus proposed in [7], we extend it by
introducing more general broadcast communication and adding the migration
operation to conveniently model node mobility. As shown in Table 1, the syntax
of this calculus has a two-level structure: the first level illustrates the networks,
and the second one models the processes. For greater clarity, the extensions have
been bolded in Table 1.

Firstly, we define some functions for our exploration. Function Rng(c) is used
to compute the transmission range of channel c. We can calculate the distance
between locations l and l1 with the function Dis(l, l1). Two nodes at l and l1
can communicate via channel c only if the distance between them is within the
communication range of channel c, i.e., Dis(l, l1) ≤ Rng(c). Otherwise, they
cannot communicate via c.

Table 1. The syntax of CaIT calculus

Network

N, M ::= 0 Empty Network

| M‖N Parallel Composition

| (vc′)M Channel Restriction

| n[Γ �� P ]ul Node

Process

P, Q ::= nil Termination

| P‖Q Parallel Composition

| [b]P ,Q Conditional Choice

| !〈v〉c;P Output

| ρ;P Intra-node Action

| �π;P �Q Action with Timeout

| while b do P Iteration

ρ ::= σ Delay

| s?y Reading Sensor

| a!v Writing Actuator

π ::= ?(x)c Input

| move k Migration

Network Level:

(1) 0 stands for an empty network.
(2) M‖N is the parallel composition.
(3) (vc′)M indicates that channel c′ is private to the network M .
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(4) n[Γ �� P ]ul denotes a network node, where n is the node ID, P is the
process modelling the logic of this node, l records its current location, and Γ
is its physical interface. The physical interface Γ can map the names of sensors
and actuators to values. To ensure the security of nodes, each Γ is private for
a node. Given node n[Γ �� P ]ul , only the corresponding controller process P
can read the values of sensors in Γ . Analogously, the values of actuators in
Γ can be modified only by P . u is given to differentiate between stationary
nodes (if u = s) and mobile nodes (if u = m).

Process Level:

(1) nil indicates this process terminates.
(2) P‖Q stands for the parallel composition of processes P and Q.
(3) [b]P ,Q illustrates the conditional choice, where b has the form as [w =
w′]. If w is equal to w′, process P works; otherwise, process Q.
(4) !〈v〉c;P denotes that after sending the value v via c immediately, P runs.
(5) ρ;P models intra-node actions, where ρ ∈ {σ, s?(y), a!v}. σ;P means that
process P starts executing after waiting for one time unit. A node can obtain
a value from sensor s and assign it to variable y, denoted by s?y;P . Due to
the execution of a!v;P , the value of the actuator a should be modified to the
newly written value v, further leading to the update of Γ , i.e., Γ ′ = Γ [v/Γ (a)].
(6) �π;P �Q stands for some actions which execute with the timeout, where
π ∈ {?(x)c, move k}. For �?(x)c;P �Q, if a value can be received via channel
c within one time unit, it continues as process P after that. Otherwise, Q
runs after one time unit. �move k;P �Q illustrates the node mobility. After
delaying one time unit, if the node moves to the destination k successfully,
this process terminates, and then P obtains the control at its new location k.
Otherwise, Q starts at its original location after one time unit. π;P indicates
that process P begins only when action π has finished.
(7) while b do P is the iteration construct, where b is in the form [w = w′].

2.2 Guided Choice

To support our investigation of the algebraic parallel expansion laws, we extend
the CaIT calculus with the following three types of guarded choices.

• Instantaneous Guarded Choice:

[]i∈I{gi → Ni},

where, gi ∈ {!〈v〉c@l, ?(x)c@l, c.[v/x]@(l, l1), s?y@l, a!v@l, move k@l,
bi&τ@l}.

The guard gi is instantaneous, meaning that it executes without any time
delay. !〈v〉c@l indicates that a node at location l sends out the value v via channel
c. And c.[v/x]@(l, l1) denotes that a node at l successfully sends v to another node
at l1 via c, where [v/x] replaces the variable x with the received value v. bi&τ@l
represents that a silent action occurs at location l if the Boolean expression
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bi is true, where the silent action does nothing and terminates immediately.
For (vc′)M , it should guarantee that communication actions (output actions or
synchronous communication actions) that take place on c′ are not visible outside
of M . Thus, we conceal them by replacing them with true&τ@l.
• Delay Guarded Choice:

#t → N

The delay guarded choice denotes that the subsequent network N starts after
delaying t time units, where t ranges from 0 to 1.
• Hybrid Guarded Choice:

[]i∈I{gi → Ni}
⊕ ∃t′ ∈ (0 . . . 1) • #t′ → N ′

⊕ #1 → N ′′

The third type is the hybrid guarded choice, which has three branches com-
bined by the notation ⊕, where ⊕ denotes the disjointness of timed behaviours.

3 Denotational Semantics

Here, we present the denotational semantics of the CaIT calculus based on UTP.
We first introduce the semantics model and give healthiness conditions that
each program must satisfy. We then discuss the denotational semantics of basic
commands, guarded choices, the parallel composition, and channel restriction.

3.1 Semantic Model

Compared with the previous UTP theories [9], the CaIT calculus captures some
vital characteristics of IoT systems, such as time constraints, communications,
the node mobility, etc. To better describe its behaviours, we define the following
observation tuple for this calculus.

(time, time′, st, st′, tr, tr′)

(1) time and time′ represent the start and end time points of an observation
time interval, respectively. Δ is the time interval, where Δ = time′ − time.
(2) st and st′ stand for the initial and final execution state of the program,
respectively. For a program, it may have three types of execution states.

• ter : If a process terminates successfully, it runs into a ter state. “st = ter”
means that the previous process terminates successfully, and the current
process starts to execute. “st′ = ter” denotes that the current process
terminates successfully, and then the following process starts to work.

• wait : A process may be waiting to communicate with another process via
a particular channel, as described by the wait state. “st = wait” indicates
that the previous process is in a wait state. Thus, the current process
cannot be executed. Similarly, “st′ = wait” denotes that the current
process reaches a wait state. Therefore, the following process cannot be
performed.
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• div : When a process enters a div state and never terminates, its future
behaviour becomes uncontrollable. st = div means that the previous pro-
cess diverges. Thus, the current process can never obtain control. st′ = div
represents that the current process is uncontrolled. Thus, the next process
never works.

(3) We introduce the notion of traces to record the communication behaviour
of a process. We give a pair of variables tr and tr′. tr presents the initial trace
of a process inherited from its predecessor. tr′ is the final trace containing
the contribution of the current process. tr′ − tr is the trace generated by the
current process. tr�

1 tr2 connects traces tr1 and tr2. A trace is a sequence of
snapshots. The notation head(tr) stands for the first snapshot of trace tr.
tail(tr) records the remainder after removing the first snapshot from trace
tr. A snapshot is a quadruple formed by (t, l, o, f).

• t represents the time when the communication action occurs.
• l is the location of the node at which a communication action occurs.
• o means that a message is transmitted via a specific channel. The form

of o is c.v, where c is the communication channel and v is the transmit-
ted message. Further, we define the concepts Chan(o) and Mess(o) to
obtain the communication channel and the transmitted message from o
respectively, i.e., if o = c.v, then Chan(o) = c and Mess(o) = v.

• To conveniently merge traces, we use the flag f to separate communication
actions into two types. If f = 1, this action is an output action (e.g., !〈v〉c).
Otherwise, f = 2 means that this is an input action (e.g., ?(x)c).

We introduce notations πi(i = 1, 2, 3, 4) to obtain the ith element of a snap-
shot, such as π1((t, l, o, f)) =df t.

3.2 Healthiness Conditions

Here, we give some healthiness conditions which every process must satisfy. H1
indicates that traces cannot be shortened and time cannot go back. H2 proposes
the following two requirements. If the previous process runs into a wait state,
the current process cannot be activated. Thus, all values keep unchanged. Oth-
erwise, the current process executes. As mentioned before, st = div means that
the behaviour of the previous process becomes unpredictable. Thus, the current
process has never started and the initial values are unobservable. Therefore, H3
should be satisfied.

(H1) P = P ∧ Inv(tr, time),

where, Inv(tr, time) =df tr � tr′ ∧ time � time′, and tr � tr′ denotes that
sequence tr is a prefix of sequence tr′.

(H2) P =
∏

�st = wait � P,

where, P �b�Q =df (b∧P )∨(¬b∧Q),
∏

=df (st′ = st)∧(time′ = time)∧(tr′ = tr).

(H3) P = Inv(tr, time) � st = div � P

To present the denotational semantics for the CaIT calculus, we give the fol-
lowing definition for H(X), which not only caters to the above three healthiness
conditions but is idempotent and monotonic.

H(X) =df Inv(tr, time) � st = div�
(∏

�st = wait �
(
X ∧ Inv(tr, time)

) )
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3.3 Denotational Semantics of Basic Commands

In this subsection, we explore the denotational semantics of the basic commands.
By defining beh(N), we depict the behaviour of a network N .

(1) Termination: nil represents a termination process, so that the execution
state, termination time, and trace remain unchanged.

beh(n[Γ �� nil]ul ) =df H(st′ = st ∧ time′ = time ∧ tr′ = tr)

(2) Sequential Composition: The behaviour of sequential composition is
denoted by N ;M , i.e., running N and M in sequence.

Definition 1. N ;M =df ∃t, s, r • N [t/time′, s/st′, r/tr′] ∧ M [t/time, s/st, r/tr]

The denotational semantics of the sequential composition is given below:

beh(N ;M) =df beh(N);beh(M)

(3) Delay: Given a delaying process n[Γ �� σ;P ]ul , it denotes that process P
starts to execute after one time unit.

beh(n[Γ �� σ;P ]ul ) =df beh(#1);beh(n[Γ �� P ]ul )

beh(#t) describes the behaviour of waiting for t time units. Δ < t means that
the process has not waited for t time units yet, thus it still needs to wait. In this
case, its state and trace keep unchanged. The process stops waiting when Δ = t,
formed by st′ = ter.

beh(#t) =df H
(
(st′ = wait ∧ Δ < t ∧ tr′ = tr) ∨ (st′ = ter ∧ Δ = t ∧ tr′ = tr)

)

(4) Output: In n[Γ ��!〈v〉c;P ]ul , the output command happens at the activeness
time, modeled by beh(!〈v〉c@l). Then process P obtains the control.

beh(n[Γ ��!〈v〉c;P ]ul ) =df

(
beh(!〈v〉c@l);beh(n[Γ �� P ]ul

)

We only need to add the outputting snapshot (time′, l, c.v, 1) to the end of the
trace tr. The behaviour of beh(!〈v〉c@l) is as below.

beh(!〈v〉c@l) =df H
(
st′ = ter ∧ Δ = 0 ∧ tr′ = trfrown〈(time′, l, c.v, 1)〉 )

(5) Input: The semantics definition of an input command has three branches.
The first branch (i.e., formula (5.1)) indicates that the input action happens
at the triggering time. beh(?(m)c@l) describes the behaviour of the input com-
mand, which means that node at location l receives a value m via channel c. The
following behaviour is beh(n[Γ �� P [m/x]]ul ). In the second branch (i.e., formula
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(5.2)), the input command occurs after t′ time units. The last branch (i.e., for-
mula (5.3)) shows that this input command does not happen within one time
unit. After delaying one time unit, the following behaviour is beh(n[Γ �� Q]ul ).
Here, Type(c) denotes the type of messages transmitted in channel c.

beh(n[Γ �� �?(x)c;P �Q]ul ) =df
⎛

⎜
⎜
⎝

∃m ∈ Type(c) • beh(?(m)c@l);beh(n[Γ �� P [m/x]]ul ) ∨ (5.1)
∃t′ ∈ (0 . . . 1) • beh(#t′); ∃m ∈ Type(c) • beh(?(m)c@l);

beh(n[Γ �� P [m/x]]ul ) ∨ (5.2)
beh(#1);beh(n[Γ �� Q]ul ) (5.3)

⎞

⎟
⎟
⎠

Now, we describe the behaviour of beh(?(m)c@l). The input action is instan-
taneous, thus, Δ = 0. To record the input action, the snapshot (time′, l, c.m, 2)
is added to the end of the trace.

beh(?(m)c@l) =df H
(
st′ = ter ∧ Δ = 0 ∧ tr′ = tr�〈(time′, l, c.m, 2)〉 )

(6) Migration: We explore the denotational semantic of the moving command
�move k;P �Q. Here, δ is the maximum distance that the node n can move
within one time unit, which is set for the node in advance. For one time unit,
the migration action is in a waiting state and its trace is unchanged. After one
time unit, if it moves to the destination k successfully (i.e., Dis(k, l) ≤ δ), a silent
action beh(τ@l) and a moving command beh(move k@l) happen sequentially,
and the following behaviour is beh(n[Γ �� P ]mk ). Otherwise, a silent action
beh(τ@l) occurs, and then it continues as beh(n[Γ �� Q]ml ).

beh(n[Γ �� �move k;P �Q]ml ) =df
⎛

⎝beh(#1);

⎛

⎝
beh(τ@l);beh(move k@l);beh(n[Γ �� P ]mk )

�Dis(l, k) ≤ δ�(
beh(τ@l);beh(n[Γ �� Q]ml )

)

⎞

⎠

⎞

⎠

where, beh(move k@l) =df H
(
st′ = ter ∧ Δ = 0 ∧ tr′ = tr

)
,

beh(τ@l) =df H
(
st′ = ter ∧ Δ = 0 ∧ tr′ = tr

)
.

As mentioned before, traces are used to record the behaviour of communications.
Thus, actions (i.e., the migration action) that do not involve communication need
not be stored in traces.

(7) Reading Sensor: Now, we analyze the behaviour of reading a value from a
sensor s, that is beh(s?Γ (s)@l)). After that, the following behaviour is described
by beh(n[Γ �� P [Γ (s)/y]]ul ).

beh(n[Γ �� s?y;P ]ul ) =df beh(s?Γ (s)@l);beh(n[Γ �� P [Γ (s)/y]]ul )),

where, beh(s?Γ (s)@l)) =df H
(
st′ = ter ∧ Δ = 0 ∧ tr′ = tr

)
.

(8) Writing Actuator: If the original value of actuator a (i.e., Γ (a)) is not
the newly written value v, beh(τ@l) and beh(a!v@l) perform orderly, and
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then process P is executed under the new interface Γ ′, where Γ ′ = Γ [v/Γ (a)].
Otherwise, P runs under Γ after beh(τ@l).

beh(n[Γ �� a!v;P ]ul ) =df

((
beh(τ@l);beh(a!v@l);beh(n[Γ ′ �� P ]ul )

)

� Γ (a) = v �
(
beh(τ@l);beh(n[Γ �� P ]ul )

)
)

,

where, beh(a!v@l) =df H
(
st′ = ter ∧ Δ = 0 ∧ tr′ = tr

)
.

(9) Conditional: The behaviour of the condition choice is as follows.

beh(n[Γ �� [b]P ,Q]ul ) =df

(
beh(n[Γ �� τ ;P ]ul ) � b � beh(n[Γ �� τ ;Q]ul )

)

(10) Iteration: Referring to the traditional programming language, we give
the denotational semantics of the iteration construct. F is a monotonic func-
tion mapping processes to processes. Based on the previously proposed healthy
formulas, we give its the weakest fixed point, i.e., μHFF (X).

beh(n[Γ �� while b do P ]ul ) =df beh(n[Γ �� μHF X • [b](P ;X),nil]ul )

3.4 Denotational Semantics of Guarded Choice

There are three types of guarded choices. In this subsection, we give their deno-
tational semantics.

• Instantaneous Guard Choice: beh([]i∈I{gi → Ni}) indicates that an
instantaneous action gi is triggered, and the corresponding network Ni executes.

beh([]i∈I{gi → Ni}) =df

∨

i∈I

beh(gi → Ni)

where, gi ∈ {!〈v〉c@l, ?(x)c@l, c.[v/x]@(l, l1), s?y@l, a!v@l, move k@l, bi&τ@l}.

� If gi = c.[v/x]@(l, l1), then
beh(c.[v/x]@(l, l1) → Ni) =df beh(c.[v/x]@(l, l1));beh(Ni[v/x]),

where, beh(c.[v/x]@(l, l1)) =df H
(
st′ = ter ∧ Δ = 0 ∧ tr�〈(time′, l, c.v, 1)〉 )

.

The instantaneous guard c.[v/x]@(l, l1) denotes that a node at l sends value v
to another node at l1 via channel c successfully, described as beh(c.[v/x]@(l, l1)).
According to the characteristics of broadcast communication, the behaviour of
broadcast communication actions can be simply described as broadcast output
commands. Therefore, the snapshot (time′, l, c.v, 1) is added to the end of the
trace tr.

� If gi = bi&τ@l, then beh(bi&τ@l → Ni) =df bi ∧ (beh(τ@l);beh(Ni)),

where beh(τ@l) has been defined in Sect. 3.3 (6).
The denotational semantics of other types of instantaneous guards can be

established similarly.
• Delay Guarded Choice:

beh(#t → N) =df beh(#t);beh(N)
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For the delay guarded choice, it waits for the given time units, and then N gains
the control. beh(#t) has been given in Sect. 3.3 (3).
• Hybrid Guarded Choice:

G =df []i∈I{gi → Ni}
⊕ ∃t′ ∈ (0 . . . 1) • #t′ → N ′

⊕ #1 → N ′′

[]i∈I{gi → Ni} is the instantaneous guarded choice. ∃t′ ∈ (0 . . . 1)•#t′ → N ′ has
a delay guarded choice followed by the instantaneous guarded choice. #1 → N ′′

only contains the delay guarded choice.

beh(G) =df

⎛

⎝

∨
i∈I beh(gi → Ni) ∨ (1)

∃t′ ∈ (0 . . . 1) • beh(#t′);beh(N ′) ∨ (2)
beh(#1);beh(N ′′) (3)

⎞

⎠

There are three branches corresponding to three cases that are progressive over
time. In the first branch (i.e., formula (1)), the instantaneous guard is triggered
at the activation time of this process. The second branch (i.e., formula (2))
denotes that the instantaneous guard is activated after waiting for t′ time units. If
the instantaneous guard cannot be triggered before one time unit, it is described
by the third branch (i.e., formula (3)). Obviously, the above three branches are
disjoint.

3.5 Parallel Composition

In this subsection, we discuss the behaviour of two parallel networks. Here, a
network may be a single node or the parallel composition of multiple nodes. The
denotational of the parallel composition is presented below:

beh(N1‖N2) =df beh(N1)‖beh(N2) =df
⎛

⎜
⎜
⎜
⎜
⎝

∃st1, st
′
1, st2, st

′
2, time1, time′

1, time2, time′
2, tr1, tr

′
1, tr2, tr

′
2•

st1 = st2 = st ∧ time1 = time2 = time ∧ tr1 = tr2 = tr ∧ (1)
beh(N1)[st1, st

′
1, time1, time′

1, tr1, tr
′
1/st, st′, time, time′, tr, tr′] ∧ (2)

beh(N2)[st2, st
′
2, time2, time′

2, tr2, tr
′
2/st, st′, time, time′, tr, tr′] ∧ (3)

Merge (4)

⎞

⎟
⎟
⎟
⎟
⎠

The first formula (i.e., formula (1)) means that the initial value of the state,
time, and trace of the two parallel components are the same. The following two
formulas (i.e., formulas (2) and (3)) show the independent behaviour of two
components. In the last one (i.e., formula (4)), the predicate Merge is used to
merge states, termination time, and the traces (snapshot sequences) contributed
by the two behavioral branches.

Merge =df

⎛

⎜
⎜
⎜
⎜
⎝

((st′
1 = ter ∧ st′

2 = ter) ⇒ st′ = ter)∧
((st′

1 = div ∨ st′
2 = div) ⇒ st′ = div)∧

((st′
1 = wait ∧ st′

2 �= div) ∨ (st′
1 �= div ∧ st′

2 = wait) ⇒ st′ = wait)
∧ time′ = max(time′

1, time′
2)∧

∃trace ∈ (tr′
1 − tr1)‖(tr′

2 − tr2) • tr′ = tr�trace

⎞

⎟
⎟
⎟
⎟
⎠
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If the final states of N1 and N2 are both ter states, the final state of N1‖N2 is
ter. As long as one of them runs into a div state, the final state of N1‖N2 is div.
If one of the two networks reaches a wait state, and the other is not in a div
state, N1‖N2 is in a wait state. The termination time of the parallel composition
is the maximum terminal time of N1 and N2.

Here, s and t represent the traces of N1 and N2, respectively. As mentioned
before, a trace is a sequence of snapshots, and a snapshot is a quadruple (t, l, o, f).
Next, we present some rules to merge traces. (rule 1) means that if both traces
are empty (denoted by ε), the merged trace is still empty. (rule 2) indicates
that the merged trace is not empty as long as one trace is not empty. (rule 3)
denotes that the parallel composition of two traces is symmetrical.

• (rule 1) ε‖ε =df {ε} • (rule 2) s‖ε =df {s} • (rule 3) s‖t =df t‖s

To emerge two nonempty traces, we propose the following notations to obtain
the elements of their first snapshots (i.e., head(s) and head(t)).

t1 = π1(head(s)), l1 = π2(head(s)), o1 = π3(head(s)), f1 = π4(head(s)),

t2 = π1(head(t)), l2 = π2(head(t)), o2 = π3(head(t)), f1 = π4(head(t)).

According to whether t1 is equal to t2, we discuss the following two cases:
(1) t1 = t2 means that communication actions o1 and o2 happen at the same
time, resolved by (rule 4). Before merging them, we take out communication
channels and transmitted messages from o1 and o2, respectively.

c1 = Chan(o1), m1 = Mess(o1), c2 = Chan(o2), m2 = Mess(o2).

• (rule 4) We describe the details of (rule 4) through the following steps:

� Step 1: If their channels are different (i.e., c1 = c2 ), we only need to append
head(s) or head(t) into the end of the merged trace, described as T ′. Oth-
erwise, we go to Step 2 for further inspection.

� Step 2: If f1 = 1 ∨ f2 = 1 is true, it means that one of them is a sender, and
another one is a receiver, then we go to Step 3. Otherwise, they are both
receivers, and we go to Step 7.

� Step 3: If f1 = 1 is true, it denotes that the node at l1 is the sender, and
another one at l2 is a receiver, we go to Step 4. Otherwise, we go to Step 6.

� Step 4: If the communication condition (i.e., Dis(l1, l2) ≤ Rng(c)) is satis-
fied, then we go to Step 5. Otherwise, we merge traces as T ′.

� Step 5: Both o1 and o2 should have the same message, i.e., m1 = m2. If so,
head(s) is added to the end of the merged trace. Otherwise, the merged trace
is an empty set ∅.

� Step 6: We discuss the case in which the node at l2 is the sender, which is
similar to steps 4 and 5.

� Step 7: Now, we explore the case in which two nodes are both receivers. If o1
and o2 have the same message, (i.e., m1 = m2), we extend the merged trace
with the snapshot (t1, {l1, l2}, o1, 2). Otherwise, the merged trace is ∅.
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s‖t =df

⎛

⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

⎛

⎝

⎛

⎝

(
(T1 � m1 = m2 � ∅) � Dis(l1, l2) ≤ Rng(c1) � T ′ )

�f1 = 1 �(
(T2 � m1 = m2 � ∅) � Dis(l1, l2) ≤ Rng(c1) � T ′ )

⎞

⎠

⎞

⎠

�f1 = 1 ∨ f2 = 1 �
(
T3 � m1 = m2 � ∅ )

⎞

⎟
⎟
⎠

�c1 = c2 � T ′

⎞

⎟
⎟
⎟
⎟
⎠

,

where,

T ′ =df head(s)�(tail(s)‖t) ∪ head(t)�(s‖tail(t)), T1 =df head(s)�(tail(s)‖tail(t)),
T2 =df head(t)�(tail(s)‖tail(t)), T3 =df 〈(t1, {l1, l2}, o1, 2)〉�(tail(s)‖tail(t)).

(2) If t1 = t2, o1 and o2 do not occur simultaneously, as shown in (rule 5).
• (rule 5) If t1 < t2, o1 happens before o2. In this case, head(s) is added to the
end of the merged trace. Otherwise, head(t) extends the merged trace.

s‖t =df

{
head(s)�(tail(s)‖t), if t1 < t2.

head(t)�(s‖tail(t)), if t1 > t2.

3.6 Channel Restriction

As mentioned before, (vc′)M indicates that channel c′ is private to the network
M . Thus, sending messages via c′ is invisible outside of M . Based on the above
subsections of Sect. 3, we can obtain the denotational semantics of M . To further
gain the denotational semantics of (vc′)M , we need to remove the snapshots
which record output actions and synchronous communication actions occurring
on c′ from the trace of M .

beh((vc′)M) =df

⎛

⎝
beh(M)[Re(tr′ − tr, c′)/tr′ − tr, div/str′]
�Diverge(beh(M), c′)�
beh(M)[Re(tr′ − tr, c′)/tr′ − tr]

⎞

⎠ ,

where, Diverge(beh(M), c′) =df ∀n • ∃t • t = (tr′ − tr) ∧ #(t � c′) > n.

If the condition Diverge(beh(M), c′) is true, it means that the behaviour
of M (i.e., beh(M)) diverges due to the concealment of channel c′. In other
words, (vc′)M may generate an infinite sequence of hidden actions (i.e., output
actions and synchronous communication actions occurring on c′). Here, tr′ − tr
is the trace generated by M . t � c′ represents a sub-trace of t that contains only
the behaviour of the hidden actions, and #(t � c′) is its length. The following
function Re(s, c′) removes the hidden actions involving c′ from a trace s, where
the predefinition function πi gets the ith element from the first snapshot head(s)
(Page 6) of trace s.

Re(s, c′) =df

⎛

⎝

(
Re(tail(s), c′)
�Chan(π3(head(s))) = c′ � (head(s)�Re(tail(s), c′))

)

�π4(head(s)) = 1 � (head(s)�Re(tail(s), c′))

⎞

⎠



144 N. Chen and H. Zhu

Example 1. Now, we give the following example to illustrate the CaIT calculus.

N = (vc)(N1‖N2)‖N3 N1 =n1 [Γ1 ��!〈v1〉c; �move l′1; !〈v2〉c′
;nil�nil]ml1

N2 =n2 [Γ2 �� �?(x)c;nil�nil]u2
l2

N3 =n3 [Γ3 �� σ; �?(y)c′
;nil�nil]u3

l3

For simplicity, we assume that the activeness time of N is 0, and all com-
munication and migration conditions on distance are satisfied. For example,
Dis(l1, l2) ≤ Rng(c) at time 0. The channel c is private to nodes n1 and n2,
but c′ is shared by three nodes. Next, we explore the trace of N to show the
usability of our denotational semantics.

(1) At time 0, node n1 sends the value v1 via c to n2. After one time unit,
n1 moves to l′1, and n3 completes the delaying. After that, n1 sends v2 to n2

at time 1. The traces of N1, N2, and N3 are t, s, and w, respectively.

t = < (0, l1, c.v1, 1), (1, l
′
1, c

′.v2, 1)>

s = < (0, l2, c.v1, 2) > w = <(1, l3, c
′.v2, 2)>

(2) Then, we merge the t and s by using the rules of parallel compositions.
In detail, the snapshots in the above two shaded areas are merged into one
snapshot shown in the following shaded area.

t‖s = < (0, l1, c.v1, 1), (1, l′1, c
′.v2, 1)>

(3) We conceal communication actions occurring on c to further obtain the
trace T of (vc)(N1‖N2). Finally, we get the final trace of N by further merging
w and T .

T = <(1, l′1, c
′.v2, 1)>

(4) Finally, we get the final trace of N by further merging w and T .

T‖w = <(1, l′1, c
′.v2, 1)>

4 Algebraic Semantics

4.1 Algebraic Laws of Basic Commands

We explore the algebraic laws of basic commands for the CaIT calculus. For
Input and Migration commands, each one has two algebraic laws according to
the different time intervals, i.e., their timers are 0 or greater than 0.

• (Input0) n[Γ �� �?(x)c;P �0Q]ul =n [Γ �� Q]ul
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• (Migration0) n[Γ �� �move k;P �0Q]ml = []

⎧
⎨

⎩

(Dis(l, k) ≤ δ)&τ@l → move k@l →
n[Γ �� P ]mk,δ,

¬(Dis(l, k) ≤ δ)&τ@l →n [Γ �� Q]ml

⎫
⎬

⎭

• (Delay) n[Γ �� σ;P ]ul = #1 →n [Γ �� P ]ul

• (Input) n[Γ �� �?(x)c;P �Q]ul =?(x)c@l →n [Γ �� P ]ul

⊕ ∃t′ ∈ (0 . . . 1) • #t′ →?(x)c@l →n [Γ �� P ]ul

⊕ #1 →n [Γ �� Q]ul

• (Migration) n[Γ �� �move k;P �Q]ml = #1 →n [Γ �� �move k;P �0Q]ml

• (Output) n[Γ ��!〈v〉c;P ]ul =!〈v〉c@l →n [Γ �� P ]ul

• (Reading Sensor) n[Γ �� s?y;P ]ul = s?y@l →n [Γ �� P ]ul

• (Writing Actuator)n[Γ �� a!v;P ]ul = []

{
(Γ (a) �= v)&τ@l → a!v@l →n [Γ ′ �� P ]ul ,
¬(Γ (a) �= v)&τ@l →n [Γ �� P ]ul

}

,

where Γ ′ = Γ [v/Γ (a)].

• (Conditional)n[Γ �� [b]P ,Q]ul = []

{
b&τ@l →n [Γ �� P ]ul ,
¬b&τ@l →n [Γ �� Q]ul

}

• (Iteration) n[Γ �� while b do P ]ul = []

{
b&τ@l →n [Γ �� P ;while b do P ]ul ,
¬b&τ@l →n [Γ �� nil]ul

}

4.2 Algebraic Laws of Parallel Composition

Now, we explore the algebraic laws of the parallel composition. The empty net-
work 0 is the identity of parallel composition, described by (par-1). The parallel
composition of networks is symmetric and associative, as shown in (par-2) and
(par-3).

• (par-1) N‖0 = N = 0‖N

• (par-2) N‖M = M‖N

• (par-3) N‖(M‖R) = (N‖M)‖R

Then we explore the algebraic laws of the parallel composition of guarded
choices. In Sect. 2.2, we have proposed three types of guarded choices. Thus,
there should be nine parallel expansion laws. Since the parallel composition is
symmetric, we only give seven parallel expansion laws, as shown in Table 2.

Table 2. Parallel composition of two guarded choices

Instantaneous Delay Hybrid

Instantaneous (par-4-1), (par-4-2) (par-5) (par-6)

Delay (par-7) (par-8)

Hybrid (par-9)

We first investigate the parallel composition of two instantaneous guarded
components, shown in (par-4-1) and (par-4-2).

• (par-4-1) N = []i∈I{gi → Ni} M = []j∈J{hj → Mj}
N‖M = []i∈I{gi → Ni‖M}[][]j∈J{hj → N‖Mj}
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Here, we suppose that there are no communications between N and M .
(par-4-1) shows the parallel composition of two instantaneous guarded choice
components without communications. In this case, the first action of N‖M is
either gi or hj , and it converts into Ni‖M or N‖Mj correspondingly.

• (par-4-2) N = N1[]N2 N1 = []i∈I{gi → Ni} N2 = []w∈W {!〈vw〉cw@lw → N ′
w}

M = M1[]M2 M1 = []j∈J{hj → Mj} M2 = []w∈W {?(xw)
c′
w@l′w → M ′

w}

We assume that there are no communications between N1 and M1, and the
communication condition (i.e., cw = c′

w ∧ Dis(lw, l′w) ≤ Rng(cw)) is satisfied.

N‖M = []i∈I{gi → Ni‖M}
[] []j∈J{hj → N‖Mj}
[] []w∈W {cw · [vw/xw]@(lw, l′w) → N ′

w‖M ′
w]}

There are three possibilities for the first action, i.e., gi, hj or communication
action cw · [vw/xw]@(lw, l′w). Due to the features of broadcast communication,
cw · [vw/xw]@(lw, l′w) can be seen as an output action continuing to communicate
with other nodes.

• (par-5) []i∈I{gi → Ni}‖#t → M = []i∈I{gi → (Ni‖#t → M)}
Here, we discuss the parallel composition of the instantaneous guarded choice

and the delay guarded choice. gi is executed at the activation time, and then the
process evolves as Ni‖#t → M .

• (par-6) N = []i∈I{gi → Ni} M = []j∈J{hj → Mj}
⊕#t′ → M ′

⊕#1 → M ′′, for t′ ∈ (0 . . . 1).

N‖M = []i∈I{gi → Ni}‖[]j∈J{hj → Mj}
Here, we investigate the parallel composition of the instantaneous guarded

choice and the hybrid guarded choice. Clearly, the parallel composition is equal
to the parallel composition of two instantaneous guarded choice components. We
can obtain the final result based on the laws (i.e., (par-4-1) and (par-4-2)).

• (par-7) N = {#t1 → N ′} M = {#t2 → M ′}
This is the parallel composition of two delay guarded choice components. N1

and N2 wait for t1 and t2 time units, respectively. Here, both t1 and t2 range
from 0 to 1. There are three possibilities:

� If t1 < t2, then N‖M = #t1 → (N ′‖(#(t2 − t1) → M ′)).

N and M delay t1 time units together, and then N turns into N ′. But M
still has to wait for t2 − t1 time units before converting into M ′.

� If t1 = t2, then N‖M = #t1 → N ′‖M ′.
� If t1 > t2, then N‖M = #t2 → (#(t1 − t2) → N ′‖M ′).
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• (par-8) N = []i∈I{gi → Ni} M = {#t1 → M ′}, for t1 ∈ [0 . . . 1].

⊕ #t′ → N ′

⊕ #1 → N ′′, for t′ ∈ (0 . . . 1).

Then, we analyze the parallel composition of the hybrid guarded choice and
the delay guarded choice, which has the following two possibilities:

� If t1 < 1, then N‖M = []i∈I{gi → Ni‖M}
⊕#t′ → (N ′‖#(t1 − t′) → M ′)

⊕#t1 → N1‖M ′, for t′ ∈ (0 . . . t1),

where, N1 = []i∈I{gi → Ni}
⊕#t′′ → N ′

⊕#(1 − t1) → N ′′, for t′′ ∈ (0 . . . 1 − t1).

In this case, there are three alternative branches. In the first branch, gi
is triggered at the beginning time of the process. In the second one, gi exe-
cutes after waiting for t′ time unit, and then this process is translated into
(N ′‖#(t1 − t′) → M ′). For the last one, after t1 time units, N‖M evolves as
N1‖M ′.

� If t1 = 1, then N‖M = []i∈I{gi → Ni‖M}
⊕#t′′ → (N ′‖#(1 − t′′) → M ′)

⊕#1 → N ′′‖M ′, for t′′ ∈ (0 . . . 1).

• (par-9) N = []i∈I{gi → Ni} M = []j∈J{hj → Mj}
⊕ #t1 → []i∈I{gi → Ni} ⊕ #t2 → []j∈J{hj → Mj}
⊕ #1 → N ′, for t1 ∈ (0 . . . 1). ⊕ #1 → M ′, for t2 ∈ (0 . . . 1).

The parallel composition of networks N and M is as below.

N‖M = []i∈I{gi → Ni} ‖ []j∈J{hj → Mj}
⊕ #t′ → ([]i∈I{gi → (Ni‖M1)} ‖ []j∈J{hj → (N1‖Mj)})
⊕ #1 → N ′ ‖ M ′, for t′ ∈ (0 . . . 1).

where, N1 = []i∈I{gi → Ni} M1 = []j∈J{hj → Mj}
⊕ #t′

1 → []i∈I{gi → Ni} ⊕ #t′
2 → []j∈J{hj → Mj}

⊕ #(1 − t′) → N ′, ⊕#(1 − t′) → M ′,

for t′
1, t

′
2 ∈ (0 . . . 1 − t′).

In (par-9), we study the parallel composition of two hybrid guarded choice
components with three branches. In the first branch, N‖M equals []i∈I{gi →
Ni} ‖ []j∈J{hj → Mj} which has been analyzed in (par-4-1) and (par-4-2).
The second branch means that an instantaneous action happens after t′ time
units, whose final results can be gained similar to the first case. In the third,
no instantaneous action occurs before one time unit. After one time unit, N‖M
continues as N ′‖M ′.
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• (par-10) According to the above laws, we find that any parallel program
without restricted channels can be converted into the guarded choice form. To
further describe the channel restriction (i.e., (vc′)M), we give this law to replace
output actions and synchronous communication actions happening in c′ (i.e.,
!〈v〉c′

@l and c′.[v/x]@(l, l1)) with the silent action true&τ@l, where l and l1 are
arbitrary locations in M .

� If M = []i∈I{gi → Mi}, then (vc′)M = []i∈I{(vc′)gi → (vc′)Mi}.
� If M = #t → M ′, then (vc′)M = #t → (vc′)M ′.
� If M = []i∈I{gi → Mi}, then (vc′)M = []i∈I{(vc′)gi → (vc′)Mi}

⊕#t′
1 → M ′ ⊕#t′

1 → (vc′)M ′

⊕#1 → M ′′ ⊕#1 → (vc′)M ′′,

where, (vc′)gi =

{
true&(τ@l), if gi ∈ {!〈v〉c′

@l, c′.[v/x]@(l, l1)}.
i, otherwise.

Example 2. Here, we continue to explore N mentioned in Example 1 (Page 12)
to show the application of guarded choices and algebraic laws, where the first
action of each parallel composition is represented in the shaded area.

(1.1) We get the first action of N1‖N2 by using (par-4-2) and (par-1).

N1‖N2 = c.v1@(l1, l2) → N1
1 , where N1

1 =n1 [Γ1 �� �move l′1; !〈v2〉c′
;nil�nil]ml1 .

(1.2) Then we can obtain the first action of (vc)(N1‖N2) by applying (par-10)
to concealing the communication action happening on c.

(vc)(N1‖N2) = true&(τ@l1) → (vc)N1
1

(1.3) Now, we can know the first action of N (i.e., (vc)(N1‖N2)‖N3) with (par-
8).

(vc)(N1‖N2)‖N3 = true&(τ@l1) → (vc)N1
1 ‖N3

(2) We further gain the first action () of (vc)N1
1 ‖N3 according to (par-7) and

(par-5).

(vc)N1
1 ‖N3 = #1 →Dis(l1, l

′
1) ≤ δ)&τ@l1 → move l′1@l1 → (vc)N2

1 ‖N1
3 ,

where, (vc)N2
1 ‖N1

3 = (vc)n1 [Γ1 ��!〈v2〉c′
;nil]ml′1

‖n3 [Γ3 �� �?(y)c′
;nil�nil]u3

l3
.

(3) We use (par-4-2) and (par-1) to get the first action of (vc)N2
1 ‖N1

3 .

(vc)N2
1 ‖N1

3 = c′.v2@(l′1, l3)

After the above steps, we can finally gain the guard choice form of N . It
indicates that each program of the CaIT calculus can be converted into a guard
choice form, even if the channel restriction is involved. In addition, it means that
a parallel program can be sequentialized by using our algebraic laws.
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5 Conclusion and Future Work

The CaIT calculus has been proposed to specify and verify IoT systems with
discrete time, while it can only support point-to-point communication. In this
paper, we have enhanced the CaIT calculus by introducing the more common
broadcast communication. Furthermore, we explored its denotational and alge-
braic semantics based on the UTP framework, focusing on broadcast communi-
cation, actions with the timeout, and even channel restriction. To establish the
parallel expansion laws, we have presented three types of guarded choices so that
each program can be transformed into the guarded choice form.

In the future, we will study the deductive semantics of the CaIT calculus
via Hoare Logic [13]. We will further explore the semantics linking theory of the
CaIT calculus and try to implement it in suitable tools like Coq, Isabelle/HOL,
PVS, etc.
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Abstract. Hypothetical continuous query answering over data streams
was introduced as a way to anticipate answers to queries that depend on
facts that may or may not happen in the future. Previous work has stud-
ied this problem for Temporal Datalog with negation and instantaneous
communication, showing that hypothetical answers can be incrementally
updated as new data arrives at the data stream.

In practice, individual communications take variable amounts of time,
so data may arrive delayed and unordered. This motivates studying hypo-
thetical continuous query answering in a setting with communication
delays. The interaction between communication delays and negation is
however problematic, and the existing approach is restricted to the pos-
itive fragment of the language. In this work we show how to remove this
restriction by defining an appropriate operational semantics based on fix-
point theory, and showing that the relevant fixpoints can be computed
in finite time by a carefully designed algorithm.

1 Introduction

The world of today is a constant stream of information, and the world of rea-
soning is no exception. Current reasoning systems are expected to receive data
constantly (e.g., from sensors) and react to it in real time, continuously producing
results in an online fashion. This task is known as continuous query answering.

One of the mainstream approaches to continuous query answering [7,15,34,
37,40] considers reasoners based on logic-programming style rules depending on
facts that arrive through a data stream (an abstract conceptualization of the
inflow of information), and applies logic-based methods to compute answers to
those queries.

These approaches to continuous query answering all suffer from one draw-
back: they only produce output once something is guaranteed to be true. In some
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applications – for example, if answers to queries correspond to system malfunc-
tions – it is interesting to be able to have information about possibilities, rather
than certainties, as this information can be used to foresee undesirable events.
This observation led to the introduction of hypothetical answers to continuous
queries [12]: answers that are consistent with (and even supported by) the infor-
mation provided until now by the data stream, but that require additional future
facts to be proven. Furthermore, for programs without negation, hypothetical
answers can be computed by a polynomial online algorithm with an offline pre-
processing step.

Most previous work on stream reasoning makes strong assumptions on the
data stream – typically, that it is ordered : information about a given time point
t is only produced after all information about previous points in time has been
output. For a theoretical development, this is equivalent to assuming instanta-
neous communication (by disregarding the actual arrival time); in practice, such
a constraint is not easy to implement, and may delay the whole system – as it
requires waiting long enough to know that there can be no more information
about time points previous to t lingering in the system [4,16,38].

Removing the assumption of an ordered data stream is tricky, since typical
strategies for continuous query answering immediately break down. In the con-
text of logical approaches to continuous query answering, the possibility of work-
ing with data that arrives out-of-order was considered in [13]. This work showed
how hypothetical query answering could be addressed in a scenario with variable
communication delays, but only for a language without negation – the strategy
for addressing communication delays directly conflicted with the treatment of
negation in [12]. Even with this restriction, the online step of the algorithm for
computing hypothetical answers is no longer polynomial.

In the present work, we reconcile communication delays and negation. We
show that it is possible to define an operational semantics for hypothetical con-
tinuous query answering by adapting previous definitions, accommodating for
both communication delays and negation. This operational semantics is defined
as the least fixpoint of a monotonic operator over a suitably defined bilattice [19],
where the orders in each component reflect the two different ways in which neg-
ative information can affect hypothetical answers. The complexity stems mainly
from the fact that default negation is non-monotonic, but hypothetical answers
are by nature monotonic: we essentially work with Kleene’s 3-valued logic, where
answers to queries may be known to be true, known to be false, or unknown (as
of yet). Our procedure for incrementally computing hypothetical answers in the
presence of delays capitalizes on flexible strategies that deal with information as
it arrives while acknowledging the possibility that older data may still arrive later
on. The only requirement is that a limit is known to how delayed the information
may be, which we argue is reasonable in many practical applications.

Structure. Section 2 revisits the syntax of Temporal Datalog [37] and the main
ideas behind the formalism of hypothetical answers [13] in the presence of com-
munication delays. Section 3 defines the declarative semantics of hypothetical
answers for communication delays in the presence of negation. Section 4 is the
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bulk of our contribution, showing how an operational semantics for hypotheti-
cal answers can be defined by using a fixpoint construction. Section 5 presents
the adapted online algorithm for computing this operational semantics under
suitable assumptions. Section 6 discusses related work and concludes.

2 Background

This article builds heavily on previous work. In this section, we summarize the
key concepts that are relevant for understanding our contribution.

2.1 Continuous Queries over Datastreams in Temporal Datalog

The language we work with is Temporal Datalog extended with negation, which
is obtained from Datalog by adding the special temporal sort from [10]. Our
formalism for writing continuous queries over datastreams closely follows that
from [37], with only minor modifications.

Temporal Datalog extends Datalog [9] by allowing constants and variables
to have two sorts: object or temporal. Sorts carry over to terms: an object term
is either an object constant or an object variable, and a time term is either a
natural number, a time variable, or an expression of the form T + k where T is
a time variable and k is an integer. Time constants are also called timestamps.

Predicates take exactly one temporal parameter, which is the last one. We
define atoms, rules, facts and programs as usual, and assume rules to be safe:
each variable in the head must occur in the body. A term, atom, rule, or program
is ground if it contains no variables. In particular, all facts are ground. We write
var(α) for the set of variables occurring in an atom α, and extend this function
homomorphically to rules and sets.

A predicate symbol is said to be intensional or IDB if it occurs in an atom in
the head of a rule with non-empty body, and extensional or EDB if it is defined
only through facts. This classification extends to atoms in the natural way.

Substitutions are functions mapping a finite set of variables to terms of the
expected sort. Given a rule r and a substitution θ, the corresponding instance
r′ = rθ of r is obtained by simultaneously replacing every variable X in r by
θ(X) and computing any additions of temporal constants.

A temporal query is a pair 〈Π,Q〉 where Π is a program and Q is an IDB atom
in the language underlying Π. We do not require Q to be ground, and typically
the temporal parameter is uninstantiated.1 We thereafter refer to 〈Π,Q〉 as query
Q (over Π).

A dataset is a family D = {D|τ | τ ∈ N}, where D|τ contains the set of
EDB facts delivered by a data stream at time point τ . Note that every fact in
D|τ has timestamp at most τ ; facts with timestamp lower than τ correspond to
communication delays. We call D|τ the τ -slice of D, and define also the τ -history

1 The most common exception is if Q represents a property that does not depend on
time, where by convention the temporal parameter is instantiated to 0.
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Dτ =
⋃{D|τ ′ | τ ′ ≤ τ}. It follows that D|τ = Dτ\Dτ−1 for every τ , and that Dτ

also contains only facts whose temporal argument is at most τ . By convention,
D−1 = ∅.

A substitution θ is an answer to query Q over Π and D if Π ∪ D |= Qθ.
We model communication delays by means of a function δ that maps each

ground EDB atom in the language of Π to a natural number. The intuition is: if
δ(P (t1, . . . , tn)) = d and P (t1, . . . , tn) ∈ D|τ , then tn ≤ τ ≤ tn + d. We assume
throughout this article that all datasets and delays satisfy this property. Function
δ is extended to non-ground atoms by defining δ(P (t1, . . . , tn)) as the maximum
of all δ(P (t′1, . . . , t

′
n)) such that P (t′1 . . . , t′n) is a ground instance of P (t1, . . . , tn),

and to predicate symbols by δ(P ) = δ(P (X1, . . . , Xn)). Furthermore, we assume
that δ(P ) < ∞ for every predicate symbol P – this is trivially the case if the
delay cannot depend on the timestamp, which is a reasonable assumption in
many practical scenarios.

Example 1. The following program ΠE tracks activation of cooling measures
in a set of wind turbines equipped with sensors, recording malfunctions and
shutdowns, based on temperature readings Temp(Device,Level ,Time).

Temp(X, high, T ) → Flag(X,T )
Flag(X,T ) ∧ Flag(X,T + 1) → Cool(X,T + 1)
Cool(X,T ) ∧ Flag(X,T + 1) → Shdn(X,T + 1)

¬Shdn(X,T ) → OK(X,T − 2)

Two high temperature readings in a row should activate the cooling system on
the corresponding turbine; if the temperature remains high, there has been a
malfunction, and the turbine shuts down. If the turbine does not shutdown,
then we can conclude that it was working properly two time steps previously.

Suppose that there are two turbines wt2 and wt4, and that we know that
communications from turbine wt2 take at most 1 time units, while those from
turbine wt4 can take up to 2. Then we have e.g. δ(Temp(wt2, high, 2)) = 1,
δ(Temp(wt4,X, Y )) = 2, and δ(Temp) = 2. �

2.2 Hypothetical Answers to Continuous Queries

Hypothetical answers to continuous queries were introduced in [12] as a means
to identify potential future answers to queries – substitutions that can become
answers depending on data that may yet arrive, and in particular are compati-
ble with the available information. Furthermore, if the dataset already contains
facts without which a substitution would not be an answer, then we call the cor-
responding hypothetical answer supported. We present the definitions from [13],
as the original work did not consider the possibility of communication delays.
These definitions only apply to the positive fragment of the language; we extend
them to include negation in Sect. 3.
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Definition 1. A hypothetical answer to query Q over Π and Dτ is a pair
〈θ,H〉, where θ is a substitution and H is a finite set of ground EDB atoms
(the hypotheses) such that:

– supp(θ) = var(Q), i.e., θ only changes variables that occur in Q;
– H only contains future-possible atoms for τ , i.e., atoms for which τ < tn +

δ(P (t1, . . . , tn));
– Π ∪ Dτ ∪ H |= Qθ;
– H is minimal with respect to set inclusion.

If the minimal subset E of Dτ such that Π ∪ E ∪ H |= Qθ is non-empty, then
〈θ,H,E〉 is a supported answer to Q over Π and Dτ .

Example 2. We illustrate these concepts with Example 1. Assume that D|0 =
{Temp(wt2, high, 0)} and D|1 = ∅, and let θ = [X := wt2, T := 2]. Then

〈θ, {Temp(wt2, high, 1),Temp(wt2, high, 2)}〉
is a hypothetical answer to query QE = 〈ΠE ,Shdn(X,T )〉 over D1, reflecting the
intuition that Temp(wt2, high, 1) may still arrive in D|2. This answer is supported
by Temp(wt2, high, 0). �

2.3 Operational Semantics

We begin by presenting the operational semantics for hypothetical answers by
means of an online algorithm with pre-processing as defined in [13] – that is,
without considering the possibility of negation. We assume the reader to have
some familiarity with the operational semantics of logic programming.

Pre-processing. The pre-processing step applies SLD-resolution to the program
and the query Q until it reaches a goal containing only EDB atoms, and returns
a set PQ containing a pair 〈θ,H〉 for each successful derivation, where θ is the
computed substitution for that derivation and H contains all the atoms in the
leaf.

Pre-processing can be shown to terminate under some assumptions [12],
which we do not discuss here. Soundness and completeness of pre-processing
state that:

– if 〈θ,H〉 ∈ PQ, then there exist a dataset D and substitution σ such that Qθσ
is ground, Hθ ⊆ ⋃

D and θσ is an answer to Q over Π and D;
– if σ is an answer to Q over Π and D, then there exists 〈θ,H〉 ∈ PQ such that

σ = θρ for some ρ and Hρ ⊆ ⋃
D.

Example 3. In the context of Example 2, pre-processing query QE yields the
singleton set

PQE
= {〈∅, {Temp(X, high, T ),Temp(X, high, T + 1),Temp(X, high, T + 2)}〉} .

It is straightforward to check that this set has the properties stated above. �
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Online Step. The online part of the algorithm maintains a set of schematic
hypothetical answers Sτ , where τ is the current timestamp, of the form 〈θ,E,H〉,
where E is a set of evidence.

Definition 2. An atom P (t1, . . . , tn) is a potentially future atom wrt τ if either
tn contains a temporal variable or tn is ground and τ < tn + δ(P (t1, . . . , tn)).

This notion is an operational counterpart to the concept of future-possible atom,
generalizing it to possibly non-ground atoms. In particular, any atom whose
temporal parameter contains a variable is potentially future – intuitively, because
it can be instantiated to a future timestamp.

Definition 3. Let Γ and Δ be sets of atoms such that all atoms in Δ are ground.
A substitution σ is a local mgu for Γ and Δ if, for every substitution θ such
that Γθ ∩ Δ = Γσ ∩ Δ, there exists another substitution ρ such that θ = σρ.

Local mgus were introduced to handle communication delays. Intuitively, a local
mgu unifies a set of hypotheses with a subset of the datastream – leaving the
possibility that some hypotheses may be instantiated at a later point in time.
Local mgus can be computed by SLD-resolution [13].

Definition 4. The set Sτ of schematic supported answers for query Q at time
τ is defined as follows.

– S−1 = {〈θ, ∅,H〉 | 〈θ,H〉 ∈ PQ}.
– If 〈θ,E,H〉 ∈ Sτ−1 and σ is a local mgu for H and D|τ such that Hσ\D|τ

only contains potentially future atoms wrt τ , then 〈θσ,E ∪ E′,Hσ\D|τ 〉 ∈ Sτ ,
where E′ = Hσ ∩ D|τ .

This algorithm is sound and complete: the supported hypothetical answers at
each time point τ are exactly the ground instantiations of the schematic answers
computed at the same time point.

Example 4. We illustrate this mechanism in the setting of Example 2, where

PQE
= {〈∅, {Temp(X, high, T ),Temp(X, high, T + 1),Temp(X, high, T + 2)}

︸ ︷︷ ︸
H

〉} .

We start by setting S−1 = {〈∅, ∅,H〉}. Since D|0 = {Temp(wt2, high, 0)}, the
local mgus for H and D|0 are ∅ and [X := wt2, T := 0]. Therefore,

S0 = {〈∅, ∅, {Temp(X, high, T ),Temp(X, high, T + 1),Temp(X, high, T + 2)}〉,
〈[X := wt2, T := 0] , {Temp(wt2, high, 0)}, {Temp(wt2, high, i) | i = 1, 2

︸ ︷︷ ︸
H0

}〉}.

Next, D|1 = ∅, so the empty substitution is the only local mgu of H0 and
D|1. Furthermore, H0 only contains potentially future atoms wrt 1 because
δ(Temp(wt2,X, Y ) = 1. The same argument applies to D|1 and H, so S1 = S0.

We now consider several possibilities for what happens to the schematic sup-
ported answer 〈[X := wt2, T := 0] , {Temp(wt2, high, 0)},H0〉 at time instant 2.
Since H0 is ground, the only local mgu of H0 and D|2 is ∅.
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– If Temp(wt2, high, 1) /∈ D|2, then H0\D|2 contains Temp(wt2, high, 1), which
is not a potentially future atom wrt 2, and therefore this schematic supported
answer is discarded.

– If Temp(wt2, high, 1) ∈ D|2 but Temp(wt2, high, 2) /∈ D|2, then H0\D|2 =
{Temp(wt2, high, 2)}, which only contains potentially future atoms wrt 2, and
therefore S2 contains the schematic supported answer

〈[X := wt2, T := 0] , {Temp(wt2, high, i) | i = 0, 1}, {Temp(wt2, high, 2)}〉 .

– Finally, if {Temp(wt2, high, 1),Temp(wt2, high, 2)} ⊆ D|2, then H2\D|2 = ∅,
and the system can output the answer [X := wt2, T := 0] to the original query.
In this case, this answer (with no hypotheses) would be added to S2, and then
trivially copied to all subsequent Sτ . �

2.4 Adding Negation

The original work on hypothetical answers [12] considers a language with nega-
tion (but without communication delays). We briefly recap the concepts that we
reuse from that work, and summarize the intuitions that will reappear in the
current development.

Pre-processing a program whose rule bodies can contain negative literals is a
generalization of the previous construction. Negative literals are not allowed to be
selected during the SLD-derivation, and as a consequence they may also appear
in the leaves of derivations. For each such literal ¬P(t1, . . . , tn) a fresh auxiliary
query 〈Π,P (X1, . . . , Xn)〉 is generated by replacing all terms with variables.2

All generated queries are then in turn pre-processed, and may spawn additional
auxiliary queries. The process is iterated until no fresh queries arise.

Example 5. Consider again the program from Example 1, where we now consider
the query QOK = 〈ΠE ,OK(X,T )〉.

Pre-processing QOK yields PQOK
= {〈∅,¬Shdn(X,T + 2)〉}, generating the

auxiliary query QE from Example 2. Pre-processing the latter is as in Example 3;
in particular it generates no fresh auxiliary queries, so we are done. �

Given a set of literals A, we write A+ for the subset of positive literals in A,
and A− for the set of negative literals in A.

The online step of the algorithm for the scenario without communication
delays is presented in detail in [11]. We do not discuss it here, as it has to be
adapted for the current setting. The relevant aspects are explained later (Sect. 5).
Its termination is only proved for programs that are T -stratified.

Definition 5. Let Π be a program and let Π↓ be the program obtained from P
by grounding every rule in P and replacing every atom P (t1, . . . , tn−1, t) with
Pt(t1, . . . , tn−1). (So every predicate symbol P in Π generates a family of predi-
cate symbols {Pn | n ∈ N} in Π↓.)

Program Π is T -stratified if Π↓ is stratified (in the usual sense).
2 See [11] for a discussion on alternative strategies for generating the auxiliary queries.

The approach used here has the advantage that there is at most one query for each
predicate symbol, which simplifies the presentation.
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3 Declarative Semantics of Negation with Delays

To define a declarative semantics for hypothetical answers, we introduce the
following data structure. We assume a fixed set of queries Q = {Qi}i∈I , obtained
by pre-processing a particular query Q0 over a program Π, and a τ -history Dτ .

Definition 6. A datastream D is a possible extension of Dτ , D � Dτ , if D’s
τ -history is exactly Dτ .

In particular, any elements of D that do not appear in Dτ are necessarily future-
possible wrt τ .

Definition 7. A generalized hypothetical answer to Q over a τ -history Dτ is a
family S of tuples 〈Q, θ,E,H〉 where:

– Q ∈ Q;
– θ is a closed substitution ranging over the variables in Q;
– E and H are disjoint sets of EDB atoms and negated IDB atoms such that

E+ ⊆ Dτ and all elements of H+ are future-possible wrt τ ;
– for every 〈Q, θ,E,H〉 ∈ S and D � Dτ , (i) Π ∪D |= E− and (ii) if Π ∪D |=

H, then Π ∪ D |= Qθ.

This notion differs from hypothetical answers defined in previous work in two
ways: it allows negated IDB atoms in hypotheses and evidence; and it is “flat-
tened” in the sense that it contains tuples whose first component is the query
they relate to, rather than being a family indexed on queries. These options
simplify our development.

4 Operational Semantics of Negation with Delays

Our goal is to define (recursively) a sequence {S↓
n}n≥−1 such that S↓

i is a gener-
alized hypothetical answer to Q over Di. In general, these sets are infinite – in
the next section we discuss how to compute finite representations of them.

For every Q ∈ Q, we initialize S↓
−1 as follows: for each 〈θ,H〉 ∈ PQ, S↓

−1

contains all tuples 〈Q,σ|Q, ∅,Hσ〉 where σ instantiates all free variables in H
and Q, σ = θρ for some ρ, and σ|Q is the restriction of σ to the variables that
appear in Q.

S↓
τ+1 is defined in two steps. First, we update S↓

τ with the information from
the dataset: we define an auxiliary generalized hypothetical answer Aτ+1 con-
taining all tuples 〈Q, θ,E ∪ (H+ ∩ D|τ+1),H\D|τ+1〉 such that 〈Q, θ,E,H〉 ∈
S↓

τ for some Q ∈ Q and H+\D|τ+1 only contains future-possible atoms wrt
τ + 1.

The second step constructs S↓
τ+1 by updating the sets of negative hypotheses

and evidence in Aτ+1. This is the first key contribution of this work, and the
remainder of this section is dedicated to showing how it can be obtained as a
fixpoint of a suitably defined operator.
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4.1 The Evidence Lattice

As a first step, we construct a lattice over the set L of all sets X of tuples
〈Q, θ,E,H〉 where E and H are disjoint and such that (i) if 〈Q, θ,E,H〉 ∈ X ,
then there exists 〈Q, θ,E′,H ′〉 ∈ Aτ+1 with E ∪ H = E′ ∪ H ′ and E′ ⊆ E and
(ii) if 〈Q, θ,E,H〉 and 〈Q, θ,E′,H ′〉 are distinct elements of X , then E ∪ H =
E′ ∪ H ′. Throughout this and the next subsection we write simply A for Aτ+1,
as this set is fixed.

Property (i) states that X corresponds to updating A with some learned
evidence. Property (ii) states that this update is unique. Note that there is a
one-to-one correspondence between elements of A and elements of X ; below, we
refer to the “element of A generating” a tuple in X .

Definition 8. We define an order relation on L as follows: X � Y if for every
tuple 〈Q, θ,E,H〉 ∈ X there exists a tuple 〈Q, θ,E′,H ′〉 ∈ Y such that E ∪ H =
E′ ∪ H ′ and E ⊆ E′.

Intuitively, X � Y represents that hypothetical answers in Y are “closer to being
proven” than those in X .

Lemma 1. The relation � is a partial order.

Proof. Reflexivity and transitivity are straightforward.
For antisymmetry, assume that X � Y � X , and pick 〈Q, θ,E,H〉 ∈ X .

Since X � Y, there exists 〈Q, θ,E′,H ′〉 ∈ Y such that E ∪ H = E′ ∪ H ′ and
E ⊆ E′. But since also Y � X , there must also exist 〈Q, θ,E′′,H ′′〉 ∈ X such
that E′ ∪ H ′ = E′′ ∪ H ′′ and E′ ⊆ E′′.

It then follows that E ∪ H = E′′ ∪ H ′′, which by (ii) implies that E = E′′.
Therefore E ⊆ E′ ⊆ E, so E = E′, and by disjointness also H = H ′. So
〈Q, θ,E,H〉 ∈ Y, whence X ⊆ Y.

A similar reasoning starting from a random element in Y establishes that
Y ⊆ X , and therefore these two sets must be equal. ��
Lemma 2. Every subset of L has a least upper bound.

Proof. Let D be a subset of L. We claim that
∨
D is the set of all 〈Q, θ,E∨,H∨〉

such that:

– E∨ =
⋃{Ei | 〈Q, θ,Ei,Hi〉 ∈ ⋃

D are generated by the same element of A};
– H∨ = (ES ∪ HS)\E∨ for the corresponding 〈Q, θ,ES ,HS〉 ∈ A.

Intuitively: for each hypothetical answer in A,
∨
D contains the tuple that

includes all evidence for 〈Q, θ〉 that is in some element of D, and H∨ contains
the remaining hypotheses.

Let D ∈ D and 〈Q, θ,E,H〉 ∈ D. Since 〈Q, θ,E∨,H∨〉 ∈ ∨
D and E ⊆ E∨

by construction, D � ∨
D. So

∨
D is an upper bound of D.

Now suppose that Y is an upper bound of D. We need to show that
∨
D � Y.

For this, choose 〈Q, θ,E∨,H∨〉 ∈ ∨
D. For every 〈Q, θ,E,H〉 ∈ ⋃

D that
is generated by the same element of A as 〈Q, θ,E∨,H∨〉, there must exist
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〈Q, θ,E′,H ′〉 ∈ Y such that E′ ∪ H ′ = E ∪ H and E ⊆ E′ (since Y is an
upper bound of D). Furthermore, this element must be the same for all such
tuples, since it is also generated by the same element of A, and Y has only one
element with this property. It follows that E∨ =

⋃
E ⊆ E′. Since this holds for

all elements of
∨
D, we conclude that

∨
D � Y, and therefore

∨
D is the least

upper bound of D. ��
Corollary 1. L is a complete lattice, which we call the evidence lattice.

4.2 The Negation Update Operator

The operator we consider is not defined over the evidence lattice, but over a
bilattice of which L is a projection.

Definition 9. The set S contains all pairs 〈X ,Y〉 where X ⊆ A and Y � A.
We define an ordering over S by 〈X ,Y〉 � 〈X ′,Y ′〉 if X ⊇ X ′ and Y � Y ′.

Lemma 3. 〈S,�〉 is a complete lattice.

Proof. The result follows from the fact that both projections of S with the
corresponding relations are complete lattices. ��
Definition 10. The negation update operator R : S → S is defined as
R(X ,Y) = 〈R1(X ,Y), R2(X ,Y)〉, where:
– R1(X ,Y) is the result of removing from X the tuples 〈Q, θ,E,H〉 for which

there exists an element 〈Q′, θ′, E′, ∅〉 ∈ Y such that ¬Q′θ ∈ H.
– R2(X ,Y) is obtained from Y by replacing every tuple 〈Q, θ,E,H〉 with the

tuple 〈Q, θ,E ∪ P,H\P 〉 where P is the set of all ¬α such that there exists
no tuple 〈Q′, θ′, E′,H ′〉 ∈ X with α = Q′θ′.

Intuitively, R1 removes tuples in X that include negative hypotheses disproven in
Y, while R2 updates Y by moving negative facts to evidence if there is no hypo-
thetical answer for them in X . Keeping these two different updating mechanisms
separate is essential to proving that we can reach a fixpoint.

Lemma 4. R is monotonic.

Proof. Assume that 〈X ,Y〉 � 〈X ′,Y ′〉, i.e., that X ⊇ X ′ and Y � Y ′. We
need to show that R(X ,Y) � R(X ′,Y ′), i.e., that R1(X ,Y) ⊇ R1(X ′,Y ′) and
R2(X ,Y) � R2(X ′,Y ′).

For the first, observe that the result of R1 is computed by removing some
tuples from its first argument. Since X ⊇ X ′, it suffices to show that any tuples
removed from X are also removed from X ′. A tuple 〈Q, θ,E,H〉 is removed from
X if there exists 〈Q′, θ′, E′, ∅〉 ∈ Y such that ¬Q′θ ∈ H. Since Y � Y ′, there must
be a tuple 〈Q′, θ′, E′′,H ′′〉 ∈ Y ′ such that E′′ ∪ H ′′ = E′ ∪ ∅ = E′ and H ′′ ⊆ ∅.
These conditions imply that H ′′ = ∅ and E′′ = E′, i.e. 〈Q′, θ′, E′, ∅〉 ∈ Y ′, and
therefore 〈Q, θ,E,H〉 is also removed from X ′ when computing R1(X ′,Y ′).
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For the second, we note that the result of R2 is computed by moving some
literals from H to E in some tuples 〈Q, θ,E,H〉 in its second argument. Since
Y � Y ′, for each such tuple in Y there must be 〈Q, θ,E′,H ′〉 such that E ∪H =
E′ ∪ H ′ and E ⊆ E′. The thesis can then be established by showing that any
literals moved from H to E that are not already in E′ will also be moved from
H ′ to E′. Now, these literals are of the form ¬α and such that there exists no
tuple 〈Q∗, θ∗, E∗,H∗〉 ∈ X with α = Q∗θ∗. Since X ⊇ X ′, there can also be no
such tuple in X ′, and therefore the same literal must also be moved from H ′ to
E′ when computing R2(X ′,Y ′), unless it already is in E′ to start with.

Therefore R is a monotonic operator. ��
Corollary 2. R has a least fixpoint.

Proof. Consequence of the previous lemma and the Knaster–Tarski theorem. ��
Let 〈X0,Y0〉 be the least fixpoint of R, and define S↓

τ+1 as the set of tuples
〈Q, θ,E,H〉 ∈ Y0 for which there exists 〈Q, θ,E′,H ′〉 ∈ X0 with E ∪ H =
E′ ∪ H ′. For convenience, we write simply S↓ for S↓

τ+1 in the remainder of this
section. Intuitively, S↓ contains the tuples from A that remain in X0, with their
sets of evidence updated as in Y0. In particular, (i) S↓ ⊆ Y0 and (ii) X0 � S↓.
(Note however that S↓ /∈ S.)

Lemma 5. 〈S↓,S↓〉 is a fixpoint of R.

Proof. We need to show that 〈S↓,S↓〉 = R(S↓,S↓), i.e. that S↓ = Ri(S↓,S↓) for
i = 1, 2.

R1(S↓,S↓) is obtained by removing from S↓ the tuples 〈Q, θ,E,H〉 for
which there exists 〈Q′, θ′, E′, ∅〉 ∈ S↓ such that ¬Q′θ ∈ H. But such a tuple
〈Q′, θ′, E′, ∅〉 would also be in Y0 by (i), and by (ii) this would imply that
R1(X0,Y0) = X0 (because it would lead to some tuple in X0 being removed
by R1), which contradicts 〈X0,Y0〉 being a fixpoint of R.

R2(S↓,S↓) is obtained by updating each tuple 〈Q, θ,E,H〉 ∈ S↓ by moving
literals of the form ¬α ∈ H to E if there exists no tuple 〈Q′, θ′, E′,H ′〉 ∈ S↓

with α = Q′θ′. By (ii) this implies that no such tuple exists in X0 either (note
that the condition does not impose restrictions on E′ and H ′, so it does not
matter that these sets may differ in the actual element of X0). By (i) any tuple
updated in the computation of R2(S↓,S↓) would therefore also be updated when
computing R2(X0,Y0), which again would contradict 〈X0,Y0〉 being a fixpoint
of R. ��

It can also be shown that R is continuous, and therefore its least fixpoint
is equal to Rω(A,A). However, this is immaterial for our presentation, and we
skip the formal proof.

4.3 Soundness and Completeness

We begin this section with a simple lemma.
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Lemma 6. If 〈Q, θ,E,H〉 ∈ S↓
τ or 〈Q, θ,E,H〉 ∈ Aτ , then E+ ⊆ Dτ and every

element of H+ is future-possible wrt τ .

Proof. Straightforward by induction on τ . ��
We now proceed to show that each S↓

τ indeed is a generalized hypothetical
answer to Q over Dτ . This is done by proving the following property by induction
on τ :

Assume that D � Dτ . Then 〈Q, θ,E,H〉 ∈ S↓
τ with H+ ⊆ (D\Dτ ) iff there

exists a derivation D such that (i) D is an SLDNF-derivation proving that
Π ∪ D |= Qθ and (ii) D is an SLD¬-derivation proving that Π ∪ E ∪ H |=
Qθ that uses all elements of E ∪ H. (∗)

By SLD¬-derivation we simply mean a (normal) SLD-derivation where negated
atoms are treated by checking whether they appear as facts (in our case, in E−

or H−). Derivation D “uses” a (negated) fact if that fact is unified in at least
one step of D.

For S↓
−1, this property is a straightforward consequence of how pre-processing

is defined; the interested reader can find a proof in [11].
The induction step proceeds in two parts. First, we show that the construc-

tion of the auxiliary set Aτ+1, obtained by updating the positive part of S↓
τ with

the information in D|τ+1, preserves property (∗).

Lemma 7. If S↓
τ satisfies (∗), then Aτ+1 satisfies (∗).

Proof. Suppose that D � Dτ+1. Then also D � Dτ .
For the direct implication, assume that 〈Q, θ,E,H〉 ∈ Aτ+1 is such that

H+ ⊆ D\Dτ+1. By construction of Aτ+1, there exists 〈Q, θ,E′,H ′〉 ∈ S↓
τ such

that E = E′ ∪ (H ′+ ∩ D|τ+1) and H = H ′\D|τ+1. Any elements in H ′\H must
be in D|τ+1, so H ′ ⊆ D\Dτ .

By hypothesis on S↓
τ , there exists a derivation D such that D is an SLDNF-

derivation showing that Π ∪D |= Qθ and D is an SLD¬-derivation proving that
Π ∪ E′ ∪ H ′ |= Qθ that uses all elements of E′ ∪ H ′. But E′ ∪ H ′ = E ∪ H, so D
is also an SLD¬-derivation proving that Π ∪ E ∪ H |= Qθ that uses all elements
of E ∪ H.

For the converse implication, let D be an SLDNF-derivation proving that
Π ∪ D |= Qθ, and let F contain the set of elements of D that are used in D and
all negative literals that appear in D. Then D is also an SLD¬-derivation proving
that Π ∪ F |= Qθ. By hypothesis on S↓

τ , there exists a tuple 〈Q, θ,E,H〉 ∈ S↓
τ

such that H+ ⊆ D\Dτ and E ∪ H = F .
If 〈Q, θ,E,H〉 /∈ Aτ+1, then H+\Dτ+1 contains some elements that are not

future-possible wrt τ +1; such elements cannot be in D, which is a contradiction
(since they are in F , they are used in D, but they cannot be unified with any
element of Π ∪ D).

Therefore Aτ+1 contains an element 〈Q, θ,E′,H ′〉 with E′ = E ∪ (H+ ∩
D|τ+1), H ′ = H\D|τ+1, and such that H ′ ⊆ D\Dτ+1. As a consequence, E ∪
H = E′ ∪ H ′ = F , establishing the thesis. ��
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Next, we show that (∗) is preserved in the construction of S↓
τ+1 from Aτ+1.

We start with an auxiliary definition.

Definition 11. For 〈X ,Y〉 ∈ S, define X � Y to be the set of tuples
〈Q, θ,E,H〉 ∈ Y for which there exists 〈Q, θ,E′,H ′〉 ∈ X with E ∪H = E′ ∪H ′,
E+ = (E′)+ and H+ = (H ′)+.

In particular, S↓
τ+1 = X0 � Y0, where 〈X0,Y0〉 is the least fixpoint of R.

The proof uses transfinite induction. For simplicity, we again split it in sev-
eral lemmas. Note that the base case is trivial, since the least element of S is
〈Aτ+1,Aτ+1〉 and trivially Aτ+1 � Aτ+1 = Aτ+1.

Lemma 8. Let 〈X ,Y〉 ∈ S be such that: (i) if 〈Q, θ,E,H〉 ∈ X � Y, then E+ ⊆
Dτ+1 and (ii) X � Y satisfies (∗). Then R1(X ,Y) � R2(X ,Y) satisfies (∗).

Proof. Assume that D � Dτ+1.
For the direct implication, choose 〈Q, θ,E,H〉 ∈ R1(X ,Y) � R2(X ,Y). In

particular 〈Q, θ,E,H〉 ∈ R2(X ,Y), so there exists a tuple 〈Q, θ,E′,H ′〉 ∈ X �
Y such that E ∪ H = E′ ∪ H ′ and (H ′)+ = H+. The hypothesis on 〈X ,Y〉
immediately establishes the thesis.

For the converse implication, assume that D is an SLDNF-derivation showing
that Π ∪ D |= Qθ and define F as before as the set of elements of D that are
used in D together with all negative literals that appear in D.

By hypothesis there exists a tuple 〈Q, θ,E,H〉 ∈ X � Y such that
H+ ⊆ (D\Dτ+1) and E ∪ H = F . By definition of �, there exists a tuple
〈Q, θ,EX ,HX〉 ∈ X such that EX ∪ HX = E ∪ H = F , and 〈Q, θ,E,H〉 ∈ Y.
By definition of R2, there is also a tuple 〈Q, θ,EY ,HY 〉 ∈ R2(X ,Y) such that
EY ∪ HY = E ∪ H = F and H+

Y = H+. To establish the thesis, we only need to
show that 〈Q, θ,EX ,HX〉 ∈ R1(X ,Y).

Assume that this is not the case. Then there exists an element 〈Q′, θ′, E′, ∅〉 ∈
Y with ¬Q′θ′ ∈ HX . Since ∅+ ⊆ D\Dτ+1 and 〈X ,Y〉 satisfies (∗), there exists
an SLDNF-derivation D′ showing that Π ∪ D |= Qθ′, which contradicts the
fact that D at some point must process the fact ¬Q′θ′ by showing that no such
derivation exists. ��
Lemma 9. Let {〈Xi,Yi〉 | i ∈ I} be a directed subset of S such that Xi � Yi

satisfies (∗) for all i ∈ I. Let 〈X ,Y〉 =
∨{〈Xi,Yi〉 | i ∈ I}. Then X � Y satisfies

(∗).

Proof. Assume that D � Dτ+1.
For the direct implication, pick 〈Q, θ,E,H〉 ∈ X � Y with H+ ⊆ D\Dτ+1.

Then 〈Q, θ,E,H〉 ∈ Yi for all i, and every Xi contains an element 〈Q, θ,Ei,Hi〉
with Ei ∪ Hi = E ∪ H and Ei ⊆ E. Applying the hypothesis for any i imme-
diately establishes the thesis.

Conversely, let D be an SLDNF-derivation establishing Π ∪ D |= Qθ
and define F again as above. By hypothesis, for each i there must exist
〈Q, θ,Ei,Hi〉 ∈ Xi � Yi with Ei ∪ Hi = F and such that H+

i ⊆ D\Dτ+1.
This means that 〈Q, θ,Ei,Hi〉 ∈ Xi for each i, and there exists 〈Q, θ,EY ,HY 〉
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such that, for every i, EY ∪ HY = Ei ∪ Hi and 〈Q, θ,EY ,HY 〉 ∈ Yi. Then
〈Q, θ,EY ,HY 〉 ∈ Y, and there is a tuple 〈Q, θ,EX ,HX〉 ∈ ∨ Xi such that
〈Q, θ,Ei,Hi〉 � 〈Q, θ,EX ,HX〉. In particular, EX ∪ HX = Ei ∪ Hi for all i,
and therefore also EX ∪ HX = EY ∪ HY . Thus 〈Q, θ,EX ,HX〉 ∈ X � Y, and
since EX ∪ HX = F and H+

X = H+
i ⊆ D\Dτ+1 (for an arbitrary i) we can

conclude that the thesis holds. ��
Corollary 3. If Aτ+1 satisfies (∗), then S↓

τ+1 also satisfies (∗).

Theorem 1. If 〈Q, θ,E,H〉 ∈ S↓
τ , then 〈Q, θ,E,H〉 is a generalized hypothetical

answer to Q over Dτ .

Proof. Let 〈Q, θ,E,H〉 ∈ S↓
τ . By construction, Q ∈ Q and θ is a closed substi-

tution ranging over the variables in Q: these properties were guaranteed in the
construction of S↓

−1, and Q and θ are never changed afterwards. Furthermore,
due to the way E and H are constructed and updated, they are necessarily dis-
joint and contain only EDB atoms and negated IDB atoms: this is true for S↓

−1

by construction (where E = ∅), and all later updates are of the form “move an
element from H to E”, which preserves these properties.

E+ and H+ are only changed in the construction of Aτ , where elements are
added to E+ if they appear in D|τ (so induction guarantees E+ ⊆ Dτ ), and the
tuple is only kept if all elements remaining in H+ are future-possible wrt τ .

For the last point, we recall that S↓
τ satisfies (∗). Assume that D � Dτ .

To show that Π ∪ D |= E−, assume towards a contradiction that this is
not the case, and choose an element ¬α ∈ E− such that Π ∪ D |= α. Due to
how pre-processing works, there exist a query Q′ and a substitution θ′ such that
α = Q′θ′; furthermore, θ′ is closed, and it can be assumed to range exactly over
the variables in Q′. By completeness of SLDNF-resolution, there is an SLDNF-
derivation D showing that Π ∪ D |= Q′θ′. Take F to be the elements of D
that are used in D and all negative literals that appear in D. Then D is again
an SLD¬-derivation proving that Π ∪ F |= Q′θ′, whence S↓

τ must contain a
tuple 〈Q′, θ′, E′,H ′〉 with E′ ∪ H ′ = F . But this contradicts the hypothesis that
¬α ∈ E−, since the only way to add elements to E− is by application of R
(specifically, R2) when no such tuple exists, and the construction of S↓

τ ensures
that all tuples it contains ultimately originate from S↓

−1.
Lastly, assume that Π ∪ D |= H. Then H+ ⊆ (D\Dτ ), from which property

(∗) ensures existence of an SLDNF-derivation D proving that Π ∪ D |= Qθ. ��

5 Computing the Operational Semantics

The operational semantics in the previous section is based on infinite sets, and
can therefore not be directly implemented. In this section, we show that we
can represent generalized hypothetical answers finitely and update them one
timestamp at a time. We argue informally that our construction is correct.

We extend the algorithm from [13], which deals with communication delays
in the positive fragment of our language (see Sect. 2.3), with the ideas from [11]
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for dealing with negation. The trick is to balance the amount of information
in the schematic hypothetical answers computed online, so that the updating
procedure terminates but negations are updated correctly.

We achieve this by: (i) ensuring that schematic hypothetical answers for every
query that may need to be examined when updating negations are introduced,
even if there is no evidence for them, and (ii) restricting the negated hypotheses
that are updated to those whose timestamp is at most the current one. Further-
more, we assume that our program is T-stratified.

The algorithm is as follows. We initialize S−1(Q) = ∅ for every query Q.

1. Define a set Bτ updating Sτ−1 with information from the datastream.
(a) If 〈θ,H〉 ∈ P(Q) and σ is a non-empty local mgu for H and D|τ

such that Hσ\D|τ only contains potentially future atoms wrt τ , then
〈θσ,E ∪ E′,Hσ\D|τ 〉 ∈ Bτ (Q), where E′ = Hσ ∩ D|τ .

(b) If 〈θ,E,H〉 ∈ Sτ−1(Q) and σ is a local mgu for H and D|τ such
that the set Hσ\D|τ only contains potentially future atoms wrt τ , then
〈θσ,E ∪ E′,Hσ\D|τ 〉 ∈ Bτ (Q), where E′ = Hσ ∩ D|τ .

2. Add answers to queries that might be examined when updating negations.
For each query Q ∈ Q, let σ = [T := τ ] with T the temporal variable in Q.
If 〈θ,H〉 ∈ PQ and every element of Hσ is either potentially future wrt τ or
negated, then add 〈θσ, ∅,Hσ〉 to Bτ (Q).

3. Process negated literals.
Fix a topological ordering of the stratification of Π↓. There is only a finite
number of predicate symbols Pt such that QP has at least one schematic
answer with Tθ = t (where QP is the query on P and T is the temporal
parameter in QP ). For each of these Pt in order:
(a) set � = P (t1, . . . , tn) and let S(Pt) be the set of elements 〈θ,E,H〉 in

Sτ (QP ) such that Tθ = t;
(b) if S(Pt) contains a tuple 〈θ,E′, ∅〉, then: in each Bτ (Q), replace every

〈σ,E,H〉 such that �σ is unifiable with an element h ∈ H− with all
possible 〈σθ′, Eθ′,Hθ′〉 such that θ′ is a minimal substitution with the
property that �θ is not unifiable with hθ′;

(c) for each 〈θ,E,H〉 ∈ Bτ (Q) for some Q, if H− contains an element h
with predicate symbol P and timestamp t ≤ τ and there is no tuple
〈θ′, E′,H ′〉 ∈ S(Pt) such that h and �θ′ are unifiable, then remove ¬h
from H and add it to E.

Step (1) is essentially the update step from [13]. The use of local mgus ensures
that no answers are lost even in presence of communication delays. Step (2),
adapted from [11], guarantees that schematic hypothetical answers are added for
any queries that may be evaluated when updating negated hypotheses – so their
absence guarantees that they have been removed in a previous iteration. The
sets Bτ (Q) obtained at the end of this step correspond (modulo instantiation) to
the subset of elements 〈Q, θ,E,H〉 ∈ Aτ where either E = ∅ or Tθ ≤ τ . Step (3),
also adapted from [11], updates negated hypotheses. The final result of this step
again corresponds, modulo instantiation, to the subset of elements of Sτ with
the same property as above.
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6 Related Work and Discussion

This work contributes to the field of stream reasoning, the task of conjunctively
reasoning over streaming data and background knowledge [39].

Research advances on Complex Event Processors and Data Stream Manage-
ment Systems [14], together with Knowledge Representation and the Semantic
Web, all contributed to the several stream reasoning languages, systems and
mechanisms proposed during the last decade [16].

Computing answers to a query over a data source that is continuously produc-
ing information requires techniques with some kind of incremental evaluation,
in order to avoid reevaluating the query from scratch each time new informa-
tion arrives. Efforts in this direction have capitalized on incremental algorithms
based on seminaive evaluation [1,5,22,23,33], based on truth maintenance sys-
tems [6], or window oriented [20], among others. Being an incremental variant
of SLD-resolution, our framework [12,13] fits naturally in the first class.

Hypothetical query answering over streams is broadly related to abduction
in logic programming [17,24], namely to approaches that view negated atoms as
hypotheses and relate them to contradiction avoidance [2,18]. In this sense, we
apply an incremental form of data-driven abductive inference similar to [32], but
with a different approach and in a different context. To our knowledge, hypo-
thetical or abductive reasoning has not been previously applied to continuous
query answering, although it has been applied to annotation of stream data [3].

Also incomplete databases include notions of possible and certain
answers [25]. Here, possible answers are answers to a complete database D′

that the incomplete database D can represent, while certain answers belong to
all complete databases that D can represent. Libkin [30] explored an alternative
way of looking at incomplete databases that dates back to Reiter [36], view-
ing a database as a logical theory. He explored the semantics of incompleteness
independently of a particular data model, appealing to orderings to describe the
degree of incompleteness of a database. Other authors [21,26,27,35] have also
investigated ways to assign confidence levels to the information output to the
user.

Most theoretical approaches to stream-processing systems commonly require
input streams to be ordered. However, some approaches from the area of
databases and event processing have developed techniques to deal with out-
of-order data. An example is inserting special marks in the input stream (punc-
tuations) to guide window processing [28], which assert a timestamp that is a
lower bound for all future incoming values of an attribute. Another technique
starts by the potential generation of out-of-order results, which are then ordered
by using stackbased data structures and associated purge algorithms [29].

Other authors have considered languages using negation. Our definition of
stratification is similar to the concept of temporal stratification from [41]. How-
ever, this notion requires the strata to be also ordered according to time; we
make no such assumption in this work. A different notion of temporal strati-
fication for stream reasoning is given in [7], but their framework also includes
explicit temporal operators, making the whole formalization more complex.
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Abstract. In this paper we study families of async/await concurrent
processes using techniques and tools from (enumerative) combinatorics
and order theory. We consider the count of process executions as the pri-
mary measure of “complexity”, which closely relates to the (in general,
difficult) problem of counting linear extensions of partial orders. Interest-
ingly, the control structures of async/await processes fall into the subclass
of what we call the BIT-decomposable posets, providing an effective way
to count executions in practice. We also show that async/await processes
can be seen as generalizations of families of interval orders, a well-studied
class of partial orders. Based on this combinatorial study, we define a
variety of uniform random generation algorithms. We consider on the
one side the generation of process structures, and on the other side the
generation of execution paths – which is performed without requiring the
explicit construction of the state-space.

Keywords: Async/await · Enumerative combinatorics · Uniform
random generation

1 Introduction

Programming concurrent systems is a notoriously difficult task with various
sources of complexity, among which asynchronism (the lack of a global clock),
non-determinism (the existence of multiple distinct executions/outcomes) and
state explosion (the exponential growth of such executions) appear to stand
out. Various design patterns have been proposed to simplify the task at hand.
Bulk-synchronous parallelism (BSP) [22] is such an example of a simplified archi-
tecture for (a limited form of) parallel computing. For asynchronous systems,
the principle of async/await concurrency has emerged as a popular abstraction,
based on the concepts of promises and/or futures [18] but with dedicated syntac-
tic constructs. Widely used programming languages offer async/await abstrac-
tions, for example Javascript [8], Python [20] and others1.

The main guiding idea of our research is that the complexity of synchroniza-
tion patterns for concurrent processes is closely related to the relative difficulty of
1 see https://en.wikipedia.org/wiki/Async/await.
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counting process executions. For example, counting executions of series-parallel
structures (such as in BSP) is easy (see e.g. [16]). At the other end of the spec-
trum, the lack of any obvious control structure makes counting executions akin
to counting linear extensions of arbitrary posets, a �P -complete problem (cf. [4]).

In this paper, we consider the async/await processes as combinatorial objects
– considering the execution count as their fundamental “measure” – and study
them with the hopeful objective of corroborating the common belief that this
would be a “simpler” concurrency model. As a starting point, we develop a
minimal process calculus with not much more than the basic principles of
async/await. One simple way to provide an interpretation for process behav-
iors is in the form of computation trees. With this interpretation, counting
executions is easy: it is the number of distinct branches (thus leaves) of the
trees. We propose an alternative representation of the control structure of pro-
cesses as directed acyclic graphs (DAGs). The advantage of this representation
is that it is exponentially more compact than the corresponding computation
tree. And we can still count executions, although the task is now more complex.
As a first contribution, we show that the corresponding structure falls into the
subclass of what we call the BIT-decomposable posets. Based on our previous
work [4], we obtain a way to formulate the counting problem as a compact mul-
tivariate integral which can be solved by a computer algebra system. This is
discussed in Sect. 3. In Sect. 4, we establish interesting links between subclasses
of async/await processes and the mathematical structures known as interval
orders. In the last part of the paper (Sect. 5), we build on our combinatorial
investigations to experiment uniform random generation algorithms. We discuss
the generation of process structures as well as the generation of execution paths.

Related Work

Alternative combinatorial models of concurrency have been proposed in the liter-
ature, especially based on the trace monoid (see e.g. [1]). Closely related are the
so-called unfoldings [9] which provides a compact representation of computation
trees as occurrence nets (a subclass of Petri nets). However as discussed in [9]
(e.g. page 29) the potentially exponential growth of the unfoldings is directly con-
nected to the degree of synchronization exposed by the processes. The situation
is similar in [3], which models synchronized automata as a product automa-
ton of a size whose (exponential) growth is tightly connected to the number
of required synchronizations. While the partial order representation we adopt
is more restricted in terms of expressivity, it is less sensitive to the number of
synchronizations and thus well-suited for “principled” synchronization models
such as async/await. The counting of linear extensions of (unconstrained) par-
tial orders is shown a �P -complete problem in [6]. This is also the case for posets
of height 2 or dimension 2 [7]. Polynomial algorithms exist for series-parallel
posets [16]. In [4] we introduce the class of BIT-decomposable processes together
with a compact representation of the counting problem as a multivariate integral
formula. While this does not directly yield a counting algorithm, computer alge-
bra systems can be used for the numerical resolution. More generic algorithms
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Listing 1.1. Async/await example in Javascript

function promise(arg) {

return new Promise(resolve => {

result = someComputation(arg);

resolve(result )});

}

async function main() {

// main program

doThis ();

w1 = promise (1);

w2 = promise (2)

doThat ();

w3 = promise (3)

result1 = await w1;

use1(result1 );

result2and3 = await Promise.all([w2, w3]);

use2and3(result2and3 );

}

have been proposed in e.g. [14] (for sparse posets, with interesting applications in
artificial intelligence) and [19] (based on a fast enumeration of linear extensions,
not suitable for actual counting). In [4] we describe a linear extension sampler
for BIT-decomposable processes, which we experiment on async/await processes
in the present paper. An alternative approach is proposed in [13] which is based
on a coupling from the past (MCMC) procedure. The advantage of this approach
is that it can be applied on arbitrary posets, but its running time is aleatory.
Other random generation methods have been proposed in e.g. [17] but, unlike
our approach, they require in one way or another the explicit construction of the
state-space of processes.

Interval orders [11] have been thoroughly studied in the literature, with the
notable mention of [5] which provides a thorough study in the domain of enu-
merative combinatorics.

2 Async/Await Concurrency

In this section we present a very simple process calculus whose purpose is to cap-
ture the fundamental ingredients of async/await concurrency. Listing 1.1 shows
a somewhat minimal Javascript example2. Putting aside the classical language
features (function calls, assignments, etc.), we focus on the construct related
to concurrency. First, the async keyword enables async/await concurrency in
the scope of a function body (the function main() in the example). In our own

2 A more complete and runnable version of the Javascript example is available online
at the following address: https://jsfiddle.net/boah97dm/.

https://jsfiddle.net/boah97dm/
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terminology, we will say that the body of such a function becomes a control
thread. Such a control thread can perform three kinds of (concurrency-related)
operations:

– perform basic atomic actions that have no further meaning than “something
happened” as far as concurrency is concerned (in the example these are the
doThis(), doThat() and use..() calls)

– spawn a new sub-process, called a promise, that will run asynchronously (this
corresponds to the promise() calls in the example)

– await the completion of the spawned promises, based on a principle of barrier
synchronization (in the example, the barriers are w1, w2 and w3). Note that
a control thread may wait for multiple barriers at once, in an atomic manner
(using Promise.all(...)).

Each promise is associated to a dedicated barrier, which it has to use to
signal its termination to the control thread (in Listing 1.1, this is the role of the
resolve() callback). The promises can also perform atomic actions and indeed
be labeled async to become control threads themselves. In this case, we will say
that the system has a promise depth greater than 1 (we will come back to this
important characteristic later on).

Table 1. A calculus for async/await concurrency, and the definition of promise depth

Process P, Q ::= 0 : terminate the control thread

| α.P : perform action α and continue as process P

| ν(ω)[Q].P : spawn promise Q with barrier ω,

and continue to run P asynchronously

| ω : signal on barrier ω (from a promise)

| 〈Ω〉.P : await all barriers in set Ω, and

after synchronization continue as P

⎡
⎢⎣

depth(0) = depth(ω) = 0

depth(α.P ) = depth(〈Ω〉.P ) = depth(P )

depth(ν(ω)[Q].P ) = max(depth(Q) + 1, depth(P ))

Table 1 presents the syntax of a process calculus that captures the features
listed above, and nothing much beyond that. There is also the formal definition
of the promise depth introduced previously. Using the proposed syntax, our
example can be abstracted as follows:

this.ν(ω1)[prom1.ω1] .ν(ω2)[prom2.ω2] .that.ν(ω3)[prom3.ω3]
.〈w1〉.use1 .〈w2, w3〉.use2,3.0

Once the syntactic objects under study set, we have to give them a seman-
tic interpretation. One way of explaining the behavior of processes is to pro-
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Fig. 1. A computation tree corresponding to the example of Listing 1.1

vide an operational semantics3, which enables the construction of a first com-
binatorial object worth studying: what is colloquially called a computation tree.
Figure 1 depicts the operational semantics of our example as a computation tree.
Each directed edge in the tree corresponds to a possible labeled transition. For
example, in the initial state only the atomic action labeled “this” is possible,
which leads to a state from which three distinct transitions are possible: “that”,
“prom1” and “prom2” (the other actions being blocked by await constructs), and
so on. Each possible execution path is depicted by a distinct branch in the tree.
This representation has the interesting combinatorial characteristic of relating a
structural notion of a size – the number of atomic actions to perform identified
with the length of each path – to a corresponding semantic notion of a size – the
number of execution paths identified with the number of leaves of the tree. In
the example there are 20 distinct execution paths and each path has length 7.
Most importantly, the number of leaves grows exponentially in the path length.

Table 2. Async/await processes: partial order semantics

�P � = �P �◦� \ {◦⊥, ◦�}
�0�x = {x �→ ◦⊥}
�α.P �x = �P �•α ∪ {x �→ •α}
�ν(ω)[Q].P �•u = �ν(ω)[Q].P �◦v ∪ {•u �→ ◦v} with ◦v fresh

�ν(ω)[Q].P �◦v = �Q�◦v ‖ω �P �◦v

�ω�x = {x �→ ◦ω}
�〈Ω〉.P �•u = �〈Ω〉.P �◦v ∪ {•u �→ ◦v} with ◦v fresh

�〈Ω〉.P �◦v = �P �◦v ∪ {◦ω �→ ◦v | ω ∈ Ω}
with X1 ‖ω X2 = {x1 �→ y1 ∈ X1 | y1 
= ◦ω} ∪ {x2 �→ y2 ∈ X2 | x2 
= ◦ω}

∪ {x �→ y | x �→ ◦ω ∈ X1 ∧ ◦ω �→ y ∈ X2}

3 In [4] we provide an operational semantics for a calculus of “barrier synchronization”,
which subsumes the async/await processes.
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Fig. 2. The control graph (chord process, left) and the associated partial order (right)
of the example of Listing 1.1

The main problem we are concerned with is the counting of possible execu-
tion paths of processes. With computation trees the solution is trivial since we
only have to count the leaves of the tree. However, the construction of the tree
itself suffers from combinatorial explosion, making this approach impractical. We
thus adopt a more compact construction scheme, which is defined in Table 2. The
idea is to interpret an async/await process as a directed acyclic graph (DAG) –
namely its control graph. Figure 2 (left) depicts the result of the construction for
our example process. In the constructed graph the nodes are events from two
complementary kinds. The white nodes ◦ encode the control-structure of the pro-
cesses, i.e. when processes are forked or when they synchronize. Each black node,
denoted by •α, encodes the occurrence of an atomic action α. The dashed line at
the bottom corresponds to the control thread, and the chords above correspond
to promises. This DAG has several good properties. First of all, its size is linear
in the syntactic size of processes, hence there is no “explosion” involved at this
step. Moreover, (intransitive) DAGs are tightly related to partially ordered sets
(Posets) in that they correspond to their transitive reduction. In the computa-
tion tree of Fig. 1 only the labels of the atomic actions are considered. We can
perform a similar abstraction on the control graph be removing the white nodes
while maintaining the relations among the black ones.

Definition 1 (Partial orders of async/await processes).
Let P be an async/await process. We define: PO(P ) = {α > β | •α �→ ◦u, ◦u �→
•β ∈ �P �}refl-trans with, for a binary relation R, Rrefl-trans =

⋃
n≥0 Rn.

On the right of Fig. 2 the resulting poset is depicted using the most common
representation as a Hasse diagram. There is an important connection between
computation trees and such partial order semantics.

Theorem 1. The number of transitions of an async/await process P , hence the
number of leaves of its computation tree, corresponds to the number ΨP of linear
extensions of PO(P )

Proof. This is a corollary of [4, Proposition 2.1], in which we consider a class of
concurrent systems more general than that of async/await processes. �	
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3 Partial Order Decomposition and the Counting
Problem

We now investigate the problem of counting the execution paths of an
async/await process P , based on the DAG representation �P � or, alternatively,
its abstraction PO(P ) as discussed in the previous section. The problem boils
down to the counting of linear extensions in families of posets closely related to
async/await processes4.

Table 3. Series-parallel constructions and associated counting formulas (cf. [16]).

Series P � Q = (XP  XQ, >P ∪ >Q ∪(XP × XQ)) ΨP�Q = ΨP · ΨQ

Parallel P ‖ Q = (XP  XQ, >P ∪ >Q) ΨP‖Q =
(|P |+|Q|

|P |
) · ΨP · ΨQ

with P = (XP , >P ) and Q = (XQ, >Q)

To our knowledge, there are very few (non-trivial) poset subclasses for which
the counting problem can be said to be “easy”. One remarkable example is that of
series-parallel posets with dedicated and simple counting formulas, as described
in Table 3. Async/await processes are not, in general, decomposable with only
series and parallel operators. However, some of them are and, most importantly,
one can often find series-parallel substructures in larger processes. This means
that it is sometimes possible to use the series-parallel counting formulas, which
we take advantage of in Sect. 5.

Fig. 3. BITS-decomposition and associated counting formula (from [4])

In [4] we define an alternative decomposing scheme for arbitrary partial
orders. This so-called BITS-decomposition, summarized in Fig. 3, consists in
applying “elimination rules” on the transitive reduction of a partial order, or
equivalently on any intransitive DAG. The B-rule allows to remove a bottom
node y, hence with in-degree 1 and out-degree 0. The T-rule is the complement
for top nodes. The I-rule eliminates internal nodes with in and out degrees 1.
4 We denote by X1  X2 the disjoint sum of the two sets X1 and X2.
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Finally the S-rule consists in replacing two nodes x and y that are incomparable
in the poset (they could both have parents or children in the DAG, which is
not represented here), by two cases: first x is larger than y or the reverse y is
larger than x. Obviously this rule induces a split requiring to consider then two
distinct sub-orders. Most importantly, a symbolic formula Ψ for the linear exten-
sions count (of the induced poset) can be constructed along the decomposition.
Moreover, if one manages to only use the BIT-rules for decomposing a poset –
which is then qualified as BIT-decomposable – then the formula we obtain is of
a linear size. This does not mean that the counting problem itself becomes easy
(in fact we conjecture it remains �P -complete), however we get: (1) a concise
way to formulate it, and (2) an effective way of computing the result using a
computer algebra system.

One of the main result of the present paper follows.

Theorem 2. The control graph �P � of an async/await processes P is BIT-
decomposable.

Proof (Proof sketch). The construction ensures that the black nodes have all in-
degree and out-degree exactly one. Indeed, only white nodes can have in-degree
or out-degree > 1 representing join or spawn events. The I-rule of the construc-
tion is thus powerful enough to remove the black nodes. Now, we consider the
promises with maximal depth (i.e. promises not making further promises). Since
such a promise cannot spawn a process, it has no white node except its fork
and join events. Since we can remove its black nodes the promise itself can be
removed, which means the out-degree of its fork node is reduced by one, and
so is the in-degree of its join node. Hence, all promises of maximal depth can
be removed by the BIT-rules. Once removed, their parent promises become of
maximal depth, and by a simple inductive argument we conclude that the whole
structure is decomposable. �	

Here is an example of the counting formula generated thanks to the decom-
position of the control graph of Fig. 2 (white nodes are labeled by w1, w2 and w3

from left to right):
∫ 1

0

∫ w1

0

∫ w2

0

∫ w3

0

∫ 1

w1

∫ w1

w3

∫ w2

w3

∫ w1

w2

∫ w1

w2

∫ w2

w3

1

duse1dthatdprom1dprom3dprom2dthisduse2,3dw3dw2dw1.

Once evaluated, this multivariate integral formula produces the value 24, which
corresponds to the number of possible executions paths in the control graph. Note
that this is more than the 20 possible execution branches of the computation tree
of Fig. 1, since the white nodes are also taken into account and not just the atomic
actions. If we consider the partial order PO(P ) with all white nodes abstracted
away, then BIT-decomposability is not guaranteed anymore. In the next section
this is discussed more thoroughly but we can still consider the poset of (the right
of) Fig. 2 as an illustration. The only node with input/output arity one is the
node labeled “prom2” and the other nodes have an arity > 1 even if “prom2“
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is deleted. Hence, this poset is not BIT-decomposable. However, luckily, it can
be decomposed in series-parallel, as follows: this 
 (((that ‖ prom1) 
 (use1 ‖
prom3)) ‖ prom2) 
 use2,3.

We can compute the number of linear extensions according to Table 3, which,
schematically, gives:

1 · ((
(

2
1

)

· 1 · 1) · (
(

2
1

)

· 1 · 1) ‖ 1) · 1 = (2 · 2) ‖ 1 =
(

4 + 1
4

)

· 4 · 1 = 5 · 4 = 20.

This is of course the number of leaves of the computation tree of Fig. 1.

4 Chord Processes, Interval Orders and Related Families

We now dig deeper into combinatorics questions. Our objective is to characterize
relevant subclasses of async/await processes in a constructive way, following the
principles of the symbolic method [12, part A]. The basic idea is to use generating
functions to enumerate, symbolically, the constructed objects of a given size in
the considered combinatorial class, and to derive an inductive equation (or less
constrained, a functional equation) satisfied by such function. Most importantly,
our ultimate goal is to relate such process subclasses to corresponding classes
of partial orders. This imposes that we somewhat restrict the possibilities of
constructing processes. In this section, we adopt the following constraints. First,
we require that a promise spawned by a process performs exactly one atomic
action at start-up time, which means that atomic actions and promises are some-
how identified. Then, the promise may spawn one or several promises of greater
depth, but ultimately it has to signal on its dedicated barrier. Moreover, we
make sure that the number of white nodes is minimized in the control graphs.
Because of its proximity to what is called a chord diagram elsewhere [21], the
class we study in this section will be named chord processes.

Our first subclass of interest, named S1, considers chord processes with two
further restrictions: (1) the depth of the process is one, and (2) there is no
redundant promise. The first constraint means that there is exactly one control
thread, thus promises cannot spawn further promises. For the second constraint,
we consider two promises to be redundant if they are spawned and synchronized
at the same time (i.e. they have the same origin and destination white nodes in
the control graph). The class S1 corresponds to so-called non-redundant chord
processes.

An example of a control graph of a process in the class S1 is depicted in Fig. 4
(left). We consider the size of such a process to be the number of black nodes
in the control graph, hence here the size is 8. The abstraction from white nodes
is essential to properly capture the order-theoretic nature of the construction.
Note however that the white nodes are still part of the construction, only they
do not participate in the size of the objects.

In order to explain the construction of the class S1 properly, we need to con-
sider a slightly larger class, named S+

1 , whose multivariate generating function
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Fig. 4. (left) A process of class S1; (right) A process with monomial z5y3u2, preceded
by a new node u that spawns 2 promises (the new monomial is z7y4u2).

can be written as follows:

S+
1 (z, y, u) =

∑

n,k,�≥0

sn,k,� zn yk u�

We need no less than three parameters in this definition. First, the main param-
eter is z which represents the size of the objects5. The variable y is used to count
the white nodes that can be simultaneous async and await events, while u counts
the remaining white nodes that are “async only”. In the definition above, the
coefficient sn,k,� corresponds to the number of processes in the S+

1 class with n
black nodes, k async and await white nodes, and � “async only” nodes.

In the right part of Fig. 4, we illustrate how a larger process can be con-
structed from a smaller one while preserving the constraints of the considered
combinatorial class S+

1 . The process delimited by the “interior” brace is of size
5 (its number of black nodes), with 3 + 2 white nodes. The “exterior” brace
delimits a larger process consisting in prepending a “async only” (u) white node
on the control thread, here with two non-redundant spawned promises6. This
process increases the size by 2 because each promise performs an action, and we
can see that a previously “async only” (u) white node now serves as an await
and thus becomes a y node. Hence the larger process is characterized by the
monomial z7 · y4 · u2.

Summarizing all the possibilities of such incremental constructions, we now
define more formally the combinatorial class S+

1 as follows.

Definition 2. The generating function for the combinatorial class S+
1 is such

that:
S+
1 (z, y, u) = u + u

(
S+
1 (z, y + y · z, u + y · z) − S+

1 (z, y, u)
)
. (1)

5 We remind the reader that generating function are formal power series, counting
“things” through polynomial degrees.

6 To be non-redundant from the same origin, the promises must have distinct desti-
nation white nodes.
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The smallest process satisfying the equation is of size 0, consisting in just a
single white node u (the first summand of the right-hand side of the equation).
The basic principle to obtain a larger processes S′ from a smaller process S is
given by the second summand. This consists in adding a new white node of kind
u at the beginning of the control thread (as illustrated on the right of Fig. 4),
which corresponds to the u in factor in the equation. We then have to account
for all the possibilities to connect this new “async” node with the rest of the
process S with new promises. We consider each white node of S in turn. If it is
a y node then either it stays the same, or it receives a new promise originating
from the new u, hence becoming y · z, the new z corresponding to the action of
the spawned promise. If it is a u then either it is left untouched or it becomes a
y · z. In the construction, we force the new white node u to spawn at least one
promise to the previous process, which is why we subtract the term S+

1 (z, y, u)
in the equation above, where no promise has been spawned.

Proposition 1. Definition 2 is a sound and non-ambiguous construction.

Proof. For the soundness part we need to prove that S+
1 effectively describes

a combinatorial class. This means that for a given size n (the number of black
nodes), there is a finite number of structures satisfying the equation of Defini-
tion 2. First, we identify the number of promises and the number of black nodes,
thus there are exactly n promises for size n. The equation also enforces that each
u or y node spawns at least one promise (except for the rightmost white node),
so there are at most n + 1 such white nodes. Hence, for each such promise it
remains in the worst case n + 1 white nodes as destination so a simple upper
bound in the number of possibilities is (n+1)n. Thus, the number of admissible
structures of size n is indeed finite.

The second important characteristics of a functional equation enumerating a
combinatorial class is that it does not construct several times the same object
(i.e. it is non-ambiguous). This is a fundamental characteristics because we use
this functional equation to derive the number of objects of a given size. This
property can be demonstrated by structural induction. For the base case, we
consider the fact that there is a single minimal structure, namely z0 ·y0 ·u1. And
for the inductive case, if we suppose that a structure S has been constructed
non-ambiguously then all the possible “one-step” larger structures S′ are also
obtained non-ambiguously through the equation of Definition 2. �	

The process class we are looking for is not directly S+
1 but a slightly restricted

variant in which all the white nodes must be of the y kind, with the exception
of the leftmost one of kind u. This accounts for our initial constraint that white
nodes are minimized. Thus, the subsequence we consider is (∪k≥0sn,k,1)n∈N

in
which only one parameter remains: the size n. We regroup all processes of size
n regardless their number of white nodes. From this we obtain one of the main
technical results of this paper.
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Theorem 3. The univariate generating function enumerating the processes
from S1 by their number of atomic actions is given by the explicit equation:

S1(z) =
∂S+

1

∂u
(z, 1, 0) = 1 +

∑

k≥1

k∏

i=1

(

1 − 1
(1 + z)i

)

.

The intuition here follows from Definition 2 taking into account the restriction to
S1 (having one white node), and abstracting away from the counting of the other
white nodes. This explains the derivative on the left-hand side of the equation
followed by the partial assignment y ← 1;u ← 0.

Proof. We are starting from Definition 2, but the exact enumeration for S1,
where only the actions are counted and the white nodes do not count anymore is
such that in the processes enumerated by S+

1 (z, y, u) only the last added white
node u is not an await node (all other white nodes are thus been marked by y)
and we do not care about the number of these white nodes. So the generating

function for S1 is given by
∂S+

1

∂u
(z, 1, 0). In fact, since we are interested in the

monomials γ zn yk u, once differentiated according to u, they are not depending
on u anymore, and then evaluating at u = 0 erases monomials where there still
remains the u variable. Finally, letting y = 1, regroups together all monomials
γ′zn. Thus, with a partial differentiation in u:

∂S+
1

∂u
(z, y, u) =

1

(1 + u)2

(
1 + S

+
1 (z, y · (1 + z), u + y · z)

)
+

u

1 + u

∂S+
1

∂u
(z, y · (1 + z), u + y · z).

Then by evaluating y at 1 and u at 0, it remains

∂S+
1

∂u
(z, 1, 0) = 1 + S+

1 (z, 1 + z, z).

Before going on, let us simplify Eq. (1) so that:

S+
1 (z, y, u) =

u

1 + u

(
1 + S+

1 (z, y + y · z, u + y · z)
)
.

Now by injecting the latter equation we obtain

∂S+
1

∂u
(z, 1, 0) = 1 +

z

1 + z

(
1 + S+

1 (z, (1 + z)2, z + (1 + z)z)
)
.

By iterating this substitution we get:

∂S+
1

∂u
(z, 1, 0) = 1 +

n∑

k=0

k∏

i=0

z
(1 + z)0 + · · · + (1 + z)i

1 + (1 + z)0z + · · · + (1 + z)iz

+
n∏

i=0

z
(1 + z)0 + · · · + (1 + z)i

1 + (1 + z)0z + · · · + (1 + z)iz

· S1(z, (1 + z)n+2, (1 + z)0z + · · · + (1 + z)n+1z).
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Letting n tending to infinity we finally get

∂S+
1

∂u
(z, 1, 0) = 1 +

∑
k≥0

k∏
i=0

z
(1 + z)0 + · · · + (1 + z)i

1 + (1 + z)0z + · · · + (1 + z)iz
= 1 +

∑
k≥0

k∏
i=0

z

1−(1+z)i+1

1−(1+z)

1 + z
1−(1+z)i+1

1−(1+z)

= 1 +
∑
k≥1

k∏
i=1

(1 + z)i − 1

(1 + z)i
= 1 +

∑
k≥1

k∏
i=1

(
1 − 1

(1 + z)i

)
.

And the stated results are proved. �	
Based on this theorem, we can compute the counting sequence of S1 pro-

cesses. The first numbers from size 1 to 14 are as follows:

1, 1, 2, 5, 16, 61, 271, 1372, 7795, 49093, 339386, 2554596, 20794982, 182010945.

We think that this is a remarkable result since the sequence is in fact already
known as OEIS A1382657, which is the enumeration of rigid (unlabeled) inter-
val orders [15]. Indeed, this class of partial order is characterized by the same
functional equation, which establishes a one-to-one correspondence between the
thoroughly studied class of interval orders [11] and the async/await processes.
The interval orders are counted by the sequence of Fishburn numbers stored in
OEIS A022493. The numbers of interval orders of sizes 1 to 14 are

1, 2, 5, 15, 53, 217, 1014, 5335, 31240, 201608, 1422074, 10886503, 89903100, 796713190.

It is interesting to see if we can define a class of async/await processes that
exactly matches the interval orders. We of course consider the class S+

1 as a
starting point, since it corresponds to a restriction of interval orders. In fact,
what distinguishes OEIS A138265 from OEIS A022493 is precisely the notion
of redundant promise we introduced previously. We thus consider the subclass
S2 of the async/await processes, which corresponds to the class S1 but allowing
redundant promises.

Theorem 4. We consider the class S2 defined by the following equations:

S2(z) =
∂S+

2

∂u
(z, 1, 0) with S+

2 (z, y, u) = S+
1

(
z

1 − z
, y, u

)

.

The processes in S2 are in one-to-one correspondence with interval orders.

Proof. Similarly to the previous results, we introduce an auxiliary class of pro-
cesses, namely S+

2 , defined from S+
1 (of Definition 2) but in which we allow to

substitute each promise by a finite sequence of redundant promises. Thus the z
in the definition becomes z/(1 − z) which is the closed formula for non-empty
sequences (of z’s). Now, from Theorem 3 and applying the substitution we obtain
the equation:

∂S+
2

∂u
(z, 1, 0) = 1 +

∑

k≥1

k∏

i=1

(
1 − (1 − z)i

)
.

7 Throughout this paper, a reference OEIS A· · · points to an entry of Sloane’s Online
Encyclopedia of Integer Sequences www.oeis.org.

https://oeis.org/A138265
https://oeis.org/A022493
https://oeis.org/A138265
https://oeis.org/A022493
www.oeis.org
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This equation exactly matches the generating function proposed in [5] to count
the (unlabeled) interval orders. �	

As an interesting corollary, we remark that the bivariate generating func-

tions y
∂S+

1

∂u
(z, y, 0) and y

∂S+
2

∂u
(z, y, 0) can be calculated easily from the previous

theorems. These characterize the distributions of the number of white nodes in
processes of a given size, which correspond to sequences already studied in the
context of interval orders (respectively in OEIS A137252 and OEIS A137251).
The concerned parameter of interval orders is called the magnitude [10]. There
is a simple interpretation of the magnitude in terms of concurrency: this is the
number of white nodes in the control thread of a chord process (respectively
without or with redundant promises).

Once the connection with existing mathematical structures established, it is
interesting to look for possible variations inspired by concurrency aspects. For
now we considered chord processes of depth 1 and identified them with interval
orders. It seems thus quite natural to investigate the process structures of depth
> 1. The basic technical principle at work is the possibility to substitute subpro-
cesses within processes through substitutions in the equations for the associated
generating functions. For example, to construct S+

2 from S+
1 we substituted a

promise by a sequence of promises. Accordingly, it seems possible to substitute
a promise by a whole chord process. This way, from a subprocess of depth n
we can construct a process of depth n + 1. In order to obtain a sound and non-
ambiguous generalization of interval orders (of depth > 1), we must ensure that
the elementary subprocesses are proper chord processes (hence “simple” interval
orders). This leads to the following definition.

Definition 3. The class S3 of generalized interval orders is defined by the equa-
tion:

S3(z) = ∂S+
3

∂u (z, 1, 0)

with S+
3 (z, y, u) = u

1+u

(
1 + S+

3

(
z, y

1−z(1+S+
3 (z))

, u + y
z(1+S+

3 (z))

1−z(1+S+
3 (z))

))
.

If compared to the previous equations, this definition is recursive so that
whole sub-processes can be substituted.

Despite this extra complexity, it is still quite possible to enumerate efficiently
the terms of the counting sequence. The number of processes in class S3 from
size 1 to 14 are

1, 3, 12, 56, 289, 1606, 9471, 58790, 382496, 2604284, 18564013, 138808595, 1092001289, 9070517772.

This sequence is not present yet in OEIS and will thus be submitted for contri-
bution.

5 Uniform Random Generation: Experimental Study

In this section we present an experimentation of combinatorial algorithms
directly connected to our study. Our objective is more to highlight the kinds of

https://oeis.org/A137252
https://oeis.org/A137251
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problem that can be solved in practice based on our combinatorial study, rather
than a detailed description of the algorithms themselves. However, the whole
source code of the experiment is available online in a complement repository8

with detailed instructions.

Generating Structures. We investigate the generation of process structures using
three complementary ways. First, there is the systematic enumeration of the
structures by size. Since for each finite size we know that there is a finite number
of possible structures, the second interesting way of generating a structure is
through what is called unranking : construct the k-th structure of a given size n.
Last but not least the generation of structures uniformly at random represents
an interesting way to validate experimentally conjectures about said structures.
In our case, this provides us a way to compare algorithms based on different
techniques, without having too much of bias in the comparison.

Fig. 5. The chord process corresponding to the unranking of ascent sequence of size
n = 100 and rank k = S2[100]/2 − 1

For all these needs, our starting point is [5] in which a constructive
bijection between interval orders and ascent sequences is proposed. Quot-
ing OEIS A022493:

An ascent sequence is a sequence [d(1), d(2), . . . , d(n)] where d(1) = 0,
d(k) ≥ 0, and d(k) ≤ 1+asc([d(1), d(2), . . . , d(k −1)]) where asc(.) counts
the ascents of its argument.

The enumeration of ascent sequences is easy, and moreover counting the num-
ber of such sequences of a given size n can be performed in polynomial time (in
O(n3) arithmetic operations). This gives us first a quick way for unranking a
sequence. Ascent sequences of a given length n can be recursively decomposed
so the classical recursive method of [2] can be used to design a relatively efficient
random sampler (in O(n2), once the complete counting of the number of struc-
tures until size n has been performed). The output of the sampler is an ascent
sequence, i.e. a list of numbers, which we have to convert to an interval order
8 cf. https://gitlab.com/ParComb/async-await-randgen.

https://oeis.org/A022493
https://gitlab.com/ParComb/async-await-randgen
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exploiting the bijection of [5]. In a further step we can use the inverse of the
construction of Table 2 to obtain a corresponding control graph, from which a
process expression can be easily obtained. This way, we obtain a uniform random
sampler for chord processes. As an illustration, in Fig. 5 we give an example of
a generated chord process of size 100 from an unranked ascent sequence. More
precisely, the sequence has rank S2[100]/2 − 1 (where S2[100] is the number of
sequences of size 100).

Uniform Random Generation of Execution Paths. Based on the algorithm
described in [4], we now experiment the uniform random generation of execution
paths of chord processes. The main interest of this algorithm is that it does not
require the explicit construction of the state space of processes.

Table 4. Uniform random generation of execution paths.

Size Rank Nb. paths Counting time (s) Random gen. (avg. s)

10 81694 ≈ 8.0 e5 4.1 e−4 s 3.1 e−3 s

15 7122308736 ≈ 1.9 e6 2.2 e−3 s 4.5 e−3 s

20 230090562434702 ≈ 1.3 e13 4.1 e−2 s 2.3 e−2 s

25 113615274237648394333 ≈ 2.2 e17 1.5 s 6.3 e−1 s

30 314109479073694330556823298 ≈ 2.2 e24 3.4 s 1.3 s

In Table 4 we provide the results of a preliminary benchmark of our ran-
dom sampler for execution paths. The computer used for the experiments runs
on GNU/Linux (Ubuntu 20.04), with a Intel Core i7-6700 CPU cadenced at
3.40GHz and 8Go of RAM. The input of the algorithm are random chord pro-
cesses generated as explained previously. For each sampled process (described by
its size and rank), we give the result of the counting procedure and the associ-
ated timing. And finally we generate 10 execution paths and provide the average
generation time. While the implementation of the algorithm is at a very early
stage of development, we think that the timing results show promising figures.
Indeed, it is possible to generate execution paths uniformly at random in pro-
cesses in a reasonable time, in the order of a few seconds in a size 30 process
with quite a large state-space.

6 Conclusion and Future Work

The interpretation of concurrent systems as combinatorial objects is, we think,
quite an insightful perspective. Our measure of the “complexity” of concurrent
systems is that of counting execution paths. From this point of view, we show
that thanks to BIT-decomposability the counting problem is in a way “sim-
pler” for async/await processes than for arbitrary ones (in [4]). Complementary,
interval orders can be seen as basic generators for async/await control paths,
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as suggested by our combinatorial investigation. While it is arguably a kind of
a stretch, this correlates the practical experience that async/concurrency is a
“simpler” form of concurrency, easier to deal with than less constrained forms.
Taking this perspective upside-down, async/await processes can be seen as a
generalization of interval orders, and are thus worth studying from a purely
combinatorial point of view. Our section on experimenting with uniform ran-
dom generation algorithms is mostly proposed as a proof of concept. We argue
that there is an interest in developing analysis methods based on such building
blocks. A strong argument in favor is that the algorithms can be applied directly
on (the control graph of) processes without having to unfold the state-space.
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Abstract. There are two distinct formulations of non-malleability of
commitments found in the literature: the comparison-based definition
and the simulation-based definition. In this paper, we prove that the
comparison-based definition is unsatisfiable by any realistic commitment
scheme. Our proof is fully formalized in the EasyCrypt theorem prover.

Keywords: Cryptography · Commitments · Comparison-based ·
Non-malleability · Formal methods · EasyCrypt

1 Introduction

A commitment scheme is one of the fundamental primitives in cryptography.
Intuitively, we can think of a commitment as a locked box containing a message.
Only the sender who produced the commitment knows the secret opening key
which can unlock the box and reveal the message. The sender can send this box
to a receiver and then at a later stage give him the opening key to unlock it.

The most fundamental security properties of commitments are hiding and
binding. We say that a commitment is hiding if an adversary is unable to see the
message without the opening key (the box which contains the message should
not be transparent). We say that a commitment is binding if, once the sender
committed to a message and sent the commitment to the receiver, the sender
cannot open the commitment to a different message (the box should not have
any secret backdoors or double bottoms). But these properties do not prevent
all of the attacks and most notably the “man-in-the-middle” attacks.

The non-malleability property aims to protect commitments against man-in-
the-middle attacks. In such an attack, we have Mallory who is an active adversary
between two parties: Alice and Bob. Let’s assume that Alice sends a commit-
ment c of a message m to Bob. However, all of their communication goes through
the man-in-the-middle adversary Mallory who can modify the commitment or
simply not deliver it. The goal of Mallory is to generate a commitment c′ (based

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Seidl et al. (Eds.): ICTAC 2022, LNCS 13572, pp. 188–194, 2022.
https://doi.org/10.1007/978-3-031-17715-6_13
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only on the commitment c) to another message m′ which is non-trivially related
to the original message m.1 Later, for a successful attack, Mallory must gen-
erate an opening d′ for commitment c′ when it sees the Alice’s opening d for
commitment c.

A classical motivating example where non-malleability would be needed is
that of a blind auction. Consider an auction where participants bid for an item
by publishing commitments to their bids. At the end, bidders open their com-
mitments and the highest bid wins. If the commitment scheme is malleable, an
adversary could participate in the auction by posting for each of the other bids
a commitment to a bid that is only one dollar higher. In this case, the adversary
would have an unfair advantage. Moreover, the adversary has no need to learn
the exact amounts that other bidders have placed. The goal of non-malleability
definitions is to prevent these types of attacks.

There have been several attempts to formally define non-malleability of com-
mitments. Most notably, Crescenzo et al. presented a simulation-based defini-
tion [1]. The main idea of their definition is to compare the success probability
of an adversary and its simulator. The adversary sees a commitment c of a mes-
sage m and must produce a commitment c′ of a message m′ which must be
non-trivially related to m. At the same time, the simulator must also produce a
message similarly related to m, but without seeing any of the derivatives of m
(e.g., commitment on m). If the difference between success probabilities is negli-
gible then the commitment scheme is considered simulation-based non-malleable.

Later, Laur et al. introduced a new formulation of non-malleability which is
now known as comparison-based definition [3,5–7]. The goal of this definition is to
phrase non-malleability without referring to a simulator. This was motivated by
the fact that definitions formulated in terms of simulators are more complicated
to falsify by presenting a specially programmed adversary.

The original intention of this paper was to analyze the comparison based
non-malleability of commitments introduced by Laur et al. [5] and prove that
it implies hiding and binding of the commitment scheme. However, after we
started our formal analysis and specified the definition precisely in EasyCrypt,
we were able to conjecture and then prove that the definition is unsatisfiable by
any realistic commitment schemes, but is satisfiable by a completely non-binding
“constant”-commitment scheme. Taking both discoveries into account we claim
that the comparison-based non-malleability as defined by Laur et al. [5] is unfit
for any practical and theoretical purposes.

Our result is formalized in the EasyCrypt theorem prover and the proof-
scripts can be found in the supplementary material [2]. The results presented in
this paper follow our formal EasyCrypt development. However, for the purpose
of readability we present them in the standard mathematical notation.

1 An example of a non-trivial relation could be that the message m′ is the same as m
except all occurrences of “PAY TO: Alice” are replaced with “PAY TO: Mallory”.
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2 Comparison-Based Non-malleability

Definition 1 (Commitment Scheme). A commitment scheme is a triple of
efficient algorithms (Gen,Commit,Verify) where:

– Gen: is a distribution of public keys (also known as public parameters) of a
commitment scheme.

– Commit(pk,m): is a distribution of commitment-opening pairs which is
parameterized by a public key pk and a message m.

– Verify(pk,m, c, d): is a deterministic function which verifies the commitment
c on the message m with respect to the opening key d.

The commitment scheme is functional iff all commitment-opening pairs pro-
duced by Commit(pk,m) verify on m:

∀ c d pk m, pk ∈ Gen ∧ (c, d) ∈ Commit(pk,m) =⇒ Verify(pk,m, c, d) = 1.

(Here, x ∈ D denotes that x is in support of distribution D.)

Let us give a formal definition of comparison-based non-malleability intro-
duced by Laur et al. [5].

Definition 2 (Laur et al.). A commitment schemeC = (Gen,Commit,Verify)
is comparison-based non-malleable iff for any efficient adversary A, the
advantage AdvC(C,A) is negligible, where

AdvC(C,A) := |Pr [r ← GN0(C,A).main() : r = 1]
−Pr [r ← GN1(C,A).main() : r = 1] |.

1: module GN0(C, A)
2: proc main() = {
3: pk $← Gen
4: M ← A.init(pk)
5: m $← M
6: (c, d) $← Commit(pk, m)
7: (c′, R) ← A.commit(c)
8: (d′, m′) ← A.decommit(d)
9: v ← Verify(pk, m′, c′, d′)

10: return v ∧ R(m, m′) ∧ c �= c′

11: }
12: end

1: module GN1(C, A)
2: proc main() = {
3: pk $← Gen
4: M ← A.init(pk)

5: m $← M; n $← M
6: (c, d) $← Commit(pk, m)
7: (c′, R) ← A.commit(c)
8: (d′, m′) ← A.decommit(d)
9: v ← Verify(pk, m′, c′, d′)

10: return v ∧ R(n, m′) ∧ c �= c′

11: }
12: end

(For simplicity of presentation, in Definition 2 the adversary computes a single
commitment c′ while in the original definition of Laur et al. the adversary was
allowed to return n commitments and n+ 1-place relation R. In our EasyCrypt
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formalization, we work with the original definition, but in the paper we show
the simplified version since this detail is irrelevant for the main unsatisfiability
result.)

Both games are parameterized by a commitment scheme C and an adver-
sary A. In the game GN0, adversary A is given the public key pk and is asked
to compute a message distribution M. A message m is then sampled from M
and a commitment-opening pair (c, d) is computed with respect to m. Next,
adversary A is given the commitment c and asked to produce a commitment c′

and a relation R. After that, A is given the opening d and asked to produce an
opening-message pair (d′,m). The adversary wins the game if the pair (c′, d′) is
valid with respect to m′, the relation R is satisfied by a pair (m,m′) and A’s
commitment c′ is different from c. The only difference in the game GN1 is that a
second message n is sampled from the message distribution (independently from
m). The commitment-opening pair is still computed with respect to the message
m, but the winning condition of GN1 considers whether R(n,m′) holds (line 10).

The adversary’s overall advantage is defined in terms of its ability to distin-
guish between games GN0 and GN1. In other words, A has to win one game
and lose the other in order to increase the advantage. This means that to be
successful, the adversary has to find the exact relation R which will hold given
the pair (m,m′) and will not hold given the pair (n,m′), or vice versa.

2.1 (Un)satisfiability of the Comparison-Based Definition

In this section, we show that Definition 2 is not satisfiable by any realistic2 com-
mitment scheme. More specifically, we construct a single adversary which can
break the comparison-based non-malleability of any realistic commitment scheme
with unacceptably high probability. Moreover, we also define a paradoxical and
completely non-binding “constant”-commitment scheme which satisfies Defini-
tion 2. Taking both discoveries into consideration it must be sufficient to claim
that the comparison-based non-malleability as defined by Laur et al. [5] is unfit
for any practical and theoretical purposes.

Theorem 1. For any functional commitment schemeC = (Gen,Commit,Verify)
the adversary A (see Fig. 1 for the definition) has the following comparison-based
non-malleability advantage:

AdvC(C,A) =
1
4

− 1
4

· Pr
[
pk $← Gen; (c, d) $← Commit(pk, 0);

(c′, d′) $← Commit(pk, 0) : c = c′

]
.

(If commitments generated by Commit are sufficiently random then AdvC(C,A)
is not negligible.)

2 We assume that in realistic schemes commitment values contain a sufficient amount
of randomness.
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Figure 1. Adversary for Comparison-Based Non-Malleability
1: fun R(m, m′) := m = 0 ∧ m′ = 0. � relation for which both messages must be 0
2:
3: module A
4: var pk, c, c′, d′

5: proc init(pk) = {
6: A.pk ← pk � save the public key in the global variable
7: return {0, 1} � {0, 1} is a uniform distribution of bits
8: }
9: proc commit(c) = {

10: A.c ← c � the commitment is stored for the next phase
11: (c′, d′) $← Commit(pk, 0)
12: return (R, c′)
13: }
14: proc decommit(d) = {
15: if Verify(pk, 0, c, d) then
16: return (d′, 0)
17: end if
18: return ⊥ � denotes a pair which always fails the verification
19: }
20: end

Proof. The adversary A is defined as follows (see Fig. 1): in the initialization
phase, the adversary returns a uniform distribution of booleans. During the com-
mit phase A receives the commitment c and generates a commitment-opening
pair (c′, d′) on m′ = 0. Moreover, the relation R(m,m′) is also fixed and will
only hold true if m = 0 and m′ = 0. During the “decommit” phase, A receives
opening d and checks if it opens c with message m = 0. If so, A returns (d′, 0)
as the opening-message pair. If the verification fails, the adversary intentionally
loses the game (denoted by ⊥).

In order to calculate the adversary’s advantage we argue as follows:

Pr [r ← GN0(C, A).main() : r = 1] − Pr [r ← GN1(C, A).main() : r = 1]

(1)
= (Pr [ GN0(A).main() : m = 0 ] − Pr

[
GN0(A).main() : m = 0, c = c′ ]

)

− (Pr [ GN1(A).main() :m = 0, n = 0 ] − Pr
[
GN1(A).main() : m = 0, n = 0, c = c′])

(2)
=

1

2
− Pr

[
GN0(A).main() : m = 0, c = c′ ]

− 1

4
+

1

2
· Pr [ GN0(A).main() : m = 0, c = c′ ]

(3)
=

1

4
− 1

2
· Pr

⎡

⎣
pk $← Gen; M ← A.init(pk); m $← M;

(c, d) $← Commit(pk, m); (c′, d′) $← Commit(pk, 0) :
m = 0, c = c′

⎤

⎦

(4)
=

1

4
− 1

4
· Pr

[
pk $← Gen; (c, d) $← Commit(pk, 0);

(c′, d′) $← Commit(pk, 0) : c = c′

]
.

In step (1), we observe that for any functional scheme the commitment verifica-
tion (i.e., Verify(pk, 0, c′, d′) = 1) is guaranteed to succeed. Also, we rewrite the
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winning probability in terms of an event complement to the c �= c′ condition.
In step (2), we can restate all the probabilities in relation to GN0 by observing
that n is independent from m and making explicit the probability of sampling
n = 0 as a coefficient. In step (3), we compute the probabilities and inline the
game GN0. In step (4), we observe that the remaining probability expression is
non-zero only when m = 0, so we can simplify the game further.

Observe that the following probability can be safely assumed to be negli-
gible for any realistic commitment scheme which produces sufficiently random
commitments:

Pr

[
pk ← Gen; (c, d) $← Commit(pk,m);

(c′, d′) $← Commit(pk,m) : c = c′

]
.

The reason why the adversary A is able to have a non-negligible advantage
is because it could “intentionally lose” in the decommit phase. Once it receives
the opening d, it can easily verify the content of the given commitment c and if
verification fails, intentionally lose the game. Finally, we find it interesting that
this analysis shows that the comparison-based definition cannot be instantiated
with any realistic commitment scheme, but could be proved for some paradoxical
schemes. Indeed, we can define the following “constant”-commitment scheme:

Gen := {∗}
Commit(pk,m) := (∗,m)
V erify(pk,m, c, d) := if m = d then 1 else 0

The public key and commitments are elements of a singleton set (denoted by ∗)
and the opening of a commitment is a message itself. This commitment-scheme
is functional, perfectly hiding, and completely non-binding. Moreover, since the
winning condition c �= c′ of GN0 and GN1 is never satisfied then we conclude that
the above “constant”-commitment scheme is perfectly non-malleable according
to Definition 2. This must be understood as another reason to abandon that
definition of non-malleability.

3 Conclusions

The problem of inadequate definitions in cryptography is not new [4]. The errors
in definitions may take many years to be discovered and the impact of these errors
can range from a minimal nuisance to an actual threat that can be realised as
an attack in the real world.

In our investigation, we were surprised to find the definition of comparison-
based non-malleability unsatisfiable. The paper [5] radiates confidence of the
authors that their definition is not only satisfiable, but that some constructions
provide unreasonably high level of security. Moreover, the paper is well-cited with
more than 200 citations to that date. However, according to our best knowledge,
we are the first to spot the mistake. We attribute our discovery of unsatisfiability
to the fact that our investigation was carried out in the formal setting of the
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EasyCrypt theorem prover. Although the idea behind the proof is fairly simple,
the formal derivation took considerable effort (the formalization is 600 loc).

Finally, this work stresses the need to provide higher assurance to the cryp-
tographic security proofs. We believe that formal methods provide a solution
which ensures rigor necessary for the mission critical systems.

In the future, we plan to investigate alternative definitions of comparison-
based non-malleability.
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Abstract. This paper introduces and studies a new model of compu-
tation called an Alternating Automatic Register Machine (AARM). An
AARM possesses the basic features of a conventional register machine
and an alternating Turing machine, but can carry out computations
using bounded automatic relations in a single step. One finding is
that an AARM can recognise some NP-complete problems, including
CNF-SAT (using a particular coding), in log∗ n + O(1) steps. On the
other hand, if all problems in P can be solved by an AARM in O(log∗ n)
rounds, then P ⊂ PSPACE.

Furthermore, we study an even more computationally powerful
machine, called a Polynomial-Size Padded Alternating Automatic Reg-
ister Machine (PAARM), which allows the input to be padded with a
polynomial-size string. It is shown that the polynomial hierarchy can
be characterised as the languages that are recognised by a PAARM in
log∗ n+O(1) steps. These results illustrate the power of alternation when
combined with computations involving automatic relations, and uncover
a finer gradation between known complexity classes.

Keywords: Theory of computation · Computational complexity ·
Automatic relation · Register machine · Nondeterministic complexity ·
Alternating complexity · Measures of computation time

1 Introduction
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discovered independently by Hodgson [10,11], Khoussainov and Nerode [14] as
well as Blumensath and Grädel [1,2]. One of the original motivations for study-
ing automaticity in general structures came from computable structure theory,
in particular the problem of classifying the isomorphism types of computable
structures and identifying isomorphism invariants. In computer science, auto-
matic structures arise in the area of infinite state model checking; for exam-
ple, Regular Model Checking, a symbolic framework for modelling and verify-
ing infinite-state systems, can be expressed in Existential Second-Order Logic
over automatic structures [17]. Although finite-state transducers are a somewhat
more popular extension of ordinary finite-state automata for defining relations
between sets of strings, there are several advantages of working with automatic
relations, including the following: (1) in general, automatic relations enjoy bet-
ter decidability properties than finite-state transducers; for example, equivalence
between ordinary automata is decidable while this is not so for finite-state trans-
ducers; (2) automatic relations are closed under first-order definability [11,13,14]
while finite-state transducers are not closed under certain simple operations such
as intersection and complementation.

In this paper, we introduce a new model of computation, called an Alternat-
ing Automatic Register Machine (AARM), that is analogous to an alternating
Turing machine but may incorporate bounded automatic relations1 into each
computation step. The main motivation is to try to discover new interesting
complexity classes defined via machines where automatic relations are taken as
primitive steps, and use them to understand relationships between fundamental
complexity classes such as P, PSPACE and NP. More powerful computational
models are often obtained by giving the computing device more workspace or
by allowing non-deterministic or alternating computations, where alternation is
a well-known generalisation of non-determinism. We take up both approaches in
this work, extending the notion of alternation to automatic relation computa-
tions. An AARM is similar to a conventional register machine in that it consists
of a register R containing a string over a fixed alphabet at any point in time, and
the contents of R may be updated in response to instructions. One novel feature
of an AARM is that the contents of the register can be non-deterministically
updated using an automatic relation. Specifically, an instruction J is an auto-
matic relation. Executing the instruction, when the content of the register R is
r, means that the contents of R is updated to any x in {x : (x, r) ∈ J}; if there
is no such x, then the program halts. Each AARM contains two finite classes,
denoted here as A and B, of instructions; during a computation, instructions are
selected alternately from A and B and executed.

To further explain how a computation of an AARM is carried out, we first
recall the notion of an alternating Turing machine as formulated by Chandra,
Kozen and Stockmeyer [5]. As mentioned earlier, alternation is a generalisation

1 Here an update relation is bounded if there is a constant such that each possible
output is at most that constant longer than the longest input parameter; see Sect. 2.
Since we only consider bounded automatic relations in this paper, such relations will
occasionally be called “automatic relations”.
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of non-determinism, and it is useful for understanding the relationships between
various complexity classes such as those in the polynomial hierarchy (PH). The
computation of an alternating Turing machine can be viewed as a game in which
two players – Anke and Boris – make moves (not necessarily strictly alternating)
beginning in the start configuration of the machine with a given input w [8].
Anke and Boris move alternating with each having specific win configurations.
A language L is in AAL[f(n)] if there is an AARM such that, for each input
x, one player can force a win in f(|x|) many steps. Then x is in L if Anke can
force the win. In general, we are for natural choices of f interested in the class
AAL[f(n) + O(1)] and our results indicate that f(n) = log∗ n is an important
choice allowing interesting results; smaller functions f only lead to the class of
regular languages. Furthermore, we found that the picture becomes much more
interesting by allowing only such automatic relations which permit a player to
choose between finitely many options. We call such automatic relations bounded
and for each bounded automatic relation R there is a constant c such that R(x, y)
can only be satisfied if |y| ≤ |x| + c; here y is the value chosen by the player in
dependence of a register content x. We also introduce and study Polynomial-Size
Padded Bounded Alternating Automatic Register Machines (PAARMs), which
allow a polynomial-size padding to the input of an AARM.

The idea of defining computing devices capable of performing single-step
operations that are more sophisticated than the basic operations of Turing
machines is not new. For example, Floyd and Knuth [7] studied addition
machines, which are finite register machines that can carry out addition, subtrac-
tion and comparison as primitive steps. Unlimited register machines, introduced
by Shepherdson and Sturgis [18], can copy the number in a register to any register
in a single step. Bordihn, Fernau, Holzer, Manca and Mart́ın-Vide [3] investi-
gated another kind of language generating device called an iterated sequential
transducer, whose complexity is usually measured by its number of states (or
state complexity). More recently, Kutrib, Malcher, Mereghetti and Palano [15]
proposed a variant of an iterated sequential transducer that performs length-
preserving transductions on left-to-right sweeps. Automatic relations are more
expressive than arithmetic operations such as addition or subtraction, and yet
they are not too complex in that even one-tape linear-time Turing machines
are computationally more powerful; for instance, the function that erases all
leading 0’s in any given binary word can be computed by a one-tape Turing
machine in linear time but it is not automatic [20]. Despite the computational
limits of automatic relations, we show in Theorem 6 below that the NP-complete
Boolean satisfiability problem can be recognised by an AARM in log∗ n + O(1)
steps, where n is the length of the formula. The results not only show a proof-
of-concept for the use of automatic relations in models of computation, but also
shed new light on the relationships between known complexity classes.

For an extended version of this paper that presents examples and additional
basic results on AARMs and PAARMs, please refer to [9].
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2 Preliminaries

Let Σ denote a finite alphabet. We consider set operations including union (∪),
concatenation (·), Kleene star (∗), intersection (∩) and complement (¬). Let Σ∗

denote the set of all strings over Σ. A language is a set of strings. Let the empty
string be denoted by ε. For a string w ∈ Σ∗, let |w| denote the length of w
and w = w1w2...w|w| where wi ∈ Σ denotes the i-th symbol of w. Fix a special
symbol # not in Σ. Let x, y ∈ Σ∗ such that x = x1x2 . . . xm and y = y1y2 . . . yn.
Let x′ = x′

1x
′
2 . . . x′

r and y′ = y′
1y

′
2 . . . y′

r where r = max(m,n), x′
i = xi if i ≤ m

else #, and y′
i = yi if i ≤ n else #. Then, the convolution of x and y is a string

over (Σ ∪ {#}) × (Σ ∪ {#}), defined as conv(x, y) = (x′
1, y

′
1)(x

′
2, y

′
2) . . . (x′

r, y
′
r).

A relation J ⊆ X × Y is automatic if the set {conv(x, y) : (x, y) ∈ J} is regular,
where the alphabet is (Σ ∪ {#}) × (Σ ∪ {#}). Likewise, a function f : X → Y
is automatic if the relation {(x, y) : x ∈ domain(f) ∧ y = f(x)} is automatic
[21]. An automatic relation J is bounded if ∃ constant c such that ∀(x, y) ∈
J, abs(|y|−|x|) ≤ c. On the other hand, an unbounded automatic relation has no
such restriction. The problem of determining satisfiability of any given Boolean
formula in conjunctive normal form will be denoted by CNF-SAT. Automatic
functions and relations have a particularly nice feature as shown in the following
theorem.

Theorem 1 ([11,14]). Every function or relation which is first-order definable
from a finite number of automatic functions and relations is automatic, and the
corresponding automaton can be effectively computed from the given automata.

3 Alternating Automatic Register Machines

An Alternating Automatic Register Machine (AARM) consists of a register R and
two finite sets A and B of instructions. A and B are not necessarily disjoint. For-
mally, we denote an AARM by M and represent it as a quadruple (Γ,Σ,A,B).
(An equivalent model may allow for multiple registers.) At any point in time,
the register contains a string, possibly empty, over a fixed alphabet Γ called the
register alphabet. The current string in R is denoted by r. Initially, R contains
an input string over Σ, an input alphabet with Σ ⊆ Γ . Strings over Σ will some-
times be called words. The contents of the register may be changed in response
to an instruction. An instruction J ⊆ Γ ∗ × Γ ∗ is a bounded automatic relation;
this changes the contents of R to some x such that (x, r) ∈ J (if such an x
exists). The instructions in A and B are labelled I1, I2, . . . , (in no particular
order and not necessarily distinct). A configuration is a triple (�, w, r), where
I� is the current instruction’s label and w, r ∈ Γ ∗. Instructions are generally
nondeterministic, that is, there may be more than one way in which the string
in R is changed from a given configuration in response to an instruction. A com-
putation history of an AARM with input w for any w ∈ Σ∗ is a finite or infinite
sequence c1, c2, c3, . . . of configurations such that the following conditions hold.
Let ci = (�i, wi, ri) for all i.
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– r1 = w. We call c1 the initial configuration of the computation history.
– For all i, (wi, ri) ∈ I�i . This means that I�i can be carried out using the

current register contents, changing the contents of R to wi.
– Instructions executed at odd terms of the sequence belong to A, while those

executed at even terms belong to B:

I�i ∈
{

A if i is odd;
B if i is even.

– If ci+1 is defined, then ri+1 = wi. In other words, the contents of R are (non-
deterministically) updated according to the instruction and register contents
of the previous configuration.

– Suppose i is odd (resp. even) and ci = (I�i , wi, ri) is defined. If there is some
I� ∈ B (resp. I� ∈ A) with {x : (x,wi) ∈ I�} nonempty, then ci+1 is defined.
In other words, the computation continues so long as it is possible to execute
an instruction from the appropriate set, either A or B, at the current term.

We interpret a computation history of an AARM as a sequential game between
two players, Anke and Boris, where Anke moves during odd turns and Boris
moves during even turns. During Anke’s turn, she must pick some instruction J
from A such that {x : (x, r) ∈ J} is nonempty and select some w ∈ {x : (x, r) ∈
J}; if no such instruction exists, then the game terminates. The contents of
R are then changed to w at the start of the next turn. The moving rules for
Boris are defined analogously, except that he must pick instructions only from
B. Anke wins if the game terminates after a finite number of turns and she is
the last player to execute an instruction; in other words, Boris is no longer able
to carry out an instruction in B and the length of the game (or computation
history), measured by the total number of turns up to and including the last
turn, is odd. Boris wins the game if Anke does not win (this includes the case
that Anke does not make any move). The AARM accepts a word w if Anke can
move in such a way that she will always win a game with an initial configuration
(�, v, w) for some I� ∈ A and v ∈ Γ ∗, regardless of how Boris moves. To state this
acceptance condition more formally, one could define Anke’s and Boris’ strategies
to be functions A and B respectively with A : (N×Γ ∗ ×Γ ∗)∗ ×Γ ∗ �→ A×Γ ∗ and
B : (N × Γ ∗ × Γ ∗)∗ × Γ ∗ �→ B × Γ ∗, which map each segment of a computation
history together with the current contents of R to a pair specifying an instruction
as well as the new contents of R at the start of the next round according to the
moving rules given earlier. The AARM accepts w if there is an A such that for
every B, there is a finite computation history 〈c1, . . . , c2n+1〉 where

– ci = (�i, wi, ri) for each i,
– r1 = w,
– A((〈ci : i < 2j + 1〉, r2j+1)) = (I�2j+1 , w2j+1) for each j ∈ {0, . . . , n},
– B((〈ci : i < 2k〉, r2k)) = (I�2k , w2k) for each k ∈ {1, . . . , n};
– there is no move for B in c2n+1, that is no instruction in B contains a pair

of the form (·, w2n+1).

Here 〈ci : i < k〉 denotes the sequence 〈c1, . . . , ck−1〉, which is empty if k ≤ 1.
Such an A is called a winning strategy for Anke with respect to (M,w). Given
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a winning strategy A for Anke with respect to (M,w) and any strategy B, the
corresponding computation history of M with input w is unique and will be
denoted by H(A,B,M,w). In most subsequent proofs, A and B will generally
not be defined so formally. Set

L(M) := {w ∈ Σ∗ : M accepts w};

one says that M recognises L(M). Note that a constant amount of extra state
information can be stored in the register.

Definition 2 (Alternating Automatic Register Machine Complexity).
Let M = (Γ,Σ,A,B) be an AARM and let t ∈ N0. For each w ∈ Σ∗, M accepts
w in time t if Anke has a winning strategy A with respect to (M,w) such that
for any strategy B played by Boris, the length of H(A,B,M,w) is not more than
t. (As defined earlier, H(A,B,M,w) is the computation history of M with input
w when A and B are applied.) An AARM decides a language L in f(n) steps
for a function f depending on the length n of the input if for all x ∈ {0, 1}n,
both players can enforce that the game terminates within f(n) steps by playing
optimally and one player has a winning strategy needing at most f(n) moves and
x ∈ L if Anke is the player with the winning strategy. AAL[f(n)] denotes the
family of languages decided by AARMs that decide in time f(n).

It can be shown that AARMs recognise precisely the family of all recursively
enumerable languages [9, Theorem 7], and that AAL[O(f(n))] is closed under
the usual set-theoretic Boolean operations as well as the regular operations [9,
Theorem 4].

We recall that an alternating Turing machine that decides in O(f(n)) time
can be simulated by a deterministic Turing machine using O(f(n)) space. The
following theorem gives a similar connection between the time complexity of
AARMs and the space complexity of deterministic Turing machines.

Theorem 3. For any f such that f(n) ≥ n, AAL[O(f(n))] ⊆ DSPACE[O((n+
f(n))f(n))] = DSPACE[O(f(n)2)].

Proof. Given an AARM M , there is a constant c such that each register update
by an automatic relation used to define an instruction of M increases the length
of the register’s contents by at most c. Thus, after O(f(n)) steps, the length
of the register’s contents is O(n + f(n)). As implied by [4, Theorem 2.4], each
computation of an automatic relation with an input of length O(n + f(n)) can
be simulated by a nondeterministic Turing machine in O(n + f(n)) steps; this
machine can then be converted to a deterministic space O(n + f(n)) Turing
machine. If M accepts an input w, then there are O(f(n)) register updates by
automatic relations when Anke applies a winning strategy, and so there is a
deterministic Turing machine simulating M ’s computation with input w using
space O((n + f(n))f(n)). ��
As a consequence, one obtains the following analogue of the equality between
AP (classes of languages that are decided by alternating polynomial time Turing
machines) and PSPACE.
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Corollary 4.
⋃

k AAL[O(nk)] = PSPACE.

Proof. The containment relation AAL[O(f(n))] ⊆ DSPACE[O((n+ f(n))f(n))]
in Theorem 3 holds whether or not the condition f(n) ≥ n holds. Furthermore,
the computation of an alternating Turing machine can be simulated using an
AARM, where the transitions from existential (respectively, universal) states
correspond to the instructions for Anke (respectively, Boris), and each compu-
tation step of the alternating Turing machine corresponds to a move by either
player. Therefore PSPACE, which is equal to AP, is contained in

⋃
k AAL[nk]. ��

We come next to a somewhat surprising result: an AARM-program can recognise
3SAT using just log∗ n+O(1) steps. To prove the theorem, we give the following
lemma, which illustrates most of the power of AARMs.

Lemma 5 (Log-Star Lemma). Let u, v ∈ Σ∗. Let #, $ �∈ Σ. Then both
languages {u′$v′ : u′ ∈ #∗u#∗, v′ ∈ #∗v#∗ and u = v} and {u′$v′ : u′ ∈
#∗u#∗, v′ ∈ #∗v#∗ and u �= v} are in AAL[log∗ n + O(1)].

The Log-Star Lemma essentially states that a comparison of two substrings
can be done by an AARM in log∗ n + O(1) time. This is done by ignoring the
unnecessary symbols in the register by replacing them with #’s and adding a
separator ($) between the two strings.

Proof. We now prove the Log-Star Lemma. The algorithm below recursively
reduces the problem to smaller sizes of u, v in constant number of steps (the
maximum of the length of u, v is reduced logarithmically in constant number of
steps). For the base case, if size of u or v is bounded by a constant, then clearly
both languages can be recognized in one step.

For larger size u, v, the algorithm/protocol works as follows. For ease of
explanation, suppose Anke is trying to show that u = v (case of Anke showing
u �= v will be similar). Given input s = u′$v′, player Anke will try to give each
symbol except $’s a mark ∈ {0, 1, 2, 3} as follows:

1. For each # in u′ and v′, the mark of 3 will be given.
2. For the contiguous symbols of u, starting from the first symbol, the following

infinite marking will be given (whitespaces are for the ease of readability and
not part of marking):

20 21 200 201 210 211 2000 2001 2010 2011 2100 2101 2110 2111 20000 · · ·

Namely, a series of blocks of string in ascending length-lexicographical order.
Let T be the so defined infinite sequence. Given a string s = u′$v′, where
u′ ∈ #∗u#∗ and v′ ∈ #∗v#∗ for some u, v ∈ Σ∗, each contiguous subsequence
of u (resp. v) whose sequence of positions is equal to the sequence of positions
of T of some string in 2{0, 1}∗ such that the next symbol in T is 2 will be
called a block. Each block starts with 2 followed by a binary string. Let k
(≥ 2) be the maximum size of a block. Summing the lengths of the blocks of
u gives that (k − 2) · 2k−1 + k ≤ n, and thus k ≤ log n.

3. For the contiguous symbols of v, the marking will be similar.
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The marking is considered valid if all above rules are satisfied. This is an example
of a valid marking of S = “#foobar##$foobar##”:

s # f o o b a r # # $ f o o b a r # #

Mark 3 2 0 2 1 2 0 3 3 $ 2 0 2 1 2 0 3 3

If u = v and the marking is valid, player Anke will guarantee that each symbol
of u and v will be marked with exactly the same marking. However if u �= v
and the marking is valid, either the length of u and v are different or there will
be at least a single block which differs on at least one symbol between u and v.
Therefore, player Boris can have the following choices of challenges:

1. Challenge that player Anke did not make a valid marking, or
2. |u| �= |v|, or
3. the string in a specified block differs on at least one symbol between u and v.

Notice that u = v if and only if player Boris could not successfully challenge
player Anke. The first challenge will ensure that player Anke gave a valid mark-
ing. There are three possible cases of invalid marking:

(a) There is a # in u′ or v′ which is not given by a mark of 3. In this case, player
Boris may point out its exact position. Here, player Boris needs 1 step.

(b) For u and v, the first block is not marked with “20”. This can also be easily
pointed out by player Boris. Here, player Boris needs 1 step.

(c) For u and v, a block is not followed by its successor. This can be pointed out
by player Boris by checking two things: the length of the ‘successor’ block
should be less than or equal to the length of the ‘predecessor’ block plus one,
and the ‘successor’ block indeed should be the successor of the ‘predecessor’
block. Also, we note that the last block may be incomplete.
(i) The length case can be checked by looking at how many symbols there

are between the pair of 2’s bordering each block. Let p and q be the
length of ‘predecessor’ block and the ‘successor’ block respectively. In
the case that the ‘successor’ block is not the last block (not incomplete),
player Boris may challenge if p �= q and p + 1 �= q. This can be done by
marking both blocks with 1 separated by $ and the rest with dummy
symbols # and then doing the protocol for equality of the modified u
and v recursively. As player Boris may try to find the ‘short’ challenge,
player Boris will find the earliest block which has the issue and thus
make sure that p is at most logarithmic in the maximum of the lengths
of u and v. As q may be much larger than p, player Boris may limit the
second block by taking at most p + 2 symbols.

(ii) The successor case can be checked by the following observation. A suc-
cessor of a binary string can be calculated by finding the last 0 symbol
and flipping all digits from that position to the end while maintaining
the previous digits. As an illustration, the successor of “101100111” will



Alternating Automatic Register Machines 203

be “101101000” where the symbols are separated in 3 parts: the prefix
which is the same, the last 0 digit, which is underlined, becoming 1; and
all 1 digits on suffix becoming 0. Player Boris then may challenge the
first part not to be equal or the last part not to be the same length or not
all 1’s by providing the position of the last 0 on the ‘predecessor’ block
(or the last 1 on the ‘successor’ block, if any). Checking the equality of
two strings can be done recursively, also similarly applied for checking
the length. Notice a corner case of all 1’s which has the successor con-
sisting of 1 followed by 0’s with the same length, which can be handled
separately. Also notice that the ‘successor’ block may be incomplete if
it is the last block, which can also be handled in a similar manner as
above.

For the second challenge, player Boris can (assuming the marking is valid) check
whether the last two blocks of u and v are equal. Again, player Boris may limit
it for a ‘short’ challenge so the checking size is decreasing to its log. For the third
challenge, player Boris will specify the two blocks on u and v (same block on
both) which differ on at least one symbol between u and v. Again, same protocol
will apply and the size is decreasing to its log. Furthermore, both the marking
and selection of blocks are done in a single turn.

Thus, the above algorithm using one alternation of each of the players reduces
the problem to logarithmic in the size of the maximum of the lengths of u and
v. In particular, when the size of u and v are small enough, the checking will be
done in constant number of steps. Thus, the complexity of the problem satisfies:
T (mk+1) ≤ T (log mk), where mi denotes the maximum of the sizes of u and v at
step i. As the lengths of u, v at each step are bounded by the length of the whole
input string, the lemma follows. Note that either player can enforce that the
algorithm runs in log∗ n+O(1) steps. The player makes the own markings always
correct and challenges incorrect markings of the opponent at the first error so
that the logarithmic size descent is guaranteed. Challenged correct markings
always cause the size to go down once in a logarithmic scale. ��
Theorem 6. There is an NP-complete problem in AAL[log∗ n + O(1)].

Proof. Consider any encoding of a SAT formula in conjunctive normal form such
that after each variable occurrence there is a space for a symbol indicating the
truth value of that variable. For example, literals may be represented as + or
− followed by a variable name and then a space for the variable’s truth value,
clauses may be separated by semicolons, literals may be separated by commas
and a dot represents the end of the formula. Anke sets a truth value for each
variable occurrence in the formula and a dfa then checks whether or not between
any two semicolons, before the first semicolon and after the last semicolon there
is a true literal; if so, Boris can challenge that two identical variables received
different truth values. It is now player Anke’s job to prove that the two variables
picked by Boris are different. By the Log-Star Lemma, this verification needs
log∗ n + O(1) steps. Hence, CNF-SAT ∈ AAL[log∗ n + O(1)]. ��
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The Log-Star Lemma can also be applied, using a technique similar to that in
the proof of Theorem 6, to show that for any k ≥ 3, the NP-complete problem
k-COLOUR of deciding whether any given graph G is colourable with k colours
belongs to AAL[log∗ n + O(1)]. Using a suitable encoding of nodes, edges and
colours as strings, Anke first nondeterministically assigns any one of k colours to
each node and ensures that no two adjacent nodes are assigned the same colour;
Boris then challenges Anke on whether there are two substrings of the current
input that encode the same node but encode different colours.

The next theorem shows that the class AAL[log∗ n + O(1)] contains
NLOGSPACE.

Theorem 7. NLOGSPACE ⊆ AAL[log∗ n + O(1)].

Proof. Consider an NLOGSPACE computation that takes time nc. One creates
a new variable consisting of

√
n equal-sized blocks of length

√
n (so the overall

length is n) such that each block is used to store some configuration in the
history so that constantly many alternating rounds between two players allow
to check a LOGSPACE computation. Let s be the total number of steps on the
input. Anke guesses for each block the following information:

– The overall number of steps needed, s;
– The block number;
– The rounded number of steps done in this block (approximately s√

n
steps);

– The total number of steps done until this block;
– The starting configuration at this block;
– The ending configuration at this block.

Furthermore, the number of variables needed is 2c plus a constant.
Boris can now challenge that some configuration is too long or that the

number of digits is wrong or that the information at the end of one block does
not coincide with the information at the start of another block or that initial and
final configurations are not starting and ending configurations or select a block
whose computation has to be checked in the next round, again by distributing
the steps covered in this interval evenly onto

√
n blocks in the next variable.

By O(c) iterations, the distance of steps between two neighbouring config-
urations becomes 1. Now Boris can select two pieces of information copied to
check whether they are right or whether the LOGSPACE computation in the
last step read the symbol correctly out of the input word and so on. These checks
can all be done in log∗ n + O(1) steps. ��
As yet, we have no characterisation of those problems in NP which are in
AAL[O(log∗ n)] and we think that for each such problem it might depend heav-
ily on the way the problem is formatted. The reason is that it may be difficult
to even prove whether or not P is contained in AAL[O(log∗ n)], due to the fol-
lowing proposition. We will later show that the class PAAL[log∗ n+O(1)] which
is obtained from AAL[log∗ n + O(1)] by starting with one additional step which
generates a variable of polynomially sized length coincides with the polynomial
hierarchy (PH).
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Proposition 8. Assume that f is monotonically increasing and computed in
PSPACE and there is a polynomial p with f(n) ≤ p(n) for all n. Then
AAL[f(n)] ⊆ DSPACE[O(f(n) · (f(n) + n)] ⊆ DSPACE[O((n + f(n)) · f(n))] ⊆
DSPACE[O((n + p(n)) · p(n))] ⊂ PSPACE and P ⊆ AAL[f(n) + O(1)] implies
P ⊂ PSPACE.

Proof. This result follows from Theorem 3 (the condition f(n) ≥ n is not nec-
essary for the first inclusion relation to hold) and the space hierarchy theorem
[19, Corollary 9.4]. ��

4 Polynomial-Size Padded Alternating Automatic
Register Machine

An AARM is constrained by the use of bounded automatic relations during
each computation step. This is a real limitation: it can be shown that for any
f(n) = Ω(log log n), the class of languages recognised in time O(f(n)) by alter-
nating automatic register machines that use unbounded automatic relations con-
tains DSPACE

[
O(22

O(f(n))
)
]

[16], and so by Theorem 3 and the space hierarchy
theorem, this class properly contains AAL[O(f(n))]. In fact, the exponential
time hierarchy coincides with the class of languages recognised by AARMs using
unbounded automatic relations in log∗ n + O(1) steps.

We study the effect of allowing a polynomial-size padding to the input of an
Alternating Automatic Register Machine on its time complexity; this new model
of computation will be called a Polynomial-Size Padded Bounded Alternating
Automatic Register Machine (PAARM). The additional feature of a polynomial-
size padding will sometimes be referred to informally as a “booster” step of the
PAARM. Intuitively, padding the input before the start of a computation allows
a larger amount of information to be packed into the register’s contents during a
computation history. We show two contrasting results: on the one hand, even a
booster step does not allow an PAARM with time complexity O(1) to recognise
non-regular languages; on the other hand, the class of languages recognised by
PAARMs in time log∗ n + O(1) coincides with the polynomial hierarchy.

Formally, a Polynomial-Size Padded Bounded Alternating Automatic Regis-
ter Machine (PAARM) M is represented as a quintuple (Γ,Σ,A,B, p), where Γ
is the register alphabet, Σ the input alphabet, A and B are two finite sets of
instructions and p is a polynomial. As with an AARM, the register R initially
contains an input string over Σ, and R’s contents may be changed in response
to an instruction, J ⊆ Γ ∗ × Γ ∗ which is a bounded automatic relation. A com-
putation history of a PAARM with input w for any w ∈ Σ∗ is defined in the
same way that was done for an AARM, except that the initial configuration is
(�, x, wv) for some I� ∈ A, some x, v ∈ Γ ∗, (x,wv) ∈ I�, where v = @k for a
special symbol @ ∈ Γ − Σ and k ≥ p(|w|). Think of @k as padding of the input.
Anke’s and Boris’ strategies, denoted by A and B respectively, are defined as
before. For any u ∈ Γ ∗, a winning strategy for Anke with respect to (M,u) is
also defined as before. Given any w ∈ Σ∗, M accepts w if for every v ∈ @∗, with
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|v| ≥ p(|w|), Anke has a winning strategy with respect to (M,wv). Similarly, M
rejects w if for every v ∈ @∗, with |v| ≥ p(|w|), Boris has a winning strategy with
respect to (M,wv). Note that the winning strategies need to be there for every
long enough padding. If Anke and Boris do not satisfy the above properties, then
(A,B) is not a valid pair.

Definition 9. (Polynomial-Size Padded Bounded Alternating Auto-
matic Register Machine Complexity). Let M = (Γ,Σ,A,B, p) be a
PAARM and let t ∈ N0. For each w ∈ Σ∗, M accepts w in time t if for every
v = @k, where k ≥ p(|w|) and @ ∈ Γ − Σ, Anke has a winning strategy A
with respect to (M,wv) and for any strategy B played by Boris, the length of
H(A,B,M,wv) is not more than t. For any function f , PAAL[f(n)] is defined
analogously to AAL[f(n)].

Remark 10. Note that a PAARM-program can trivially simulate an AARM-
program by ignoring the generated padding; thus AAL[O(f(n))]⊆PAAL
[O(f(n))]. On the other hand, to simulate a booster step, an AARM-program
needs O(p(n)) steps as each bounded automatic relation step can only increase
the length by a constant.

As with AAL[O(f(n))], the class PAAL[O(f(n))] is closed under the usual set-
theoretic Boolean operations as well as regular operations [9, Theorem 16]. Our
main result concerning PAARMs is a characterisation of the polynomial hierar-
chy as the class PAAL[log∗ n + O(1)].

Theorem 11. PH = PAAL[log∗ n + O(1)].

To help with the proof, we first extend the Log-Star Lemma as follows. Recall
that a configuration (or instantaneous description) of a Turing Machine is rep-
resented by a string xqw, where q is the current state of the machine and x and
w are strings over the tape alphabet, such that the current tape contents is xw
and the current head location is the first symbol of w [12].

Lemma 12. Checking the validity of a Turing Machine step, i.e., whether a
configuration of Turing Machine follows another configuration (given as input,
separated by a special separator symbol) can be done in AAL[log∗ n+O(1)], where
n is the length of the shorter of the two configurations.

Proof. Let the input be the two configurations of the Turing Machine, where
the second configuration is supposedly the successive step of the first one and
separated by a separator symbol. Now there are two things that need to be
checked: (1) The configuration is “copied” correctly from the previous step.
Note that a valid Turing Machine transition will change only the cell on the
tape head and/or both of its neighbour; thus “copied” here means the rest of
the tape content should be the same; (2) The local Turing step is correct.

For the first checking, the player who wants to verify, e.g. Anke, will give the
infinite valid marking as used in the Log-Star Lemma. In addition, Anke also
marks the position of the old tape head on the second configuration. Boris can
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then challenge the following: (a) The Log-Star Lemma marking is not valid; (b)
The old tape head position is not marked correctly (in the intended position) on
the second configuration; (c) The string in a specified block differs, but not the
symbols around the tape head; (d) The length difference of the configuration is
not bounded by a constant.

Challenge (a) can be done in log∗ n + O(1) steps; this follows from the Log-
Star Lemma. Challenge (b) can also be done in log∗ n + O(1) steps where both
players reduce the block to focus on that position, and finally check whether it
is on the same position or not. Challenge (c) can also be done in log∗ n + O(1)
steps; this follows again from the Log-Star Lemma. Note that if Boris falsely
challenges that the different symbol is around the tape head, Anke can counter-
challenge by pointing out that at least one of its neighbours is a tape head. For
challenge (d), note that a valid Turing Machine transition will only increase the
length by at most one. Thus, Boris can pinpoint the last character of the shorter
configuration and also its pair on another configuration, then check whether the
longer one is only increased by up to one in length. This again can be done in
log∗ n + O(1) steps.

For the second checking about the correctness of the Turing step, it can
be done in a constant number of checks as a finite automaton can check the
computation and determine whether the Turing steps are locally correct, that
is, each state is the successor state of the previous steps head position and the
symbol to the left or right of the new head position is the symbol following
from the transition to replace the old symbol and so on. Therefore, all-in-all the
validity of a Turing Machine step can be checked in AAL[log∗ n + O(1)] steps.��
Proof Sketch of Theorem 11. We first prove that PAAL[log∗ n + O(1)] ⊆ PH.
Define a binary function Tower recursively as follows:

Tower(0, c) = 1

Tower(d + 1, c) = 2c·Tower(d,c).

We prove by induction that for each c ≥ 1, there is a c′ such that for all d,
Tower(d+c′, 1) > Tower(d, c). When c = 1, Tower(d, c) gives the usual definition
of the tower function. In particular, when c = 1, one has Tower(d + 1, c) >
Tower(d, c) for all d, so the induction statement holds for all c = 1 and all d.
Suppose that c > 1. Then there is some c′ large enough so that Tower(c′, 1) >
c2 = c2 · Tower(0, c), and so the induction statement holds for d = 0. Assume
by induction that c > 1 and that Tower(c′′ + d, 1) > c2 · Tower(d, c). Then
2Tower(c′′+d,1) > 2c2·Tower(d,c) ≥ (2c·Tower(d,c))c > c2 · 2c·Tower(d,c), and therefore
Tower(c′′ + d + 1, 1) > c2 · Tower(d + 1, c). This completes the induction step.

Suppose that c is the number of states of the automaton M corresponding
to the update function for the configuration of an AAL algorithm. Then the
size of the dfa to recognise whether or not a player wins within k steps is at
most Tower(k + 3, c). We prove that a dfa of size Tower(k + 2, c) recognises
whether Anke (resp. Boris) wins within k steps when she (resp. Boris) starts.
(We can similarly show that a dfa of size Tower(k+2, c) recognises whether Boris
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(resp. Anke) wins within k steps when Anke (resp. Boris) starts, so the union of
the two languages is recognised by a dfa of size at most Tower(k + 3, c).) Anke
wins in one step on input x iff for some y such that M accepts conv(y, x), for
all y′, M does not accept conv(y′, y); the latter condition can be checked with
a dfa of size 22

c

. She wins in zero steps on input x when Boris starts iff there
is no y such that M accepts (y, x), which can be checked with a dfa of size 2c.
So a dfa of size 2c+2c ≤ Tower(3, c) checks whether Anke wins within 1 step.
Assume inductively that there is a dfa Mk of size Tower(k + 2, c) accepting x iff
Anke wins within k steps on input x when Boris (resp. Anke) starts. Suppose
it is Anke’s turn to start and we need to check if she wins within k + 1 steps.
(A similar construction applies if it is Boris’ turn.) Define an nfa N as follows.
For each state p of M , make Tower(k + 2, c) states (p, q1), . . . , (p, qTower(k+2,c)),
where q1, . . . , qTower(k+2,c) are the states of Mk. Then each state (p, q) on input
x goes to each state (p′, q′) such that in M , there is a string y such that p
on conv(y, x) goes to p′ and in Mk, q on y goes to q′. The start state of N is
(p1, q1), where p1 and q1 are the start states of M and Mk respectively, and
the final states of N are states (pf , qf ) such that pf and qf are final states of
M and Mk respectively. Then N accepts x iff there is a string y such that M
accepts (y, x) and Anke wins within k steps on input y when Boris starts. The
nfa N , which is of size c · Tower(k + 2, c), can then be converted into a dfa M ′

of size 2c·Tower(k+2,c) = Tower(k + 3, c), as required. By the preceding result on
the function Tower, Tower(k + 3, c) is bounded by Tower(k + c′, 1) for some c′.
Thus any language in PAAL[log∗ n + O(1)] is recognised in a constant number
of alternating steps plus a predicate that can be computed by a dfa of size
Tower(log∗ n − 3, 1). This dfa can be computed in LOGSPACE since log∗ n can
be computed in logarithmic space. Then one constructs the dfa by determinizing
out the last step until it reaches size log log n. This happens only when only
constantly many steps are missing by the above tower result. These constantly
many steps can be left as a formula with alternating quantifiers followed by a
dfa computed in logarithmic space of size log log n. Thus the formula whether
Anke wins is in PH. Similarly for the formula whether Boris wins and so the
overall decision procedure is in PH.

For the proof that PH ⊆ PAAL[log∗ n + O(1)], we first note that PH can be
defined with alternating Turing machines [6]. We define ΣP

k to be the class of
languages recognised by alternating Turing Machine in polynomial time where
the machine alternates between existential and universal states k times starting
with existential state. We also define ΠP

k similarly but starting with universal
state. PH is then defined as the union of all ΣP

k and ΠP
k for all k ≥ 0. We now

show ΣP
k ∪ ΠP

k ⊆ PAAL[log∗ n + O(1)] for any fixed constant k. As the alter-
nating Turing Machine runs in polynomial time on each alternation, the full
computation (i.e., sequence of configurations) in one single alternation can be
captured non-deterministically in p(m) Turing Machine steps, for some polyno-
mial p (which we assume to be bigger than linear), where m is the length of the
configuration at the start of the alternation. In a PAARM-program, Anke first
invokes a booster step to have a string of length at least pk(n). After that, Boris



Alternating Automatic Register Machines 209

and Anke will alternately guess the full computation of the algorithm of length
p(pi(n)), i = 0, 1, . . ., in their respective alternation: Boris guesses the first p(n)
computations (the first alternation), Anke then guesses the next p(p(n)) com-
putations on top of it (the second alternation), etc. In addition, they also mark
the position of the read head and symbol it looks upon in each step. Ideally,
the PAARM-program will take k alternating steps to complete the overall algo-
rithm. Note that a PAARM can keep multiple variables in the register by using
convolution, as long as the number of variables is a constant. Thus, we could
store the k computations in k variables: v1, v2, · · · , vk. Now each player can have
the following choices of challenges to what the other player did: (1) Copied some
symbol wrongly from the input i.e. in v1; (2) Two successive Turing Machine
steps in the computation are not valid (at some vi); (3) The last Turing Machine
step on some computation (at some vi) does not follow-up with the first Turing
Machine step on the next computation (at vi+1). All the above challenges can be
done in log∗ n + O(1) steps by a slight modification of Lemma 12. In particular,
the third challenge needs one to compare the first Turing Machine configuration
of vi+1 and the last Turing Machine configuration vi, which can be done in a
way similar to the proof of Lemma 12. Thus, ΣP

k ∪ ΠP
k ⊆ PAAL[log∗ n + O(1)]

for every fixed constant k, therefore PH ⊆ PAAL[log∗ n + O(1)]. ��
Remark 13. As PAAL[log∗ n + O(1)] = PH, PAAL[log∗ n + O(1)] is closed
under polynomial time Turing reducibility. Similarly one can show that
PAAL[O(log∗ n)] is closed under polynomial time Turing reducibility. After Anke
invokes the booster step, Boris will guess the accepting computation together with
all of the oracle answers. Anke then can challenge Boris on either the validity of
the computation (without challenging the oracle) or challenge one of the oracle
answers. Both challenges can be done in the same fashion as in Theorem 11
but the latter needs one additional step to initiate the challenge of the oracle
algorithm.

In order to obtain the next corollary, we use the fact that the problem of deciding
TQBFf – the class of true quantified Boolean formulas with log∗ n+f(n)+O(1)
alternations – does not belong to any fixed level of the polynomial hierarchy (PH)
when PH does not collapse.

Corollary 14. If PH does not collapse and f is a logspace computable increasing
and unbounded function, then AAL[log∗ n + f(n) + O(1)] �⊆ PH.

Finally, we observe that if PH = PSPACE, then (i) by Theorem 11, PH =
PAAL[O(log∗ n)] = PSPACE; (ii) by Proposition 8, P �⊆ AAL[O(log∗ n)]; thus
AAL[O(log∗ n)] would be properly contained in PAAL[O(log∗ n)].

Proposition 15. If PH = PSPACE and f satisfies the precondition of Propo-
sition 8, then AAL[f(n)] ⊂ PAAL[log∗ n + O(1)] = PSPACE.

Theorem 16. If f is monotonically increasing and unbounded, then AAL[log∗ n
− f(n)] = REG.
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Proof. Assume that there is an AARM such that for each word w there is either
for Anke or for Boris a winning strategy of log∗ n−f(n) steps. Then by the tower
lemma, the resulting size of the dfa is O(log log n) for almost all n and input
words of length n. Thus the combined two dfas have at most size poly(log log n)
and there is no word w on which not exactly one accepts in the given time.
Now assume that for a given dfa of sufficient large n, there is a word w where
neither player succeeds in log∗ n − f(n) rounds, where the n is fixed. Due to the
pumping lemma, on words of arbitrary length with this property, one can pump
down these words until they have size below n. However, such short words with
this property do not exist by assumption. Thus for this fixed n, all words of
arbitrary length are accepted by computations of length log∗ n− f(n). Thus the
language is actually in AAL[O(1)] and in REG. ��
The main results on complexity classes defined by AARMs are summed up in
Fig. 1 while those on complexity classes defined by PAARMs are summed up in
Fig. 2. For any function f , AAL[f(n)] denotes the class of languages recognised
by an AARM in f(n) time. An arrow is labelled with (a) reference(s) to the
corresponding result(s) or definition(s) in the paper; folklore inclusions can be
found in [12,19]. Results not stated in the present section are proven in [9]. Note
that PSPACE =

⋃
k AAL[nk] by Corollary 4.

Fig. 1. Relationships between complexity classes/CNF-SAT. A solid arrow from X to
Y means that X is a proper subset of Y . A double-headed solid arrow between X and
Y means that X is equal to Y . If X is a subset of Y but it is not known whether they
are equal sets, then the arrow is dashed.

Fig. 2. Relationships between complexity classes.
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Abstract. Choreographic programming is an emerging programming
paradigm for concurrent and distributed systems, where developers write
the communications that should be enacted and a compiler then auto-
matically generates a distributed implementation.

Currently, the most advanced incarnation of the paradigm is Choral,
an object-oriented choreographic programming language that targets
Java.

Choral deviated significantly from known theories of choreographies,
and in particular introduced the possibility of expressing higher-order
choreographies that are fully distributed.

In this article, we introduce Chorλ, the first functional choreographic
programming language. It is also the first theory that explains the core
ideas of higher-order choreographic programming. We show that bridging
the gap between practice and theory requires developing a new evalua-
tion strategy and typing discipline for λ terms that accounts for the
distributed nature of computation in choreographies.

Keywords: Choreographies · Concurrency · Lambda calculus · Type
systems

1 Introduction

Choreographies are coordination plans for concurrent and distributed systems,
which prescribe the communications that system participants should enact in
order to interact correctly with each other. They are widely used in industry,
especially for documentation [17,21,32]. Essentially, choreographies are struc-
tured compositions of communications. These are expressed using a variation of
the communication term from security protocol notation, Alice->Bob : M , which
reads “Alice communicates the message M to Bob” [27].

Choreographic programming is an emerging programming paradigm aimed
at producing correct-by-construction distributed implementations of choreogra-
phies [16,20,24]. In this paradigm, programs are choreographies in which com-
munications are structured using standard control-flow constructs, e.g., condi-
tionals. A compiler then projects a choreography onto each participant, creating
an executable program, which enacts the expected message passing behaviour.
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Choreographies can be large in practice—some even over a hundred pages of
text [28]. Thus, it is important to study how choreographies can be made mod-
ular, enabling the writing (preferably disciplined by types) of large choreogra-
phies as compositions of smaller, reusable ones. The state-of-the-art on mod-
ularity in choreographic programming is currently represented by Choral, an
object-oriented choreographic programming language in which choreographies
are compiled to Java libraries that applications can use as protocol implemen-
tations [15]. Choral is the first choreographic programming language powerful
enough to support realistic, mainstream software development. In particular, it
introduced higher-order composition to choreographic programming—the abil-
ity to define and invoke choreographies parameterised over other choreographies.
Higher-order composition is essential to many practical scenarios, e.g. extensible
protocols. An example (covered in Sect. 4.2) is the Extensible Authentication
Protocol (EAP), a widely-employed link-layer protocol for the authentication of
peers connecting to a network [31]. EAP is parametric over a list of authentica-
tion protocols, and therefore requires higher-order composition.

In Choral, data types are equipped with (possibly many) roles, which are
abstractions of participants. This allows for writing object methods that involve
multiple roles (choreographic methods). We illustrate with an example from [15].

Example 1 (Authentication protocol in Choral [15]). Consider a distributed
authentication protocol in which a client (C) wishes to use its account at an
identity provider (I) to access a service (S). Such a protocol can be implemented
in Choral as follows.

class Authenticator@(S,C, I)
{ AuthResult@(C,S) authenticate(Credentials@C credentials){...} }

In the Choral code above, class Authenticator is distributed between the three
roles S, C, and I. Method authenticate takes the credentials of C (to access its
account) and returns the result of the authentication computed at I to C and S.
The result AuthResult@(C,S) is a pair of session tokens, one located at C and
the other at S (if the authentication fails, these will be empty). The interested
reader can see how this example can be implemented in Chorλ in [6]. �

While Choral demonstrated the usefulness of higher-order choreographies,
its development was driven by practice, and it is not grounded in any existing
theory. In particular, the typing and semantics of higher-order choreographies is
not formally understood yet. The current contribution aims at closing this gap.

This Article. We present the choreographic λ-calculus, Chorλ for short, a
theory of choreographic programming that supports higher-order, modular com-
position.

Chorλ is the first choreographic programming model based on λ-calculus,
which has two advantages. First, we can tap on a well-known foundation for
higher-order programming. Second, it reveals that the key design features of
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Choral work in the context of functional programming as well. In this way,
Chorλ is also the first instance of functional choreographic programming.

Chorλ is expressive enough to serve as a model of the core features of Choral,
which we illustrate by recreating some of the key examples given as motivation
in the original presentation of Choral [15] (including remote computation, secure
key exchange, and single sign-on) in our functional setting. We also model a more
sophisticated scenario based on the Extensible Authentication Protocol (EAP).
Our examples demonstrate that Chorλ allows for parameterising choreographies
over different communication semantics, enabling protocol layering, a first for
theory of choreographic programming.

To capture the essence of higher-order choreographies in the λ-calculus,
we extend its syntax with features from choreographies and ambient calculi
(Sect. 2.1) [3,25]. Namely, in Chorλ, data has explicit location and can be moved
between roles using communication primitives. Another innovative feature is
that the term for performing a communication is a function, and can therefore
be composed with other terms as usual in functional programming.

We develop a typing discipline for Chorλ where types are located at roles
(Sect. 2.2). The key novelty of our type system is that it tracks which roles are
involved in which terms; this requires extending the standard connective for
typing functions and a dedicated environment in typing judgements.

Another key contribution of this paper is a semantics for choreographies
(Sect. 3) in Chorλ. Formulating an appropriate semantics has been particularly
challenging, because there is no prior evaluation strategy for the λ-calculus that is
suitable for functional choreographies. Since choreographies express distributed
computation, theories of choreographic languages typically support out-of-order
execution for subterms that can be evaluated at independent locations [2]. How
to formulate the necessary inference rules is well-known in the imperative setting,
but it has never been studied in others. This notion of out-of-order execution
makes it possible to project the behaviour of each participant and get a corre-
spondence between their behaviours and that of the choreography. This devel-
opment is outside the scope of the current contribution; the interested reader
can find the full discussion in the accompanying technical report [6].

Structure of the Paper. Chorλ, along with its typing, is presented in Sect. 2. Its
semantics and key properties are discussed in Sect. 3. Examples of choreogra-
phies inspired by practice are given in Sect. 4. Related work is given in Sect. 5.
Conclusions are presented in Sect. 6.

2 The Choreographic λ-calculus

In this section we introduce the Choreographic λ-calculus, Chorλ. This calculus
extends the simply typed λ-calculus [5] with recursion, choreographic terms for
communication, and roles.

Roles are independent participants in a system based on message passing.
Terms in Chorλ are located at roles, to reflect distribution. For example, the
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value 5@Alice reads “the integer 5 at Alice”. Terms are typed with novel data
types that are annotated with roles. In this case, 5@Alice has the type Int@Alice,
read “an integer at Alice”.

Values can be moved from a role to another using a communication primitive.
For example, the term comAlice,Bob 5@Alice represents the communication of the
value 5 from Alice to Bob. This term evaluates to 5@Bob and has type Int@Bob.

2.1 Syntax

Definition 1. The syntax of Chorλ is given by the following grammar

M ::= V | f(�R) | M M | case M of Inl x ⇒ M ; Inr x ⇒ M | selectR,R l M

V ::= x | λx : T .M | Inl V | Inr V | fst | snd | Pair V V | ()@R | comR,R

T ::= T →ρ T | T + T | T × T | ()@R | t@�R

where M is a choreography, V is a value, T is a type, x is a variable, l is a label,
f is a choreography name (or function name), R is a role, ρ is a set of roles,
and t is a type variable.

Abstraction λx : T.M , variable x and application MM are as in the standard
(simply typed) λ-calculus, and pairs and sums are added in the standard way.
For the sake of simplicity, constructors for sums (Inl and Inr) and products
(Pair) are only allowed to take values as inputs, but this is only an apparent
restriction: we can define, e.g., a function inl as λx : T .Inl x and then apply it to
any choreography. Similarly, we can define the functions inr and pair (the latter
for constructing pairs). We use these utility functions in our examples. Sums and
products are deconstructed in the usual way, respectively by the case construct
and by the fst and snd primitives.

The primitives comS,R and selectS,R l M (where S and R are roles) come
from choreographies and are the only primitives of Chorλ that introduce inter-
action between roles. The term comS,R is a communication: it acts as a function
that takes a value at role S and returns the same value at role R. The stan-
dard choreographic primitive for synchronous communication Alice->Bob : M is
recovered as the function application comAlice,Bob M . The term selectS,R l M is a
selection, where S informs R that it has selected the label l before continuing as
M . Selections are needed for realisability: with this interaction, S communicates
its internal choice to R so that both agree on their future behaviour. Labels are
constants chosen from a fixed set (e.g., {left, right, start, stop, . . . }).

Finally, f(�R) stands for a (choreographic) function f instantiated with the
roles �R, which evaluates to the body of the function as given by an environment of
definitions (a mapping from function names to choreographies). Function names
are used to model recursion. In the typing and semantics of Chorλ, we use D
to range over mappings of function names to choreographies. Within a chore-
ography, there is no need to distinguish between roles that are statically fixed
and role parameters: inside of a function definition, roles are parameters of the
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function; otherwise, roles are statically determined. All roles are treated in the
same way by our theory.

To illustrate base values, we also have a term ()@R which denotes a unit
value at the role R—other base values, like 5@R used in the examples above,
can be easily included following the same approach. Values are not limited to one
role in general; for example, Pair ()@S ()@R denotes a distributed pair where
the first element resides at S and the second at R. We say a choreography (or
value or type) is local to R if R is the only role mentioned in any subterm of the
choreography, e.g., λx : ()@R.(Pair x ()@R) is a local function located at R.

Types in Chorλ record the distribution of values across roles: if role R occurs
in the type given to V , then part of V will be located at R. Because a function
may involve more roles besides those listed in the types of their input and output,
the type of abstractions T →ρ T ′ is annotated with a set of roles ρ denoting
the roles that may participate in the computation of a function with that type
besides those occurring in the input T or the output T ′. We often omit this
annotation if the set of additional roles is empty, writing T → T ′ instead of
T →∅ T ′. For example, if Alice wants to communicate an integer to Bob directly
(without intermediaries), then she should use a choreography of type Int@Alice →
Int@Bob; however, if the communication might go through a proxy, then she can
use a choreography of type Int@Alice →{Proxy} Int@Bob. This annotation is vital
to the theory of projection, which is not presented in this paper.1

Aside from the annotations on arrows, our types resemble those of simply
typed λ-calculus and serve the same primary purpose of keeping track of input
and output of functions in order to prevent nonsensical choreographies. Consider
the function h = λx : Int@Alice.comProxy,Bob (comAlice,Proxy x), which communi-
cates an integer from Alice to Bob by passing through an intermediary Proxy and
has the type Int@Alice →{Proxy} Int@Bob. For any term M , the composition h M
makes sense if the evaluation of M returns something of the type expected by
h, that is Int@Alice. The composition h 5@Alice makes sense, but h 5@Bob does
not, because the argument is not at the role expected by h.

Types for sums and products are the usual ones. The type of units is anno-
tated with the role where each unit is located; ()@R is the type of the unit
value available (only) at role R. Recursive type variable t@�R are annotated with
the roles �R, instantiating the roles occurring in their definition (we discuss type
definitions in Sect. 2.2).

Definition 2 (Roles of a type). The roles of a type T , roles(T ), are defined
as follows.

roles(t@�R) = �R roles(T →ρ T ′) = roles(T ) ∪ roles(T ′) ∪ ρ

roles(()@R) = {R} roles(T + T ′) = roles(T × T ′) = roles(T ) ∪ roles(T ′)

In our examples we also assume the usual datatypes for integers (Int) and
strings (String) together with their usual operations.

1 The interested reader can find it in Fig. 6, in the appendix.
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Example 2 (Remote Function). We can use Chorλ to define a small choreog-
raphy, remFun(C,S) for a distributed computation in which a client, C sends
an integer val to a server S where a function fun located at S is applied to val
before the result gets returned to C.

remFun(C,S) = λf : Int@S → Int@S. λv : Int@C. comS,C (f (comC,S v))

This choreography is parametrised on the roles S and C as well as the local
function fun and value val . �

Crucially, a choreographic term M may involve more roles than those listed
in its type. For instance, the three choreographies (()@R), (comS,R ()@S), and
(comP,R (comS,P ()@S)) all have type ()@R, but they implement different
behaviours involving different roles. This yields a substitution principle for chore-
ographies that makes them compositional, and will be important in establishing
type preservation later.

A key concern of choreographic languages is knowledge of choice: the property
that when a choreography chooses between alternative branches (as with our
case primitive), all roles that need to behave differently in the branches are
properly informed via appropriate selections [4]. We give an example of how
selections should be used.

Example 3 (Remote Map). We now build on the remote function from Example
2 by using it to create a choreography remMap(C,S), where the server S applies
a local function to not just one value received from the client C, but instead to
each element of a list sent individually from C to S and then returned after the
computation at S is complete.

remMap(C, S) = λf : Int@S → Int@S. λlist : [Int]@C.
case list of
Inl x ⇒ selectC,S stop ()@C;
Inr x ⇒ selectC,S go cons(C) (remFun(C, S) f (fst x)) (remMap(C, S) f (snd x))

Here, [Int]@C is the recursive type satisfying [Int]@C = ()@C+(Int@C×[Int]@C),
representing a list of integers and cons(C) is the usual list constructor located at
C. In general, we write [t]@(R1, . . . , Rn) to mean the recursive type satisfying

[t]@(R1, . . . , Rn) = (()@R1×· · ·×()@Rn)+(t@(R1, . . . , Rn)×[t]@(R1, . . . , Rn)).

When we introduce typing judgements later, we will show how to work with this
kind of type equations.

The choreography uses selections so that S is informed about how it should
behave (terminate or recur) depending on a local choice at C. This is essential
if the choreography is to be implemented in a fully distributed way, since the
information is initially available only at C. Notice how the case is evaluated on
data at role C, so that role is the only one initially knowing which branch has
been chosen. Each branch, however, starts with role C sending a label to role S.
On the other hand, S must wait to receive a label from C to figure out whether
it should terminate (label stop) or continue (label again): from its point of view,
S is reactively handling a stream. �
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x : T ∈ Γ roles(T ) ⊆ Θ

Θ; Σ; Γ � x : T
[TVar]

Θ; Σ; Γ � N : T →ρ T ′ Θ; Σ; Γ � M : T

Θ; Σ; Γ � N M : T ′ [TApp]

f( �R′) : T ∈ Γ �R ⊆ Θ ||�R|| = || �R′|| distinct(�R)

Θ; Σ; Γ � f(�R) : T [ �R′ := �R]
[TDef]

Θ′; Σ; Γ, x : T � M : T ′ ρ ∪ roles(T ) ∪ roles(T ′) = Θ′ ⊆ Θ

Θ; Σ; Γ � λx : T.M : T →ρ T ′ [TAbs]

roles(T ) = {S} {S, R} ⊆ Θ

Θ; Σ; Γ � comS,R : T →∅ T [S := R]
[TCom]

Θ; Σ; Γ � M : T {S, R} ⊆ Θ

Θ; Σ; Γ � selectS,R l M : T
[TSel]

Θ; Σ; Γ � M : t@ �R′ t@�R =Σ T �R′ ⊆ Θ ||�R|| = || �R′|| distinct( �R′)

Θ; Σ; Γ � M : T [�R := �R′]
[TEq]

Fig. 1. Typing rules for Chorλ (representative selection).

Free and bound variables are defined as expected, noting that x and y are
bound in case M of Inl x ⇒ M ′; Inr y ⇒ M ′′. We write fv(M) for the set of
free variables in term M . The formal definition can be found in [6]. We call a
choreography closed if it has no free variables, and restrict our results to closed
choreographies.

2.2 Typing

We now show how to type choreographies following the intuitions already given
earlier. Typing judgements have the form Θ;Σ;Γ � M : T , where: Θ is the set
of roles used for typing M ; Σ is a set of type definitions parameterised on roles,
i.e., expressions of the form t@�R = T where the elements of �R are distinct; and
Γ is a typing environment, i.e. a list of assignments of variable names to their
type (x : T ) and of choreography names to the their set of bound roles and type
(f(�R) : T ). We require that a type variable t is defined at most once in Σ, that
definitions are contractive [29], and that roles(T ) = �R for any t@�R = T ∈ Σ.
We can use Σ to define common types such as Bool@R = ()@R + ()@R and
the lists described in Example 3. We call Θ;Σ;Γ a typing context. Many of the
rules resemble those for simply typed λ-calculus, but with roles added, and the
additional requirements that only the roles in the type are used in the term being
typed. We include some representative ones in Fig. 1 (the complete typing rules
are given in [6]). We use the predicate distinct(�R) to indicate that the elements
of �R are distinct and ||�R|| to denote the number of elements of �R.

One novel part of our type system is the annotation ρ on the function type
T →ρ T ′, which, while not necessary for the results of this paper, ensures that
the type of any value contains all the roles of that value. Rule TAbs uses Θ to
ensure that ρ contains every additional role used in the function by requiring
every role to be in Θ and restricting Θ to the roles of T , ρ, and T ′.
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Rules TVar,TDef,TAbs exemplify how role checks are added to the stan-
dard typing rules for simply typed λ-calculus. Rule TCom types communication
actions, moving subterms that were placed at role S to role R (here T [S := R]
is the type expression obtained by replacing S with R). Note that the type of
the value being communicated must be located entirely at S. Rule TSel types
selections as no-ops, only checking that the sender and receiver of the selection
are legal roles. Rule TEq allows rewriting a type according to Σ in order to
mimic recursive types (see Example 3).

We also write Θ;Σ;Γ � D to denote that a set of definitions D, mapping
names to choreographies, is well-typed. Sets of definitions play a key role in the
semantics of choreographies, and can be typed by the rule below.

∀f(�R) ∈ domain(D) : f(�R) : T ∈ Γ �R;Σ;Γ � D(f(�R)) : T distinct(�R)
Θ;Σ;Γ � D

Example 4. The set of definitions in Examples 2 and 3 can be typed in the typing
context:

Θ = {C,S} Σ = {[Int]@R = ()@R + (Int@R × [Int]@R)}

Γ =

{
remFun(C,S) : (Int@S → Int@S) → Int@C → Int@C,

remMap(C,S) : (Int@S → Int@S) → [Int]@C → [Int]@C

}

�

3 Semantics of Chorλ

Chorλ comes with a reduction semantics that captures the essential ingredients
of the calculi that inspired it: β- and ι-reduction from λ-calculus, and the usual
reduction rules for communications and selections. Some representative rules are
given in Fig. 2.

The key idea of our semantics is that terms at different roles can be evalu-
ated independently, unless interaction is specified within the choreography. This
kind of role-based out-of-order execution is typical for choreographic calculi [2],
but we port it to λ-calculus here for the first time. In addition to functional
choreographies having a different structure to imperative, out-of-order execution
in higher-order choreographies is complicated by having actions where multiple
roles are involved but no synchronisation happens, namely applications of values
located at multiple roles such as choreographies and pairs with elements located
at different roles.

The semantics are annotated with a label, �, and a set of synchronising roles,
R. The label is either λ, when an action is propagated out through a λ-term
as in rule InAbs, or τ otherwise. The set of synchronising roles is empty if no
synchronisations are taking place. The purpose of the label and synchronising
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λx : T.M V
τ,∅−−→D M [x := V ]

[AppAbs]
M

�,R−−→D M ′

λx : T.M
λ,R−−→D λx : T.M ′

[InAbs]

M
�,R−−→D M ′ � = λ ⇒ R ∩ roles(N) = ∅

M N
τ,R−−→D M ′ N

[App1]

N
τ,R−−→D N ′

V N
τ,R−−→D V N ′

[App2]
N

τ,R−−→D N ′ R ∩ roles(M) = ∅
M N

τ,R−−→D M N ′
[App3]

N
τ,R−−→D N ′

case N of Inl x ⇒ M ; Inr x′ ⇒ M ′ τ,R−−→D case N ′ of Inl x ⇒ M ; Inr x′ ⇒ M ′
[Case]

M1
�,R−−→D M ′

1 M2
�,R−−→D M ′

2 R ∩ roles(N) = ∅
case N of Inl x ⇒ M1; Inr x′ ⇒ M2

�,R−−→D case N of Inl x ⇒ M ′
1; Inr x′ ⇒ M ′

2

[InCase]

case Inl V of Inl x ⇒ M ; Inr x′ ⇒ M ′ τ,∅−−→D M [x := V ]
[CaseL]

fst Pair V V ′ τ,∅−−→D V
[Proj1]

D(f( �R′)) = M

f(�R)
τ,∅−−→D M [ �R′ := �R]

[Def]

fv(V ) = ∅
comS,R V

τ,{S,R}−−−−−→D V [S := R]
[Com]

selectS,R l M
τ,{S,R}−−−−−→D M

[Sel]

M
�,R−−→D M ′ R ∩ {S, R} = ∅

selectS,R � M
�,R−−→D selectS,R � M ′

[InSel]
M �∗ N N

τ,R−−→ M ′

M
τ,R−−→D M ′

[Str]

Fig. 2. Semantics of Chorλ.

roles is to ensure that synchronisations between the same roles occur in the
expected order, the importance of which will become clear later.

Rules AppAbs, App1 and App2 implement a call-by-value λ-calculus. Rules
Case and CaseL and its counterpart rule CaseR implement ι-reductions for
sums, and likewise for rules Proj1 and Proj2 wrt pairs. The communication
rule Com changes the associated role of a value, moving it from S to R, while the
selection rule Sel implements selection as a no-op. Rule Def allows reductions
to use choreographies defined in D.

In addition to the fairly standard λ-calculus semantics, we have some rules for
out-of-order execution. These include rewriting terms as described in Fig. 3 and
being able to propagate some transitions past an abstraction, case, and selection
as in rules InAbs,InCase and InSel. We also have a “role-aware” variation of
full β-reduction by using rule App3, the need for which is illustrated by Example
5. These rules serve the purpose of making our semantics decentralised, in the
sense that actions at distinct roles can proceed independently.
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x /∈ fv(M ′)

((λx : T.M) N) M ′ � (λx : T.(M M ′)) N
[R-AbsR]

x /∈ fv(M ′) sroles(M ′) ∩ roles(N) = ∅
M ′ ((λx : T.M) N) � (λx : T.(M ′ M)) N

[R-AbsL]

x, x′ /∈ fv(M)

(case N of Inl x ⇒ M1; Inr x′ ⇒ M2) M �
case N of Inl x ⇒ (M1 M); Inr x′ ⇒ (M2 M)

[R-CaseR]

x, x′ /∈ fv(M) sroles(M) ∩ roles(N) = ∅
M (case N of Inl x ⇒ M1; Inr x′ ⇒ M2) �

case N of Inl x ⇒ (M M1); Inr x′ ⇒ (M M2)

[R-CaseL]

(selectS,R l N) M � selectS,R l (N M)
[R-SelR]

sroles(M) ∩ roles(N) = ∅
M (selectS,R l N) � selectS,R l (M N)

[R-SelL]

Fig. 3. Rewriting of Chorλ.

Example 5. Consider the choreography M = f(S) ((λx : T@R.V @S) V ′@R).
(Note that we abuse notation when we write V @S and T@R to denote that
V and T are located entirely at roles S and R, respectively, though this is not
part of the syntax of Chorλ.) The choreography includes two independent roles,
R and S, but the two never actually interact: the inner application involves
an abstraction and an argument located only at R, so it should be evaluated
independently of S. Likewise, f(S) is located entirely at role S, so it should be
evaluated independently of R.

Without rule App3, M would be unable to evaluate the inner application
before f(S) finished running, which may be never if f diverges, breaking the
assumption that roles execute in a decentralised way. �

The rewriting rules are not standard for the λ-calculus, but they are not as
strange as they first appear. Take, for example, rule R-AbsR; it simply states
that if you have a function with two variables, λx : T.λy : T ′.M , then x and y can
be instantiated in any order as long as they each get the correct value. On the
other hand, rule R-AbsL says that more of the computation can be pushed into
an abstraction so long as it does not affect the order of synchronisations. The
other rewriting rules work on similar principles, but dealing with conditionals
and selections. These rules all work to ensure that while actions can be performed
in different orders the result of the computation must remain the same before
and after rewriting. In Example 6 we see why we need the rewriting rules in
order to support the out-of-order executions necessary for the choreography to
allow concurrent execution of computations located at different roles.
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Example 6 (Rewriting). Consider the choreography with an abstraction at S
inside an abstraction at R, M = ((λx : ()@R.λx′ : T@S.()@S) f(R)) V @S.
As in Example 5, R and S each independently execute their part of the
choreography. R evaluates f(R) and then applies the result. Independently,
S, executes the other application λx′ : T@S.()@S V @S. For M to be able
to execute the application at S independently of R’s actions, we need rule
R-AbsR to get λx : T@S.()@S and V @S next to each other by rewriting to
((λx : ()@R.(λx : T@S.()@S) V @S) f(R)) and rule InAbs to propagate the
application of (λx : T@S.()@S) and V @S past λx : ()@R. �

Some of the out-of-order-execution rules, specifically the ones pushing the
left part of an application further in, have restrictions on them because we want
to avoid there being more than one communication or synchronisation available
at the same time on the same roles. This is because we need to ensure that
communications and selections on a specific set of roles must always happen in
the same order, as we otherwise get the problems illustrated by Example 7.

Example 7 (Communication order). Consider a choreography with two comS,R

primitives, M = (λx : T@R.(comS,R V @S)) (comS,R V ′@S). This has a similar
structure to ((λx : ()@R.(λx′ : T@S.M) V @S) f(R)) from Example 6, with
part of the computation hidden behind an abstraction. However, while Example
6 needed to use rule InAbs to allow the computation inside of the abstraction
to execute before the computation outside, doing so would cause problems in
(λx : T@R.(comS,R V @S)) (comS,R V ′@S).

Without going into the technical details, intuitively, the behaviour of M at
R should be (λx : T .(recvS ⊥)) (recvS ⊥) and the behaviour at S should be
(λx : ⊥.(sendR V )) (sendR V ′) where sendR and recvS are the obvious local
actions implementing comS,R. In these behaviours, term ⊥ denotes a part of
the computation that takes place elsewhere.

It is common in choreographic programming, including in Choral, for the
implementation of choreographies to assume that each pair of roles has one
channel between them, which they use for all communications. In such a model,
if the two communications can be performed in any order then S is currently able
to send either V or V ′ and R is correspondingly able to receive either inside or
outside the abstraction. Since S and R act independently, we have no guarantee
that if S chooses to send V first R will also choose to use its left receive action
or vice versa. This can create situations where S sending V synchronises with
the right receive at R, creating a state not intended by the choreography. �

We therefore restrict the out-of-order communications by restricting the syn-
chronising names in rules InAbs,App1,App3,InCase and InSel. To show that
these rules restrict as intended, we have Proposition 1 stating that any reductions
available at the same time must have different (or no) synchronisation roles.

Proposition 1. Given a choreography M , if M
�,R−−→ M ′ and M

�′,R′
−−−→ M ′′ and

there does not exist N such that M ′ �∗ N , and M ′′ �∗ N , then R ∩ R′ = ∅.
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Proof. The key here is that unless these transitions are either communications or
selections, R and R′ are empty. Once this is clear, the rest follows by induction
on M . ��

We use the label λ in rule InAbs to restrict out-of-order communications,
since we do not know which roles we need to restrict communication on in
situations such as Example 7 until we reach the application, at which point the
λ label becomes a τ again if it is allowed to propagate.

The restrictions on out-of-order communication in out-of-order execution
rules force us to add similar restrictions in the rewriting rules, as illustrated
by Example 8. For this purpose we use the concept of synchronisation roles.

Definition 3. We define the set of synchronising roles of a choreography M ,
sroles(M), by recursion on the structure of M :

sroles(comS,R) = {S,R}, sroles(selectS,R l M) = {S,R} ∪ sroles(M),
sroles(f(�R)) = �R, and homomorphically on all other cases.

Example 8. Consider a choreography with two communications between S and
R, (comS,R V @S) ((λx : T@R.M) (comS,R V ′@S)). Here, thanks to rule App3
restricting on synchronisation roles, only the left comS,R on V is available. If
rule R-AbsL had no restriction on synchronisation roles, we could rewrite the
choreography to (λx : T@R.((comS,R V @S) M)) (comS,R V ′@S). This instead
leaves the rightmost comS,R on V ′ available. This means we have both commu-
nication available depending on whether we decide to rewrite and we have the
same problem as in Example 7 of S potentially choosing to send V while R has
rewritten and is expecting to receive the left comS,R. We therefore do not allow
such a rewrite and use synchronisation roles to prevent it. �

We now show that closed choreographies remain closed under reductions.

Proposition 2. Let M be a closed choreography. If M →D M ′ then M ′ is
closed.

Proof. Straightforward from the semantics. ��
A hallmark property of choreographies is that well-typed choreographies

should continue to reduce until they reach a value. We split this result into
two independent statements.

Theorem 1 (Progress). Let M be a closed choreography and D a collection
of named choreographies with all the necessary definitions for M . If there exists
a typing context Θ;Σ;Γ such that Θ;Σ;Γ � M : T and Θ;Σ;Γ � D, then
either M is a value (and M → D) or there exists a choreography M ′ such that

M
τ,R−−→D M ′.

Proof. Follows by induction on the typing derivation of Θ;Σ;Γ � M : T . See
details in [6]. ��



224 L. Cruz-Filipe et al.

Theorem 2 (Type Preservation). Let M be a choreography and D a collec-
tion of named choreographies with all the necessary definitions for M . If there
exists a typing context Θ;Σ;Γ such that Θ;Σ;Γ � M : T and Θ;Σ;Γ � D, then
Θ;Σ;Γ � M ′ : T for any M ′ such that M

�,R−−→D M ′.

Proof. Follows from induction on the derivation of M
�,R−−→D M ′. See details in

[6]. ��
Combining these results, we conclude that if M is a well-typed, closed, chore-

ography, then either M is a value or M reduces to some well-typed, closed chore-
ography M ′. Since M ′ still satisfies the hypotheses of the above results, either
it is a value or it can reduce.

4 Illustrative Examples

In this section, we illustrate the expressivity of Chorλ with some representative
examples. Specifically, we use Chorλ to implement the Diffie-Hellman protocol
for key exchange [14] and the Extensible Authentication Protocol [31]. The first
is used in [15] to illustrate the expressiveness of Choral, and we show how it can
be adapted to Chorλ’s functional paradigm. The second example requires using
higher-order composition of choreographies, as the choreography is parametrised
on a list of authentication protocols. Chorλ is the first theory capable of mod-
elling these choreographies as they are parametric on roles and include functions
which are parametric on other choreographies and no previous formalism includes
both these features.

4.1 Secure Communication

We write a choreography for the Diffie–Hellman key exchange protocol [14],
which allows two roles to agree on a shared secret key without assuming secrecy
of communications. As in Example 3, we use the primitive type Int.

To define this protocol, we use the local function modPow(R) of the type

modPow(R) : Int@R → Int@R → Int@R → Int@R

which computes powers with a given modulo. Like all local functions in Chorλ,
modPow(R) is modelled by a choreography located entirely at one role. Given
modPow(R), we can implement Diffie–Hellman as the following choreography:

diffieHellman(P,Q) =
λpsk : Int@P . λqsk : Int@Q. λpsg : Int@P .
λqsg : Int@Q. λpsp : Int@P . λqsp : Int@Q.

pair (modPow(P ) psg (comQ,P (modPow(Q) qsg qsk qsp)) psp)
(modPow(Q) qsg (comP,Q (modPow(P ) psg psk psp)) qsp)
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Given the individual secret keys (psk and qsk) and a previously publicly
agreed upon shared prime modulus and base (psg = qsg, psp = qsp), the par-
ticipants exchange their locally-computed public keys in order to arrive at a
shared key that can be used to encrypt all further communication. This means
diffieHellman(P,Q) has the type:

Int@P → Int@Q → Int@P → Int@Q → Int@P → Int@Q → Int@P × Int@Q

and represents the shared key as a pair of equal keys, one for each participant.
Using the key exchange protocol, we can now build a reusable utility that

allows us to achieve secure bidirectional communication between the parties,
by encrypting and decrypting messages with the shared key at the appropriate
endpoints. For this we assume two functions that allow us to encrypt and decrypt
a String message with a given Int key:

enc(R) : Int@R → String@R → String@R

dec(R) : Int@R → String@R → String@R

The choreography then takes a shared key as its parameter and produces a
pair of unidirectional channels that wrap the communication primitive with the
necessary encryption based on the key:

makeSecureChannels(P,Q) = λkey : Int@P × Int@Q.
Pair (λval : String@P . (dec(Q) (snd key) (comP,Q (enc(P ) (fst key) val))))

(λval : String@Q. (dec(P ) (fst key) (comQ,P (enc(Q) (snd key) val))))

The fact that this choreography returns a pair of channels can also be seen
from its type:

(Int@P × Int@Q) → ((String@P → String@Q) × (String@Q → String@P ))

Using the channels is as easy as using com itself and amounts to a function
application.

4.2 EAP

Finally, we turn to implementing the core of the Extensible Authentication Pro-
tocol (EAP) [31]. EAP is a widely-employed link-layer protocol that defines an
authentication framework allowing a peer P to authenticate with a backend
authentication server S, with the communication passing through an authenti-
cator A that acts as an access point for the network.

The framework provides a core protocol parametrised over a set of authenti-
cation methods (either predefined or custom vendor-specific ones), modelled as
individual choreographies with type AuthMethod@(P,A, S) = String@S →{P,A}
Bool@S. For this reason, it is desirable that the core of the protocol be written
in a way that doesn’t assume any particular authentication method.

The eap(P,A, S) choreography does exactly that by leveraging higher-order
composition of choreographies:
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eap(P,A, S) = λmethods : [AuthMethod]@(P,A, S).
eapAuth(P,A, S) (eapIdentity ”auth request”@S) methods

eapAuth(P,A, S) = λid : String@S. λmethods : [AuthMethod]@(P,A, S).
if empty(P,A, S) methods then

eapFailure(P,A, S) ”try again later”@S
else

if (fst methods) id then
selectS,P ok (selectS,A ok (eapSuccess(P,A, S) ”welcome”@S))

else
selectS,P ko (selectS,A ko (eapAuth(P,A, S) id (snd methods)))

For the sake of simplicity, we have left out the definitions of a couple of helper
choreographies that are referenced in the example:

eapIdentity(P,A, S) : String@S →{P,A} String@S

eapSuccess(P,A, S) : String@S → (String@P × String@A)
eapFailure(P,A, S) : String@S → (String@P × String@A)

eap(P,A, S) fetches the client’s identity using eapIdentity(P,A, S), a function
which exchanges the EAP packets and delivers the client’s identity to the server.

Once the identity is known, eapAuth(P,A, S) is invoked in order to try the list
of authentication methods until one succeeds, or the list is exhausted and authen-
tication fails. EAP is parametric on a choreography, or in this case a list of chore-
ographies, methods. We use the notation for lists in [AuthMethod]@(P,A, S) as
described in Example 3, while the function empty(P,A, S) allows us to determine
whether the list of methods is empty. Note that each authentication method can
be an arbitrarily-complex choreography with its own communication structures
that can involve all three involved roles, and implements a particular authenti-
cation method on top of EAP.

Finally, depending on the outcome of the authentication, an appropriate EAP
packet is sent with either eapSuccess(P,A, S) or eapFailure(P,A, S) to indicate
the result to the client.

5 Related Work

We already discussed much of the previous and related work on choreographic
languages and choreographic programming in Sect. 1. In this section, we discuss
relevant technical aspects in related work more in detail.

Chorλ is inspired by Choral [15], the first higher-order choreographic pro-
gramming language. As we discussed in Sect. 1, Choral comes with no formal
explanation of its semantics, typing, and guarantees. We have covered these in
the present article, showing that it is possible to formulate semantics and types
of higher-order choreographies that satisfy the expected properties (out-of-order
execution with progress).

There exist theories of choreographies that support some form of higher-order
composition, which are more restrictive than Choral and Chorλ [13,18]. In par-
ticular, they fall short of capturing distribution, both in terms of independent
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execution and data structures. In [13], the authors present a choreographic lan-
guage for writing abstract specifications of system behaviour (as in multiparty
session types [19]) that supports higher-order composition. Compared to Chorλ,
the design of the language hampers decentralisation: entering a choreography
requires that the programmer picks a role as central coordinator, which then
orchestrates the other roles with multicasts. This coordination effectively acts as
a barrier, so processes cannot really perform their own local computations inde-
pendently of each other when higher-order composition is involved. After [13]
and Choral [15], a theory of higher-order choreographic programming was pro-
posed in [18]. While this theory supports computation at roles, it is even more
centralised than [13]: every function application in a choreography requires that
all processes go through a global barrier that involves the entire system. The
global barrier is modelled as a middleware in the semantics of the language,
and involves even processes that do not contribute at all to the function or its
arguments.

Previous theories of choreographies organised their syntax in two layers: one
for local computation and one for communication [1,2,8,10–12,18,22]. Chorλ
has a very different and novel design, whereby a unified language addresses both
areas. An important consequence of our unified approach is that Chorλ can
express distributed data structures (e.g., pairs with elements located at differ-
ent roles), which can be manipulated by independent local computations or in
coordination by performing appropriate communications. This feature is crucial
for our examples in Sect. 4 (and several examples in the original presentation of
Choral in [15]).

Another related line of work is that on multitier programming and its pro-
genitor calculus, Lambda 5 [26]. Similarly to Chorλ, Lambda 5 and multitier
languages have data types with locations [33]. However, they are used very dif-
ferently. In choreographic languages (thus Chorλ), programs have a “global”
point of view and express how multiple roles interact with each other. By con-
trast, in multitier programming programs have the usual “local” point of view
of a single role but they can nest (local) code that is supposed to be executed
remotely. The reader interested in a detailed comparison of choreographic and
multitier programming can consult [16], which presents algorithms for translat-
ing choreographies to multitier programs and vice versa.

6 Conclusion and Future Work

We have presented Chorλ, a new theory of choreographic programming that
supports higher-order, modular choreographies. Chorλ is equipped with a type
system that guarantees progress (Theorems 1 and 2). Unlike previous choreo-
graphic programming languages, Chorλ is based on the λ-calculus. It therefore
inherits the simple syntax of λ terms and it is the first purely functional choreo-
graphic programming language. The semantics of Chorλ makes it the first theory
of higher-order choreographies that is truly decentralised: processes can proceed
independently unless the choreography specifies explicitly that they should inter-
act.
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We have demonstrated the usefulness of higher-order choreographies in Chorλ
by modelling common protocols in Sect. 4. The examples on single sign-on with
encrypted channels and EAP, in particular, are parametrised on choreographies
and cannot be expressed in previous theories, either because of lack of higher-
order composition or because the semantics is not satisfactory due to global
synchronisations—which the original protocol specifications do not expect.

Future Work An obvious extension of Chorλ would be to add generic data types,
which we did not include to keep the focus on choreographies. Since we use λ-
calculus as foundation, we believe that this would be a straightforward import
of known methods.

Other features that are interesting for Chorλ have been investigated in the
context of first-order choreographic languages and represent future work. These
include: channel-based communication [2], dynamic creation of roles [7], internal
threads [1], group communication [9], availability-awareness [23], and runtime
adaptation [12].

A more sophisticated extension would be to reify roles, that is, extending
the syntax such that values can be roles that can be acted upon. This could, for
example, enable dynamic topologies: choreographies where a process receives at
runtime a role that it needs to interact with at a later time.

Another interesting line of future work would be to extend existing for-
malisations of choreographic languages with the features explored in this work
[10,11,18,30].

A Single Sign-on Authentication

We now implement the single sign-on authentication protocol inspired by the
OpenID specification [28], the Choral implementation of which we described in
Example 1. We first implement the choreography in a parametric way that allows
us to specify the means of communication, and then combine it with the secure
communication from the previous example.

The protocol involves three roles with the client C wanting to authenticate
with the server S via a third party identity provider I. If authentication succeeds,
the client and the server both get a unique token from the identity provider.

We use the following local functions for working with user credentials

username(R) : Credentials@R → String@R

password(R) : Credentials@R → String@R

calcHash(R) : String@R → String@R → String@R

computing the username and password from a local type Credentials@R (which
can be a pair, for example), and the hash of a string with a given salt. These are
mainly used by the client.

In addition, we require functions for retrieving the salt, validating the hash,
and creating a token for a given username, which are used by the identity
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provider:

getSalt(R) : String@R → String@R

check(R) : String@R → String@R → Bool@R

createToken(R) : String@R → String@R.

Given the above helper functions, the authentication protocol is as follows.
Here we use if-then-else as syntactic sugar for case:

authenticate(S,C, I) = λcredentials : Credentials@C.
λcomcip : String@C → String@I. λcomipc : String@I → String@C.
λcomips : String@I → String@S.

((λuser : String@I. (λsalt : String@C. (λhash : String@I.
if check(I) user hash then

selectI,C ok (selectI,S ok
(λtoken : String@I. inl (pair (comipc token) (comips token)))
(createToken(I) user))

else
selectI,C ko (selectI,S ko inr ()@I))

(comcip (calcHash(C) salt (password(C) credentials))))
(comipc (getSalt(I) user)))

(comcip (username(C) credentials)))

As mentioned, the choreography is parametrised over three channels between
the participants, allowing the communication to be customized (comcip, comipc
and comips). The client first sends their username to the identity provider who
replies with the appropriate salt. The client then calculates a salted hash of their
password and sends it back to the identity provider. Finally, the identity provider
validates the hash and either sends a token to both participants or returns a unit.
The shared token is again represented using a pair of equal values, visible from
the type of the choreography:

Credentials@C → (String@C → String@I) → (String@I → String@C)
→ (String@I → String@S) → ((String@C × String@S) + ()@I)

We can now combine authenticate(S,C, I) and makeSecureChannels(P,Q)
(from Sect. 4.1) to can obtain a choreography main(S,C, I) that carries
out the authentication securely. Using makeSecureChannels(P,Q), the partici-
pants first establish secure channels backed by encryption keys derived using
diffieHellman(P,Q). After the secure communication is in place, the participants
can execute the authentication protocol specified by authenticate(S,C, I).

main(S,C, I) =
(λk1 : Int@C × Int@I. λk2 : Int@I × Int@S.

(λc1 : (String@C → String@I) × (String@I → String@C).
λc2 : (String@I → String@S) × (String@S → String@I).

(λt : (String@C × String@S) + ()@I.
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case t of
Inl x ⇒ ”Authentication successful”@C
Inr x ⇒ ”Authentication failed”@C)

(authenticate(S,C, I) (fst c1) (snd c1) (fst c2)))
(makeSecureChannels(C, I) k1) (makeSecureChannels(I, S) k2))

(diffieHellman(C, I) csk ipsk csg ipsg csp ipsp)
(diffieHellman(I, S) ipsk ssk ipsg ssg ipsp ssp)

In this example, the client simply reports whether the authentication has suc-
ceeded with a value, which can be checked in a larger context. Or, alternatively,
we could parameterise main over choreographic continuations to be invoked in
case of success or failure.

We denote by Γ the set of typings we have given so far in this section. Then
we can type {S,C, I}; ∅;Γ � main(S,C, I) : String@C.

B Full Definitions and Proofs

Definition 4 (Free Variables). Given a choreography M , the free variables
of M , fv(M) are defined as:

fv(N N ′) = fv(N) ∪ fv(N ′) fv(selectS,R l M) = fv(M)
fv(x) = x fv(λx : T.N) = fv(N) \ {x}
fv(()@R) = ∅ fv(comS,R) = ∅
fv(f) = ∅ fv(Pair V V ′) = fv(V ) ∪ fv(V ′)
fv(case N of Inl x ⇒ M ; Inr y ⇒ M ′) = fv(N) ∪ (fv(M) \ {x}) ∪ (fv(M ′) \ {y})
fv(fst) = fv(snd) = ∅ fv(Inl V ) = fv(Inr V ) = fv(V )

Definition 5 (Merging). Given two behaviours B and B′, B � B′ is defined
as follows.

B1 B2 � B′
1 B′

2 = (B1 � B′
1) (B2 � B′

2)

case B1 of Inl x ⇒ B2; Inr y ⇒ B3 � case B′
1 of Inl x ⇒ B′

2; Inr y ⇒ B′
3 =

case (B1 � B′
1) of Inl x ⇒ (B2 � B′

2); Inr y ⇒ (B3 � B′
3)

⊕R � B � ⊕R � B′ = ⊕R � (B � B′)

&{�i : Bi}i∈I � &{�j : B′
j}j∈J = &

(
{�k : Bk � B′

k}k∈I∩J ∪ {�i : Bi}i∈I\J ∪ {�j : B′
j}j∈J\I

)

x � x = x λx : T.B � λx : T.B′ = λx : T.(B � B′)
fst � fst = fst snd � snd = snd

Inl L � Inl L′ = Inl (L � L′) Inr L � Inr L′ = Inr (L � L′)
Pair L1 L2 � Pair L′

1 L′
2 = Pair (L1 � L′

1) (L2 � L′
2) f � f = f

recvR � recvR = recvR sendR � sendR = sendsendR
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roles(T →ρ T ′);Σ;Γ, x : T � M : T ′ roles(T →ρ T ′) ⊆ Θ

Θ;Σ;Γ � λx : T.M : T →ρ T ′ [TAbs]

x : T ∈ Γ roles(T ) ⊆ Θ

Θ;Σ;Γ � x : T
[TVar]

Θ;Σ;Γ � N : T →ρ T ′ Θ;Σ;Γ � M : T

Θ;Σ;Γ � N M : T ′ [TApp]

Θ;Σ;Γ � N : T1 + T2 Θ;Σ;Γ, x : T1 � M ′ : T Θ;Σ;Γ, x′ : T2 � M ′′ : T

Θ;Σ;Γ � case N of Inl x ⇒ M ′; Inr x′ ⇒ M ′′ : T
[TCase]

Θ;Σ;Γ � M : T S, R ∈ Θ

Θ;Σ;Γ � selectS,R l M : T
[TSel]

f( �R′) : T ∈ Γ �R ⊆ Θ ||�R|| = || �R′|| distinct(�R)

Θ;Σ;Γ � f(�R) : T [ �R′ := �R]
[TDef]

R ∈ Θ

Θ;Σ;Γ � ()@R : ()@R
[TUnit]

S, R ∈ Θ roles(T ) = S

Θ;Σ;Γ � comS,R : T →∅ T [S := R]
[TCom]

Θ;Σ;Γ � V : T Θ;Σ;Γ � V ′ : T ′

Θ;Σ;Γ � Pair V V ′ : (T × T ′)
[TPair]

roles(T × T ′) ⊆ Θ

Θ;Σ;Γ � fst : (T × T ′) →∅ T
[TProj1]

roles(T × T ′) ⊆ Θ

Θ;Σ;Γ � snd : (T × T ′) →∅ T ′ [TProj2]

Θ;Σ;Γ � V : T roles(T + T ′) ⊆ Θ

Θ;Σ;Γ � Inl V : (T + T ′)
[TInl]

Θ;Σ;Γ � V : T ′ roles(T + T ′) ⊆ Θ

Θ;Σ;Γ � Inr V : (T + T ′)
[TInR]

Θ;Σ;Γ � M : t@�R t@ �R′ =Σ T ||�R|| = || �R′|| distinct(�R)

Θ;Σ;Γ � M : T [ �R′ := �R]
[TEq]

∀f(�R) ∈ domain(D) : f(�R) : T ∈ Γ �R;Σ;Γ � D(f(�R)) : T distinct(�R) �R ⊆ Θ

Θ;Σ;Γ � D
[TDefs]

Fig. 4. Full set of typing rules for Chorλ.
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λx : T.M V
τ,∅−−→D M [x := V ]

[AppAbs]
M

�,R−−→D M ′

λx : T.M
λ,R−−−→D λx : T.M ′

[InAbs]

M
�,R−−→D M ′ � = λ ⇒ R ∩ roles(N) = ∅

M N
τ,R−−−→D M ′ N

[App1]

N
τ,R−−−→D N ′

V N
τ,R−−−→D V N ′

[App2]
N

τ,R−−−→D N ′ R ∩ roles(M) = ∅
M N

τ,R−−−→D M N ′
[App3]

N
τ,R−−−→D N ′

case N of Inl x ⇒ M ; Inr x′ ⇒ M ′ τ,R−−−→D case N ′ of Inl x ⇒ M ; Inr x′ ⇒ M ′
[Case]

M1
�,R−−→D M ′

1 M2
�,R−−→D M ′

2 R ∩ roles(N) = ∅
case N of Inl x ⇒ M1; Inr x′ ⇒ M2

�,R−−→D case N of Inl x ⇒ M ′
1; Inr x′ ⇒ M ′

2

[InCase]

case Inl V of Inl x ⇒ M ; Inr x′ ⇒ M ′ τ,∅−−→D M [x := V ]

[CaseL]

case Inr V of Inl x ⇒ M ; Inr x′ ⇒ M ′ τ,∅−−→D M ′[x′ := V ]

[CaseR]

fst Pair V V ′ τ,∅−−→D V

[Proj1]
snd Pair V V ′ τ,∅−−→D V ′

[Proj2]

D(f( �R′)) = M

f(�R)
τ,∅−−→D M [ �R′ := �R]

[Def]

fv(V ) = ∅
comS,R V

τ,{S,R}−−−−−→D V [S := R]

[Com]
selectS,R l M

τ,{S,R}−−−−−→D M

[Sel]

M
�,R−−→D M ′ R ∩ {S, R} = ∅

selectS,R � M
�,R−−→D selectS,R � M ′

[InSel]
M �∗ N N

τ,R−−−→ N ′

M
τ,R−−−→D M ′

[Str]

Fig. 5. Semantics of Chorλ
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Fig. 6. Projecting Chorλ onto a role
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C Proof of Theorem 1

Proof (Proof of Theorem 1). We prove this by induction on the typing derivation
of Θ;Σ;Γ � M : T . Most cases either M is a value, or the result follows from
simple induction, we go through the rest.

– Assume we use rule TApp, so M = N1 N2, Θ;Σ;Γ � N1 : T ′ →ρ T , and
Θ;Σ;Γ � N2 : T ′. If N1 or N2 is not a value then the result follows from
induction and using rule App1 or rule App2. Otherwise, we have four cases:

• Assume Θ;Σ;Γ � N1 : T ′ →ρ T uses rule TAbs. Then the result follows
using rule AppAbs.

• Assume Θ;Σ;Γ � N1 : T ′ →ρ T uses rule TComTAbs. Then, since M
is closed, the result follows by rule Com.

• Assume Θ;Σ;Γ � N1 : T ′ →ρ T uses rule TProj1. Then, since M is
closed and N2 is a value, N2 = Pair V V ′, and consequently the result
follows using rule Proj1.

• Assume Θ;Σ;Γ � N1 : T ′ →ρ T uses rule TProj2. Then, since M is
closed and N2 is a value, N2 = Pair V V ′, and consequently the result
follows using rule Proj2.

– Assume we use rule TCase, so M = case N1 of Inl x ⇒ N2; Inr x′ ⇒ N3,
Θ;Σ;Γ � N1 : T1 + T2, Θ;Σ;Γ, x : T1 � N2 : T , and Θ;Σ;Γ, x′ : T2 � N3 : T .
Then if N1 is not a value the result follows from induction and using rule
Case. If N1 is a value then, since M is closed, either N1 = Inl V or N1 =
Inr V , and the result follows by rule CaseL or rule CaseR respectively.

– Assume we use rule TSel so M = selectS,R l N : T , Θ;Σ;Γ � N : T , and
S,R ∈ Θ. Then the result follows from using rule Sel.

– Assume we use rule TDef and M = f(�R), f( �R′ : T ′ ∈ Γ , �R ⊆ Θ, ||�R|| =
|| �R′||, distinct(�R), and T = T ′[ �R′ := �R]. Then the result follows from D
containing f , Θ;Σ;Γ � D and rule Def.

D Proof of Theorem 2

Lemma 1. Given a choreography, M , if Θ;Σ;Γ � M then Θ ∪ Θ′;Σ;Γ � M

Proof. Follows from the typing rules only ever discussing subsets of Θ.

Lemma 2 (Type preservation under rewriting). Let M be a choreography.
If there exists a typing context Θ;Σ;Γ such that Θ;Σ;Γ � M : T , then Θ;Σ;Γ �
M ′ : T for any M ′ such that M � M ′.

Proof. We prove this by case analysis of the the rewriting rules:

rule R-AbsR Then M = ((λx : T1.N1) N2) N3, and from the typing rules we
get that there exist T2 and ρ such that Θ;Σ;Γ, x : T1 � N1 : T2 →ρ T ,
Θ;Σ;Γ � N2 : T1, and Θ;Σ;Γ � N3 : T2, and M ′ = (λx : T1.(N1 N3)) N2.
The result follows from using rules TApp and TAbs and x /∈ fv(N3).
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rule R-AbsL Then M = N1 ((λx : T1.N3) N2), Θ;Σ;Γ, x : T1 � N1 : T2 →ρ T ,
Θ;Σ;Γ � N2 : T1, and Θ;Σ;Γ � N3 : T2, and M ′ = (λx : T1.(N1 N3)) N2.
The result follows from using rules TApp and TAbs and x /∈ fv(N1).

rule R-CaseR Then M = case N1 of Inl x ⇒ N2; Inr x′ ⇒ N3) N4, and
from the typing rules we get that there exist T1, T2, T3, and ρ such that
Θ;Σ;Γ � N1 : T1 + T2, Θ;Σ;Γ, x : T1 � N2 : T3 →ρ T , Θ;Σ;Γ, x′ : T2 �
N3 : T3 →ρ T , and Θ;Σ;Γ � N4 : T3, and M ′ = case N1 of Inl x ⇒
N2 N4; Inr x′ ⇒ N3 N4). The result follows from using rules TCase and
TAbs and x, x′ /∈ fv(N4).

rule R-CaseL This case is similar to the previous.
rule R-SelR Then M = N1 (selectS,R l N2), and from the typing rules we get

that there exist T ′, and ρ such that Θ;Σ;Γ � N1 : T ′ →ρ T and Θ;Σ;Γ �
N2 : T ′, and M ′ = selectS,R l (N1 N2). The result follows from using rules
TSel and TAbs.

rule R-SelL This case is similar to the previous.

Proof (Proof of Theorem 2). We prove this by induction on the derivation of

M
τ,R−−→D M ′. The cases for rules AppAbs,App1 and App2 are standard for

simply-typed λ-calculus. And the cases for rules InAbs,App3,Case,InCase and
InSel follow from simple induction. We go through the rest.

– Assume we use rule CaseL. Then we know that M = case Inl V of Inl x ⇒
N1; Inr x′ ⇒ N2, and from the typing rules we get that there exists T ′ such
that Θ;Σ;Γ � V : T ′ and Θ;Σ;Γ, x : T ′ � N1 : T . Therefore, Θ;Σ;Γ �
N1[x := V ] : T .

– Assume we use rule CaseR. This is similar to the previous case.
– Assume we use rule Proj1. Then we know M = fst Pair V V ′, and from the

typing rules we get that Θ;Σ;Γ � V : T .
– Assume we use rule Proj2. This is similar to the previous case.
– Assume we use rule Def. From the typing of M we get that there exists

f( �R′) : T ∈ Γ such that ||�R|| = || �R′||, �R ⊆ Θ, and distinct( �R′). From the
typing of D we get that distinct( �R′) and �R′;Σ;Γ � D(f( �R′)). Therefore, by
Theroem 1, we get Θ;Σ;Γ � D(f( �R′)).

– Assume we use rule Com. Then we know that M = comS,R V , fv(V ) = ∅,
and there exists T ′ such that Θ;Σ;Γ � V : T ′, roles(T ′) = {S}, and T =
T ′[S := R]. We see from our typing rules that the only time we use roles
not mentioned in the choreography in typing is when handling free variables.
Therefore we get that Θ;Σ;Γ � V [S := R] : T .

– Assume we use rule Sel. Then we know that M = selectS,R l N and Θ;Σ;Γ �
N : T . The result follows.

– Assume we use rule Str. Then the result follows from Lemma 2 and induction.
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Abstract. The safety of autonomous driving systems (ADS) with
machine learning (ML) components is threatened by adversarial exam-
ples. The mainstream defending technique against such threats concerns
the adversarial examples that make the ML model fail. However, such
an adversarial example does not necessarily cause safety problems for
the entire ADS. Therefore a method for detecting the adversarial exam-
ples that will lead the ADS to unsafe states will be helpful to improve
the defending technique. This paper proposes an approach to detect such
safety-critical adversarial examples in typical autonomous driving scenar-
ios based on the model checking technique. The scenario of autonomous
driving and the semantic effect of adversarial attacks on object detec-
tion is specified with the Network of Timed Automata model. The safety
properties of ADS are specified and verified through the UPPAAL model
checker to show whether the adversarial examples lead to safety prob-
lems. The result from the model checking can reveal the critical time
interval of adversarial attacks that will lead to an unsafe state for a given
scenario. The approach is demonstrated on a popular adversarial attack
algorithm in a typical autonomous driving scenario. Its effectiveness is
shown through a series of simulations on the CARLA platform.

Keywords: Autonomous driving · Model checking · Adversarial
examples

1 Introduction

As a safety-critical system, the autonomous driving system (ADS) has received
intensive concern from both academia and industry. The modern ADS incorpo-
rates deep learning models into its key modules such as perception, control and
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even decision module. However, due to the statistical nature and poor inter-
pretability of deep learning, the safety assurance for ADS becomes a grand
challenge. Many types of research reveal a new kind of threat to deep learning
models from adversarial attacks [8,12–19]. These inputs perturbed with slight
disturbances can make the deep learning model return wrong results with high
confidence. Since the disturbances are hardly recognized by humans or other
measurements based on semantical features, these adversarial attacks are difficult
to be detected in advance with conventional methods. A number of algorithms
like U-DOS (Universal Dense Object Suppression) and a suite of adversarial
objectness gradient attacks, coined as TOG, are proposed to generate adversar-
ial examples (AE) for CNNs used in the perception module of ADS [1,7–11].
These AEs may make the CNN fail to recognize an incoming vehicle and con-
sequently cause the decision module of ADS to take the wrong decision which
leads to collision accidents. Adversarial training is one of the main defensive
approaches against adversarial attacks. Its basic idea is to incorporate the gen-
erated adversarial examples into the training process to improve the robustness
of the deep learning models.

However, the compromised deep learning model is only a component of the
entire ADS, and not every adversarial input that causes the deep learning com-
ponent to fail may cause real harm to the entire ADS. For instance, consider
a scenario in which an autonomous vehicle is approaching the intersection, the
adversarial attack that makes it mistakenly recognize the traffic light from yellow
to red would not change its decision to brake. In contrast, the adversarial attack
that makes it mistakenly recognize the traffic light from red to green would make
it violates the safety regulation and may cause serious accidents. Therefore, the
timing and targeting of safety property are essential factors for the adversarial
examples. However, the existing algorithms for generating adversarial examples
hardly consider such information. In this paper, we call an adversarial example
a safety-critical adversarial example (SCAE) if it can lead to the violation of
scenario-oriented safety-critical properties of ADS. In this sense, it is a promis-
ing research topic to reveal such SCAEs among common AEs and improve the
adversarial training with these SCAEs other than common AEs.

In this paper, we propose a novel approach to defining and detecting SCAEs
in the ADS context. The rough framework of this approach is shown in Fig. 1.
A formal model is built for the autonomous driving scenarios in which safety-
critical properties are specified with the temporal logic formula φ. A black-box
model of the DNN preceptor is included in the system model as a component
and therefore provides an interface for the external inputs from the environment.
An AE x′ is determined as a SCAE if the system model with input x′ violates
φ while it satisfies φ with the original input x. To validate the effectiveness of
this approach, we employ the simulation platform CARLA to set the attacking
scenario with the SCAEs we found with the model checker. The simulation
results justify that SCAEs can lead the scenario to collision accidents, while
common AEs committed randomly in the process can hardly succeed.

In summary, this paper contains the following contributions:
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Fig. 1. The rough framework of the proposed method.

1. A formal definition for SCAEs is proposed in terms of the model checking
notations. It relates the adversarial examples with the safety-critical proper-
ties of the entire system.

2. A novel model checking-based approach is proposed to detect SCAEs from a
given autonomous driving scenario. For a particular AE generating algorithm,
the approach can return the target and timing for the adversarial attack
to ensure the violation of the safety-critical property, which allocates the
corresponding SCAEs.

3. Experiments of our approach are conducted with the model checker UPPAAL
and the simulation platform CARLA. From the simulation results, we can
conclude that the SCAEs found by the model checker can cause collision
accidents.

The rest of this paper is structured as follows: we give a brief introduction
for model checking with the UPPAAL toolkit and the AE generating algorithms
in Sect. 2. The formal definition of SCAE is given in Sect. 3. Section 4 gives
the formal model of the autonomous driving scenario and shows how to detect
SCAEs by verifying the safety-critical property. Section 5 shows the experiment-
ing results of our approach on the simulation platform CARLA to justify its
effectiveness. Section 6 concludes the paper and mentions future work.

2 Preliminaries

2.1 Model Checking with UPPAAL

UPPAAL [3,4] is a toolset for verification of real-time systems modelled as net-
works of extended timed automata. A timed automaton consists of a collection
of locations connected by edges. Clock variables are the key features in timed
automata to specify timing constraints. A location is defined on clock variables
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and bounded discrete variables satisfying an invariant. An edge defines a pos-
sible transition from one location to another subject to a guard condition, a
synchronization action and a set of updating expressions.

Definition 1 (Timed Automata (TA)). A timed automaton is a tuple
(L, l0, V, A,E, I), where L is a set of locations, l0 ∈ L is the initial location,
V = C ∪ D is the set of variables consisting of clock variables in C and bounded
discrete variables in D, A is a set of actions including internal τ action and
synchronization actions, E ⊆ L×A×B(V )× 2V ×L is a set of edges indicating
transition relations between locations, and I : L → B(V ) assigns invariants to
locations.

A TA network is a set of TA running in parallel and communicating with
synchronization actions. Let Ai = (Li, l

i
0, Vi, Ai, Ei, Ii) with i ∈ 1..n be n TAs in

a TA network. Its semantics can be defined as (S, s0,→) where S = {(L̄, v̄)|v̄ |=
I(L̄)} is a set of states consisting of the location vector L̄ ∈ L1 × ... × Ln and
variable value vector v̄ which is an evaluating function mapping all variables in
the TA network to their values. s0 is the initial state where every TA is in its
initial location and every variable has its initial value. →⊆ S×(R≥0∪A)×S is the
transition relation which contains delay transitions, internal action transitions
and synchronization action transitions. Their semantics are defined as follows:

1. Delay transition: (l̄, v̄) d→ (l̄, v̄ + d) if ∀d′ : 0 ≤ d′ ≤ d ⇒ u + d′ ∈ I(l̄),
where v + d maps every clock variable x ∈ C1 ∪ ... ∪ Cn to v(x) + d.

2. Internal action transition: (l̄, v̄) a→ (l̄′, v̄′) if there exists an edge ei =
(li, ai, gi, ui, l

′
i) ∈ Ei such that (1) ai is not a synchronization action, (2)v̄ |=

gi, (3) l̄′ = l̄[l′i/li], v̄′ = ui(v̄) and v̄′ |= I(l̄′) where I(l̄′) =
⋂

i Ii(l̄′i).
3. Synchronization action transition: (l̄, v̄) c→ (l̄′, v̄′) if there exists two

edges ei = (li, ai, gi, ui, l
′
i) ∈ Ei and ej = (lj , aj , gj , uj , l

′
j) ∈ Ej from two

different TAs such that (1) ai = c! and aj = c? are synchronization actions
with the same channel c, (2) v̄ |= gi ∧ gj , (3) l̄′ = l̄[l′i/li, l

′
j/lj ], v̄′ = uj(ui(v̄)),

and v̄′ |= I(l̄′).

The UPPAAL supports parameterized TA templates. Let A(Type x) be a param-
eterized TA templates with formal parameter x, we use the notation A(v) to
represent the TA model instantiated by actual parameter v. In this paper, we
use parameters to instantiate the TA templates to adapt the model to different
scenarios represented by input data streams.

A simple example of the TA network model in UPPAAL is shown in Fig. 2.
The system contains two TAs Env and Ctl which communicate with each other
through synchronization actions e2c and c2e. period is a constant representing
the period of each cycle. Whenever receiving data from Env, the controller
Ctl makes some computations and sends the feedback to the environment. The
invariants on locations and guard conditions on edges ensure the cyclic behaviour
of the system within the given fixed period. In the following part of this paper, the
behaviour of the Ctl from location ready to do will be replaced by the dedicated
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Fig. 2. An example of the UPPAAL model

processes specifying the corresponding components of the autonomous driving
system.

The semantics model (S, s0,→) yields a set of execution sequences
〈s0, s1, ..., sn〉 where si ∈ S and si → si+1. The UPPAAL supports the veri-
fication of temporal properties specified with the following temporal operators
A�, A♦, E�, E♦. Given a system model M and a state s ∈ S, we say

1. M, s |= A�p iff for any execution sequence π = 〈s0, s1, ..., sk〉 of the system
with s0 = s, we have M,π[i] |= p for any i ∈ [0, k].

2. M, s |= A♦p iff for any execution sequence π = 〈s0, s1, ..., sk〉 of the system
with s0 = s, we have M,π[i] |= p for some i ∈ [0, k].

3. M, s |= E�p iff M, s |= ¬A♦¬p.
4. M, s |= E♦p iff M, s |= ¬A�¬p.
5. M |= p iff M, s0 |= p.

A convention property p → q (p leads to q) means A�(p imply A♦q).

2.2 Adversarial Examples Generation Algorithm

Given a DNN model F and a data example x, an attacker can create an adver-
sarial example of x by adding a perturbation δ, such that F (x + δ) = F (x)
[2]. Generating adversarial examples can be interpreted as optimizing the exam-
ple features toward adversarial objectives. The optimization objective can be
generally parsed as follows:

{
minδ ‖δ‖p

s.t. f(x + δ) ∈ T

where T is an adversarial objective set by the attacker. x+ δ produces an adver-
sarial example x′. p is the distance metric, such as the L0 norm measuring the
percentage of the pixels that are changed, the L2 norm computing the Euclidean
distance, or the L∞ norm denoting the maximum change to any pixel.

TOG and U-DOS are considered in this paper to attack object detectors
to fail object detection in this paper. A suite of adversarial objectness gra-
dient attacks, coined as TOG, can cause the deep object detection networks
to suffer from untargeted random attacks or even targeted attacks with three
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types of specificity: (1) object-vanishing, (2) object-fabrication, and (3) object-
mislabeling [20]. Universal Dense Object Suppression (U-DOS) algorithm can
derive the universal adversarial perturbations against object detection and show
that such perturbations with visual imperceptibility can lead the detectors to
fail in finding any objects in most images [8].

3 The Safety-Critical Adversarial Examples

An intelligent system with ML components is generally a real-time system that
interacts with the environment. Model checking tools can be used to model
the system and its interactive environment. With the help of model checking
technology, the information of the target and timing for adversarial attack can
be obtained. The adversarial examples generated by the adversarial attack with
the information can lead the system to an unsafe state.

We provide the following definition for such SCAEs:

Definition 2 (Safety-Critical Adversarial Examples). Let System(Type
&a) be a TA network model with a formal array parameter a. φ is a safety-critical
property specified by timed temporal logic (TCTL) language. Let x = 〈x1, ..., xn〉
be an array representing an input data stream and x′ = 〈x′

1, ..., x
′
n〉 be another

array with every its entry an adversarial example against the corresponding entry
of x. We say x′ is a safety-critical adversarial example against x, if

1. System(x) |= φ and
2. System(x′) |= ¬φ.

Note that the SCAE can be a sequence of input data. A single adversarial
example is usually not enough to violate the safety properties for ADS as long
as it has chances to make proper amendments in consequent cycles. Therefore,
a sustained attack is necessary to make real damage to the ADS. Our approach
can check which timing and duration of a sustained adversarial attack can cause
safety-critical problems in a given scenario. This kind of knowledge can then be
used to develop a dedicated defensive mechanism for ADS in the future.

The following two sections will focus on the methodology to detect SCAEs
and verify their validity according to 4 steps: (1) Modeling the ADS and its envi-
ronment (such as traffic scenarios including road topology and other involved
vehicles). (2) Characterize the safety properties of the system by TCTL, and
run the UPPAAL model checker to locate the target and timing for adversarial
attacks that can lead the system to unsafe states. (3) Combine the attack seman-
tic information with current adversarial attack techniques to generate SCAEs.
(4) Simulate the attacking scenarios with the SCAEs in the CARLA simulation
platform to show the validity of SCAEs.
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Fig. 3. A dedicated workflow of ADS.

4 Modelling the System and Detecting the SCAEs

This section will introduce the system modelling scheme in our approach. It
is illustrated with a simplified autonomous driving scenario example where the
autonomous vehicle recognizes another vehicle in an intersection and decides to
brake to avoid the collision. We will model the behaviour of the autonomous
vehicle in this simple scenario and find the SCAEs with the model checking
technique. Other scenarios can be captured using extended models with similar
modelling paradigms.

4.1 Abstract Model of ADS in UPPAAL

Figure 3 shows a dedicated workflow of ADS which only captures the typical
autonomous decision-making scenario mentioned before. It contains the follow-
ing modules. A camera-based perception module equipped with an obstacle per-
ception algorithm based on DNN to detect surrounding obstacles (vehicles) from
images captured by the camera. When the autonomous vehicle perceives obsta-
cles nearby while driving, the Advanced Emergency Braking System (AEBS)
determines whether there is a risk of collision with the obstacles. Once the
AEBS calculates that the obstacles pose a threat to the autonomous vehicle,
it will rapidly intervene and brake to avoid a collision.

As shown in Fig. 4, we model the above scenario with 8 time automata tem-
plates: (1) EV, namely environmental vehicle. (2) EU, namely environment
update. (3) IF, namely interface module. (4) OP, namely obstacle perception
module. (5) BD, namely behavior decision module. (6) EB, namely emergency
braking module. (7) CT, namely synchronous controller. (8) CD, namely col-
lision detection module. The system model can be divided into 3 components:
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(1) the environment component contains EV to model the behaviours of envi-
ronmental vehicles and EU to capture the updates of the environment state
in every cycle. (2) the autonomous vehicle component consists of three inter-
nal modules OP, BD, EB and an interface module IF. The internal modules
correspond to obstacle perception, behaviour decision and emergency braking
modules in Fig. 3, while the interface module covers their interactions with the
environment. (3) the synchronization component contains CT for coordinating
the timing behaviours with a cyclic synchronization mechanism and CD for
monitoring the safety property of the system at every cycle.

Fig. 4. The system model structure.

In this paper, we only present the modelling of EV, EU, OP and IF in
detail due to the space limit. The full model can be found at https://github.
com/Rruown/Formal-Model-of-Autonomous-Vehicle-in-UPPAAL.

The way-point model is used in this paper to model the traffic map, which
can support multiple types of traffic scenarios (e.g. T-junction, crossroads).
And actors considered are autonomous vehicles (AVs) and a number of envi-
ronmental vehicles (EVs). EVs are born at a specified way-point and non-
deterministically select the next way-point to drive on the traffic map, per-
forming various behaviours (e.g. accelerate) at each cycle while driving. AV’s
driving path is initially specified using a set of way-points. Just by changing the
way-point data, we can model a variety of different traffic scenarios.

The position of the vehicle is a point on 2D coordinates. The movement of the
vehicle at each cycle is to add a 2D vector v, where the model of v is the velocity
of the vehicle. In addition, a vector orthogonal is added to v to the vehicle’s
position, taking into account the vehicle width and driving offset. The driving
trace of the vehicle at a cycle is abstracted as a rectangle in 2D coordinates.

https://github.com/Rruown/Formal-Model-of-Autonomous-Vehicle-in-UPPAAL.
https://github.com/Rruown/Formal-Model-of-Autonomous-Vehicle-in-UPPAAL.
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Fig. 5. Automata EV in UPPAAL

Modelling of Environmental Vehicles. The driving path of environmen-
tal vehicles is non-deterministic. As shown in Fig. 5, automata EV use the
select next wayPoint(id, waypointId) function to choose the next dest way-point
from all reachable way-points starting from the current way-point, depending on
the value of waypointId. The value of waypointId is non-deterministic.

Both AVs and EVs non-deterministically choose a velocity and coordinate
offset, and then the vehicle initializes by initialize(id, wp id, offset, velocity)
function, where wp id is the identification given by instantiating automata tem-
plate. The movement of vehicles is discretely modelled, moving velocity distance
toward the dest way-point at each cycle. When the velocity of the vehicle is 0
or there is no next dest way-point, the vehicle ends. EVs can choose behaviors
non-deterministically from acceleration, deceleration and unchange after each
cycle.

Modelling of Environment Update. The automata EU, as shown in Fig. 6,
is responsible for the environment update of AVs and EVs. EU waits for all
vehicles to be ready for environment update and then calls the update function
to complete the environment update action including the movement of vehicle
position.

Fig. 6. Automata EU in UPPAAL

Modelling of Obstacle Perception Module. Different adversarial attack
methods and neural network models may require different synchronous actions
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set to be defined. Modelling a system with neural network components can con-
sider a neural network model as a black box, focusing only on its inputs and out-
puts. Define all the output of the model as output synchronization actions set.
The model of the neural network accepts synchronization actions of the ground
truth label and then non-deterministically sends a synchronization action back
to the system. The adversarial attack method considered in this example is the
object-vanish attack, so the input of the neural network can be ignored. The
output synchronization actions are objects and noObject shown in Fig. 7, it
literally means that the obstacle perception system has perceived objects and
not perceived objects respectively.

Fig. 7. Automata OP in UPPAAL

Modelling of Interface Module. The automata IF, as shown in Fig. 8, speci-
fies a set of way-points as the driving path. At the end of each cycle, IF deliveries
synchronization action readyForOP to OP. The OP returns its result of per-
ception to behaviour decision module BD. Based on the result of perception,
the BD will send synchronization action readyForEB to EB if it accepts a
synchronization action objects. The EB calculates whether there is a risk of
collision between the AV and EVs, and returns the results of the calculation to
IF. If braking is required, the IF will brake by emerge brake() function.

Fig. 8. Automata IF in UPPAAL
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4.2 Locating the Target and Timing

We have discussed the modelling of the system and traffic scenarios in the pre-
vious section, and this section will continue to discuss how to detect SCAEs.

To guarantee that the model is valid, it must verify that ADS is safe under
the condition that the obstacle perception system operates correctly. It can be
informally described as the AV will never collide with an environmental vehicle
when the obstacle perception system always operates correctly. Use the query
language of UPPAAL to characterize it as:

(isOpNormal ∧ dist(av, ev) ≥ D) →!collision (1)

where isOpNormal is a global boolean variable, representing whether the obsta-
cle perception system works normally; collision is a global boolean variable, rep-
resenting whether the AV has collided; av and ev are instances of IF and EV
which represent the AV and environmental vehicle respectively; dist(av, ev) func-
tion computes the relative distance between the AV and environmental vehicle,
and D is the safety braking distance of the AEBS.

To successfully attack ADS, it is necessary to know when the obstacle per-
ception system malfunctions will make the ADS unsafe. However, a single time
point alone is insufficient to violate the safety properties for ADS, because the
AEBS system’s safety braking distance has an error distance of d0, which gives
it chances to make proper amendments in consequent cycles. Therefore, a valid
time interval is needed for an adversarial attack on autonomous driving.

To obtain the above time interval, the scenarios are kept unchanged and
verify the following properties:

!isOpNormal ∧ dist(av, ev) ≤ d1 → collision (2)

where d1 is a parameter needing to be solved by querying the model in UPPAAL.
It literally means as: When the relative distance between the AV and an environ-
mental vehicle is less thand1, and the obstacle perception system fails, eventually
the AV will collide. The maximum value of d1 that satisfies this property can be
found with UPPAAL. A simple way is to initially set d1 to 0 and find the largest
d1 in a gradually increasing manner. It means that keeping attacking until the
time instant when dist(av, ev) = d1 can guarantee the collision. Calculate man-
ually in which cycle the relative distance between the autonomous vehicle and
the environmental vehicle is less than or equal to d1 by the vehicle’s equation of
motion and initial positions, and denote the cycle as t1. The simulation platform
can be used to verify whether the calculated d1 corresponds to t1.

Obviously, the attack is worthless when the relative distance between the
vehicles is large enough. To lower the attack’s cost, try to discover the earli-
est attack time. Another property can be characterised by UPPAAL’s query
language as follows:

!isOpNormal ∧ dist(av, ev) ≥ d2 →!collision (3)
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where d2 is a parameter needing to be solved by querying the model in UPPAAL.
It literally means as: When the relative distance between the AV and an environ-
mental vehicle is greater than d2, even if the obstacle perception system fails, the
AV will never collide. Find the minimum d2 that satisfies this property. A simple
way is to initially set d2 to a larger value and gradually decrease the value to
get the smallest d2. If the attacking is conducted before the time instant when
dist(av, ev) = d2, it has no guarantee that the AV will collide. Denote the time
point corresponding to d2 as t2. For the object vanishing attack discussed in this
paper, [0, t2] is an invalid time interval.

The optimized valid time interval for safety-critical adversarial attack is
[t2, t1]. A sustained object vanishing attack in this valid time interval will lead
to vehicle collision.

5 Experimental Evaluation

To show that the SCAEs detected with the approach proposed in this paper are
valid and feasible, we design a number of simulations using the CARLA simulator
to show that SCAEs can actually lead AVs to collision accidents. The data of
CARLA’s scenarios map can be employed as a way-point map for the abstract
model introduced in the Sect. 4. Besides, the scenarios of CARLA can generate
original images which can be attacked by TOG or U-DOS with target and timing
located in Sect. 4.2 to generate SCAEs. This experiment mainly explores the
validity of the proposed method, so the time cost of an adversarial attack is
ignored. The adversarial attack adopts an offline attack method which replaces
the original images with SCAEs instead of an online adversarial attack.

We use CARLA 0.9.11 on a 16-core i7 desktop with 32 GB RAM and a single
RTX 3080 GPU with 10 GB memory.

5.1 Experimental Setup

The system described in the Sect. 4.1 is implemented in CARLA. Data set KITTI
[6] is used for training the Faster-RCNN [5] which is the obstacle perception to
detect surrounding obstacles on the road. To simplify the experiment, we directly
obtain the position of the obstacle from CARLA and then deliver it to the AEBS
system for processing. In CARLA, the brake variable of the car is kept at 0.2,
approximately 2.5 m/s2 deceleration and the camera installed in AV capture 10
pictures per second.

5.2 Selection of Traffic Map

Two common traffic maps are mainly considered, as shown in Fig. 9, Fig. 10,
which are selected from CARLA’s Town03 map.
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Fig. 9. Scenario 1. Fig. 10. Scenario 2.

5.3 Quantitative Performance

The Safety-Critical Adversarial Examples Rate (SCAE rate) is defined as the
ratio of adversarial examples, sampled from a time interval, as safety-critical
adversarial examples.

SCAE rate =
K

Σ

Specifically, the benign examples, which are sampled from CARLA within a time
interval, are subjected to Σ adversarial attacks to yield Σ groups of adversarial
examples, of which K groups are safety-critical adversarial examples.

5.4 Analysis of the Experiment

Table 1. Traffic scenarios in the experiment

Scenario Velocity of vehicle Sample size Time Traffic map

1 vav = 7, vev = 6 14 69 Fig. 9

2 vav = 8, vev = 7 17 57 Fig. 9

3 vav = 5, vev = 6 14 50 Fig. 9

4 vav = 4, vev = 5 19 68 Fig. 9

5 vav = 4, vev = 4 16 91 Fig. 10

6 vav = 8, vev = 7 30 24 Fig. 10

7 vav = 5, vev = 8 25 56 Fig. 10

Optimized valid time interval is [Time, Time+Sample Size - 1].

The Table 1 gives brief information on all traffic scenarios in this experiment
where vav is the velocity of AV and vev is the velocity of NAV, and the optimized
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valid time interval for the safety-critical adversarial attack is given by Time and
Sample Size. The initial positions of the vehicles are different for all scenarios.

Taking scenario 1 as an example, vehicles run according to the path shown
in Fig. 9, and the velocities of AV and EV are 7 and 6 respectively. The valid
time interval for the adversarial attack is [69, 82]. This paper will first show how
to employ UPPAAL to locate the attack target and timing in the experimental
scenario, and then compare the adversarial and original scenario in CARLA.

Locating the Target and Timing in UPPAAL. As introduced in Sect. 4.2,
d1 and d2 are found by running property (2) and property (3). First, let d1 = 0,
then verify property (2). If property (2) is satisfied, set d1 + 1 until property (2)
is not satisfied. As shown in Fig. 11, a bigger d1 = 4 has been computed, and the
corresponding time point is 82 in CARLA. Similarly, shown in Fig. 12, let d2 be
the relative distance between the two vehicles’ initial positions or even a bigger
value like 50 and then verify the property (3). If the property (3) is satisfied, set
d2 −1 until property (3) is not satisfied. So a smaller d2 = 8 has been computed,
and the corresponding time point is 69.

Fig. 11. d1 solution example. Fig. 12. d2 solution example.

Comparison of Benign Examples and SCAEs. The benign examples are
sampled from CARLA within the valid time interval [69, 82] for the object-vanish
attacks. The generated adversarial examples are SCAEs. The first row, as shown
in Fig. 13, contains benign examples and their detection results. The second row
contains SCAEs and their detection results. As we can see, the benign scenario
is safe, but the adversarial scenario ends up colliding with other vehicles.

Correctness of Valid Time Interval. Let ki denote the length of the opti-
mized valid time interval of the ith scenario, and li denote the total time length
of the ith scenario. Ii = {[j, j + ki − 1]|0 ≤ j ≤ li − ki} is a set of time intervals
for scenario i. On the groups of benign examples sampled from CARLA in the
time interval of Ii, we perform object vanishing attacks and simulate the results
in CARLA to determine whether the vehicle collided. We tested 7 experimental
scenarios based on two traffic scenarios with different vehicle initial positions and
velocities. The experimental results are shown in Fig. 14. The red point repre-
sents the optimized time interval obtained by our proposed method. The success
rate of adversarial attacks in the valid time intervals is above 98%. The mAP
rate of the adversarial examples generated by TOG attacking Faster-RCNN is
1.4% [16]. The reason for the failure of the SCAEs is likely to be caused by the
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Fig. 13. The optimized valid time interval of scenario 1 is [69, 82].

adversarial attack algorithms. The results reveal that the time interval provided
by our proposed method is indeed a valid time interval for a safety-critical adver-
sarial attack, but there are also some valid time intervals around the red point
obtained by our proposed method. Because the optimized valid time interval we
found is an over-approximation of the minimal valid interval.

Fig. 14. There are seven scenarios in the figure, and a value on the x-axis represents a
time interval starting from this value. For example, 70 on scenario 1 represents a time
interval [70, 70 + k1 − 1].

6 Conclusion

In this paper, we propose a formal definition of SCAEs which can actually lead
the ADS to an unsafe state. A novel approach based on a model checking tech-
nique is proposed to detect SACEs for a given autonomous driving scenario. Our
approach can locate the target and timing for the adversarial attack that can
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ensure the violation of the safety-critical property. This kind of knowledge will
be helpful to improve defending techniques. The experimental results obtained
on the CARLA simulation platform reveal that the time interval provided by
our method is indeed a valid time interval for safety-critical adversarial attacks,
the success rate of adversarial attacks is above 98%. In the future, we intend
to design a new adversarial example generation algorithm which embeds the
knowledge obtained from the proposed method so that the AEs generated from
this algorithm are indeed SCAEs.
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Abstract. Nominal rewriting was introduced as an extension of first-
order term rewriting by a binding mechanism based on the nominal app-
roach. A distinctive feature of nominal rewriting is that α-equivalence is
not implicitly dealt with at the meta-level but explicitly dealt with at
the object-level. In this paper, we introduce the notion of strong com-
mutation modulo α-equivalence and give a sufficient condition for it.
Using the condition, we present a new criterion for confluence modulo
α-equivalence (on ground terms) of possibly non-terminating left-linear
nominal rewriting systems.

1 Introduction

In languages with variable binding and variable names, α-equivalence needs to
be treated. Usually α-equivalence is implicitly dealt with at the meta-level, but
in the literature some authors seriously take it into account at the object-level
(e.g. [6,20]). The nominal approach [5,13] is one of such studies, where variables
that are possibly bound are called atoms. It deals with α-equivalence explicitly
at the object-level, incorporating permutations and freshness constraints as basic
ingredients.

Nominal rewriting [3,4] is a framework introduced as an extension of first-
order term rewriting by a binding mechanism based on the nominal approach.
It has a device to avoid accidental capture of free atoms on the way of rewriting,
using the explicit α-equivalence and freshness constraints in rewrite rules.

Confluence is a fundamental property of rewriting systems that guarantees
uniqueness of results of computation. Confluence of nominal rewriting systems
has been discussed in [1,3,9,16,17]. Their aim is to provide confluence criteria
for particular classes of nominal rewriting systems in the same way as discussed
in the field of first-order term rewriting.

In the present paper, we study confluence of nominal rewriting systems that
are defined by rewrite rules with atom-variables in the style of [10], where rewrit-
ing is performed only on ground nominal terms (so confluence properties dis-
cussed in this paper correspond to ground confluence etc. in terms of traditional
nominal rewriting). In previous work [8], we have proved (ground) confluence
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for this style of nominal rewriting systems whose rewrite rules have no overlaps
which are computed using nominal unification with atom-variables [15]. In this
paper, we present a sufficient condition for (ground) confluence of the same style
of nominal rewriting systems possibly with overlaps of rewrite rules.

To discuss confluence in nominal rewriting, it is necessary to examine whether
two terms can rewrite to α-equivalent terms. For doing this, we make use of suit-
able notions that are defined modulo an equivalence relation in terms of abstract
reduction systems [11,12]. Such an approach was suggested in [20] (page 220).
Precisely speaking, we present a sufficient condition for (ground) Church-Rosser
modulo α-equivalence rather than confluence. The proof method using the suffi-
cient condition can be seen as a generalisation of that for confluence of first-order
term rewriting systems using the lemma of Hindley [6] and Rosen [14]. We will
explain details of the methods in Sect. 3.

Contributions of the Paper. The contributions of the present paper are sum-
marised as follows:

– We introduce the notion of strong commutation modulo α-equivalence and
give a sufficient condition for it in left-linear uniform nominal rewriting sys-
tems. This notion has not been treated in [11,12] (in the case of a general
equivalence relation ∼).

– Using the sufficient condition, we present a new criterion for Church-Rosser
modulo α-equivalence (on ground nominal terms) of left-linear uniform nom-
inal rewriting systems that are possibly non-terminating and may have over-
laps of rewrite rules.

Organisation of the Paper. The present paper is organised as follows. In Sect. 2,
we explain basic notions of nominal rewriting systems with atom-variables.
In Sect. 3, we give a sufficient condition for strong commutation modulo α-
equivalence, and use it to present a criterion for Church-Rosser modulo α-
equivalence. In Sect. 4, we conclude with suggestions for further work.

2 Nominal Rewriting Systems with Atom-Variables

Nominal rewriting [3,4] is a framework that extends first-order term rewriting
by a binding mechanism. In this section, we recall basic notions and notations
concerning nominal rewriting systems with atom-variables [10]. For differences
from the system of [3], see [8]. For simplicity, we treat a subset of the systems
in [8,10].

2.1 Preliminaries

We fix a countably infinite set X of variables ranged over by X,Y, . . . , a count-
ably infinite set A of atoms ranged over by a, b, . . . , and a countably infinite set
XA of atom-variables ranged over by A,B, . . . . A nominal signature Σ is a set of
function symbols ranged over by f, g, . . . . Each f ∈ Σ has a unique non-negative
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integer arity(f). We assume that X , A, XA and Σ are pairwise disjoint. Unless
otherwise stated, different meta-variables for objects in X , A, XA or Σ denote
different objects.

The domain dom(φ) of a mapping φ : D → E is defined as the set {d ∈ D |
φ(d) �= d} if D ⊆ E, and D otherwise. A mapping φ : D → E is finite if its
domain dom(φ) is a finite set.

Let �� be a binary relation. We write ��= for the reflexive closure and ��∗ for
the reflexive transitive closure. If �� is written using →, then the inverse ��−1 is
written using ←. We use ◦ for the composition of two binary relations.

2.2 Ground Nominal Terms

In this subsection, we introduce the set of ground nominal terms, which we call
NLa following [8,10,15].

The set NLa of ground nominal terms, or simply ground terms, is generated
by the following grammar:

t, s ::= a | [a]t | f〈t1, . . . , tn〉

where n = arity(f). Ground terms of the forms in the right-hand side are
called, respectively, atoms, abstractions and function applications. We assume
that function applications bind more strongly than abstractions. We abbreviate
f〈 〉 as f , and refer to it as a constant. An abstraction [a]t is intended to represent
t with a bound. The set FA(t) of free atoms occurring in t is defined as follows:
FA(a) = {a}; FA([a]t) = FA(t) \ {a}; FA(f〈t1, . . . , tn〉) =

⋃
i FA(ti).

Example 1. The nominal signature of the lambda calculus has two function sym-
bols lam with arity(lam) = 1, and app with arity(app) = 2. The ground nominal
term app〈lam〈[a]lam〈[b]app〈b, a〉〉〉, b〉 represents the lambda term (λa.λb.ba)b in
the usual notation. For this ground term t, we have FA(t) = {b}. ��

A swapping is a pair of atoms, written (a b). Permutations π are bijec-
tions on A such that dom(π) is finite. Permutations are represented by lists of
swappings applied in the right-to-left order. For example, ((b c)(a b))(a) = c,
((b c)(a b))(b) = a, ((b c)(a b))(c) = b. The permutation action π·t, which
operates on terms extending a permutation on atoms, is defined as follows:
π·a = π(a); π·([a]t) = [π·a](π·t); π·(f〈t1, . . . , tn〉) = f〈π·t1, . . . , π·tn〉.

Positions are finite sequences of positive integers. The empty sequence is
denoted by ε. The set Pos(t) of positions in a ground term t is defined as follows:
Pos(a) = {ε}; Pos([a]t) = {1p | p ∈ Pos(t)} ∪ {ε}; Pos(f〈t1, . . . , tn〉) =

⋃
i{ip |

p ∈ Pos(ti)} ∪ {ε}. The subterm of t at a position p ∈ Pos(t) is written as t|p.
For positions p and q, we say that p is deeper than q if there exists a position o
such that p = qo. In that case, o is denoted by p \ q.

A context is a ground term in which a distinguished constant � occurs. The
ground term obtained from a context C by replacing each � at positions pi by
ground terms ti is written as C[t1, . . . , tn]p1,...,pn

or simply C[t1, . . . , tn].
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�NLa a#b

�NLa a#[a]t

�NLa a#t1 · · · �NLa a#tn

�NLa a#f〈t1, . . . , tn〉
�NLa a#t

�NLa a#[b]t

Fig. 1. Rules for freshness relations on NLa

�NLa a ≈α a

�NLa t1 ≈α s1 · · · �NLa tn ≈α sn

�NLa f〈t1, . . . , tn〉 ≈α f〈s1, . . . , sn〉
�NLa t ≈α s

�NLa [a]t ≈α [a]s
�NLa (a b)·t ≈α s �NLa b#t

�NLa [a]t ≈α [b]s

Fig. 2. Rules for α-equivalence on NLa

A pair a#t of an atom a and a ground term t is called a freshness relation.
The rules in Fig. 1 define the validity of freshness relations. Note that the defined
�NLa

a#t coincides with a /∈ FA(t).
The rules in Fig. 2 define the relation �NLa

t ≈α s. This is a congruence
relation [3] and coincides with usual α-equivalence (i.e. the relation reached by
renamings of bound atoms) [5]. The bottom-right rule in the figure is about the
case where the ground terms t and s are abstracted by different atoms. In (a b)·t,
the free occurrences of a in t are replaced by b which is fresh in t under the right
premise of the rule. We often write t ≈α s for �NLa

t ≈α s.
The following properties are shown in [3,19].

Proposition 1. 1. �NLa
a#t if and only if �NLa

π·a#π·t.
2. �NLa

t ≈α s if and only if �NLa
π·t ≈α π·s.

3. If �NLa a#t and �NLa t ≈α s then �NLa a#s.

2.3 Nominal Term Expressions

Next we introduce the set of term expressions, which we call NLAX . Each rewrite
rule is defined using them to represent a schema of rules.

The set NLAX of nominal term expressions, or simply term expressions, is
generated by the following grammar:

e ::= A | X | [A]e | f〈e1, . . . , en〉

where n = arity(f). We write VarX (e) and VarXA
(e) for the sets of variables

and atom-variables occurring in a term expression e, respectively. Also, we write
VarX,XA

(e) for VarX (e) ∪VarXA
(e). A term expression e is linear if each variable

X ∈ VarX (e) occurs only once in e.
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The set Pos(e) of positions in a term expression e is defined similarly to that
for a ground term (using atom-variables for atoms) with the additional clause
that Pos(X) = {ε}. The subexpression of e at a position p ∈ Pos(e) is written
as e|p. A position p ∈ Pos(e) is called a variable position if e|p is a variable, and
a non-variable position otherwise.

A ground substitution is a finite mapping that assigns ground terms to vari-
ables and atoms to atom-variables. We use σ, δ for ground substitutions. We write
σX and σXA

for ground substitutions obtained from σ by restricting the domain
to dom(σ) ∩ X and dom(σ) ∩ XA, respectively. When VarX,XA

(e) ⊆ dom(σ), the
application of σ on e is written as eσ and called a ground instance of e. The
application of σ simply replaces the variables X and atom-variables A occurring
in e by σ(X) and σ(A), respectively, without considering capture of free atoms.
Then we have eσ ∈ NLa for every ground instance eσ.

A pair A#e of an atom-variable A and a term expression e is called a freshness
constraint. A finite set of freshness constraints is called a freshness context. For
a freshness context ∇, we define VarX,XA

(∇) =
⋃

A#e∈∇({A} ∪ VarX,XA
(e)) and

∇σ = {Aσ#eσ | A#e ∈ ∇}.

2.4 Nominal Rewriting Systems with Atom-Variables

Next we define nominal rewrite rules and nominal rewriting systems with atom-
variables.

Definition 1. A nominal rewrite rule with atom-variables, or simply rewrite
rule, is a triple of a freshness context ∇ and term expressions l, r ∈ NLAX such
that VarX,XA

(∇) ∪ VarX,XA
(r) ⊆ VarX,XA

(l) and l is not a variable. We write
∇ � l → r for a rewrite rule, and identify rewrite rules modulo renaming of
variables and atom-variables. A rewrite rule ∇ � l → r is left-linear if l is linear.

Definition 2 (Nominal rewriting system with atom-variables). A nom-
inal rewriting system with atom-variables (NRSAX for short) is a finite set of
rewrite rules. An NRSAX is left-linear if so are all its rewrite rules.

The following example of an NRSAX corresponds to the system in Exam-
ple 43 of [3] written in the style of traditional nominal rewriting. Note that the
freshness constraint A#B in the rule (sublam) below is used to mean that the
atom-variables A and B should be instantiated by distinct atoms.

Example 2. We extend the nominal signature in Example 1 by a function symbol
sub with arity(sub) = 2. By sub〈[a]t, s〉, we represent an explicit substitution
t〈a := s〉. Then, an NRSAX to perform β-reduction is defined by the rule (Beta):

� app〈lam〈[A]X〉, Y 〉 → sub〈[A]X,Y 〉 (Beta)

together with an NRSAX Rsub to execute substitution:

� sub〈[A]app〈X,Y 〉, Z〉 → app〈sub〈[A]X,Z〉, sub〈[A]Y,Z〉〉 (subapp)
� sub〈[A]A,X〉 → X (subvar)

A#X � sub〈[A]X,Y 〉 → X (subε)
A#B,B#Y � sub〈[A]lam〈[B]X〉, Y 〉 → lam〈[B]sub〈[A]X,Y 〉〉 (sublam)
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In a standard notation, the system Rsub is represented as follows:

� (XY )〈A := Z〉 → (X〈A := Z〉)(Y 〈A := Z〉) (subapp)
� A〈A := X〉 → X (subvar)

A#X � X〈A := Y 〉 → X (subε)
A#B,B#Y � (λB.X)〈A := Y 〉 → λB.(X〈A := Y 〉) (sublam)

��
In the sequel, �NLa is extended to mean to hold for all members of the set

in the right-hand side.

Definition 3 (Rewrite relation). Let R = ∇ � l → r be a rewrite rule. For
ground terms s, t ∈ NLa, the rewrite relation is defined by

s →〈R,p,σ〉 t
def⇐⇒ �NLa ∇σ, s = C[s′]p, �NLa s′ ≈α lσ, t = C[rσ]p

Here the subterm s′ of s is called the R-redex, or simply redex if R is understood.
We write s

p→R t if there exists σ such that s →〈R,p,σ〉 t. We write s →R t if
there exist p and σ such that s →〈R,p,σ〉 t. For an NRSAX R, we write s →R t
if there exists R ∈ R such that s →R t.

An example of rewriting can be found in Example 4 of [8].

Lemma 1. Let R = ∇ � l → r be a rewrite rule, and let s, t be ground terms.
If p ∈ Pos(s) and s

p→R t then π·s p→R π·t for every permutation π.

Proof. This is proved in the same way as Lemma 2 of [8]. ��

2.5 Overlaps

The notion of overlap is useful for analysing confluence properties of rewriting
systems. In the setting of the present paper, it can be defined using nominal
unification with atom-variables [15]. Here we restrict the language of unification
problems to NLAX .

Definition 4 (Variable-atom nominal unification problem). Let Γ be a
finite set of equations of the form e1 ≈ e2 where e1 and e2 are term expressions,
and let ∇ be a freshness context. Then the pair (Γ,∇) is called a variable-atom
nominal unification problem (VANUP for short).

Definition 5 (Solution of a VANUP). A ground substitution σ is a solution
of a VANUP (Γ,∇) if �NLa

e1σ ≈α e2σ for every equation e1 ≈ e2 ∈ Γ and
�NLa

Aσ#eσ for every freshness constraint A#e ∈ ∇. A VANUP (Γ,∇) is
solvable if there exists a solution of (Γ,∇).

Example 3. Consider the nominal signature of the lambda calculus in Example 1,
and let P be the VANUP ({lam〈[A]app〈X,A〉〉 ≈ lam〈[B]Y 〉}, {A#X}). Then,
the ground substitution [A := a,B := b,X := c, Y := app〈c, b〉] is a solution of
P . ��
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Definition 6 (Overlap). Let Ri = ∇i � li → ri (i = 1, 2) be rewrite rules.
We assume without loss of generality that VarX,XA

(l1) ∩ VarX,XA
(l2) = ∅. If the

variable-atom nominal unification problem ({l1 ≈ l2|p},∇1 ∪ ∇2) is solvable for
some non-variable position p of l2, then we say that R1 overlaps on R2, and the
situation is called an overlap of R1 on R2. If R1 and R2 are identical modulo
renaming of variables and atom-variables, and p = ε, then the overlap is said to
be self-rooted. An overlap that is not self-rooted is said to be proper.

Example 4. Let R1 and R2 be the rules (Eta) A#X � lam〈[A]app〈X,A〉〉 → X
and (Beta) � app〈lam〈[B]Y 〉, Z〉 → sub〈[B]Y,Z〉, respectively. Then, R1 over-
laps on R2, since the VANUP ({lam〈[A]app〈X,A〉〉 ≈ app〈lam〈[B]Y 〉, Z〉|1(=
lam〈[B]Y 〉)}, {A#X}) is solvable as seen in Example 3. This overlap is proper. ��
Example 5. There exists a self-rooted overlap of the rule (Beta) on its renamed
variant, since the VANUP ({app〈lam〈[A]X〉, Y 〉 ≈ app〈lam〈[B]Z〉,W 〉}, ∅) is
solvable by taking the ground substitution [A := a,B := b,X := a, Y := c, Z :=
b,W := c] as a solution. ��

Unlike in first-order term rewriting, self-rooted overlaps need to be analysed
in the case of nominal rewriting (cf. [1,16]). We check the cases corresponding
to self-rooted overlaps too in the sufficient conditions given in the next section.

2.6 Parallel Reduction

A key notion for proving confluence of left-linear rewriting systems is parallel
reduction. Here we define it inductively, using grammatical contexts [8,16].

Definition 7. The grammatical contexts, ranged over by G, are the contexts
defined by

G ::= a | [a]� | f〈�1, . . . ,�n〉
where n = arity(f). For each rewrite rule R, the relation −→� R is defined induc-
tively by the following rules:

s
ε→R t

s −→� R t
(B)

s1 −→� R t1 · · · sn −→� R tn
G[s1, . . . , sn] −→� R G[t1, . . . , tn]

(C)

where n (≥ 0) depends on the form of G.

The following properties of parallel reduction hold.

Lemma 2. 1. s −→� R s.
2. If s −→� R t then C[s] −→� R C[t].
3. If s →〈R,p,σ〉 t then s −→� R t.
4. If s −→� R t then s →∗

R t.

Proof. 1. By induction on the structure of s.
2. By induction on the context C.
3. By 2 and the rule (B).
4. By induction on the derivation of s −→� R t. ��
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3 Confluence Criteria by Strong Commutation

In this section, we present a proof method for confluence of left-linear NRSAX ’s
using strong commutation modulo α-equivalence. First we review a basic proof
method in rewriting systems with first-order rules. Then we introduce notions
to discuss confluence in nominal rewriting, and give a criterion for NRSAX ’s.

3.1 Proof Method for Confluence by Strong Commutation

In this subsection, we survey the proof method for confluence by strong commu-
tation. For first-order TRS ’s, the method is known, e.g. in [18]. Here we consider
a restricted class of NRSAX ’s consisting only of first-order rules. Note however
that the rewrite relation is still defined for ground nominal terms in NLa.

Definition 8. An NRSAX R is called a TRSAX if for every ∇ � l → r ∈ R, ∇ =
∅, and l and r are term expressions with neither atom-variables nor abstractions.

For a TRSAX , we restrict the rewrite relation to the one with matching by
identity instead of modulo α-equivalence (i.e. s′ = lσ instead of �NLa

s′ ≈α lσ
in Definition 3).

Definition 9. Let R be a TRSAX . →R is confluent if for all ground terms s
and t, s (←∗

R ◦ →∗
R) t implies s (→∗

R ◦ ←∗
R) t.

The basic strategy in the proof method is to show commutation of any com-
bination of two rules of the TRSAX . We recall definitions and lemmas on com-
mutation (cf. [2, pp. 31–33]).

Definition 10. Let R1 and R2 be rewrite rules of a TRSAX .

1. →R1 and →R2 commute iff for all ground terms s1 and s2,
if s1 (←∗

R1
◦ →∗

R2
) s2 then s1 (→∗

R2
◦ ←∗

R1
) s2.

2. →R1 strongly commutes with −→� R2 iff for all ground terms s1 and s2,
if s1 (←R1 ◦−→� R2) s2 then s1 (−→� R2◦ ←∗

R1
) s2.

By Hindley’s results [6] and the properties shown in Lemma 2, we have the
following.

Lemma 3. If →R1 strongly commutes with −→� R2 then →R1 and →R2 com-
mute.

Lemma 4. Let R be a TRSAX . If →Ri
and →Rj

commute for every Ri, Rj ∈
R then →R is confluent.

By Lemmas 3 and 4, to prove confluence of →R, it is sufficient to show that
for every combination of two rules Ri, Rj ∈ R (including the case Ri = Rj),
→Ri

strongly commutes with −→� Rj
, or →Rj

strongly commutes with −→� Ri
.

Next we give conditions for strong commutation of →R1 with −→� R2 .
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Definition 11. Let R1 and R2(= � l2 → r2) be rewrite rules of a TRSAX . The
conditions sc1(R1, R2) and sc2(R1, R2) are defined as follows:

sc1(R1, R2)
def⇐⇒ If s

ε→R1 s1 and s −→� R2 s2 is derived with (C) as the last
applied rule, then there exists t such that s1 −→� R2 t and
s2 →∗

R1
t.

sc2(R1, R2)
def⇐⇒ If s

p→R1 s1 and s
ε→R2 s2 where p is a non-variable position

of l2, then there exists t such that s1 −→� R2 t and s2 →∗
R1

t.

Note that the conditional part of sc2(R1, R2) arises only when R1 overlaps
on R2.

The next lemma guarantees that sc1(R1, R2) and sc2(R1, R2) are a sufficient
condition for strong commutation of →R1 with −→� R2 . In Subsect. 3.3, we present
a version of this lemma generalised to the case of NRSAX .

Lemma 5. Let R1 and R2 be left-linear rewrite rules of a TRSAX . If the con-
ditions sc1(R1, R2) and sc2(R1, R2) hold, then →R1 strongly commutes with
−→� R2 :

s

s1

s2

t

R1

�

R2

�

R2

∗
R1

Proof. We prove by induction on the derivation of s −→� R2 s2 that if s →R1 s1
and s −→� R2 s2 then there exists t such that s1 −→� R2 t and s2 →∗

R1
t.

– Suppose that the last part of the derivation of s −→� R2 s2 has the form

u1 −→� R2 v1 · · · un −→� R2 vn

G[u1, . . . , un] −→� R2 G[v1, . . . , vn]
(C)

• First we consider the case where the reduction s →R1 s1 takes place
in G[u1, . . . , un] with ui →R1 u′

i for some i ∈ {1, . . . , n}. Then by the
induction hypothesis, there exists v′

i such that u′
i −→� R2 v′

i and vi →∗
R1

v′
i.

Hence by applying the rule (C), we have

s1 = G[u1, . . . , u
′
i, . . . , un] −→� R2 G[v1, . . . , v′

i, . . . , vn]

Also, from vi →∗
R1

v′
i we have

s2 = G[v1, . . . , vi, . . . , vn] →∗
R1

G[v1, . . . , v′
i, . . . , vn]

Thus the claim follows by taking t = G[v1, . . . , v′
i, . . . , vn].

• Next we consider the case where the redex of s →R1 s1 is not in any ui of
G[u1, . . . , un]. Then we can assume that the R1-redex is at the root (i.e.
s

ε→R1 s1). Hence the claim follows from the condition sc1(R1, R2).
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– Suppose that s −→� R2 s2 is derived by the rule (B)

s
ε→R2 s2

s −→� R2 s2
(B)

where R2 = � l2 → r2. Then by the definition of rewrite relation, there exists
σ such that s = l2σ and s2 = r2σ.

• First we consider the case where the reduction s →R1 s1 takes place in s
with Xσ →R1 Xδ for some X ∈ VarX (l2), and Y σ = Y δ for all Y (�= X) ∈
VarX (l2). Then by the left-linearity of R2, we have s1 = l2δ

ε→R2 r2δ, and
so s1 −→� R2 r2δ by the rule (B). Also, we have s2 = r2σ →∗

R1
r2δ. Hence

the claim follows by taking t = r2δ.
• Otherwise, the reduction s →R1 s1 takes place in s with s

p→R1 s1 where p
is a non-variable position of l2. Then the claim follows from the condition
sc2(R1, R2). ��

By Lemmas 3, 4 and 5, we have the following theorem.

Theorem 1. Let R be a left-linear TRSAX . If for every Ri, Rj ∈ R, sc1(Ri, Rj)
and sc2(Ri, Rj), or sc1(Rj , Ri) and sc2(Rj , Ri), then →R is confluent.

We give an example of application of the theorem.

Example 6. We extend the nominal signature in Example 1 by function symbols
(constants) S and K. Consider the TRSAX RCL consisting of the rewrite rules of
combinatory logic (CL):

� app〈app〈app〈S,X〉, Y 〉, Z〉 → app〈app〈X,Z〉, app〈Y,Z〉〉 (S)
� app〈app〈K,X〉, Y 〉 → X (K)

We check the condition sc1((S), (K)). Suppose app〈app〈app〈S, u1〉, u2〉, u3〉 ε→S

app〈app〈u1, u3〉, app〈u2, u3〉〉 and app〈app〈app〈S, u1〉, u2〉, u3〉 −→� K s2 with its
last applied rule (C). Then the derivation of the latter must have the form

S −→� K S
(C)

.... D1

u1 −→� K v1
app〈S, u1〉 −→� K app〈S, v1〉 (C)

.... D2

u2 −→� K v2

app〈app〈S, u1〉, u2〉 −→� K app〈app〈S, v1〉, v2〉 (C)
.... D3

u3 −→� K v3

app〈app〈app〈S, u1〉, u2〉, u3〉 −→� K app〈app〈app〈S, v1〉, v2〉, v3〉 (= s2)
(C)

Hence we can construct a derivation of app〈app〈u1, u3〉, app〈u2, u3〉〉−→� K

app〈app〈v1, v3〉, app〈v2, v3〉〉 from D1,D2 and D3 by using the rule (C). We also
have s2 = app〈app〈app〈S, v1〉, v2〉, v3〉 →S app〈app〈v1, v3〉, app〈v2, v3〉〉, and so
the condition sc1((S), (K)) is satisfied. On the other hand, it is seen that the
condition sc2((S), (K)) is vacuously satisfied.

Next we consider the case where both rules are the rule (S). The condi-
tion sc1((S), (S)) can be checked similarly to the above case. For the condition
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sc2((S), (S)), we only have to check the case where both redexes are at the root,
and in that case the claim clearly holds.

The case where both rules are the rule (K) can be checked similarly.
Therefore by Theorem 1, →RCL

(= →S ∪ →K) is confluent. ��
Note that ground terms here include countably many atoms (cf. Subsects.

2.1 and 2.2). By considering atoms as variables (rather than constants), we can
see that confluence of a TRSAX discussed above is an extension of confluence of
the standard first-order TRS with the same function symbols and rewrite rules
(so it is a property stronger than ground confluence of the first-order TRS ). The
TRSAX RCL in Example 6 treats ground terms with atoms, and this is natural
when considering an operator like λ∗ (Definition 2.14 of [7]).

3.2 Confluence Properties in Nominal Rewriting

To discuss confluence in nominal rewriting, it is necessary to examine whether
two terms can rewrite to the same term modulo α-equivalence. For doing this,
we make use of suitable notions that are defined modulo an equivalence relation
in terms of abstract reduction systems [11,12].

Definition 12. Let R be an NRSAX .

1. →R is confluent modulo ≈α iff for all ground terms s and t,
if s (←∗

R ◦ →∗
R) t then s (→∗

R ◦ ≈α ◦ ←∗
R) t.

2. →R is Church-Rosser modulo ≈α iff for all ground terms s and t,
if s (←R ∪ →R ∪ ≈α)∗

t then s (→∗
R ◦ ≈α ◦ ←∗

R) t.

In general, Church-Rosser modulo an equivalence relation ∼ is a stronger
property than confluence modulo ∼ [11]. So, in the rest of this section, we aim to
give a sufficient condition for Church-Rosser modulo ≈α of left-linear NRSAX ’s.

To this end, we restrict the class of NRSAX ’s further by (an adaptation of)
the uniformity condition [3]. Intuitively, uniformity means that if an atom a is
not free in s and s rewrites to t then a is not free in t.

Definition 13. A rewrite rule ∇ � l → r is uniform if the following holds: for
every atom a and every ground substitution σ such that VarX,XA

(l) ⊆ dom(σ),
if �NLa

∇σ and �NLa
a#lσ then �NLa

a#rσ. A rewriting system is uniform if
so are all its rewrite rules.

For uniform rewrite rules, the following properties hold.

Lemma 6. Suppose s →R t for a uniform rewrite rule R. Then, for every atom
a, if �NLa

a#s then �NLa
a#t.

Proof. This is proved in the same way as Proposition 2 of [8]. ��
Definition 14. A relation → on ground terms is strongly compatible with ≈α

iff for all ground terms s and t, if s (≈α ◦ →) t then s (→= ◦ ≈α) t.

Lemma 7. If R is a uniform rewrite rule, then →R is strongly compatible with
≈α and −→� R is strongly compatible with ≈α.

Proof. This is proved in the same way as Lemmas 3 and 8 of [8]. ��
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3.3 A Sufficient Condition for Church-Rosser Modulo α-equivalence

Now we present a sufficient condition for Church-Rosser modulo ≈α extending
the sufficient condition for confluence in Theorem 1. First we introduce the
notions of commutation and strong commutation modulo ≈α. The latter is not
treated in [11,12] (in the case of a general equivalence relation ∼).

Definition 15. Let R1 and R2 be rewrite rules of an NRSAX .

1. →R1 and →R2 commute modulo ≈α iff for all ground terms s1 and s2,
if s1 (←∗

R1
◦ →∗

R2
) s2 then s1 (→∗

R2
◦ ≈α ◦ ←∗

R1
) s2.

2. →R1 strongly commutes with −→� R2 modulo ≈α iff for all ground terms s1
and s2, if s1 (←R1 ◦−→� R2) s2 then s1 (−→� R2◦ ≈α ◦ ←∗

R1
) s2.

The following lemmas are counterparts of Lemmas 3 and 4 in Subsect. 3.1.

Lemma 8. If →R1 strongly commutes with −→� R2 modulo ≈α, and both →R1

and −→� R2 are strongly compatible with ≈α, then →R1 and →R2 commute mod-
ulo ≈α.

Proof. First we consider the claim that for all ground terms s, s1 and s2, if
s1 ←∗

R1
s−→� R2s2 then there exist ground terms t1 and t2 such that s1−→� R2t1 ≈α

t2 ←∗
R1

s2. This is proved by induction on the length of the steps of s1 ←∗
R1

s.
Next we show that for all ground terms s, s1 and s2, if s1 ←∗

R1
s −→� ∗

R2
s2

then there exist ground terms t1 and t2 such that s1−→� ∗
R2

t1 ≈α t2 ←∗
R1

s2. This
is proved by induction on the length of the steps of s −→� ∗

R2
s2. By Lemma 2,

−→� ∗
R2

= →∗
R2

, so we have that →R1 and →R2 commute modulo ≈α. ��
Lemma 9. Let R be a uniform NRSAX . If →Ri

and →Rj
commute modulo

≈α for every Ri, Rj ∈ R, then →R is Church-Rosser modulo ≈α.

Proof. By Lemma 7, →Ri
is strongly compatible with ≈α for every Ri ∈ R.

Then the claim follows by Corollary 2.6.5 of [12]. ��
Next we give conditions for strong commutation of →R1 with −→� R2 modulo

≈α.

Definition 16. Let R1 and R2 (= ∇ � l2 → r2) be rewrite rules of an NRSAX .
The conditions sc1(R1, R2,≈α) and sc2(R1, R2,≈α) are defined as follows:

sc1(R1, R2,≈α) def⇐⇒ If s
ε→R1 s1 and s −→� R2 s2 is derived with (C) as the

last applied rule, then there exist t1 and t2 such that
s1 −→� R2 t1, s2 →∗

R1
t2 and t1 ≈α t2.

sc2(R1, R2,≈α) def⇐⇒ If s
p→R1 s1 and s

ε→R2 s2 where p is a non-variable
position of l2, then there exist t1 and t2 such that
s1 −→� R2 t1, s2 →∗

R1
t2 and t1 ≈α t2.
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Note that the conditional part of sc2(R1, R2,≈α) arises only when R1 over-
laps on R2.

The next lemma guarantees that sc1(R1, R2,≈α) and sc2(R1, R2,≈α) are a
sufficient condition for strong commutation of →R1 with −→� R2 modulo ≈α.

Lemma 10. Let R1 and R2 be left-linear uniform rewrite rules of an NRSAX .
If the conditions sc1(R1, R2,≈α) and sc2(R1, R2,≈α) hold, then →R1 strongly
commutes with −→� R2 modulo ≈α:

s

s1

s2

t1 ≈α t2

R1

�

R2

�

R2

∗
R1

Proof. We prove by induction on the derivation of s −→� R2 s2 that if s →R1 s1
and s −→� R2 s2 then there exist t1 and t2 such that s1 −→� R2 t1, s2 →∗

R1
t2 and

t1 ≈α t2.

– Suppose that the last part of the derivation of s −→� R2 s2 has the form

u1 −→� R2 v1 · · · un −→� R2 vn

G[u1, . . . , un] −→� R2 G[v1, . . . , vn]
(C)

• First we consider the case where the reduction s →R1 s1 takes place
in G[u1, . . . , un] with ui →R1 u′

i for some i ∈ {1, . . . , n}. Then by the
induction hypothesis, there exist v′

i1 and v′
i2 such that u′

i−→� R2v
′
i1, vi →∗

R1

v′
i2 and v′

i1 ≈α v′
i2. Hence by applying the rule (C), we have

s1 = G[u1, . . . , u
′
i, . . . , un] −→� R2 G[v1, . . . , v′

i1, . . . , vn]

Also, from vi →∗
R1

v′
i2 we have

s2 = G[v1, . . . , vi, . . . , vn] →∗
R1

G[v1, . . . , v′
i2, . . . , vn]

Thus the claim follows by taking t1 = G[v1, . . . , v′
i1, . . . , vn] and t2 =

G[v1, . . . , v′
i2, . . . , vn].

• Next we consider the case where the redex of s →R1 s1 is not in any ui of
G[u1, . . . , un]. Then we can assume that the R1-redex is at the root (i.e.
s

ε→R1 s1). Hence the claim follows from the condition sc1(R1, R2,≈α).
– Suppose that s −→� R2 s2 is derived by the rule (B)

s
ε→R2 s2

s −→� R2 s2
(B)

where R2 = ∇ � l2 → r2. Then by the definition of rewrite relation, there
exists σ such that �NLa

∇σ, �NLa
s ≈α l2σ and s2 = r2σ.
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• First we consider the case where the reduction s
p→R1 s1 takes place at a

position p that is a variable position q of l2 or deeper. Let l2|q = X. Then
by Lemma 11 below, there exists δ such that �NLa

s1 ≈α l2δ, Xσ →R1 Xδ
and Y σ = Y δ for all Y (�= X) ∈ VarX (l2). Since we can see �NLa

∇δ using
Lemma 6 (cf. Lemma 7(2) of [8]), we have s1

ε→R2 r2δ, and so s1−→� R2 r2δ
by the rule (B). Also, we have s2 = r2σ →∗

R1
r2δ. Hence the claim follows

by taking t1 = t2 = r2δ.
• Otherwise, the reduction s →R1 s1 takes place in s with s

p→R1 s1 where p
is a non-variable position of l2. Then the claim follows from the condition
sc2(R1, R2,≈α). ��

Lemma 11. Let R1 and R2 (= ∇ � l2 → r2) be left-linear uniform rewrite
rules of an NRSAX . Suppose that σ is a ground substitution with VarX,XA

(l2) ⊆
dom(σ) and �NLa

∇σ. Suppose also that a reduction s
p→R1 s1 takes place at a

position p that is a variable position q of l2 or deeper, and l2|q = X. Then, for
every position q′ from ε to q, if �NLa s|q′ ≈α l2|q′σ then there exists δ such that
�NLa

s1|q′ ≈α l2|q′δ, Xσ →R1 Xδ, and Y σ = Y δ for all Y (�= X) ∈ VarX (l2).

Proof. By induction on the length of q \ q′.
First we consider the case q′ = q. Then l2|q′ = l2|q = X. Suppose �NLa

s|q′ ≈α l2|q′σ = Xσ. Since s
p→R1 s1 with a deeper position p than q, we have

s|q →R1 s1|q. So by the strong compatibility of →R1 (with →R1 instead of →=
R1

)
there exists t such that Xσ →R1 t ≈α s1|q. Hence we can take δ with Xδ = t
and �NLa s1|q ≈α Xδ = l2|qδ.

For the other cases, the proof is by case analysis according to the form of
l2|q′ . This is shown analogously to the case analysis in the proof of Lemma 10
of [8]. ��

By Lemmas 7, 8, 9 and 10, we have the following theorem.

Theorem 2. Let R be a left-linear uniform NRSAX . If for every Ri, Rj ∈ R,
sc1(Ri, Rj ,≈α) and sc2(Ri, Rj ,≈α), or sc1(Rj , Ri,≈α) and sc2(Rj , Ri,≈α) then
→R is Church-Rosser modulo ≈α.

In practice, if we know that R1 does not overlap on R2 and vice versa, we
may use, instead of Lemma 8, Theorem 1 of [8] to show commutation modulo
≈α of →R1 and →R2 . So, to apply Theorem 2, we can concentrate on Ri and
Rj such that there exists an overlap of Ri on Rj or Rj on Ri. Moreover, for
Ri = Rj , we may skip checking the case p = ε in sc2(Ri, Rj ,≈α) when Ri is
α-stable [16], so that we have only to check rules with proper overlaps when the
NRSAX is α-stable.

Definition 17 (α-stability). A rewrite rule R = ∇ � l → r is α-stable if
�NLa

s ≈α s′, s →〈R,ε,σ〉 t and s′ →〈R,ε,σ′〉 t′ imply �NLa
t ≈α t′. An NRSAX R

is α-stable if so are all its rewrite rules.

We demonstrate Theorem 2 on two examples.
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Example 7. The NRSAX Rsub in Example 2 is left-linear, uniform and α-stable.
In this NRSAX , there are two pairs of rules that have proper overlaps: ((subapp),
(subε)) and ((sublam), (subε)).

For the pair ((subapp), (subε)), we first check the condition sc1((subapp), (subε),
≈α). Suppose sub〈[a]app〈u1, u2〉, u3〉 ε→subapp app〈sub〈[a]u1, u3〉, sub〈[a]u2, u3〉〉
and sub〈[a]app〈u1, u2〉, u3〉 −→� subε

s2 with its last applied rule (C). Then the
derivation of the latter must have the form

.... D1

u1 −→� subε v1

.... D2

u2 −→� subε v2

app〈u1, u2〉 −→� subε app〈v1, v2〉 (C)

[a]app〈u1, u2〉 −→� subε [a]app〈v1, v2〉 (C)

.... D3

u3 −→� subε v3

sub〈[a]app〈u1, u2〉, u3〉 −→� subε sub〈[a]app〈v1, v2〉, v3〉 (= s2)
(C)

Hence we can construct a derivation of app〈sub〈[a]u1, u3〉, sub〈[a]u2, u3〉〉−→� subε

app〈sub〈[a]v1, v3〉, sub〈[a]v2, v3〉〉 from D1,D2 and D3 by using the rule (C). We
also have s2 = sub〈[a]app〈v1, v2〉, v3〉 →subapp app〈sub〈[a]v1, v3〉, sub〈[a]v2, v3〉〉,
and so the condition sc1((subapp), (subε)) is satisfied.

Next we check the condition sc2((subapp), (subε),≈α). Suppose sub〈[a]app〈
u1, u2〉, u3〉 ε→subapp app〈sub〈[a]u1, u3〉, sub〈[a]u2, u3〉〉 and sub〈[a]app〈u1, u2〉, u3〉
ε→subε

app〈u1, u2〉 (= s2). From the latter, we see �NLa
a#u1 and �NLa

a#u2,
and so we have sub〈[a]u1, u3〉 →subε u1 and sub〈[a]u2, u3〉 →subε u2. Hence we can
construct a derivation of app〈sub〈[a]u1, u3〉, sub〈[a]u2, u3〉〉 −→� subε

app〈u1, u2〉.
Thus sc2((subapp), (subε),≈α) holds by taking t1 = t2 = app〈u1, u2〉.

For the other pair of rules with a proper overlap, we can analogously check
sc1((sublam), (subε),≈α) and sc2((sublam), (subε),≈α).

Therefore by Theorem 2, we see that →Rsub
is Church-Rosser modulo ≈α. ��

Example 8. Consider the NRSAX Rsubdup obtained from Rsub in Example 2 by
adding the following rewrite rule:

A#Y � sub〈[A]X,Y 〉 → sub〈[A]sub〈[A]X,Y 〉, Y 〉 (subdup)

This NRSAX Rsubdup is left-linear, uniform and α-stable. Also we see that it is
non-terminating due to the rule (subdup). By applying Theorem 2, we can show
that →Rsubdup

is Church-Rosser modulo ≈α. ��

4 Conclusion

We presented a sufficient condition for Church-Rosser modulo α-equivalence (on
ground nominal terms) of left-linear uniform NRSAX ’s that may have overlaps
of rewrite rules and may be non-terminating. This was achieved by introducing
the notion of strong commutation modulo α-equivalence and giving a sufficient
condition for it.
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Currently, we are working on implementation of a tool that verifies sufficient
conditions as developed in this paper. To compute overlaps in NRSAX ’s and
extract useful information, it is necessary to construct an appropriate unification
procedure for variable-atom nominal unification problems.
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Abstract. Unification techniques have been proven to be useful for for-
mal analysis of cryptographic systems. In this paper, we introduce a new
unification problem called local XOR unification, motivated by formal
analysis of security of modes of operation. The goal in local XOR unifi-
cation is to find a substitution making two terms equivalent modulo the
theory of exclusive-or, but each variable is only allowed to be mapped to
a term from a given set of terms. We present two versions of the local
XOR unification problem, and give algorithms to solve them, proving
soundness, completeness and termination.

Keywords: Unification · Formal analysis of cryptography · Modes of
operation

1 Introduction

In logic, unification is an algorithmic process of solving equations between sym-
bolic expressions. The basic form of unification is syntactic unification, where
both sides of each equation must be made exactly the same under some substi-
tution. In equational unification, both sides of each equation can be the same
under some substitution, modulo some background equational theory.

Equational unification has a number of successful applications in cryptogra-
phy protocol verification [3,7,8]. This work is motivated by symbolic reasoning
of cryptographic modes of operation [13,16]. The idea is that message blocks
can be modelled symbolically as terms. In order to break security of modes of
operation, an adversary needs to solve some certain unification problem. The
unification problem is unification modulo the theory of exclusive-xor, together
with some free function symbols. Another feature of the unification problem is
that each variable is only allowed to be mapped to a term from a given set of
terms. Intuitively, the set of terms associated with a variable (modelling some
plaintext block) include everything that an adversary is able to compute when
generating that plaintext block. We call this kind of unification problem local
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XOR unification. We present two concrete versions of the local XOR unification
problem. They are called f-rooted local unification, and ⊕-rooted local unifica-
tion. They can be used to analyze security of different cryptographic modes of
operation. For f -rooted local unification, this paper gives a unification algorithm,
which can find a subset of all the unifiers, called minimal unifiers. For ⊕-rooted
local unification, this paper gives a unification algorithm, which can find all the
unifiers. We prove the soundness, completeness and termination of both of those
algorithms.

Formal methods have been used to analyze various cryptosystems, including
cryptographic modes of operation, authenticated encryption schemes, signature
schemes, garbled circuits, etc. [1,2,5,9,11,12,15]. In the literature, [15] is the
closest to our work. In [15], a mode of operation is modelled as a directed acyclic
graph. If a particular graph can be labeled while satisfying some constraints,
then the corresponding mode of operation is secure. The method is sound, but
incomplete. If a mode of operation is insecure, the method in [15] does not
provide an explanation why it is insecure. In contrast, if a mode of operation is
insecure, our algorithms produce unifiers, which explain why it is insecure.

The rest of this paper is organized as follows. Section 2 discusses some back-
ground that will be used in this paper. In Sect. 3, we introduce two concrete
versions of the local XOR unification problem and discuss how they are related
to security of modes of operation. In Sect. 4 and Sect. 5, we describe how these
unification problems are solved. We conclude in Sect. 6.

2 Preliminaries

Terms can be built up from constants (0, r1, r2, . . .), variables, Boolean values, ⊕,
×, two unary function symbols f and h. × has a higher precedence than ⊕. We
distinguish between two types of variables: term variables and Boolean variables.
A term variable (x, x1, x2, . . .) can be instantiated by a term. A Boolean variable
(b, b1, b2, . . .) can only be instantiated by a Boolean value (0, 1). If a term t does
not contain any variable, t is a ground term. If t does not contain any Boolean
variables or Boolean values, we call it a pure term. Otherwise, we call it a mixed
term. To be more precise, we can build up terms in the following way.

term := constant | variable | f(term) | h(term) | term ⊕ term | bool × term
variable := term variable | Boolean variable
bool := Boolean variable | 0 | 1

In the remainder of this paper, we assume that all terms are simplified to
normal form by applying the following rules in R modulo AC(Associativity and
Commutativity) of × and ⊕.

R = {t ⊕ t → 0, t ⊕ 0 → t, 1 × t → t, 0 × t → 0, t ⊕ t ⊕ x → x}
We use a mixed term to represent a set of pure terms. For example, suppose

that mt = (b1 × r) ⊕ (b2 × f(r)), then mt represents the set of terms T =
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{0, r, f(r), r ⊕ f(r)}. The idea is that under all possible Boolean values for b1
and b2, mt is one of the pure terms in T after simplification. We will use this
idea in Sect. 5.

A term t is an f-rooted term if t is of the form f(t′). Similarly, a ×-rooted
term is of the form co × t, where co is either a Boolean variable or a Boolean
value, and t is a term. We call co the coefficient of co × t. An ⊕-rooted term t
is of the form t1 ⊕ t2 ⊕ . . . ⊕ tn, where t1, . . . , tn are called summands of t. Let
T = {t1, t2, . . . , tn} be a set of terms, we use ⊕T to denote t1 ⊕ t2 ⊕ . . . ⊕ tn.

A substitution is a mapping assigning terms to variables. If a substitution σ
is of the form {x1 �→ t1, x2 �→ t2, . . . , xn �→ tn}, where n > 0, we can write it
as σ = {x1 �→ t1} ∪ Γ , where Γ = {x2 �→ t2, . . . , xn �→ tn}. A term substitution
maps term variables to terms. A Boolean substitution maps Boolean variables
to Boolean values. We use domain(σ) to denote the domain of a substitution
σ. In this paper, we do not consider any substitution σ, where domain(σ) con-
tains both term variables and Boolean variables. We can apply a substitution
σ to a term t in the straightforward way. If x ∈ domain(σ), then replace each
occurrence of x in t by xσ. Let T = {t1, t2, . . . , tn} be a set of terms, σ be a
substitution, then Tσ = {t1σ, t2σ, . . . , tnσ}.

For simplicity, from now on, variables mean term variables, and substi-
tutions mean term substitutions. We use σ1σ2 to denote the composition of
two substitutions σ1 and σ2. We call σ1σ2 an instance of σ1. For any term
t, t(σ1σ2) = (tσ1)σ2. We use σ ◦ τ to denote the composition of a substi-
tution σ = {x1 �→ t1, x2 �→ t2, . . . , xn �→ tn} and a Boolean substitution
τ . σ ◦ τ = {x1 �→ t1τ, x2 �→ t2τ, . . . , xn �→ tnτ}. So for any pure term t,
t(σ ◦ τ) = (tσ)τ . We use τ1 ∪· τ2 to denote the consistent union of two Boolean
substitutions τ1 and τ2. This operation is undefined if there exists a Boolean
variable b s.t. b ∈ domain(τ1) ∩ domain(τ2) and bτ1 	= bτ2. Otherwise,

b(τ1 ∪· τ2) =

{
bτ1 if x ∈ domain(τ1)
bτ2 otherwise

Note that if domain(τ1) ∩ domain(τ2) = ∅, then τ1 ∪· τ2 is exactly τ1 ∪ τ2.
We use t1 =⊕ t2 to denote that t1 and t2 have the same normal form w.r.t.

R. Let eq be an equation of the form t1
?= t2, where t1 and t2 are pure terms.

σ is a unifier of eq if t1σ =⊕ t2σ. Let eqs be a set of equations on pure terms,
σ is a unifier of eqs if σ is a unifier of all the equations in eqs. The following
definition defines a Complete Set of Unifiers (CSU) of a set of equations. The
idea of CSU is that all unifiers can be obtained by instantiation. [14] shows how
a finite complete set of unifiers can be computed.

Definition 1. We use CSU⊕(eqs) to denote the complete set of unifiers of eqs.
CSU⊕(eqs) is a set of substitutions s.t.

– If σ ∈ CSU⊕(eqs), then σ is a unifier of eqs.
– If τ is a unifier of eqs, there exist σ ∈ CSU⊕(eqs) s.t. eqs τ =⊕ eqs σσ′ for

some σ′.
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A position p is a sequence of positive integers. len(p) denotes the length of
the sequence p. λ denotes the empty sequence. Let p1 and p2 be two positions,
p1 is a prefix of p2 if p2 is of the form p1.i1.i2...in, where ij is a positive integer
(1 ≤ j ≤ n). p1 is an immediate prefix of p2 if p2 is of the form p1.i, where i
is a positive integer. Let t be a term, and p be a position, we use t|p to denote
the subterm of t at position p. For any term t, t|λ = t. If g is a function symbol
of arity n, then g(t1, t2, . . . , tn)|i.i1.i2.··· .im = ti|i1.i2.··· .im . We use t[s]p to denote
the term obtained by replacing in t the subterm at position p by term s. For
example, r1 ⊕ f(r2)|2.1 = r2, r1 ⊕ f(r2)[x1]2.1 = r1 ⊕ f(x1). If t is a term, p is a
position in t, σ is a substitution, then (t|p)σ = (tσ)|p.

3 Local XOR Unification

The goal of local XOR unification is to find a substitution making two terms
equivalent modulo the theory of exclusive-or, but each variable is only allowed
to be mapped to a term from a given set of terms. It is related to symbolic
security of modes of operation [13,16]. The idea is that message blocks can
be modelled symbolically as terms. Variables model plaintext blocks. Non-zero
constants model blocks of random bits. “0” models a block of all 0’s. f models
a block cipher, h models a publicly computable cryptographic hash function.

In [13], a symbolic history H refers to messages exchanged between an adver-
sary and an encryptor. At any point in time, the adversary knows all the messages
that appear previously in the history. A term t is computable by the adversary
when generating x if t can be built up from terms that appear earlier than x
in H using functions that the adversary can compute (e.g. ⊕). A substitution
σ is computable if for all x ∈ domain(σ), xσ is computable when generating
x. A mode of operation is symbolically secure if, for any symbolic history H,
and any computable substitution σ, there is no subset S of ciphertext blocks
returned by the encryptor s.t. ⊕Sσ =⊕ 0. Obviously, if all the ciphertext blocks
are either f -rooted or constants, a mode of operation is symbolically secure if,
for any symbolic history H, and any computable substitution σ, there are no
two ciphertext blocks t1, t2 returned by the encryptor s.t. t1σ =⊕ t2σ. A mode of
operation is statically equivalent to random if for every symbolic history H and
every computable ground substitution σ, Hσ is statically equivalent to a frame
H ′ in which each ciphertext block returned by the encryptor is replaced by a
fresh constant (modelling a randomly generated block). In [13], it is shown that
a mode is symbolically secure if and only if it is statically equivalent to random.

Intuitively, the adversary can use ciphertext blocks it has received previously
from the encryptor to construct new plaintext blocks. Static equivalence to ran-
dom may be thought of as the symbolic analog of IND$-CPA security [4]. In [13],
the authors show that, in general, it is undecidable to check symbolic security of
modes of operation. A sound and incomplete algorithm is given in [13]. Given a
mode of operation, the algorithm somehow considers all possible symbolic histo-
ries of arbitrary length at the same time, and has two possible outputs: “secure”
or “unknown”. If the output is “secure”, it means that the mode of operation
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is symbolically secure. If the output is “unknown”, it means that the algorithm
could not tell if the mode of operation is symbolically secure or insecure.

The work in this paper provides an alternative way of checking symbolic
security. It keeps enumerating concrete symbolic histories, up to a fixed length,
which can be set as a parameter. For each symbolic history, it checks if the
XOR of some ciphertext blocks is 0 (under some constraint), by solving the
local XOR unification problem. If so, the mode of operation is insecure, and the
unifiers explain why it is insecure. Otherwise, we do not know if it is secure or
insecure. Here are two examples of symbolic histories.

Example 1. The following is the symbolic history of Cipher Block Chaining for
3 ciphertext blocks:

H = [r, x1, f(r ⊕ x1), x2, f(f(r ⊕ x1) ⊕ x2)]
where x1, x2, x3 model plaintext blocks, r, f(r ⊕ x1), f(f(r ⊕ x1) ⊕ x2) model
ciphertext blocks.

Note that all terms modelling ciphertext blocks are either constants or f -
rooted terms. To check if Cipher Block Chaining is symbolically secure, we solve
an f -rooted local unification problem, which will be introduced in Sect. 3.1.

Example 2. The following is the symbolic history of Output Feedback Mode for
3 ciphertext blocks:

H = [r, x1, f(r) ⊕ x1, x2, f(f(r)) ⊕ x2]
where x1, x2, x3 model plaintext blocks, r, f(r)⊕x1, f(f(r))⊕x2 model ciphertext
blocks.

Note that all terms modelling ciphertext blocks are either constants or ⊕-
rooted terms. To check if Output Feedback Mode is symbolically secure, we solve
an ⊕-rooted local unification problem, which will be introduced in Sect. 3.2.

3.1 f-rooted Local Unification

In this section, we define f -rooted local unification. It can be used to check
symbolic security of modes of operation, where ciphertext blocks are constants or
f -rooted terms (e.g. Cipher Block Chaining, Propagating Cipher Block Chaining,
Accumulated Block Cipher [10]).

Definition 2. Let M be a mapping from variables to sets of pure terms. M is
an f-mapping if

– For each variable x ∈ domain(M ), 0 ∈ M (x).
– For each variable x ∈ domain(M ), if t ∈ M (x), then t is either a constant

or an f-rooted term.

To check symbolic security, let M map each variable xi to 0 and all the terms
that appear earlier than xi in the symbolic history. Intuitively, t ∈ M (xi) means
that t is immediately available to the adversary. In Example 1, M (x1) = {0, r},
M (x2) = {0, r, f(r ⊕ x1)}.
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Definition 3. Let M be an f-mapping.

– If t ∈ M (x), then t ≺Mf
x.

– If t ≺Mf
x, then h(t) ≺Mf

x.
– If t1 ≺Mf

x, t2 ≺Mf
x, . . ., tn ≺Mf

x , then t1 ⊕ t2 ⊕ . . . ⊕ tn ≺Mf
x.

t ⊀Mf
x if t ≺Mf

x does not hold.
σ is an admissible Mf -substitution if, for each variable x ∈ domain(σ),

xσ =⊕ tσ, for some t ≺Mf
x.

Intuitively, t ≺Mf
x means that the adversary can compute t when generating

x, using terms in M (x) and some functions that the adversary can compute (e.g.
⊕ and h).

Definition 4. Let M be an f-mapping, t1, t2 be two f-rooted pure terms. t1
and t2 are Mf -unifiable if there exists some substitution σ such that

– σ is an admissible Mf -substitution.
– t1σ =⊕ t2σ.

σ is called a Mf -unifier of t1 and t2. The problem of checking if t1 and t2 are
Mf -unifiable is called f-rooted local unification.

In Example 1, f(f(r⊕x1)⊕x2) and f(r⊕x1) are Mf -unifiable under the sub-
stitution {x1 �→ r, x2 �→ f(0)}. Thus, Cipher Block Chaining is not symbolically
secure.

3.2 ⊕-rooted Local Unification

In this section, we define ⊕-rooted local unification. It can be used to check sym-
bolic security of modes of operation, where ciphertext blocks are constants or
⊕-rooted terms (e.g. Cipher Feedback Mode, Output Feedback Mode). For tech-
nical reasons, we do not allow h (cryptographic hash functions) to be involved
in ⊕-rooted local unification.

Definition 5. Let M be a mapping from variables to sets of pure terms. M is
an ⊕-mapping if

– For each variable xi ∈ domain(M ), 0 ∈ M (xi).
– For each variable xi ∈ domain(M ), if t ∈ M (xi), then h does not occur in t.

To check symbolic security, let M map each variable x to 0 and all the terms
that appear earlier than x in the symbolic history. Intuitively, t ∈ M (x) means
that t is immediately available to the adversary. In Example 2, M (x1) = {0, r},
M (x2) = {0, r, f(r) ⊕ x1}.

Definition 6. Let M be an ⊕-mapping.

– If t ∈ M (x), then t ≺M⊕ x.
– If t1 ≺M⊕ x, t2 ≺M⊕ x, . . ., tn ≺M⊕ x, then t1 ⊕ t2 ⊕ . . . ⊕ tn ≺M⊕ x.
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t ⊀M⊕ x if t ≺M⊕ x does not hold.
σ is an admissible M⊕-substitution if, for each variable x in the domain of

σ, xσ =⊕ tσ, for some t ≺M⊕ x.

Intuitively, t ≺M⊕ x means that the adversary can compute t when generat-
ing x, by taking the XOR of terms in M (x).

Definition 7. Let M be an ⊕-mapping. T = {t1, t2, . . . , tn}, where h does not
occur in T . A subset T ′ of T is M⊕-unifiable with 0 if there exists some substi-
tution σ such that

– σ is an admissible M⊕-substitution.
– ⊕(T ′σ) =⊕ 0.

σ is called a M⊕-unifier of T ′. The problem of checking if some subset T ′ of T
is M⊕-unifiable with 0 is called ⊕-rooted local unification.

In Example 2, no subset of {r, f(r)⊕x1, f(f(r))⊕x2} is M⊕-unifiable with 0.
This means that there is no attack for Output Feedback Mode, up to 3 ciphertext
blocks.

4 Solving f-rooted Local Unification

4.1 Overview

In this section, we present an algorithm for solving f -rooted local unification.
Given an f -mapping M and two pure f -rooted terms t1 and t2, the goal is
to check if t1 and t2 are Mf -unifiable. By Definitions 4 and 1, any Mf -unifier

of t1 and t2 must be an instance of some τ ∈ CSU⊕(t1
?= t2). Therefore, we

nondeterministically start from a substitution τ ∈ CSU⊕(t1
?= t2), and keep

applying the Prev rule and the Cancel rule, which will be defined later in this
section. Eventually either no rule applies, or we get a Mf -unifier of t1 and t2.
We use Example 3 to motivate the Prev rule, and use Example 4 to motivate
the Cancel rule. In this section, we only consider pure terms.

Example 3. Suppose that we have the following mapping M . We want to check
if f(x1) and f(h(x2)) are Mf -unifiable.

M (x1) = {0, r1}
M (x2) = {0, r1, r2}

CSU⊕(f(x1)
?= f(h(x2))) = {τ}, where τ = {x1 �→ h(x2)}. τ is not a Mf -

unifier of f(x1) and f(h(x2)), since h(x2) 	≺Mf
x1. By Definitions 4 and 1,

any Mf -unifier of f(x1) and f(h(x2)) must be an instance of τ . So we need to
instantiate τ using some substitution σ. We have the following two possible ways
to find σ.

1. Let σ be the unifier of h(x2) and some t s.t. t ≺Mf
x1. But there are infinitely

many such terms t, for instance h(0), h(r1), h(h(0)), h(h(r1)), . . ..
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2. Let σ be the unifier of x2 and some t s.t. t ∈ M (x1). By Definition 3, if
t ∈ M (x1), then h(t) ≺Mf

x1. This is better since M (x1) is a finite set.

We take the second approach. σ can be either {x2 �→ 0} or {x2 �→ r1}.
So we find two Mf -unifiers of f(x1) and f(h(x2)): τ1 = {x1 �→ h(0), x2 �→ 0}
and τ2 = {x1 �→ h(r1), x2 �→ r1}. Note that there are other Mf -unifiers (e.g.
τ3 = {x1 �→ h(h(0)), x2 �→ h(0)}, . . .) that we cannot find. This is good enough
for our application, since we just need one Mf -unifier to conclude that a mode
of operation is not symbolically secure. We call τ1 and τ2 minimal Mf -unifiers,
which will be defined later. Our algorithm can find all the minimal Mf -unifiers.

Here is the idea for the Prev rule, which will be introduced later in this
section. Suppose that we want to check if t1 and t2 are Mf -unifiable, and suppose
that τ is a unifier of t1 and t2, but not a Mf -unifier. This means that τ is not an
admissible Mf -substitution. Therefore, there exists a variable x s.t. xτ 	≺Mf

x.
Suppose that xτ = h(t) for some t. It must be the case that t 	≺Mf

x, since
the adversary knows how to compute h. Similarly, suppose that xτ = t′ ⊕ t′′,
for some t′ and t′′. It must be the case that t′ 	≺Mf

x or t′′ 	≺Mf
x, since

the adversary knows how to compute ⊕. To “fix” τ so that τ is an admissible
Mf -substitution, we need to go below h and ⊕, until we hit a constant, an f -
rooted term or a variable, to find the “root cause” why τ is not an admissible
Mf -substitution. We will define innermost open position to capture this idea.
Intuitively, an innermost open position corresponds to a subterm, which is either
a constant, an f -rooted term or a variable and is below h or ⊕. If an innermost
open position is “bad” in the sense that it corresponds to a term t s.t. t 	≺Mf

x,
then we can apply the Prev rule to unify it with some term in M (x).

Example 4. Suppose that we have the following mapping M . We want to check
if f(x1) and f(r1 ⊕ f(r2) ⊕ f(x2)) are Mf -unifiable.

M (x1) = {0, r1}
M (x2) = {0, r1, r2}

CSU⊕(f(x1)
?= f(r1 ⊕ f(r2) ⊕ f(x2))) = {τ}, where τ = {x1 �→ r1 ⊕ f(r2) ⊕

f(x2)}. τ is not a Mf -unifier of f(x1) and f(r1⊕f(r2)⊕f(x2)), since f(r2) 	≺Mf

x1 and f(x2) 	≺Mf
x1. In this case, we can use the Cancel rule, which will be

introduced later in this section. We can instantiate τ by σ = {x2 �→ r2}, which
is the unifier of f(r2) and f(x2). Then τσ = {x1 �→ r1, x2 �→ r2} is a Mf -unifier
of f(x1) and f(r1 ⊕ f(r2) ⊕ f(x2)). In general, we can use the Cancel rule to
get rid of a “bad” subterm t1 by unifying t1 with some t2, if t1 and t2 are both
summands of the same ⊕-rooted term.

4.2 Algorithm for Solving f-rooted Local Unification

First we introduce the following notions of open position and innermost open
position.

Definition 8. An open position is of the form (t, p) where t is a term, p is
a position, and for all prefix p′ of p, t|p′ is not an f-rooted term. (t, p) is an
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innermost open position if (t, p) is an open position, and t|p is a constant, a
variable or an f-rooted term.

An innermost open position (t, p) is extended from an open position (t, p′) if
p′ is a prefix of p.

Example 5. Let t = f(r1) ⊕ h(r2).

(1) (t, 1) is an innermost open position.
(2) (t, 1.1) is not an open position, since t|1 is an f-rooted term.
(3) (t, 2) is an open position.
(4) (t, 2.1) is an innermost open position.
(5) (t, 2.1) is extended from (t, 2).

Definition 9. Let M be an f-mapping, τ be a substitution. (xτ, p) is a bad open
position in τ if for all t′ ≺Mf

x, xτ |p 	=⊕ t′τ .
(xτ, p) is a bad innermost open position in τ if (xτ, p) is both an innermost

open position and a bad open position in τ .

The rules in Fig. 1 “fix” bad open positions by instantiating substitutions.
The function f-rooted-unify(M , t1, t2) in Algorithm 1 checks if two terms t1
and t2 are Mf -unifiable.

Algorithm 1. Checking if t1 and t2 are Mf -unifiable
1: function f-rooted-unify(M , t1, t2)

// (1) M is an f -mapping. (2) t1 and t2 are two f -rooted terms.

2: Nondeterministically choose a unifier τ from CSU⊕(t1
?
= t2).

3: result ← FIX(τ)
4: if result = None then
5: return false //t1 and t2 are not Mf -unifiable.
6: else
7: return result //result is a Mf -unifier of t1 and t2.
8: end if
9: end function

10:
11: function fix(τ)
12: while some rule is applicable to τ do
13: τ ← Prev(τ, σ) or Cancel(τ, σ). //Nodeterministically apply a rule.
14: end while
15: if Mf -admissible(M , τ) = true then
16: return τ .
17: else
18: return None.
19: end if
20: end function

5 Solving ⊕-rooted Local Unification

5.1 Overview

In this section, we give an algorithm for solving ⊕-rooted local unification, which
we introduced in Sect. 3.2. Given some ⊕-mapping M and a set of pure terms
C = {t1, t2, . . . , tn}, the goal is to check if any subset C ′ of C is M⊕-unifiable
with 0. We will use the following Example 6 as a running example:
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Fig. 1. Rfix Note that we need condition (1) in both inference rules in Rfix, since
procedures for solving unification modulo exclusive-xor may generate new variables in
general. We do not apply the Prev rule or Cancel rule on new variables.

Example 6. Check if any subset C ′ of C is M⊕-unifiable with 0, where:
M (x1) = {0, r}.
M (x2) = {0, r, f(r ⊕ x1) ⊕ x1}.
C = {r, f(r ⊕ x1) ⊕ x1, f(f(r ⊕ x1) ⊕ x2)}.
C is M⊕-unifiable with 0, under {x1 �→ r, x2 �→ f(0)}. The key idea to

solve this local unification problem is to represent the set of all possible M⊕-
substitutions compactly by introducing Boolean variables. The instantiations of
those Boolean variables lead to concrete M⊕-substitutions. To be more concrete:

1. In Example 6, all possible M⊕-substitutions are represented compactly using
the following term substitution:
γM = {x1 �→ b1 × r, x2 �→ b2 × r ⊕ b3 × (f(r ⊕ x1) ⊕ x1)}, where b1, b2, b3 are
Boolean variables.
γM can be composed with a Boolean substitution τ , where domain(τ) =
{b1, b2, b3}. C ′σ = 0 if and only if C ′γM τ = 0. Therefore, our new goal is to
find C ′ and τ s.t. C ′γM τ = 0. More details of this step is given in Sect. 5.2.

2. Conceptually, we can consider C γM as the following matrix, where each row
is a mixed term in C γM and each column is a summand of a mixed term in
C γM . The element at row i column j is 1 if column j is a summand of row
i, and is 0 otherwise.

⎡
⎣

f(r⊕x1)γ
M x1γM f(f(r⊕x1)⊕x2)γ

M rγM

rγM 0 0 0 1
(f(r⊕x1)⊕x1)γ

M 1 1 0 0
f(f(r⊕x1)⊕x2)γ

M 0 0 1 0

⎤
⎦

Two mixed terms can possibly be unifiable under some Boolean substitution.
This means that two columns of the above matrix may collapse into one under
some Boolean substitution. For example, τ = {b1 �→ 1, b2 �→ 1, b3 �→ 1} makes
the 1st and the 3rd column both be f(0), the 2nd and the 4th column both be r.
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We can then get the following matrix. In Sect. 5.3.1, we present some inference
rules for unifying two mixed terms.

⎡
⎣

f(0) r

r 0 1
f(0)⊕r 1 1

f(0) 1 0

⎤
⎦

We can now combine (by taking the XOR of) all rows and get a row of
all 0’s. This means that we can take the XOR of all three terms and get 0.
In Sect. 5.3.2, we present some inference rules for combining different rows and
merging different columns of the matrices. To cut down the search space, we sort
the columns of the matrices somehow and put restrictions on how rows should
be combined. Similar to Gaussian Elimination, we combine two rows only if their
leading rows are both non-zero. So in this example, we first combine the 2nd and
the 3rd row, and then combine the result with the 1st row.

The matrix representation discussed above is for intuition only. Our algorithm
deals with mixed terms, rather than matrices. In this section, variables mean
term variables, substitutions mean term substitutions. We use t, t1, t2, . . . to
denote pure terms, and use mt,mt1,mt2, . . . to denote mixed terms. σ, σ1, σ2, . . .
denote term substitutions, τ, τ1, τ2, . . . denote Boolean substitutions.

5.2 Handling Variables

In order to illustrate the idea of this step, let us consider Example 6. According to
Definition 6, x1 can only be instantiated by 0 or r. We denote this as {x1 �→ b1×
r}, where b1 is a Boolean variable. Similarly, {x2 �→ b2×r⊕b3×(f(r⊕x1)⊕x1)},
where b2, b3 are Boolean variables. We then instantiate x1 and x2 in C and get
a set of mixed terms Cmix = {r, f(r ⊕ (b1 × r))⊕ (b1 × r), f(f(r ⊕ (b1 × r))⊕ b2 ×
r ⊕ b3 × (f(r ⊕ (b1 × r)) ⊕ (b1 × r)))}. Notice that there are no term variables in
Cmix. To formalize the above idea, we define the following operator: .

Definition 10. Let T = {t1, t2, . . . , tn} be a set of terms, and �B =
〈b1, b2, . . . , bn〉 be a vector of Boolean variables, T �B is defined to be b1 × t1 ⊕
b2 × t2 ⊕ . . . bn × tn. T �B is called a linear combination of t1, t2, . . . , tn.

Given an ⊕-mapping M and a set of terms C , our initial goal is to find
a subset of terms in C s.t. their exclusive-or is 0 under some admissible
M⊕-substitution σ. remove-term-variables(M ,C ) in Algorithm 2 returns
(γM ,Cmix), where Cmix = C γM . Now our new goal is to find a subset of terms
in Cmix s.t. their exclusive-or is 0 under some Boolean substitution. The follow-
ing lemma shows how γM is related to admissible M⊕-substitutions.

Lemma 1. σ is an admissible M⊕-substitution if and only if there exists a
Boolean substitution τ s.t. γM ◦ τ = σ.
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Algorithm 2. remove term variables
1: function remove-term-variables(M ,C )
2: // Assume: domain(M ) = {x1, x2, . . . , xm}.
3: γM ← {x1 �→ t′

1, x2 �→ t′
2, . . . , xm �→ t′

m}, where t′
i = M (xi) �Bi, and �Bi is a

vector of fresh Boolean variables.
4: Cmix ← C γM .
5: return (γM ,Cmix)
6: end function

5.3 Applying Inference Rules

Consider Example 6. remove-term-variables(M ,C ) returns (γM ,Cmix),
where

γM = {x1 �→ b1 × r, x2 �→ b2 × r ⊕ b3 × (f(r ⊕ x1) ⊕ x1)}.
Cmix = {r, f(r ⊕ (b1 × r)) ⊕ (b1 × r), f(f(r ⊕ (b1 × r)) ⊕ b2 × r ⊕ b3 × (f(r ⊕

(b1 × r)) ⊕ (b1 × r)))}
As we described in Sect. 5.1, Cmix can be considered conceptually as a matrix.

In Sect. 5.3.1, we give an algorithm for checking if two mixed terms are unifi-
able under some Boolean substitution. In Sect. 5.3.2, we give inference rules for
merging different columns and combining multiple rows of a matrix.

5.3.1 Unifying Two Mixed Terms

Definition 11. Let eq be an equation t1
?= t2 on mixed terms without term

variables. eq is B-unifiable under some Boolean substitution τ if t1τ =⊕ t2τ .
We call τ a B-unifier of eq. Let eqs be a set of equations on mixed terms without
term variables. eqs is B-unifiable under τ if each equation in eqs is B-unifiable
under τ . We call τ a B-unifier of eqs.

The function B-unify(t1, t2) from Algorithm 3 checks if t1 and t2 are B-
unifiable by nondeterministically applying the inference rules in RB−unif (Fig. 2)
to states. A state st is of the form eqs|τ , where eqs is a set of equations on mixed
terms and τ is a Boolean substitution. To check if two mixed terms t1 and t2 are
B-unifiable, we start from the initial state: {t1 ⊕ t2

?= 0}|ε, and we keep apply-
ing the inference rules in RB−unif nondeterministically. Intuitively, the rules in
RB−unif list all possible ways that a mixed (sub)term can be simplified and
eventually becomes 0. For example, Duplicater states that one way to simplify
b1 × r ⊕ b2 × r is to make both b1 and b2 be 1, hence cancellation applies. By
make inferences, eventually we reach either a final state or a stuck state. A final
state is a state of the form ∅|τ . A stuck state is a state of the form eqs|τ , where
eqs 	= ∅, and no rule applies. We call st1, st2, . . . a trace of t1 and t2 if st1 is
{t1 ⊕ t2

?= 0}|ε, and ∀i > 1, sti is the result of applying one of the inference rules
to sti−1.

In order to cut down the search space, we define the notion of depf (t), where
t is a mixed term without any term variables. If t is a ground term, depf (t) is
the singleton set containing the maximum number of nested f symbols in t. Or
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equivalently, depf (t) is the singleton set containing the maximum number of f
symbols among all root-to-leaf paths of the syntax tree of t. If t contains Boolean
variables, depf (t) =

⋃
τ depf (tτ), where τ is a Boolean substitution and tτ is

ground.

Algorithm 3. Check if two terms are B-unifiable
1: function B-unify(t1, t2)
2: /*Assume that t1 and t2 are mixed terms containing no term variables.*/

3: st ← {t1
?
= t2}|ε

4: while st is not a final state or stuck state do
5: Nondeterministically apply a rule in RB−unif to st
6: end while
7: if st is a final state of the form ∅|τ then
8: return τ
9: else

10: return false
11: end if
12: end function

Fig. 2. RB−unif

We write depf (t) = [l, u] to denote that depf (t) can be at least l and at most
u. Note that two terms cannot possibly be B-unifiable unless their depf intervals
overlap. Given a term t without any term variables, depf (t) can be computed in
the following way.

– depf (r) = [0, 0], where r is a constant.
– depf (b × t) = [0, u], where depf (t) = [l, u].
– depf (f(t)) = [l + 1, u + 1], where depf (t) = [l, u].
– depf (t1 ⊕ t2) = [0,max(u1, u2)], where depf (t1) = [l1, u1], depf (t2) = [l2, u2]

and depf (t1) and depf (t2) overlap.
– depf (t1 ⊕ t2) = [max(l1, l2),max(u1, u2)] , where depf (t1) = [l1, u1],

depf (t2) = [l2, u2] and depf (t1) and depf (t2) do not overlap.
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Example 7. depf (b1 × r ⊕ f(r)) = [1, 1] depf (r ⊕ b1 × f(r)) = [0, 1].

Example 8. Check if t1 = f(r ⊕ (b1 × r)) and t2 = f(f(r ⊕ (b1 × r)) ⊕ b2 × r ⊕
b3 × (f(r ⊕ (b1 × r)) ⊕ (b1 × r))) are B-unifiable.

{f(r⊕(b1×r))⊕f(f(r⊕(b1×r))⊕b2×r⊕b3×(f(r⊕(b1×r))⊕(b1×r))) ?= 0}|ε
Duplicatef=======⇒ {r⊕(b1×r)⊕f(r⊕(b1×r))⊕b2×r⊕b3×(f(r⊕(b1×r))⊕(b1×r)) ?= 0}|ε
Duplicater=======⇒ {f(0) ⊕ b2 × r ⊕ b3 × f(0) ⊕ b3 × r

?= 0}|{b1 �→ 1}
Duplicatef=======⇒ {b2 × r ⊕ r

?= 0}|{b1 �→ 1, b3 �→ 1}
Duplicater=======⇒ {0 ?= 0}|{b1 �→ 1, b2 �→ 1, b3 �→ 1}
Remove=====⇒ ∅|{b1 �→ 1, b2 �→ 1, b3 �→ 1}
So t1 and t2 are B-unifiable under {b1 �→ 1, b2 �→ 1, b3 �→ 1}.

5.3.2 Saturation Procedure
Let Cmix = {mt1,mt2, . . . , mtn} be a set of mixed terms. Our goal is to take
the XOR of a subset of terms in Cmix, apply some Boolean substitution and
get 0. Roughly speaking, we saturate Cmix using two rules: the Combine rule
and the Cancel rule, which we will introduce later. The Combine rule allows
us to take the XOR of two mixed terms mti, mtj , and apply some Boolean
substitution τ , provided that one summand of mti and another summand of
mtj are B-unifiable under τ . The Cancel rule allows us to take one mixed term
mti and apply some Boolean substitution τ , provided that two summands of mti
are B-unifiable under τ .

We keep track of some additional information along the way. We annotate
each mixed term with a set of indices and a Boolean substitution. More formally,
an annotated mixed term amt is of the form mt[I; τ ], where mt is a mixed term,
I is a set of indices and τ is a Boolean substitution. We need I and τ for the
following reasons:

1. We maintain a crucial invariant during the saturation process, which is, if
mt[I; τ ] is generated, then ⊕{mti|i ∈ I}τ =⊕ mt. Intuitively, I and τ tell us
how we can get mt.

2. If we have mt1[I1; τ1] and mt2[I2; τ2], where I1 ∩ I2 	= ∅, we do not take the
XOR of mt1 and mt2, since it is not necessary to use a mixed term more than
once.

3. If we have mt1[I1; τ1] and mt2[I2; τ2], where τ1 ∪· τ2 is undefined, we do not
take the XOR of mt1 and mt2, since τ1 and τ2 are inconsistent.

Let MT = {mt1,mt2, . . . , mtn} be a set of mixed terms. We define
annotate(MT ) to be {mt1[{1}; ε],mt2[{2}; ε], . . . ,mtn[{n}; ε]}. In Algorithm 4,
annotate-and-saturate(Cmix) first obtains C 1

mix by annotating Cmix. It then
saturates C 1

mix using the inference rules in Rsaturate (Fig. 3), and obtains a
sequence C 1

mix,C 2
mix, C 3

mix, · · · . ∀i ≥ 1, C i+1
mix is obtained from C i

mix by nonde-
terministically making an inference and adding the result to C i

mix, if it is not
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already in C i
mix. C n

mix is a saturation of C 1
mix if nothing new can be added to

C n
mix.

We define an ordering on terms. Let mt1 and mt2 be two mixed terms.
mt1 ≺ mt2 if depf (mt1) = [l1, h1], depf (mt2) = [l2, h2] and h1 < l2. Let mt be a
mixed term of the form b1 × t1 ⊕ b2 × t2 ⊕ . . .⊕ bn × tn. bi × ti is a maximal term
in mt if there does not exist any bj × tj s.t. bi × ti ≺ bj × tj . To cut down the
search space, we require that both the Combine rule and the Cancel rule must
be applied on maximal terms. We show that this requirement does not affect
completeness.

Algorithm 4. annotate and saturate
1: function annotate-and-saturate(Cmix)
2: //Assume: Cmix = {mt1, mt2, . . . , mtn}
3: C 1

mix ← annotate(Cmix)
4: Saturate C 1

mix using the Combine rule and Cancel rule.
5: return C n

mix, which is the result of the saturation
6: end function

Fig. 3. Rsaturate

Example 9. Consider Example 6, where M (x1) = {r}.
M (x2) = {r, f(r ⊕ x1) ⊕ x1}.
C = {r, f(r ⊕ x1) ⊕ x1, f(f(r ⊕ x1) ⊕ x2)}.
remove-term-variables(M ,C ) returns:
γM = {x1 �→ b1 × r, x2 �→ b2 × r ⊕ b3 × (f(r ⊕ x1) ⊕ x1)}.
Cmix = {r, f(r ⊕ (b1 × r)) ⊕ (b1 × r), f(f(r ⊕ (b1 × r)) ⊕ b2 × r ⊕ b3 × (f(r ⊕

(b1 × r)) ⊕ (b1 × r)))}.
Here is what annotate-and-saturate(Cmix) does:
C 1

mix = annotate(Cmix) = {r[{1}; ε], f(r ⊕ (b1 × r))⊕ (b1 × r)[{2}; ε], f(f(r ⊕
(b1 × r)) ⊕ b2 × r ⊕ b3 × (f(r ⊕ (b1 × r)) ⊕ (b1 × r)))[{3}; ε]}.
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As we showed in Example 8, f(r ⊕ (b1 × r)) and f(f(r ⊕ (b1 × r)) ⊕ b2 × r ⊕
b3 × (f(r ⊕ (b1 × r)) ⊕ (b1 × r))) are unifiable under {b1 �→ 1, b2 �→ 1, b3 �→ 1}.
We can apply the Combine rule, and get:

C 2
mix = {r[{1}; ε], f(r ⊕ (b1 × r)) ⊕ (b1 × r)[{2}; ε], f(f(r ⊕ (b1 × r)) ⊕ b2 ×

r ⊕ b3 × (f(r ⊕ (b1 × r)) ⊕ (b1 × r)))[{3}; ε], r[{2, 3}, {b1 �→ 1, b2 �→ 1, b3 �→ 1}]}.
Obviously, r and r are unifiable. We can apply the Combine rule again, and

get:
C 3

mix = {r[{1}; ε], f(r ⊕ (b1 × r)) ⊕ (b1 × r)[{2}; ε], f(f(r ⊕ (b1 × r)) ⊕ b2 ×
r ⊕ b3 × (f(r ⊕ (b1 × r)) ⊕ (b1 × r)))[{3}; ε], r[{2, 3}, {b1 �→ 1, b2 �→ 1, b3 �→
1}], 0[{1, 2, 3}, {b1 �→ 1, b2 �→ 1, b3 �→ 1}]}.

5.4 ⊕-rooted Local Unification Procedure

Algorithm 5 describes a function xor-rooted-unify for solving ⊕-rooted local
unification.

Algorithm 5. Solving ⊕-rooted local unification
1: function xor-rooted-unify(M ,C )
2: //Assume: (1) M is an ⊕-mapping. (2) C = {t1, t2, . . . , tn}.
3: (γM ,Cmix) ← remove-term-variables(M ,C )
4: C n

mix ← annotate-and-saturate(Cmix)
5: result ← ∅
6: for all annotated mixed term amt in C n

mix do
7: if amt is of the form 0[I; τ ] then
8: result ← result∪ (I, γM ◦ τ) //{ti|i ∈ I} is M⊕-unifiable with 0 under

γM ◦ τ
9: end if

10: end for
11: if result = ∅ then
12: return not M⊕-unifiable
13: else
14: return (M⊕-unifiable, result)
15: end if
16: end function

Example 10. Continuing with Example 9, we showed that 0[{1, 2, 3}; {b1 �→
1, b2 �→ 1, b3 �→ 1}] ∈ C 3

mix. The XOR of all three terms in Cmix is 0 under
{b1 �→ 1, b2 �→ 1, b3 �→ 1}.

We can compose γM = {x1 �→ b1×r, x2 �→ b2×r⊕b3×(f(r⊕x1)⊕x1)} with
{b1 �→ 1, b2 �→ 1, b3 �→ 1} and get an admissible M⊕-substitution: σ = {x1 �→
r, x2 �→ f(0)} s.t. ⊕{r, f(r ⊕ x1) ⊕ x1, f(f(r ⊕ x1) ⊕ x2)}σ = 0.

6 Conclusion

In this paper, we introduce a new unification problem, called local XOR unifi-
cation, which is unification modulo the theory of exclusive-or with an additional
restriction for variables. Local XOR unification can be used to analyze sym-
bolic security of cryptographic modes of operation. We present two concrete
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versions of local XOR unification. f -rooted local unification can be used to ana-
lyze modes of operation including Cipher Block Chaining, Propagating Cipher
Block Chaining, Accumulated Block Cipher, etc. ⊕-rooted local unification can
be used to analyze modes of operation including Cipher Feedback Mode, Output
Feedback Mode, etc. We give algorithms to solve both versions of local unifica-
tion. The algorithms are implemented as part of the CryptoSolve tool1. Readers
are referred to [6] for experimental results of local unification algorithms.
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Abstract. Alk is an educational platform designed to help in learn-
ing algorithms and acquiring algorithmic thinking. This paper describes
how the semantics of Alk and the algorithm’s properties can be formally
described using matching logic such that the reasoning about algorithms,
described as Alk programs, can be done in a uniform way. Challenges are
coming from the specificity of the Alk Language: abstract descriptions
for the values, no declarations for variable or for parameter types, and
various algorithmic paradigms (e.g., non-deterministic algorithms). The
main consequence of this approach is that we may use in a sound way
the symbolic execution for proving algorithms’ properties.

1 Introduction

Alk is an educational platform designated to help in learning algorithms and
acquiring algorithmic thinking. It can be used for writing, executing, debug-
ging, experimenting, and analyzing algorithms. Alk was designed based on the
following principles:

1. The syntax of the language should be as simple as possible, expressive, intu-
itive, and including the main algorithmic thinking structures.

2. The formal semantics of the language has to be given at an abstract level that
should help the algorithmic thinking, the understanding of the execution of
the algorithms, and to supply a computation model suitable for analysis.

3. The designed algorithms, or fragments of them, must be executable and tested
in an easy and flexible way.

4. There are embedded tools of helping an user to evaluate the suitability of
algorithms for various applications.

5. There exists support for a good algorithm understanding, and, consequently,
for acquiring an algorithmic thinking.

6. There exists support for time/space efficiency analysis.
7. To allow the design and analysis of various kinds of algorithms (e.g., deter-

ministic, non-deterministic, probabilistic).

In this paper we address the items 2 and 4, and 5. We adhere to the idea
that an explanation of an algorithm consists of a sequence of logical deductions,
made according to certain rules, and ends with a conclusion. The Alk language
was extended with annotations, inspired from program verification, to specify
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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properties of the computed data structures. Based on these properties, we may
deduce, for instance, if the algorithm is suitable for some purpose. These anno-
tations are also useful in understanding better the algorithm and its behavioral
properties. All these properties specified by annotations are proved based on the
semantics of the language.

Matching logic (ML) [8–10,23] was developed as a logical foundation of the
K (https://kframework.org/), a semantic framework for defining programming
languages and developing formal analysis tools for these languages. Matching
logic is a simple but expressive logic, which subsumes many logics, calculi, and
models used in program specification and program verification (e.g., first-order
logic, separation logic, reachability logic). The first version of Alk language was
written in K, but now Alk is an independent platform written in Java, which fur-
ther includes an interpreter, debugger, symbolic execution engine, and analysis
tools.

Contribution. In this paper we present the foundation of the Alk platform using
the latest version of matching logic [8], which allows to describe in a uniform way
both the semantics of the Alk language and the behavioral properties of the algo-
rithms written in this language. We explain how the operational semantics of the
Alk language is described in ML (Sect. 3.2), how the behavioral properties of the
algorithms, like contracts and invariants, are expressed as matching logic pat-
terns (Sect. 4), how these properties are derived from annotations (Sect. 5.1), and
how the derived properties are proved using the symbolic execution (Sect. 5.2).
Both the interpreter and the symbolic execution engine are directly derived from
the semantics of the language, which ensures that the whole approach is sound
(Theorem 1).

Structure of Paper. After the introduction, Sect. 2 illustrates a single, yet com-
prehensive, example of a nondeterministic algorithm executed both in a concrete
environment and symbolically. Section 3 provides an insight into the Match-
ing Logic that is further used to define the Alk semantics. Section 4 shows an
advanced application of ML patterns in the context of algorithms behavioral
properties. Finally, Sect. 5 displays a formal definition of the Alk specifications
and symbolic execution using reachability patterns. In the end, Sect. 6 is an
insight into the related work, while Sect. 7 includes some conclusions.

2 A Taste of Alk

The Alk language is simple, abstract, having a syntax similar to that used in
textbooks. We use an example to see how the algorithms are described, tested,
and analyzed in Alk.

Figure 1a) shows Floyd’s nondeterministic algorithm for the n queens prob-
lem [13], written in Alk. The algorithm uses three arrays, a, b and c, which are
counting the number of queens on a specific row or diagonal (primary or sec-
ondary), respectively. Comparing to the original algorithm, an additional array

https://kframework.org/
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cb (chessboard) is used to store the position of each queen: cb[col ] = row means
that the queen is set on the position (row , col) on the chess board. The goal is to
have exactly n queens set on the n columns, such that for each row and column
there is at most one queen (i.e., the queens are placed on the chessboard so that
none attack each other). The algorithm uses the Alk statement choose . . . st . . .
to non-deterministically choose a row with desired properties for each column.
If no row is found, then the execution of the algorithm fails. Otherwise, the four
arrays are accordingly updated.

Figure 1b) displays The Floyd’s algorithm annotated with specifications for
invariants, algorithm’s preconditions and postconditions, in order to check some
of its properties. Since for the analysis the type of variables is needed, Alk allows
to use annotations for type specifications. For the same reason, the initialization
of the arrays were replaced by their symbolic representation counterpart1. The
size of the array cb is assumed zero, because the arrays in Alk have a variable
size, which is updated during the execution of the algorithm [22]. The properties
we want to check are described by the three invariants of the for statement.

The analysis engine provides a feedback on the validity of such statements:
whether the invariants are preserved by the loop body, whether the postcondi-
tion holds for any input satisfying the precondition. Note that the focus is to
investigate the algorithm properties and not to show that it correctly solves a
problem specified as a pair (precondition, postcondition), i.e., the focus is not
the correctness verification. Therefore, the Alk specifications are used to solely
allow the user to check its own presumptions. This way, certain properties can be
validated while the final goal is to increase the comprehension of the algorithm.

A user should expect this kind of algorithm designing process from Alk. A
possible scenario is to first provide a version of the algorithm that can be exe-
cuted in a concrete environment with various inputs. Afterwards, specifications
can be added one by one to model the reasoning into the code. This way, Alk
analysis engine can confirm that specific assumptions are correct, and the user
can confirm its reasoning across the written algorithm.

Executing the algorithm from the left hand side using a concrete initial con-
figuration of n �→ 4, it is very probable to get an output in the following form:

failure

Note that the executed algorithm is nondeterministic.

The probability to obtain a successful execution is very small. Alk interpreter
allows the user to exhaustively execute a non-deterministic algorithm and in
that case it could obtain all successful executions, which for this examples are
the following two:

Note that the executed algorithm

is nondeterministic.

[1, 3, 0, 2]

success

Note that the executed algorithm

is nondeterministic.

[2, 0, 3, 1]

success

1 In many cases, the information needed for analysis, e.g., the types of variables and
the variables modified by an iterative statement, can be deduced by static analysis.
Such a component is a work in progress, and it will be presented somewhere else.



A Matching Logic Foundation for Alk 293

Fig. 1. Examples of algorithm written in Alk

The goal of the analysis engine is to allow a more powerful introspective
into the algorithm design. The user can add specific annotations like @requires,
@ensures, @havoc, @invariant, @assume to link the algorithm to the reasoning process.
In the example, using @requires and @ensures can provide the Alk interpreter a
feedback upon how does the function work. Another insightful specification is
@invariant, that allows the analysis engine to check if a reasoning regarding a
repetitive statement is valid.

Note that the example shows a mean of partially analyzing the algorithm as
it only checks that there is at most one queen on each row. This analysis process
succeeds as long as the intermediary conditional steps (invariants) are valid.

Symbolically executing the algorithm using a supporting SMT solver provides
the following output:
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[13:15] Loop invariant was verified!

[14:15] Loop invariant was verified!

[15:15] Loop invariant was verified!

Successfully verified: queens

Note that the executed algorithm is nondeterministic.

A successfully analyzing execution is one that does not display any error
regarding verification. The example output states that all three invariants could
be verified and are valid. Also, the post-condition holds for any input presuming
the pre-conditions, so the Alk interpreter states that queens could be successfully
verified.

3 Matching Logic Semantics of the Alk Language

In this section we show how the semantics and the algorithm properties can be
formally expressed as a matching logic theory.

3.1 A Short Introduction to Matching Logic

Matching Logic (ML) [8–10,23] is a variant of first-order logic (FOL) with
fixpoints that makes no distinction between functions and predicates. It uses
instead symbols and application to uniformly build patterns that can represent
static structures and logical constraints at the same time. Here we present ML
only at intuitive level; we recommend [8,10,23] for the technical details and [11]
for seeing how ML supplies a theoretical foundation for the K framework.

An ML signature is a triple (EV, SV,Σ), where EV is a set of element
variables x, y, . . ., SV is a set of set variables X,Y, . . ., and Σ is a set of constant
symbols (or constants). The set Pattern of Σ-patterns is generated by the
grammar below, where x ∈ EV , X ∈ SV , and σ ∈ Σ:

ϕ ::= x | X | σ | ϕ1 ϕ2 | ⊥ | �ϕ� | ϕ1 → ϕ2 | ∃x.ϕ | μX.ϕ if ϕ is positive in X

A pattern ϕ is positive in X if all free occurrences of X in ϕ are under an
even number of negations. The syntax of patterns is extended with the following
derived constructs:

	 ≡ ¬⊥ �ϕ� ≡ ¬�¬ϕ� ϕ1 ∨ ϕ2 ≡ ¬ϕ1 → ϕ2

¬ϕ ≡ ϕ → ⊥ ϕ1 = ϕ2 ≡ �ϕ1 ↔ ϕ2� ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2)
∀x.ϕ ≡ ¬∃x.¬ϕ ϕ1 �= ϕ2 ≡ ¬(ϕ1 = ϕ2) ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)

x ∈ ϕ ≡ �x ∧ ϕ� ϕ ⊆ ϕ′ ≡ �ϕ → ϕ′� νX.ϕ ≡ ¬μX.¬ϕ[¬X/X]

Semantically, ML patterns are interpreted as the sets of elements that match
them. An element variable x is matched by a singleton set {a} ⊆ M , a set of
variables X is matched by a subset of M , where M is the carrier set. Symbols
σ are interpreted as subsets, and, usually, the needed interpretation for them
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(e.g., functions, relations) is obtained by adding axioms. For instance, the axiom
∀x.∃y. f x = y constrains the interpretation of f to a functional one.

The pattern ϕ1 ϕ2 is called application and its semantics is a function
M × M → P(M), which is pointwise extended to P(M) × P(M) → P(M).
By convention, the application is left associative. The applications are useful to
build various structures or relations (see the above example).

The pattern �ϕ� is called definedness2. It is a predicative pattern since it
has a two value semantics: its evaluation is either the whole carrier set M ,
when the interpretation of ϕ is a non-empty set, or the empty set, otherwise.
The interpretation of 	 is the set of all values and it can be seen as the true
value, while that of ⊥ is the empty set and it can be seen as the false value.
The interpretation of the pattern ∃x.ϕ is the union of the ϕ interpretations,
when x ranges over M . In particular, the interpretation of ∃x.x is always M .
The binder μ is used for defining sets as least fixpoints. For instance, 	Nat ≡
μX.zero∨succ X defines the set {zero, succ zero, succ succ zero, . . .} (which equal
up to an isorphism to the set of natural numbers {0, 1, 2, . . .}). Dually, with
the binder ν we can define sets as greatest fixpoints. For instance, the pattern
νX.nil ∨ cons 	Nat X defines the set of finite or infinite lists of natural numbers.
We may define in a similar way the set of finite or infinite executions of a program.

Sorts s and their inhabitants 	s can be specified using a sort name sym-
bol s, a symbol for inhabitants inh, and the following notations: 	s ≡ inh s,
∀x :s.ϕ ≡ ∀x. x ∈ 	s → ϕ, ∃x :s.ϕ ≡ ∃x. x ∈ 	s ∧ ϕ, ϕ :s ≡ ∃z :s. ϕ = z, and
¬sϕ ≡ 	s ∧ ¬ϕ. Such an example is the sort Nat and its inhabitants set 	Nat

defined as above. Now, we can specify that succ is a function over naturals:
∀x :Nat .∃y :Nat . succ x = y. We may use succ :Nat → Nat to denote this axiom.
A first-order term f(t1, . . . , tn), where f :s1 × · · · × sn → s, can be seen as a
notation for the ML pattern f t1 . . . tn, and therefore we use to call it term
pattern.

3.2 Alk Semantics in Matching Logic Terms

Matching logic is a framework where the semantics of programming languages
and the reasoning about programs can be done in a uniform way [11]. We use it
here for the Alk language and the algorithms expressed in Alk.

Values as ML Theories. We consider a “builtin” matching logic theory VAL
that specifies the Alk values. The theory VAL includes symbols and axioms for
integers, floats, arrays, lists, maps, records, sets. Each such a type is specified
by a set of symbols and a set of axioms. For instance, the integers are specified
by the theory of natural numbers given as above, a symbol −, a sort name int,
its inhabitants 	int = 	Nat ∨∃x :Nat .−x, and its operations: e.g., the addition is
specified by an axiom for signature, +int :int × int → int, and a (an infinite)
set of axioms of the form −3 +int 5 = 2 saying how the symbol +int is applied
over inhabitants, where −3 +int 5 is a notation for +int −3 5. Here we take the
2 For convenience, we introduce it directly in the syntax of patterns but it can be

axiomatised as in [23].
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advantage that the values in the Alk language are given at an abstract level and
such a theory is a perfect mean to specify them. At the implementation level,
this builtin theory is given (via a translation) by a library (used by the concrete
executions) or a SMT solver (used by the symbolic executions).

(Symbolic) Configurations as ML Patterns. Since the Alk values are given
at an abstract level, a concrete configuration is a simple pair 〈κ〉 〈σ〉, where
κ is the Alk code (algorithm) to be executed and σ is the current state. A
state σ is a map from the algorithm variables to their values. For the sake of
presentation, we do not make a distinction between local and global variables.
We write 〈κ � . . .〉 〈. . . σ . . .〉 when we want to emphasize the first piece κ of
code to be evaluated/executed in the next step and the part σ of the state that
is used in evaluating/executing κ.

The Alk code is represented by its abstract syntax tree (AST), which is a
term pattern in ML. E.g., an assignment x = x+2 is described by a term pattern
of the form assgn x (plus x 2). Similarly, the states are described by term patterns
and a configuration 〈κ〉 〈σ〉 is a notation for the term pattern (〈〉κ) (〈〉σ), where
〈〉 is a symbol in Σ. Recall that the term patterns are evaluated to (matched
by) singletons. A (full) symbolic configuration is a pattern of the form ϕ ≡
〈k〉 〈σ〉∧φ, where φ is the path condition. An example of symbolic configuration
is 〈x = x+ 1〉 〈x �→ $x〉 ∧ $x >int 3 = true3, where $x is a symbolic value, i.e.,
a matching logic variable. Substituting $x with a concrete value, let say 8, we
obtain an instance, which is a concrete configuration: 〈x = x+ 1〉 〈x �→ 8〉 (note
that 8 >int 3 evaluates to true).

Remark 1. The versatility of matching logic allows to express the path condi-
tion φ in terms of program variables. In that case we may think 〈k〉 〈σ〉 ∧ φ as
being a short notation for 〈k〉 〈σ〉 ∧ φ[σ], where φ[σ] denotes the conjunction
φ ∧ (∧

x�→v∈σ x = v
)
. Let us see an example to understand how such a pattern

is built: the symbolic configuration 〈x = x+ 1〉 〈x �→ $x〉 ∧ x > 3 is a notation
(sugar syntax) for 〈x = x+ 1〉 〈x �→ $x〉∧x > 3 = true∧x = $x, which is equiva-
lent to 〈x = x+ 1〉 〈x �→ $x〉 ∧ $x > 3 = true. Since $x is a symbolic value of sort
int, $x > 3 is equivalent to $x >int 3, by the semantics of >.

Let Cfg denote the sort of all (concrete and symbolic) configurations. For
Cfg we consider an initial semantics [7], so that the semantics of 	Cfg is the set
of concrete configurations (which are term patterns as well). The fact that a
concrete configuration γ is an instance of a symbolic configuration ϕ is simply
expressed now by the pattern γ → ϕ. Since γ is functional (i.e., matched by
singletons), γ → ϕ is equivalent to γ ∈ ϕ (or to γ ⊆ ϕ).

Semantics Rules asMLPatterns. In order to express transitions as patterns,
a new symbol • is introduced such that •γ′ is matched by all γ having γ′ as
successor, i.e., γ ⇒ γ′ [10]. Conversely, having •γ′ defined, then a transition
step γ ⇒ γ′ is expressed by the fact that the pattern γ → •γ′ is a semantic

3 In order to make the the presentation more intuitive, we use the full syntax for
configurations, instead of the AST notation.



A Matching Logic Foundation for Alk 297

consequence of the theory specifying •. This notation is naturally extended to
symbolic configurations: •ϕ′ ≡ ∃γ′. •γ′ ∧ γ′ ∈ ∃var(ϕ′). ϕ′, i.e., •ϕ′ is matched
by all the configurations for that there exists a next configuration in ϕ′. An “all
paths” version of it is ◦ϕ′ ≡ ¬•¬ϕ′, i.e., ◦ϕ′ is matched by all configurations for
which there is no next configurations not in ϕ′. In other words, ◦ϕ′ is matched
by the configurations having no next configurations (i.e., they are final) and by
the configurations for that all the next configurations match ϕ′.

The operational semantics of Alk is given by a set of patterns specifying
transition steps. We exemplify this by giving the semantics of if and choose in
the terms of matching logic:

〈if (e) s1 else s2 � κ〉 〈σ〉 ∧ ¬e :Value → • 〈e � if (_) s1 else s2 � κ〉 〈σ〉
〈v�if (_) s1 else s2 � κ〉 〈σ〉 ∧ v :Value → • 〈if (v) s1 else s2 � κ〉 〈σ〉

〈if (b) s1 else s2 � κ〉 〈σ〉 ∧ b :bool → • 〈s1 � κ〉 〈σ〉 ∧ b = true

∨
• 〈s2 � κ〉 〈σ〉 ∧ b = false

〈choosex from e � κ〉 〈σ〉 ∧ ¬e :Value → • 〈e � choosex from_ � κ〉 〈σ〉
〈v � choosex from_ � κ〉 〈σ〉 ∧ v :Value → • 〈choosex from v � κ〉 〈σ〉

〈choosex from v � κ〉 〈σ〉 ∧ v :Value → • ∃x0. 〈κ〉 〈σ[x �→ x0]〉 ∧ x0 ∈ v

where Value is the sort for values, bool for the boolean values (we have
	bool ⊆ 	Value). The first two patterns correspond to the evaluation of the
expression E and the third one is the case analysis on the obtained value. For a
concrete execution only one member of the disjunction will be a consistent pat-
tern (different from ⊥). For a symbolic execution, B has a symbolic value and
we will obtain two branches of the execution, one for each disjunction member.
Actually, the third pattern can be replaced by two patterns (one for each dis-
junction member), and the semantics remains the same. Having the semantics
of if, we may automatically obtain the semantics of while using the equiva-
lence while (e) s ≡ if (e) {s while (e) s} else {}. The first two patterns giving the
semantics of the nondeterministic statement choose are similar to those for if

and the last one is self-explanatory.
Let ALKSEM be the matching logic theory including VAL, the specification

of the configurations, and all the semantic rules.
A configuration 〈κ〉 〈σ〉 ∧ φ and a semantic rule ψ1 → •ψ2 may produce an

execution step 〈κ〉 〈σ〉∧φ∧ψ1 ⇒ ψ2∧φ provided that ALKSEM |= ϕ∧ψ1 �= ⊥. For
instance, the configuration 〈choose y from [$a, $b]; � sum += y;〉 〈y �→ y0 sum �→ $s〉
∧ φ and the semantic rule for choose produce the following execution step:

〈choose y from [$a, $b]; � sum += y;〉 〈y �→ y0 sum �→ $s〉 ∧ φ ∧
〈choose x from v � κ〉 〈σ〉 ∧ v :Value
⇒
∃x0. 〈κ〉 〈σ[x �→ x0]〉 ∧ x0 ∈ v ∧ φ

which is equivalent to
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〈choose y from [$a, $b]; � sum += y;〉 〈L �→ $
 sum �→ $s〉 ∧ φ

⇒
∃x0. 〈sum+ = y;〉 〈y �→ x0 sum �→ $s〉 ∧ x0 ∈ [$a, $b] ∧ φ

using an unification algorithm [3]. This step can also supply a proof certificate [3,
6] for

ALKSEM |=
〈choose y from L; � sum += y;〉 〈L �→ $
 sum �→ $s〉 ∧ φ

→
•∃x. 〈sum += y;〉 〈L �→ $
 sum �→ $s y �→ x〉 ∧ x ∈ $
 ∧ φ

4 Behavioral Properties of Algorithms as ML Patterns

We introduce here examples of patterns that are matched by sets of executions
of Alk algorithms. A simple one is well founded, WF ≡ μX :Cfg . ◦X ≡ μX. (◦X ∧
X ⊆ Cfg), that is matched by any configuration with the property that there is
no infinite executions starting from it. This definition become more intuitive if we
unroll WF using pre-fixpoint inference rule (see, e.g., [8]): WF ≡ μX :Cfg . ◦X =
◦(μX :Cfg . ◦X) ≡ ◦WF = ◦◦WF = · · · . We specify first when a configuration γ
has no successors, i.e., it is final: γ! ≡ ¬Cfg(∃x :Cfg .γ → •x) ≡ ∀x :Cfg . γ ∧ •x =
⊥. In other words, γ is final iff it is not predecessor to any configuration. Then:

– from the definition of ◦, we know that all the final configurations match ◦WF,
i.e., WF0 ≡ ∃x :Cfg . x ∧ x! ⊆ ◦WF = WF;

– all the configurations having all their next configurations in WF0 match ◦◦WF,
i.e., WF1 ≡ ◦WF0 ⊆ ◦◦WF = WF;

– all the configurations having all their next configurations in WF1 match
◦◦◦WF, i.e., WF2 ≡ ◦WF1 ⊆ ◦◦◦WF = WF;

– . . .

WF is the smallest set satisfying the above properties since it is defined as a least
fixpoint.

Its negation ¬WF ≡ νX. •X is matched by any configuration for that there
is an infinite execution starting from it. The following two patterns are inspired
from temporal logic [10]:

eventually � Ψ ≡ μX. Ψ ∨ •X

weak eventually ♦w Ψ ≡ νX. Ψ ∨ •X
weak always finally �w Ψ ≡ νX. Ψ ∨ (◦X ∧ •	)

Unrolling eventually, using pre-fixpoint inference rule, we obtain �Ψ = Ψ ∨
•(μX. Ψ ∨•X) ≡ Ψ ∨•�Ψ = Ψ ∨•Ψ ∨••�Ψ = · · · , which says �Ψ is the smallest
set including

– configurations matching EV0 ≡ Ψ ,
– configurations matching EV1 ≡ •EV0 ≡ •Ψ ,
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– configurations matching EV2 ≡ •EV1 ≡ ••Ψ ,
– . . .

i.e., is matched by the configurations for that there is a finite execution that
reaches a configuration matching Ψ . Unrolling weak eventually, using post-
fixpoint inference rule, we obtain ♦wΨ = Ψ ∨ •(νX. Ψ ∨ •X) ≡ Ψ ∨ • ♦w Ψ =
Ψ ∨ •Ψ ∨ •• ♦w Ψ = . . . = �Ψ ∨ ¬WF, which actually says that ♦wΨ is matched
by the configurations for that there is an execution that reaches a config-
uration matching Ψ or it is infinite. Unrolling weak always finally we obtain
�wΨ = Ψ ∨ (◦ �w Ψ ∧ •	) = Ψ ∨ (◦(Ψ ∨ (◦ �w Ψ ∧ •	)) ∧ •	) = · · · . Then:

– from the first unrolling we deduce that the configurations matching ψ match
�wΨ as well, i.e., ψ ⊆ �wΨ ;

– since

◦Ψ ∨ ◦(◦ �w Ψ ∧ •	) ⊆ ◦(Ψ ∨ (◦ �w Ψ ∧ •	)) implies
(◦Ψ ∧ •	) ∨ ◦(◦ �w Ψ ∧ •	) ∧ •	 ⊆ ◦(Ψ ∨ (◦ �w Ψ ∧ •	)) ∧ •	,

from the second unrolling we deduce the configurations
∗ matching •	 (i.e., having next configurations) and
∗ with all their next configurations matching ψ (i.e., matching ◦ψ)

match �wΨ as well (i.e., (◦ψ ∧ •	) ⊆ �wΨ);
– . . .

Since �wΨ is defined as a greatest fixpoint, it is the biggest set satisfying the
above properties, i.e., the infinite executions match �wΨ as well.

An one path reachability pattern is a pattern of the form ϕ → ♦wΨ and
express the following property: for all concrete configurations matching ϕ there
is an execution that reaches a configuration matching Ψ or is infinite. An all
path reachability pattern ϕ → �wΨ expresses the following property: for any
concrete configuration γ matching ϕ, any execution starting from γ reaches a
configuration matching Ψ or is infinite. Here are two simple examples of valid
all path reachability patterns:

〈while (x > 0) x = x-1;〉 〈x �→ $x〉 ∧ $x > 3 → �w 〈·〉 〈x �→ 0〉
〈while (true) {}〉 〈x �→ $x〉 → �w 〈·〉 〈x �→ 0〉

5 Implementation of the Verification Process

The reachability properties we want to check, called from now on proof obliga-
tions, have the form

∀vs. 〈code〉 〈σ[vs/xs]〉 ∧ φ → �w∃σ′. 〈. 〉 〈σ′〉 ∧ ψ

where vs is a list of symbolic values, xs a list of program variables of the same
length as vs, and the rest of notations is as usual. The above pattern actually
says that the execution of code starting in a initial state satisfying φ either is
finite and reaches at the end a state satisfying ψ or it is infinite. This is similar
to partial correctness if φ is the precondition and ψ is the postcondition.
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5.1 Deriving Reachability Patterns from Annotations

In this section we show how proof obligations, expressed as reachability patterns,
can be generated from annotations. We consider only the cases of algorithm
contracts and of loop invariants.

Algorithm Contracts. If an algorithm is described as an Alk function, then
we may specify a contract for it using the following syntax (which is very similar
to the one used for verification):

f(ips out ops) uses igps modifies mgps
@requires φ
@ensures ψ
code

where ips is the list of the “call-by-value” (input) parameters, out ops the list of
parameters defined outside the function, uses igps the set of the global variables
used in the function body and not modified, and modifies mgps the list of global
variable used and modified by the function body.

Such a contract generates the following proof obligation:

∀ivs. ∀ovs. ∀igvs. ∀mgvs. 〈code〉 〈σf 〉 ∧ φ[σf ] → �w∃σ′. 〈. 〉 〈
σ′〉 ∧ φ′ ∧ (φ′ → ψf [σ, σ′])

where

– σf ≡ ips �→ ivs ∧ ops �→ ovs ∧ igps �→ igvs ∧ mgps �→ mgvs is the state
that initializes all the parameters and the involved global variables with fresh
symbolic values,

– ψf [σ, σ′] ≡ ψ ∧
(∧

x�→v∈old(σ) x = v
)

∧ (∧
x�→v∈σ′ x = v

)
is the matching logic

pattern generated from the postcondition ψ, the initial state σ and the final
state σ′, and

– old(σ) is obtained from σ by renaming variables x by \old(x).

Note that the precondition φ and the postcondition ψ are given using Alk pro-
gram variables.

Loop Invariant. Loop invariants are also important in understanding the
behavior of the algorithms. A loop invariant is specified in Alk language as
usual:

while (E)

@modifies bxs
@invariant ψ
body

and it generates the following proof obligation:

∀bvs. 〈body〉 〈σ[bvs/bxs〉 〈φ ∧ ψ ∧ E〉 → �w∃σ′. 〈. 〉 〈σ′〉 〈ψ〉
where bxs is the list of variables modified by body , bvs is a list of fresh symbolic
values of the same size as bxs. The list of variables bxs can be computed by
data-flow analysis or specified using the @modifies clause.
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5.2 Proving Reachability Patterns by Symbolic Execution

In this section we show that the proof obligations, expressed as matching logic
patterns and generated from the annotated algorithms, can be proved using
symbolic execution.

We first consider three new statements @havoc xs;, @assertψ;, and @assumeψ;
with the following semantics:

〈@havoc xs;�κ〉 〈σ〉 → • 〈κ〉 〈σ[vs/xs]〉
〈@assertψ;�κ〉 〈σ〉 ∧ ψ → • 〈κ〉 〈σ〉
〈@assumeψ;�κ〉 〈σ〉 → • 〈κ〉 〈σ〉 ∧ ψ

where xs is a list of program variables, vs is a list of fresh symbolic variables of
the same length as xs, and σ[vs/xs] is σ, excepting the variables from xs that
are mapped to their corresponding new symbolic values from vs. This kind of
statements are used by almost all verification tools.

We also consider two new rules handling the use of the annotated Alk code.
A call of a function with a contract @requires φ @ensures ψ no longer execute the
function body statements, but it “executes” its contract:

〈F (VS ) � κ〉 〈σ〉 → •
〈 @assert φ;

@havoc(MGV , IGV ,OP , \result);
@assume ψ;
\result � κ

〉

〈σ〉

The source of inspiration for this rule is circular coinduction, which allows the
use of proving goals as axioms in a sound way [21,25]. Firstly, the precondition
φ is checked using @assert, then the symbolic execution continues from a state
where the variables which are to be changed in the function body are assigned to
fresh symbolic values and constrained by the post-conditions ψ (using @assume).
Similarly, a loop annotated with a loop invariant is symbolically executed using
its proof obligation as axiom:

〈 while (E)

@invariant ψ;

S � κ

〉

〈σ〉 → •
〈 @assert ψ;

@havoc(MV );

@assume ψ ∧ ¬E;� κ

〉

〈σ〉

where MV is the set of variables modified by the loop body.
Let PrOb(A) denote the proof obligations generated form the annotated algo-

rithm A.

Theorem 1 (Soundness). If for each

∀vs. 〈code〉 〈σ[vs/xs]〉 ∧ φ → �w∃σ′. 〈. 〉 〈σ′〉 ∧ ψ

in PrOb(A) we have

〈 @havoc xs;

@assume φ;

code

@assert ψ;

〉

〈·〉 ⇒∀ 〈·〉 〈_〉
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then ALKSEM |= PrOb(A), where c ⇒∀ c′ denotes all complete symbolic execu-
tion paths starting from c must end in c′.

The proof of Theorem 1 is by circular induction [21]. Actually, the symbolic
executions, all together, build a proof-tree.

5.3 Implementation

The current implementation of the Alk platform includes an interpreter, a debug-
ger, a symbolic execution engine, and VS Code extension. The Alk interpreter
allows the user to test the algorithms written in the Alk language. The symbolic
execution engine is implemented based on the theoretical approach described in
this paper.

An integration with Z3 [12] is done in order to allow the reasoning in theory
VAL. The path conditions translated from the Alk syntax to Z3 are following the
guidelines of non-native Z3 equivalences, especially for arrays. This is mainly
because Alk enables abstract types and expressions which are too specific to
trivially map into the Z3 models.

For example, consider that Alk allows built-in methods and operators for
arrays (size), lists (pushBack, popFront, etc.) or sets (insert, union, etc.). These
are modeled using “Extended Z3 Array” [22] in an uniform manner. Other chal-
lenges were faced when dealing with the dynamic resizing of arrays.

The patterns describing the semantics of the Alk language are implemented
by rewriting as it is described in Sect. 3.2. Each symbolic execution step can be
seen as a proof of an implication between the corresponding patterns. In the end,
if all the symbolic executions are successfully terminated, the implications proved
by them can be combined into a proof of the goal generated from annotations,
using the methods described, e.g., in [21,25].

Further Work. The implementation reached a stable state in which complex
conditions and even some well-known algorithms can be analysed within seconds.
However, the implementation may require a better integration with supporting
back-ends or verifiers like Boogie [19]. A data-flow analysis [17] for inferring
information needed for analysis, like the type of variables, the variables modified
by a loop, the initialization of the complex data structures, is also planned.

6 Related Work

Having a single formal framework for expressing the definition of a program-
ming language and the properties of its programs was the leading idea of the
K Framework project (https://kframework.org/). Matching logic was developed
as a theoretical foundation for the K Framework and it includes several ver-
sions [8–10,23,24], reflecting the main progress steps. In this paper we used that
described in [8,9]. The first version of Alk was written in K Framework (https://
github.com/alk-language/k-semantics). The current version is written in Java,
following the K and matching logic principles.

https://kframework.org/
https://github.com/alk-language/k-semantics
https://github.com/alk-language/k-semantics
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The idea of using assertions for expressing properties of algorithms/programs
was introduced by Floyd [14] and Hoare [15]. In this paper we showed how
these assertions can generate matching logic patterns, which are then checked
by symbolic execution. The language used for assertions is the usual one used by
program verifiers, e.g., Dafny [20], Boogie [19],Why3 [5], Frama-C [18], JML [16],
Key [1], Verifast [26], etc. However, Alk uses a minimal set of annotations since
the focus is the algorithm understanding and not full verification. The symbolic
execution engine was developed using the approach presented in [4,21]. The main
principles based on Alk was designed are presented in [2]. In this paper we supply
the matching logic foundation of the Alk platform.

7 Conclusion

The Alk educational platform is envisioned as a base technology for algorithm
design and reasoning. In order to reach this goal, it must be based on a sim-
ple, solid, and rigorous foundation. In this paper, we showed that the matching
logic is the most suitable for this purpose. We showed that the Alk semantics,
the behavioral properties of algorithms written in Alk, and the analyzing tools
available, can be uniformly described within matching logic. The implementation
of the platform was given following this approach.

Alk also allows describing probabilistic algorithms. In future, we intend to
investigate if the matching logic can be used, or it needs to be extended in order
to allow the analysis of this kind of algorithms.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice. LNCS,
vol. 10001. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

2. Alexandru-Ioan, L., Lucanu, D.: Supporting algorithm analysis with symbolic exe-
cution in ALK. In: Aït-Ameur, Y., Craciun, F. (eds.) TASE 2022. LNCS, vol.
13299, pp. 406–423. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
10363-6_27

3. Arusoaie, A., Lucanu, D.: Unification in matching logic. In: ter Beek, M.H., McIver,
A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 502–518. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30942-8_30

4. Arusoaie, A., Lucanu, D., Rusu, V.: A generic framework for symbolic execution.
In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp.
281–301. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02654-1_16

5. Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: Let’s verify this with why3.
Int. J. Softw. Tools Technol. Transf. 17(6), 709–727 (2015)

6. Chen, X., Lin, Z., Trinh, M.-T., Roşu, G.: Towards a trustworthy semantics-based
language framework via proof generation. In: Silva, A., Leino, K.R.M. (eds.) CAV
2021. LNCS, vol. 12760, pp. 477–499. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-81688-9_23

7. Chen, X., Lucanu, D., Roşu, G.: Initial algebra semantics in matching logic. Tech-
nical report, University of Illinois at Urbana-Champaign, July 2020. submitted.
http://hdl.handle.net/2142/107781

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-031-10363-6_27
https://doi.org/10.1007/978-3-031-10363-6_27
https://doi.org/10.1007/978-3-030-30942-8_30
https://doi.org/10.1007/978-3-319-02654-1_16
https://doi.org/10.1007/978-3-030-81688-9_23
https://doi.org/10.1007/978-3-030-81688-9_23
http://hdl.handle.net/2142/107781


304 A.-I. Lungu and D. Lucanu

8. Chen, X., Lucanu, D., Roşu, G.: Matching logic explained. J. Log. Algebr. Methods
Program. 120, 100638 (2021)

9. Chen, X., Roşu, G.: Applicative matching logic. Technical report, University of
Illinois at Urbana-Champaign, July 2019. http://hdl.handle.net/2142/104616

10. Chen, X., Roşu, G.: Matching mu-logic. In: Proceedings of the 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS 2019) (2019, to
appear)

11. Chen, X., Rosu, G.: SETSS’19 lecture notes on K. In: Bowen, J., Liu, Z. (eds.)
Engineering Trustworthy Software Systems. LNCS, Springer, Cham (2019)

12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

13. Floyd, R.W.: Nondeterministic algorithms. J. ACM 14(4), 636–644 (1967)
14. Floyd, R.W.: Assigning meanings to programs. In: Colburn, T.R., Fetzer, J.H.,

Rankin, T.L. (eds.) Program Verification. Studies in Cognitive Systems, vol. 14,
pp. 65–81. Springer, Dordrecht (1993). https://doi.org/10.1007/978-94-011-1793-
7_4

15. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

16. Huisman, M., Ahrendt, W., Grahl, D., Hentschel, M.: Formal specification with
the java modeling language. In: Ahrendt, W., Beckert, B., Bubel, R., Hahnle, R.,
Schmitt, P., Ulbrich, M. (eds.) Deductive Software Verification – The KeY Book.
LNCS, vol. 10001, pp. 193–241. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49812-6_7

17. Khedker, U.P., Sanyal, A., Karkare, B.: Data Flow Analysis - Theory and Practice.
CRC Press, Boca Raton (2009)

18. Kosmatov, N., Signoles, J.: Frama-C, A collaborative framework for C code ver-
ification: tutorial synopsis. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS,
vol. 10012, pp. 92–115. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46982-9_7

19. Leino, K.R.M.: This is boogie 2. manuscript KRML 178(131), 9 (2008)
20. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.

In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

21. Lucanu, D., Rusu, V., Arusoaie, A.: A generic framework for symbolic execution:
a coinductive approach. J. Symb. Comput. 80, 125–163 (2017)

22. Alexandru-Ioan, L.: Extended z3 array. In: 23th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (FROM Workshop),
SYNASC 2021. IEEE (2021, to appear)

23. Roşu, G.: Matching logic. Log. Methods Comput. Sci. 13(4), 1–61 (2017)
24. Roşu, G., Ellison, C., Schulte, W.: Matching logic: an alternative to Hoare/Floyd

logic. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp.
142–162. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17796-
5_9

25. Stefanescu, A., Ciobâcă, Ş., Mereuta, R., Moore, B.M., Serbanuta, T.-F., Rosu,
G.: All-path reachability logic. Log. Methods Comput. Sci. 15(2) (2019)

26. Vogels, F., Jacobs, B., Piessens, F.: Featherweight verifast. Log. Methods Comput.
Sci. 11(3) (2015)

http://hdl.handle.net/2142/104616
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-3-319-49812-6_7
https://doi.org/10.1007/978-3-319-49812-6_7
https://doi.org/10.1007/978-3-319-46982-9_7
https://doi.org/10.1007/978-3-319-46982-9_7
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17796-5_9
https://doi.org/10.1007/978-3-642-17796-5_9


A Type System with Subtyping
for WebAssembly’s Stack Polymorphism

Dylan McDermott1 , Yasuaki Morita1(B) , and Tarmo Uustalu1,2

1 Department of Computer Science, Reykjavik University, Reykjavik, Iceland
{dylanm,yasuaki20,tarmo}@ru.is

2 Department of Software Science, Tallinn University of Technology, Tallinn, Estonia

Abstract. We propose a new type system for WebAssembly. It is a
refinement of the type system from the language specification and is
based on type qualifiers and subtyping. In the WebAssembly specifica-
tion, a typable instruction sequence gets many different types, depending
in particular on whether it contains instructions such as br (unconditional
branch) that are stack-polymorphic in an unusual way. But one cannot
single out a canonical type for a typable instruction sequence satisfac-
torily. We introduce qualifiers on code types to distinguish between the
two flavors of stack polymorphism that occur in WebAssembly and a
subtyping relation on such qualified types. Our type system gives every
typable instruction sequence a canonical type that is principal. We show
that the new type system is in a precise relationship to the type sys-
tem given in the WebAssembly specification. In addition, we describe a
typed functional-style big-step semantics based on this new type system
underpinned by an indexed graded monad and prove that it prevents
stack-manipulation related runtime errors. We have formalized our type
system, inference algorithm, and semantics in Agda.

1 Introduction

WebAssembly (Wasm) [10] is a statically typed, stack-oriented bytecode lan-
guage. Wasm has been designed with a formal semantics [2]. Watt [15] formal-
ized the type system, the type checker, the small-step semantics and a proof of
type soundness in Isabelle. Later, Wasm 1.0 became a W3C Recommendation
[14], and Huang [3] and Watt et al. [17] came with formalizations in Coq. As
type soundness gives safety, Wasm’s type system plays a significant role in its
semantics.

A key feature of the type system of Wasm is that it tracks how the stack
shape evolves in program execution. Stacks are typed by their shapes, which are
lists of value types. A piece of code is typed by a pair of stack types, an argument
type and a result type. In Wasm, most instructions are typed monomorphically
with their (net) stack effect, i.e., types for the portions of stack they pop and
push. Instructions for unconditional control transfer like br however are typed
differently, polymorphically and in an unusual way. Instruction sequences are
typed polymorphically (in particular one cannot read off from the type how
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long a prefix of the initial stack is actually touched) and typing of instruction
sequences involving br becomes subtle.

In this paper, we analyze the stack polymorphism of the type system of
Wasm in detail on a minimalistic fragment of the language. We first introduce
a type system (Dir) that uniformizes the typing of instructions and instruction
sequences making both stack-polymorphic in an adequate sense. Dir stands in a
precise relationship to the type system of the language specification (which we
call Spec); in particular instruction sequences get exactly the same types. Then
we refine this type system to another one (which we call Sub) that has subtyping
and equips all instructions and instruction sequences, notably br and instruction
sequences involving br, with canonical types in the form of principal types. We
achieve this by introducing the distinction between ordinary (“univariate”) stack
polymorphism (in the type of the untouched suffix of the stack) from the unusual
“bivariate” stack polymorphism of Wasm characteristic to br and instruction
sequences involving it. The two type systems Dir and Sub have a different status:
Dir is a minor variant of Spec, which we introduce as a first step toward Sub;
Sub is the main type system of our interest. On top of Sub, we build a typed
big-step operational semantics in which run-time errors cannot occur. We also
define an untyped big-step semantics that agrees with this typed semantics on
typed programs when invoked on initial stacks that the typed semantics accepts.

Our type system and type inference algorithm with their properties and
the typed and untyped big-step semantics have been formalized in Agda; the
development is available at https://github.com/moritayasuaki/wasm-types.

2 A Small Fragment of Wasm

For the sake of simplicity, we work with a minimalistic fragment of Wasm. The
syntax of the language is given in Fig. 1. A piece of code in this language is either
an instruction or an instruction sequence.

a, r, m, d, e ∈ N stack types (called result types in the spec.)
t ::= a → r code types (called stack types in the spec.)
� ∈ N label indices
z ∈ Z32 32-bit integers

uop ::= eqz | . . . unary numeric operations
bop ::= add | . . . binary numeric operations

i ::= const z | uop | bop numeric instructions
| blockt is end | loopt is end block-like instructions
| br if � | br � branch instructions

is ::= ε | is i instruction sequences
c ::= i | is code

Fig. 1. Syntax of reduced Wasm

https://github.com/moritayasuaki/wasm-types
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Since our focus is on stack manipulation and typing thereof, we have left
out all unrelated aspects of Wasm, even the linear memory; also we do not have
functions. To keep the presentation as clean as possible, we do not even have
multiple value types. Of Wasm’s value types i32, i64, f32, f64 etc., we have
kept only one, i32. A stack type in Wasm is a list of value types. Since in our
reduced language, there is just one value type, a stack type boils down to a
natural number for the height of the stack. With this simplification, issues such
as values of the wrong type in the stack and value-polymorphism (of, e.g., the
drop instruction) disappear. Having just numbers as stack types is arguably a
significant simplification. Still all phenomena we want to discuss are maintained;
we have verified that the arguments in this paper scale to lists of value types as
stack types by replacing the total order on natural numbers by the (prefix) partial
order on lists. The possibility of value-type mismatch then leads to partiality of
the central operations on stack types and code types that are total in this paper.

There are three main categories of instructions—numeric, block-like and
branch instructions—, and execution of each instruction is defined in the same
way as in [2,10]. A numeric instruction pops some arguments from the current
local stack (the global stack or the local stack of the closest encompassing block-
like instruction), performs the corresponding operation, and pushes the result.

A block-like instruction block or loop type-annotated with a → r pops a
values (“arguments”) from the current local stack, constructs its own local stack
containing these arguments, and executes the inner instruction sequence on this
new local stack as current. If this terminates normally, there must be r values
(“results”) left on this local stack. The local stack is then destroyed and the r
values are pushed to the parent local stack, which becomes current.

The unconditional branch instruction br � is a jump instruction targeting
either the end or the beginning of the �-th encompassing block-like instruction
depending on whether it is a block or a loop. If the type annotation on this
instruction is a → r, then, before the jump, r resp. a values are popped from
the current local stack, the local stacks of enclosing block-like instructions up to
the jump target are emptied and destroyed, the local stack of the jump target
is emptied and the r or a values are pushed to it, and it becomes current. The
conditional branch instruction br if � behaves similarly except that it consumes
the top of the current local stack as a condition.

Type System

Figure 2 shows the typing rules of our chosen subset of Wasm. This type system
matches the Wasm specification, and we call this type system Spec.

Typing judgements for instructions i and instruction sequences is have simi-
lar forms rs �I i : a → r and rs �S is : a → r where the code type a → r describes
in both cases in some way (which we will discuss in detail) the stack effect of i
or is in terms of a pair of stack types: the shapes of the local stack before (a,
for “arguments”) and after (r, for “results”) a possible execution. The typing
context rs, which is a list of stack types, records the result resp. argument types
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rs �I const z : 0 → 1
Const

rs �I uop : 1 → 1
Uop

rs �I bop : 2 → 1
Bop

r :: rs �S is : a → r

rs �I blocka→r is end : a → r
Block

a :: rs �S is : a → r

rs �I loopa→r is end : a → r
Loop

rs !! � = r

rs �I br if � : 1 + r → r
Br if

rs !! � = r

rs �I br � : r + d → e
Br

rs �S ε : a → a
Empty

rs �S is : a → m + d rs �I i : m → r

rs �S is i : a → r + d
Seq

Fig. 2. Typing rules of type system Spec, following the specification of Wasm

of the block or loop instructions encompassing i or is, in the inside-out order.
We write rs !! � for the �-th element of rs (� < |rs|).

In this type system, every instruction except for br gets a unique code type
(if it gets one at all). For numeric instructions, the meaning of this type is
clear: a → r reflects the numbers of arguments and results of the operation,
the numbers of elements popped from and pushed onto the stack. The type of
br if � according to the rule Br if also reflects the operational semantics: br if �
pops the top of the stack as a condition and then pops r(= rs !! �) next elements
additionally if this condition is non-zero (true). The argument type of br if �
is therefore 1 + r. Although br if � terminates abnormally by a jump in this
case (thereby not posing any requirement on the result type), the same r next
elements remain on the stack if the condition is zero (false). Therefore, the result
type must be r since the code type must cover both cases; in the false case, we
have to pretend that 1 + r elements are popped and the r last of those are
pushed back (even if in reality only one element is popped and none pushed).
We postpone a discussion of br �.

In contrast, every instruction sequence gets many code types. For instance,
the empty sequence ε in Empty gets code types a → a for any natural number
a. If we take 0 for a, then it becomes 0 → 0. This choice can be called the tightest
because the empty sequence consumes and produces nothing on the stack. The
rule also allows us to choose a = 1. It is natural to think of the empty sequence as
the identity function on the stack. However, the type 1 → 1 no longer tells us that
the value at the top of the stack remains unchanged. In such a sense, we would
say ε : 1 → 1 is a reasonable typing but loose in comparison to ε : 0 → 0. Though
the specification does not give a specific term for this phenomenon, we call it
univariate stack polymorphism, or simply, univariate polymorphism (as opposed
to bivariate polymorphism, discussed below).1 Univariate polymorphism allows
code types to be loosened by adding the same number to both the argument
and result type corresponding to an untouched part of the local stack.

The premises of the typing rule Seq for the sequencing is i of is and i require
the result type m + d of is to be at least the argument type m of i. This rule

1 We use the term ‘stack polymorphism’ in the sense of Morrisett et al. [6], viz. poly-
morphism of stack functions in the type of the untouched part of the stack.



A Type System with Subtyping for WebAssembly’s Stack Polymorphism 309

can be intuitively motivated relying on univariate polymorphism of instructions
(which Spec does not have, but which is semantically justified). First, we think
of the type m+d → r +d as a loosened version of the type m → r of i, although
no typing rules allow us to give i this type officially. Since this loosening has
made the types at the middle equal (the result type of is and the argument type
of i have both become m + d), we can consider that the argument type a of is
and the result type r + d of i form a type for the sequence is i.

We notice that an instruction i and the singleton instruction sequence i (i.e.,
ε i) are not treated the same way in Spec. For example, const 17 as an instruction
only has type 0 → 1 in any context, but as an instruction sequence it has the
type d → 1 + d for any d (since ε admits the type d → d).

Bivariate Stack Polymorphism

Although br � is operationally the same as (const 1) (br if �), it has different
characteristics in the type system (which does not involve any constant propa-
gation analysis). The rule Br assigns many types to the instruction br �: the d
and e in the conclusion are arbitrary natural numbers. This is a big difference
from the other instructions, which all get at most one type. Although the Wasm
specification takes stack polymorphism to mean only this phenomenon, we will
refer to it more specifically as bivariate stack polymorphism, or simply bivariate
polymorphism, since d and e are independent metavariables for stack types. The
natural intuition “code type = local stack type before and after” is no longer
useful, since an execution of br cannot terminate normally at “after”; the next
instructions in an encompassing block-like instruction or the end of it are never
reached. Thanks to bivariate polymorphism, it is possible to place any instruc-
tion immediately after br, and this instruction will be unreachable code. In [2],
an example of the use of bivariate stack polymorphism in compilers is discussed.

Typing of unreachable code is quite subtle in this type system. For example,
the following instruction sequence is not typable when r = 0 and is typable
when r ≥ 1, even though the instruction const 17 and the end of the loop are
unreachable:

block0→0 loop0→r (br 1) (const 17) end (br 0) end

We notice that the design of Spec is uneven in that br and instruction
sequences are stack-polymorphic, but instructions other than br are not. For
consistency, they should all be stack-polymorphic. The rules for sequencing “fix”
this discrepancy—or cover it up, depending on how one looks at this. In the next
section, we introduce a variant type system Dir, which remedies this issue.

3 Type System Dir with “Direct” Sequential Composition

The typing rules of the type system Dir are given in Fig. 3. They give many types
not only to br, but also to other single instructions. The typing rule in Dir loosens
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the type assigned to an instruction by Spec by adding any natural number d to
both the argument and result types. For the bivariate polymorphic instruction
br, the typing rule is as in Spec. In other words, Dir has stack polymorphism
(univariate or bivariate) for all instructions. The rule for sequencing is “direct”:
it only admits the case where the result type of is and the argument type of i
coincide. This is fine now since all instructions have become stack-polymorphic.

rs � const z : d → 1 + d
Const

rs � uop : 1 + d → 1 + d
Uop

rs � bop : 2 + d → 1 + d
Bop

r :: rs � is : a → r

rs � blocka→r is end : a + d → r + d
Block

a :: rs � is : a → r

rs � loopa→r is end : a + d → r + d
Loop

rs !! � = r

rs � br if � : 1 + r + d → r + d
Br if

rs !! � = r

rs � br � : r + d → e
Br

rs � ε : r → r
Empty

rs � is : a → m rs � i : m → r

rs � is i : a → r
Seq

Fig. 3. Typing rules in the type system Dir

For single instructions, Dir gives more valid types than Spec does. For exam-
ple, rs � const 17 : d → 1+ d in Dir, but in Spec, only rs �I const 17 : 0 → 1 can
be derived. (But also recall that Spec does derive rs �S const 17 : d → 1 + d: for
instruction sequences the two type systems give the same types.)

For an instruction to have a type in Dir, it must be typable also in Spec, but
the argument and result type may be smaller by some same d. An instruction
sequence has exactly the same types in Dir and Spec.

Theorem 1 (Dir vs. Spec).

rs �Dir i : a → r ⇐⇒ (∃d, a′, r′. a = a′ + d ∧ r = r′ + d ∧ rs �I
Spec i : a′ → r′)

rs �Dir is : a → r ⇐⇒ rs �S
Spec is : a → r

Proof. (=⇒) By mutual induction on the derivation trees of rs �Dir i : a → r
and rs �Dir is : a → r.

(⇐=) We replace the backwards implication of the statement for i with the
equivalent property that

(∀d. rs �Dir i : a + d → r + d) ⇐= rs �I
Spec i : a → r

and then proceed by mutual induction on the derivation trees of rs �Spec i : a → r
and rs �Spec is : a → r.

The type system Dir is free of some of the problems of Spec: both instructions
and instruction sequences get all types they should reasonably get. However,
there is no satisfactory canonical type among them in all cases. Instructions other
than br and the empty sequence do have principal types under the (unstated,
but conceivable) subtyping relation induced by the inequation a → r <:
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a →bi r <: a + d →q r + e
Subtbi

a →uni r <: a + d →uni r + d
Subtuni

rs � const z : 0 →uni 1
Const

rs � uop : 1 →uni 1
Uop

rs � bop : 2 →uni 1
Bop

r :: rs � is : a →uni r

rs � blocka→r is end : a →uni r
Block

a :: rs � is : a →uni r

rs � loopa→r is end : a →uni r
Loop

rs !! � = r

rs � br if � : 1 + r →uni r
Br if

rs !! � = r

rs � br � : r →bi 0
Br

rs � ε : 0 →uni 0
Empty

rs � is : a →q m rs � i : m →q′ r

rs � is i : a →q�q′ r
Seq

rs � c : t′ t′ <: t

rs � c : t
Subs

Fig. 4. Subtyping and typing rules in the type system Sub

a+d → r+d, which can be justified by the fact that in Dir rs � c : a → r implies
rs � c : a + d → r + d for any piece of code c. But br and general instruction
sequences (specifically those containing br) do not have such principal types. We
will now improve on this and introduce a type system Sub where even br and
instruction sequences have principal types.

4 Type System Sub with Qualifiers and Subtyping

We introduce two qualifiers uni and bi (for “univariate” and “bivariate”, using q
as a typical metavariable for these qualifiers), and a partial order ≤ on them:

bi ≤ q uni ≤ uni

In the type system Sub code types have the form a →q r; the qualifier q specifies
whether the code is univariately or bivariately stack-polymorphic. Code types
are ordered by a subtyping relation <:, defined by the top two rules of Fig. 4.

The remainder of Fig. 4 consists of the typing rules of Sub. All instructions
except br are assigned a uni-type by their typing rule; br gets a bi-type. This
way, all single instructions including br, and the empty instruction sequence,
get assigned their tightest type. The typing rule Seq for sequencing is as in
Dir, but the qualifier in the conclusion is the meet � of the qualifiers in the
premises. This operation is defined by uni � uni = uni and q � q′ = bi otherwise.
All looseness of typing is introduced by a subsumption rule Subs that applies
to both instructions and instruction sequences.

The uni-types assigned to a piece of code by Sub are precisely the types
assigned by Dir.

Proposition 1 (Sub vs. Dir, take 1).

rs �Sub c : a →uni r ⇐⇒ rs �Dir c : a → r
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Proof. (=⇒) By induction on the derivation of rs �Sub c : a →uni r (by which
we mean mutual induction on the derivation of rs �Sub c : a →uni r for the two
cases i and is of c).

(⇐=) By induction on the derivation in rs �Dir c : a → r.

To also describe the bi-types of a piece of code in Sub in terms of its types
in Dir, we first show a lemma about bi-types.

Lemma 1.

rs �Dir c : a+d → r∧rs �Dir c : a → r+e∧(d > 0∨e > 0) =⇒ rs �Sub c : a →bi r

Proof. By induction on c.

For a piece of code to acquire a particular type in Sub, all of its uni-supertypes
must type it in Dir (and so also in Spec in the case of an instruction sequence).

Theorem 2 (Sub vs. Dir).

rs �Sub c : a0 →q r0 ⇐⇒ (∀a, r. a0 →q r0 <: a →uni r =⇒ rs �Dir c : a → r)

Proof. From Proposition 1 and Lemma 1.

Type Inference

We define a type inference algorithm for Sub. We prove this algorithm computes
a principal type for a given piece of code c for a given type context rs, provided
it is typable in that context at all, i.e., type inference computes a derivable type
which is a subtype of every other derivable type.

The algorithm is defined as a function infer recursive on c (i.e., mutually
recursive on the two cases of c being an instruction or an instruction sequence)
in Fig. 5; the algorithm traverses c once, from left to right (depth-first left-first).
MaybeX is the disjoint sum 1+X, with coprojections Nothing and Just. For every
instruction, and for the empty sequence, the inferred type is the type from the
conclusion of the typing rule. This is not the case for sequencing. For numeric
instructions and the empty sequence ε, their typing rules give them one type
and this is the type inferred. For a given context, the types of br and br if are
also determined uniquely, but differently from all other instructions br gets a
bi-type. The types of block and loop are determined by the annotation, but the
instruction sequence inside may fail to admit this type. For this reason, infer is
called recursively on this sequence to check its compatibility with the annotation.

The inferred type for a sequence is i is defined by an operation ⊕ on qualified
code types. Firstly, to satisfy the premises of the rule Seq, the operation ⊕ needs
to reconcile the middle stack types m and m′ of the inferred types a →q m
and m′ →q′ r of is and i. The unified middle type is actually max(m,m′),
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infer c rs : Maybe CodeType

infer (const z) rs = Just(0 →uni 1)
infer uop rs = Just(1 →uni 1)
infer bop rs = Just(2 →uni 1)

infer (blocka→r is end) rs = do tis ← infer is (r :: rs)
if tis <: a →uni r then Just(a →uni r) else Nothing

infer (loopa→r is end) rs = do tis ← infer is (a :: rs)
if tis <: a →uni r then Just(a →uni r) else Nothing

infer (br if �) rs = if � < |rs| then Just((1 + rs !! �) →uni (rs !! �)) else Nothing
infer (br �) rs = if � < |rs| then Just((rs !! �) →bi 0) else Nothing

infer ε rs = Just(0 →uni 0)
infer (is :: i) rs = do tis ← infer is rs

ti ← infer i rs
Just(tis ⊕ ti)

Fig. 5. Type inference for Sub

whatever q and q′ are.2 But the possible invocations of Subs differ depending
on q and q′. For example, if we have rs � is : a →bi m, then we can achieve
rs � is : a →bi max(m,m′), but if we have rs � is : a →uni m, then we only get
rs � is : a+(max(m,m′)−m) →uni max(m,m′). As a result of exactly the same
thing happening for rs � i : m′ →q r, the operation ⊕ can be defined uniformly
in the four cases of q, q′ using the “monus” operation m ·−m′ = max(m,m′)−m
and its qualified version m ·−uni m

′ = m ·− m′, m ·−bi m
′ = 0. We define

(a →q m) ⊕ (m′ →q′ r) = a + (m′ ·−q m) →q�q′ r + (m ·−q′ m′)

The algorithm is sound and complete, i.e., the algorithm infers a type for
a piece of code precisely when it is typable, and the inferred type is principal
(derivable and a subtype of any other derivable type).

Theorem 3 (Soundness of type inference of Sub).

infer c rs = Just t =⇒ rs � c : t

Proof. By induction on c.

Theorem 4 (Completeness of type inference of Sub).

rs � c : t =⇒ (∃t0. infer c rs = Just t0 ∧ t0 <: t)

Proof. By induction on the derivation of rs � c : t.

2 The intermediate type max(m,m′) here is always defined just because we have one
value type and stack types are natural numbers. If we consider multiple value types,
the stack types m and m′ are no longer natural numbers but lists of value types. In
this setting, the unified middle type is defined only if one of m and m′ is a prefix of
the other; when this is not the case, the instruction sequence is not typable.
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Pomonoid

The set of code types of Sub, together with its subtyping relation <:, the element
0 →uni 0 and the operation ⊕ form a pomonoid (a partially ordered monoid). This
pomonoid is a generalization for the qualified case of the stack effect pomonoid
first considered as such by Pöial [9] (see also [13]) and studied earlier in algebra
as the polycyclic monoid (the inverse envelope of a free monoid) by Nivat and
Perrin [8] (modulo the fact that we have replaced lists of value types as stack
types by natural numbers, which gives the bicyclic monoid).3

That we get a pomonoid is very reasonable: it is reflects the expectation
that sequential composition of two pieces of code should be associative (up to
semantic equivalence) and have the empty code as the unit, also that it should
not matter whether subsumption is applied to one of the two pieces of code or to
the composition. (Notice though that in Wasm we have no syntactic operation
of composition of two sequences of instructions.) We have a reason to return to
this pomonoid structure in the next section.

5 Typed Big-Step Semantics Based on Sub

We now demonstrate Sub in action by building on it a typed functional-style
big-step semantics (a denotational semantics)4 of simplified Wasm.

The denotation of a typing derivation of a piece of code is a function that
takes

– a natural number as a bound on the number of backjumps that can be made
within the loops that this piece of code is encompassed by 5

– and a list of integers as an initial local stack,

runs the code and returns either

– nothing if the bound on the number of backjumps was exceeded,
– or a final local stack from normal termination (in the case of a bi-type, this

is not a possibility),
– or a portion of stack to transfer to the branch target from abnormal termi-

nation from a jump to a label index.

3 In the bicyclic monoid, the partial operation ⊕ is made total by adding a special
zero element �, the greatest in the partial order, for ‘possible untypability’.

4 For a discussion of the merits of functional-style rather than the usual relational-style
big-step semantics in constructive programming theory, see e.g., [7].

5 To avoid coinduction in the formalization of our constructive mathematical develop-
ment, we make sure that all program executions terminate by limiting the number
of backjumps—the only source of nontermination in simplified Wasm. This is poor
man’s domain theory that works well for our purposes; what we are using is a certain
variation of Capretta’s delay monad [1].
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Denotations of derivable subtypings coerce between such functions.
The semantic function for code types is therefore defined by

�a →q r� rs = N → Z
a
32 → 1 + NTq(r) +

∑
�<|rs|Z

rs!!�
32

where NTbi(r) = 0 and NTuni(r) = Z
r
32 (NT for “normal termination”); here 0

stands for the empty set and
∑

for an indexed disjoint sum. We write Timeout,
Norm and Jump for the coprojections of the ternary disjoint sum above.6

The semantic functions for derivable subtypings and type derivations are
defined in Fig. 6; the latter is defined by structural recursion on the type deriva-
tion. The definitions use auxiliary functions split a : Z

a+d
32 → Z

a
32 × Z

d
32 that

split a given local stack into two parts, with the first part containing the first a
elements and the second containing the rest. The function take a : Za+d

32 → Z
a
32

gives only the first part.
The denotation of a derivable subtyping a →q r <: a + d →q′ r + e is a

higher-order function that takes a function f sending any stack of height a to
a stack of height r if it terminates normally and returns a function sending a
given stack stk of height a + d to a stack of height r + e if f applied to the first
a elements of stk terminates normally. It is important to realize that, if q = bi
(and d �= e in general), then normal termination (the case Norm stk′) cannot
happen. If q = uni, then the last d(= e) elements of stk that are split off from it
before the first a elements are supplied to f are appended back to the result in
this case.

Importantly, despite the fact that denotations
� π

rs � c : t

�
are defined for

type derivations (indicated by π) and not just for derivable typing judgements,
any two derivations of the same typing judgement rs � c : t still acquire the
same denotation. We prove this by relating the semantics to type inference:
if there is a derivation of rs � c : t, then, by completeness of type inference
(Theorem 4), there exists a unique t0 (depending only on c and rs) such that
infer rs c = Just t0 and t0 <: t, and by soundness (Theorem 3) there is also a
derivation of rs � c : t0. We relate the denotations of the derivations of rs � c : t
and rs � c : t0.

Proposition 2 (Coherence of typed semantics). If rs � c : t, then
� π

rs � c : t

�
= �t0 <: t� rs

� π0

rs � c : t0

�

where the unique t0 such that infer rs c = Just t0 is from Theorem 4 and
π0

rs � c : t0 is from Theorem 3. Hence any two derivations of rs � c : t have
the same denotation.

6 Notice that �a →bi r� does not really depend on r. This suggests that bi-types should
perhaps not have a result type at all. Such a design is possible, we look at this in
Sect. 6. The resulting type system accepts more programs but still provides safety.
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Fig. 6. Typed big-step semantics based on Sub
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We also define an untyped semantics, which we relate to the typed semantics
to characterize the safety the latter gives. In the untyped semantics, two kinds
of runtime errors can occur in addition to exceeding the bound on backjumps:
jumps too far out and stack underflow. The untyped semantics is defined in
Fig. 7 where we write JumpOutside, StackUnderflow and Ok for the coprojections
of the outer ternary disjoint sum and Timeout, Norm and Jump for those of the
inner one.

We define two kinds of type erasure to relate the untyped semantics to the
typed semantics. One is an injection from typed initial stacks (specific-length
lists) to untyped initial stacks (arbitrary-length lists). The other is an injec-
tion from typed outcomes to untyped outcomes. Let erasea be the inclusion
Z

a
32 ↪→ ListZ32 and erasers,q,r be the inclusion 1 + NTq(r) +

∑
�<|rs| Z

rs!!�
32 ↪→

1+ListZ32+N×ListZ32 (which hinges in particular on the inclusion 0 ↪→ ListZ32

in the case q = bi). For every well-typed instruction sequence, the untyped deno-
tation is identical to the type erasure of the typed denotation.

Theorem 5 (Untyped vs. typed semantics). If rs � c : a →q r, then

�c� rs n (erasea stk) = Ok(erasers,q,r(�rs � c : a →q r� n stk))

for all n and stk ∈ Z
a
32.

Proof. We prove that whenever a →q r <: a′ →q′ r′, we have

�c� rs n (erasea′ stk)
= Ok(erasers,q′,r′(�a →q r <: a′ →q′ r′� rs �rs � c : a →q r�n stk))

for all n ∈ N and stk ∈ Z
a′
32, by induction on the derivation of rs � c : a →q r.

The result follows because �a →q r <: a →q r� rs is the identity function.

In particular, Theorem 5 implies that no well-typed piece of code c can cause
StackUnderflow or JumpOutside when run on a good initial stack stk .

Graded Monad

We further justify the denotational semantics of Sub by noting that underpin-
ning it there is an indexed graded monad [4,5,11] (on the category of sets and
functions). The indexed graded monad consists of sets of computations, indexed
by stack types rs and graded by code types a →q r, and describes composition
of functions from values to computations. It is a graded version of a combination
of a state monad (for stack manipulation), an exception monad (for jumps) and
the delay monad (to avoid nontermination).

Recall that the set of Sub’s code types forms a pomonoid, with order <:, unit
0 →uni 0 and multiplication ⊕. The pomonoid structure is used in the types of
the data of the indexed graded monad that we define in Fig. 8. For each con-
text rs, code type a →q r, and set X, there is a set T rs

a→qrX of computations
that produce values in the set X. The sets T rs

a→qrX are functorial in X in the
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Fig. 7. Untyped big-step semantics

obvious way. The unit ηX of the graded monad sends each result x ∈ X to the
computation that immediately returns x, and the multiplication μX provides
composition of functions from values to computations via flattening of compu-
tations of computations into computations. Finally, the coercion functions T rs

t<:t′

provide subsumption.
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Fig. 8. Indexed graded monad T

This is indeed the structure that we use in the denotational semantics of Sub:
the set �a →q r�rs is just 1 → T rs

a→qr1, i.e., a special case of a general Kleisli map
X → T rs

a→qrY , while the denotations of ε, is i and subsumptions can be written
using the unit, multiplication resp. coercion of the indexed graded monad.

6 An Improvement over Sub

The typed big-step semantics of Sect. 5 hints that there is no need for code types
qualified with bi to have a result type since they type pieces of code that surely
fail to terminate normally—as they surely jump.

This suggests that we can improve on Sub by dropping result types from
bi-types. Indeed, we can work with types a → r for pieces of code that may
terminate normally and types a → for pieces of code that surely do not. The
subtyping and typing rules of this improved type system are in Fig. 9.

Notice that Sub′ types more programs than Sub (and hence Spec). The
instruction block0→0 (br 0) (const 17) end, for instance, is untypable in Sub,
but typable with principal type 0 → 0 in Sub′.

Similarly to Sub, the type system Sub′ enjoys principal types, with the prin-
cipal type of a sequence given by an operation ⊕′.
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Fig. 9. Subtyping and typing rules of Sub′

The code types of Sub′ with their subtyping relation <:, the type 0 → 0 and
the type operation ⊕′ again form a pomonoid.7 Moreover, there is an evident
pomonoid homomorphism h from the pomonoid of code types of Sub, sending
a →uni r to a → r and a →bi r to a → . This function h has the properties that
t <: t′ in Sub implies h t <: h t′ in Sub′ and rs � c : t in Sub implies rs � c : h t
in Sub′, i.e., the subtyping and typing derivations in Sub translate into Sub′.

The type system Sub′ admits a functional-style big-step semantics analogous
to Sub in Sect. 5 and with the same property that the untyped denotations of
typed programs agree with their typed denotations (in particular, they do not
go wrong). In fact, the semantic functions for subtyping and typing derivations
of Sub can be obtained by taking those for subtyping and typing derivations of
Sub′ and precomposing them with the translations from Sub to Sub′.

7 Conclusions and Future Work

We have shown two refinements of the type system of Wasm, explained on a
minimal fragment of the language that only has the features of interest. Wasm’s
type system has the discrepancy that, while instruction sequences get assigned
all valid types (for some definition of validity), instructions other than the
exceptional br only get assigned their “tightest” (most informative) types. Thus
instruction sequences are typed as one would expect from a declarative type sys-
tem, but instructions are typed more in the spirit of a type inference algorithm.
Our first type system Dir removes this discrepancy: both instructions and instruc-
tion sequences get all of their valid types, so Dir is properly declarative, one could
say. Our second type system Sub improves on Dir by equipping all instructions
and instruction sequences (specifically br and instruction sequences containing
7 But with lists instead of natural numbers as stack types, normal associativity of ⊕′

is lost, as ((a0 → ) ⊕′ (a → m)) ⊕′ (m′ → r) = (a0 → ) while (a → m) ⊕′ (m′ → r)
is undefined when neither m nor m′ is a prefix of the other. Totalizing ⊕′ with a zero
greatest element � gives a skew pomonoid: associativity holds as an inequation.
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br) with principal types. This is achieved by introducing a code type qualifier
to specifically mark what we have here called bivariate stack polymorphism—
an unusual form of stack polymorphism that only instructions and instruction
sequences that surely fail to terminate normally enjoy.

We have argued that our type system design is systematic. Importantly,
qualified code types form a pomonoid, leading to a denotational (functional big-
step) semantics based on an indexed graded monad indexed by type contexts
and graded by this pomonoid. This design demonstrates, in particular, that the
Wasm type system may be considered to be too pedantic about surely non-
returning programs. Such programs could be typed as a having no result type;
then more programs would become typable without compromising safety, cf.
system Sub′ in Sect. 6. The systems Dir and Sub are (on purpose) conservative
over the type system of the Wasm specification in that they type exactly the
same programs. Sub has principal types because it has specifically marked types
for surely non-returning programs. The type system of the specification does not
record such information in types, but its type-checking algorithm calculates it
nonetheless.8

Our semantics shows that Wasm, despite being profiled as low-level, is very
well suited for big-step reasoning, thanks, of course, to the language having
structured control in a form characteristic to high-level languages; small-step
reasoning is not necessary. We should also highlight that continuation-passing is
not necessary either; direct style is enough, one can use exceptions to describe
the semantics of branching. Finally, the semantics is fully compositional also in
regards to how the stack is treated: one only ever needs to talk about the local
portion of the stack that the instruction or instruction sequence under analysis
has access to; there is no need to pass around the global stack and information
about which portion is owned by which parent block-like structure.

In future work, we will formally prove that the big-step semantics agrees with
the small-step semantics from the specification. The big-step semantics readily
suggests a design for a Hoare-style program logic that we will prove sound and
complete wrt. the big-step semantics; adequacy for the small-step semantics will
then be a corollary. (Cf. the work on a Hoare logic for Wasm by Watt et al. [16].)
The short distance between big-step semantics and Hoare-style program logics is
another good reason to work with big-step reasoning. Finally, we want to study
some source-level stack-based program analyses, define them compositionally
and show them correct wrt. the big-step semantics. (See for example [12].)

Acknowledgements. This work was supported by the Icelandic Research Fund grant
no. 196323-053.

8 One could argue that all of this is splitting hairs over typing code fragments that can
be seen to be unreachable by a very simple analysis and that a good compiler from
a higher-level language to Wasm should not produce this kind of unreachable code.
The latter might be true, but a type system for Wasm must still handle all Wasm
programs, in particular also programs containing this kind of unreachable code, in
some adequate way, unless we declare these programs syntactically ill-formed.
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Abstract. In this paper we present the verification of an imperative
implementation of the ubiquitous B+-tree data structure in the interac-
tive theorem prover Isabelle/HOL. The implementation supports mem-
bership test, insertion and range queries with efficient binary search for
intra-node navigation. The imperative implementation is verified in two
steps: an abstract set interface is refined to an executable but inefficient
purely functional implementation which is further refined to the efficient
imperative implementation.

Keywords: Separation logic · Verification · Refinement

1 Introduction

B+-trees form the basis of virtually all modern relational database manage-
ment systems (RDBMS) and file systems. Even single-threaded databases are
non-trivial to analyse and verify, especially machine-checked. Meanwhile it is
important to verify various properties like functional correctness, termination
and runtime, since RDBMS are ubiquitous and employed in critical contexts,
like the banking sector and realtime systems. The only work in the literature
on that topic that we are aware of is the work by Malecha et al. [10]. However,
it lacks the commonly used range query operation, which returns a pointer to
the lower bound of a given value in the tree and allows to iterate over all suc-
cessive values. This operation is particulary challenging to verify as it requires
to mix two usually strictly separated abstractions of the tree in order to reason
about its correctness. We further generalize the implementation of node internal
navigation. This allows to abstract away from its implementation and simpli-
fies proofs. It further allows us to supply an implementation of efficient binary
search, a practical and widespread runtime improvement as nodes usually have a
size of several kilobytes. We provide a computer assisted proof in the interactive
theorem prover Isabelle/HOL [13] for the functional correctness of an imperative
implementation of the B+-tree data-structure and present how we dealt with the
resulting technical verification challenges.
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2 Contributions

In this work, we specify the B+-tree data structure in the functional modeling
language higher-order logic (HOL). The tree is proven to refine a finite set of
linearly ordered elements. All proofs are machine-checked in the Isabelle/HOL
framework. Within the framework, the functional specifications already yield
automatic extraction of executable, but inefficient code.

The contributions of this work are as follows

– The first verification of genuine range queries, which require additional insight
in refinement over iterating over the whole tree.

– The first efficient intra-node navigation based on binary rather than linear
search.

The remainder of the paper is structured as follows. In Sect. 2.1, we present
a brief overview on related work. The definition of B+-tree and our approach is
introduced in Sect. 3. In Sects. 4 and 5, we refine a functionally correct, abstract
specification of point, insertion and range queries as well as iterators down to
efficient imperative code. Finally, we present learned lessons and evaluate the
results in Sect. 6.

The complete source code of the implementation referenced in this research
is accessible via the Archive of Formal Proofs [11].

2.1 Related Work

There exist two pen and paper verifications of B+-tree implementations via a
rigorous formal approach. Fielding [5] uses gradual refinement of abstract imple-
mentations. Sexton and Thielecke [16] show how to use separation logic in the
verification. These are more of a conceptual guideline on approaching a fully
machine checked proof.

There are two machine checked proofs of imperative implementations. In the
work of Ernst et al. [4], an imperative implementation is directly verified by
combining interactive theorem proving in KIV [14] with shape analysis using
TVLA [15]. The implementation lacks shared pointers between leaves. This sim-
plifies the proofs about tree invariants. However, the tree therefore also lacks
iterators over the leaves, and the authors present no straightforward solution to
implement them. Moreover, by directly verifying an imperative version only, it
is likely that small changes in the implementation will break larger parts of the
proof.

Another direct proof on an imperative implementation was conducted by
Malecha et al. [10], with the Ynot extension to the interactive theorem prover
Coq. Both works use recursively defined shape predicates that describe formally
how the nodes and pointers represent an abstract tree of finite height. The
result is both a fairly abstract specification of a B+-tree, that leaves some design
decisions to the imperative implementation, and an imperative implementation
that supports iterators.
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Due to the success of this approach, we follow their example and define these
predicates functionally. One example of the benefits of this approach is that
we were able to derive finiteness and acyclicity only from the relation between
imperative and functional specification. In contrast to previous work, the func-
tional predicates describing the tree shape are kept completely separated from
the imperative implementation, yielding more freedom for design choices within
the imperative refinement. Both existing works rely on linear search for intra-
node navigation, which we improve upon by providing binary search. We extend
the extraction of an iterator by implementing an additional range query opera-
tion.

3 B+-trees and Approach

The B+-tree is a ubiquitous data structure to efficiently retrieve and manipulate
indexed data stored on storage devices with slow memory access [3]. They are
k-ary balanced search trees, where k is a free parameter. We specify them as
implementing a set interface on elements of type ′a, where the elements in the
leaves comprise the content of an abstract set. The inner nodes contain sepa-
rators. These have the same type ′a as the set content, but are only used to
guide the recursive navigation through the tree by bounding the elements in
the neighboring subtrees. Further the leaves usually contain pointers to the next
leaf, allowing for efficient iterators and range queries. A more formal and detailed
outline of B+-trees can be found in Sect. 3.2.

The goal of this work is to define this data structure and implement and
verify efficient heap-based imperative operations on them. For this purpose, we
introduce a functional, algebraic definition and specify all invariants on this level
that can naturally be expressed in the algebraic domain. It is important to note
that this representation is not complete, as aliased pointers are left out on the
algebraic level. However, important structural invariants, such as sortedness and
balancedness can be verified.

In a second step an imperative definition is introduced, that takes care of
the refinement of lists to arrays in the heap and introduces (potentially shared)
pointers instead of algebraic structures. Using a refinement relationship, we can
prove that an imperative refinement of the functional specification preserves the
structural invariants of the imperative tree on the heap. The only remaining proof
obligation on this level is to ensure the correct linking between leaf pointers.

The above outlined steps are performed via manual refinement in Imperative
HOL [2]. We build on the library of verified imperative utilities provided by the
Separation Logic Framework [9] and the verification of B-trees [11], namely list
interfaces and partially filled arrays. The implementation is defined with respect
to an abstract imperative operation for node-internal navigation. This means
that within each node, we do not specify how the correct subtree for recursive
queries is found, but only constrain some characteristics of the result. We provide
one such operation that employs linear search, and one that conducts binary
search. All imperative programs are shown to refine the functional specifications
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using the separation logic utilities from the Isabelle Refinement Framework by
Lammich [8].

3.1 Notation

Isabelle/HOL conforms to everyday mathematical notation for the most part.
For the benefit of the reader who is unfamiliar with Isabelle/HOL, we establish
notation and in particular some essential datatypes together with their primitive
operations that are specific to Isabelle/HOL. We write t :: ′a to specify that the
term t has the type ′a and ′a ⇒ ′b for the type of a total function from ′a to
′b. The type for natural numbers is nat. Sets with elements of type ′a have the
type ′a set. Analogously, we use ′a list to describe lists, which are constructed
as the empty list [] or with the infix constructor #, and are appended with the
infix operator @. The function concat concatenates a list of lists. The function
set converts a list into a set. For optional values, Isabelle/HOL offers the type
option where a term opt :: ’a option is either None or Some a with a :: ′a.

3.2 Definitions

We first define an algebraic version of B+-trees as follows:

datatype ′a bplustree =
Leaf (′a list) |
Node ((′a bplustree × ′a ) list) (′a bplustree)

Fig. 1. Nodes contain several elements, the internal list/array structure is not depicted.
The dotted lines represent links to following leaf nodes that are not present in the
algebraic formulation.

Every node Node [(t1,a1), ..., (tn,an)] tn+1 contains an interleaved list of keys
or separators ai and subtrees ti. We write as ti the subtree to the left of ai and
ti+1 the subtree to the right of ai. We refer to tn+1 as the last subtree. The leaves
Leaf [v1, ..., vn] contain a list of values vi. The concatenation of lists of values
of a tree t yields all elements contained in the tree. We refer to this list as leaves
t. A B+-tree with the above structure must fulfill the invariants balancedness,
order and alignment.

Balancedness requires that each path from the root to a leaf has the same
length. In other words, the height of all trees in one level of the tree must be
equal, where the height is the maximum path length to a leaf.
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The order property ensures a minimum and maximum number of subtrees
for each node. A B+-tree is of order k, if each internal node has at least k + 1
subtrees and at most 2k +1. The root is required to have a minimum of 2 and a
maximum of 2k + 1 subtrees. We require that k be strictly positive, as for k = 0
the requirements on the tree root are contradictory.

Alignment means that keys are sorted with respect to separators: For a sep-
arator k and all keys l in the subtree to the left, l < k, and all keys r in the
subtree to the right, k ≤ r. (where ≤ and < can be exchanged).

For the values within the leaves, sortedness is required explicitly. We require
the even stronger fact that leaves t is sorted. This is a useful statement when
arguing about the correctness of set operations.

3.3 Implementation Definitions

Proofs about the correctness of operations with respect to implementing an
abtract set interface and preserving these invariants are only done on the abstract
level, where they are much simpler and many implementation details can be
disregarded. It will serve as a reference point for the efficient imperative imple-
mentation.

The more efficient executable implementation of B+-trees is defined on the
imperative level. Each imperative node contains non-null pointers (ref ) rather
than the algebraic subtree. We refine lists with partially filled arrays of capacity
2k. A partially filled array (a, n) with capacity c is an array a of fixed size c. The
array consists of the elements at indices 0 to n−1. Element accesses beyond index
n are undefined. Unlike dynamic arrays, partially filled arrays are not expected
to grow or shrink. Each imperative node contains the equivalent information to
an abstract node. The only addition is that leaves now also contain a pointer to
another leaf, which will form a linked list over all leaves in the tree. This was
not implemented in the algebraic version as it requires pointer aliasing.

datatype ′a btnode =
Btleaf (′a pfarray) (′a btnode ref option) |
Btnode ((′a btnode ref option × ′a) pfarray) (′a btnode ref)

In order to use the algebraic data structure as a reference point, we introduce
a refinement relation. The correctness of operations on the imperative node can
then be shown by relating imperative input and output and to the abstract
input and output of a correct abstract operation. In particular we want to show
that if we assume R t ti, where R is the refinement relation and t and ti are
the abstract and the imperative version of the same conceptual tree, R o(t)
oi(ti) should hold, where oi is the imperative refinement of operation o. The
relation is expressed as a separation logic formula that links an abstract tree to
its imperative equivalent.

The notation for separation logic in Isabelle is quickly summarized in the list
below.

– emp holds for the empty heap
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– true and false hold for every and no heap respectively
– ↑ (P ) holds if the heap is empty and predicate P holds
– a �→r x holds if the heap at location a is reserved and contains value x
– ∃A x. P x holds if there exists some x such that Px holds on the heap.
– P1 ∗P2 denotes the separating conjunction and holds if each assertion P1 and

P2 hold on non-overlapping parts of the heap
– is pfa c xs xsi holds if xsi is a partially filled array with capacity c and xs[i]

= xsi[i] holds for all i ≤ |xs| = |xsi|.
– list assn R xs ys holds if R xs[i] ys[i] holds for all i ≤ |xs| = |ys|.
Separation Logic formulae express assertions that can be made about the state of
the heap. They are therefore just called assertion in the following. The assertion
P describes all heaps for which the formula P evaluates to true. The entailment
P =⇒A Q holds iff Q holds in every heap in which P holds. For two assertions P
and Q, P = Q holds iff P =⇒A Q∧Q =⇒A P . For proving imperative code cor-
rect, assertions are used in the context of Hoare triples. We write 〈P 〉 c 〈λr. Q r〉
if, for any heap where P holds, after executing imperative code c that returns
value r, formula Q r holds on the resulting heap. 〈P 〉 c 〈λr. Q r〉t is a shorthand
for 〈P 〉 c 〈λr. Q r ∗ true〉 More details can be found in the work of Lammich and
Meis [9].

The assertion bplustree assn expresses the refinement relation. It relates an
algebraic tree (bplustree) and a non-null pointer to an imperative tree a (btnode
ref ), pinning its first leaf r and the first leaf of the next sibling z. The formal
relation is shown in Fig. 2.

fun bplustree assn :: nat ⇒ ′a bplustree ⇒ ′a btnode ref
⇒ ′a btnode ref option ⇒ ′a btnode ref option where

bplustree assn k (Node ts t) a r z = ∃A tsi ti tsi′ rs.
a �→r Btnode tsi ti
−− Obtain list with array contents for folding list assn

∗ is pfa (2∗k) tsi′ tsi
∗ ↑(length tsi′ = length rs)

−− Recursively apply the assertion to subtree pointers
∗ list assn ((λ t (ti,r′,z′). bplustree assn k t (the ti) r′ z′) ×a id assn) ts (

−− Pointers to left/right sibling are obtained by offset zipping
zip (zip (map fst tsi′) (zip (butlast (r#rs)) rs))) (map snd tsi′)))

∗ bplustree assn k t ti (last (r#rs)) z)
| bplustree assn k (Leaf xs) a r z = ∃A xsi fwd.

a �→r Btleaf xsi fwd ∗ is pfa (2∗k) xs xsi ∗ ↑(fwd = z) ∗ ↑(r = Some a)

Fig. 2. The B+-tree is specified by the split factor k, an abstract tree, a pointer to its
root a, a pointer to its first leaf r and a pointer to the first leaf of the next sibling
z. The pointers to first leaf and next first leaf are used to establish the linked leaves
invariant.

The main structural relationship between abstract and imperative tree is
established by linking abstract list and array via the is pfa predicate. We then
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fold over the two lists using list assn, which establishes a refinement relation for
every pair of list elements.

In addition to the refinement of data structures, the first leaf r and next
leaf z are used to express the structural invariant that the leaves are correctly
linked. There is no abstract equivalent for the forwarding pointers in the leaves,
therefore we only introduce and reason about their state on the imperative layer.
The invariant is ensured by passing the first leaf of the right neighbor to each
subtree. The pointer is passed recursively to the leaf node, where it is compared
to the actual pointer of the leaf. All of this happens in the convoluted list assn,
by folding over the list of the leaf pointer list rs zipped with itself, offset by one.
The linking property is required for the iterator on the tree in Sect. 5.1.

3.4 Node Internal Navigation

In order to define meaningful operations that navigate the node structure of the
B+-tree, we need to find a method that handles search within a node. Ernst
et al. [4] and Malecha et al. [10] both use a linear search through the key and
value lists. However, B+-trees are supposed to have memory page sized nodes
[3], which makes a linear search impractical.

We introduce a context (locale in Isabelle) in which we assume that we have
access to a function that correctly navigates through the node internal structure.
Correct in this context meaning that the selected subtree for recursive calls will
lead to the element we are looking for. We call this function split, and define it
only by its behavior. The specification for split is given in Fig. 3 (where ′b = ′a
bplustree × ′a). A corresponding function split list is defined on the separator-
only lists in the leaf nodes.

locale split tree =
fixes split :: ′b list ⇒ ′a ⇒ ′b list × ′b list
split xs p = (ls,rs) =⇒ xs = ls @ rs
split xs p = (ls@[(sub,sep)],rs); sorted less (separators xs) =⇒ sep < p
split xs p = (ls,(sub,sep)#rs); sorted less (separators xs) =⇒ p ≤ sep

Fig. 3. Given a list of separator-subtree pairs and a search value x, the function should
return the pair (s, t) such that, according to the structural invariant of the B+-tree, t
must contain x or will hold x after a correct insertion.

In the following sections, all operations are defined and verified based on split
and split list. When approaching imperative code extraction, we provide a binary
search based imperative function, that refines split. Thus we obtain imperative
code that makes use of an efficient binary search, without adding complexity
to the proofs. The definition and implementation closely follows the approach
described in detail in the verification of B-trees [11].
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4 Set Operations

B+-trees refine sets on linearly ordered elements. For a tree t, the refined abstract
set is computed as set (leaves t). The set interface requires that there should be
query, insertion and deletion operations ot such that set (leaves ( ot t)) = o
(set (leaves t)). Moreover, the invariants described in Sect. 3 can be assumed to
hold for t and are required for ot. We provide these operations and show their
correctness on the functional layer first, then refine the operations further to the
imperative layer. For point queries and insertion, we follow the implementation
suggested by Bayer and McCreight [1].

4.1 Functional Point Query

For an inner node t and a searched value x, find the correct subtree st such that
if a leaf of t contains x, a leaf of st must contain x. Then recurse on st. Inside
the leaf node, we search directly in the list of values. We make use of the split
and isin list operation, as described in Sect. 3.4.

fun isin:: ′a bplustree ⇒ ′a ⇒ bool where
isin (Leaf ks) x = (isin list x ks) |
isin (Node ts t) x = (case split ts x of

( ,(sub,sep)#rs) ⇒ isin sub x
| ( ,[]) ⇒ isin t x

)

Since this function does not modify the tree involved at all, we only need to
show that it returns the correct value.

theorem assumes sorted less (leaves t) and aligned l t u
shows isin t x = (x ∈ set (leaves t))

In general, these proofs on the abstract level are based on yet another refine-
ment relation suggested by Nipkow [12]. We say that the B+-tree t refines a
sorted list of its leaf values, leaves t, the concatenated lists of values in leafs
visited in in-order traversal of the tree. We argue that recursing into a specific
subtree is equivalent to splitting this list at the correct position and searching in
the correct sublist. The same approach was applicable for proving the correctnes
of functional operations on B-trees [11].

The proofs on the functional level can therefore be made concise. We go on
and define an imperative version of the operation that refines each step of the
abstract operation to equivalent operations on the imperative tree.

4.2 Imperative Point Query

The imperative version of the point query is a partial function. Termination
cannot be guaranteed anymore, at least without further assumptions. This is
inevitable since the function would not terminate given cyclic trees. However,
we will show that if the input refines an abstract tree, the function terminates
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and is correct. The imperative isini refines each step of the abstract operation
with an imperative equivalent. The result can be seen in Fig. 4.

partial function (heap) isini :: ′a btnode ref ⇒ ′a ⇒ bool Heap where
isini p x = do {
node ← !p;
(case node of

Btleaf xs ⇒ isin listi x xs |
Btnode ts t ⇒ do {
i ← spliti ts x;
tsl ← length ts;
if i < tsl then do {
s ← get ts i;
let (sub,sep) = s in
isini (the sub) x

} else
isini t x

}
)}

Fig. 4. The imperative refinement of the isin function. As a partial function, its ter-
mination is not guaranteed for all inputs. Additionally it implicitly makes use of the
heap monad.

Again, we assume that split i performs the correct node internal search and
refines an abstract split. Note how split i does not actually split the internal array,
but rather returns the index of the pair that would have been returned by the
abstract split function. The pattern matching against an empty list is replaced
by comparing the index to the length of the list l. In case the last subtree should
be recursed into, the whole list l is returned.

In order to show that the function returns the correct result, we show that
it performs the same operation on the imperative tree as on the algebraic tree.
This is expressed in Hoare triple notation and separation logic.

lemma assumes k > 0 and root order k t and sorted less (inorder t)
and sorted less (leaves t) shows
〈bplustree assn k t ti r z〉
isini ti x

〈λy. bplustree assn k t ti r z ∗ ↑(isin t x = y)〉t
The proof follows inductively on the structure of the abstract tree. Assuming

structural soundness of the abstract tree refined by the pointer passed in, the
returned value is equivalent to the return value of the abstract function. We must
explicitly show that the tree on the heap still refines the same abstract tree after
the operation, which was implicit on the abstract layer. It follows directly, since
no operation in the imperative function modifies part of the tree.
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4.3 Insertion and Deletion

The insertion operation and its proof of correctness largely line up with the one
for point queries. But since insertion modifies the tree, we need to additionally
show on the abstract level that the modified tree maintains the invariants of
B+-trees.

On the imperative layer, we show that the heap state after the operation
refines the tree after the abstract insertion operation. It follows that the impera-
tive operation also maintains the abstract invariants. Moreover, we need to show
that the linked list among the leaf pointers is correctly maintained throughout
the operation. This can only be shown on the imperative level as there is no
abstract equivalent to the shared pointers.

lemma assumes k > 0 and sorted less (inorder t)
and sorted less (leaves t) and root order k t shows
〈bplustree assn k t ti r z〉
inserti k x ti
〈λu. bplustree assn k (insert k x t) u r z〉t
We provide a verified functional definition of deletion and a definition of an

imperative refinement. Showing the correctness of the imperative version would
largely follow the same pattern as the proof of the correctness of insertion. The
focus of this work is not on basic tree operations, but on obtaining a (range)
iterator view on the tree.

5 Range Operations

This section introduces both how the general iterator on the tree leaves is
obtained and the technical challenges involved (Sect. 5.1) as well as how to obtain
an iterator on a specific subset of elements efficiently (Sect. 5.2).

On the functional level, the forwarding leaf pointers in each leaf are not
present, as this would require aliasing. Therefore, the abstract equivalent of an
iterator is a concatenation of all leaf contents. When refining the operations, we
will make use of the leaf pointers to obtain an efficient implementation.

5.1 Iterators

To obtain an iterator, recurse down the tree to obtain the first leaf. From there
we follow leaf pointers until we reach the final leaf marked by a null forwarding
pointer. From an assertion perspective the situation is more complex. Recall the
refinement relation between abstract and implemented B+-tree. It is important
to find an explicit formulation of the linked list view on the leaf pointers. Mean-
while, we want to ensure that the complete tree does not change by iterating
through the leaves. We cannot express an assertion about the linked list along
the leaves and the assertion on the whole tree in two fully independent predi-
cates as the memory described overlaps. Separation logic forces us to not make
statements about the contents of any memory location twice.
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We follow the approach of Malecha et al. [10] and try to find an equivalent
formulation that separates the whole tree in a view on its inner nodes and the
linked leaf node list. The central idea to separate the tree is to express that the
linked leaf nodes refine leaf nodes t and that the inner nodes refine trunk t, as
depicted in Fig. 5. These are two independent parts of the heap and therefore
the statements can be separated using the separating conjunction.

Fig. 5. In order to obtain separate assertions about the concatenated leaf list
(leaf nodes) and the internal nodes (trunk) of the tree, the structure is abstractly
split along the pointers marked in red, the fringe. In order to be able to combine the
leaf nodes and the trunk together, the fringe has to be extracted and shared explicitly.

Formally, we define an assertion trunk assn and leaf nodes assn. The former
is the same as bplustree assn (see Fig. 2), except that we remove all assertions
about the content of the tree in the Leaf case. The latter is defined similar to a
linked list refining a list of abstract tree leaf nodes, shown in Fig. 6. The list is
refined by a pointer to the head of the list, which refines the head of the abstract
list. Moreover, the imperative leaf contains a pointer to the next element in the
list.

With these definitions, we can show that the heap describing the imperative
tree may be split up into its leaves and the trunk.

lemma bplustree assn k t ti r z
=⇒A leaf nodes assn k (leaf nodes t) r z ∗ trunk assn k t ti r z

However, we cannot show that a structurally consistent, unchanged B+-tree
is still described by the combination of the two predicates. The reason is that
we cannot express that the linked leaf nodes are precisely the leaf nodes on the
lowest level of the trunk, depicted in red in Fig. 5.

The root of this problem is actually a feature of the refinement approach.
When stating that a part of the heap refines some abstract data structure, we
make no or little statements about concrete memory locations or pointers. This
is useful, as it reduces the size of the specification and the proof obligations. In
this case we need to find a way around it.

We need to specifically express that the leaf pointers, and not the abstract
structure they refine, are precisely the same in the two statements.

In a second attempt, the sharing is made explicit. We extract from the whole
tree the precise list of pointers to leaf nodes, the fringe in the correct order.
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fun leaf nodes assn where
leaf nodes assn k ((Leaf xs)#lns) (Some r) z =

(∃A xsi fwd.
r �→r Btleaf xsi fwd

∗ is pfa (2∗k) xs xsi
∗ leaf nodes assn k lns fwd z

) |
leaf nodes assn k [] r z = ↑(r = z) |
leaf nodes assn = false

Fig. 6. The refinement relation for leaf nodes comprises the refinement of the node
content as well as the recursive property of linking correctly to the next node.

Recursively, the fringe of a tree is the concatenation of all fringes in its subtrees.
The resulting assertion, taking the fringe into account, can be seen in Fig. 7. As
a convenient fact, this assertion is equivalent to Fig. 2.

lemma bplustree extract fringe:
bplustree assn k t ti r z = (∃Afringe. bplustree assn fringe k t ti r z fringe)

Using the fringe, we can precisely state an equivalent separated assertion.
We describe the trunk with the assertion trunk assn, which is the same as
bplustree assn fringe, except that the Leaf case is changed to only ↑ (r =
Some a ∧ fringe = [a]). In addition, we extend the definition of leaf nodes assn
to take the fringe pointers into account. We now require that the fringe of the
trunk is precisely the list of pointers in the linked list refining leaf nodes.

lemma bplustree view split:
bplustree assn fringe k t ti r z fringe =
leaf nodes assn k (leaf nodes t) r z fringe ∗ trunk assn k t ti r z fringe

To obtain an iterator on the leaf nodes of the tree, we obtain the first leaf of
the tree. By the formulation of the tree assertion, we can express the obtained
result using the assertion about the complete tree.

lemma assumes k > 0 and root order k t shows
〈bplustree assn k t ti r z〉
first leaf ti
〈λu. bplustree assn k t ti r z ∗ ↑(u = r)〉t

On the result, we can apply lemmas bplustree extract fringe and
bplustree view split . The transformed expression states that the result of first leaf
ti is a pointer to leaf nodes t. The tree root t remains to refine trunk t.

From here, we could define an iterator over the leaf nodes along the fringe,
refining the abstract list leaf nodes. Our final goal is to iterate over the values
within each array inside the nodes. We introduce a flattening iterator for this
purpose. It takes an outer iterator over a data structure a that returns elements
of type b, and inner iterator over the data structure b that returns elements of
type c. It returns an iterator over data structure a that returns the concatenated
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fun bplustree assn fringe where
bplustree assn fringe k (Leaf xs) a r z fringe =
∃A xsi fwd.

a �→r Btleaf xsi fwd
∗ is pfa (2∗k) xs xsi
∗ ↑(fwd = z)
∗ ↑(r = Some a)
−− In case of a singleton leaf, the leaf itself is the fringe of the tree
∗ ↑(fringe = [a])

|
bplustree assn fringe k (Node ts t) a r z fringe =
∃A tsi ti tsi′ tsi′′ rs fr sep.

a �→r Btnode tsi ti
∗ is pfa (2∗k) tsi′ tsi
∗ ↑(length tsi′ = length rs)
−− The fringe is decomposed into the fringe of each subtree
∗ ↑(concat fr sep = fringe)
∗ ↑(length fr sep = length rs + 1)
−− Folding over all subtrees as before, now passing each subfringe to subtrees
∗ list assn (

(λ t (ti,r′,z′,fr). bplustree assn fringe k t (the ti) r′ z′ fr)
×a id assn

) ts (zip
(zip (map fst tsi′) (zip (butlast (r#rs)) (zip rs (butlast fr sep))))
(map snd tsi′)

)
∗ bplustree assn fringe k t ti (last (r#rs)) (last (rs@[z])) (last fr sep)

Fig. 7. An extended version of the B+-tree assertion from Fig. 2 on imperative tree
root a, first leaf r, first leaf of the next sibling z and leaf pointer list fringe. In order
to be able to correctly relate leaf view and internal nodes, the shared pointers fringe
are made explicit, without accessing their memory location.

list of elements of type c. The exact implementation of this iterator is left out
as a technical detail.

The list iterator interface used is as defined by Lammich [7] and specifies the
following function.

– An init function that returns the pointer to the head of the list.
– A has next function that checks whether the current pointer is the null

pointer.
– A next function that returns the the array in the current node and its for-

warding pointer.
– Proofs that we can transform the leaves assn statement into a leaf iterator

statement and vice versa.
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We implement such an iterator for the linked list of leaf nodes leaf nodes iter
and combine it with the iterator over partially filled arrays using the flattening
iterator to obtain the leaves iter.

Finally, we want be able to express that the whole tree does not change
throughout the iteration. For this, we need to keep track of both the leaf nodes
assertion and the trunk assertion on t. The assertion describing the iterator
therefore contains both. Most parameters to the iterator assertion are static,
and express the context of the iterator, i.e. the full extent of the leaf nodes. The
iterator state it itself is a pair of an iterator state for a partial array, the current
position in that array and its size, and a pointer to the next leaf and the final
leaf.

definition bplustree iter k t ti r vs it = ∃A fringe.
leaves iter fringe k (leaf nodes t) (leaves t) r vs it ∗
trunk assn k t ti r None fringe

Note how all notion of the explicitly shared fringe has disappeared from the
client perspective as its existence is hidden within the definition of the tree
iterator. We initialize the iterator using the first leaf operation and obtain the
singleton tree elements with the flattening iterator.

5.2 Range Queries

A common use case of B+-trees is to obtain all values within a range [6]. We
focus on the range bounded from below, lrange t x = {y ∈ set(t)|y ≥ x}. From
an implementation perspective, the operation is similar to the point query oper-
ation. On the leaf level, it returns a pointer to the reached leaf. This pointer is
then interpreted as iterator over the remaining list of linked leaves. The range
bounded from below comprises all values returned by the iterator. Due to the
lack of a linked leaf list in the abstract tree, the abstract definition explicitly
concatenates all values in the subtrees to the right of the reached node.

fun lrange:: ′a bplustree ⇒ ′a ⇒ ′a list where
lrange (Leaf ks) x = (lrange list x ks) |
lrange (Node ts t) x = (

case split ts x of ( ,(sub,sep)#rs) ⇒ (
lrange sub x @ (concat (map leaves rs)) @ leaves t

)
| ( ,[]) ⇒ lrange t x

)

As before, we assume that there exists a function lrange list that obtains the
lrange from a list of sorted values.

The verification of the imperative version turns out to be not as straightfor-
ward as expected, exactly due to this recursive step. The reason is that iterators
can only be expressed on a complete tree, where the last leaf is explicitly a null
pointer. The linked list of a subtree is however bounded by valid leaves, precisely
the first leaf of the next subtree.
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In order implement and verify a refinement of this function we therefore
decide to implement an intermediate abstract function leaf nodes lrange. This
function returns the leaf nodes comprising the lrange instead of their contents.

fun leaf nodes lrange:: ′a bplustree ⇒ ′a ⇒ ′a bplustree list where
leaf nodes lrange (Leaf ks) x = [Leaf ks] |
leaf nodes lrange (Node ts t) x = case split ts x of

( ,(sub,sep)#rs) ⇒
leaf nodes lrange sub x @ concat (map leaf nodes rs) @ leaf nodes t

| ( ,[]) ⇒ leaf nodes lrange t x

fun concat leaf nodes lrange where
concat leaf nodes lrange t x = case leaf nodes lrange t x of
(LNode ks)#list ⇒ lrange list x ks @ concat (map leaves list)

We then show that the concatenation of the contents of the leaf nodes con-
cat leaf nodes lrange t x = lrange t x. On the imperative layer leaf nodes lrangei
can be obtained using only the leaf nodes and trunk assertions as we never access
the contents of the leaf nodes. We therefore avoid having to unfold any asser-
tions about the structure of the leaf nodes. The function returns a pointer that
splits the list of leaf nodes of the whole tree, terminated by the null pointer that
marks the end of the complete tree. We transform the result into an iterator
over the leaf nodes, as this pointer split notation aligns with the definition of
leaf nodes iter. Finally we can transform this and the result of lrange list i to an
iterator on the singleton leaf elements.

lemma assumes k > 0 and root order k t
and sorted less (leaves t) and Laligned t u shows

〈bplustree assn k t ti r None〉
concat leaf nodes lrangei ti x
〈bplustree iter k t ti r (lrange t x)〉t

6 Conclusion

We were able to formally verify an imperative implementation of the ubiquitous
B+-tree data structure, featuring range queries and binary search.

6.1 Evaluation

The B+-tree implemented by Ernst et al. [4] features point queries and inser-
tion, however explicitly leaves out pointers within the leaves, which forbids the
implementation of iterators. Our work is closer in nature to the B+-tree imple-
mentation by Malecha et al. [10]. In addition to the functionality dealt with in
their work, we extend the implementation with a missing Range iterator and
supply a binary search within nodes. Our approach is modular, allowing for
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the substitution of parts of the implementation with even more specialized and
sophisticated implementations.

Regarding the leaf iterator, we noticed that in the work of Malecha et al. there
is no need to extract the fringe explicitly. The abstract leaves are defined such
that they store the precise heap location of the refining node. In our proposed
definition, the precise heap location is irrelevant in almost every situation and can
be omitted. Only when splitting the tree we obtain the memory location of nodes
explicitly, because these locations are needed to guarantee structual soundness
of the whole tree. It is hard to quantify or evaluate which approach is more
practical. From a theoretical view point we suggest that a less strict approach
restricts the implementation space less and leaves more design decisions to the
specification implementing developer.

With respect to the effort in lines of code and proof as depicted in Fig. 8, our
approach is similar in effort to the approach by Malecha et al.. The numbers do
not include the newly defined pure ML proof tactics. It includes the statistics
for the additional binary search and range iterator, that make up around one
thousand lines of proof each.

The comparison with Ernst et al. is difficult. Their research completely avoids
the usage of linked leaf pointers, therefore also omitting iterators completely. The
iterator verification makes up a signifant amount of the proof with at least one
thousand lines of proof on its own. The leaf pointers also affect the verification
of point and insertion queries due to the additional invariant on the impera-
tive level. We conclude that the Isabelle/HOL framework provides a feature set
such that verification of B+-trees is both feasible and comparable in effort to
using Ynot or KIV/TVLA. The strict separation of a functional and impera-
tive implementation yields the challenge of making memory locations explicit

Malecha et al.[10]+ [4]d Our approach+

Functional code 360 - 413
Imperative code 510 1862 1093
Proofs 5190 350 + 510 + 2940� 8663
Timeframe (months) ? > 6 6 + 6��

Fig. 8. Comparison of (unoptimized) Lines of Code and Proof and time investment
in related mechanized B+-tree verifications. All approaches are comparable in effort,
taking into account implementation specifics. The marker d denotes that the implemen-
tation verifies deletion operations, whereas + denotes the implementation of iterators.
∗ The proof integrates TVLA and KIV, and hence comprises explicitly added rules
for TVLA (the first number), user-invented theorems in KIV (the second number)
and ”interactions” with KIV (the second number). Interactions are i.e. choices of an
induction variable, quantifier instantiation or application of correct lemmas. We hence
interpret them as each one apply-Style command and hence one line of proof.
∗∗ 6 months include the preceding work on the verification of B-trees. As they share
much of the functionality with B+-trees but required their own specifics, the time spent
on them cannot be accounted for 1:1.
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where needed. On the other hand, it permits great freedom regarding the actual
refinement on the imperative level.

6.2 Outlook

This research may serve as a template for the implementation of B+-trees in
Isabelle-LLVM. [7] At the beginning of this work, the code generator did not yet
support recursive data structures, but this functionality was added recently.

As of now, the imperative implementation provided by this research was
directly exported into executable imperative code in Haskell, SML and OCaml.
It may thus find applications in the development of libraries where a verified
implementation of a set interface is needed.
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Abstract. Nominal set plays a central role in a group-theoretic exten-
sion of finite automata to those over an infinite set of data values.
Moerman et al. proposed an active learning algorithm for nominal word
automata with the equality symmetry. In this paper, we introduce deter-
ministic bottom-up nominal tree automata (DBNTA), which operate on
trees whose nodes are labelled with elements of an orbit finite nomi-
nal set. We then prove a Myhill-Nerode theorem for the class of lan-
guages recognized by DBNTA and propose an active learning algorithm
for DBNTA. The algorithm can deal with any data symmetry that admits
least support, not restricted to the equality symmetry and/or the total
order symmetry. To prove the termination of the algorithm, we define a
partial order on nominal sets and show that there is no infinite chain of
orbit finite nominal sets with respect to this partial order between any
two orbit finite sets.

Keywords: Nominal tree automata · Active learning · Myhill-Nerode
theorem

1 Introduction

Computational models such as finite automaton, pushdown automaton and
context-free grammar provide a theoretical basis for automated technologies
including model checking, testing and synthesis. Although the technologies have
brought fruitful success, these models cannot directly deal with data values.
However, if we add to a classical model the ability of processing data values, the
resulting model easily becomes Turing machine-equivalent and the decidability
needed for automated technologies is lost. Register automaton (RA) is an exten-
sion of finite automaton (FA) by adding registers for manipulating data values in
a restricted way [12]. RA can compare an input data value with those stored in
its registers to determine its behavior. RA inherits some of the good properties
from FA including closure properties on language operations and the decidabil-
ity of basic problems. For example, the membership and emptiness problems are
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decidable for RA and their complexities are extensively studied [12,15,20,23].
Similar extensions of other classical models have been proposed such as reg-
ister tree automaton [10,13], register context-free grammar [6,24] and register
pushdown automaton [18,25]. Logics on data words have also been proposed
including LTL with the freeze quantifier [9] and two-variable first-order logic [2].

A common property of these models is that the behavior of an automaton (or
a grammar) does not depend on data values themselves, but on the relationship
(e.g., equality, total order) among data values. Assume that the comparison
operator of RA is only equality check. Also assume that an RA A has one register
to store the first data value of an input word and test whether the remaining
data values are different from the data value in the register except the last one
in the input, which should be the same as the first data value. Then, A accepts
data words 2 · 5 · 6 · 2, 8 · 1 · 3 · 8, and so on. Note that the data word 8 · 1 · 3 · 8
can be obtained from 2 · 5 · 6 · 2 by the permutation that maps 2, 5 and 6 to 8, 1
and 3, respectively.

The above observation gives us a group-theoretic extension of FA [3]. Assume
that we are given a countable set D of data values and a permutation group G
on D. To deal with data values in a restricted way, we use orbit finite sets instead
of finite sets to represent both of an alphabet and a set of states. A set X is
called a G-set if X is equipped with actions (or operations) having the group
structure G. Let X be a G-set. The orbit of x ∈ X is the set {x · π | π ∈ G}.
X is orbit finite if X is divided into a finite number of orbits. A set C ⊆ D is
a support of x ∈ X if any action π that acts as identity on C does not move x,
i.e., maps x to x. X is nominal if every x ∈ X has a finite support. Intuitively,
X is nominal if for every x ∈ X, all the information on x can be represented
by a finite subset of data values, which corresponds to the contents of registers.
A nominal automaton over an orbit finite alphabet consists of an orbit finite
nominal set of states and an (equivariant) transition relation on states.

Automated learning methods are incorporated into software verification and
testing (see [7,14] for an overview). Two well-known applications are black-box
checking [21] and compositional verification [8]. Among others, Angluin’s L∗

algorithm [1] is frequently used in these methods. The algorithm learns the min-
imum FA for an unknown regular language U by constructing an observation
table. Rows and columns of the table are sample input strings and each entry
of the table is 1 (accept) or 0 (reject). The algorithm expands the table based
on answers from a teacher (oracle) of U for membership and equivalence queries
until the teacher answers yes to an equivalence query. The correctness of L∗ is
guaranteed by the Myhill-Nerode theorem for regular languages. The L∗ algo-
rithm has been extended for register automata (e.g. [4,5]) and a learning tool
RALib is implemented [5]. In RA, a state transition depends on the compar-
ison among an input data value and those stored in the registers specified as
the guard condition of an applied transition rule. Due to this feature of RA, an
entry of an observation table is not just 0/1 but more complex information that
represents the guard condition of a transition in RA (a symbolic decision tree
in [5]), which makes the algorithm rather complicated. Moerman et al. proposed
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an L∗-style algorithm for nominal word automata [17]. Their algorithm recovers
the simplicity of the original L∗ algorithm by the abstract feature of nominal
automaton, which is independent of a concrete representation of an automaton.
However, the algorithm assumes the equality symmetry as the structure of the
set of data values. Moreover, tree models that can manipulate data values are
needed for the basis of XML document processing because an XML document
usually contains data values associated with structural information represented
by a tree [15,16]. For such applications, tree automata theory based on nominal
sets should be developed.

In this paper, we define deterministic bottom-up nominal tree automata
(DBNTA), which operate on trees whose nodes are labelled with elements of
an orbit finite nominal set. We then prove a Myhill-Nerode theorem for the class
of languages recognized by DBNTA and propose an active learning algorithm for
DBNTA based on the theorem. The algorithm can deal with any data symmetry
that admits least support, not restricted to the equality symmetry and/or the
total order symmetry. To prove the termination of the algorithm, we define a
partial order on nominal sets and show that there is no infinite chain of orbit
finite nominal sets with respect to this partial order between any two orbit finite
sets.

2 Preliminaries

2.1 Nominal Set

Let G be a group and X be a set. A group action of G on X is a function
· : X × G → X satisfying

x · e = x and x · (πσ) = (x · π) · σ

for all x ∈ X and π, σ ∈ G, where e ∈ G is the neutral element of G and πσ is
the product of π and σ on G. We call a set with a group action of G a G-set.

We define the orbit of x ∈ X as Orbit(x) = {x · π | π ∈ G} ⊆ X. A G-set
is uniquely partitioned into different orbits. A G-set consisting of one orbit is
called a single orbit set, and a G-set consisting of a finite number of orbits is
called an orbit finite set. We define an alphabet as an orbit finite set.

Let X be a G-set. Y ⊆ X is called equivariant if y ∈ Y ⇒ y ·π ∈ Y holds for
all π ∈ G. Equivalently, this means that Y is a union of some orbits of X. In the
same way, for G-sets X and Y , a binary relation R ⊆ X ×Y is called equivariant
if (x, y) ∈ R ⇒ (x ·π, y ·π) ∈ R holds for all π ∈ G. An n-ary equivariant relation
is defined in the same way for n ≥ 3. If a binary relation f ⊆ X ×Y is a function,
f is equivariant if and only if f(x · π) = f(x) · π holds for all x ∈ X and π ∈ G.

Let D be a countable set of data values and G be a permutation group of
D, i.e., a subgroup of the symmetric group Sym(D) of D. We call (D, G) a data
symmetry. We show some examples of data symmetries. The equality symmetry
is (N,Sym(N)), where N is the set of natural numbers and Sym(N) is the group
of all bijections on N. The total order symmetry is (Q, G<) where Q is the set
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of rational numbers and G< is the group of monotone bijections on Q. The
integer symmetry is (Z, GZ) where Z is the set of integers and GZ is the group
of translations i �→ i + c for c ∈ Z.

Let x ∈ X and C ⊆ D. If for every π ∈ G,

(∀c ∈ C. π(c) = c) ⇒ x · π = x

holds, we say that C supports x or C is a support of x. That is, C supports x if
every π which is the identity on C does not move x. A G-set is nominal, if every
element of the set has a finite support. In any data symmetry (D, G), D itself is
a nominal G-set because any element d ∈ D has a support {d} ⊆ D. D

∗ is also
nominal because any element d1d2 · · · dn ∈ D

∗ has a support {d1, d2, . . . , dn}. On
the other hand, D

ω, the set of infinite sequences over D, is not nominal. In the
following, we just call an alphabet that is nominal a nominal alphabet.

Let C ⊆ D be a support of x ∈ X. If all supports of x are supersets of C, C
is the least support of x. For a data symmetry (D, G), if every element of every
nominal G-set has a least support, the data symmetry admits least support.

It is shown in [11] that the equality symmetry and the total order symmetry
admit least supports. (Also see [3, Corollaries 9.4 and 9.5].) In the integer sym-
metry, every GZ-set is nominal by the following reason. If a translation i �→ i+ c
on Z does not move an integer z ∈ Z, the translation must be the identity.
Hence, any element x of any GZ-set is supported by a singleton set of an arbi-
trary integer. For the same reason, the integer symmetry does not admit least
support.

For a function f : X → Y and a subset Z ⊆ X, we write the function whose
domain is restricted to Z as f |Z . For functions f : X → Y and g : Y ′ → Z, we
define fg : X ′ → Z as fg(x) = g(f(x)) where X ′ = {x ∈ X | f(x) ∈ Y ′}.

Let (D, G) be a data symmetry that admits least support, C ⊆ D be a
finite and fungible1 set and S ≤ Sym(C) be a permutation group on C. For
injective functions u and v from C to D that extend to permutations from G
(i.e., u = π|C and v = σ|C for some π, σ ∈ G), we define u ≡S v if and only if
uv−1 ∈ S (which equivalently means τu = v for some τ ∈ S). It is easy to see
that ≡S is an equivalent relation, and thus ≡S divides the set of all injections
from C to D that extend to permutations from G into equivalent classes. The
equivalent class of u defined by ≡S is written as [u]S . For these C and S, the
G-set �C,S� is defined as the set of all equivalent classes defined by ≡S , i.e.
�C,S� = {[π|C ]S | π ∈ G}, where the G-action is defined as [u]S · π = [uπ]S for
all π ∈ G. S is called a local symmetry. As we noted before, C corresponds to the
set of (canonical) data values in the registers. By definition, an element of �C,S�
is an equivalent class defined by ≡S of an injection from C to D that extends
to some permutation in G. As shown in the example in the introduction, an
automaton cannot distinguish between C and the set of data values C ′ obtained
1 A finite set C ⊆ D is fungible if for every c ∈ C there exists a π ∈ G such that

π(c) �= c and π(c′) = c′ for all c′ ∈ C \ {c}. Fungibility is a technical condition
guaranteeing that �C, S� is a single orbit nominal set, but it is not directly related
to the paper.
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from C by any injection from C to D which is consistent with G. Such an injection
u : C → D represents this change of data values in the registers from C to C ′,
which is indistinguishable from the automaton.

Next, we describe an intuitive meaning of S. For example, if S consists of
only the identity, it means that the order of registers is relevant. If C = {1, 2, 3}
and S = {id , a} where id is the identity and a swaps 1 and 2, then S means
that the order between the first and second values are irrelevant. Note that a
standard register automaton corresponds to S = {id}.

The following two propositions guarantee that a single orbit nominal set and
an equivariant function between them have finite representations.

Proposition 1 ([3, Proposition 9.15]).

1. �C,S� is a single orbit nominal set.
2. Every single orbit nominal set is isomorphic to some �C,S�.

�C,S� is called a support representation of a single orbit nominal set. The
following proposition can be shown by [3, Proposition 9.16].

Proposition 2. Let X = �C,S� and Y = �D,T � be single orbit nominal sets.
For every equivariant function f : X → Y , there is an injection u from D to C
satisfying uS ⊆ Tu and f([π|C ]S) = [u]T ·π, for all π ∈ G, where uS = {us | s ∈
S} and Tu = {tu | t ∈ T}. Conversely, for every injection u : D → C satisfying
uS ⊆ Tu, f([π|C ]S) = [u]T · π is an equivariant function from X to Y .

By Proposition 2, we can obtain a necessary and sufficient condition for
two single orbit nominal sets to be isomorphic in terms of a bijection between
supports.

Lemma 1. Single orbit nominal sets �C,S� and �D,T � are isomorphic if and
only if there exists a bijection u : D → C satisfying uS = Tu that extends to a
permutation from G.

Proof. Assume that there exists a bijection u : D → C satisfying uS = Tu that
extends to a permutation from G. Then, we have uS ⊆ Tu and u−1T ⊆ Su−1. By
Proposition 2, we have two functions f : �C,S� → �D,T � and g : �D,T � → �C,S�
such that

f([π|C ]S) = [u]T · π

g([σ|D]T ) = [u−1]S · σ.

We show that g is the inverse of f . From the assumption on u, there is some ρ ∈ G
satisfying ρ|D = u (and ρ−1|C = u−1). Thus, f([π|C ]S) = [u]T · π = [ρ|D]T · π =
[(ρπ)|D]T . Substituting this into the definition of g yields g([(ρπ)|D]T ) = [u−1]S ·
(ρπ) = [ρ−1|C ]S · (ρπ) = [(ρ−1ρπ)|C ]S = [π|C ]S . We have g(f([π|C ]S)) = [π|C ]S ,
and thus g is the inverse of f . Therefore, �C,S� and �D,T � are isomorphic.

Conversely, assume that �C,S� and �D,T � are isomorphic, i.e., there exists
some equivariant bijection f from �C,S� to �D,T �. By Proposition 2, f can be
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written as f([π|C ]S) = [σ|D]T · π for some σ ∈ G, such that there is an injection
u : D → C satisfying σ|D = u and uS ⊆ Tu. Also by Proposition 2, f−1 can
be written as f−1([π|D]T ) = [ρ|C ]S · π for some ρ ∈ G, such that there is an
injection v : C → D satisfying ρ|C = v and vT ⊆ Sv. From this, we can derive
f−1([σ|D]T · π) = f−1([(σπ)|D]) = [ρ|C ]S · (σπ). By f([π|C ]S) = [σ|D]T · π, we
have [ρ|C ]S · (σπ) = [π|C ]S , and hence [ρ|C ]S = [π|C ]S · (σπ)−1 = [(σ|C)−1]S .
This means that [v]S = [u−1]S . Thus, we have vu ∈ S. In the same way, we have
uv ∈ T . By acting u on vT ⊆ Sv, we have uvTu ⊆ uSvu, and hence we have
Tu ⊆ uS by vu ∈ S and uv ∈ T . By uS ⊆ Tu and Tu ⊆ uS, uS = Tu. ��

Let X and Y be nominal sets. We define Y  X if and only if there is an
equivariant surjection from a subset of X to Y . If Y  X and X and Y are
not isomorphic, Y ≺ X. We show that there is no infinite chain between two
orbit finite nominal sets X and Y such that Y  X. This property is used for
proving the termination of the proposed learning algorithm. We start with X
and Y being single orbits.

Lemma 2. Let (D, G) be a data symmetry that admits least support. Then, for
any two single orbit nominal sets X and Y such that Y ≺ X, the length of any
sequence of single orbit nominal sets X1,X2, . . . satisfying

Y ≺ X1 ≺ X2 ≺ · · · ≺ X

is finite.

Proof. By Proposition 1, it suffices to show the lemma for X = �C,S� and Y =
�D,T �. Assume �D,T � ≺ �C,S�. By definition of ≺, there exists an equivariant
surjective function from a subset of �C,S� to �D,T �. The domain of this function
is �C,S� because �C,S� and �D,T � are single orbit sets. Thus, by Proposition
2, there exists an injection u : D → C satisfying uS ⊆ Tu that extends to a
permutation from G. Because u is an injection, |D| ≤ |C| holds where |D| is the
number of elements of D. If |D| < |C|, no injections from D to C are bijections,
and hence �C,S� and �D,T � are not isomorphic by Lemma 1. If |D| = |C|,
then uS � Tu must hold because �C,S� and �D,T � are not isomorphic. Thus,
we have S < u−1Tu. This means that S is a proper subgroup of u−1Tu and
thus |S| < |T |. Therefore, because C and D are finite sets and S and T are
finite groups, the length of any sequence of single orbit nominal sets X1,X2, . . .
satisfying

Y ≺ X1 ≺ X2 ≺ · · · ≺ X

is finite. ��
Lemma 3. Let (D, G) be a data symmetry that admits least support. Then, for
any two orbit finite nominal sets X and Y , the length of any sequence of orbit
finite nominal sets X1,X2, . . . satisfying

Y ≺ X1 ≺ X2 ≺ · · · ≺ X

is finite.

Proof. Any orbit finite nominal set is an union of a finite number of single orbit
nominal sets. Hence, this lemma obviously holds by Lemma 2. ��
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2.2 Data Tree

Let (D, G) be a data symmetry and A be an alphabet. We define an m-ary data
tree (simply tree) over A as a function t : Pos(t) → A satisfying the following
two conditions:

– Pos(t) ⊆ {1, . . . , m}∗ is a non-empty finite set that is prefix-closed, and
– every p ∈ Pos(t) has a non-negative integer arity(p) ≤ m satisfying

p i ∈ Pos(t) for all i ∈ {1, . . . , arity(p)},

where p i is the concatenation of p and i. The set of all m-ary data trees over A
is written as Treem(A).

We define subtree t|p of t at p ∈ Pos(t) as

– Pos(t|p) = {q ∈ {1, . . . , m}∗ | pq ∈ Pos(t)}, and
– t|p(q) = t(pq) for all q ∈ Pos(t|p).

The set of all subtrees of t is written as Subtree(t). To denote a tree, we will use
term representation, which is recursively defined as follows. For a ∈ A and terms
trm1, . . . , trmk with 0 ≤ k ≤ m, the term a(trm1, . . . , trmk) represents the tree
t such that arity(ε) = k and

t(p) =

{
a if p = ε,

ti(q) if p = iq for 1 ≤ i ≤ k,

where ti is the tree represented by trmi for 1 ≤ i ≤ k.
The group action on Treem(A) is defined as t · π = (a · π)(t1 · π, . . . , tk · π)

for all t ∈ Treem(A) and π ∈ G. Treem(A) is a nominal set.
Let x /∈ A be a variable. A tree t ∈ Treem(A∪{x}) is called a context of A if

and only if there is exactly one p ∈ Pos(t) satisfying t(p) = x and arity(p) = 0.
The set of all contexts of A is written as Contextm(A). For s ∈ Contextm(A)
and t ∈ (Treem(A) ∪ Contextm(A)), we define s[t] as a tree with x in s replaced
by t, i.e.,

s[t](p) =

{
s(p) if p ∈ Pos(s) and s(p) �= x,

t(q) if p = rq, s(r) = x and q ∈ Pos(t).

For S ⊆ Contextm(A) and T ⊆ (Treem(A) ∪ Contextm(A)), we define S[T ] =
{s[t] | s ∈ S and t ∈ T}. For all π ∈ G, we define x · π = x.

Example 1. Let c ∈ Contextm be a context of N such that Pos(c) = {ε, 1},
c(ε) = 2, c(1) = x. Let t ∈ Tree2(N) be a 2-ary tree over N such that Pos(t) =
{ε, 1, 2}, t(ε) = 3, t(1) = 1, t(2) = 5. For c and t, c[t] is the tree such that
Pos(c[t]) = {ε, 1, 11, 12}, c[t](ε) = 2, c[t](1) = 3, c[t](11) = 1, c[t](12) = 5.
Figure 1 illustrates c, t and c[t]. Term representations of c, t and c[t] are c = 2(x),
t = 3(1, 5) and c[t] = 2(3(1, 5)), respectively. The term representation of subtree
c[t]|12 of c[t] at 12 ∈ Pos(c[t]) is 5.
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c =
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3
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Fig. 1. Data trees and a context over N.

3 Deterministic Bottom-Up Nominal Tree Automata

Let (D, G) be a data symmetry and A be an alphabet. A deterministic bottom-up
tree automaton (G-DBTA) over Treem(A) is a triple A = (Q,F, δ), where

– Q is a G-set of states,
– F ⊆ Q is an equivariant set of accept states, and
– δ = (δ0, . . . , δm) is an m + 1-tuple of equivariant transition functions, where

δ0 : A → Q,

δk : A × Qk → Q for 1 ≤ k ≤ m.

We extend δ to the function on Treem(A) by

δ(a(t1, . . . , tk)) =

{
δk(a, δ(t1), . . . , δ(tk)) if k > 0,

δ0(a) if k = 0.

A tree t is accepted by A if and only if δ(t) ∈ F . We define L(A) = {t ∈
Treem(A) | δ(t) ∈ F}. We call L ⊆ Treem(A) a recognizable tree language when
there exists a G-DBTA A satisfying L = L(A). A G-DBTA A = (Q,F, δ) is
reachable if for all q ∈ Q, there exists some t ∈ Treem(A) such that δ(t) = q. If
A and Q are orbit finite nominal sets, then A is called a deterministic bottom-
up nominal tree automaton (G-DBNTA). We call L ⊆ Treem(A) a recognizable
nominal tree language when there exists a G-DBNTA A satisfying L = L(A).

Let X ⊆ Treem(A) be a subset of trees. For a function T : X → {0, 1}, a
G-DBTA A is consistent with T if for all t ∈ X, t ∈ L(A) ⇔ T (t) = 1.

Example 2. Let the set N of natural numbers be an alphabet and (N,Sym(N))
be a data symmetry. Let A = (Q,F, δ) be a G-DBTA over Tree2(N), where
Q = N ∪ {accept , reject}, F = {accept} and δ = (δ0, δ1, δ2) such that δ0(d) = d,
δ1(d, q) = reject and δ2(d, q1, q2) = accept if q1 = q2 = d, reject otherwise. For
all π ∈ Sym(N), we define accept ·π = accept and reject ·π = reject . It is easy to
see that all components of A are equivariant. The tree language recognized by
A is L(A) = {d(d, d) | d ∈ N}.
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4 Myhill-Nerode Theorem

Let (D, G) be a data symmetry that admits least support and A be a nominal
alphabet. For L ⊆ Treem(A), we define the binary relation ≈L over Treem(A)
as follows: u ≈L v if and only if

C[u] ∈ L iff C[v] ∈ L for all C ∈ Contextm(A).

It is easy to check that ≈L is an congruence relation on Treem(A), i.e., ≈L is
an equivalent relation that satisfies a(u1, . . . , uk) ≈L a(v1, . . . , vk) for all a ∈ A
and u1, . . . , uk, v1, . . . , vk ∈ Treem(A) with ui ≈L vi for 0 ≤ i ≤ k. We write the
equivalent class of t ∈ Treem(A) as [t].

Lemma 4. If L ⊆ Treem(A) is equivariant, then ≈L is also equivariant.

Proof. We show that t · π ≈L t′ · π for all π ∈ G and t, t′ ∈ Treem(A) such that
t ≈L t′. By the definition of ≈L, t · π ≈L t′ · π is equivalent to C[t · π] ∈ L iff
C[t′ ·π] ∈ L for all C ∈ Contextm(A). By the equivariance of L, this is equivalent
to C[t · π] · π−1 ∈ L iff C[t′ · π] · π−1 ∈ L. By the definition of the group action
on Treem(A), this is equivalent to (C · π−1)[t] ∈ L iff (C · π−1)[t′] ∈ L. We can
prove this by t ≈L t′. ��

Lemma 5 ([3, Lemma 3.5]). Let X be a G-set and R ⊆ X × X be an equiva-
lence relation that is equivariant. Then the quotient X/R is a G-set, under the
action [x]R ·π = [x·π]R of G, and the abstraction mapping x �→ [x]R : X → X/R
is an equivariant function.

For L ⊆ Treem(A), we define the syntactic tree automaton AL = (QL, FL, δL)
as

– QL = Treem(A)/≈L,
– FL = {[t] | t ∈ L} and
– δL = (δL,0, . . . , δL,m) where δL,0 : A → QL and δL,k : A × Qk

L → QL for
1 ≤ k ≤ m are defined as

δL,0(a) = [a],
δL,k(a, [u1], . . . , [uk]) = [a(u1, . . . , uk)].

Because ≈L is a congruence relation, δL is well-defined.

Lemma 6. If L ⊆ Treem(A) is equivariant, then the syntactic tree automaton
AL = (QL, FL, δL) is a reachable G-DBTA.

Proof. Because L is equivariant, ≈L is also equivariant by Lemma 4. Thus, by
Lemma 5, QL = Treem(A)/≈L is a G-set. By the equivariance of L,

[t] ∈ FL ⇔ t ∈ L ⇔ t · π ∈ L ⇔ [t · π] ∈ FL ⇔ [t] · π ∈ FL.

Thus, FL is equivariant. By δL(a, [u1], . . . , [uk]) · π = [a(u1, . . . , uk)] · π = [(a ·
π)(u1 ·π, . . . , uk ·π)] = δL(a ·π, [u1 ·π], . . . , [uk ·π]) = δL(a ·π, [u1] ·π, . . . , [uk] ·π),
δL is equivariant. Thus, AL is a G-DBTA. AL is apparently reachable. ��
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Let A = (Q,F, δ) and A′ = (Q′, F ′, δ′) be G-DBTAs. An equivariant function
ϕ : P → Q′ for some P ⊆ Q satisfying the following two conditions is called a
partial homomorphism from A to A′:

– q ∈ F iff ϕ(q) ∈ F ′ for all q ∈ P , and
– ϕ(δ(a, q1, . . . , qk)) = δ′(a, ϕ(q1), . . . , ϕ(qk)) for all q1, . . . , qk ∈ P (0 ≤ k ≤ m)

and a ∈ A.

When there exists a surjective partial homomorphism from a subset of Q to Q′,
we write A′ � A. If P = Q, then ϕ is called a homomorphism from A to A′. It
is easy to see that L(A) = L(A′) if there is a homomorphism ϕ from A to A′.
When ϕ is surjective, A′ is called an image of A. If A′ is an image of A and the
state set of A is orbit finite, the state set of A′ is also orbit finite.

Lemma 7. Let L be a recognizable tree language. The syntactic automaton AL

is an image of any reachable G-DBTA recognizing L.

Proof. Let A = (Q,F, δ) be a reachable G-DBTA recognizing L. We define
ϕ : Q → Treem(A)/≈L as ϕ(δ(t)) = [t]. The definition of ϕ is well-defined
because A is reachable and δ(u) = δ(v) implies [u] = [v]. It is easy to check that
f is surjective. By the equivariance of δ,

ϕ(δ(t) · π) = ϕ(δ(t · π)) = [t · π] = [t] · π = ϕ(δ(t)) · π.

Thus, ϕ is equivariant. We have

ϕ(δ(a(u1, . . . , uk))) = [a(u1, . . . , uk)]
= δL(a, [u1], . . . , [uk]) = δ(a, ϕ(δ(u1)), . . . , ϕ(δ(uk))).

We also have δ(t) ∈ F ⇔ t ∈ L ⇔ [t] ∈ FL. Therefore, ϕ is a homomorphism,
and hence AL is an image of A. ��

Let A = (Q,F, δ) be a reachable G-DBTA over Treem(A). The equivariant
function t �→ δ(t) from Treem(A) to Q is surjective because A is reachable. If
C ⊆ D supports t, then C also supports δ(t) because t · π = t implies δ(t) · π =
δ(t · π) = δ(t) for all π ∈ G. Thus, Q is nominal because Treem(A) is nominal.

Theorem 1. Let L ⊆ Treem(A) be an equivariant set. The following two con-
ditions are equivalent:

(1) Treem(A)/≈L is orbit finite.
(2) L is recognized by a G-DBNTA.

Proof. (1) ⇒ (2) can be easily proved by Lemma 6. Without loss of general-
ity, assume that a given G-DBNTA is reachable. (2) ⇒ (1) can be proved by
Lemma 7. ��
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5 Observation Table

In this and the next sections, we extend the L∗-style algorithm in [17] to DBNTA.
For the extension from words to trees, we extend some notions given in [22],
where another L∗-style algorithm is proposed to learn the set of derivation trees
of an unknown context-free grammar without data values.

From now on, we assume a data symmetry (D, G) that admits least support
and a nominal alphabet A. Let B ⊆ Treem(A) and C ⊆ Contextm(A). We say
that B is subtree-closed if and only if for every b ∈ B, Subtree(b) ⊆ B holds. We
also say that C is x-prefix-closed on B if and only if every c ∈ C \ {x} has some
c′ ∈ C satisfying c = c′[a(b1, . . . , bi−1, x, bi, . . . , bk−1)] where b1, . . . , bk−1 ∈ B
and a ∈ A.

Definition 1. Let U be an unknown recognizable nominal tree language. An
observation table is a triple (S, E , T ), where

– S ⊆ Treem(A) is an equivariant orbit finite set that is subtree-closed and
satisfies A ⊆ S.

– Next(S) = {a(t1, . . . , tk) /∈ S | a ∈ A, t1, . . . , tk ∈ S, 1 ≤ k ≤ m},
– E ⊆ Contextm(A) is an equivariant orbit finite set that is x-prefix-closed on

S, and
– T : E [S ∪ Next(S)] → {0, 1} is an equivariant function, where T (e[s]) = 1 iff

e[s] ∈ U for all e ∈ E and s ∈ S ∪ Next(S). ��

We define the function row (S,E,T ) : S ∪ Next(S) → 2E as row (S,E,T )(s) = {e ∈
E | T (e[s]) = 1}. We abbreviate row (S,E,T ) as row if (S, E , T ) is clear from the
context. It is easy to see that row is equivariant. For X ⊆ S ∪Next(S), we define
row(X) = {row(s) | s ∈ X}.

An observation table can be expressed by the table with rows labeled with
the elements of S∪Next(S) and columns labeled with the elements of E as shown
in Fig. 2.

E
e

...
S s · · · T (e[s])

Next(S)

Fig. 2. Observation table (S, E , T )
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An observation table (S, E , T ) is closed if and only if for all t ∈ Next(S), there
exists some s ∈ S satisfying row(t) = row(s). An observation table (S, E , T ) is
consistent if and only if for every s1, s2 ∈ S, row(s1) = row(s2) implies

row(a(u1, . . . , ui−1, s1, ui, . . . , uk−1)) = row(a(u1, . . . , ui−1, s2, ui, . . . , uk−1))

for all a ∈ A, u1, . . . , uk−1 ∈ S and 1 ≤ i ≤ k.
Let (S, E , T ) be a closed and consistent observation table. We define the

G-DBNTA A(S, E , T ) = (Q̃, F̃ , δ̃) derived from (S, E , T ) as follows:

– Q̃ = row(S) = {row(s) | s ∈ S},
– F̃ = {row(s) | s ∈ S, T (s) = 1},
– δ̃k(a, row(s1), . . . , row(sk)) = row(a(s1, . . . , sk)) for s1, . . . , sk ∈ S.

It is easy to see that A(S, E , T ) is well-defined: Let s1, s2 ∈ S be trees satisfying
row(s1) = row(s2). Because E is x-prefix-closed, x ∈ E holds. Thus, T (s1) =
T (x[s1]) and T (s2) = T (x[s2]) are defined, and T (s1) = T (s2), and so F̃ is
well-defined. Because (S, E , T ) is consistent,

row(a(u1, . . . , ui−1, s1, ui, . . . , uk−1)) = row(a(u1, . . . , ui−1, s2, ui, . . . , uk−1))

for all a ∈ A, u1, . . . , uk−1 ∈ S and 1 ≤ i ≤ k. Moreover, because (S, E , T ) is
closed, there is s ∈ S satisfying row(s) = row(a(u1, . . . , ui−1, s1, ui, . . . , uk−1)).
Therefore, δ̃ is well-defined. Because S is an orbit finite nominal set and row is
an equivarinat function, Q̃(= row(S)) is also an orbit finite nominal set.

Lemma 8. Let (S, E , T ) be a closed and consistent observation table. Then,
A(S, E , T ) = (Q̃, F̃ , δ̃) is consistent with T .

The proof is similar to the proof of Lemma 4.2 in [22].

Theorem 2. For a (not necessarily closed and consistent) observation table
(S, E , T ) and a G-DBNTA A = (Q,F, δ) consistent with T , row(S)  Q holds.

Proof. We show that the function δ(s) �→ row(s) is an equivariant surjection
from {δ(s) | s ∈ S} ⊆ Q to row(S). This function is well-defined since

δ(s1) = δ(s2) ⇒ ∀e ∈ E .δ(e[s1]) = δ(e[s2])
⇒ ∀e ∈ E .e[s1] ∈ L(A) iff e[s2] ∈ L(A)
⇔ ∀e ∈ E .T (e[s1]) = T (e[s2])
⇔ row(s1) = row(s2).

This function is also equivariant because δ(s) · π = δ(s · π) �→ row(s · π) =
row(s)·π. Surjectivity is clear. Therefore, because there is an equivariant function
from a subset of Q to row(S), row(S)  Q holds. ��

If an observation table is closed and consistent, Theorem 2 can be lifted from
a relation on states () to a relation on automata (�) as stated in the next
lemma.
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Lemma 9. Let (S, E , T ) be a closed and consistent observation table. For every
G-DBNTA A that is consistent with T , A(S, E , T ) � A holds.

Proof. Let A(S, E , T ) = (Q̃, F̃ , δ̃) and A = (Q,F, δ). By the proof of Theorem
2, the function ϕ : δ(s) �→ row(s) from {δ(s) | s ∈ S} ⊆ Q to Q̃(= row(S)) is
equivariant and surjective. By δ(s) ∈ F ⇔ T (s) = 1 ⇔ row(s) ∈ F̃ ⇔ ϕ(δ(s)) ∈
F̃ and ϕ(δ(a, δ(s1), . . . , δ(sk))) = ϕ(δ(a(s1, . . . , sk))) = row(a(s1, . . . , sk)) =
δ̃(a, row(s1), . . . , row(sk)) = δ̃(a, ϕ(δ(s1)), . . . , ϕ(δ(sk))), ϕ is a partial homo-
morphism. ��

By Lemmas 8 and 9, we have the following theorem.

Theorem 3. Let (S, E , T ) be a closed and consistent observation table.
A(S, E , T ) is consistent with T , and for every G-DBNTA A that is consistent
with T , A(S, E , T ) � A holds.

6 Learning Algorithm

We show the proposed learning algorithm (Algorithm 1) in the following page.
We will give a part of a run of Algorithm 1 on an example in Sect. 7. In Algo-
rithm 1, we assume that the teacher answering queries is given as an oracle.
In an application to the compositional verification, for example, the teacher is
implemented as a model checker (see [8]).

Because S and E of an observation table (S, E , T ) can be infinite sets, we
have to show that (S, E , T ) can be expressed by finite means and each step of
Algorithm 1 runs in finite steps. We first show that (S, E , T ) has a finite descrip-
tion. Because S and E are orbit finite nominal sets, by Proposition 1, we can
express S and E by support representations. By Proposition 2, we can express
T by finite means because T consists of a finite number of equivariant functions
whose domains and ranges are both single orbit nominal sets. In Algorithm 1,
each orbit O is represented by any one element s ∈ O. Let us call s a represen-
tative of O.

Next, we show that each step of Algorithm 1 runs in finite steps. To check the
closedness in line 10 of Algorithm 1, it suffices to check whether for each orbit
O of Next(S) and a representative s′ of O, there is s ∈ S such that row(s) =
row(s′). Finding s ∈ S satisfying row(s) = row(s′) is equivalent to finding π ∈ G
such that row(s′) = row(t · π) (= row(t) · π) for some representative t ∈ S. Let
C,D ⊆ D be the least supports of row(s′) and row(t), respectively. The least
support of row(t) · π is D · π. Thus, if row(s′) = row(t · π), then C = D · π
must hold. Moreover, because D is the (least) support of row(t), if π1|D = π2|D
then row(t) · π1 = row(t) · π2. Thus, we only have to check a finite number of π
satisfying C = D ·π. To check the consistency in line 5 of Algorithm 1, it suffices
to check the emptiness of

{(s1, s2, a, e) ∈ S × S × A × E | row(s1) = row(s2) and for ∃u1, . . . , uk−1 ∈ S,
T (e[a(u1, . . . , ui−1, s1, ui, . . . , uk−1)]) �= T (e[a(u1, . . . , ui−1, s2, ui, . . . , uk−1)])}.
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Algorithm 1. Angluin-style algorithm for G-DBNTA
1: S := A, E := {x};
2: Construct the initial observation table (S, E , T ) using membership queries;
3: repeat
4: while (S, E , T ) is not closed or not consistent do
5: if (S, E , T ) is not consistent then
6: Find s1, s2, u1, . . . , uk−1 ∈ S, e ∈ E , a ∈ A, i ∈ N such that

row(s1) = row(s2) and

T (e[a(u1, . . . , ui−1, s1, ui, . . . , uk)]) �= T (e[a(u1, . . . , ui−1, s2, ui, . . . , uk)]);

7: Add Orbit(e[a(u1, . . . , ui−1, x, ui, . . . , uk)]) to E ;
8: Extend T to E [(S ∪ Next(S))] using membership queries;
9: end if

10: if (S, E , T ) is not closed then
11: Find s′ ∈ Next(S) such that row(s′) �= row(s) for all s ∈ S;
12: Add Orbit(s′) to S;
13: Extend T to E [S ∪ Next(S)] using membership queries;
14: end if
15: end while
16: Let A = A(S, E , T );
17: Construct the conjecture A;
18: if the Teacher replies no with a counter-example t then
19: Add Orbit(Subtree(t)) to S;
20: Extend T to E [S ∪ Next(S)] using membership queries;
21: end if
22: until the Teacher replies yes to the conjecture A;
23: return A;

S ×S ×A×E is an orbit finite nominal set, and the above set is a union of some
orbits of S × S ×A × E . Thus, we can check the emptiness of the set, and if not,
we can obtain representatives of the set.

Correctness Because Algorithm 1 uses an equivalence query, if it terminates,
then it outputs the correct G-DBNTA.

To prove the termination of Algorithm 1, we show the following two lemmas
that guarantee that row(S) strictly increases with respect to ≺ each time an
observation table is extended.

Lemma 10. If (S, E , T ) and (S ′, E , T ′) are observation tables such that S � S ′

and T ′(e[s]) = T (e[s]) for all e ∈ E and s ∈ S, then row (S,E,T )(S) ≺
row (S′,E,T ′)(S ′).

Proof. The lemma obviously holds because if S � S ′, the number of orbits of S ′

is larger than that of S. ��
Lemma 11. If (S, E , T ) and (S, E ′, T ′) are observation tables such that E � E ′

and T ′(e[s]) = T (e[s]) for all e ∈ E and s ∈ S, then row (S,E,T )(S) ≺
row (S,E′,T ′)(S).
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A proof of this lemma is given in the full version of this paper [19].

Termination and minimality. Let U be an unknown recognizable nominal tree
language and AU = (QU , FU , δU ) be the syntactic tree automaton constructed
from U . AU is the minimum G-DBNTA recognizing U in the sence of Lemma 7.
Let (S0, E0, T0), (S1, E1, T1), (S2, E2, T2), . . . be observation tables constructed by
Algorithm 1 where (Si, Ei, Ti) extends to (Si+1, Ei+1, Ti+1) for i ≥ 0. Note that
AU is consistent with every Ti for i ≥ 0. By Lemmas 10 and 11, row(S0) ≺
row(S1) ≺ row(S2) ≺ · · · . By Theorem 2, row(Si)  QU for i ≥ 0. By Lemma
3, there is a non-negative integer n such that row(S0) ≺ row(S1) ≺ · · · ≺
row(Sn) = QU . Thus, Algorithm 1 terminates in finite steps. By Lemma 9,
A(Si, Ei, Ti) � AU holds for every i ≥ 0 such that (Si, Ei, Ti) is closed and
consistent, and hence, Algorithm 1 outputs the minimum G-DBNTA recognizing
U when it terminates.

Running time analysis. When Algorithm 1 extends an observation table
(S, E , T ), the number of orbits of row(S) increases or some orbits of row(S)
extend. Extending an orbit �C,S� of row(S) to �D,T � implies |C| ≤ |D|. If
|C| = |D|, then T ≤ uSu−1 must hold for some injection u : D → C. By
the standard theorem of finite groups, |uSu−1|(= |S|) can be divided by |T |.
Therefore, we have the following theorem:

Theorem 4. Let U be an unknown recognizable nominal tree language, Q =
�C1, S1�∪· · ·∪�Cn, Sn� be the set of states of the minimum G-DBNTA recognizing
U , n be the number of orbits of Q and m = max{|C1|, . . . , |Cn|} be the largest
cardinality of least supports of orbits of Q. Let p1, . . . , pk be prime numbers and
j1, . . . , jk be positive integers such that m! = pj1

1 ·pj2
2 · · · · ·pjk

k . Observation tables
are extended at most O(nm(j1 + · · · + jk)) times.

7 Example

Let (N,Sym(N)) be the equality symmetry and A = N be an alphabet. Note
that (N,Sym(N)) admits least support and A is a single orbit nominal set. Let
U = Orbit(1)∪Orbit(1(1))∪Orbit(1(1(1))) ⊆ Tree2(A). We now show a part of
a run of Algorithm 1 for U .

First, the elements of the initial observation table (S0, E0, T0) shown in
Table 1(a) are S0 = Orbit(1) (= N), E0 = {x}, Next(S0) = Orbit(1(1)) ∪
Orbit(2(1)) ∪ Orbit(1(1, 1)) ∪ Orbit(1(2, 1)) ∪ Orbit(1(1, 2)) ∪ Orbit(2(1, 1)),
T0(a) = T0(a(a)) = 1 and T0(a(b)) = T0(a(a, a)) = T0(a(b, a)) = T0(a(a, b)) =
T0(a(b, b)) = 0 for all a, b ∈ A such that a �= b. This observation table
(S0, E0, T0) is consistent but not closed because there is no s ∈ S0 such that
row(s) = row(2(1)). Thus, Algorithm 1 adds Orbit(2(1)) to S0 and extends T0

using membership queries. We have the observation table (S1, E1, T1) shown in
Table 1(b) where

S1 = Orbit(1) ∪ Orbit(2(1)), E1 = {x},

Next(S1) = {a(t) /∈ S1 | a ∈ A, t ∈ S1} ∪ {a(t1, t2) /∈ S1 | a ∈ A, t1, t2 ∈ S1}.
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(S1, E1, T1) is closed and consistent, and Algorithm 1 asks an equivalence
query with G-DBNTA A(S1, E1, T1). A(S1, E1, T1) does not recognize U because
1(1(1)) /∈ L(A(S1, E1, T1). Thus, Algorithm 1 adds Orbit(1(1(1))) to S1 if 1(1(1))
is returned as a counterexample and extends T1 using membership queries.
We have the observation table (S2, E2, T2) shown in Table 1(c). (S2, E2, T2) is
closed but not consistent because despite row(1) = row(1(1(1))), row(1(1)) �=
row(1(1(1(1)))). Thus, Algorithm 1 adds Orbit(1(x)) to E2 and extends T2 using
membership queries, resulting in the observation table (S3, E3, T3) shown in
Table 1(d). Continuing these extensions, Algorithm 1 finally obtains an observa-
tion table (Sn, En, Tn) such that A(Sn, En, Tn) recognizes U .

Table 1. An example run

Table 1(a)

x

a 1
a(a) 1
a(b) 0

a(a, a) 0
a(a, b) 0
a(b, a) 0
a(b, b) 0

Table 1(b)

x

a 1
a(b) 0
a(a) 1

a(a, a) 0
a(a, b) 0
a(b, a) 0
a(b, b) 0
others 0

Table 1(c)

x

a 1
a(b) 0

a(a(a)) 1
a(a) 1

a(a, a) 0
a(a, b) 0
a(b, a) 0
a(b, b) 0
others 0

Table 1(d)

x c(x)

a 1
1 (a = c)
0 (a �= c)

a(b) 0 0
a(a(a)) 1 0

a(a) 1
1 (a = c)
0 (a �= c)

a(a, a) 0 0
a(a, b) 0 0
a(b, a) 0 0
a(b, b) 0 0
others 0 0

for all a, b, c ∈ A satisfying a �= b.

8 Conclusion

In this paper, we defined deterministic bottom-up nominal tree automata
(DBNTA), which operate on trees whose nodes are labelled with elements of
an orbit finite nominal set. We then proved a Myhill-Nerode theorem for the
class of languages recognized by DBNTA and proposed an active learning algo-
rithm for DBNTA based on the theorem. The algorithm can deal with any data
symmetry that admits least support, not restricted to the equality symmetry
and/or the total order symmetry.

Implementation and possible applications of the proposed learning algorithm
are left as future work. For implementation, a concrete data structure for support
representations of orbit finite sets in an observation table should be determined.
Moreover, we are considering an application of the proposed algorithm to a
compositional verification of a program that manipulates XML documents.
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9. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log. 10(3), 1–30, 16 (2009)

10. Figueira, D., Segoufin, L.: Bottom-up automata on data trees and vertical XPath.
In: 28th Symposium on Theoretical Aspects of Computer Science (STACS 2011),
pp. 93–104 (2011)

11. Gabbay, M., Pitts, A.M.: A new approach to abstract syntax with variable binding.
Formal Aspects Comput. 13, 341–363 (2002)

12. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134,
329–363 (1994)

13. Kaminski, M., Tan, T.: Tree automata over infinite alphabets. In: Avron, A.,
Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol.
4800, pp. 386–423. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78127-1 21

14. Leucker, M.: Learning meets verification. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 127–151. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74792-5 6
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Abstract. User interface description languages (UIDL) are high-level
languages allowing to model user interfaces (UI). Their purpose is to
ease the design of UIs. They are widely used, including to develop crit-
ical interactive systems. Nevertheless, the problem of verifying systems
developed with UIDLs is barely addressed in the literature. The first
step is to provide a formal semantics using an appropriate theory. We
claim that the bigraphs theory is a good candidate theory. In this short
paper, presenting a work in progress, we introduce the common features
of UIDLs and show how bigraphs could be used to define UIDLs seman-
tics and help with UI verification.

Keywords: User Interface Description Language · Graphical user
interfaces · Formalisation · Bigraphs

1 Introduction

User interface description languages (UIDL) [10] are high-level languages allow-
ing to model user interfaces (UI). Their purpose is to make the design of the UIs
independent and avoid all the difficulties related to their programming such as
spaghetti code due to callbacks [17] and the maintenance of an event loop.

Nowadays, UIDLs are widely used to design UIs for interactive systems,
including critical systems [13,19]. This emphasizes the need of formal verifi-
cation for the UIDLs [19], both on the language and program aspects e.g. formal
semantics, verified compiler and properties verification on written programs. We
focus on the UIDLs specialised on graphical user interfaces (GUI). These UIDLs
allow to describe a scene graph and how it evolves over time according to user
interactions. In safety-critical systems, the specifications of the GUIs expressed
through the UIDLs need to be consistent during all the program lifetime. The
purpose of this article is to present a new idea of formal foundations for UIDLs
with the same objective. Generally, the formal aspect of UIDLs is little studied.
This includes their semantics, except for a few works such as [9]. So, one of the
first questions to tackle is the formalisation of their semantics.

The semantics of UIDLs specialised on GUIs description present two common
features: the representation of the scene graph and the representation of the
control flow. These features relate to the spatial and non-spatial aspects of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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https://doi.org/10.1007/978-3-031-17715-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17715-6_23&domain=pdf
http://orcid.org/0000-0001-7528-5512
http://orcid.org/0000-0002-8715-4365
https://doi.org/10.1007/978-3-031-17715-6_23


Towards a UIDL Based on Bigraphs 361

GUI and we need a suitable formalism to represent these aspects of the semantics.
Bigraphs [16], a diagrammatic framework allowing to represent agents, their
locality, their interactions and how they evolve over time, have the potential to
represent appropriately these features and thus verify GUIs.

This short article, describing a work in progress, aims to motivate the use of
the bigraphs theory to formalise and verify UIDLs semantics and UIs.

We first detail the definition and common mechanisms of the UIDLs in Sect. 2,
before briefly presenting the bigraphs theory in Sect. 3. Then, in Sect. 4, we
show on a QML example, how we can model the GUI mechanisms common to
all UIDLs using the bigraphs theory. Furthermore, Sect. 5 gives a glimpse of
how verification can be done on a bigraphs model. Finally, in Sect. 6, we give
an overview of the existing work on GUIs verification and discuss the concrete
benefit to use bigraphs to verify GUIs.

2 UIDLs

UIDLs are programming languages generally used to design UIs. Programming
GUIs has been a tedious task for a long time: they had to be described by
sequential code, and callbacks were used to handle events. These practices were
criticised [14,17], in particular because of the causal relationships between the
different program entities that were not clearly represented. UIDLs are the solu-
tion to this problem. Firstly, they make a clear distinction between the design
of the UIs and the rest of the application to be developed. Secondly, they only
focus on the design of the UIs and propose a suitable syntax to express graphical
entities location and interactions (as QML signals and slots [8]).

UIDLs often express GUIs through a tree structure and interactions through
special operators, variables affectation or scripting code. There are many UIDLs,
but for illustration sake, here are some details about three of them: two popular
UIDLs widely used in large projects, FXML and QML, and another one, smala,
used to develop critical systems. A more detailed comparison of UIDLs based
on XML syntax can be found in this survey [10]. FXML [5] based on Java,
describes the graph scene through an XML syntax and represents interactions
by variable affectation (bindings) or scripting code (event handler). QML [7], a
UIDL based on C++ and Python, describes the interactions in the same way as
FXML but JSON is favored to describe the graph scene. Lastly Smala [13], based
on C++, uses a bracket syntax along with the graphical entities definition order
to describe the scene graph and special operators to describe the interactions.

Despite the diversity of UIDLs, two features [20] are shared by all their
semantics: 1) the representation of the graph scene, giving explicit information
on the location of each graphical entity; 2) the interactions present in the GUI.
To implement these features, UIDLs always provide the following kind of mech-
anisms: 1) an encapsulation mechanism, related to the scene graph criteria and
allowing to create a hierarchy among the graphical entities; 2) event handlers
and bindings (stream), allowing to handle GUIs interaction aspect. The hierar-
chy induced by the encapsulation and the entities dependencies induced by the
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event handlers and bindings can be respectively represented by a forest and a
graph. This double graph structure is very similar to Milner’s bigraphs one.

3 Bigraphs

Bigraphs [16] are a diagrammatic framework introduced by Robin Milner allow-
ing to model systems that evolve over time and space. They consist of a set
of entites (nodes) shared by two orthogonal graph structures. The place graph,
which is a forest, represents the spatial aspect (by mean of nesting) of a system
and the link graph, which is a hypergraph, represents the interactions (by means
of hyperedges) present in the system.

3.1 Structural Aspect and Rewriting Rules

Bigraphs, illustrated by Fig. 1a and Fig. 1c, are composed of entities, to which
we can associate a control (similar to a type), that in turn associates an arity
(number of links we can connect) to the entity. For example, the control C in
Fig. 1a has arity one and the controls A and B have arity zero. An entity has a
fixed arity. Entities can be nested into other entities (place graph) and can be
linked (through green hyperedges) to other entities (link graph). An entity that
cannot contain another entity is called atomic and is a leaf in the place graph.

Special structures allow bigraphs to be built and decomposed compositionally
as regions (dashed rectangle) and sites (grey rectangle). Regions are the root
container of a bigraph. Sites abstract away a bigraph part. Sites contain an
unspecified bigraph, even possibly the empty bigraph, contained in a region. So,
it is possible to build a bigger bigraph by placing regions into sites. In the same
way, the links allow composition by using names. For instance in Fig. 1b, the
link tagged s can be connected to another link tagged s from another bigraph.
Two types of link can be found in bigraphs: the open links, used to compose
bigraphs, and the close one as in Fig. 1a

C C B

B

A

(a)

C

B
s C

B
s

�

(b)

B C C B

A

(c)

Fig. 1. (a) inital bigraph, (b) reaction rule and (c) bigraph after reaction

3.2 Bigraphical Reactive Systems (BRS)

A bigraph corresponds to a state of a system at a certain time. A BRS describes
how bigraphs evolve over time using reaction rules, as shown in Fig. 1b. If the
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left hand side of a reaction rule is matched in a larger bigraph then we can
replace the matched part by the right hand side of the rule. Figure 1b states
that whenever a control B contains a control C we can rewrite it by removing C
from B. Figure 1c is the result of applying the rule in Fig. 1b to the bigraph in
Fig. 1a.

4 Representation of Mechanisms with Bigraphs

In this section, we present, using QML as an example, the graphical user inter-
faces mechanisms that most of UIDL specialised on GUI can express. The encap-
sulation in QML, is encoded via the type item, inherited by all the graphical
entities of the language, and is represented by records from the JSON syntax.
About the event handler and the bindings, the former is encoded by the QML
signals and slots and the latter by affectations of record fields. A bigraphical
representation is provided for each mechanism, to give an idea on how bigraphs
could model a GUI.

1 Rectangle {

2 width: 200

3 height: 200

4 color: "red"

5 signal mEvent ()

6 Rectangle {

7 width: 100

8 height: parent.height

9 color: "blue"

10 }

11 Button {

12 onClicked:parent.mEvent ()

13 }

14 }

(a) QML program example

200
Width

200

Height

”red”
Color

Signal mEvent

Rectangle Button

Rectangle

(b) Scene graph representation

Fig. 2. QML program example and its partial bigraph representation

4.1 Representation of the Scene Graph

The scene graph is an abstract representation of the program GUI and controls.
Often, UIDLs are based on markup-languages (e.g. XML, JSON) because a tree
structure is easily induced from their syntax and it also makes the UI design
more intuitive for the developers [10]. Hence, reading the QML program from
Fig. 2a, we understand that its scene graph root is the red rectangle and the
root children are width:200, height:200, color:"red", signal mEvent(), the blue
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rectangle and the button. Moreover, the induced tree gives information about
the positioning of the entities on the actual interface. Since the blue rectangle
and the button are children of the red rectangle, the GUI presents them on top
of the red rectangle.

Figure 2b represents a part of the program scene graph. The nesting of
bigraphs helps representing the hierarchical aspect of a GUI scene graph and
therefore catching all the needed information.

4.2 GUI Interactions

UIDLs allow to describe interactions taking place in the GUI. For instance, two
interactions are described in Fig. 2a. The first one, defined at line 8, relates the
red rectangle height and the blue rectangle height and implies the update of the
blue rectangle height each time the red rectangle height is updated. The second
interaction, defined at line 12, relates the implicit clicked signal from the button
and the signal mEvent defined at line 5. It implies that each time the clicked

signal of the button is emitted (i.e. when the user clicks on the button) then the
signal myEvent is also emitted.

State State

Signal clicked

Button

Signal mEvent

(a) Interaction of signal

Act State

State Signal mEvent

Signal clicked

Button

Act Act

State State

Signal clicked

Button

Signal mEvent

�

(b) Signal activation

Fig. 3. QML Interactions

Generally, interactions are represented by links in a bigraph. Figure 3a, rep-
resents the interaction from Fig. 2a involving the signals. In this diagram, we
define two linked entities corresponding to both the signals from the program.
An entity State is nested into each signal, corresponding to its emission state i.e.
emitted or not. The activation of a signal by another one can be represented by a
reaction rule (Fig. 3b). This rule matches the signal Signal clicked (implicit signal
of the button) activated and linked to the signal mEvent. Then, it activates the
signal mEvent by nesting an entity Act into its entity State.

4.3 Bigraphs Expressiveness

This section gives a glimpse of bigraphs expressiveness through two examples.
The first case deals with an activation condition on entities. If an entity is encap-
sulated, then it can only be activated if its parent is activated. For instance, only
the entities having their parent activated are rendered in a GUI. In other words,
a GUI should never be in a state shown by Fig. 4. This property which defines
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semantics dynamic aspect can be covered by bigraphs thanks to reaction rules.
It could be formalised by a rule similar to Fig. 6. Here, the bigraphs expres-
siveness allows to ensure parent activation (spatial aspect) and signal activation
(non-spatial aspect). This is an original features of bigraphs compared to other
process algebra theories.

The other case deals with types of entity activation. For instance, we could
associate a type to the graphical entities and another one to the signal entities
as shown in Fig. 5. This kind of typing eases the formalisation of the entities
activation process. On the one hand, once activated, a graphical entity remains
activated until the end of the program or until another entity deactivates it
(depending on the UIDL expressive power). On the other hand, a signal entity,
once emitted, is deactivated. Hence, bigraphs allow to define, via reaction rules,
a general signal emission mechanism according to a typing defined on entities.

Deact Act

State State

Rectangle

Rectangle

Fig. 4. Inconsistent GUI state

Persistant Transitional

Type Type

Rectangle Signal clicked

Fig. 5. Process type

Act Deact Act

State State State

Signal mEvent Signal clicked

Rectangle

Act Act Act

State State State

Signal mEvent Signal clicked

Rectangle

�

Fig. 6. Activation entity only if parent activated

5 Bigraphs Verification

Bigraphs develop a general theory which unifies and represents existing calculi
for concurrent communication and mobility. One of the key benefits to formalise
UI using bigraph is the possibility to check properties related by their spatial
and communication aspects. Indeed, BigraphER [2] an open-source framework
for working with bigraphs, allows a transition system, built from a BRS rep-
resenting an UI states and update sequences, to be exported. The transition
system can then be used by existing model checkers to check properties on the
given UI. Here, the model checker PRISM [12], that allows specifying temporal
properties in the PCTL specification language, is used to check properties. As
our model is not probabilistic, we restrict ourselves to the non-probabilistic frag-
ment. In the following, we show through a small example how bigraphs allow us
to automatically check properties on UIs models.
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5.1 Predicats

To check properties on the generated transition system we require labels on its
states. In BigraphER, labels are defined as bigraph patterns l = B that specify
that a state should be labelled with l if there is a match of B in that state. In other
words, you can think of these patterns as the left-hand-side of a reaction rule. For
our analysis we specify two predicates : 1) signal clicked that label states when
Signal_clicked is activated and Signal_mEvent is not ; 2) signal mEvent that
label states when both Signal_clicked and Signal_mEvent are activated.

5.2 Properties Verification on UI

To show how properties can be checked on a given program we encode the
example of Fig. 2a when the signal signal_clicked is triggered i.e. when the
button has been clicked. Once the button is clicked, the signal signal_clicked
is emitted then the rule from Fig. 3b is applied to the model to trigger the
signal signal_mEvent. We can write a formula in PCTL ensuring that the signal
signal_mEvent is really activated : A[ signal clicked =⇒ F signal mEvent ].

This states that forall paths (A) if signal clicked is activated then eventually
(at some point in the future; F) signal mEvent must be active.

This feature of bigraphs, can be useful for developers to check the soundness
of the UI described. Indeed, the size of the UI makes the debugging much more
harder [15] which can be eased my automatic verification. This feature could
also be used to check that an UI satisfy semantics properties of the UIDL used.

6 Related and Future Work

This article gives a glimpse of the bigraphs theory, shows how it could be used to
model common features of the semantics of GUI specialised UIDLs and how to
automatically verify properties on the model. We provide [18] the formalisation
of the example in Fig. 2a and a setup to run the verification from Fig. 4.

Currently, several works exist on the verification of UIs but none concerns
UIDLs semantics. Verified react [1] is a project offering the possibility to check
logic properties and explore state on react programs. Some work [4,6] exists on
the framework Djnn/Smala addressing the verification of interactive and graphic
properties by static analysis. Related to UIDLs, Interactive Cooperative Objects
[19] (ICO) is a formalism aimed at describing UIs. It borrows concepts from the
object-oriented approach (i.e. inheritance, encapsulation, dynamic instantiation)
to describe the structural aspect of a system and uses a high-level Petri nets [11]
to describe its dynamic aspect. To reason on this formalism, PetShop [3] will
allow to simulate the model and all verification tools for Petri nets can be used.

Our purpose is more related to the programming language aspect. We aim to
define a generic UIDL based on the bigraphs theory which covering all common
features of GUI specialised UIDLs. The idea is to use this UIDL as an interme-
diate representation for other UIDLs. This would allow to model mobility and
concurrent aspects of a GUI in a unique framework and enable the use of any
tool relates to bigraphs, e.g. BigraphER, to formally verify the GUI.
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Abstract. The semantics of probabilistic languages has been extensively studied,
but specification languages for their properties have received little attention. This
paper introduces the probabilistic dynamic logic pDL, a specification logic for
programs in the probabilistic guarded command language (pGCL) of McIver and
Morgan. The proposed logic pDL can express both first-order state properties and
probabilistic reachability properties, addressing both the non-deterministic and
probabilistic choice operators of pGCL. In order to precisely explain the meaning
of specifications, we formally define the satisfaction relation for pDL. Since pDL
embeds pGCL programs in its box-modality operator, pDL satisfiability builds on a
formal MDP semantics for pGCL programs. The satisfaction relation is modeled
after PCTL, but extended from propositional to first-order setting of dynamic
logic, and also embedding program fragments. We study basic properties of pDL,
such as weakening and distribution, that can support reasoning systems. Finally,
we demonstrate the use of pDL to reason about program behavior.

1 Introduction

This paper introduces a specification language for probabilistic programs. Probabilistic
programming techniques and systems are becoming increasingly important not only for
machine-learning applications but also for, e.g., random algorithms, symmetry break-
ing in distributed algorithms and in the modelling of fault tolerance. The semantics of
probabilistic languages has been extensively studied, from Kozen’s seminal work [1]
to recent research [2–5], but specification languages for their properties have received
little attention (but see, e.g., [6]).

The specification language we define in this paper is the probabilistic dynamic logic
pDL, a specification logic for programs in the probabilistic guarded command language
pGCL of McIver and Morgan [7]. This programming language combines the guarded
command language of Dijkstra [8], in which the non-deterministic scheduling of threads
is guarded by Boolean assertions, with state-dependent probabilistic choice. Whereas
guarded commands can be seen as a core language for concurrent execution, pGCL can
be seen as a core language for probabilistic and non-deterministic execution.

The proposed logic pDL can express both first-order state properties and reachability
properties, addressing the non-deterministic as well as the probabilistic choice operators
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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of pGCL. Technically, pDL is a probabilistic extension of (first-order) dynamic logic [9], a
modal logic in which programs can occur within the modalities of logical formulae. The
semantics of dynamic logic is defined as a Kripke-structure over the set of valuations
of program variables. Dynamic logic allows reachability properties to be expressed for
given (non-probabilistic) programs by means of modalities. The probabilistic extension
pDL allows probabilistic reachability properties to be similarly expressed.

In order to precisely explain the meaning of specifications expressed in pDL, we for-
mally define the semantics of this logic in terms of a satisfaction relation for pDL formu-
lae (a model-theoretic semantics). The satisfaction relation is modeled after PCTL [10],
but extended from a propositional to a first-order setting of dynamic logic, embedding
program fragments in the modalities. Since pDL embeds pGCL programs in its formulae,
the formalization of pDL satisfiability builds on a formal semantics for pGCL programs,
which is defined by Markov Decision Processes (MDP) [11]. The formalization of pDL
satisfiability allows us to study basic properties of specifications, such as weakening
and distribution. Finally, we demonstrate how pDL can be used to specify and reason
about program behavior. The main contributions of this paper are:

– The specification logic pDL to syntactically express probabilistic properties of
stochastic non-deterministic programs written in pGCL;

– A model-theoretic semantics for pDL over a simple MDP semantics for pGCL pro-
grams; the satisfaction relation is modeled after PCTL, but extended from a propo-
sitional to a first-order setting of dynamic logics with embedded pGCL programs;
and

– A study of basic properties of pDL and a demonstration of how pDL can be used to
specify and reason about pGCL programs.

Our motivation for this work is ultimately to define a proof system which allows us
to mechanically verify high-level properties for programs written in probabilistic pro-
gramming languages. Dynamic logic has proven to be a particularly successful logic
for such verification systems in the case of regular (non-probabilistic) programs; in par-
ticular, KeY [12], which is based on forward reasoning over DL formulae, has been
used for breakthrough results such as the verification of the TimSort algorithm [13].
The specification language introduced in this paper constitutes a step in this direction,
especially by embedding probabilistic programs into the modalities of the specification
language. Further, the semantic properties of pDL form a semantic basis for proof rules,
to be formalized, proven correct, and implemented in future work.

The proofs of the theorems below can be found in the extended version [14].

2 State of the Art

Verification of probabilistic algorithms has been addressed with abstract interpreta-
tion [15], symbolic execution [16], or probabilistic model checking [17]. Here, we
focus on logical reasoning about probabilistic algorithms using dynamic logic. Exist-
ing dynamic logics for probabilistic programs are Kozen’s PPDL and PrDL of Feldman
and Harel. Kozen introduces probability by drawing variable values from distributions,
while propositions are measurable real-valued functions [18]. The program semantics
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is purely probabilistic; PPDL does not include demonic choice. Probabilistic Dynamic
Logic (PrDL) relies on the same notion of state, but introduces probabilistic transi-
tions using a random choice operator [19]. Since neither PPDL nor PrDL include non-
determinism, to reason about non-deterministic stochastic programs in a program logic
we need a new specification language. We aim to develop a first-order dynamic logic
for programs (PPDL was propositional) with demonic and probabilistic choice.

The main alternative for logical reasoning about probabilistic programs is the weak-
est pre-expectation calculus, proposed by McIver and Morgan for the probabilistic
guarded command language (pGCL) [7]. The language contains explicit probabilistic
and demonic choice. Program states are modeled by classical (non-probabilistic) vari-
able assignments, and probabilities are introduced by an explicit probabilistic choice.
Assertions are real-valued functions over program state capturing expectations, where
a Boolean embedding is used to derive expectations from logical assertions. Reasoning
in pGCL follows a backwards expectation transformer semantics. McIver and Morgan
define an axiomatic semantics given by the weakest pre-expectation calculus over pGCL
programs, but do not introduce an operational semantics for the language. Also they
do not provide a specification language for pGCL assertions, i.e., real-valued functions,
beyond the Boolean embedding (cf. [20]). In this work, we want to build on this tra-
dition. However, we think there is a need for a specification language with classical
model-theoretical semantics known from logics—a satisfaction semantics. Dynamic
logics is a good basis for such a development, since it is strictly more expressive than
Hoare logic and weakest precondition calculi—both can be embedded in dynamic logic
[21]. In contrast to these calculi, dynamic logics are closed under logical operators such
as first-order connectives and quantifiers; for example, program equivalence, relative to
state formulae ϕ and ψ, can be expressed by the formula ϕ ⇒ [s1]ψ ⇐⇒ ϕ ⇒ [s2]ψ.

As mentioned, the original pGCL lacked operational semantics. Since semantics is
needed for a traditional definition of satisfaction in a modal logic, we propose to use
the MDP semantics similar to the one of Gretz et al. [22], where post-expectations are
rewards in final states. An alternative could be Kaminski’s computation tree semantics
[3], but we find it more complex and less standard for our purpose (deviating further
from traditions of simpler logics like PCTL).

Termination analysis of probabilistic programs [2,23] considers probabilistic reach-
ability properties. This and other directions of related work, such as separation logic for
probabilistic programs [24], expected run-time analysis for probabilistic programs [25]
and relational reasoning over probabilistic programs for sensitivity analysis [26], are
orthogonal to the goal of defining a specification language for programs, and thus out-
side of scope of interest for this particular paper. Generally all these approaches rely on
the backwards pre-expectation transformer semantics of McIver and Morgan [7].

3 Preliminaries

We review the basic semantic notions used in the main part of the paper.

Definition 1 (Markov Decision Process). A Markov Decision Process (MDP) is a
tuple M =(State,Act,P) where (i) State is a countable set of states, (ii) Act is a count-
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able set of actions, (iii) P : State×Act ⇀ Dist(State) is a partial transition probability
function.

Let σ denote the states and a the actions of an MDP. A state σ is final if no further
transitions are possible from it, i.e. (σ, a) �∈ dom(P) for any a. A path, denoted σ, is
a sequence of states σ1, . . . , σn such that σn is final and there are actions a1, . . . , an−1
such that P(σi, ai)(σi+1) ≥ 0 for 1 ≤ i < n. Let final(σ) denote the final state of a
path σ.

For a given state, the set of applicable actions of P defines the demonic choices
between successor state distributions. A positional policy π is a function that maps
states to actions, so π : State → Act. We assume π to be consistent with P, so
P(σ, π(σ)) is defined. Given a policy π, we define a transition relation

·−→π⊆ State ×
[0, 1] × State on states that resolves all the demonic choices in P and write:

σ
p−→π σ′ iff P(σ, π(σ))(σ′) = p. (1)

For a given policy π, we let
p−→∗

π ⊆ State × [0, 1] × State denote the reflexive and
transitive closure of the transition relation, and define the probability of a path σ =
σ1, . . . , σn by

p = Pr(σ) = 1 · p1 · · · pn where σ1
p1−→π · · · pn−→π σn. (2)

Thus, a path with no transitions consists of a single state σ, and Pr(σ) = 1. Let
pathsπ(σ) denote the set of all paths with policy π from σ to final states.

In this paper we assume that MDPs (and the programs we derive them from) arrive
at final states with probability 1 under all policies. This means that the logic pDL that
we will be defining and interpreting over these MDPs can only talk about properties
of almost surely terminating programs, so in general it cannot be used to reason about
termination without adaptation. This is what corresponds to the notion of partial cor-
rectness in non-probabilistic proof systems.

An MDP may have an associated reward function r : State → [0, 1] that assigns a
real value r(σ) to any final state σ ∈ State. (In this paper we assume that rewards are
zero everywhere but in the final states.) We define the expectation of the reward starting
in a state σ as the greatest lower bound on the expected value of the reward over all
policies; so the real valued function defined as

Eσ(r) = inf
π

Eσ,π(r) = inf
π

∑

σ∈pathsπ(σ)

Pr(σ) r(final(σ)) , (3)

where Eσ,π(r) stands for the expected value of the random variable induced by the
reward function under the given policy, known as the expected reward. Note that the
expectation Eσ(r) always exists and it is well defined. First, for a given policy the
expected value Eσ,π(r) is guaranteed to exist, as we only consider terminating execu-
tions and our reward functions are bounded, non-negative, and non-zero in final states
only. The set of possible positional policies that we are minimizing over might be infi-
nite, but the values we are minimizing over are bounded from below by zero, so the set
of expected values has a well defined infimum. Finally, because the MDPs considered
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Fig. 1. The syntax of the probabilistic guarded command language pGCL

here almost surely arrive at a final state, we do not need to condition the expectations
on terminating paths to re-normalize probability distributions, which greatly simplifies
the technical machinery.

To avoid confusing expectations and scalar values, we use bold font for expectations
in the sequel. For instance, p represents an unknown expectation from the state space
into [0, 1], and 0 represents a constant expectation function, equal to zero everywhere.

We use characteristic functions to define rewards for the semantics of pGCL pro-
grams, consistently with McIver & Morgan [7]. For a formula ϕ in some logic with
the corresponding satisfaction relation, a characteristic function [[ϕ]], also known as a
Boolean embedding or an indicator function, assigns 1 to states satisfying ϕ and 0 oth-
erwise. In this paper, models will be program states, and also states of an MDP. In
general, characteristic functions can be replaced by arbitrary real-valued functions [3],
but this is not needed to interpret logical specifications, so we leave this to future work.

Finally, given a formula ϕ that can be interpreted over a state space of an MDP, we
define the truncation of a reward function p as the function (p↓ϕ)(σ) = p(σ) · [[ϕ]](σ).
The truncation of p to ϕ maintains the original value of p for states satisfying ϕ and
gives zero otherwise. Note that p↓ϕ remains a valid reward function if p was.

4 pGCL: A Probabilistic Guarded Command Language

The probabilistic guarded command language pGCL [7], extends Dijkstra’s guarded
command language [8] with probabilistic choice. Figure 1 gives the syntax of pGCL.
We let x range over the set X of program variables, v over primitive values, and e over
expressions Exp. Expressions e are constructed over program variables x and primitive
values v by means of unary and binary operators op (including logical operators ¬,∧,∨
and arithmetic operators +,−, ∗, /). Expressions are assumed to be well-formed.

Statements s include the non-deterministic (or demonic) choice s1 �s2 between the
branches s1 and s2. We write s e⊕s′ for the probabilistic choice between the branches s
and s′; if the expression e evaluates to a value p given the current values for the program
variables, then s and s′ have probability p and 1 − p of being selected, respectively. In
many cases e will be a constant, but in general it can be an expression over the state
variables (i.e., e ∈ Exp), so its semantics will be an real-valued function. Sequential
composition, skip, assignment, if-then-else and while are standard (e.g., [8]).

The semantics of pGCL programs s is defined as an MDP Ms (cf. [22]), and its
executions are captured by the partial transition probability function for a given policy
π, which induces the relation

p−→π for some probability p, (Eq. (1)). A state σ of Ms is
a pair of a valuation and a program, so σ = 〈ε, s〉 where the valuation ε is a mapping
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Fig. 2. An MDP-semantics for pGCL.

from all the program variables in s to concrete values (sometimes we omit the program
part, if it is unambiguous in the context). The state 〈ε, s〉 represents an initial state of
the program s given some initial valuation ε and the state 〈ε, skip〉 represents a final
state in which the program has terminated with the valuation ε.

The rules defining the partial transition probability function for a given policy π are
shown in Fig. 2. We denote by 〈ε, s〉 p−→π 〈ε′, s′〉 the transition from 〈ε, s〉 to 〈ε′, s′〉 by
action α = π(〈ε, s〉), where p is the resulting probability. Note that for demonic choice,
the policy π fixes the action choice between the distributions 0, 1 and 1, 0; for all other
statements, there is already a single successor distribution. The transitive closure of this
relation, denoted 〈ε0, s0〉 p−→∗

π〈εn, sn〉, expresses that there is a sequence of zero or more
such transitions from 〈ε0, s0〉 to 〈εn, sn〉 with corresponding actions αi = π(εi, si) and
probability pi for 0 < i ≤ n, such that p = 1 · p1 · · · pn.

Remark that the rules in Fig. 2 allow programs to get stuck, for instance if an expres-
sion e evaluates to a value outside [0, 1] (PROBCHOICE). Since we are interested in
partial correctness, we henceforth rule out such programs and only consider programs
that successfully reduce to a single skip statement under all policies with probability 1.

5 Probabilistic Dynamic Logic

Formulae and Satisfiability. Given sets X of program variables and L of logical vari-
ables disjoint from X , let ATF denote the well-formed atomic formulae built using con-
stants, program and logical variables. For every l ∈ L, let dom l denote the domain of
l. We extend valuations to also map logical variables l ∈ L to values in dom l and let
ε |=ATF ϕ denote standard satisfaction, expressing that ϕ ∈ ATF holds in valuation ε.
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The formulae of probabilistic dynamic logic (pDL) are defined inductively as the
smallest set generated by the following grammar:

ϕ ::= ATF | ¬ϕ | ϕ1 ∧ ϕ2 | ∀l · ϕ | [s]p ϕ (4)

where ϕ ranges over pDL formulae, l ∈ L over logical variables, s is a pGCL program
with variables in X , and p is an expectation assigning values in [0, 1] to initial states of
the program s. The logical operators →, ∨ and ∃ are derived in terms of ¬, ∧ and ∀ as
usual.

The last operator in Eq. (4) is known as the box-operator in dynamic logics, but
now we give it a probabilistic interpretation along with the name “p-box.” Given a
pGCL program s, we write [s]p ϕ to express that the expectation that a formula ϕ holds
after successfully executing s is at least p; i.e., the function p represents the expectation
for ϕ in the current state of Ms using [[ϕ]] as the reward function (see Sect. 3). For the
reader familiar with the CTL/PCTL terminology, the p-box formulae are path formulae,
and all other formulae are state formulae.

We define semantics of well-formed formulae in pDL, so formulae with no free log-
ical variables—all occurrences of logical variables are captured by a quantifier. The
definition extends the standard satisfaction relation of dynamic logic [9] to the proba-
bilistic case:

Definition 2 (Satisfaction of pDL Formulae). Let ϕ be a well-formed pDL formula, π
range over policies, l∈L, p : State → [0, 1] be an expectation lower bound, and ε be a
valuation defined for all variables mentioned in ϕ. The satisfiability of a formula ϕ in
a model ε, denoted ε |= ϕ, is defined inductively as follows:

ε |= ϕ iff ε |=ATF ϕ for ϕ ∈ ATF
ε |= ϕ1 ∧ ϕ2 iff ε |= ϕ1 and ε |= ϕ2

ε |= ¬ϕ iff not ε |= ϕ

ε |= ∀l · ϕ iff ε |= ϕ[l := v] for each v ∈ dom l

ε |= [s]pϕ iff p(ε) ≤ Eε[[ϕ]] where the expectation is taken in Ms

For ϕ ∈ ATF, |=ATF can be used to check satisfaction just against the valuation of pro-
gram variables since ϕ is well-formed. In the case of universal quantification, the sub-
stitution replaces logical variables with constants. The last case (p-box) is implicitly
recursive, since the characteristic function [[ϕ]] refers to the satisfaction of ϕ in the final
states of s.

The satisfaction of a p-box formula [s]p ϕ captures a lower bound on the probability
of ϕ holding after the program s. Consequently, pDL supports specification and reason-
ing about probabilistic reachability properties in almost surely terminating programs.

It is convenient to omit the valuation ε from the satisfaction judgement, meaning
that the judgement holds for all valuations (validity):

|= [s]p ϕ iff ε |= [s]p ϕ for all valuations ε (5)
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6 The P-Box Modality and Logical Connectives

We begin our investigation of pDL by exploring how the p-box operator interacts with
different expectations and the other connectives of pDL.

In a proof system, weakening is useful to allow adjusting proven facts to a format of
a syntactic proof rule. Since all operators of pDL, with the exception of p-box, behave
like in first order logic, the usual qualitative weakening properties apply for these oper-
ators at the top-level. For instance, ϕ1 ∧ ϕ2 can be weakened to ϕ1. These properties
follow directly from Definition 2. The following proposition states the key properties
for p-box:

Proposition 3 (Weakening). Let ε stand for a valuation, p,0 ∈ State → [0, 1] be
expectation lower bounds, s a pGCL program, and ϕ ∈ pDL. Then:

1. Universal lower bound: ε |= [s]0 ϕ
2. Quantitative weakening: ε |= [s]p1

ϕ then ε |= [s]p2
ϕ if p2 ≤ p1 everywhere

3. Weakening conjunctions: ε |= [s]p (ϕ1 ∧ ϕ2) then ε |= [s]p ϕi for i = 1, 2
4. Qualitative weakening: ε |= [s]p ϕ1 and |= ϕ1 → ϕ2 then ε |= [s]p ϕ2 .

The first point states that there is a limit to the usefulness of weakening the expecta-
tion: if you cannot guarantee that the lower bound is positive, then you do not have
any information at all. A zero lower-bound would hold for any property. The second
property is a probabilistic variant of weakening, which follows directly from the last
case of Definition 2; the lower bound on an expectation can always be lowered. The
last two properties are the probabilistic counterparts of weakening in standard (non-
probabilistic) dynamic logic; the third property is syntactic for conjunction, the last one
is general.

When building proofs with pDL, the other direction of reasoning seems more useful:
we would like to be able to derive a conjunction from two independently concluded
facts. For state formulae, this holds naturally, like in first-order logic. For p-box formu-
lae, we would like to use the expectations pi of two formulae ϕi to draw conclusions
about the expectation that their conjunction holds. It seems tempting to translate the
intuitions from the Boolean lattice to real numbers, and to suggest that a minimum of
the expectations for both formulae is a lower bound for their conjunction. To develop
some intuition, let us first consider an incorrect proposal using the following counterex-
ample:

Example 4. Consider the program , modeling a six-sided fair die:

(6)

Let ‘odd’ be an atomic formula stating that a value is odd, and ‘prime’ an atomic for-
mula stating that it is prime. Since the die is fair, the expectations for each of these after

are:

(7)
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The minimum of the two expectations is a constant function which equals 1/2 every-
where, but the expectation bound in [s]p(odd(x) ∧ prime(x)) can be at most 1/3 since
only two outcomes (x �→ 3 and x �→ 5) satisfy both predicates. Effectively, even if ε |=
[s]p1

ϕ1 and ε |= [s]p2 ϕ2 hold, we do not necessarily have ε |= [s]min(p1,p2) ϕ1 ∧ ϕ2.
The reason is that the expectation bounds measure what is the lower bound on sat-
isfaction of a property, but not where in the execution space this probability mass is
placed. There is not enough information to see to what extent the two properties are
overlapping. ��
Similarly, p(ε) = p1(ε)p2(ε) is not a good candidate in Example 4, since it is only
guaranteed to be a lower bound for a conjunction when ϕi are independent events.
Unless p1=p2=1, combining proven facts with conjunction (or disjunction) weakens
the expectation:

Theorem 5. Let ε be a valuation, p,p1,p2 ∈ State → [0, 1] expectation lower bounds,
s a pGCL program, and ϕ1, ϕ2 ∈ pDL. Then:

1. p-box conjunction: if ε |= [s]p1
ϕ1 and ε |= [s]p2

ϕ2, then ε |= [s]p (ϕ1 ∧ϕ2) where
p = max(p1+p2 − 1, 0) everywhere.

2. p-box disjunction: if ε |= [s]p1
ϕ1 or ε |= [s]p2

ϕ2, then ε |= [s]p (ϕ1 ∨ ϕ2) where
p = min(p1,p2) everywhere.

Note the asymmetry between these cases: reasoning about conjunctions of low proba-
bility properties using Theorem 5.1 is inefficient, and quickly arrives at the lower bound
expectation 0, which, as observed in Proposition 3, holds vacuously. If both properties
have an expected probability lower than 1/2, then pDL cannot really see (in a composi-
tional manner) whether there is any chance that they can be satisfied simultaneously. In
contrast, compositional reasoning about disjunctions makes sense both for low and high
probability events. This is a consequence of using lower bounds on expectations. The
bounds in Theorem 5 are consistent with prior work by Baier et al. on LTL verification
of probabilistic systems [27].

The qualitative non-probabilistic specialization of Theorem 5.1 behaves reasonably:
when ϕ1 or ϕ2 hold almost surely, then the theorem reduces to a familiar format:

if ε |= [s]pϕ1 and ε |= [s]1ϕ2 then ε |= [s]p(ϕ1 ∧ ϕ2) (8)

Theorem 6. Let ε be a valuation, p ∈ State→ [0, 1] an expectation lower bound, s a
pGCL program, and ϕ ∈ pDL a well-formed formula.

1. If ε |= [s]p ∀l · ϕ then ε |= ∀l · [s]p ϕ, but not the other way around in general.
2. If ε |= ∃l · [s]p ϕ then ε |= [s]p ∃l · ϕ but not the other way around in general.

The essence of the above two properties lies in the fact that quantifiers in pDL only
affect logical variables, programs cannot access logical variables, and we do not allow
quantification over expectation variables.

In a deductive proof system, one works with abstract states, not just concrete states.
A state abstraction can be introduced as a precondition, a pDL property that captures
the essence of an abstraction, and is satisfied by all the abstracted states sharing the
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property. If an abstract property is a precondition for a proof, it is naturally introduced
using implication. However, implication is unwieldy in an expectation calculus, so it
is practical to be able to eliminate it in the proof machinery. The following theorem
explains how a precondition can be folded into an expectation function:

Theorem 7 (Implication Elimination). Let s be a pGCL program, ϕi be pDL formulae,
and p a lower-bound function for expectations. Then:

|= ϕ1 → ([s]p ϕ2) iff |= [s]p↓ϕ1ϕ2

Note that we use validity naturally when working with abstract states, as the state is
replaced by the precondition in the formula.

Finally, negation in pDL is difficult to push over boxes. This is due to non-
determinism and the lower bound semantics of expectations it enforces. A p-box prop-
erty expresses a lower bound on probability of a post-condition holding after a program.
Naturally, a negation of a p-box property will express an upper-bound on a property, but
pDL has no upper-bound modality first-class. We return to this problem in Sect. 8, where
we discuss reasoning about upper-bounds in non-deterministic and in purely probabilis-
tic programs.

7 Expectations for Program Constructs

This section investigates how expectations are transformed by pGCL program constructs,
as opposed to logical constructs discussed above. We begin by looking at the composite
statements, which build the structure of the underlying MDP. The probabilistic choice
introduces a small expectation update, consistent with an expectation of a Bernoulli
variable (item 1). The demonic choice (item 2), requires that both sides provide the
same guarantee, which is consistent with worst-case reasoning.

Theorem 8 (Expectation and Choices). Let si be programs, ϕ a PDL formula, pi

lower bound functions for expectations into [0, 1], and ε a valuation of variables. Then:

1. If ε |= [s1]p1
ϕ and ε |= [s2]p2

ϕ then ε |= [s1 e⊕ s2]p ϕ
with p = ε(e)p1+(1−ε(e))p2

2. ε |= [s1]p ϕ and ε |= [s2]p ϕ if and only if ε |= [s1 � s2]p ϕ

Note that in the second case, demonic, we can always use weakening (Proposition 3.2)
to equalize the left-hand-side expectation lower-bounds using a point-wise minimum,
if the premises are established earlier for different lower bound functions.

Example 9. This example shows that a non-deterministic assignment is less informa-
tive than a probabilistic assignment. It shows that pDL can be used to make statements
that compare programs directly in the formal system—one of its distinctive features in
comparison with prior works (cf. Sect. 2). We check satisfaction of the following pDL
formula for any expectation lower bound p:

|= ∀δ · ∀p · 0 ≤ p ≤ 1 → ([x:=0 � x:=1]p(x ≥ δ) → [x:=0 p⊕ x:=1]p(x ≥ δ)) .
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For simplicity, we use the logical variable p directly in the rightmost program (this
can easily be encoded as an additional assumption equating a fresh logical variable
to a program variable). For the proof, we first simplify the formula using equivalence
rewrites:

|= ∀δ · ∀p · 0 ≤ p ≤ 1 → ([x:=0 � x:=1]p (x ≥ δ) → [x:=0 p⊕ x:=1]p (x ≥ δ))

iff for ε, δ, p we have

ε |= 0≤p≤1→([x:=0 � x:=1]p (x ≥ δ) → [x:=0 p⊕ x:=1]p (x ≥ δ)) (Sect. 5, Definition 2 ∀)

iff for ε, δ, p we have

ε |= ¬0≤p≤1∨¬[x:=0 � x:=1]p (x ≥ δ) ∨ [x:=0 p⊕ x:=1]p (x ≥ δ) (syntactic sugar)

iff for ε, δ, p we have

¬0≤p≤1 ∨ ¬p(ε) ≤ Eε(x ≥ δ) ∨ p(ε) ≤ Eε(x ≥ δ) (Definition 2, the box)

In the last line above the left expectation is taken in MDP Mx:=0�x:=1 and the right
one is taken in Mx:=0 p⊕x:=1.

Now the property is a disjunction of three cases. If the first or second disjunct hold
the formula holds vacuously (the assumptions in the statement are violated). We focus
on the last case, when the first two disjuncts are violated (so the assumptions hold). We
need to show that the last disjunct holds. We split the reasoning in two cases:

1. δ ≤ 0: Consider the right expectation Eε(x ≥ δ). In the right program this expec-
tation is equal to 1 because the formula always holds (both possible values of x are
greater or equal to δ). Consequently, any expectation lower bound p is correct for
this formula: p(ε) ≤ Eε(x ≥ δ) in the right program.

2. δ > 0: Consider the left expectation Eε(x ≥ δ). By Eq. (3) this expectation is equal
to zero (the policy that chooses the left branch in the program violates the property
as x = 0 < δ). Since p(ε) ≤ Eε(x ≥ δ) = 0, it must be that p(ε) = 0 in the
left program. By the universal lower bound property (Proposition 3.1), all properties
hold after any program with the expectation lower bound p, including the post-
condition of the right program. ��

For any program logic, it is essential that we can reason about composition of consec-
utive statements; allowing the post-condition of one to be used as a pre-condition for
the other. The following theorem demonstrates that sequencing in pGCL corresponds
to composition of expectations in the MDP domain. It uses implication elimination
(Theorem 7) to compute a post-condition for a sequence of programs. Crucially, the
new lower bound is computed using an expectation operation in the MDP of the first
program, using the lower-bound of the second program as a reward function. Here, the
expectation operation acts as a way to explore the program graph and accumulate values
in final states.

Theorem 10 (Expectation and Sequencing). Let si be pGCL programs, ϕi be pDL
formulae, ε be a valuation, and p an expectation lower bound function.

If |= ϕ1 → ([s2]p ϕ2) then ε |= [s1; s2]E〈ε,s1〉(p↓ϕ1) ϕ2 ,

where the expectation E〈ε,s1〉(p↓ϕ1) is taken in Ms1 with p ↓ϕ1 as the reward func-
tion.
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For a piece of intuition, note that the above theorem captures the basic step of a back-
wards reachability algorithm for MDPs, but expressed in pDL; it accumulates expecta-
tions backwards over s1 from what is already known for s2.

We now move to investigating how simple statements translate expectations:

Theorem 11 (Unfolding Simple Statements). Let s be a pGCL program, ϕ a pDL
formula, p a function into [0, 1], a lower bound on expectations, and ε a valuation.
Then

1. ε |= [skip]1 ϕ iff ε |= ϕ
2. ε |= [s]p ϕ iff ε |= [skip; s]p ϕ
3. ε |= [x:=e; s]p ϕ iff ε[x �→ ε(e)] |= [s]p ϕ

The case of if-conditions below is rather classic (Theorem 12.3). For any given state, we
can evaluate the head condition and inherit the expectation from the selected branch. For
this to work we assume that the atomic formulae (ATF) satisfaction semantics in pDL is
consistent with the expression evaluation semantics in pGCL. The case of while loops is
much more interesting—indeed a plethora of works have emerged recently on propos-
ing sound reasoning rules for while loop invariants, post-conditions and termination
(see Sect. 2). In this paper, we show the simplest possible reasoning rule for loops that
performs a single unrolling, exactly along the operational semantics. Of course, we are
confident that many other rules for reasoning about while loops (involving invariants,
prefixes, or converging chains of probabilities) can also be proven sound in pDL—left
as future work.

Theorem 12 (Unfolding Loops and Conditionals). Let e be a program expression
(also an atomic pDL formula over program variables in X), ϕ be a pDL atomic formula,
si be pGCL programs, p an expectation lower bound function, and ε a valuation. Then:

1. If ε |= e ∧ [s1]p ϕ then ε |= [if e { s1 } else { s2 }]p ϕ
2. If ε |= ¬e ∧ [s2]p ϕ then ε |= [if e { s1 } else {s2 }]p ϕ
3. ε |= [if e { s; while e { s }} else {skip}]p ϕ iff ε |= [ while e { s }]p ϕ

8 Purely Probabilistic and Deterministic Programs

The main reason for the lower-bound expectation semantics in pDL (inherited from
McIver & Morgan) is the presence of demonic choice in pGCL. With non-determinism
in the language, calculating precise probabilities is not possible. However, this does not
mean that pDL cannot be used to reason about upper-bounds. The following theorem
explains:1

Theorem 13 (Joni’s Theorem). For a policy π, property ϕ, program s, and state ε: if
ε |= [s]p1

ϕ and ε |= [s]p2
¬ϕ then Eπ,ε[[ϕ]] ∈ [p1, 1 − p2].

1 The theorem is named as a tribute to the song Both sides now by Joni Mitchell.



A Specification Logic for Programs in the PGC Language 381

The theorem means that for a purely probabilistic program derived by fixing a policy
for a pGCL program s, the expected reward is bounded from below by the expectation
of this reward in s, and from above by the expectation of its negation in s. The theorem
follows directly from Eq. (3) and the negation case in Definition 2.

For deterministic programs, some surprising properties, follow from interaction of
probability and logics. For instance, we can conclude a conjunction of expectations
from an expectation of a disjunction.

Theorem 14. Let s be a purely probabilistic pGCL program (a program that does not
use the demonic choice), let ε stand for a valuation, p ∈ State → [0, 1] be an expecta-
tion function, and ϕi ∈ pDL properties. Then if ε |= [s]p (ϕ1 ∨ ϕ2) then there exist p1,
p2, p1 + p2 ≥ p everywhere, such that ε |= [s]p1

ϕ1 and ε |= [s]p2
ϕ2.

Intuitively, the property holds, because each of the measure of the space of final states of
the disjointed properties can be separated between the disjuncts. This separation would
not be possible with non-determinism, as shown in the following counterexample.

Example 15. Consider the program ::= x := H � x := T. The following holds for
any initial valuation ε:

ε |= [ ]1(x = H ∨ x = T)

This happens because disjunction is weakening and a weaker property is harder to
avoid, here impossible to avoid, for an adversary minimizing an expectation satisfac-
tion. However, at the same time: ε |= [ ]0(x = H) and ε |= [ ]0(x = T) and 0+0 < 1.
Importantly, zero is the tightest expectation lower bound possible here. ��

9 Program Analysis with pDL

In this section, we apply pDL to reason about two illustrative examples: the Monty Hall
game (Sect. 9.1), and convergence of a Bernoulli random variable (Sect. 9.2).

9.1 Monty Hall Game

In this section, we use pDL to compute the probability of winning the Monty Hall game.
In this game, a host presents 3 doors, one of which contains a prize and the others are
empty, and a contestant must figure out the door behind which the prize is hidden. To
this end, the host and contestant follow a peculiar sequence of steps. First, the loca-
tion of the prize is non-deterministically selected by the host. Secondly, the contestant
chooses a door. Then, the host opens an empty door from those that the contestant did
not choose. Finally, the contestant is asked whether she would like to switch doors. We
determine, using pDL, what option increases the chances of winning the prize (switching
or not).

Listing 1.1 shows a pGCL program, Monty_Hall, modeling the behavior of host
and contestant. There are 4 variables in this program: prize (door containing the
prize), choice (door selected by the contestant), open (door opened by the host), switch
(Boolean indicating whether the user switches in the last step). Note that the variable
switch is undefined in the program. The value of switch encodes the strategy of the
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contestant, so its value will be part of a pDL specification that we study below. Line 1
models the hosts’s non-deterministic choice of the door for the prize. Line 2 models
the door choice of the contestant (uniformly over the 3 doors). Lines 3–6 model the
selection of the door to open, from the non-selected doors by the contestant. Lines 7–10
model whether the contestant switches door or not. For clarity and to reduce the size
of the program, in lines 6 and 8, we use a shortcut to compute the door to open and to
switch, respectively. Note that for x, y ∈ {0, 1, 2} the expression z = (2x − y) mod 3
simply returns z ∈ {0, 1, 2} such that z �= x and z �= y. Similarly, in line 4, the expres-
sions y = (x + 1) mod 3, z = (x + 2) mod 3 ensure that y �= x, z �= x and y �= z.
This shortcut computes the doors that the host may open when the contestant’s choice
(line 2) is the door with the prize.

Listing 1.1. Monty Hall Program (Monty_Hall)

1 prize := 0 � (prize := 1 � prize := 2);
2 choice := 0 1/3⊕ (choice:=1 1/2⊕ choice:=2);
3 if (prize = choice)
4 open := (prize+1)%3 � open := (prize+2)%3;
5 else
6 open := (2*prize-choice)%3;
7 if (switch)
8 choice := (2*choice-open)%3
9 else

10 skip

We use pDL to find out the probability of the contestant selecting the door with the prize.
To this end, we check satisfaction of the following formula, and solve it for p.

ε[switch �→ true] |= [Monty_Hall]p(choice = prize). (9)

First, we show that p = min(p0,p1,p2) where each pi is the probability for the differ-
ent locations of the prize. Formally, we use Theorem 8.2 (twice) as follows

ε |= [prize:=0;...]p0
(choice = prize) and

ε |= [prize:=1;...]p1
(choice = prize) and

ε |= [prize:=2;...]p2
(choice = prize) imply

ε |= [Monty_Hall]min(p0,p1,p2)(choice = prize)

For each pi, we compute the probability for each branch of the probabilistic choice. To
this end, we use Theorem 8.1 as follows:

ε |= [choice:=0;...]pi0
(choice = prize) and

ε |= [(choice:=1 1/2⊕ choice:=2);...]pi1
(choice = prize) imply

ε |= [choice:=0 1/3⊕ (choice:=1 1/2⊕ choice:=2);...]1/3·pi0+2/3·pi1
(choice = prize).
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and apply it again for pi1 to resolve the inner probabilistic choice:

ε |= [choice:=1;...]pi10
(choice = prize) and

ε |= [choice:=2;...]pi11
(choice = prize), implies

ε |= [(choice:=1 1/2⊕ choice:=2);...]1/2·pi10+1/2·pi11
(choice = prize)

These steps show that pi = 1/3 ·pi0 +2/3 ·1/2 ·pi10 +2/3 ·1/2 ·pi11 where pi0, pi10
and pi11 are the probabilities for the paths with choice equals to 0, 1 and 2, respectively.

Let us focus on the case p1. This is the case when the prize is behind door 1,
ε[prize �→ 1]. In what follows, we explore the three possible branches of the proba-
bilistic choice. Consider the case where the user chooses door 1, i.e., ε[choice �→ 1]
and

ε |= [if (prize = choice) {s0} else {s1};...]p110
(choice = prize)

where s0 and s1 correspond to lines 4 and 6 in Listing 1.1, respectively. Since ε |=
prize = choice holds and by Theorem 12.1 we derive that

ε |= [s0;...]p110
(choice = prize).

Note that p110 remains unchanged. Statement s1 contains a non-deterministic choice,
so we apply Theorem 8.2 to derive p110 = min(p1100,p1101) where each p110i

correspond to the cases where ε[open �→ 2] and ε[open �→ 0], respectively. Since
switch = true both branches execute line 8, and the probabilities remain the same (The-
orem 12.1). A simple calculation shows that after executing line 8 ε �|= (prize = choice)
for both cases. For instance, consider

ε[open �→ 0] |= [choice := (2*choice-open)%3]p1100
(prize = choice).

By Theorem 11.3 ε[choice �→ (2 ∗ 1 − 0)%3 = 2], which results in prize �= choice.
By the universal lower bound rule (Proposition 3.1) we derive p1100 = 0. The same
derivations show that p1101 = 0, and, consequently, p110 = 0.

The same reasoning shows that prize = choice holds for the cases where choice �= 1
in line 2, i.e., pi0 and pi11—we omit the details as they are analogous to the steps above.
In these cases, by Theorem 11.1 we derive that pi0 = 1 and pi11 = 1. Recall that
p110 = 0 (see above), then we derive that p1 = 1/3 · 1 + 2/3 · 1/2 · 0 + 2/3 · 1/2 · 1.
Consequently, p1 = 1/3 + 1/3 = 2/3. Analogous reasoning shows that all pi = 2/3.

To summarize, the probability of choosing the door with the prize when switch-
ing is at most 2/3. In other words, we have proven that switching door maximizes the
probability of winning the prize.

9.2 Convergence of a Bernoulli Random Variable

We use pDL to study the convergence of a program that estimates the expectation of a
Bernoulli random variable. To this end, we compute the probability that an estimated
expectation is above an error threshold δ > 0. This type of analysis may be of practical
value for verifying the implementation of estimators for statistical models.

Consider the following pGCL program for estimating the expected value of a
Bernoulli random variable (Technically the program computes the number of successes
out of n trials, and we will put the estimation into the post-condition):
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Listing 1.2. Bernoulli Program (Bernoulli)

1 i := 0; c := 0;
2 while (i < n) {
3 s := 0 μ⊕ s := 1;
4 c := c + s;
5 i := i + 1
6 }

Intuitively, Bernoulli computes the average of n Bernoulli trials Xi with mean μ, i.e.,
X =

∑
i Xi/n. It is well-known that E[X] = μ (e.g., [28]). Each Xi can be seen

as a sample or measurement to estimate μ. A common way to study convergence is
to check the probability that the estimated mean X is within some distance δ > 0 of
μ, i.e., Pr(|X − μ| > δ). In Bernoulli, a sample Xi corresponds to the execution of
the probabilistic choice μ⊕ in line 3 of Listing 1.2. After running all loop iterations,
variable c contains the sum of all the samples, i.e., c =

∑
i Xi. Thus, X is equivalent

to c/n and the specification of convergence can be written as Pr(|c/n − μ| > δ). Note
that this specification is independent of the implementation of the program. The same
specification can be used for any program estimating μ—by simply replacing X with
the term estimating μ in the program.

In pDL, we can study the convergence of this estimator by checking

ε |= [Bernoulli]p(|c/n − μ| > δ)

for some value of μ ∈ [0, 1], δ > 0 and n ∈ N. Note that, since the program contains
no non-determinism, p = Pr(|X − μ| > δ). We describe the reasoning to compute p.

First, note that the while-loop in Bernoulli is bounded. Therefore, we can replace it
with a sequence of n iterations of the loop body. Let si denote the ith iteration of the
loop (lines 3–4 in Listing 1.2). We omit for brevity the assignments in line 1 of Listing
1.2 and directly proceed with a state ε[c �→ 0, i �→ 0]. Consider the first iteration of the
loop, i.e., i = 0. By Theorem 12.3 we can derive

ε |= [if (0 < n) {s0; while (i < n) {s1}} else {skip}}]p(|c/n − μ| > δ).

Assume ε |= 0 < n holds, then by Theorem 12.1 we derive

ε |= [s0; while (i < n) {s1}]p(|c/n − μ| > δ).

By applying the above rules repeatedly we can rewrite Bernoulli as

ε |= [s0;...;sn−1;skip]p(|c/n − μ| > δ)

with the skip added in the last iteration of the loop by Theorem 12.3 and 12.2.
Second, we compute the value of p for a possible path of Bernoulli. Consider the

case when c = 0 after executing the program. That is,

ε |= [s0;...;sn−1;skip]p(c = 0).

This only happens for the path where the probabilistic choice is resolved as c:=0 for all
loop iterations. Applying Theorem 10 we derive

If |= (c = 0) → [s1;. . .;sn−1;skip]p′(c = 0), then
ε |= [s0; . . . ; sn−1; skip]Eεp′↓(c=0)(c = 0).
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Here Eε is computed over Ms0 (cf. Theorem 10). For Bernoulli, this expectation is
computed over the two paths resulting from the probabilistic choice in Listing 1.2, line
3. Since only the left branch satisfies c = 0 and it is executed with probability μ,
then Eεp

′ = μp′. Applying this argument for each iteration of the loop we derive that
ε |= [s0;...;sn−1;skip;]p(c = 0) holds for p = μn. Similarly, consider the case where
c = 1 after running all iterations of the loop, due to the first iteration resulting in c:=1
and the rest c:=0. Then, we apply Theorem 10 as follows

If |= (c = 1) → [s1;. . .;sn−1;skip]p′(c = 1), then
ε |= [s0; . . . ; sn−1; skip]Eεp′↓(c=1)(c = 1).

In this case, Eεp
′ = (1−μ)p′, as the probability of c = 1 is (1−μ) (cf. Listing 1.2 line

3). Since, in this case, the remaining iterations of the loop result in c:=0, and from our
reasoning above, we derive that p′ = μn−1. Hence, p = (1 − μ)μn−1. In general,
by repeatedly applying these properties, we can derive that the probability of a path is
μi(1 − μ)j where i is the number loop iterations resulting in c:=0 and j the number of
loop iterations resulting in c:=1.

Fig. 3. Convergence of Bernoulli random variable with µ = 0.5.

Now we return to our original problem ε |= [Bernoulli]p(|c/n − μ| > δ). Recall
from Definition 2 that p is the sum of the probabilities over all the paths that satisfy
the post-condition. Bernoulli has 2n paths (two branches per loop iteration). Therefore,
we conclude that p =

∑
i∈Φ μzeros(i)(1 − μ)ones(i) where zeros(·), ones(·) are functions

returning the number of zeros and ones in the binary representation of the parameter,
respectively, and Φ = { i ∈ 2n | |ones(i)/n − μ| > δ } enumerates all paths in the
program satisfying the post-condition. Note that the binary representation of 0, . . . , 2n

conveniently captures each of the possible executions of Bernoulli.
The result above is useful to examine the convergence of Bernoulli. It allows

us to evaluate the probability of convergence for increasing number of samples and
different values of μ and δ. As an example, Fig. 3 shows the results for μ = 0.5,
δ ∈ {0.1, 0.2, 0.4} and up to n = 20 iterations of the loop. The dotted and dashed lines
in the figure show that with 20 iterations the probability of having an error δ > 0.2 is
less than 5%. However, for an error δ > 0.1 the probability increases to more than 20%.
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10 Conclusion

This paper has proposed pDL, a specification language for probabilistic programs—the
first dynamic logic for probabilistic programs written in pGCL. Like pGCL, pDL con-
tains probabilistic and demonic choice. Unlike pGCL, it includes programs as first-order
entities in specifications and allows forward reasoning capabilities as usual in dynamic
logic. We have defined the model-theoretic semantics of pDL and shown basic properties
of the newly introduced p-box modality. We demonstrated the reasoning capabilities on
two well-known examples of probabilistic programs. In the future, we plan to develop
a deductive proof system for pDL supported by tools for (semi-)automated reasoning
about pGCL programs. Furthermore, the current definition of pDL gives no syntax to
the expectations. Batz et al. propose a specification language for real-valued functions
that is closed under the construction of weakest pre-expectations [20]; such a language
could be used to express assertions for pGCL programs. It would be interesting to inte-
grate these advances into pDL.
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Abstract. Secure computations enable us to obtain the output value
of a predetermined function while keeping its input values secret. Card-
based cryptography realizes secure computations using a deck of phys-
ical cards. Because each input bit is typically encoded with two cards,
an obvious lower bound on the number of required cards is 2n when
securely computing an n-input Boolean function. Although card-based
protocols often require helping cards (aside from 2n cards needed for
input), there exist several protocols that require no helping card, namely,
helping-card-free protocols. For example, there are helping-card-free pro-
tocols for several fundamental functions, such as the AND, XOR, and
three-input majority functions. However, in general, it remains an open
problem whether all Boolean functions have their helping-card-free pro-
tocols. In this study, we focus our attention on symmetric functions:
Whereas the best known result is that any n-input symmetric function
can be securely computed using two helping cards, we present a helping-
card-free protocol for an arbitrary n-input symmetric function such that
n > 7. Because much attention has been drawn to constructing card-
based protocols using the minimum number of cards, our protocol, which
is card-minimal, would be of interest to the research area of card-based
cryptography.

Keywords: Card-based cryptography · Secure computation · Real-life
hands-on cryptography · Symmetric function

1 Introduction

A secure computation, whose concept was first brought by Yao’s seminal
paper [38], enables us to obtain the output value of a predetermined function
while keeping the input values secret. Various techniques for secure computations
have been proposed so far (cf. [5]). While “computer-based (digital)” secure com-
putations have been mainly studied and developed, “physical-tool-based” secure
computations, such as using seals [27], balls [18], PEZ dispensers [1,3,28], flash
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lights [13], coins [12], and a deck of cards [20,21], have also been studied. Physical
methods have a couple of advantages over computer-based methods; lay-people
do not need to trust black boxes contained in computers and/or software, and
the correctness and security of physical-tool based protocols tend to be easily
understood without specialized knowledge. In this study, we focus on card-based
cryptography, which uses a deck of physical cards to perform secure computa-
tions; refer to [9,10,25,34] for surveys.

1.1 What is Card-Based Cryptography?

Since Den Boer [4] invented the five-card trick in 1989, many card-based cryp-
tographic protocols have been proposed. In these protocols, a one-bit value is
usually encoded by a pair of cards ♣ and ♥ , as follows:

♣ ♥ = 0, ♥ ♣ = 1. (1)

According to Eq. (1), when two face-down cards ? ? (whose face side is either
♣ ♥ or ♥ ♣ ) encode a bit x ∈ {0, 1}, we call them a commitment to x, which
is expressed as:

? ?
︸︷︷︸

x

.

A card-based cryptographic protocol, or simply a protocol, takes commit-
ments as input to perform a secure computation. For example, the aforemen-
tioned five-card trick [4], which is a five-card protocol as the name suggests,
takes commitments to a, b ∈ {0, 1} and one helping card ♥ as input:

? ?
︸︷︷︸

a

? ?
︸︷︷︸

b

♥ .

By applying some actions on the sequence of these five cards, such as rearrang-
ing, shuffling, and turning over cards, this protocol reveals only the value a ∧ b
of the AND function.

Another example is the secure NOT computation, which must be the simplest
among all the existing protocols: Given a commitment to x ∈ {0, 1}, switching the
left and right cards of the commitment brings a commitment to its negation x:

1

?
2

?
︸︷︷︸

x

→
2

?
1

?
︸︷︷︸

x

,

where we attach the numbers above to the cards for the sake of convenience, so
as to display how the cards are rearranged.

1.2 Helping-Card-Free Protocols

One of the most attractive topics in card-based cryptography is to design card-
minimal protocols that use the minimum number of cards. As most of the exist-
ing protocols follow the encoding rule (1) above (which is a “two-card-per-bit”
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encoding), this paper also focuses only on protocols whose inputs are given
according to Eq. (1). Therefore, since a one-bit value is encoded by two cards,
any protocol for an n-input Boolean function f : {0, 1}n → {0, 1} uses at least 2n
cards. That is, such a protocol takes n commitments to x1, x2, . . . , xn ∈ {0, 1},

? ?
︸︷︷︸

x1

? ?
︸︷︷︸

x2

· · · ? ?
︸︷︷︸

xn

, (2)

as input. If an n-input protocol does not use any (helping) card aside from the 2n
cards for the input commitments as in Eq. (2), we call it a helping-card-free pro-
tocol. For example, the five-card trick [4] mentioned in Sect. 1.1 is not a helping-
card-free protocol because it requires one helping card ♥ to securely compute the
AND function. Thus, a helping-card-free protocol for an n-input Boolean func-
tion f takes only 2n commitments (as in Eq. (2)) as input, and outputs only the
value of f(x1, x2, . . . , xn) after applying a series of actions such as shuffling and
turning over cards. Note that any helping-card-free protocol is automatically a
card-minimal protocol. This paper mainly deals with helping-card-free protocols
(within the standard1 computation model of card-based cryptography [24,25]).

To the best of our knowledge, the first helping-card-free protocol in history
(other than the obvious NOT computation seen above) is the XOR protocol [26],
invented in 2009, which securely computes the XOR function using only two
commitments to a, b ∈ {0, 1}:

? ?
︸︷︷︸

a

? ?
︸︷︷︸

b

→ · · · → ? ?
︸︷︷︸

a⊕b

.

Since the output of this protocol is a commitment to a ⊕ b, the protocol can
be repeated n − 1 times to obtain a commitment to x1 ⊕ x2 ⊕ · · · ⊕ xn from
n commitments to x1, x2, . . . , xn (where we set (a, b) = (x1, x2), (a, b) = (x1 ⊕
x2, x3), and so on). Therefore, we immediately have a helping-card-free n-input
XOR protocol.

Next came the AND protocol [23] proposed in 2012. This protocol does not
produce a commitment to a ∧ b, but later in 2015, Koch et al. [11] constructed
a helping-card-free AND protocol that outputs a commitment:

? ?
︸︷︷︸

a

? ?
︸︷︷︸

b

→ · · · → ? ?
︸︷︷︸

a∧b

.

Since the output is a commitment, a helping-card-free n-input AND protocol can
be constructed in a similar manner. Independently of this protocol, a helping-
card-free n-input AND protocol was developed in 2016 [19]. Recently, a simpler
helping-card-free 3-input AND protocol has also been devised [7].

As for functions other than AND and XOR, a helping-card-free protocol for
the 3-input majority function has been constructed very recently [37]. Also, there

1 There is another computation model where private actions are allowed, e.g. [2,14–
17,29,32].
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are helping-card-free protocols for the 3-input equality Boolean function (that
outputs 1 when x1 = x2 = x3 and 0 otherwise) [6,35].

Ruangwises and Itoh [33] designed a helping-card-free protocol for any func-
tion in the class of the so-called “doubly symmetric” Boolean functions. Note
that an n-input Boolean function f : {0, 1}n → R with some set R as its range
is said to be symmetric if for any i, j, 1 ≤ i, j ≤ n, the following holds:

f(x1, . . . , xi, . . . , xj , . . . , xn) = f(x1, . . . , xj , . . . , xi, . . . , xn),

and that an n-input Boolean function f : {0, 1}n → R is said to be doubly
symmetric if f is symmetric and the following holds:

f(x1, x2, . . . , xn) = f(x1, x2, . . . , xn).

For example, the equality Boolean functions are doubly symmetric.
We have reviewed the existing helping-card-free protocols.

1.3 Contribution

As seen in Sect. 1.2, in the literature, we already have helping-card-free protocols
for the limited classes of functions, such as the n-input AND and XOR functions
and the doubly symmetric Boolean functions. Because the class of symmetric
Boolean functions contains all these functions as well as many other important
Boolean functions (such as threshold functions), a natural question is: Can one
construct a helping-card-free protocol for any symmetric Boolean function?

As an upper bound on the number of required helping cards, in 2015, Nishida
et al. [30] proved that two helping cards are sufficient for any n-input symmetric
Boolean function f : {0, 1}n → {0, 1} to be securely computed. Ruangwises and
Itoh [33] extended the result to any range R, i.e., they constructed a two-helping-
card protocol for any n-input symmetric Boolean function f : {0, 1}n → R,
where R is any set. Anyway, it is still open to determine whether one can obtain
a protocol for any n-input symmetric Boolean function using fewer than two
helping cards.

In this paper, we tackle this open problem. Namely, we aim to design a
helping-card-free protocol for symmetric Boolean functions. Specifically, we will
provide a generic construction of a helping-card-free protocol for an arbitrary
n-input symmetric Boolean function f : {0, 1}n → {0, 1} such that n ≥ 8.
Therefore, we give a partial answer to the open problem.

Our generic construction relies on the two novel sub-protocols, which will
be presented in Sect. 3. The first sub-protocol transforms two commitments (to
a, b ∈ {0, 1}) into the result of their addition (namely, a + b) without any help-
ing card; in addition, it produces one “free” card, which is very useful because
such “free” cards can be used as helping cards in another protocol. Because the
result of addition is obtained as an integer in a different encoding, the second
sub-protocol transforms such an integer into commitments; in other words, it
“binarizes” an integer. Making use of these two sub-protocols along with other
existing protocols, we will design a generic protocol in Sect. 4. Before Sects. 3 and
4, we give some preliminaries in Sect. 2, and we conclude this paper in Sect. 5.
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2 Preliminaries

In this section, we introduce a property of the symmetric functions and some of
the existing protocols. Hereinafter, a symmetric Boolean function f : {0, 1}n →
{0, 1} is simply called a symmetric function.

2.1 Property of Symmetric Functions

Let f : {0, 1}n → {0, 1} be a symmetric function, and let xi ∈ {0, 1} for every
i, 1 ≤ i ≤ n. It is well-known that the value of f(x1, . . . , xn) depends only
on the summation of the inputs, i.e.,

∑n
i=1 xi. That is, there exists a function

g : {0, 1, . . . , n} → {0, 1} such that

f(x1, . . . , xn) = g

(

n
∑

i=1

xi

)

. (3)

This implies that computing the summation
∑n

i=1 xi is one way for computing
the symmetric function f .

2.2 Half Adder Protocol and Full Adder Protocol

A half-adder protocol is useful when computing the summation described in
Sect. 2.1. The first card-based half-adder protocol was presented in 2013 [22].
After that, Nishida et al. [30] improved it by proposing a half-adder protocol
with two helping cards:

? ?
︸︷︷︸

a

? ?
︸︷︷︸

b

♣ ♥ → · · · → ? ?
︸︷︷︸

a∧b

? ?
︸︷︷︸

a⊕b

♣ ♥ .

A full-adder protocol using four helping cards was presented in 2013 [22]:

? ?
︸︷︷︸

a

? ?
︸︷︷︸

b

? ?
︸︷︷︸

c

♣ ♥ ♣ ♥ → · · · → ? ?
︸︷︷︸

(a∧b)∨(b∧c)∨(c∧a)

? ?
︸︷︷︸

a⊕b⊕c

♣ ♥ ♣ ♥ ♣ ♥ .

2.3 Protocol for Symmetric Functions with Two Helping Cards

In 2015, Nishida et al. [30] invented a protocol for any symmetric function using
two helping cards (as mentioned in Sect. 1.3). Given n commitments and two
helping cards,

? ?
︸︷︷︸

x1

? ?
︸︷︷︸

x2

· · · ? ?
︸︷︷︸

xn

♣ ♥ ,

their protocol produces a sequence of commitments that represents the binary
representation of the summation,

? ? ? ? · · · ? ?
︸ ︷︷ ︸

(
∑n

i=1 xi)2

,
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using the half-adder protocol introduced in Sect. 2.2; then, their protocol com-
putes g(

∑n
i=1 xi) as in Eq. (3) using that sequence. Here, for a nonnegative

integer i ∈ {0, 1, . . . , �}, we denote the binary representation of i by (i)2, which
is represented as 
log2(� + 1)� commitments written as

? ? ? ? · · · ? ?
︸ ︷︷ ︸

(i)2

.

The range of the protocol above is {0, 1}, whereas Ruangwises and Itoh [33]
constructed a protocol for a symmetric function f : {0, 1}n → R with an arbi-
trary range R using two helping cards (as also mentioned in Sect. 1.3). Their pro-
tocol used the following ♣-position and ♥-position encodings (the ♣-pos. encod-
ing and the ♥-pos. encoding for short, respectively). In the ♣-pos. encoding, for
k ≥ 2, one ♣ and k − 1 ♥ s are used to represent an integer i (0 ≤ i ≤ k − 1) by
placing ♣ at the (i + 1)-st position as follows:

1

♥
2

♥ ...
i+1

♣ ...
k

♥ .

In the following, we denote such a sequence of face-down cards by E♣
k (i), and

write it as follows:
? ? ? · · · ?
︸ ︷︷ ︸

E♣
k (i)

.

The ♥-pos. encoding and E♥
k (i) are defined in the same way with the colors (i.e.,

suits) reversed.

2.4 Addition of Position Encodings

Ruangwises and Itoh [33] proposed the following method for adding two integers
represented in the pos. encodings.2

1. Assume that we have E♣
k (a) and E♥

k (b) for two integers a, b. For convenience,
we name each card as follows:

E♣
k (a) : ?

x0

?
x1

· · · ?
xk−1

, E♥
k (b) : ?

y0

?
y1

· · · ?
yk−1

.

2. Rearrange the sequences as follows:

?
x0

yk−1

? ?
x1

yk−2

? · · · ?
xk−1

y0

? .

3. Apply a random 2-section cut (also known as a pile-shifting shuffle [31]) to
this sequence. Here, a random 2-section cut means to make each pair of cards
into a single bundle and shuffle all the bundles cyclically. Thus, for a random
number r, the sequence changes as follows:
[

?
x0

yk−1

?

∣

∣

∣

∣
?
x1

yk−2

?

∣

∣

∣

∣
· · ·

∣

∣

∣

∣
?

xk−1

y0

?

]

→
[

?
x0+r

yk−1−r

?

∣

∣

∣

∣
?

x1+r

yk−2−r

?

∣

∣

∣

∣
· · ·

∣

∣

∣

∣
?

xk−1+r

y0−r

?

]

.

2 This method is originated from the previous protocol [36] proposed by Shinagawa et
al.
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4. Rearrange them back to the first place as follows:

E♣
k (a − r) : ?

x0+r

?
x1+r

· · · ?
xk−1+r

, E♥
k (b + r) : ?

y0−r

?
y1−r

· · · ?
yk−1−r

,

where a is subtracted by the random number r and b is added by r.
5. Turn over E♥

k (b+r) and shift E♣
k (a−r) cyclically to the right by the revealed

number, i.e., add b+ r to a− r; when revealing E♥
k (b+ r), the value of b does

not leak because a random value r was added to b:

E♣
k (a − r) : ?

x0+r

?
x1+r

· · · ?
xk−1+r

→ E♣
k (a + b) : ?

x0−b

?
x1−b

· · · ?
xk−1−b

.

This enables a secure computation of (a−r)+(b+r) = a+b without leaking
the values of a and b. That is, E♣

k (a+ b) is obtained. Here, we did an addition of
the ♣-pos. encoding and the ♥-pos. encoding, but other combinations are also
feasible.

3 Building Blocks

Before describing our proposed protocol in the next section, we present two novel
sub-protocols, which will be used in the proposed protocol as building blocks.

3.1 Addition of Two Commitments

To construct our proposed protocol, we first compute the summation of inputs
as implied in Sect. 2.1. For this, we propose the following addition protocol to
compute a+b from commitments to a, b ∈ {0, 1} without the need of any helping
card3. That is, somewhat surprisingly, this novel sub-protocol is helping-card-
free.

1. Apply a random bisection cut [26] (denoted by [· · · | · · · ]) to the sequence of
the commitments to a and b as follows:

? ?
︸︷︷︸

a

? ?
︸︷︷︸

b

→ [ ? ? | ? ? ] → ? ? ? ? .

Here, a random bisection cut is to halve a sequence and shuffle the two halves
randomly.

2. Shuffle the two cards in the middle as follows:

? [ ? | ? ] ? → ? ? ? ? .

3 This protocol is inspired by the Mizuki–Kumamoto–Sone AND protocol [23]; the
procedure is the same up to the middle.
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3. Reveal the second card from the left; then, either ♣ or ♥ appears with a
probability of 1/2:

? ?
↑

Reveal

? ? .

(a) If ♣ appears, rearrange the sequence to obtain a+b in the ♣-pos. encoding,
i.e., E♣

3 (a + b), as follows:

1

?
2

♣
3

?
4

? →
1

?
3

?
4

?
︸ ︷︷ ︸

E♣
3 (a+b)

2

♣ .

(b) If ♥ appears, rearrange the sequence to obtain a+b in the ♥-pos. encoding,
i.e., E♥

3 (a + b), as follows:

1

?
2

♥
3

?
4

? →
4

?
3

?
1

?
︸ ︷︷ ︸

E♥
3 (a+b)

2

♥ .

We call this protocol the helping-card-free two-commitment addition. The
correctness and security of this addition protocol can be proved by drawing the
so-called KWH-tree [8,11]. We depict its KWH-tree in Fig. 1.

As seen above, we obtain either E♣
3 (a + b) or E♥

3 (a + b) (with a probability
of 1/2) as well as one free card from the commitments to a and b.

3.2 Binarization of Position Encoding

Our second novel sub-protocol is to “binarize” an integer in the position encod-
ing. Let 0 ≤ i ≤ 3; given E♣

4 (i) and four helping cards, this sub-protocol produces
commitments to (i)2. (A protocol for E♥

4 (i) can be constructed in a similar way.)

1. Turn the four helping cards face down (resulting in two commitments to 0
because of the encoding rule (1)):

? ? ? ?
︸ ︷︷ ︸

E♣
4 (i)

♣ ♥ ♣ ♥ → ? ? ? ?
︸ ︷︷ ︸

E♣
4 (2u+v)

? ?
︸︷︷︸

0

? ?
︸︷︷︸

0

.

Here, we introduce u, v ∈ {0, 1} such that i = 2u + v, i.e., u and v are the
most and least significant bits of (i)2, respectively.

2. Shuffle E♣
4 (2u + v) and the middle commitment to 0 “synchronously” as

follows.
(a) Rearrange the sequence as follows:

1

?
2

?
3

?
4

?
︸ ︷︷ ︸

E♣
4 (2u+v)

5

?
6

?
︸︷︷︸

0

7

?
8

?
︸︷︷︸

0

→
1

?
2

?
5

?
3

?
4

?
6

?
7

?
8

?
︸︷︷︸

0

.
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Fig. 1. KWH-tree of the helping-card-free two-commitment addition. Here, X0 = X00,
X1 = X01 + X10, and X2 = X11.

(b) Apply a random bisection cut to the first six cards:

[ ? ? ? | ? ? ? ] ? ? → ? ? ? ? ? ? ? ? .

(c) Rearrange the sequence as follows:

1

?
2

?
3

?
4

?
5

?
6

?
7

?
8

? →
1

?
2

?
4

?
5

?
︸ ︷︷ ︸

E♣
4 (2(u⊕r1)+v)

3

?
6

?
︸︷︷︸

r1

7

?
8

?
︸︷︷︸

0

.

Here, a random bit r1 ∈ {0, 1} is added to u and the middle commitment
to 0 because of the random bisection cut in Step 2b.

3. Shuffle E♣
4 ((2u ⊕ r1) + v) and the right commitment to 0 “synchronously” as

follows.
(a) Rearrange the sequence as follows:

1

?
2

?
3

?
4

?
︸ ︷︷ ︸

E♣
4 (2(u⊕r1)+v)

5

?
6

?
︸︷︷︸

r1

7

?
8

?
︸︷︷︸

0

→
1

?
3

?
7

?
2

?
4

?
8

?
5

?
6

?
︸︷︷︸

r1

.

(b) Apply a random bisection cut to the first six cards:

[ ? ? ? | ? ? ? ] ? ? → ? ? ? ? ? ? ? ? .



Card-Minimal Protocols for Symmetric Boolean Functions 397

Table 1. How to swap commitments in Step 5 of the binarization protocol

Revealed seq. Binary Swapping

♣ ♥ ♥ ♥
︸ ︷︷ ︸

E♣
4 (0)

(0, 0) ? ? ? ?

♥ ♣ ♥ ♥
︸ ︷︷ ︸

E♣
4 (1)

(0, 1) ? ? ? ?
Swap

♥ ♥ ♣ ♥
︸ ︷︷ ︸

E♣
4 (2)

(1, 0) ? ?
Swap

? ?

♥ ♥ ♥ ♣
︸ ︷︷ ︸

E♣
4 (3)

(1, 1) ? ?
Swap

? ?
Swap

(c) Rearrange the sequence as follows:

1

?
2

?
3

?
4

?
5

?
6

?
7

?
8

?
︸︷︷︸

r1

→
1

?
4

?
2

?
5

?
︸ ︷︷ ︸

E♣
4 (2(u⊕r1)+(v⊕r2))

7

?
8

?
︸︷︷︸

r1

3

?
6

?
︸︷︷︸

r2

.

Here, a random bit r2 ∈ {0, 1} is added to v and the right commitment
to 0 because of applying the random bisection cut in Step 3b.

4. Reveal E♣
4 (2(u ⊕ r1) + (v ⊕ r2)):

? ? ? ?
︸ ︷︷ ︸

Reveal

? ? ? ? .

5. From the revealed integer value in the previous step, obtain commitments to
(i)2 by swapping (or not swapping) the commitments to r1 and r2 as shown in
Table 1: Consider commitments to the binary representation of the revealed
integer value (i.e., the second column of the table); if we have 1 among the
two-bit sequence, we swap the corresponding commitment; if we have 0, we
do not swap the commitment. By rearranging the sequence in this way, we
obtain

? ?
︸︷︷︸

u

? ?
︸︷︷︸

v

, i.e., ? ? ? ?
︸ ︷︷ ︸

(i)2

.

For example, if E♣
4 (2) appears by revealing the sequence in Step 4 as

♥ ♥ ♣ ♥
︸ ︷︷ ︸

E♣
4 (2)

? ?
︸︷︷︸

r1

? ?
︸︷︷︸

r2

,

we swap the middle commitment to r1, but do not swap the right commitment
as follows:

♥ ♥ ♣ ♥
︸ ︷︷ ︸

E♣
4 (2)

? ?
Swap

? ? → ♥ ♥ ♣ ♥ ? ? ? ?
︸ ︷︷ ︸

(i)2

.
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Fig. 2. KWH-tree of our binarization protocol. Note that the probability of the input
sequence being E♣

4 (i) is Xi.

The correctness and security of this protocol can be confirmed by drawing its
KWH-tree depicted in Fig. 2. We believe that this sub-protocol is of independent
interest.

4 Our Proposed Protocol

We are ready to describe our proposed protocol for securely computing any
symmetric function f : {0, 1}n → {0, 1} such that n ≥ 8. Let us assume that
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n = 8 for simplicity (the protocol can be easily extended to the case of n ≥ 9).
Thus, the input to the protocol is a sequence of 16 cards:

? ?
︸︷︷︸

x1

? ?
︸︷︷︸

x2

? ?
︸︷︷︸

x3

? ?
︸︷︷︸

x4

? ?
︸︷︷︸

x5

? ?
︸︷︷︸

x6

? ?
︸︷︷︸

x7

? ?
︸︷︷︸

x8

.

An overview of our protocol is as follows.

1. Add the inputs to obtain sequences of x1 +x2 +x7, x3 +x4, and x5 +x6 +x8

using our helping-card-free two-commitment addition proposed in Sect. 3.1
and the existing addition protocol introduced in Sect. 2.4 (Sect. 4.1).

2. Binarize the sequences obtained above using our binarization protocol pro-
posed in Sect. 3.2 (Sect. 4.2).

3. Add the binarized sequences using the existing full-adder protocol introduced
in Sect. 2.2 (Sect. 4.3).

4.1 Adding the Inputs

Computing x1+x2. First, we obtain a sequence of x1+x2 from the commitments
to x1 and x2 using our helping-card-free two-commitment addition described in
Sect. 3.1. For the sake of explanation, let us assume that the addition result
is obtained in the ♣-pos. encoding, i.e., we obtain E♣

3 (x1 + x2) without loss
of generality. In this case, one free card ♣ is also obtained. In summary, the
resulting sequence is as follows:

? ? ?
︸ ︷︷ ︸

E♣
3 (x1+x2)

♣ ? ?
︸︷︷︸

x3

? ?
︸︷︷︸

x4

· · · ? ?
︸︷︷︸

x8

.

Computing x3+x4. We apply the helping-card-free two-commitment addition to
obtain a sequence of x3 +x4. Here, we have two possible cases with a probability
of 1/2 as follows.

1. If the revealed card is ♥, the resulting sequence is as follows:

? ? ?
︸ ︷︷ ︸

E♣
3 (x1+x2)

♣ ? ? ?
︸ ︷︷ ︸

E♥
3 (x3+x4)

♥ ? ?
︸︷︷︸

x5

· · · ? ?
︸︷︷︸

x8

.

2. If it is ♣, the resulting sequence is as follows:

? ? ?
︸ ︷︷ ︸

E♣
3 (x1+x2)

♣ ? ? ?
︸ ︷︷ ︸

E♣
3 (x3+x4)

♣ ? ?
︸︷︷︸

x5

· · · ? ?
︸︷︷︸

x8

.
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In the former case, we have ♣ ♥ as free cards. In the latter case, we have
♣ ♣ as free cards.

Computing x5+x6. For each of the two cases described in the previous paragraph,
an addition is done as follows.

Case 1: We have free cards ♣ ♥ .
We use the helping-card-free two-commitment addition for computing x5 + x6.
Without loss of generality, let us assume that ♣ appears in this computation.
Thus, the resulting sequence is as follows:

? ? ?
︸ ︷︷ ︸

E♣
3 (x1+x2)

? ? ?
︸ ︷︷ ︸

E♥
3 (x3+x4)

? ? ?
︸ ︷︷ ︸

E♣
3 (x5+x6)

♣ ♣ ♥ ? ?
︸︷︷︸

x7

? ?
︸︷︷︸

x8

. (4)

Case 2: We have free cards ♣ ♣ .
We want to acquire a free card ♥ (which is a different color from the current
free cards) via the computation of x5 + x6. To achieve this, we use the existing
addition protocol introduced in Sect. 2.4 to compute x5 + x6 while generating a
♥ . Remember that the current sequence is:

? ? ?
︸ ︷︷ ︸

E♣
3 (x1+x2)

♣ ? ? ?
︸ ︷︷ ︸

E♣
3 (x3+x4)

♣ ? ?
︸︷︷︸

x5

· · · ? ?
︸︷︷︸

x8

.

Recall that the commitments to x5 and x6 are encoded by:

♣ ♥ = 0, ♥ ♣ = 1.

This can be viewed as representing an integer value at the position of ♣ ,
i.e., E♣

2 (x5) or E♣
2 (x6). If we swap the two cards comprising each commitment,

they are commitments to x5 and x6 and can be viewed as E♥
2 (x5) and E♥

2 (x6),
respectively, because they represent values at the position of ♥ . In this case,
adding a ♣ to the rightmost does not change the value represented, resulting in
E♥

3 (x5) and E♥
3 (x6). Based on this, we compute x5 + x6 as follows4.

1. Place each of the two ♣ s on the right of the commitments to x5 and x6 as
follows:

? ?
︸︷︷︸

x5

♣ ? ?
︸︷︷︸

x6

♣ .

Then, turn over the face-up cards to have E♥
3 (x5) and E♥

3 (x6):

? ? ?
︸ ︷︷ ︸

E♥
3 (x5)

? ? ?
︸ ︷︷ ︸

E♥
3 (x6)

.

4 The idea of adding two pos. encodings of the same color was suggested by Kazumasa
Shinagawa.
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2. Apply the existing addition protocol introduced in Sect. 2.4 to the sequence
to obtain E♥

3 (x5 + x6):

? ? ?
︸ ︷︷ ︸

E♥
3 (x5)

? ? ?
︸ ︷︷ ︸

E♥
3 (x6)

→ ? ? ?
︸ ︷︷ ︸

E♥
3 (x5+x6)

♣ ♣ ♥ .

(Note that ♣ ♣ ♥ appear as free cards because the three cards in the ♥-pos.
encoding are revealed.) In summary, the whole sequence is as follows:

? ? ?
︸ ︷︷ ︸

E♣
3 (x1+x2)

? ? ?
︸ ︷︷ ︸

E♣
3 (x3+x4)

? ? ?
︸ ︷︷ ︸

E♥
3 (x5+x6)

♣ ♣ ♥ ? ?
︸︷︷︸

x7

? ?
︸︷︷︸

x8

. (5)

Thus, we have two possibilities of the current sequence (4) or (5). Hereinafter,
we assume the sequence (5); the case for the sequence (4) will be easily handled
just by exchanging “x3 + x4” and “x5 + x6” in the sequel.

Addition of x1 + x2 and x7. As shown above, we have now three free cards
♣ ♣ ♥ 5. Next, we add E♣

3 (x1+x2) to the commitment to x7 to obtain E♣
4 (x1+

x2 + x7) as follows.

1. Place the free card ♥ on the right of E♣
3 (x1 + x2) and place the two ♣ s on

the right of the commitment to x7 as follows:

? ? ?
︸ ︷︷ ︸

E♣
3 (x1+x2)

♥ ? ?
︸︷︷︸

x7

♣ ♣ .

Recall that the value of x1 + x2 is represented at the position of ♣ in the
sequence, and x7 is represented at the position of ♥ in the commitment.
Therefore, after turning over the face-up cards, each value is represented by
the position encoding as follows:

? ? ? ?
︸ ︷︷ ︸

E♣
4 (x1+x2)

? ? ? ?
︸ ︷︷ ︸

E♥
4 (x7)

.

2. Apply the existing addition protocol introduced in Sect. 2.4:

? ? ? ?
︸ ︷︷ ︸

E♣
4 (x1+x2)

? ? ? ?
︸ ︷︷ ︸

E♥
4 (x7)

→ ? ? ? ?
︸ ︷︷ ︸

E♣
4 (x1+x2+x7)

♣ ♣ ♣ ♥ .

In summary, the whole sequence is as follows:

? ? ? ?
︸ ︷︷ ︸

E♣
4 (x1+x2+x7)

? ? ?
︸ ︷︷ ︸

E♣
3 (x3+x4)

? ? ?
︸ ︷︷ ︸

E♥
3 (x5+x6)

♣ ♣ ♣ ♥ ? ?
︸︷︷︸

x8

.

5 Generally, there are two cards of the same color and one card of the other color.
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Addition of x5 +x6 and x8 Now we have four free cards of three ♣ s and one ♥ .
Using them, E♥

3 (x5+x6), and the commitment to x8, we obtain E♥
4 (x5+x6+x8)

in a similar way as in the above paragraph:

? ? ? ?
︸ ︷︷ ︸

E♣
4 (x1+x2+x7)

? ? ?
︸ ︷︷ ︸

E♣
3 (x3+x4)

? ? ? ?
︸ ︷︷ ︸

E♥
4 (x5+x6+x8)

♣ ♣ ♣ ♥ ♥ .

4.2 Binarization

Up to now, we have at least four free cards of two ♣ s and two ♥ s. Using these,
we binarize E♣

4 (x1 +x2 +x7) and E♥
4 (x5 +x6 +x8) by our binarization protocol

proposed in Sect. 3.2.
After that, the resulting sequence is as follows:

? ? ? ?
︸ ︷︷ ︸

(x1+x2+x7)2

? ? ?
︸ ︷︷ ︸

E♣
3 (x3+x4)

? ? ? ?
︸ ︷︷ ︸

(x5+x6+x8)2

♣ ♣ ♣ ♥ ♥ .

4.3 Full Adder and Binarization

Full adder of (x1 + x2 + x7)2 and (x5 + x6 + x8)2. Using the existing full adder
protocol introduced in Sect. 2.2, we add (x1 + x2 + x7)2 to (x5 + x6 + x8)2 with
the free cards of two ♣ s and two ♥ s as follows:

? ? ? ?
︸ ︷︷ ︸

(x1+x2+x7)2

? ? ? ?
︸ ︷︷ ︸

(x5+x6+x8)2

→ ? ? ? ? ? ?
︸ ︷︷ ︸

(x1+x2+x5+x6+x7+x8)2

♣ ♥ .

After that, the whole sequence is as follows:

? ? ? ? ? ?
︸ ︷︷ ︸

(x1+x2+x5+x6+x7+x8)2

? ? ?
︸ ︷︷ ︸

E♣
3 (x3+x4)

♣ ♣ ♣ ♣ ♥ ♥ ♥ .

Binarization of E♣
3 (x3 + x4) and Overall Addition. To obtain commitments to

(x3 +x4)2, we first place a ♥ on the right of E♣
3 (x3 +x4) to obtain E♣

4 (x3 +x4)
as follows:

? ? ?
︸ ︷︷ ︸

E♣
3 (x3+x4)

♥ → ? ? ? ?
︸ ︷︷ ︸

E♣
4 (x3+x4)

.

To summarize the situation, we have

? ? ? ? ? ?
︸ ︷︷ ︸

(x1+x2+x5+x6+x7+x8)2

? ? ? ?
︸ ︷︷ ︸

E♣
4 (x3+x4)

♣ ♣ ♣ ♣ ♥ ♥ .
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Then, we binarize E♣
4 (x3 + x4) using our binarization protocol proposed in

Sect. 3.2. Finally, we add (x3 + x4)2 to (x1 + x2 + x5 + x6 + x7 + x8)2 with
the free cards using the existing full-adder protocol introduced in Sect. 2.2 as
follows:

? ? ? ? ? ?
︸ ︷︷ ︸

(x1+x2+x5+x6+x7+x8)2

? ? ? ?
︸ ︷︷ ︸

E♣
4 (x3+x4)

♣ ♣ ♣ ♣ ♥ ♥

↓
? ? ? ? ? ?
︸ ︷︷ ︸

(x1+x2+x5+x6+x7+x8)2

? ? ? ?
︸ ︷︷ ︸

(x3+x4)2

♣ ♣ ♣ ♥ ♥ ♥

↓
? ? ? ? ? ? ? ?
︸ ︷︷ ︸

(
∑8

i=1 xi)2

♣ ♣ ♣ ♣ ♥ ♥ ♥ ♥ .

Now we have commitments to the summation of the inputs
∑8

i=1 xi. From these
commitments, we compute g(

∑8
i=1 xi) as in Eq. (3).

When n ≥ 9, it suffices to add the remaining commitments to x9, x10, . . . , xn

to the summation
∑8

i=1 xi using the existing half-adder protocol because we
have enough free cards.

5 Conclusion and Future Work

In this study, we proved that any n-input symmetric function such that n ≥ 8
can be securely computed without the need of any helping cards. That is, we
provided a helping-card-free protocol for any n-input symmetric function such
that n ≥ 8. Therefore, our protocol uses the minimum number of cards, i.e., it
is card-minimal.

For the case of n = 2, the existing protocols [11,23,26] immediately imply
that any 2-input symmetric function can be securely computed without any
helping card. Therefore, the remaining open problem is to determine whether
there exists a helping-card-free protocol for any n-input symmetric function such
that 3 ≤ n ≤ 7.
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Abstract. We study a model of interleaving concurrency for higher-
order functional programs with algebraic effects, which can function as a
basis for notions of behavioural equivalence of effectful programs within
concurrent processes. Using the category of relations to describe nonde-
terministic functions, we model runs of programs using trace semantics.
These traces have actions describing possible program-environment inter-
actions. The functor of traces forms both a monad and a comonad in the
category of relations, allowing us to describe programs as both active
computations and passive background processes.

We adapt traditional concurrent interleaving semantics for traces as
an operation in the category of relations, merging two traces into a set of
interwoven traces. These semantics give rise to a runner for the monad,
and in some cases form a monad-comonad interaction law. With this, we
can simulate an environment of concurrent background processes, and
describe the behaviour of a program within such an environment. This
runner for interleaving concurrency is readily composable with runners
for algebraic effects, allowing us to describe a wide variety of different
concurrent effectful scenarios.

Keywords: Algebraic effects · Interleaving concurrency · Stateful
runners · Trace semantics · Program equivalence

1 Introduction

Programs are rarely run in isolation. They are executed in a specific environment,
using its resources and communicating to it. In the mean time, other programs
may be executed in the same environment. How do programs behave in such
circumstances where any line of communication with its environment may be
interfered with by other background processes? In this paper, we aim to develop a
model for describing the behaviour of higher-order functional effectful languages
with such interfering background processes.

Interleaving Algebraic Effects. We study in particular programs with alge-
braic effects [23]. These express interactions with the environment in terms of
algebraic operations. Each operation is a line of communication with the environ-
ment, awaiting a response from the environment and containing a continuation
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for each possible response. Programs are denoted by combinations of nested
operations, which form elements in a monad of inductively generated trees [22].

The evaluation of such programs can be modelled by stateful runners [29],
which consult a global state for handling the operations [24]. This gives us a way
to find the result of a program, dependent on the initial state of the environment.
These runners induce an algebraic theory of equations, relating trees when they
are resolved in the same way in each possible state of the environment.

Complications arise when multiple effectful programs run in parallel, since the
state of the environment may be changed in unpredictable ways. We investigate
such situations using interleaving concurrency, which has been widely studied
in different areas of computer science, including, but not limited to, labelled
transition systems [14], bisimulation [21], and Petri nets [6].

We can apply traditional interleaving semantics, as studied in communication
processes [4,5] and actor semantics [7], to our denotational trees. We work in
the category of relations Rel (e.g. see [17]) and its subcategory of total relations
Rel+, which allow us to express nondeterministic functions. In both categories,
we can transform our trees into collections of traces describing the branches of
the tree, following ideas from trace semantics [12,28]. These traces will consist of
a list of actions followed by either a result, or an exception. These exceptions are
only included if there are nullary operations in the signature of effect operations,
for instance an exception labelled ⊥ for describing divergence.

The interleaving semantics gives a merge operator [25] on the monad of traces
T, merging two traces into a set of “merged” traces. This merge function, called
the parallel operator, satisfies a variety of properties, like symmetry and asso-
ciativity. It gives a binatural transformation if either there are no errors, or we
limit ourselves to Rel+. The parallel operator is however not preserved over
program composition, which is necessary for the specification of a congruent
program equivalence for functional languages. In order to establish preservation
over program composition, we need to investigate a different perspective.

Congruent Program Equivalences. Program equivalences for programming
languages are studied to answer the question: When can a program safely be
replaced by another, without it affecting the behaviour of the entire system? A
program equivalence is a relation on programs, which should provide a sufficient
condition for guaranteeing this “safe replacement”. Program equivalences with
this feature are commonly called congruences.

Relators [16,27] are a common tool for defining notions of program equiva-
lence. They lift relations on return values to relations on denotations of programs
returning those values, following certain considerations of behaviour. They can
be used to define a congruent notion of applicative bisimilarity [1] for effectful
programs, as seen in paper [15]. Motivated by these applications, we use stateful
runners to define relators with the right properties. Particularly, we need such
relators to be preserved over program composition.

In order to recover preservation over program composition, we use a variant
semantics of the parallel operator using strongly focussed parallel operators. This
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variant parallel operator nondeterministically chooses which program to focus
on, whereafter that chosen program has to perform the next step. If that chosen
program is done, the parallel operator is done, regardless of the state of the
program we are currently not focussing on.

This models the situation where one program takes the lead, and the second
program is considered as a background process, as part of the environment. To
accommodate this shift in perspective, we use the interesting fact that the monad
of traces T also forms a comonad in the category of relations, and comonads are
commonly used to model notions of environment [30]. This construction is similar
to the treatment of the exponential modality in linear logic as used in [8,9,20].

Contributions. One of the main contributions of this paper is the discov-
ery that the focussed parallel operator satisfies the equations required by T-
residual monad-comonad interaction laws [13] between T as a monad, and T as
a comonad. If we leave out exceptions, this operation forms an interaction law
in Rel. Regardless of the inclusion of exceptions, the operation induces a state-
ful runner which we call the parallel runner in the category of total relations
Rel+, where the denotation of the second program is part of the state of the
environment.

Combining the parallel runner with runners for modelling algebraic effects,
we get a runner for modelling effectful programs within environments of other
effectful programs running in the background. The parallel runner implements
a program context with a background process, e.g. Run P during Q where Q
is considered as being run in the background. Importantly, Q is not necessarily
evaluated completely, as it may continue to be evaluated after P is done.

The big motivation for this perspective is that runners readily specify relators
with the right properties for inducing congruent notions of program equivalence
for functional languages such as the untyped lambda calculus, following results
from [15]. The final contribution is the development of state-dependent instances
of such relators, which gives rise to a notion of equivalence dependent on the
initial state of the environment, and which moreover allows for fine-tuning what
aspects of the environment state are externally observable. Hence they are a
powerful tool for verifying safety of effectful programs that are evaluated in
parallel with other programs.

Paper Overview. We assume the reader is familiar with basic concepts from
category theory, including but not limited to; natural transformations, monads
and monoidal products. In Sect. 2 we look at the category of relations, and
properties of tree monads used for modelling programs. In Sect. 3, we consider
stateful runners on trees, and how to describe trees as collections of traces. Then,
in Sect. 4, we study a variation on the interleaving concurrent operation, as an
operation in the category of relations. Combining the above, we can construct
runners for a variety of algebraic effects in concurrent environments, and we
study how they induce state-dependent relators in Sect. 5 suitable for formulating
program equivalences. We make some final observations in Sect. 6.
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2 The Category of Total Relations

We will give a brief overview of some of the categorical concepts used in this
paper. We use the category of relations Rel as a basis, which has as objects sets,
and as morphisms relations between them. The space of morphisms from X to
Y is denoted by X ⊸ Y , and contains relations R relating elements from X to
elements from Y . Such a relation can be given multiple representations:

1. a relation is a subset of X × Y . This is used mainly in relational reasoning.
2. a relation is a set-theoretic function from X to the powerset P(Y ), called a

nondeterministic function. This is a common model for nondeterminism.

We write xR y to say R relates x to y, and R(x) for the set {y ∈ Y ∣xR y} ∈P(Y ).
The identity relation on X is denoted as IX , where x IXx′ if x=x′, and relation
composition as R;S, where xR;S z if there is a y such that xR y and y S z. We
write ι for the identity natural transformation, where ιX = IX .

We focus on two important properties a relation can have, which are satisfied
by the identity relation, and preserved under composition.

– R : X⊸Y is total if for any x ∈ X, there is a y ∈ Y such that xR y. In other
words, for any x ∈ X, R(x) is non-empty.

– R : X ⊸ Y is thin if for any x ∈ X and y, y′
∈ Y , if xR y and xR y′, then

y = y′. In other words, for any x ∈ X, R(x) has at most on element.

Set-theoretic functions f : X → Y can be represented by total and thin relations
between X and Y . This makes the category of sets Set the wide subcategory of
Rel of total and thin relations. We denote the set of total relations from X to
Y as X −+Y , and consider the wide subcategory of Rel of total relations Rel+.
Moreover, Rel, Rel+ are the Kleisli categories over respectively the powerset
monad P, and the non-empty powerset monad P+ in Set.

The Cartesian product × in Set can be lifted to a symmetric monoidal
product in Rel, which sends sets X and Y to their Cartesian product X × Y ,
and relations R : X ⊸ X ′ and S : Y ⊸ Y ′ to (R × S) : X × Y ⊸ X ′

× Y ′,
where (x, y) (R × S) (x′, y′) if xRx′ and y S y′. Since it preserves totality, it
also forms a symmetric monoidal product in Rel+. We write γ for symmetry
γX,Y : X ×Y ⊸Y ×X, and α for associativity αX,Y,Z : (X ×Y )×Z⊸X×(Y ×X).

The category Rel has a dagger operation (−)† which sends morphisms R :
X ⊸ Y to R† : Y ⊸X defined as: y R† x if and only if xR y. This satisfies the
properties (IX)† = IX , (R;S)† = S†;R†, and ((R)†)† =R. The dagger operation
does not preserve totality or thinness, hence does not exist in Set and Rel+.

We work in Rel and Rel+, since it internalises the nondeterminism and we
do not need keep track of the powerset monad P when composing functions.
Instead, we need to check that the operations we define are natural.

Let 1 be the singleton set {∗}. Consider two families of relations, dX : X⊸1
and cX : X⊸X×X ranging over a set X, where x dX ∗ and x cX (y, z) if x=y=z.
Considered as functions, these respectively delete and copy elements. However,
neither of the two are natural transformations in Rel. Specifically, dX is only
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natural on total relations, hence natural in Set and Rel+, but not Rel, and cX

is only natural on thin relations, hence natural in Set but not Rel and Rel+.
So Rel is particularly restrictive in what it allows as natural transformations,

since we can neither delete nor copy. Rel+ however does allow us to delete and
trim data. Though we will do most constructions in Rel, we shall keep track of
those structures which are natural in Rel+. We call a transformation positively
natural if it is natural with respect to total relations. If a transformation is both
positively natural and total, it is a natural transformation in Rel+.

2.1 Trees as Monads and Comonads

We can define inductive data structures using containers to describe signatures
of algebraic effect operations. A container S is a pair (O, ar) given by a set O
of operations together with a function ar : O→ Set associating an arity to each
operation. We consider several examples of operations.

– We can model printing a message m on screen with an operation output(m)
of arity 1 = {∗}. Each separate message has a separate operation.

– We can model reading an input from a user with an operation input whose
arity has all possible responses the user can make.

– We can raise an exception or error using an operation error(m) of arity 0.
– We can model a choice (e.g. nondeterministic) with an operation of arity 2.

Given a container S, denote programs using such programs with S-trees.

Definition 1. Given a container S = (O, ar), the endofunctor in Rel of S-trees
sends a set X to the set of trees MSX inductively defined by:

– leaf(x) ∈ MSX for any x ∈ X.
– node(o)(c) for any o ∈ O and c : ar(o)→ MSX.

and it sends a relation R : X ⊸ Y to MS(R) : MSX ⊸ MSY , defined as:

– leaf(x) MS(R) leaf(y) for any x ∈ X and y ∈ Y such that xR y.
– node(o)(c) MS(R)node(o)(d) for any o ∈ O, c : ar(o) → MSX and d : ar(o)→

MSY , such that ∀i ∈ ar(o). c(i) MS(R) d(i).

MSX as an endofunctor in Set is actually the free monad over the functor
FSX =Σo ∈O(Xar(o)). Hence MS in Rel can be seen as a lifting of that free monad
to the Kleisli category of P, using a distributivity law of the free monad over P.

MS is a monad in Rel, since we can lift the monad structure from Set.
The unit transformation ηS

X : X ⊸ MSX is defined as ηS
X(x) = {leaf(x)}, and the

multiplication relation μS
X : MSMSX⊸MSX is inductively defined as μS

X(leaf(t))=
{t} and μS

X(node(o)(c)) = {node(o)(e) ∈ MSX ∣ ∀i ∈ ar(o), e(i) ∈ μS
X(c(i))}. Both

are natural transformations consisting solely of total and thin relations, which
reflects the fact that they were lifted from the monad structure in Set.
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Lemma 1. Suppose (M,η, μ) is a monad in Rel with the additional property
that for any relation R : X ⊸ Y , (M(R))† = M(R†), then (M,η†, μ†) is a
comonad in Rel.

Indeed, MS satisfies the property required in Lemma 1, so (MS , (ηS)†, (μS)†)
is a comonad. We give an alternative inductive definition for the comonadic
operations. Let εS

X : MSX⊸X and δS
X : MSX⊸MSMSX be inductively defined as:

– εS
X(leaf(x)) = {x}, and εS

X(node(o)(c)) = ∅.
– δS

X(leaf(x)) = {leaf(leaf(x))}, and δS
X(node(o)(c)) = {leaf(node(o)(c))} ∪

{node(o)(d) ∣ ∀i ∈ ar(o). c(i) δS
X d(i)}.

Lemma 2. εS
X = (η

S
X)† and δS

X = (μ
S
X)†, hence (MS , εS , δS) is a comonad.

Now, ε is not total, hence it is not an operation in Rel+ and Set, though it
is a natural transformation in Rel. On the other hand, δ is not thin, hence it is
not an operation in Set, though it is a natural transformation in both Rel and
Rel+. Let us look at some additional properties which are satisfied:

Lemma 3. The following four equations hold:

– ηS ; εS
= ι, δS ;μS

= ι(MS), μS ; εS
= εS(εS), and ηS ; δS

= ηS(ηS).

2.2 The Occasional Strength of Trees

Strength is an important property for monads when modelling programming lan-
guages. For example, it allows us to schedule the order of evaluation of programs.
To define strength, consider the family of relations σS

X,Y : X ×MSY ⊸MS(X ×Y )
over two set parameters X and Y , defined inductively as:

– σS
X,Y (x, leaf(y)) = {leaf(x, y)}.

– σS
X,Y (x,node(o)(c)) = {node(o)(d) ∣ ∀i ∈ ar(o). d(i) ∈ σX,Y (x, c(i))}.

This is lifting the natural operation for strength of MS as an endofunctor in Set,
to a family of total and thin relations in Rel. This family is natural in Y , but
not necessarily natural in X, due to previous observations related to copying
and deleting. If the signature S = (O, ar) has an operation o ∈ O such that the
set ar(o) has more than one element, then σS is able to copy X. If the signature
S = (O, ar) has an operation o ∈ O such that the set ar(o) =∅, then σS is able to
delete X. As a consequence, we have the following consequences:

1. σS is natural in Rel if and only if for each o ∈ O, |ar(o)| = 1.
2. σS is natural in Rel+ if and only if for each o ∈ O, |ar(o)| ≤ 1.
3. σS is natural in Set, regardless of the signature.

Because of the above, we consider the following subclass of tree monads:

Definition 2. Given sets A and E, which we respectively call actions and excep-
tions, we define the monad of (A,E)-traces as the monad of trees over the signa-
ture (A+E, ar), where ar(inl(a)) = {∗} for any a ∈ A (unary) and ar(inr(e)) =∅
for any e ∈ E (nullary). We denote this monad as (TA,E , ηA,E , μA,E).
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We may write (a)t or◯a t for node(inl(a))(t), and ⟨e⟩ or◇e for node(inr(e))().
Lastly, we may write [x] for leaf(x), hence using a different bracket type for each
of the three possible constructors of the monad. Given a set X, the set TA,EX
is isomorphic to A∗ × (X +E), where A∗ is the set of lists over A. For example,
the maybe monad can be given by T∅,{⊥}. For any A and E, TA,E is a strong
monad in Rel+, and for any A, TA,∅ is a strong monad and a comonad in Rel.

Lemma 4. For any signature S, and sets X and Y ,

– (ηS
X × ιY );σS

X,Y = ηS
X×Y and (μS

X × ιY );σS
X,Y = σS

MSX,Y ; MS(σX,Y );μX×Y .
– σS

X,Y ; εS
X×Y = εS

X × ιY and (δS
X × ιSY );σS

MSX,Y ; MS(σS
X,Y ) = σS

X,Y ; δS
X×Y .

We leave out subscripts and superscripts when they are obvious from context.

3 Nondeterministic Stateful Trace Runners

We model the behaviour of effectful programs by resolving algebraic effect oper-
ations by consulting some environmental state. This is done by stateful runners
in the category of total relations Rel+. We shall first look at runners for trace
monads, whereafter we shall see how they can be extended to runners on tree
monads as well. Firstly, we look at runners in general, as they appear in [13,29].

Definition 3. Given a monoidal closed category with monads M and N , an
N -residual runner on M is given by an object K and a natural transformation
θX : MX ×K →N(X ×K) such that:

X ×K
ηM
X ×K ��

ηN
X×K

����
���

�

MX ×K
θX

�� N(X ×K)

MMX ×K
θMX��

μM
X ×K ��

N(MX ×K)
N(θX)�� NN(X ×K)

μN
X×K��

MX ×K
θX

�� N(X ×K)

For instance, if M is a strong monad, then for each object K the strength
transformation σ (with symmetry) forms an M -residual runner on M .

Definition 4. Given sets A,E,A′, E′, a trace runner from (A,E) to (A′, E′) is
a TA′,E′-residual runner on TA,E in Rel+.

Lemma 5. Trace runners from (A,E) to (A′, E′) are in 1-to-1 correspondence
with triples consisting of a set K and two morphisms:

– a morphism A ×K −+ TA′,E′K (or A ×K −+A′∗
× (K +E′)),

– a morphism E ×K −+ TA′,E′0 (or E ×K −+A′∗
×E′).

Proof. Given f : A×K −+ TA′,E′K and g : E×K −+ TA′,E′0 we inductively define
θX : TA,EX ×K −+ TA′,E′(X ×K) as:

θX([x], k) = [x, k], θX(◯a (t), k) = (TA′,E′(λv.θX(t, v));μA′,E′
)(f(a, k)),

θX(◇e , k) = TA′,E′()(g(e, k)).
Vice versa, given θX : TA,EX×K −+ TA′,E′(X×K), we define f : A×K −+ TA′,E′K
as λ(a, k).θ1(◯a [∗], k) using the isomorphism 1 ×K ≃K, and we define g : E ×
K −+ TA′,E′0 as λ(e, k).θ0(◇e , k) using the isomorphism 0 ×K ≃ 0.



414 N. F. W. Voorneveld

We call the morphisms from Lemma 5 the local functions for the runner. In
Rel, a runner can never raise an error when resolving an action. This severely
restricts the examples we can model, and hence we focus on runners in Rel+.

Following the theory on runners [29], we can compose them in the following
way. Given a trace runner θ from (A1, E1) to (A2, E2) on state space K1, and a
trace runner φ from (A2, E2) from (A3, E3) on state space K2, we can compose
them into a trace runner θ •φ from (A1, E1) to (A3, E3) on state space K1 ×K2,
given by (θ•φ)X =(θX ×ιK2);φX×K1 : TA1,E1X×K1×K2 −+ TA3,E3(X×K1×K2),
using associativity of ×.

3.1 The Monad Morphism of Branches

Let us consider runners on trees as well.

Definition 5. Given a container S and sets A and E, a tree runner from S to
(A,E) is a TA,E-residual runner on MS in Rel+.

We can use trace runners to define runners on trees. This is done by defining
an operation which takes a tree MSX, and collects all the branches of the tree. We
define the set of S-actions as the set A(S)= {(o, i) ∣ o ∈ O, i ∈ ar(o)}, and the set
of S-errors as E(S) = {o ∈ O ∣ ar(o) =∅}. The action (o, i) signifies the operation
o being called, and the response i being given to the operation. Consider the
family of operations βS

X : MSX ⊸ TA(S),E(S)X, defined by

– βS
X(leaf(x)) = {leaf(x)},

– βS
X(node(o)(c)) = {(o, i)(t) ∣ i ∈ ar(o), t ∈ βS

X(c(i))} if ar(o) is non-empty,
– βS

X(node(o)(c)) = {⟨o⟩} if ar(o) is empty.

If S has any arity with more than one element, βS
X is not natural in Rel.

However, βS
X is both total and natural in Rel+.

Lemma 6. In Rel+, βS forms a monad morphism from MS to TA(S),E(S).

As a direct consequence, we can transform a trace runner from (A(S), E(S))
to (A′, E′), to a tree runner from S to (A′, E′).

3.2 Examples

We consider some examples using the maybe monad T∅,{⊥} = (−)⊥ as residual.
In each case, we specify the signature S, and define the runner on TA(S),E(S) by
specifying its local functions (see Lemma 5).

Example 1. Consider a set of messages M , and for each m ∈M an output opera-
tion output(m) of arity 1. In this case, A(S)={(output(m),∗)∣m ∈M}≃M and
E(S) = ∅. A simple trace runner to consider is one that records all the outputs
in a single list. We take as state space K =M∗, and define the runner with the
local function f : M ×M∗−+ (M∗)⊥ using append f(m, τ) = {m : τ}.
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Example 2. Consider a signature with a single input operation input of arity
M , giving us A(S)={(input,m)∣m ∈M}≃M and E(S)=∅. The runner consults
some oracle of inputs, and verifies that the right response is made. As state space,
we use MN, and the runner is given by the local function f : M ×MN −+ (MN)⊥
where: f(m, s) = {λn.s(n + 1)} if s(0) =m, and {⊥} otherwise.

Example 3. We model global store over some global state M by taking as
operations: for each m ∈ M an operation update(m) of arity 1, and an
operation lookup of arity M . We simplify A(S) = {m!,m? ∣ m ∈ M} where
m! = (update(m),∗) and m? = (lookup,m). We define a runner over state space
M with the local function f : A(S) × M −+M⊥ where: f(m!, n) = {m}, and
f(m?, n) = {n} if m = n, otherwise {⊥}.

Example 4. Consider a single choice operation or of arity 2 = {0, 1}, hence our
actions A(S) are in bijection to 2. Suppose or models some unbalanced nonde-
terministic choice, where the right choice only happens when some fee is paid,
whereas the left choice is free. As state space we take N, which tells us how
many times we can pay the fee, and define the runner with the local function
f : 2 × N−+N⊥ where f(0, n) = {n}, f(1, 0) = {⊥} and f(1, n + 1) = {n}.

4 Interleaving Concurrency

Having established our main way of modelling effect behaviour in terms of run-
ners, we now start looking at interleaving concurrency. We study a variation
on the standard interleaving semantics, and use it to formulate a trace runners.
This variation is necessary to ensure that the right properties hold, especially
the unit equation for trace runners.

Definition 6. The interleaving concurrency operations are three mutually
inductive families of operations P,L,R : TX × TY ⊸ T(X × Y ) where:

1. P(l, r) = L(l, r) ∪ R(l, r).
2. L([x], r) = [x, ε(r)].
3. L(◯a l, r) =◯a P(l, r).

4. L(◇e , r) =◇e .

5. R(l, r) = T(γ)(L(r, l)).

We call L the left-focussed parallel operator, and R the right-focussed paral-
lel operator. The main difference between the above semantics and traditional
interleaving semantics (as e.g. in process algebra [4]) is in the treatment of the
termination case. Here, L([x], r) will only give a result if r immediately termi-
nates as well (is a leaf). If not, L([x], r)=∅. More traditionally, L([x], r) is taken
to be σX,Y (x, r). Despite this, we do have the following result:

Lemma 7. The following equation holds: P([x], r) = σ(x, r).

As a direct consequence, the map P does not change if we change the definition of
L to give L([x], r)=σ(x, r) instead of L([x], r)= [x, ε(r)]. We keep the formulation
from Definition 7 for the following two reasons: 1) The left parallel operator L has
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a richer structure which allow us to formulate trace runners, and 2) this gives
less duplicate results which makes it less cumbersome in formalisation efforts
(less cases in set equality proofs). We make the following observations.

– P is total, L and R are not total if there is at least one action or exception.
– P, L and R are positively natural over X and Y , hence P is natural in Rel+.
– If E is empty, then P, L and R are natural in Rel.

Lemma 8. P is associative and symmetric, as it satisfies the equations:

– (P × ι);P; T(α) = α; (ι × P);P,
– (L × ι);L; T(α) = α; (ι × P);L,
– (R × ι);L; T(α) = α; (ι × L);R,
– (P × ι);R; T(α) = α; (ι × R);R.

– P; T(γ) = γ;P.

– L; T(γ) = γ;R.

– R; T(γ) = γ;L.

4.1 Monadic and Comonadic Properties

We will study how the interleaving transformations interact with both the monad
and comonad structure of our monad T. First of all, consider the following.

Lemma 9. The following equation and point-wise inclusion hold:

X × Y
η×η ◦

X × Y
η◦

TX × TY
P
◦T(X × Y )

TTX × TTY
|∩

P◦
μ×μ ◦

T(TX × TY )T P◦TT(X × Y )
μ◦

TX × TY
P

◦T(X × Y )

This shows that T is a monoidal monad in Rel+ in a lax sense. In relation to the
comonad structure however, there is a stronger result.

Lemma 10. The following two equations hold:

TX × TY
ε×ε ◦

P◦T(X × Y )
ε◦

X × Y X × Y

TX × TY P ◦
δ×δ ◦

T(X × Y )
δ◦

TTX × TTY
P
◦T(TX × TY )

T P
◦TT(X × Y )

We could call T a monoidal comonad, though note that ε is not total. Hence
T is only a monoidal comonad in Rel and only when E = ∅. Last but not least,
we present equations which mix the monad and comonad structures.

Lemma 11. The following two equations hold:

X×Y X×Y
η

◦X×TY
ι×ε◦���

η×ι
◦��
TX×TY

L
◦T(X×Y )

TTX×TTY L◦T(TX×TY )TL◦TT(X×Y )
μ

◦TTX×TY
ι×δ◦����

μ×ι
◦���
TX×TY

L
◦T(X×Y )

Proof (Notes). The second equation can be shown by mutual induction with
properties: 3. P(μ(d), r) = μ(TL(P(d, δ(r)))), 4a. R(μ(d), r) ⊆ μ(TL(P(d, δ(r)))),
and 4b. P(μ(d), r) ⊇ μ(TL(R(d, δ(r)))). Property 3 can be directly shown using
the other three properties, whereas those other properties can be proven by case
analysis on the trace they focus on, using the induction hypothesis on Property 3.



Runners for Interleaving Algebraic Effects 417

The above result shows a strict preservation over program composition, and
as a direct consequence, we can observe a connection to interaction laws [13].

Corollary 1. If E=∅, then in the category of relations Rel, L forms a T-residual
monad-comonad interaction law between T and T.

4.2 The Parallel Runner

Following Lemma 11 and the theory developed in [13], we know that the following
construction gives us a trace runner.

Definition 7. For a set U and a trace monad T, the U -parallel runner is the
trace runner ρU

X : TX × TU −+ T(X × TU) defined by ρU
X = (ιTX × δU );L.

This runner simulates running a program modelled by a set of traces from
TX in parallel with some background process modelled by a set of traces from
TU . This background process need not finish when the program finishes, and a
remainder of its trace may carry over to continuations of the program.

The parallel runner goes hand in hand with the left-focussed parallel trans-
formation L, since the former is defined by the latter, and the latter can be
retrieved from the former: L(l, r) = T(ι × ε)(ρ(l, r)). Through Lemma 5, we can
find the local definition of the parallel runner, given as follows:

– The morphism A ×K −+ TK, where K = TY , sends (a, r) to (a)δU (r).
– The morphism E ×K −+ T0 sends (e, r) to ⟨e⟩.

As a culmination of previous results, we can observe some extra properties.

Lemma 12. The following two equations hold, modulo associativity:

– (ρY
X × ιTZ); ρZ

X×TY ; T(ιX × γTY,TZ) = (ιTX × γTY,TZ); (ρZ
X × ιTY ); ρY

X×TZ ,
– (ρY

X × ιTZ); ρZ
X×TY ; T(ιX × PY,Z) = (ιTX × PY,Z); ρ

(Y ×Z)
X .

Definition 8. The U -concurrent completion of a trace runner θ from (A,E) to
(A′, E′) on state space K is the trace runner θ|U from (A,E) to (A′, E′) on state
space TA,EU ×K given by the composition (ρU • θ).

We commonly take the 1-concurrent completion of a trace runner, since our
focus is on the program and not on the result of the background process. If we
want to study the background process instead, we would shift focus and use the
runner the other way around. Note that by Lemma 12, taking two concurrent
completions is similar to taking one. In other words, running in parallel with
two processes separately is, from the perspective of the program, the same as
running in parallel with the merger of the two processes together.

5 Stateful Relational Reasoning

Consider a tree runner from S to (A,E). This runner induces a relation on
trees over the signature S. In this section, we shall formulate such relations
dependent on the state of the environment, and look at examples of such relations
in scenarios of algebraic effects with concurrency.
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5.1 Relators

When one wants to study the behaviour of programs denoted by a monad M , one
may need tools to relate them. Given some notion of relatedness on values as a
relation between two objects X and Y , we want to define a notion of relatedness
between programs that produce these values; a relation between MX and MY .
This can be done using a relator [16,27].

Definition 9. Given a monad M in Set, a relator Γ for M is a family of
functions {ΓX,Y }X,Y sending R ⊆X × Y to ΓX,Y (R) ⊆MX ×MY such that:

Identity: IMX ⊆ ΓX,X(IX).
Composability: Γ (S);Γ (R) ⊆ Γ (S;R).
Order preservation: If R ⊆ S, then Γ (R) ⊆ Γ (S).
Naturality: For f : X→Z and g : Y →W , M(f)(a)Γ (R)M(g)(b) holds if and

only if aΓ ({(x, y) ∣ f(x)R g(y)}) b.

The lifting of M to Rel is an example of a relator, though the main examples
we study in this paper are not of that form. There are two properties we would
like a relator to satisfy in order for it to induce a congruent notion of equivalence.

Definition 10. A relator Γ on a monad M is monadic if:

Unit: If xR y then ηM
X (x)Γ (R) ηM

Y (y).
Multiplication: If dΓ (Γ (R)) e then μM

X (d)Γ (R)μM
Y (e).

We shall focus on relators on tree monads (which include trace monads).
In particular, the examples we have studied were formulated by runners to the
exception monad T∅,EX ≃X +E. As such, we shall first look at relators there.

Example 5. Specifying a subset V ⊆ E of detectable errors, we can define a
relator ΓV on T∅,E given by:

– [x]ΓV (R) [y] if xR y, ◇e ΓV (R)◇e , ◇e ΓV (R) t for any t if e /∈ V .

A common sub-example is to take E = {⊥} and V = ∅, in which case we get
the standard relator Γ{⊥} on the maybe monad. This makes the ⊥ exception not
observable by the relator, which is useful in such cases where we model programs
with undecidable termination, and non-termination is marked by ⊥.

To deal with nondeterminism, we use a relator from the literature (e.g. [15]).

Definition 11. We define a monadic relator P+ on the monad P+(−), where:
V P+(R)W if for any x ∈ V , there is a y ∈ W such that xR y.

A tree runner from S to (A,E) gives an P+TA,E-residual runner on MS in Set.
Hence it gives a natural transformation θX : MSX ×K→P+TA,E(X ×K). We shall
use this runner to define a relator on MS . As base, we shall specify a relator Γ
on TA,E , and compose it with the relator P+ on P+, creating a relator on P+TA,E

which we denote by ΓP+ . In order for ΓP+ to be monadic, we need the following
distributivity property on Γ using a distributivity law1 d : TP+ → P+T:
1 A distributivity law satisfies some equations with respect to the monad structure,

as specified in [3].



Runners for Interleaving Algebraic Effects 419

P+-Distributivity: If t Γ (P+(R)) r then dX(t)P+(Γ (R)) dY (r).

Example 5 satisfies the distributivity property, and the proof of this necessar-
ily uses the fact that P+X does not include the empty set. The following relator
is defined using runners, and is monadic as we shall see in Lemma 13.

Definition 12. Suppose given a tree runner θ from S to (A,E) and a relator
Γ on TA,E. The global θ-relator Γ θ is the relator on MS given by:

aΓ θ(R) b ⇐⇒ ∀k ∈ K. θX(a, k)ΓP+(R × IK) θY (b, k)

Example 6. In case of A = ∅ and V ⊆E, aΓ θ
V (R) b holds if for any k ∈ K,

– If [x, u] ∈ θX(a, k), then there is a result [y, u] ∈ θY (b, k) such that xR y.
– If◇e ∈ θX(a, k) is a detectable exception e ∈ V , then◇e ∈ θY (b, k).

5.2 State Initialisations and Distinctions

The global relator is quite fine-grained, testing for any possible initial state, and
distinguishing between any two different final states. We can improve on this,
formulating what constitutes as a good starting set of states, and a good relation
on final states, such that we still get a relator. We do this in two steps: firstly
we need to establish what features of the state we deem observable. This entails
formulating a base relation on state which is preserved by runs over a program.
Secondly, we need to establish which states can occur in a particular situation.
In this subsection, we consider fixed a tree runner θ from S to (A,E) with state
space K and a monadic relator Γ on TA,E .

Distinguishing Final States. We study preorders on the state space K (reflex-
ive and transitive relations). Given a preorder R ⊆K×K, we define θ(R) ⊆K×K:

a θ(R) b ⇐⇒ ∀p ∈ TX. θX(p, a)ΓP+(ιX ×R) θX(p, b)

The result θ(R) is also a preorder, and we say R is preserved by runs if R⊆θ(R).
In general, θ(R) is included in R, as can be observed by taking p= leaf(x) in the
definition. If R ⊆ U , then θ(R) ⊆ θ(U).

Definition 13. The θ-closure of a preorder R ⊆ K × K is the preorder Rθ :
=

⋃{S ⊆R ∣ S ⊆ θ(S)}. This is the largest subrelation of R preserved by runs.

The canonical choice would be to take (K ×K)θ, the θ-closure of the maximal
relation on K. More generally though, one would start with K ×K, remove any
pairs you would like to distinguish making sure the result stays a preorder, and
take the θ-closure of whatever you have left. The identity relation is the smallest
preorder preserved by runs, and is the one used in Definition 12.

In some cases, the θ-closure can be more easily constructed.

– If θ gives at most one result for each input (it is thin), then Rθ
= θ(R).

– If θ gives a finite number of results for each input, then Rθ
= ∩n ∈Nθn(R).

For establishing stateful relations, we fix one preorder ≺ preserved by runs. If we
have no extra requirements, we take (K ×K)θ, the maximal option.
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Limiting Initial States. It is a strong requirement to demand programs to be
related for any possible initial state, especially when considering concurrent pro-
grams. For instance, the behavioural equivalence for global store programs will
become as fine-grained as input/output programs if one can test it concurrently
with any possible other global store program (this second program can simulate
tests with its updates and lookups). Hence, for the verification of concurrent
programs, it is important to limit the possible states that can occur.

We introduce the notion of state world. Given a trace t ∈ TA,EX and an
element x ∈ X, we write t ⋗ x if x is a leaf of t. In other words, [x] ⋗ x,◇e � ⋗x
and◯a t ⋗ x if and only if t ⋗ x. Let ↝ ⊆K ×K be the relation such that v ↝ w
when ∃p ∈ MX,x ∈ X. θX(p, v) ⋗ (x,w). This is a preorder due to the unit and
multiplication properties of the runner. A state world is a subset W ⊆ K such
that v ∈ W ∧ v↝w =⇒ w ∈ W . In other words, it is a set closed under runs of
programs. For each s ∈ K, we define the world [s] = {z ∈ K ∣ s↝ z}.

Example 7. Considering Example 4, with as global state N the number of fees
that can be paid, which determines how many possible results we may get. In
this case, the θ-closure of N × N is the standard ordering ≤ on N, since a higher
number gives more possible results. The relation ↝ is the relation ≥ since the
number can only go down, hence state worlds are down-closed subsets of N.

We fix a tree runner θ and a preorder ≺ preserved by runs.

Definition 14. We define the following relators on MS:

– for each s ∈ K a relator Γ s where: aΓ s(R) b if θ(a, s)ΓP+(R ×≺) θ(b, s).
– for each subset W ⊆K, a relator ΓW where: aΓW (R) b if ∀s ∈ W , aΓ s(R) b.

Lemma 13. Given a state world W ⊆K and a state s ∈ W :

– xR y implies η(x)ΓW (R) η(y), which implies η(x)Γ s(R) η(y).
– dΓ s(ΓW (R)) e ⇒ μ(d)Γ s(R)μ(e), dΓW (ΓW (R)) e ⇒ μ(d)ΓW (R)μ(e).

Proof. Given dΓ s(ΓW (R)) e, we know that for any t ∈ θ(d, s) there is an r ∈ θ(e, s)
such that t Γ (ΓW (R)×≺) r. Consider the sub-relation ≺W :=(≺)∩ (W ×W ) of ≺,
then t Γ (ΓW (R) × ≺W ) r since any state in a leaf of t and r are in W .

We prove: If (a, u)ΓW (R)×≺W (b, v), then θ(a, u)ΓP+(R×≺) θ(b, v). Suppose
(a, u)ΓW (R) × ≺W (b, v), then aΓW (R) b, and u ≺W v, hence 1) u ≺ v and 2)
v ∈W . By the former, θ(a, u)ΓP+(IX ×≺) θ(a, v), since ≺ is preserved by runs. By
the latter, θ(a, v)ΓP+(R×≺) θ(b, v), since aΓW (R) b. So by the relator properties
on ΓP+ , and transitivity on ≺, we get that θ(a, u)ΓP+(R × ≺) θ(b, v).

By naturality, P+T(θ)(θ(d, s))ΓP+(ΓP+(R × ≺))P+T(θ)(θ(e, s)), hence due to
the multiplication property on P+Γ = ΓP+ and the multiplication property for
runners, θ(μd, s)P+(Γ (R × ≺)) θ(μe, s). Hence μdΓ s(R)μe.

We conclude that for any state world W ⊆ S, ΓW is monadic.
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5.3 Algebraic Concurrent Theories

Taking a set of variables X, we can define for each state world W ⊆S the stateful
approximation ≤W ⊆ MX×MX as ΓW (ιX), and stateful equivalence ≡W ⊆ MX×MX
as a ≡W b ⇐⇒ a ≤W b ∧ b ≤W a. Both these relations are preorders. The fact
that the relator is monadic consequently means these relations are substitutive:

Corollary 2. Given a state world W ⊆K, a ≤W b and f, g : X → TX s.t. ∀x ∈
X. f(x) ≤W g(x), then μS

X(M(f)(a)) ≤W μS
X(M(g)(b)). Similarly for ≡W .

Hence, the relators give rise to proper algebraic theories. The above results
hold for any tree runner, including those implementing concurrency. Hence the
relators give a notion of equivalence for effectful programs within concurrent
environments containing other programs. We look at some concrete examples of
such situations, and how this concurrency affects the stateful equivalences.

Example 8 (Printing with interference). Consider Example 1 of programs print-
ing messages to an environment. Suppose some background process is printing
messages at unpredictable times. We describe this with the runner φ, defining it
to be the 1-concurrent completion θ|1 of the runner θ from Example 1. This has
as state space T1 ×M∗

≃M∗
×M∗, containing the background process together

with a history of printed messages. We want to distinguish between different
histories, but not necessarily between different states of the background pro-
cess. Hence we take as relation on state ≺ :=((T1)2 × ιM∗)φ, the largest relation
preserved by runs which distinguishes different histories of printed messages.

Running a program in such an environment will intersperse the messages
of the program with messages from the background process. Suppose the back-
ground process keeps printing a ∈ M . We can model this with an inductively
defined set U ⊆ T1, such that [∗] ∈ U and t ∈ U implies◯a (t) ∈ U (approximations
of an infinite sequence of prints). Note that U ×M∗ is a state world, since it
contains its own continuations. The notion of equivalence for running programs
with this background process can be specified using the relator ΓU×M∗

.
The algebraic theory resulting from this environment reflects the fact that,

since outputa could be scheduled after any output action, any outputa produced
by the program after the initial output can be ignored. So we have the equation:
outputb(outputa(leaf(x))) ≡U×M∗ outputb(leaf(x)).

Example 9 (Global Store). Consider Example 3 of the global store effect, where
for simplicity we take as memory space {0, 1}, hence the lookup operation
has arity {0, 1}, and we have two update operations. Let t ∈ MSX be the
tree update0(lookup(0 	→ ⊥, 1 	→ leaf(x))), which gives the set of branches
β(t) = {(0!)(0?) ⟨ ⊥⟩, (0!)(1?)[x]} ⊆ TX. If t is run on its own with any initial state
i ∈ {0, 1}, it must eventually yield the error message ⊥, since 0 is saved to and
subsequently read from the global memory. Hence, under standard global store
semantics (implemented with the runner from Example 3), it holds that t ≡ ⊥.

However, suppose t is run in an environment with a backup process which
updates the global store to 1, e.g. r=(1!)(r′) ∈ TY . Then (0!)(1!)(1?)[x, r′] ∈ ρ(t, r),
which under global store semantics will yield, for any initial state i ∈ {0, 1}, a
result (x, r′) with final state 1. Hence, in this environment, t � ≡⊥.
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6 Conclusions

We have formulated an operation for interleaving concurrency satisfying the
unit and multiplication equations for residual monad-comonad interaction laws
in the sense of [13]. This operation can be used in at least two ways. Firstly,
it can evaluate two programs concurrently, producing a process which returns
a pair of return values. Secondly, we can run one program concurrently with
another program, where this other program need only be evaluated partially.
This forms a runner [29], which produces a return value of the former program
and remainder of the latter program. Both together allow us to precisely schedule
concurrent interleavings of higher-order programs.

The sequences of communications between a program and its environment are
given by traces, which can be given a behavioural interpretation using stateful
runners; a categorical formulation of how to handle and resolve effect operations
in a state dependent manner. This can be implemented in practise using Handlers
for algebraic effects [2,24]. One line of work for the future, is formulating a
congruent notion of applicative bisimilarity for concrete higher-order concurrent
languages, for example extending results from [15,26] for lambda-calculus style
languages, or from [18,19] for a continuation-passing style languages.

It is difficult to generalise the interleaving operation to the monad of trees
due to the lack of naturality of the strength operation for trees in any wide sub-
category of Rel containing multi-valued (non-thin) relations. This is a problem,
since the interleaving concurrency operation itself is multi-valued. By using the
category of total relations Rel+, we are still able to include nullary operations
in our monad of traces. This is important, since many situations necessitate the
use of exceptions; some effect examples need to exclude impossible sequences of
events like reading the wrong state, and in case of infinite recursive processes we
may have to mark the end of an approximation.

Models for alternative forms of concurrency could potentially be implemented
by adapting the formalism of this paper. Firstly, we might want to run certain
sequences of operations without being interrupted by other programs, for instance
by only giving one program access to the environment at a time. This could be
modelled by using lists of actions as our atomic actions. Secondly, we could look at
models closer to true concurrency [11]. For instance, some operations may be exe-
cuted at the exact same time, producing traces over some monoid of actions. Such
a denotation would need to be endowed with appropriate notions of behaviour
for simultaneously executed operations, which could be implemented by a runner.
Lastly, concurrency itself could be described with algebraic effects, following [10],
which may be combined with the approach of this paper.

References

1. Abramsky, S.: The Lazy Lambda Calculus, pp. 65–116. Addison-Wesley Longman
Publishing Co., Inc. (1990)

2. Ahman, D., Bauer, A.: Runners in action. In: Müller, P. (ed.) ESOP 2020. LNCS,
vol. 12075, pp. 29–55. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
44914-8_2

https://doi.org/10.1007/978-3-030-44914-8_2
https://doi.org/10.1007/978-3-030-44914-8_2


Runners for Interleaving Algebraic Effects 423

3. Beck, J.: Distributive laws. In: Eckmann, B. (ed.) Seminar on Triples and Cate-
gorical Homology Theory. LNM, vol. 80, pp. 119–140. Springer, Heidelberg (1969).
https://doi.org/10.1007/BFb0083084

4. Bergstra, J.A., Klop, J.W.: Algebra of communicating processes with abstrac-
tion. Theor. Comput. Sci. 37, 77–121 (1985). https://doi.org/10.1016/0304-
3975(85)90088-X

5. Bergstra, J.A., Klop, J.W., Tucker, J.V.: Process algebra with asynchronous com-
munication mechanisms. In: Brookes, S.D., Roscoe, A.W., Winskel, G. (eds.)
CONCURRENCY 1984. LNCS, vol. 197, pp. 76–95. Springer, Heidelberg (1985).
https://doi.org/10.1007/3-540-15670-4_4

6. Busi, N., Gorrieri, R.: A survey on non-interference with Petri nets. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 328–344.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2_8

7. Clinger, W.D.: Foundations of actor semantics. Technical report, Massachusetts
Institute of Technology, USA (1981). http://hdl.handle.net/1721.1/6935

8. Fiore, M., Gambino, N., Hyland, M., Winskel, G.: The cartesian closed bicate-
gory of generalised species of structures. J. Lond. Math. Soc. 77, 203–220 (2008).
https://doi.org/10.1112/jlms/jdm096

9. Fiore, M., Gambino, N., Hyland, M., Winskel, G.: Relative pseudomonads, Kleisli
bicategories, and substitution monoidal structures. Sel. Math. New Ser. 24(3),
2791–2830 (2017). https://doi.org/10.1007/s00029-017-0361-3

10. van Glabbeek, R., Plotkin, G.: On CSP and the algebraic theory of effects.
In: Roscoe, A.W., Jones, C.B., Wood, K.R. (eds.) Reflections on the Work of
C.A.R. Hoare, pp. 333–369. Springer, London (2010). https://doi.org/10.1007/978-
1-84882-912-1_15

11. Gorrieri, R.: Interleaving vs true concurrency: some instructive security examples.
In: Janicki, R., Sidorova, N., Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol.
12152, pp. 131–152. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51831-8_7

12. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Logical
Methods Comput. Sci. 3 (2007). https://doi.org/10.2168/LMCS-3(4:11)2007

13. Katsumata, S., Rivas, E., Uustalu, T.: Interaction laws of monads and comonads.
In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2020, pp. 604–618. Association for Computing Machinery, New York
(2020). https://doi.org/10.1145/3373718.3394808

14. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–
384 (1976). https://doi.org/10.1145/360248.360251

15. Lago, U.D., Gavazzo, F., Levy, P.B.: Effectful applicative bisimilarity: monads,
relators, and Howe’s method. In: Proceedings of 32nd Annual ACM/IEEE Sympo-
sium on Logic in Computer Science, LICS 2017, pp. 1–12. IEEE Computer Society
(2017). https://doi.org/10.1109/LICS.2017.8005117

16. Levy, P.B.: Similarity quotients as final coalgebras. In: Hofmann, M. (ed.) FoSSaCS
2011. LNCS, vol. 6604, pp. 27–41. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19805-2_3

17. MacLane, S.: Categories for the Working Mathematician. Graduate Texts in Math-
ematics, vol. 5. Springer, New York (1971). https://doi.org/10.1007/978-1-4612-
9839-7

18. Matache, C.: Program equivalence for algebraic effects via modalities. Master’s
thesis, University of Oxford (2019)

https://doi.org/10.1007/BFb0083084
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1016/0304-3975(85)90088-X
https://doi.org/10.1007/3-540-15670-4_4
https://doi.org/10.1007/978-3-540-27755-2_8
http://hdl.handle.net/1721.1/6935
https://doi.org/10.1112/jlms/jdm096
https://doi.org/10.1007/s00029-017-0361-3
https://doi.org/10.1007/978-1-84882-912-1_15
https://doi.org/10.1007/978-1-84882-912-1_15
https://doi.org/10.1007/978-3-030-51831-8_7
https://doi.org/10.1007/978-3-030-51831-8_7
https://doi.org/10.2168/LMCS-3(4:11)2007
https://doi.org/10.1145/3373718.3394808
https://doi.org/10.1145/360248.360251
https://doi.org/10.1109/LICS.2017.8005117
https://doi.org/10.1007/978-3-642-19805-2_3
https://doi.org/10.1007/978-3-642-19805-2_3
https://doi.org/10.1007/978-1-4612-9839-7
https://doi.org/10.1007/978-1-4612-9839-7


424 N. F. W. Voorneveld

19. Matache, C., Staton, S.: A sound and complete logic for algebraic effects. In:
Bojańczyk, M., Simpson, A. (eds.) FoSSaCS 2019. LNCS, vol. 11425, pp. 382–399.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17127-8_22

20. Melliès, P.A.: Template games and differential linear logic. In: 2019 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–13 (2019).
https://doi.org/10.1109/LICS.2019.8785830

21. Milner, R.: Communication and Concurrency. Prentice-Hall Inc., Hoboken (1989)
22. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991).

https://doi.org/10.1016/0890-5401(91)90052-4
23. Plotkin, G., Power, J.: Adequacy for algebraic effects. In: Honsell, F., Miculan,

M. (eds.) FoSSaCS 2001. LNCS, vol. 2030, pp. 1–24. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45315-6_1

24. Plotkin, G.D., Pretnar, M.: Handling algebraic effects. Log. Methods Comput. Sci.
9(4, Article 23), 1–36 (2013). https://doi.org/10.2168/lmcs-9(4:23)2013

25. Rivas, E., Jaskelioff, M.: Monads with merging (2019). https://hal.inria.fr/hal-
02150199. Working paper or preprint

26. Simpson, A., Voorneveld, N.: Behavioural equivalence via modalities for algebraic
effects. ACM Trans. Program. Lang. Syst. 42(1), 4:1–4:45 (2020). https://doi.org/
10.1145/3363518

27. Thijs, A.M.: Simulation and fixpoint semantics. Ph.D. thesis, University
of Groningen (1996). https://research.rug.nl/en/publications/simulation-and-
fixpoint-semantics

28. Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: Pro-
ceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science, pp.
280–291 (1997). https://doi.org/10.1109/LICS.1997.614955

29. Uustalu, T.: Stateful runners of effectful computations. Electron. Notes Theor.
Comput. Sci. 319, 403–421 (2015). https://doi.org/10.1016/j.entcs.2015.12.024.
The 31st Conference on the Mathematical Foundations of Programming Semantics

30. Uustalu, T., Vene, V.: Comonadic notions of computation. Electron. Notes Theor.
Comput. Sci. 203(5), 263–284 (2008). https://doi.org/10.1016/j.entcs.2008.05.029.
Proceedings of the Ninth Workshop on Coalgebraic Methods in Computer Science
(CMCS 2008)

https://doi.org/10.1007/978-3-030-17127-8_22
https://doi.org/10.1109/LICS.2019.8785830
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.2168/lmcs-9(4:23)2013
https://hal.inria.fr/hal-02150199
https://hal.inria.fr/hal-02150199
https://doi.org/10.1145/3363518
https://doi.org/10.1145/3363518
https://research.rug.nl/en/publications/simulation-and-fixpoint-semantics
https://research.rug.nl/en/publications/simulation-and-fixpoint-semantics
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1016/j.entcs.2015.12.024
https://doi.org/10.1016/j.entcs.2008.05.029


Formal Grammars for Turn-Bounded
Deterministic Context-Free Languages

Tomoyuki Yamakami(B)

Faculty of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan

TomoyukiYamakami@gmail.com

Abstract. As its computation proceeds, a one-way deterministic push-
down automaton (or a 1dpda) changes the height (or volume) of its
stack (or pushdown store) by switching between a non-decreasing phase
and a decreasing phase. Such a changing of the two different phases is
referred to as a “turn” of the machine. Languages that are recognized
by k-turn 1dpda’s for each fixed number k are succinctly called k-turn
deterministic context-free (dcf) languages. We first discuss closure prop-
erties of k-turn dcf languages. Such closure properties help us prove that
finite-turn dcf languages are precisely characterized by a deterministic
analogue of ultralinear grammars, called LR(1)-ultralinear grammars.
In particular, when a 1dpda is further required to empty its stack at
the beginning of each turn, the associated languages are characterized
in terms of LR(1)-metalinear grammars. As an immediate application of
these grammar characterizations, we prove a structural lemma, known
as a pumping lemma, for finite-turn dcf languages.

Keywords: Deterministic context-free language · Finite turns ·
Ultralinear grammar · Metalinear grammar · Pumping lemma

1 Background and a Quick Overview

A stack (or a pushdown store) is a memory device restricted to FILO (first-in,
last-out) accesses to its new and/or stored data. A one-way nondeterministic
pushdown automaton (or a 1npda, for short) is equipped with such a memory
device together with a read-once1 input tape and such machines precisely charac-
terize languages generated by context-free grammars. The height (or the volume)
of a stack content in general varies during a computation of a 1npda. A single
change of the stack height from a non-decreasing phase to a decreasing phase
along each computation path of the 1npda is known as a turn.2 There could be
numerous turns being made along a computation to utilize the stack effectively
1 A tape is said to be read-once if its tape head never moves back to the left and,

whenever it scans a non-blank symbol, it must move to the right.
2 Slightly differing from [8], in this paper, we define the number of “turns” by counting

the times when a stack height changes from a nondecreasing phase to a decreasing
phase (see [6,13]). The details will be given in Sect. 2.2.
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because underlying 1npda’s with no turn are merely equivalent to finite-state
automata in recognition power. Since 1-turn 1npda’s can recognize precisely lin-
ear languages [8], it is often easier to show that some languages are linear by
simply constructing 1-turn 1npda’s for them. One such example is the language
{an1ban2b · · · ank | k ≥ 2,∃i, j ∈ {1, 2, . . . , k}(i < j ∧ni �= nj)} [1]. Ginsburg and
Spanier [8] first discussed basic properties of finite-turn 1npda’s from a view-
point of parsing procedures of context-free languages. They introduced variants
of linear grammars, called ultralinear grammars,3 to characterize the language
families induced by finite-turn 1npda’s. For these languages, there exist relatively
efficient parsing algorithms. A weaker variant of ultralinear grammar, known as a
metalinear grammar, is related to 1npda’s that empty their stacks at the begin-
ning of each turn (we briefly refer to this situation as “making deep turns”).
Those intriguing grammars were intensively studied in [13,15].

Here, we intend to pay special attention to one-way deterministic pushdown
automata (or 1dpda’s) instead of 1npda’s. The 1dpda’s were first studied in
1966 by Ginsburg and Greibach [7] and these machines induce deterministic
context-free (dcf) languages. Surprisingly, little systematic and coherent study
has been made intensively on turn-bounded 1dpda’s. The past literature has dis-
cussed finite-turn 1dpda’s only with respect to decidability by Valiant [18,19],
simultaneously deterministic and linear languages [1], logarithmic-space simula-
tion by Moriya and Tada [16], recursive-nonrecursive trade-offs by Malcher [14],
and lately synchronization by Yamakami and Mikami [23] and Fernau, Wolf,
and Yamakami [6]. As for a more restrictive model, nevertheless, there has been
a fruitful study on deterministic (multi-)counter automata whose counters are
k-reversal bounded [4,5] and also bounded context-switching visibly pushdown
automata [17].

In this work, on the contrary, we intend to cast a new spotlight on an old but
fundamental topic of turn-bounded pushdown automata from a new viewpoint
of determinism and to set our focal point on the behaviors of 1dpda’s when
they make only a finite number of turns. The languages recognized by k-turn
1dpda’s are called k-turn dcf languages and finite-turn dcf languages mean k-
turn dcf languages for appropriate numbers k ≥ 0. Those languages are defined
by 1dpda’s but no grammar-characterization is currently known. Therefore, the
initial purpose of this paper is set to promote the basic understandings of finite-
turn dcf languages by introducing appropriate formal grammars for them.

At this point, we introduce the useful notation, ktDCFL, to denote the family
of all k-turn dcf languages whereas the notation ktCFL is reserved for k-turn
context-free languages. We further denote by ωtDCFL the union of all ktDCFL
for any integer k ≥ 1. Similarly, the notation deep-ktDCFL addresses the family
of deep-k-turn dcf languages and deep-ωtDCFL denotes

⋃
k∈N

deep-ktDCFL.

3 These languages coincide with quasi-rational languages and are also characterized
by context-free grammars of finite “indices”, where the index of a derivation refers
to the maximum number of occurrences of variables in the sentential forms used in
the derivation (see, e.g., [1]).
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Moriya and Tada [16] gave reasonable upper bounds on the necessary memory
space to simulate finite-turn 1dpda’s. As an immediate consequence of their
simulation results, ωtDCFL is included in L (logarithmic-space complexity class),
whereas the family DCFL of all dcf languages is only known to be in SC2 (2nd
level of Steve’s Class). Furthermore, we can derive a few important “separation”
results regarding ktDCFL and deep-ktDCFL, which are deducible from the past
literature. A special language, Tk+1, which is recognized by a (k+1)-turn 1npda,
cannot be recognized by any k-turn 1npda [9]; in other words, making more turns
endows underlying 1npda’s with more computational power. The fact that Tk+1

belongs to deep-(k + 1)tDCFL further leads to the conclusion that {ktDCFL |
k ∈ N

+} forms an infinite hierarchy between DCFL and the family REG of all
regular languages. In fact, it also follows that k-turn 1npda’s are more powerful
in general than k-turn 1dpda’s, which turn out to be more powerful than deep-
k-turn 1dpda’s. These separation results are easily obtainable by combining the
arguments in [8–10,14]. See Sect. 2.2 for further details.

The main contribution of this paper is to introduce appropriately-defined
“grammars” and characterize languages in ktDCFL in terms of these grammars.
To lay out a road map to an introduction of such grammars, we first explore var-
ious closure/non-closure properties of ktDCFL as well as ωtDCFL in Sect. 3.1.
These properties then help us establish a close connection between finite-turn dcf
languages and a deterministic analogue of ultralinear grammars, which we call
LR(1)-ultralinear grammars in Sect. 3.2. Similarly, we characterize deep-finite-
turn dcf languages in terms of LR(1)-metalinear grammars. As a restricted case
of 1-turn dcf languages, we obtain LR(1)-linear grammars. As remarked in [1],
there is a language that is generated by both an LR(1) grammar and a linear
grammar but actually requires 2 turns. Thus, no LR(1)-linear grammar can gen-
erate such a language. As a useful application of our grammar characterization
of ωtDCFL, we prove a structural property of this class, known as a pumping
lemma (or an iteration theorem) in Sect. 4. For ultralinear grammars, Magalini
and Pighizzini [15] already proposed a pumping lemma. Our pumping lemma,
by contrast, reflect the “deterministic” feature of LR(1)-ultralinear languages.

Language Grammar

finite-turn context-free ultralinear [8]

dcf LR(k) (k ≥ 1) [12]

finite-turn dcf LR(1)-ultralinear

deep-finite-turn dcf LR(1)-metalinear

2 Preparation: Notions and Notation

2.1 Numbers, Strings, and Grammars

The notation N indicates the set of all natural numbers (i.e., nonnegative inte-
gers) and N

+ denotes the difference N − {0}. For two integers m and n, when
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m ≤ n, we denote by [m,n]Z the integer interval {m,m + 1,m + 2, . . . , n}. For
any number n ∈ N

+, we abbreviate [1, n]Z as [n]. Given a set A, P(A) expresses
the power set of A. An alphabet is a finite set composed of “symbols” or “letters”.
A string over alphabet Σ is a finite sequence of symbols in Σ and a language A
over Σ is a set of strings over Σ. The length of a string x, denoted |x|, is the total
number of symbols in x. The empty string is a unique string of length 0 and is
expressed as ε. Given a number n ∈ N, Σn (resp., Σ≤n) denotes the set of all
strings over Σ of length exactly n (resp., length at most n). Let Σ∗ =

⋃
n∈N

Σn.
For any set Γ , the notation Γε denotes Γ ∪{ε}. Given three strings x, y, z ∈ Σ∗,
if z = xy, then x is a prefix of z and y is a suffix of z. A language L is called
prefix-free if, for any u, v ∈ L, u cannot be a prefix of v. For any string w and any
number i ∈ [|w|], (w)(0) = ε and (w)(i) is the ith symbol of w. For convenience,
whenever i > |w|, (w)(i) denotes ε. In particular, (ε)(1) = ε follows.

A grammar is of the form 〈N,T, S, P 〉, where N is an alphabet of non-
terminals, T is an alphabet of terminals satisfying N ∩ T = ∅, S is the axiom
(or start symbol) in N , and P is a finite set of productions, expressed using the
single arrow →. Each production induces a derivation, expressed using the double
arrow ⇒. A string α ∈ (N∪T )∗ is said to be in a sentential form if S ⇒∗ α holds,
where ⇒∗ is the transitive closure of ⇒. In the case of a context-free grammar,
the use of such derivations produces a derivation tree. In particular, the special
notation ⇒rt is used for the rightmost derivation. A derivation tree is rightmost
if all derivations used to produce this tree are rightmost derivations. Without loss
of generality, we assume that our grammars do not contain “useless” symbols;
namely, for any symbol A ∈ N ∪T , there always exist u, v ∈ (N ∪T )∗ and w ∈ T ∗

satisfying S ⇒∗ uAv ⇒∗ w. Following the formalism of [11, Section 12] as well
as [24, Section 3], a context-free grammar G = 〈N,T, P, S〉 with S �⇒+

rt S is an
LR(1) grammar if it satisfies the following condition: for any two derivations of
the form S ⇒∗

rt α1A1y1 ⇒rt α1γ1y1 and S ⇒∗
rt α2A2y2 ⇒rt α2γ2y2 = α1γ1z2

with α1, α2, γ1, γ2 ∈ (N∪T )∗, A1, A2 ∈ N , and y1, y2, z2 ∈ T ∗, if (y1)(1) = (z2)(1)
(including the case of y1 = z2 = ε), then A1 = A2, γ1 = γ2, and y2 = z2. The
language L(G) generated by such an LR(1) grammar G is the set {w | S ⇒∗

w by G }. In this paper, we deal only with LR(1) grammars, and thus “language
generation” is always understood in this sense. Notice that L is deterministic
context-free (dcf) if and only if (iff) L is generated by a certain LR(1) grammar
[12].

2.2 Turns of Pushdown Automata

A one-way deterministic pushdown automaton (or a 1dpda, for short) M is
formally a nonuple4 (Q,Σ, {�,�}, Γ, δ, q0,⊥, Qacc, Qrej), where Q is a finite set
of inner states, Σ is an input alphabet, Γ is a stack alphabet, q0 is the initial
state in Q, ⊥ is the bottom marker in Γ , Qacc and Qrej are respectively a set

4 The use of endmarkers and a halting set pair (Qacc, Qrej) does not change the
computational power of 1dpda’s. In particular, the right endmarker helps a machine
empty its stack at the end of its computation.
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of accepting states in Q and that of rejecting states in Q with Qacc ∩ Qrej =
∅, and a transition function δ maps (Q − Qhalt) × Σ̌ε × Γ to P(Q × Γ≤e)
with Σ̌ε = Σ ∪ {ε,�,�}, Qhalt = Qacc ∪ Qrej , and e ∈ N

+. The number e
is called push size. The two symbols � and � represent the left and the right
endmarkers, respectively. For simplicity, this paper considers only 1dpda’s that
always terminate by entering appropriate halting states in Qhalt in the end of
its computation. We further demand M to satisfy the following deterministic
requirement : (i) |δ(p, σ, a)| ≤ 1 for all (q, σ, a) and (ii) if δ(q, ε, a) �= ∅, then
δ(q, σ, a) = ∅ for all σ ∈ Σ̌ (= Σ∪{�,�}). For convenience, we write δ(q, σ, a) =
(p,w) in place of δ(q, σ, a) = {(p,w)}. We assume that ⊥ appears only at the
bottom of the stack and it cannot be popped or replaced by any other symbol at
any moment. We express the content of a stack (or a stack content) as a0a1 · · · an

with an = ⊥, a topmost stack symbol a0, and ai ∈ Γ (−) for all i ∈ [n], where
Γ (−) = Γ − {⊥}. For instance, assuming that M is scanning tape symbol σ
in inner state q with stack content aγ, after M makes a transition of the form
δ(q, σ, a) = (p,w), M ’s inner state becomes p and its stack content becomes
wγ. The length of a stack content is called the stack height. Because ⊥ is not
removed, we conventionally say that the stack is empty if it contains only ⊥.

To describe a computation of M , we introduce the notion of configuration
of M as a triplet in Q × (Σ̌)∗ × Γ ∗. A configuration (q, x, γ) indicates that
M is in inner state q with stack content γ, scanning the leftmost symbol of x.
Given two configurations (q, x, γ) and (p, y, ξ), we write (q, x, γ) �M (p, y, ξ) if M
changes (q, x, γ) to (p, y, ξ) in a single step. We use the notation �∗

M to denote the
transitive closure of �M . A computation is a series of consecutive configurations
starting at the initial configuration and ending at a certain halting configuration.

A string w is accepted (resp., rejected) by M if M starts with the input w,
reads �w�, eventually enters an inner state in Qacc (resp., Qrej), and halts. We
say that M recognizes a language L if M accepts all strings in L and M rejects
all strings in L (= Σ∗ − L). For convenience, the notation L(M) denotes the set
of all strings accepted by M .

Since we are concerned with “turns” of 1dpda’s, for clarity reason, we adopt
the following convention: (i) a 1dpda always reads an entire input string as well
as the right endmarker � and (ii) when � is read, if the stack still contains any
non-⊥ symbol, then the 1dpda automatically pops all the non-⊥ symbols by a
series of extra ε-moves and then enters an appropriate halting state. A “turn”
roughly refers to a change of the behavior of the stack from non-decreasing to
decreasing in volume. For later convenience, we define “turn” in the following
fashion. On a given computation, a stack history refers to the series of stack
contents produced at each step. Given a stack history (γ0, γ1, . . . , γn) produced
on a computation, a turn is a contiguous subsequence (γi, γi+1, γi+2, . . . , γj , γj+1)
such that |γi| < |γi+1| = |γi+2| = · · · = |γj | and |γj | > |γj+1|. The moment j is
referred to as a turning point. Recall that the stack must be empty after reading
�. Let us define τM (x) to be the number of turns made by M during the entire
computation of M on input x. A 1dpda M makes at most k turns if, for any input
x ∈ Σ∗, τM (x) is at most k. Such a machine is succinctly called a k-turn 1dpda.
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A finite-turn 1dpda informally refers to any k-turn 1dpda for an appropriately
chosen number k ≥ 0, which is independent of inputs. Similarly to [13, Lemma
3], it is possible to start a new turn by first initializing inner states (to q0). For
convenience, we write ktDCFL to denote the family of all languages recognized
by k-turn 1dpda’s. In particular, a 1dpda is said to make a deep turn (or an
empty-stack turn) if, before the start of each turn, it must empty the stack. We
write deep-ktDCFL for the collection of all languages recognized by deep-k-turn
1dpda’s for any k ≥ 1. It follows by the definition that deep-1tDCFL = 1tDCFL.
In a way similar to ktDCFL, we define ktCFL using the nondeterministic versions
of k-turn 1dpda’s (called k-turn 1npda’s).

We can further consider the union of all ktDCFL for any number k ≥ 0; for
brevity, we denote this union by ωtDCFL. Similarly, we define deep-ωtDCFL to
be

⋃
k∈N

deep-ktDCFL. It then follows that REG ⊆ deep-ωtDCFL ⊆ ωtDCFL ⊆
DCFL, where REG is the set of all regular languages. Moreover, it follows that
0tDCFL = REG.

Example 1. Let k ≥ 1. The language Tk = {an1bn1an2bn2 · · · ankbnk |
n1, n2, . . . , nk ∈ N} belongs to ktDCFL. Moreover, the language Lk = {cnwdn |
n ≥ 0, w ∈ Tk} is in ktDCFL.

Since there is no explicit reference to class-separations concerning ktDCFL
as well as deep-ktDCFL, we briefly state these class-separations, some of which
are easily deducible from the past literature [8–10,14].

Lemma 2. Let k be any number in N
+. (1) ktDCFL �= (k + 1)tDCFL.

(2) deep-ktDCFL �= deep-(k + 1)tDCFL. (3) deep-ktDCFL �= ktDCFL. (4)
ktDCFL �= ktCFL. (5) ωtDCFL �= DCFL.

Proof. (1)–(2) Greibach [10, Lemma 3.2] demonstrated that the aforementioned
language Tk+1 is not in ktCFL. Since this language in fact belongs to deep-(k +
1)tDCFL, we obtain the desired separations.

(3) Recall the language Lk from Example 1. Toward a contradiction, assume
that Lk ∈ deep-ktDCFL. For each input of the form cnwdm, an appropriately-
chosen 1dpda M recognizing Lk must empty its stack before each turn. The
information on n in cn must be carried over to dm using only inner states. When
n is sufficiently large, that is impossible. Thus, M cannot make any deep turn.

(4) Consider the language MPalk = {w1w
R
1 #w2w

R
2 # · · · #wkwR

k |
w1w2, . . . , wk ∈ {0, 1}∗} (multiple even-length palindromes), where xR is the
reverse of x. This MPalk belongs to ktCFL. However, even in the simple case
of k = 1, MPal1 is not in DCFL.

(5) Consider the language Lω = {an1bn1#an2bn2# · · · #antbnt | t ≥
1, n1, n2, . . . , nt ∈ N}. Clearly, Lω is in DCFL. It follows by Greibach [9] that
Lω cannot be in ktCFL for any k ≥ 1; therefore, Lω is outside of ωtDCFL. �
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3 Grammar Characterizations

3.1 Useful Properties of ktDCFL and ωtDCFL

Before providing a new grammar for languages in the family ktDCFL, we state
useful properties of ktDCFL for each k ∈ N

+ as well as ωtDCFL. Those prop-
erties will be used in Sect. 3.3. By adapting a basic idea of [8], we use one-way
deterministic finite transducers (or 1dft’s, for short), which are one-way finite
automata equipped with write-once output tapes. We here consider the following
special type of 1dft’s. On any input of the form ua, where u = u1u2 · · · um with
ui, a ∈ Σ and ui �= a, a 1dft M reads each symbol ui from the input tape and
writes a certain string vi in Θ∗ onto the output tape by applying M ’s transition
function δ : (Q − Qfin) × Σ → Q × Θ∗, where Θ is an output alphabet and
Qfin is a set of final states. When M reads the last symbol a, it halts by writing
symbol b ∈ Θ and then entering a certain final state. From M , we define the set
that is composed of all ordered pairs (ua, bv) with v = vmvm−1 · · · v1. We call
this set finite-state splitable. As a quick example, the set {(cna, ben) | n ≥ 0}
is finite-state splitable. A language family F is said to be closed under match-
ing bilinear concatenation if the following statement holds: for any two sets A
and L, if L ∈ F and A is finite-state splitable, then the composite language
L[A] = {uawbv | (ua, bv) ∈ A, awb ∈ L} also belongs to F . This property will
be quite useful in proving Theorem 4.

Here, we intend to mention only the following closure properties.

Lemma 3. Let k ∈ N
+. The family ktDCFL is closed under all of the following

operations: complementation, intersection with regular sets, inverse homomor-
phism, and matching bilinear concatenation.

Proof Sketch. Let k denote any fixed constant in N
+.

[matching bilinear concatenation] Take a finite-state splitable set A and a
language L in ktDCFL. We consider L[A]. Take a 1dft MA that witnesses
“(ua, bv) ∈ A” and a 1dpda ML that recognizes L. Let us consider the following
1dpda N . On input x of the form uawbv with u = u1 · · · un and v = vn · · · v1,
we first run MA to generate v and store it into a stack until it reads a, writes b,
and halts. We push a distinguished marker, say, $ into the stack. We then run
ML on awb. Note that M halts just after reading b. We then remove $ and check
whether v matches the stack content. This machine N recognizes L[A] with at
most k turns. �

We remark that Lemma 3 also holds for deep-ktDCFL except for the match-
ing bilinear concatenation.

3.2 LR(1)-Metalinear and LR(1)-Ultralinear Grammars

Ginsburg and Spanier [8] established a close connection between finite-turn
1npda’s and ultralinear and metalinear grammars. A similar connection holds
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for finite-turn 1dpda’s if we properly define a deterministic analogue of these
grammars. We thus need to introduce the desired grammars.

Consider a context-free grammar G = 〈N,T, P, S〉. We say that G is LR(1)-
metalinear if G is an LR(1) grammar and all productions in P have the forms
S → A1A2 · · · Ak with Ai ∈ N (−) and A → u with k ∈ N

+, A ∈ N (−), and
u ∈ (T ∗N (−)T ∗) ∪ T ∗, where N (−) = N − {S}. In particular, when k = 1,
G is called LR(1)-linear. As a quick example, let us consider a grammar G =
〈{S,C,D}, {a, b}, P, S〉, where P consists of S → CD, C → aCb, C → ε, D →
Db, and D → b. This grammar G is LR(1)-metalinear.

It is important to note that the language LOR,2 = {anbmapbq | n,m, p, q ∈
N

+, n = m ∨ p = q}, for instance, is generated by both an LR(1) grammar
and a linear grammar but LOR,2 requires at least two turns on any 1dpda [1,
Section 6.1.1]. We thus conclude that no LR(1)-linear grammar generates this
language because, otherwise, there exists a 1-turn 1dpda for LOR,2, a contradic-
tion.

A context-free grammar G is said to be LR(1)-ultralinear if G is an LR(1)
grammar and N is a finite union of disjoint (possibly empty) sets N0, N1, . . . , Nd

such that, for any index i ∈ [0, d]Z and any symbol A ∈ Ni, each production with
A in its left-hand side has the form A → u for a certain string u ∈ (T ∪ N0 ∪
· · · ∪ Ni−1)∗ ∪ (T ∗NiT

∗), where we may assume that S ∈ Nd. The level of A
is the index i satisfying A ∈ Ni and we succinctly express this situation as
level(A) = i. Clearly, LR(1)-metalinear grammars are LR(1)-ultralinear. Notice
that there are LR(1) grammars that are not LR(1)-ultralinear. For example,
consider the grammar5 whose productions are S → ε|aAbS|bBaS, A → ε|aAbA,
and B → ε|bBaB. This is an LR(1) grammar but not LR(1)-ultralinear.

Recall from Sect. 2.1 that all grammars in this paper are assumed to contain
no useless symbol.

Ginsburg and Spanier [8] proved that ωtCFL and deep-ωtCFL precisely con-
tain all ultralinear languages and all metalinear languages, respectively. The
following theorem is a deterministic analogue of the result of [8, Theorem 3.2]
(see also [13, Theorem 1]). We remark that the characterization of dcf languages
by LR(1) grammars [12] does not instantly imply the theorem.

Theorem 4. Let L be any language.

1. L is in ωtDCFL iff L is LR(1)-ultralinear.
2. L is in deep-ωtDCFL iff L is LR(1)-metalinear.

3.3 Proof of Theorem 4

The purpose of this subsection is to prove Theorem 4. In the proof of [11, The-
orem 12.8], it was shown that any LR(k) grammar can be simulated by appro-
priate 1dpda’s. This simulation, however, repeats a linear number of pushes and
pops, and thus those 1dpda’s are not finite-turn 1dpda’s. We thus need to develop

5 This grammar is also categorized to an expansive grammar (see, e.g., [1]).
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a different technique for our purpose. As a preparation to the proof of the theo-
rem, we show the following key lemma concerning LR(1)-linear grammars. This
is a basis to the proof of Theorem 4.

Lemma 5. Consider an LR(1)-linear grammar G = 〈N,T, P, S〉. Assume that
P consists only of productions of the forms (i) S → C for C ∈ N (−), (ii) A → w
for A ∈ N (−) and w ∈ T ∗, and (iii) A → uCv for A,C ∈ N (−) and u, v ∈ T ∗.
There exists a 1-turn 1dpda M that recognizes L(G).

Proof. It is easy to see by the premise of the lemma that all strings x generated
by G have the form u1u2 · · · umwvm · · · v2v1 with ui, vi, x ∈ T ∗ for any i ∈
[m] by a derivation of the form (*) S ⇒ C0 ⇒∗ u1C1v1 ⇒ u1u2C2v2v1 ⇒∗

u1u2 · · · umCmvm · · · v2v1 ⇒ u1u2 · · · umwvm · · · v2v1.
It is possible to prove that the derivation (*) stated above is unique.

This fact can be proven by induction on i ∈ [0,m]Z that the ith derivation
u1 · · · uiCivi · · · v1 ⇒ u1 · · · uiui+1Ci+1vi+1vi · · · v1 is uniquely determined, pro-
vided that Cm+1 = w. The proof follows from the definition of the LR(1) gram-
mar. Here, we omit the details of this proof.

In what follows, we construct a 1-turn 1dpda, say, M to accept all inputs x
of the form u1 · · · umwvm · · · v1. The desired 1dpda M is designed to simulate
any derivation of G and accept such an x.

Let d denote the length of the longest string α ∈ T ∗ ∪ (T ∗N (−)T ∗) that
appears in a production of the form A → α for any symbol A ∈ N (−). We define
Σ = T and Γ = (N ∪ T )≤d for M . Let t = |P | and assume that all productions
are indexed by numbers in [t]. We begin with reading � on an input tape and ⊥
in a stack. We define Bi to denote a symbol C in N (−) corresponding to the ith
production of the form S → C in (i) if any, and we set Bi to be − (undefined)
otherwise. We push a symbol [B1, B2, . . . , Bt] into the stack and move the tape
head to the right.

(1) Assume that the stack contains [B1, B2, . . . , Bt], where Bi is of the form either
Ciui with Ci ∈ N (−) and ui ∈ T≤d or − (undefined). Assume also that the
tape head is rested on a cell that contains an input symbol σ.

(a) Assume that there exist three numbers i, j, l ∈ [t] for which the ith production
has the form Cj → ujClvj in (ii) for a certain string vj ∈ T ∗ and a symbol
Cl ∈ N (−). We define B′

i = vj and Di = Cl. If this is not he case, we set
B′

i = − and Di = Bi. By making an ε-move, we replace [B1, . . . , Bt] in the
stack by two symbols of the form [B′

1, . . . , B
′
t][D1, . . . , Dt].

(b) Assume that there exist three numbers i, j, l ∈ [t] for which the ith production
has the form Cj → wl in (iii) for a certain string wl ∈ T ∗. In this case, if
Bj is of the from Cjwl, then we pop [B1, B2, . . . , Bt] by making an ε-move.
Otherwise, we reject. Go to Case (3).

(2) If Case (1) is not applicable, then we read an input symbol σ and replace
[B1, . . . , Bt] by [B′

1, . . . , B
′
t], where B′

i = − if Bi is not defined, and B′
i = Biσ

otherwise. We then go back to Case (1).
(3) Assume that the stack contains [B1, B2, . . . , Bt], where Bi is of the form either

vi ∈ T≤d or − (undefined). Assume that the tape head scans an input symbol
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σ. If vi is of the form σv′
i for a nonempty string v′

i, then we define B′
i = v′

i.
We then replace [B1, B2, . . . , Bt] by [B′

1, B
′
2, . . . , B

′
t]. If vi = σ, then we pop

[B1, B2, . . . , Bt]. Repeat Case (3) until we reach ⊥.

If there is any procedural error during the above process, then we immediately
reject. We remark that the stack height of M does not alter during the simulation
of G except for the first and the last steps of M . This whole procedure is thus
carried out with only one turn. Moreover, the uniqueness of the derivation (*)
ensures that M is deterministic. �

We return to Theorem 4 and present its proof below. We here prove only
Theorem 4(1) and leave the proof of Theorem 4(2) to the avid reader. The
closure property of ktDCFL under matching bilinear concatenation in Lemma 3
is partly necessary to prove the theorem.

As discussed in the literature (e.g., [20]), it is possible to assume that the
push size e equals 2. We further consider an ε-extension of M and x, as in
[21,22], which is a string obtained by supplementing a number of ε’s as a new
input symbol. We take an extended 1dpda Mε taking an ε-extended input string
x̂ satisfying that M accepts (resp., rejects) x iff Mε accepts (resp., rejects) x̂.

Proof of Theorem 4(1). (If–part) Let G = 〈N,T, P, S〉 denote any LR(1)-
ultralinear grammar with N =

⋃
j∈[0,d]Z

Nj for a fixed constant d ∈ N. For
each index i ∈ [0, d]Z, we set Ñ(i) to be

⋃
j∈[0,i]Z

Nj . Given a series of symbols
X ∈ (N ∪ T )∗ and a symbol a ∈ T ∪ {�}, we define LX,a to be the language
{w ∈ T ∗ | Xa ⇒∗

rt wa}. We first claim the following.

Claim 6. For any index i ∈ [0, d]Z, for any symbol X ∈ Ñ(i), and for any symbol
a ∈ T ∪ {�}, LX,a is in ωtDCFL.

Since S ∈ N and LS,� = L(G), Claim 6 concludes that L(G) is in ωtDCFL.

Proof of Claim 6. Let us prove by induction on i ∈ [0, d]Z that, for any X ∈
Ñ(i) and any a ∈ T ∪{�}, LX,a ∈ ωtDCFL. Firstly, we consider the basis case of
i = 0. Fix a symbol A ∈ Ñ(0) and a symbol a ∈ T ∪ {�} arbitrarily. Notice that
Ñ(0) = N0 by definition. Consider a new LR(1)-linear grammar 〈N0, T, P0, SA〉
whose P0 consists of all productions of the forms B → w and B → uCv in P
with B,C ∈ N0 and u, v, w ∈ T ∗ together with a new production SA → A. Note
that SAa ⇒∗

rt wa in this grammar is equivalent to Aa ⇒∗
rt wa in the original

grammar. By Lemma 5, LA,a is in 1tDCFL and thus in ωtDCFL.
Let i ≥ 1 and assume by induction hypothesis that LX,a is in ωtDCFL for

every X ∈ Ñ(i−1) and every a ∈ T ∪ {�}. Fix A ∈ Ni and a ∈ T ∪ {�}
arbitrarily and focus on LA,a. Our goal is to verify that LA,a ∈ ωtDCFL.
Since i ≥ 1, there may be productions of the forms (i) A → uCv and (ii)
A → u1B1u2 · · · umBmum+1 in P for C ∈ Ni, B1, . . . , Bm ∈ Ñ(i−1), and
u, v, u1, . . . , um ∈ T ∗.

We look into the case where (i) occurs and define a new LR(1)-linear
grammar. We consider a chain of productions of the form: A → u1C1v1,
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Ci → ui+1Ci+1vi+1 for any i ∈ [t − 1], and Ct → u′
1B1u

′
2 · · · u′

mBmu′
m+1

with B1, . . . , Bm ∈ Ñ(i−1), where t ≥ 1. We replace such a chain by A →
u1u2 · · · utDvt · · · v2v1, where D = u′

1B1u
′
2 · · · u′

mBmu′
m+1. This case is then

treated as (ii).
Next, assuming that (i) does not occur, we focus on (ii). For each of the

productions of the form in (ii), we prepare a new terminal symbol, say, Y not in
T and substitute Y for u1B1u2 · · · umBmum+1. Let T (ext) denote the extension
of T by adding all those new terminal symbols Y . Consider a new LR(1)-linear
grammar 〈Ni, T

(ext), Pi, SA〉 whose Pi is composed of all productions of the forms
SA → A, B → Y , B → w in P with w ∈ T ∗, and B → uCv in P with C ∈ Ni and
u, v ∈ T ∗, provided that B ∈ Ni. For each Y , any string including Y generated
by this grammar must have the form ū1 · · · ūmY v̄m · · · v̄1 for ūj , v̄j ∈ T ∗ with
j ∈ [m] because of (ii). Associated with these strings, D denotes the collection
of the form (ū1 · · · ūma, bv̄m · · · v̄1). By Lemma 5, the language generated by this
grammar is in 1tDCFL, and thus the set D is finite-state splitable. Consider all
productions of the form B → u1B1u2 · · · umBmum+1 with B ∈ Ni and take the
union of all u1LB1,a1u2 · · · umLBm,am

um+1, where each ai is the first symbol of
ui+1. This union coincides with LA,a. By the closure properties of ωtDCFL under
matching bilinear concatenation, noted in Lemma 3, LBj ,aj

is in ωtDCFL for
all j ∈ [m]. This implies that LA,a belongs to ωtDCFL. Therefore, by induction,
the claim is true. �

(Only If–part) Let L denote any language in ktDCFL. For simplic-
ity, we assume that either k = 1 or L /∈ (k − 1)tDCFL. Let M =
(Q,Σ, {�,�}, Γ, δ, q0,⊥, Qacc, Qrej) denote a k-turn 1dpda that recognizes L.
The use of endmarkers makes it possible to assume that Qacc = {qacc} and
Qrej = {qrej} and that M empties its stack by making a consecutive series of
ε-moves after reading �. As noted in Sect. 2.2, the push size of M can be set to
be 2. We partition Q into Q1, Q2, . . . , Qk with q0 ∈ Q1 so that a nondecreasing
move changes inner states in Qi to those in Qi and a decreasing move changes
inner states in Qi to those in Qi+1.

Hereafter, we intend to describe how to construct the desired grammar. We
first define T = Σ̌ε and N = Q×Γ ×Q∪{S}. We express each element of N (−) as
[q,A, r], where q, r ∈ Q and A ∈ Γ . We then translate each transition of Mε into
a series of production rules as follows. Initially, we introduce S → [q0,⊥, r] for
any r ∈ Q. Let Nk = {S, [q0,⊥, r] | r ∈ Q}. If δ(q, σ,A) = (p,B) with A,B ∈ Γ
and p, q ∈ Qi, then we define [q,A, r] → σ[p,B, r] for any r ∈ Qn with n ≥ i.
If [q,A, r] ∈ Ni, then [p,B, r] ∈ Ni. If δ(q, σ,A) = (p,BC) with A,B,C ∈ Γ ,
and p, q ∈ Qi, then we define [q,A, r] → σ[p,C, s][s,B, r] for any r ∈ Qn and
s ∈ Qm with n > m > i. If [q,A, r] ∈ Ni, then [p,C, s], [s,B, r] ∈ Ni−1. If
δ(q, σ,A) = (p, ε) with q ∈ Qi and p ∈ Qi+1, then we introduce [q,A, p] → σ.
Those productions with T and N form a grammar, which we call by G.

Claim 7. For any p, q ∈ Q, A ∈ Γ , and x ∈ Σ∗∪�Σ∗∪Σ∗�∪�Σ∗�, [q,A, p] ⇒∗
lt

x̂ iff (q, x̂, Aγ) �∗
Mε

(p, ε, γ) for any stack content γ ∈ (Γ (−))∗⊥∪ (Γ (−))∗, where
x̂ is an ε-extension of x and ⇒lt is the leftmost derivation.
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Proof. Let x̂ = x1x2 · · · xn and, for any i, j ∈ [n] with i < j, let x̂[i:j] denote
xixi+1 · · · xj . Notice that x̂[1:n] coincides with x̂.

(If–part) The proof proceeds by induction on the number of steps of Mε.
Assume that (q, x̂, Aγ) �Mε

(q1, x̂[2:n], α1γ) �Mε
(q2, x̂[3:n], α2γ) �Mε

· · · �Mε

(qn, ε, αnγ). When n = 1, since x̂ ∈ Σ̌ε (= Σ∪{ε,�,�}), Mε applies a transition
δ(q, x̂, A) = (p, ε) to obtain (q, x̂, Aγ) �∗

Mε
(p, ε, γ). By the definition of G, it must

contain a production of the form [q,A, p] → x̂. Thus, we obtain [q,A, p] ⇒∗
lt x̂.

Next, we consider the case of n ≥ 2 and assume that (q, x̂, Aγ) �Mε

(q1, x̂[2:n], ξγ) �∗
Mε

(p, ε, γ) for an appropriate string ξ ∈ Γ ∪Γ 2. (a) If ξ = B ∈ Γ ,
then (q1, x̂[2:n], Bγ) �∗

Mε
(p, ε, γ) implies [q1, B, p] ⇒∗

lt x̂[2:n] by induction hypoth-
esis. Since δ has the transition δ(q, x1, A) = (q1, B), G must contain a production
of the form [q,A, p] → x1[q1, B, p]. Thus, we obtain [q,A, p] ⇒∗

lt x1x̂[2:n] = x̂. (b)
Similarly, if ξ = BC ∈ Γ 2, then we obtain (q1, x̂[2:n], BCγ) �∗

Mε
(p, ε, γ). Choose

q2, q3 ∈ Q such that (q1, x2, Bγ) �∗
Mε

(q2, ε, γ) and (q2, x̂[3:n], Cγ) �∗
Mε

(p, ε, γ).
By induction hypothesis, we obtain [q1, B, q2] ⇒∗

lt x2 and [q2, C, p] ⇒∗
lt x̂[3:n].

From δ(q, x1, A) = (q1, BC), G contains [q,A, p] → x1[q1, B, q2][q2, C, p]. This
implies that [q,A, p] ⇒∗

lt x1x2x̂[3:n] = x̂.
(Only if–part) We prove this direction by induction on the length n of a

derivation of G. If n = 1, then x̂ ∈ Σ̌ε, and thus [q,A, p] ⇒∗
lt x̂ implies that G

has the production [q,A, p] → x̂. This means that M makes a transition of the
form δ(q, x̂, A) = (p, ε), resulting in (q, x̂, Aγ) �∗

Mε
(p, ε, γ). Consider the other

case of n ≥ 2. Assume that [q,A, p] ⇒lt x1[q1, B, p] ⇒∗
lt x1x̂[2:n] occurs for certain

q1 ∈ Q and B ∈ Γ . Since [q1, B, p] ⇒∗
lt x̂[2:n], by induction hypothesis, we obtain

(q1, x̂[2:n], Bγ) �∗
Mε

(p, ε, γ). From [q,A, p] ⇒lt x1[q1, B, p], G has the production
[q,A, p] → x1[q1, B, p]. Thus, Mε must apply δ(q, x1, A) = (q1, B) and we obtain
(q, x1, Aγ) �Mε

(q1, ε, Bγ). Therefore, (q, x̂, Aγ) �∗
Mε

(p, ε, γ) follows.
Next, we assume that [q,A, p] ⇒lt x1[q1, B, q2][q2, C, p], [q1, B, q2] ⇒∗

lt

x̂[2:m], and [q2, C, p] ⇒∗
lt x̂[m:n] for a certain number m ∈ [3, n −

1]Z. Since G has [q,A, p] → x1[q1, B, q2][q2, C, p], Mε has δ(q, x1, A) =
(q1, BC). By induction hypothesis, we obtain (q1, x̂[2:m], Bγ) �∗

Mε
(q2, ε, γ)

and (q2, x̂[m:n], Cγ′) �∗
Mε

(p, ε, γ′). By combining them, we conclude that
(q, x̂, Aγ) �Mε

(q1, x̂[2:n], BCγ) �∗
Mε

(q2, x̂[m:n], Cγ) �∗
Mε

(p, ε, γ). �

From Claim 7, it instantly follows that, for any x, [q0,⊥, qacc] ⇒∗
lt �x�

iff (q0,�x�,⊥) �∗
Mε

(qacc, ε,⊥). This equivalence implies that x ∈ L(G) iff
x ∈ L(M). Since x is arbitrary, we conclude that G generates L(M).

It is obvious that G is ultralinear by its definition. The remaining claim is
the LR(1) property of G.

Claim 8. The grammar G is an LR(1) grammar.

Proof. Assume that (i) S ⇒∗
rt α1A1y1 ⇒rt α1γ1y1 and (ii) S ⇒∗

rt α2A2y2 ⇒rt

α2γ2y2 = α1γ1z2 with (y1)(1) = (z2)(1). Our goal is to show that A1 = A2,
γ1 = γ2, and y2 = z2. Consider the case |α1γ1| ≥ |α2γ2|. The other case of
|α1γ1| < |α2γ2| can be proven in a symmetric way. Since α2γ2y2 = α1γ1z2, we
choose s to satisfy α1γ1 = α2γ2s and y2 = sz2. We further take strings x1 and
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w1 in T ∗ for which α1 ⇒∗
rt x1 and γ1 ⇒∗

rt w1 hold. We then obtain the derivation
S ⇒∗

rt α1A1y1 ⇒rt α1γ1y1 ⇒∗
rt x1w1y1.

Let us consider the leftmost derivation of the form (a) S ⇒∗
lt x1A1η1 ⇒lt

x1γ1η1 ⇒∗
lt x1w1η1 ⇒∗

lt x1w1y1, where η1 in N satisfies η1 ⇒∗
lt y1. Similarly,

we choose x2 and w2 so that α2 ⇒∗
lt x2 and γ2 ⇒∗

lt w2. Since y2 = sz2, we
thus obtain (b) S ⇒∗

rt α2A2y2 = α2A2sz2 ⇒rt α2γ2sz2 ⇒∗
lt x2w2sz2 = x1w1y1.

This can be rewritten using the leftmost derivation as (c) S ⇒∗
lt x2w2sη2 =

x1w1η2 ⇒∗
lt x1w1z2, where η2 in N satisfies η2 ⇒∗

lt z2. By the definition of G
from M , (a) and (c) together imply that, after reading x1w1, M must make
the same behavior, producing the same symbol, and thus η1 = η2 holds. This
implies that y1 = z2 and y2 = sy1. Since η1 = η2, (c) implies the derivation
(d) S ⇒∗

lt x2w2sη2 = x2w2sη1 ⇒∗
lt x2w2sy1 = x1w1y1. Note that (a) and

(d) must have the same derivation tree. From (b) follows the derivation (e)
S ⇒∗

rt α2A2sz2 = α2A2sy1 ⇒rt α2γ2sy1 = α1γ1y1. Compare (e) with (i).
They must form the same derivation tree, and thus we conclude that α1 = α2,
A1 = A2, γ1 = γ2, s = ε, and y2 = z2. �

The above claim then implies that G is LR(1)-ultralinear. Therefore, we
complete the first part of the theorem. �

4 An Immediate Application of the Grammar
Characterizations

Let us discuss an immediate application of the grammar characterizations of
ωtDCFL and deep-ωtDCFL presented in Sect. 3.2. Here, we are particularly
concerned with a “structural property,” known as pumping lemmas or iteration
theorems. In the past literature, numerous pumping lemmas for (subclasses of)
DCFL have been proposed. Note that these pumping lemmas are highlighted in
terms of “iterative pairs” [2].

As for ωtCFL, however, Magalini and Pighizzini already discussed a pumping
lemma [15, Theorem 3]. We wish to distance ourselves from theirs and to focus
solely on a “deterministic” nature of ωtDCFL.

We fix a language L. A quintuple τ = (x, y, z, u, v) of strings is said to build
the string xyzuv and, conversely, xyzuv is said to be factorized into (x, y, z, u, v).
This quintuple τ is called an iterative pair of L if |yu| ≥ 1 and xynzunv ∈ L
holds for all n ∈ N. In a vein similar to a “standard” pumping lemma (see, e.g.,
[11]), Yu [24] proved the following lemma.

Lemma 9 (Deterministic Pumping Lemma, [24]). Let L be any infinite
non-regular language in DCFL over an alphabet Σ. There exist two constants
k ∈ N

+ and c > 0 that satisfies the following condition. For any strings xy and
xz, either there exists a factorization (x1, x2, x3, x4, x5) of x with |x2x3x4| ≤ c
that is also an iterative pair of L or there exist three factorizations x = x1x2x3,
y = y1y2y3, and z = z1z2z3 with |x2x3| ≤ c such that (x1, x2, x3y1, y2, y3) and
(x1, x2, x3z1, z2, z3) are both iterative pairs of L.
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For infinite languages in ωtDCFL−REG, we propose a new pumping lemma.

Lemma 10 (Finite-Turn Pumping Lemma). Let L be any infinite non-
regular language in ωtDCFL over an alphabet Σ. There exist two constants k ∈
N

+ and c > 0 that satisfy the following condition. For any number l ≥ 1 and any
string w = w1w2 · · · wl with wj = xj1xj2xj3xj4xj5 satisfying |xj2xj4| ≥ 1 and
|xj2xj3xj4| ≤ c for each i ∈ [l], if w

(i1)
1 w

(i2)
2 · · · w(il)

l ∈ L for any i1, i2, . . . , il ∈ N,
then l ≤ k, where w

(i)
j = xj1x

i
j2xj3x

i
j4xj5.

Given a string w, we consider its rightmost derivation tree, say, Hw, which is
generated by applying only rightmost derivations of G. For any subtree F of Hw

generating a substring of w, F is said to contain a repetitive subgraph if there
exist a path of F from its root to a leaf (of Hw) and a non-terminal symbol B
such that B appears at least twice on this path.

Proof of Lemma 10. Given an infinite language L in ωtDCFL − REG, let us
consider an LR(1)-ultralinear grammar G = 〈N,T, P, S〉 that generates L. Let
h denote the maximum length of the right-hand side of any production in P . We
set c = h2|N |+|T |.

We choose the maximum number k that satisfies the condition: for any w ∈
Σ∗, there is a factorization w = w1w2 · · · wk such that, for any index j ∈ [k], a
subtree of Hw generating wj has a repetitive subgraph.

Let l ≥ 1. Consider any string w = w1w2 · · · wl whose substrings wj have
the forms xj1xj2xj3xj4xj5 with |xj2xj4| ≥ 1 and |xj2xj3xj4| ≤ c for every index
j ∈ [l]. Assume that w

(i1)
1 w

(i2)
2 · · · w(il)

l ∈ L for any i1, i2, . . . , il ∈ N, where
w

(i)
j = xj1x

i
j2xj3x

i
j4xj5. We further assume that l is maximal. We wish to assert

that l ≤ k. Toward a contradiction, we assume that l ≥ k+1. We claim that, for
each index j ∈ [l], a subtree F of Hw generating wj has a repetitive subgraph.
The proof of this claim proceeds by induction on j ∈ [l]. We begin with the basis
case of j = l. Let us focus on a unique subtree F of Hw that generates wl. This
subtree F is a derivation tree in which there is non-terminal symbol C satisfying
S ⇒∗

rt αCv. Since (xl1, xl2, xl3, xl4, xl5) is an iterative pair of L, by following the
argument of the proof of [24, Lemma 1], there is a non-terminal symbol B such
that, along an appropriate path from the root of F to its leaf, B appears at least
twice. In short, F contains a repetitive subgraph. Because of the maximality of
l, no prefix and no suffix of wl can be factorized into any iterative pair.

For an induction step j < l, we consider the string w1w2 · · · wj and a subtree
of H that generates w1w2 · · · wj . We set this subtree as “new” H and follow an
argument similar to the previous case of j = l. This shows the existence of a
path that contains a repetitive subpath.

Overall, we conclude that there are l subtrees, each of which contains a
repetitive subgraph. However, since l ≥ k + 1, this clearly contradicts the choice
of k. �

In what follows, we show how to apply Lemma 10. For this purpose, we first
generalize LOR,2 to LOR,ω by setting LOR,ω to be {an1bm1an2bm2 · · · ank+1bmk+1 |
k ≥ 1, n1, n2, . . . , nk+1,m1,m2, . . . ,mk+1 ≥ 0,∃i ∈ [k + 1](ni = mi)}.
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Lemma 11. LOR,ω /∈ ωtDCFL. Thus, DCFL ∩ 1tCFL � ωtDCFL.

Proof. We then intend to prove that (1) LOR,ω /∈ ωtDCFL and, for the second
assertion of the lemma, (2) LOR,ω ∈ DCFL ∩ 1tCFL.

We begin with showing (1). Toward a contradiction, we assume that LOR,ω ∈
ωtDCFL. We take two constants k ∈ N

+ and c > 0 that satisfy Lemma 10.
Choose prime numbers p1, p2, . . . , pk+1 with c < p1 < p2 < · · · < pk+1. Let
l = k+1. Let us consider the string of the form w = w1w2 · · · wl with wj = apj bpj

for any index j ∈ [l]. We factorize each substring wj into (xj1, xj2, xj3, xj4, xj5)
with xj1 = apj−1, xj2 = a, xj3 = ε, xj4 = b, and xj5 = bpj−1. For each
i ∈ N, we write w

(i)
j for the string xj1x

i
j2xj3x

i
j4xj5. It immediately follows that

w
(i1)
1 w

(i2)
2 · · · w(il)

l ∈ L by the definition. Lemma 10 then implies l ≤ k. Since
l = k + 1, this leads to the desired contradiction.

As for (2), let us consider the following 1-turn 1npda N . On input w of the
form an1bm1an2bm2 · · · ank+1bmk+1 , we guess (i.e., nondeterministically choose)
an index i ∈ [k + 1], skip an1bm1an2bm2 · · · ani−1bmi−1 , check if ni = mi using a
stack properly, and accept w whenever ni = mi. Note that N makes only one
turn. Moreover, we modify N as follows. Instead of guessing i, we sequentially
check whether at least one of the equalities n1 = m1, n2 = m2, . . ., nk+1 = mk+1

holds. If such an equation indeed exists, then we accept w; otherwise, we reject
it. Clearly, we can perform this procedure deterministically. �

5 A Short Discussion and Challenging Open Questions

Turn-bounded context-free languages were first discussed by Ginsburg and
Spanier [8]. Here, we have taken a similar approach to capture finite-turn dcf
languages. We have introduce new types of formal grammar, called LR(1)-
metalinear and LR(1)-ultralinear grammars, for languages in ωtDCFL and
deep-ωtDCFL, respectively. There still remain challenging open questions to
answer. Is it possible to capture ωtDCFL as well as deep-ωtDCFL by different
types of grammars whose definitions are simpler and more intuitive than the
aforementioned grammars? What formal grammars naturally characterize “sub-
classes” of ωtDCFL? For each fixed k ≥ 1, how can we grammatically generate
languages in ktDCFL and deep-ktDCFL?
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Abstract. Neural networks are increasingly used in safety-critical appli-
cations such as medical diagnosis and autonomous driving, which calls for
the need for formal specification of their behaviors. In this paper, we use
matching logic—a unifying logic to specify and reason about programs
and computing systems—to axiomatically define dynamic propagation
and temporal operations in neural networks and to formally specify com-
mon properties about neural networks. As instances, we use matching
logic to formalize a variety of neural networks, including generic feed-
forward neural networks with different activation functions and recur-
rent neural networks. We define their formal semantics and several com-
mon properties in matching logic. This way, we obtain a unifying logical
framework for specifying neural networks and their properties.

Keywords: Matching logic · Neural networks · Formal specifications

1 Introduction

Neural networks have been used in an increasing number of cutting-edge appli-
cations, especially safety-critical ones, such as autonomous vehicle control [2,10],
healthcare [1], and cyber security [11,35]. Due to the impressive performance of
neural networks in prediction accuracy and efficiency, a wide range of systems
have incorporated them as decision-making components.

Feed-forward neural networks (FNNs) [33], which generally include convolu-
tional neural networks (CNNs) [24], are the quintessential neural network mod-
els. As the name suggests, information in FNNs flows across the network, from
the input layer, through the intermediate layers (also called hidden layers), to
the output layer. Another popular type recurrent neural networks (RNNs) [16]
are designed for processing sequential data [42], which have achieved tremendous
success and powered many important commercial applications [37].

Along with the widespread application of neural networks to mission-critical
domains, concerns with regard to their safety and reliability arise. This high-
lights the importance of providing a formal and rigorous specification frame-
work for neural networks, wherein the neural network specification could further
lend itself to proof certification and model checking for safety guarantees about
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Seidl et al. (Eds.): ICTAC 2022, LNCS 13572, pp. 442–461, 2022.
https://doi.org/10.1007/978-3-031-17715-6_28
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the neural network behaviors. An ideal specification framework should support
different activation functions, network architectures, and various properties ded-
icated to neural networks. In addition, it should admit the flexibility of incorpo-
rating new activation function designs, operations, and properties that arise in
the rapidly developing field of machine learning.

Although the last few years witnessed a growing interest in formal verifi-
cation of neural networks [3,4,13–15,17,22,32,38–40,44,45,47,49,51], there are
few attempts in the development of specification frameworks to characterize neu-
ral network behaviors. [25] proposes a logical formalism, ReLU temporal logic
(ReTL), for feed-forward networks using ReLU activation function [27], which
extends linear temporal logic [30,31] with terms capturing data processing in
ReLU networks. Albeit the popularity and piece-wise linear characteristic of
ReLU networks, ReTL confined to a specific type of network falls short in provid-
ing a unifying logical framework for the specification of generic neural networks
with different activation functions and architectures. [34] explores the specifi-
cation of some properties dedicated to neural networks without considering the
network itself, and organizes the properties along two dimensions: semantic clas-
sification and trace-theoretic classification. [36] introduces a framework DNNV
focusing on standardizing the network and property format of verifiers by per-
forming network simplification, property reduction, and translation. Therefore,
the problem of finding a unifying logic that can serve as a specification frame-
work for all types of neural networks, is yet to be addressed. In comparison with
existing verification techniques, a unifying logical framework aims to provide
rigorous definitions of formal semantics for different types of neural networks.
On this basis, the behavior correctness of neural networks such as the robust-
ness property can be specified as a logical formula and proved by generating
machine-checkable proof certificates.

In this paper, we initiate an attempt to present a unifying logical framework
for the formalization of neural networks using matching logic [7]. This framework
builds on the patterns and pattern matching semantics of matching logic and
leverages its key insight of capturing a new specification (also called a theory)
based on a simple and minimal core. Specifically, we define a general logical
framework to characterize the linear operations, dynamic propagation, and tem-
poral behaviors of neural networks. It turns out the proposed logical framework
not only subsumes ReTL (Sect. 4), but also offers good extensibility to neural
network variants with different activation functions, as well as realistic neural
network architectures such as RNNs (Sect. 5) and CNNs (see [52, Appendix C]).
For the logical formalism ReTL, we prove equivalence theorems to show that
our definitions are syntactically and semantically faithful. Based on this logical
framework, the correctness of neural network behaviors can be further guaran-
teed by the existence of formal proofs for safety properties of interest, which are
encoded as machine-checkable proof objects and generated leveraging existing
verification practices.

To sum up, the primary contributions of this work are:

1. We present a unifying logical framework for specifying and reasoning about
neural network behaviors based on matching logic (Sect. 3).
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2. We define ReTL in our logical framework and prove the correctness of the
definition by the equivalence theorems (Theorems 1 and 2). We establish
formal semantics in the form of standard models for generic FNNs with a
variety of activation functions (Sect. 4).

3. We define formal semantics for RNNs with specialized operations and archi-
tecture design to process sequential data (Sect. 5).

4. We show the formal specifications of common neural network properties,
including robustness, interval, monotonicity, and fairness, based on our logical
framework (Sect. 6).

2 Preliminaries

2.1 Neural Networks Preliminaries

Neural networks consist of layers of computation units, interconnected in a feed-
forward manner or integrated with loops/cycles in the network. The former
type is known as feed-forward neural networks and the representative of the
latter type is recurrent neural networks. Convolutional neural networks are a
specialized version of feed-forward neural networks with their operations and
architectures designed for computer vision tasks.

A general feed-forward neural network containing L + 1 layers of intercon-
nected neurons (with the first layer as the input layer) can be described by a set
of matrices {Mi}L

i=1 and bias vectors {bi}L
i=1 for the computation of affine trans-

formations, followed by a pointwise activation function for nonlinear transforma-
tions. Activation functions allow effective backpropagation to learn the mappings
between the network inputs and outputs. For classification tasks, softmax func-
tion is usually used as the activation function for the output layer, giving the
probability of the input being classified in each label.

One of the most popular neural networks used in practice is the feed-forward
neural network with the ReLU activation function (ReLU network in short). We
present the mathematical description of layer-by-layer forward computation in
ReLU networks in the following:

– The affine transformation is performed first to obtain an intermediate vector
for each layer i from the previous layer i− 1: vi = Mi · vi−1 + bi for 1 ≤ i ≤ L
where v0 is the vector on the input layer.

– The pointwise application of ReLU is then performed on layer i except the
output layer, which presents the final vector representation: v′

i = relu(vi) for
1 ≤ i ≤ L − 1.

In the case of the output layer (i.e., i = L), v′
L = softmax (vL). The final pre-

dicted label is y = arg max1≤j≤n v′
L[j]. We often leave out the activation function

softmax on the output layer in the prediction phase. It would not affect the pre-
dicted label as the value comparison results between the vector components stay
the same without the application of softmax .
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2.2 Matching Logic Preliminaries

In this section, we review the syntax and semantics of matching logic following
[6], and then introduce the definitions of several important constructs.

Matching Logic Syntax. Matching logic is a logical formalism that specifies
and reasons about structure by means of patterns and pattern matching. Match-
ing logic formulas, called patterns, are built using variables, symbols, a binary
construct called application, the standard FOL constructs ⊥, →, ∃, and the least
fixpoint construct μ. Variables in matching logic include a set EV of element
variables denoted x, y, . . . , and a set SV of set variables denoted Y,Z, . . . .

Definition 1. A matching logic signature Σ is a set of (constant) symbols
denoted σ, σ1, σ2, . . . . The set of (Σ-)patterns is inductively defined as follows:

ϕ ::= x | Y | σ | ϕ1 ϕ2 | ⊥ | ϕ1 → ϕ2 | ∃x . ϕ | μY . ϕ

where in μY . ϕ, we require that ϕ is positive in Y , i.e., Y is not nested in an
odd number of times on the left-hand side of an implication ϕ1 → ϕ2.

Pattern ϕ1 ϕ2 is called an application. For example, succ zero is a pattern
matched by the successor of 0, i.e., 1, where succ ∈ Σ represents the succes-
sor function. Other connectives such as ¬ and ∨ are defined in the usual way.

Matching Logic Semantics. Matching logic has pattern matching semantics
and each pattern is interpreted in a model as the set of elements that match it.
We first define matching logic models.

Definition 2. A matching logic Σ-model consists of

1. a nonempty carrier set M ;
2. the interpretation of application: an application function • : M × M →

P(M), where P(M) is the powerset of M ;
3. the interpretation of symbols: Mσ ⊆ M as a subset of M for σ ∈ Σ.

Note that application and symbols are interpreted to return a set of elements
in matching logic models. Next, we define variable and pattern valuations.

Definition 3. Given a model M , a variable valuation is a function ρ : (EV ∪
SV ) → (M∪P(M)) such that ρ(x) ∈ M for x ∈ EV and ρ(Y ) ⊆ M for Y ∈ SV .
We define pattern valuation |ϕ|M,ρ inductively as follows:

1. |x|M,ρ = {ρ(x)} for x ∈ EV
2. |Y |M,ρ = ρ(Y ) for Y ∈ SV
3. |σ|M,ρ = Mσ for σ ∈ Σ
4. |ϕ1 ϕ2|M,ρ =

⋃
ai∈|ϕi|M,ρ,i∈{1,2} a1 • a2

5. |⊥|M,ρ = ∅
6. |ϕ1 → ϕ2|M,ρ = M \ (|ϕ1|M,ρ \ |ϕ2|M,ρ)
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7. |∃x . ϕ|M,ρ =
⋃

a∈M |ϕ|M,ρ[a/x]

8. |μY . ϕ|M,ρ = lfp(A �→ |ϕ|M,ρ[A/Y ])

Here, lfp(A �→ |ϕ|M,ρ[A/Y ]) denotes the smallest set A such that A =
|ϕ|M,ρ[A/Y ], where the existence of the unique least fixpoint is guaranteed by
the Knaster-Tarski theorem [43] (see also [7, Section IV.B]).

We now define the matching logic validity.

Definition 4. Given M and ϕ, M � ϕ iff |ϕ|M,ρ = M for all ρ. Let Γ be a
theory; that is a set of patterns which we call axioms. M � Γ iff M � ϕ for all
ϕ ∈ Γ . Γ � ϕ iff M � Γ implies M � ϕ for all M .

Important Constructs. Several mathematical constructs that are of practical
importance, such as equality, membership, set inclusion, sorts, many-sorted func-
tions and partial functions, can be defined in matching logic. Here we present the
definitions of many-sorted function and partial function. Detailed definitions and
notations of other mathematical constructs can be found in [52, Appendix A.2].

A many-sorted function f : s1 ×· · ·× sn → s can be defined as a symbol, and
axiomatized by the following axiom:

(Function) ∀x1 : s1 · · · ∀xn : sn .∃y : s . f(x1, · · · , xn) = y

Note that the (Function) axiom guarantees that there is exactly one element
y because if there exists y′ such that f(x1, · · · , xn) = y′, then y = y′.

Similarly, a many-sorted partial function f : s1 × · · · × sn ⇀ s can be defined
as a symbol, and axiomatized by the following axiom:

(Partial Function) ∀x1 : s1 · · · ∀xn : sn .∃y : s . f(x1, · · · , xn) ⊆ y

3 Unifying Logical Framework for Neural Networks

In this section, we present our logical framework for unifying specification of
neural network behaviors based on matching logic. We provide a complete formal
definition of its main constructs for linear operations, dynamic propagation, and
temporal behaviors in neural networks.

3.1 Defining Linear Operations

In this subsection, we show how the vector space in neural networks can be char-
acterized and defined as patterns of matching logic. The most common compu-
tation operations in neural networks are linear operations on the vector space,
which are defined as follows.
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Definition 5. Let Nat, Vector and Matrix be the sorts of natural numbers, vec-
tors and matrices, respectively. We define the following symbols:

[ ] : Vector × Nat ⇀ Vector

+ : Vector × Vector ⇀ Vector

· : Matrix × Vector ⇀ Vector

The projection symbol [ ] takes a vector v and a natural number k, and returns
the k-th component of v (as a vector of length 1) when k ≤ len(v). The addition
symbol + takes two vectors v, w, and returns v + w when v and w are of the
same length. The matrix multiplication symbol · takes a matrix M and a vector
v, and returns M ·x when the number of columns of M , denoted col(M), equals
the length of v. Note that the above symbols are partial functions as stated
by the (Partial Function) axioms. They are undefined in the cases of vector
dimension exceedance, vector dimension inequality, matrix dimension mismatch,
etc.

The comparison operators for the Vector sort are specified in the following
way. For any two vectors v = (vi)n and w = (wi)n of length n, we denote v = w
iff vi = wi for every 1 ≤ i ≤ n. We denote v ≥ w iff vi ≥ wi for every 1 ≤ i ≤ n.
Other comparison operators are defined in a similar way.

Definition 6. Let Layer be the sort of network layers and Term be the sort of
functions that map a layer to a vector. We define the partial function

eval : Term × Layer ⇀ Vector

to evaluate a term at a given layer.

The key insight of introducing the Term and Layer sorts, as well as the eval
symbol is to fully capture the dynamic propagation in neural networks. Recall
that in feed-forward neural networks, the transformation parameters in terms
of matrices, bias vectors, and activation functions are configured differently at
different layers. By introducing Term, the layer information is captured implicitly
in the function term. The transformation can be configured accordingly given the
element in the Layer sort. For example, when we compute one-step forward linear
transformations in a network, matrix Mj and bias vector bj can be configured
according to the layer position j given by the (argument) sort Layer of symbol
eval.

We declare a subsort relation Vector ⊆subsort Term, since each vector v in
Vector sort can be regarded as a constant term, which is axiomatized as:

(Constant Term) ∀v :Vector ∀l : Layer . eval(v, l) = v

This allows us to characterize patterns of Vector sort as patterns of Term sort
in a consistent manner, where the (Constant Term) axiom is automatically
assumed for elements in Vector sort. The symbols for Vector sort are propagated
and overloaded with respect to Term sort, which also leads us to the correspond-
ing axiom for each symbol.
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Definition 7. Let Layer and Term be the sorts of layers and terms, and eval be
the evaluation function in Definition 6. We define the following symbols:

[ ] : Term × Nat ⇀ Term

+ : Term × Term ⇀ Term

· : Matrix × Term ⇀ Term

as well as the following propagation axioms:

(Projection) eval(t[k], l) = eval(t, l)[k]
(Addition) eval(t1 + t2, l) = eval(t1, l) + eval(t2, l)
(Matmult) eval(M · t, l) = M · eval(t, l)

where the universal quantification with respect to sorts Term, Layer, Nat, and
Matrix are defined in the expected way.

The above axioms state that a term t on the layer set can be lifted pointwise (i.e.,
layer-wise) to incorporate symbols for projection, addition, and matrix multipli-
cation. Intuitively, (Projection) states that pointwise projection t[k] maps any
layer l to the k-th vector component to which term t maps. (Addition) axiom-
atizes the pointwise addition t1 + t2, which maps any layer l to the sum of the
vectors to which the (argument) terms t1 and t2 map. (Matmult) axiomatizes
the pointwise multiplication M · t, which maps any layer l to the multiplication
result of the constant matrix M and the vector to which term t maps.

3.2 Defining Dynamic Propagation

Neural networks achieve prediction by performing dynamic (forward) propaga-
tion from the input layer to the output layer. On each layer, a neural network
computes a new vector through the layer-to-layer transformations. We show
the mathematical description of the dynamic transformations for a feed-forward
ReLU network in Sect. 2.1, where the vector of the successor layer is attained by
first computing the affine (linear) transformations of the given vector and then
applying the nonlinear activation function. This computation process continues
until a vector representation reaches the output layer.

To capture such dynamic computation flows through the network layers, we
define the following function:

next : Term → Term

Recall that the elements in Term sort are functions that map layers to vectors
which are computed with properly configured transformations (dependent on
the layer position). We introduce the next symbol to allow the function term to
update; that is, the mapping from layers to the feature vectors, in order to specify
the forward propagation across the network. We illustrate the mechanism of the
next symbol in the following example. For a neural network with L + 1 layers,
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we denote the transformation functions between adjacent layers as f1, f2, · · · , fL

where fi (1 ≤ i ≤ L) is the transformation function from layer i − 1 to layer i.
The next symbol satisfies that for all terms t, for layers 1 ≤ l ≤ L:

eval(next(t), l) = fl(eval(t, l − 1))

Intuitively, the new term next(t) represents the updated function term that
maps layers to the vector representation after one-layer forward computation
with regard to the layer transformations. Specifically, for the feature vector vl of
layer l characterized by the updated term as eval(next(t), l), it is the computation
result of applying the transformation function fl to the feature vector vl−1 of
the previous layer specified as eval(t, l − 1). And the layer position l settles the
configuration of the corresponding transformation function.

We have seen how the next function characterizes the forward flow of the vec-
tor representation across the layers. Other symbols that characterize the dynamic
behaviors of neural networks can be defined in a similar way. For example, we
define the function shift to allow the information to flow backward.

shift : Term → Term

(Shift) ∀t :Term ∀l : Layer . eval(shift(t), l) = eval(t, l + 1)

Intuitively, the symbol shift takes a term t and returns a new term that maps
a layer to the vector representation originally configured on the successor layer
after one-step backward shift. Note that shift makes no update to the feature
vectors, but only changes the mapping from layer positions to feature vectors.

3.3 Defining Atomic Formulas and Temporal Operations

To reason about neural network behaviors, the framework needs to support
constraint specifications on intermediate feature vectors and output vectors with
respect to an oracle, which often comes in the form of a geometric region in the
vector space. Therefore, we design the following constructs as atomic formulas
to capture the vector constraints with regard to different layer positions.

t1 = t2 ≡ ∃l : Layer . l ∧ eval(t1, l) = eval(t2, l)
t1 ≥ t2 ≡ ∃l : Layer . l ∧ eval(t1, l) ≥ eval(t2, l)

The pattern t1 = t2 is matched by the layers such that the vectors to which
t1 corresponds are equal to the ones t2 corresponds to. Note that we use exis-
tential quantification over layers to obtain the union set of layers of which the
corresponding feature vectors satisfy the required constraints. We overload the
equality notation to define patterns with respect to terms, which are interpreted
as matching elements in the Layer sort. Similar interpretation applies to the
pattern t1 ≥ t2. The intuition behind the above definitions is to specify the
constraint with regard to the vectors (on the intermediate and output layers)
as membership inquiries on layers, that is, to determine whether a layer is a
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member of the set of layers that match the required constraint. Other atomic
formulas in the form of comparison operators like >,<,≤, �= can be derived by
the propositional connectives, e.g., t1 < t2 ≡ ¬(t1 ≥ t2).

Neural networks can be regarded as transition systems whose states are the
layers and the vector values on them. To specify layer transitions, we introduce
the symbol X : Layer → Layer, which takes a layer and returns its predecessor
layer in a neural network. The pattern Xϕ is matched by layers whose direct
successor layers match ϕ. This construct allows us to specify and reason about
behaviors of arbitrary layers. For example, we can reason about the i-th step
unrolled recurrent layer we are interested in by transiting to this specific state
through the X symbol. Other temporal operations can be derived from the sym-
bol X and the μ-binder. ϕ1 U ϕ2 is defined as μY . ϕ2 ∨ (ϕ1 ∧ XY ) where Y is
the set variable of Layer sort.

4 Instance: Feed-Forward Neural Networks

In this section, we instantiate the generic logical framework for neural networks
in Sect. 3 with feed-forward neural networks (FNNs) and obtain a formal seman-
tics of FNNs in matching logic. Among different types of FNNs, due to the
computational simplicity and piece-wise linear property of the ReLU function,
ReLU networks have rapidly become the most popular networks in practical
applications. A recent logic design ReTL [25] is introduced to specify and reason
about the behaviors of ReLU networks. We will first introduce the logical for-
malism ReTL. We then demonstrate how ReTL can be defined and subsumed
in the proposed logical framework. We finally show the generalization of our
framework to feed-forward network variants with different activation functions.

4.1 ReTL: A Logic for ReLU Networks

We give an overview of ReTL designed for specifying and reasoning about ReLU
networks. The syntax of ReTL defines terms and formulas. Formally, ReTL terms
are inductively defined by the following grammar:

ReTL terms t ::= v | x | t[i] | t1 + t2 | Mt | ©kt

where t[i] is the projection of t on the i-th component; t1 + t2 is the addition of
t1 and t2; Mt is the multiplication between a (concrete) matrix M and a term
t; and ©kt denotes the transformed (future) value of t in k-th next layer.

ReTL formulas are then built from formulas such as t1 = t2 and t1 ≥ t2
where t1 and t2 are terms of the same length, propositional connectives such as
¬ and ∧, FOL-style quantification, and temporal operators Xϕ (“next” ϕ) and
ϕ1 U ϕ2 (ϕ1 “until” ϕ2). Formally,

ReTL formulas ϕ ::= t1 = t2 | t1 ≥ t2 | ¬ϕ | ϕ1 ∧ ϕ2 | ∃x . ϕ | Xϕ | ϕ1 U ϕ2

The semantics of ReTL is defined with regard to a ReLU network N (with
L + 1 layers), a layer position 0 ≤ l ≤ L, and a valuation ρ that assigns each
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vector variable to a vector of proper length. The semantics of ReTL terms are
inductively defined as follows:

– |v|ReTLN,ρ,l = v for any vector constant v.
– |x|ReTLN,ρ,l = ρ(x) for any vector variable x.
– |t[i]|ReTLN,ρ,l is the i-th element of |t|ReTLN,ρ,l.
– |t1 + t2|ReTLN,ρ,l = |t1|ReTLN,ρ,l + |t2|ReTLN,ρ,l.
– |Mt|ReTLN,ρ,l = M |t|ReTLN,ρ,l.
– The semantics of |©kt|ReTLN,ρ,l are defined in several cases:

(1) if k = 0, then |©kt|ReTLN,ρ,l = |t|ReTLN,ρ,l,
(2) if k > 0 and l + k < L, then |©kt|ReTLN,ρ,l = relu(Ml+k |©k−1t|ReTLN,ρ,l + bl+k),
(3) if k > 0 and l + k = L, then |©kt|ReTLN,ρ,l = ML|©k−1t|ReTLN,ρ,l + bL,
(4) if l + k > L, the term is undefined.

ReTL formulas t1 = t2 and t1 ≥ t2 are interpreted as |t1|ReTLN,ρ,l = |t2|ReTLN,ρ,l

and |t1|ReTLN,ρ,l ≥ |t2|ReTLN,ρ,l, respectively. The satisfaction relation |=ReTL of ReTL
formulas is defined as follows:

– N, ρ, l |=ReTL t1 = t2 iff |t1|ReTLN,ρ,l = |t2|ReTLN,ρ,l.
– N, ρ, l |=ReTL t1 ≥ t2 iff |t1|ReTLN,ρ,l ≥ |t2|ReTLN,ρ,l.
– N, ρ, l |=ReTL ¬ϕ iff N, ρ, l �|=ReTL ϕ.
– N, ρ, l |=ReTL ϕ1 ∧ ϕ2 iff N, ρ, l |=ReTL ϕ1 and N, ρ, l |=ReTL ϕ2.
– N, ρ, l |=ReTL ∃x ∈ R

n . ϕ iff there exists v ∈ R
n such that N, ρ[v/x], l |=ReTL

ϕ, where ρ[v/x] denotes the valuation with ρ[v/x](x) = v and ρ[v/x](y) = ρ(y)
for all y �= x.

– N, ρ, l |=ReTL Xϕ iff l < L and N, ρ, l + 1 |=ReTL ϕ.
– N, ρ, l |=ReTL ϕ1 U ϕ2 iff there exists some k ≥ l and k ≤ L such that

N, ρ, k |=ReTL ϕ2 and N, ρ, j |=ReTL ϕ1 for l ≤ j < k.

4.2 Defining ReTL in Matching Logic

The syntax and semantics of ReTL terms can be subsumed by the Term sort
(including Vector as the subsort), the symbols for linear operations and dynamic
propagation in our logical framework. However, the definition of ©kt in ReTL
for k-step forward transformations is not trivial. In the following, we show how
to capture the syntax and semantics of the operation ©kt for k-step dynamic
computation using the next and shift symbols. We use nextk and shiftk as the
shortcut for k continuous application of next and shift in the following context.

With the next symbol defined for the forward propagation of feature vectors
and the shift symbol for the backward layer shift, the ©kt operation can be
defined as:

©kt ≡ shiftk(nextk(t))

Thus, for a given layer l, we have

eval(©kt, l) = eval(nextk(t), l + k)
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Recall that the satisfaction relation in ReTL is evaluated with regard to a cer-
tain layer l. Through defining ©kt with k-step forward propagation and k-step
backward shift, the interpretation of ©kt is consistent with the semantics in
ReTL, where the forward propagation of the vector representation from l to
l+k is followed by backward shift from layer l+k to l. This way, the satisfaction
relation can be evaluated with regard to layer l.

The forward propagation for arbitrary steps can be captured by repeating
the application of next accordingly without introducing a variable indicating how
many forward steps to take. As the next symbol involves no layer shift operations,
the updated vector representation is taken on layer l + k, which also indicates
the correct configuration of next step forward transformations (from layer l+k).

Note that in ReTL, ©kt is not equivalent to ©1 · · · ©1︸ ︷︷ ︸
k

t. It can be seen more

evidently in matching logic, where ©kt ≡ shiftk(nextk(t)), but

©1 · · · ©1︸ ︷︷ ︸
k

t = shift(next(· · · shift(next
︸ ︷︷ ︸

k

(t)) · · · ))

Since next and shift are not commutable when shift changes the configured layer
transformation to the predecessor layer, the equivalence does not hold when the
linear mappings of network layers are different from each other, which is common
in practice.

To sum up, we showed that the syntax and semantics of ReTL terms and
formulas are precisely captured by matching logic patterns, using the built-in
constructs for propositional connectives, quantification, and temporal operators
in matching logic, without needing to introduce additional logical symbols.

4.3 Defining Standard Models of Feed-Forward ReLU Networks

In this subsection, we establish formal semantics of feed-forward ReLU networks,
which are defined in the form of standard models.

Definition 8. Let N be a ReLU network with L + 1 layers. A standard model
MN for N consists of:

1. Carrier set, which is the disjoint union of the following:
– The carrier sets of the Nat, Vector, and Matrix sorts are defined in the

usual way.
– The carrier set of sort Layer is MN

Layer = {0, 1, · · · , L}, i.e., the set of the
network layers.

– The carrier set of sort Term is the set of functions MN
Term that map network

layers to vectors.
2. Symbol interpretations:

– The projection, addition, and matrix multiplication symbols are inter-
preted in the usual way.
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– The eval and shift symbols are interpreted as functions MN
eval and MN

shift

straightforward from their definitions. MN
eval is the partial function map-

ping a term and a layer (arguments) to a vector; MN
shift is the function

that maps a term to a new term satisfying Axiom (Shift).
– The next symbol is interpreted as MN

next, the unique function that satisfies
the following property

MN
eval(M

N
next(t), l) =

⎧
⎪⎨

⎪⎩

MN
eval(t, 0) if = 0

relu(Ml · MN
eval(t, l − 1) + bl) if ≤ l < L

ML · MN
eval(t, L − 1) + bL if = L

– The X symbol is interpreted as the function that satisfies

MN
X (l) =

{
{l − 1} if 1 ≤ l ≤ L

∅ if l = 0

Recall that any ReTL term t and formula ϕ can be defined as a matching
logic pattern. Theorems 1 and 2 show that the definitions of ReTL terms and
formulas in our logical framework are syntactically and semantically faithful.

Theorem 1. Let t be an ReTL term. Then |eval(t, l)|MN ,ρ = {|t|ReTLN,ρ,l}.
Theorem 2. Let ϕ be an ReTL formula. Then l ∈ |ϕ|MN ,ρ iff N, ρ, l |=ReTL ϕ.

Note that |eval(t, l)|MN ,ρ evaluates to a singleton set, while |t|ReTLN,ρ,l evaluates
to a single element. Please refer to [52, Appendix B] for proof details.

4.4 Instances of Neural Networks Using Other Activation Functions

We have established that ReTL can be subsumed in the proposed logical frame-
work. In this subsection, we show that this framework allows us to generalize to
neural networks using other nonlinear activation functions, without the need to
define a new logical formalism specialized for neural networks with new activa-
tion function design as nonlinear mapping [9,23]. In the following, we present an
example of FNNs that use tanh as the nonlinear activation function [20].

Definition 9. Let N be a feed-forward neural network with tanh as the activa-
tion function and L + 1 layers. A standard model MN for N consists of:

1. The next symbol is interpreted as MN
next, the unique function satisfying that

MN
eval(M

N
next(t), l) =

⎧
⎪⎨

⎪⎩

MN
eval(t, 0) if = 0

tanh(Ml · MN
eval(t, l − 1) + bl) if ≤ l < L

ML · MN
eval(t, L − 1) + bL if l = L

2. Everything else is the same as Definition 8.

Formal semantics of all the variants of FNNs [9,23,26,28], including
CNNs [52, Appendix C], can be similarly defined in our framework.
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5 Instance: Recurrent Neural Networks

In this section, we define recurrent neural networks (RNNs) [16] in our logical
framework. RNNs are often used to process sequential data or time series data
such as natural language [42]. A typical RNN consists of an input layer, a recur-
rent layer, and a fully-connected layer, in which the recurrent layer enables the
RNN to process sequential inputs of any length with shared parameters. The
main challenge to characterize the dynamic computation of RNNs is to specify
the propagation on the recurrent layer.

Propagation on the Recurrent Layer. The computation flow on the recur-
rent layer, in the form of hidden state vectors, can be regarded the same as
feature vectors in FNNs by unrolling the recurrent layer step by step. The recur-
rent layer processes the information from the sequential input by incorporating
it into the hidden state which is passed forward through time steps.

We can formulate the unrolled recurrence after l steps as hl = f(hl−1, xl)
where hl and hl−1 represent the hidden state vectors at step l and the previous
step l − 1, xl indicates the input vector at step l, and f represents the transfor-
mation function on the recurrent layer. The number of unrolled hidden layers
then depends on the length of the input sequence. However, unlike FNNs, the
RNN transformations across the unrolled hidden layers are shared with (1) fixed
weight matrices: hidden-to-hidden matrix Mhh and input-to-hidden matrix Mxh,
(2) fixed bias vector bh, and (3) fixed activation function σh.

The challenge to characterize the propagation on the recurrent layer is that
for each unrolled hidden layer, different input vectors corresponding to one spe-
cific token (or word) of the input sequence are involved. The Term sort is useful
to address this challenge, since it is designed to capture the vector representation
at different layer positions. For an input sequence tin = (tin1 , tin2 , · · · , tinL), we use
eval(tin, l) to specify the input vector tinl fed to the recurrent layer at time step l
(i.e., unrolled hidden layer l).

The forward propagation of hidden state vectors can then be specified by
adding the transformation of a proper input vector at each layer position. Gen-
erally, for an input sequence tin, the forward propagation to hidden layer l for
1 ≤ l ≤ len(tin) is defined as:

hl = σh(Mhh · hl−1 + Mxh · tinl + bh)

Propagation on the Fully-Connected Layer. The dynamic propagation of
the hidden state vector on the recurrent layer is generally followed by a fully-
connected output layer for many-to-one prediction tasks. The forward propaga-
tion from the last hidden layer position len(tin) (decided by the length of the
sequential input) to the output layer demonstrates the same behaviors as FNNs.

Specifically, the forward propagation to the output layer in RNNs is charac-
terized by a hidden-to-output weight matrix Mhy and a bias vector by. Generally,
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the dynamic transformation to the output layer can be defined as:

yl = Mhy · hl−1 + by

The same as FNNs, only linear transformations are involved in the computation
on the output layer. The projection, addition and matrix multiplication symbols
naturally accommodate hidden state vectors of the unrolled recurrent layer.

Standard Models. Here we define the standard models of RNNs.

Definition 10. Let N be a recurrent neural network with an input layer, a
recurrent layer, and a fully-connected layer. A standard model MN for N with
respect to a sequential data tin consists of:

1. MN
Layer = {0, 1, · · · , len(tin)+1} is the carrier set of the Layer sort where layer 0

indicates the input layer, layers 1, · · · , len(tin) are the unrolled hidden layers,
and layer len(tin) + 1 indicates the output layer.

2. The next symbol is interpreted as MN
next, the unique function satisfying that

MN
eval(M

N
next(t), l) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h0 if l = 0

σh(Mhh · MN
eval(t, l − 1) + Mxh · MN

eval(t
in, l) + bh)

if 1 ≤ l ≤ len(tin)

Mhy · MN
eval(t, len(t

in)) + by if l = len(tin) + 1

3. Everything else is the same as Definition 8.

Now we have shown that RNNs integrated with loops/cycles can be defined
in the proposed logical framework in a consistent manner with FNNs, with slight
change to the carrier set of Layer sort and the interpretation of the next symbol.

6 Specifying Neural Network Properties

In this section, we present some common properties of neural networks and how
to formally specify them as patterns, in our unifying framework.

6.1 Robustness

The robustness of neural networks against adversarial perturbations has been
extensively investigated [5,12,18,21,29,48]. In general, the robustness property
states that, given an input x, a distance function Lp, and a distance bound ε, the
prediction of the neural network on the ε-neighborhood η(x,Lp, ε) of x where
η(x,Lp, ε) = {x′| ‖x′ − x‖p ≤ ε} is the same as the prediction of input x. This
is often referred to as local robustness. Note that in the following we formalize
the local robustness property in terms of vector constraints instead of using the
argmax function.
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Example 1. Consider a neural network N with L+1 layers, input dimension s0,
and output dimension sL. Given an input-label pair (x0, y0), the local robustness
of N on the input x0 ∈ R

s0 with respect to an ε0 ∈ R
s0 neighborhood in terms

of L∞ norm can be specified as:

∀x ∈ R
s0 . (x ≤ x0 + ε0) ∧ (x ≥ x0 − ε0) →

∀1 ≤ j ≤ sL . eval(nextL(x)[y0], L) ≥ eval(nextL(x)[j], L)

6.2 Interval Property

The interval property [21,46] aims to analyze whether the outputs of a neural
network are restricted in a geometric region. A simple interval property is to
determine whether a real number ub or lb is a valid upper or lower bound for a
specific dimension of the output vectors on an input region.

Example 2. Consider a neural network N with L+1 layers, input dimension s0,
and output dimension sL. Given an input region [0, 1]s0 , the interval property
is to check whether lb is a valid lower bound for the k0-th component of the
network outputs on the input region. This interval property can be specified as:

∀x ∈ R
s0 . x ≤ 1 ∧ x ≥ 0 → eval(nextL(x)[k0], L) ≥ lb

where 1 and 0 denote the vectors in R
s0 where all the components are 1 and 0.

Neural networks can be regarded as programs that compute the function
results of the inputs. From this perspective, the aforementioned robustness
and interval properties can be viewed as special cases of functional correct-
ness which specifies the input-output constraints of the programs (neural net-
works). The specifications of such properties can be formulated in a unified
manner with respect to a pair of pre- and post-conditions in the form of
∀x . P (x) → Q(nextL(x)).

6.3 Monotonicity

The monotonicity property [50] focuses on the output monotonicity of a network
with respect to a user-specified subset of the inputs. Assuming that a neural
network is used to predict whether to give an applicant the loan, the network is
expected to guarantee that the prediction will be monotonically increasing when
the value of the applicant’s income increases and the other values are the same.

Example 3. Consider a neural network N with L+1 layers, input dimension s0,
and output dimension sL. Given that the domain-specific feature dimension is i0,
and the monotonic label dimension is k0, the monotonicity property is to check
whether the k0-th component of the network outputs is monotonic with respect
to the value of input feature i0. This monotonicity property can be specified as:

∀x1, x2 ∈ R
s0 . (x1[i0] ≤ x2[i0] ∧ (∀1 ≤ i ≤ s0 . i �= i0 → x1[i] = x2[i])) →

eval(nextL(x1)[k0], L) ≤ eval(nextL(x2)[k0], L)
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6.4 Fairness

The fairness property [19,41] generally constrains that the neural network’s pre-
diction should not be influenced by protected features such as gender, age and
race. There are many different formulations of neural network fairness. Here we
focus on the independence-based fairness, which states that the neural network’s
prediction is independent of the values of protected features. Note that we spec-
ify the values of protected features explicitly in the following to formalize the
independence-based fairness in a more straightforward manner.

Example 4. Consider a neural network N with L + 1 layers, whose input and
output dimensions are s0 and sL, respectively. Suppose i0 is the protected feature
dimension, Q is the set of protected feature values, and k0 is the specified label.
Fairness states that the k0-th component of the network outputs is independent
of the value of the protected feature i0, which can be specified as:

∀x1, x2 ∈ R
s0 . ((∀q1, q2 ∈ Q . x1[i0] = q1 ∧ x2[i0] = q2) ∧ (∀1 ≤ i ≤ s0 .

i �= i0 → x1[i] = x2[i])) → eval(nextL(x1)[k0], L) = eval(nextL(x2)[k0], L)

The exact equivalence on the prediction can be relaxed by introducing a
positive tolerance ε to the output difference, which is specified as:

∀x1, x2 ∈ R
s0 . ((∀q1, q2 ∈ Q . x1[i0] = q1 ∧ x2[i0] = q2)∧

(∀1 ≤ i ≤ s0 . i �= i0 → x1[i] = x2[i])) →
(eval(nextL(x1)[k0], L) ≤ eval(nextL(x2)[k0], L) + ε∧
eval(nextL(x1)[k0], L) ≥ eval(nextL(x2)[k0], L) − ε)

Neural networks can be viewed as data-driven systems, of which the execu-
tion on an input forms a trace, i.e., a sequence of vectors on the layers. We have
been familiar with ordinary properties that reason over a single execution of a
system. In contrast, the hyperproperty [8] reasons over a set of executions of a
system, instead of over a single one. The monotonicity and fairness properties
both involve examining pairs of executions, which renders them both as hyper-
properties. Compared with ordinary properties, hyperproperties are capable of
constraining complex relations among multiple execution traces of a system.

7 Conclusion

We present a unifying logical framework for the specification of neural network
behaviors by defining the linear operations, dynamic propagation, and temporal
operations as a matching logic theory. The key insight is to provide a general
framework to define formal semantics of neural networks with different activation
functions and network architectures, so as to offer good extensibility and flexi-
bility in the rapidly developing field of machine learning. We prove that existing
logic design ReTL can be faithfully defined in our framework. We also show
that the logical framework can serve as the specification formalism of important
network properties, such as robustness, interval, monotonicity, and fairness.
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Abstract. Several type inference approaches for rank-2 idempotent and
commutative intersection types have been presented in the literature.
Type inference relies on two stages: type constraint generation and solv-
ing. Defining constraint generation rules is rather straightforward, with
one exception. To infer the type of an application, several derivations of
the argument are required, one for each instance of the domain type of
the function. The types of these derivations are then constrained against
the instances. Noting that these derivations are isomorphic, by renaming
of type variables, they can be obtained via a duplication operation on a
single derivation of the argument. The application rule then constrains
the intersection type resulting from duplication against the domain type
of the function, resulting in an equality constraint between intersections.
By treating intersections as sets, these constraints can be solved by solv-
ing a set unification problem, thus ensuring the types of the argument
unify with the domain type of the function. Here we present a new type
inference algorithm for rank-2 intersection types, which relies on set uni-
fication to solve equality constraints between intersections, and show it
is both sound and complete.

Keywords: Intersection types · Type inference · Set unification

1 Introduction

The benefits (and the costs) of strong static typing in programming languages are
now generally recognized. Languages such as ML, Haskell or Java are examples
of the use of strong typing. To avoid the extra effort of declaring types for every
part of the program, compilers should infer types as much as possible. And
to avoid rejecting well-behaved programs as much as possible, type inference
should be able to support some form of polymorphism. Two of the main options
for polymorphism are universally quantified types (such as the Damas-Milner
type system [17] and System F [28,29,41]), and intersection types [13].

Intersection types originate in the works of Barendregt, Coppo and Dezani
[6,13,15], and give us a characterization of the strongly normalizable terms. New
attention was given to intersection type systems due to a result of Kfoury and
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Wells [35,36] which proved that these systems are decidable for restrictions of
finite rank, which correspond to a large class of typable terms. Consider the
following example: in intersection type systems λx . x x has type (α ∧ (α →
β)) → β. Note that the two (non-unifiable) types of the variable x belong to
the domain type of the abstraction linked by the intersection operator. A more
interesting example is the term (λx . x x) I, where I = λy . y. This term has
type α → α which does not involve intersections, although it is not typable in
the simply typed lambda calculus [16,31] because it has a non-typable subterm.

Intersection type systems characterise the set of strongly normalising terms
and have huge expressive power, typing more terms than the simply typed
lambda calculus or the type system of pure ML or core Haskell. Applications of
intersection types in programming language theory cover diverse topics, includ-
ing the design of programming languages [7,42], program analysis [38], pro-
gram synthesis [26], and extensions such as refinement, union and gradual types
[3,11,12,23,24,27]. But expressive power comes with a price: type theoretic prob-
lems such as type inference and inhabitation are undecidable in general [5,45].

In [35] Wells and Kfoury define an intersection type system which types
exactly the strongly normalizable terms and shows that every finite-rank restric-
tion of this system, using Leivant’s notion of rank [37], has principal typings and
also decidable type inference. This system uses expansion variables [10,36], which
are subject to substitution as are ordinary variables, and a unification-based type
inference algorithm using a new form of unification called β-unification. Due to
the complexity of type inference algorithms for higher finite ranks, the most
successful decidable fragments of intersection type systems have focused on the
rank-2 restriction. Indeed, we rely on the same argument to motivate our rank-2
restriction of the type inference algorithm presented in this paper. The rank of
a type is easily determined by its syntactic tree. A type is of rank n if no path
from the root of the syntactic tree of the type to an intersection passes to the left
of n arrows. Rank 0 and 1 are equivalent to the simple typed lambda-calculus.
But starting from rank 2, the systems type more terms than the type system of
pure ML or Core Haskell.

Van Bakel presents a unification algorithm as the basis of type inference for a
rank-2 system [46]. Later, independent work by Trevor Jim also solves the same
problem for practical programming language issues such as recursive definitions
and separate compilation [33]. Damiani [18] also studied rank-2 principal typings
with intersection types and focus his work on rank-2 typable recursive definitions.

All these previous algorithms rely on extensions to first-order unification [43],
either explicit [35,36,46], or implicit [32,33]. In these, a more general form of
subtyping type constraints is first generated, and subsequently, in the constraint
solving phase, further simplified by rewriting subtyping into equalities.

Several authors have also explored intersection type inference systems using
unification theory. Approaches focus on relating β-reduction with unification
[8], and more similarly to our work, building type inference algorithms using set
unification theory [14,22,44]. However, we relate the properties of intersection
types with set unification, which as far as we know, is novel work.
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Originally [13,15], intersection types were denoted by finite sets of types:

“The main idea is to define from an arbitrary set of types {τ1, · · · , τn} a
“sequence” [τ1, · · · , τn] whose underlying set of terms can be interpreted as the
intersection of those of τ1, · · · , τn” [13].

Picking up on this original motivation, we here define a new type inference algo-
rithm for rank-2 intersection types which relies on set unification [20,21] to solve
the type constraints generated by function applications. The main contributions
of this paper are the following:

– A unification-based type inference algorithm for rank-2 intersection types
using set unification. The algorithm is terminating, always returning principal
typings. A nice feature of this algorithm is its similarity with type inference
for simple types [39] - just replace first-order unification by set unification.

– Proofs of soundness and completeness of the algorithm, meaning that the
outputs of type inference are types which are derivable in a rank-2 intersection
type system, and more, they are principal typings in the sense that every
other type derivable in the type system may be obtained from them using
substitution.

It is important to note that the majority of the discussed results can be
obtained by the other previously defined rank-2 intersection type inference algo-
rithms. Nonetheless, it is our belief that the work in this paper constitutes further
a step towards a better understanding of the role of set unification as the base
of type inference algorithms for intersection types and may highlight how inter-
sections at different depth are related to different restrictions of set unification
in the type inference mechanism. Complete proofs for theorems introduced in
this paper are presented in the technical report [4].

The paper is organized as follows. Section 2 introduces the syntax of the sys-
tem. A rank-2 intersection type system, where every type declared in the context
is used in the type derivation, is presented in Sect. 3. The formalization of the
type inference algorithm, along with its components, follows in Sect. 4. The first
phase of the algorithm consists of the constraint generation rules, which are
detailed in Subsect. 4.1. In particular, we present an alternative design to the
rule for applications: by requiring only one derivation and then duplicating it,
there is a derivation of the argument for each instance in the domain type of
the function. Set unification, explained in Subsect. 4.2, will be required to solve
equality constraints between intersection types. The general constraint solving
rules are presented in Subsect. 4.3. We finally produce the type inference algo-
rithm, along with important properties, in Subsect. 4.4. The conclusion follows
in Sect. 5.

2 Types and Terms

Our language is an intersection typed lambda calculus á la Curry, which supports
term constants, such as integers and booleans, and built-in addition. Other arith-
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metic operations can be defined similarly. The syntax of our language is given
by the following grammar:

Definition 1 (Syntax).

monotypes τ, ρ ::= B | α | σ → τ

sequences σ, υ ::= τ1 ∧ . . . ∧ τn | φ

terms M,N ::= k | x | λx . M | M M | M + M

typing context Γ ::= ∅ | Γ, x : σ with σ ∈ T1

constraint C ::= σ
.= σ

constraints C∗ ::= ∅ | C∗ ∪ C

B ranges over base types such as Int and Bool, α and β range over type variables
and φ ranges over sequence variables. τ and ρ range over monotypes i.e. the top
level constructor is not the intersection type connective, and σ and υ range over
sequences. M and N range over terms, x, y and z range over term variables and
k ranges over constants, such as integers and booleans. Γ ranges over typing
contexts, and ∅ represents an empty context. C ranges over equality constraints,
written as σ

.= σ, and C∗ ranges over multisets of equality constraints C. χ
ranges over sets of type, and sequence, variables.

Remark 1. The indexes i, j, m, n, p and q range over the set Z
+
0 .

Remark 2. We distinguish meta-variables with different subscript natural num-
bers, and also with superscript apostrophe.

As in the original system [13,40], we consider the intersection connective ∧
as commutative, e.g. τ ∧ ρ = ρ ∧ τ , and idempotent, e.g. τ ∧ τ = τ . We do not
consider associativity, since we are not dealing with a binary operator. Therefore,
an intersection type τ1 ∧ . . . ∧ τn is seen as the set of types τ1, . . . , τn. Given a
sequence τ1 ∧ . . . ∧ τn, each τi is called an instance of the intersection. We allow
sequences of size one, so σ and υ also range over monotypes. Sequences can only
appear in the left-hand side of the arrow type constructor, therefore the shape
of a (valid) arrow type is σ → τ . The intersection type connective ∧ has a higher
precedence than the arrow type constructor →, and → associates to the right.

Definition 2 (Type Variables). The function tvars(.), which returns the set
of type, and sequence, variables occurring in a given type, is defined as follows:
tvars(σ)

def
= {α | α occurs in σ} ∪ {φ | φ occurs in σ}.

Definition 3 (Free Variables). The function fvars(.), which returns the
set of free term variables occurring in a given term, is defined as follows:
fvars(M)

def
= {x | x occurs free in M}.
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Definition 4 (Atomic Type Sets). Atomic types in our language are catego-
rized according to the following sets:

Tbase = {B | B is a base type}
Ttvar = {α | α is a type variable}
Tsvar = {φ | φ is a sequence variable}

According to the definition of rank restriction [33,37], a rank n intersection
type can have no intersection type connective ∧ to the left of n or more arrow
type constructors →:

Definition 5 (Rank). Types of our language are categorized according to rank:

simple types T0 = Tbase ∪ Ttvar ∪ {τ → ρ | τ, ρ ∈ T0}
rank 1 types T1 = T0 ∪ Tsvar ∪ {τ1 ∧ . . . ∧ τn | τ1, . . . , τn ∈ T0}
rank 2 types T2 = T0 ∪ {σ → τ | σ ∈ T1, τ ∈ T2}

We restrict types in our system to be only of up to rank 2, so the only possible
types are those belonging to T1 ∪ T2, e.g. (((τ → ρ) ∧ τ) → ρ) → τ is not a valid
type.

Remark 3. We denote the singleton context, which contains only one type bind-
ing, as x : σ. We write Γ1, Γ2 for the union of contexts Γ1 and Γ2, assuming Γ1

and Γ2 are disjoint.

Definition 6 (Joining Typing Contexts). Let Γ1 and Γ2 be two typing
contexts. Γ1 ∧ Γ2 is a typing context, where x : σ ∈ Γ1 ∧ Γ2 if and only if σ is
defined as follows:

σ =

⎧
⎪⎨

⎪⎩

σ1 ∧ σ2, if x : σ1 ∈ Γ1 and x : σ2 ∈ Γ2

σ1, if x : σ1 ∈ Γ1 and ¬∃σ2 . x : σ2 ∈ Γ2

σ2, if ¬∃σ1 . x : σ1 ∈ Γ1 and x : σ2 ∈ Γ2

3 Type System

In Fig. 1 we define an intersection type system where every type declared in the
context is used in the type derivation, a property which is going to be quite
useful in subsequent results.

The two rules for abstractions, [T-AbsI] and [T-AbsK], are necessary
because if there is a derivation of Γ �∧ M : σ and x does not occur free in
M , then there is not a type declaration for x in Γ . The set of types for a given
term M in this system is strictly included in the set of types for M in the origi-
nal intersection type system of Coppo and Dezani [13,15]. For example, the type
(α1 ∧ α2) → α1 types λx . x in the Coppo-Dezani type system but not in our
system. The reason for this is that types for free variables, which are introduced
by rule [T-Var], can only be included in an intersection via rules [T-App] or
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Fig. 1. Intersection type system (Γ �∧ M : σ)

[T-Add]. Thus each element of the intersection corresponds to a type that is
actually used in the type derivation. However, the set of terms typable in both
systems is the same and corresponds to the strongly normalizable terms (a proof
of this for a similar type system can be found in [25]).

One peculiarity of this type system is that it does not satisfy the property of
subject reduction as it is shown by the following example:

Example 1. In this system, the following two statements hold:

z : α2 → β �∧ λx . (λy . z) x x : α1 ∧ α2 → β

λx . (λy . z) x x →
β

λx . z x

But we also have that

z : α2 → β 	�∧ λx . z x : α1 ∧ α2 → β

because type α1∧α2 can’t be assigned to x, since only one occurrence of x (typed
with α2) exists.

The lack of subject reduction also happens in other restrictions of intersection
type systems where every type in the environment has to be used in the type
derivation [19,35]. The reason for the lack of subject reduction is that there
is no weakening introducing unneeded type assumptions. Note that the lack
of subject reduction is not a problem, because derivations in this system can
be easily translated into derivations on more standard systems of intersection
types which have subject reduction. Defining the system without a weakening
mechanism makes the later analysis about type inference much easier.

Consider the following example of a type derivation for (λx . x x) (λy . y):
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Example 2. We abbreviate τ = ρ → ρ. We have the following derivations by
applying the last rule as follows:

[T-AbsI] ∅ �∧ λx . x x : (τ → τ) ∧ τ → τ (1)
[T-AbsI] ∅ �∧ λy . y : τ → τ (2)
[T-AbsI] ∅ �∧ λy . y : τ (3)

By rule [T-App] on derivations (1), (2) and (3), we have:

[T-App] ∅ �∧ (λx . x x) (λy . y) : τ

4 Type Inference

We follow a conventional approach to type inference [47]: a constraint generation
phase generates type constraints from the term, and a constraint solving phase
solves these constraints to generate type substitutions.

Substitution on types is defined in the standard way [39], extended to allow
intersections.

Definition 7 (Substitution). Let S range over standard type substitutions
[39]. We write [α 
→ τ ] for a type substitution on monotypes that maps a type
variable α into a monotype τ ; and [φ 
→ σ] for a type substitution on sequences
that maps a sequence variable φ into a sequence σ.

For each type system rule in Fig. 1, an analogous constraint generation rule is
required. Deriving these from the type system is rather straightforward: convert
judgments in the premises to constraint generation judgments, making the type
opaque; then convert the judgment in the conclusion, adding constraints that
reflect how types relate to each other in the type system.

Deriving a constraint generation rule from [T-App] is not as straightforward.
In the type system rule for applications, the function is assumed to be typed with
an arrow type. However, the same assumption cannot be made for the constraint
generation rules. Therefore, two constraint generation rules for applications are
required: one where this assumption holds, and another where it does not, leading
to an opaque type being inferred for the function. In standard systems [32], the
application rule which assumes the type of the function is an arrow type behaves
similarly to rule [T-App]. The rule ensures there are distinct type derivations of
the argument, exactly one for each instance of the domain type of the function.
By having distinct type derivations, the rule ensures the argument fits into each
occurrence of the bound variable in the body of the lambda abstraction.

We follow a different approach: the application rule features a single type
derivation of the argument. Then, the type obtained from this derivation is
duplicated, and each copy is constrained to each instance in the domain type of
the function. The duplication operation is defined as in [46]:

Definition 8 (Duplication). Let χ = {α1, . . . , αj} ∪ {φj+1, . . . , φm} be a set
of type and sequence variables; let β11, . . . , β1n, . . . , βm1, . . . , βmn be fresh type
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variables; and let Si = [α1 
→ β1i, . . . , αj 
→ βji, φj+1 
→ β(j+1)i, . . . , φm 
→ βmi],
for 1 ≤ i ≤ n. The duplication function duplicaten

χ(τ) is defined as follows:

duplicaten
χ(τ)

def
= S1(τ) ∧ . . . ∧ Sn(τ).

The argument χ represents the set of variables that will be duplicated, and the
argument n represents the number of duplications. Therefore, n fresh variables β
are required for each type variable in χ, to ensure new duplications. Only simple
types (τ ∈ T0) are duplicated, so sequence variables φ that might appear in the
type are treated as simple types and replaced by type variables β. Note that
if duplication is applied to a type without type variables, due to idempotence,
duplication will return the same type, e.g. duplicate2χ(Int → Int) = (Int →
Int) ∧ (Int → Int), which is the same as Int → Int . On the other hand, if type
variables are considered, duplication will generate n many copies of the type,
e.g. duplicate2{α1,α2}(α1 → α2) = (β11 → β21) ∧ (β12 → β22).

We give meaning to constraints through a satisfaction relation |=. A sub-
stitution S satisfies a constraint σ

.= υ if and only if applying the substitution
to both types in the constraint yields an equality. Taking into account that
intersection types are idempotent and commutative, two sequences are equal if
both share the same set of instances. Since sequences of size one are allowed,
the equality constraint between monotypes τ

.= ρ is an instance of σ
.= υ, i.e.

S |= τ
.= ρ ⇐⇒ S(τ) = S(ρ).

Definition 9 (Constraint Satisfaction).

1. S |= ∅
2. S |= σ

.= υ ⇐⇒ S(σ) = S(υ)
3. S |= C∗ ⇐⇒ S |= C for all C ∈ C∗

Definition 10 (Lifting Type Variables). We lift function tvars(.), from Def-
inition 2, to typing contexts Γ and equality constraints C∗ in the obvious way.

Definition 11 (Lifting Substitution). We lift substitutions, from Definition
7, to:

– typing contexts Γ in the obvious way;
– constraints in the following way: S(σ .= υ)

def
= S(σ) .= S(υ). Also, S(C∗ ∪

C)
def
= S(C∗) ∪ S(C) and S(∅)

def
= ∅.

Definition 12 (Lifting Duplication). Assuming S1, . . . , Sn are type substitu-
tions generated from χ according to Definition 8, we lift function duplicaten

χ(.),
from Definition 8, to:

– typing contexts in the following way: duplicaten
χ(Γ )

def
= S1(Γ ) ∧ . . . ∧ Sn(Γ );

– constraints in the following way: duplicaten
χ(C∗)

def
= S1(C∗) ∪ . . . ∪ Sn(C∗).

Besides duplicating the type of argument derivations in the application rule,
the typing context and constraints must also be duplicated, thus simulating
several derivations of the same term. These derivations are just renamings of
type variables of the original derivation.
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Fig. 2. Constraint generation (Γ �∧ M : τ | C∗)

Definition 13 (Duplication). Let 〈Γ, τ, C∗〉 be a triple composed of a typing
context Γ , a type τ and constraints C∗. The duplication function is defined as
duplicaten(〈Γ, τ, C∗〉) = 〈[Γ1, . . . , Γn], [τ1, . . . , τn], [C∗

1 , . . . , C∗
n]〉 where:

– χ = tvars(Γ ) ∪ tvars(τ) ∪ tvars(C∗);
– duplicaten

χ(Γ ) ≡ Γ1 ∧ . . . ∧ Γn;
– duplicaten

χ(τ) ≡ τ1 ∧ . . . ∧ τn;
– duplicaten

χ(C∗) ≡ C∗
1 ∪ . . . ∪ C∗

n.

4.1 Constraint Generation

We define the constraint generation rules in Fig. 2. The constraint generation
judgment is written as Γ �∧ M : τ | C∗, where given a term M , the rules generate
a typing context Γ , type τ and constraints C∗. We follow [32], assigning fresh
type variables to variables in [G-Var]. No assumptions are made for the type
of the term variable, allowing it to be constrained to the correct type according
to the context. Similarly to the type system, there are two constraint generation
rules for lambda abstractions: [G-AbsI], when the bound variable occurs free in
the body, and [G-AbsK], when it does not. When the bound variable occurs free
in the body, rule [G-Var] will gather type assumptions in the context. Then,
rules containing several premises, [G-App], [G-App∧] and [G-Add], join the
contexts under an intersection (Definition 6). Due to this, the domain of the
function type in the conclusion of rule [G-AbsI] corresponds to the intersection



Type Inference for Rank-2 Intersection Types Using Set Unification 471

of the types of all ocurrences of the bound variable, which is given by the context
in the premise of the rule. When the bound variable does not occur free in the
body, there is no information regarding the type for the domain. Rule [G-AbsK]
then returns an arrow type whose domain is a fresh sequence variable.

Whereas in the type system, there’s a single application rule, two constraint
generation rules are required: [G-App∧] and [G-App]. In [G-App∧], the type of
the function term is an arrow and its domain is an intersection. Then, the type
of the function term, particularly the domain τ1 ∧ . . . ∧ τn, constrains how many
derivations are needed of the argument term. For each instance in the domain
type of the function, a derivation of the argument is required. Furthermore, each
instance must unify with its corresponding argument’s type.

However, instead of following the standard approach [32] of ensuring multiple
derivations of the argument, we explore a different approach. In fact, generating
multiple derivations of the argument amounts to duplicating type variables found
in the context, type and constraints. We made this explicit in rule [G-App∧].

If the type of the function term is not an arrow, then there is no information
on the number of derivations required of the argument term, so only one is
needed. Furthermore, the type of the function is constrained to be an arrow
type, and its domain to match the argument’s type, as specified in [G-App].

Taking the previous example in Sect. 3, constraints are now generated for the
expression:

Example 3. We have the following derivations by applying the rule:

[G-AbsI] ∅ �∧ λx . x x : α1 ∧ α2 → α3 | {α1
.= α2 → α3} (4)

[G-AbsI] ∅ �∧ λy . y : α4 → α4 | ∅ (5)

By rule [G-App∧] on derivations (4), (5) and premises (6) and (7) we have:

duplicate2(〈∅, α4 → α4, ∅〉) = 〈[∅, ∅], [α5 → α5, α6 → α6], [∅, ∅]〉 (6)
C = α1 ∧ α2

.= α5 → α5 ∧ α6 → α6 (7)
[G-App∧] ∅ �∧ (λx . x x) (λy . y) : α3 | {α1

.= α2 → α3} ∪ C

We show the following properties of our constraint generation algorithm:

Lemma 1 (Soundness of Constraint Generation). If Γ �∧ M : τ | C∗

and S |= C∗ then S(Γ ) �∧ M : S(τ).

Proof. Proof by induction on the length of the derivation tree of Γ �∧ M : τ | C∗.

Lemma 2 (Completeness of Constraint Generation). If S1(Γ ) �∧ M : τ
then Γ �∧ M : ρ | C∗ s.t. the domain of S1 is disjoint from χ, and ∃S2 s.t.
S2 agrees with S1 except at χ, S2 |= C∗ and S2(ρ) = τ , where χ are the fresh
variables introduced in the derivation of Γ �∧ M : ρ | C∗.

Proof. Proof by induction on the length of the derivation tree of S1(Γ ) �∧ M : τ .
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4.2 Set Unification

Type inference for simple types relies on first-order unification. However, equal-
ity constraints between idempotent and commutative intersection types are not
so easy to solve. Solving such constraints involves finding the correct associa-
tion between instances in both sequences. If we consider sequences as sets, this
problem is equivalent to solving a set unification problem [20,21].

According to [21], a set is an arbitrary, unordered collection of elements,
i.e. the order and repetition of elements do not matter. Since we consider the
intersection type operator ∧ as idempotent and commutative, a sequence τ1 ∧
. . .∧τn can be interpreted as a set {τ1, . . . , τn}, whose elements are the instances
of the sequence. By Definition 1, a sequence can have as instances base types B,
type variables α, and arrows σ → τ . These are the building blocks of sequences,
so we define their counterparts for sets:

Definition 14 (Individuals). The set of individuals U is defined as follows:

– if B ∈ Tbase then B ∈ U ;
– if s, t are abstract set terms, then → (s, t) ∈ U .

Individuals are essentially ground terms that make up our sets. Besides base
types B, the arrow type is also considered an individual, however, one with two
arguments.

Now we can define sets, that will act as a counterpart for sequences. Accord-
ing to [20,21], the full class of sets is defined as follows. For m,n, p, q ≥
0, the class set(m,n, p, q) represents the collection of all abstract set terms
{X1, . . . , Xm′ , a1, . . . , an′ , s1, . . . , sp′} ∪ Y1 ∪ . . . ∪ Yq′ such that 0 ≥ m′ ≥ m, 0 ≥
n′ ≥ n, 0 ≥ p′ ≥ p, 0 ≥ q′ ≥ q, where Xi, Yi are variables, ai are individuals and
si, ti are abstract set terms (distinct from variables).

However, the full class of sets has more expressive power than what we need to
encode sequences. The language of types, as well the rank restriction (Definition
5), restricts the expressive power of sequences to be less than that of sets. Only
rank 1 sequences are allowed, therefore sequences cannot contain other sequences
as elements. This restriction means that abstract set terms si inside sets are not
permitted. Furthermore, extra variables Yi have no counterpart in our sequences.
Therefore, we only need a restricted fragment of the class set(m,n, p, q): the class
flat(0) =

⋃
m≥0,n≥0 set(m,n, 0, 0). We then define our sets under this class:

Definition 15 (Abstract Set Terms). An abstract set term is a term of the
form: {X1, . . . , Xm, a1, . . . , an}, with m,n ≥ 0.

Therefore, rank 1 sequence solving is equivalent to the Set Unification Decision
[21] problem between two flat(0) sets.

We now define the translation, allowing sequences to be encoded as abstract
set terms, which can be then passed onto the unification algorithm:
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Definition 16 (Types as Abstract Set Terms). The translation function
�.� is defined according to the following rules:

B ∈ Tbase

�B� = B �α� = X

�σ� = s �υ� = t

�σ → τ� = → (s, t)

�τ1� = t1 . . . �τn� = tn

�τ1 ∧ . . . ∧ τn� = {t1, . . . , tn}

The translation function is bijective, and its inverse is defined as follows: assum-
ing �σ� = s, then �s�inv = σ.

With an encoding of sequences as sets, we can unify two sets with algorithm
AbCl unify [20,21]. Generally, algorithm AbCl unify takes a system of equa-
tions as input and returns either fail or a collection of systems in solved form.
However, since the constraint solving algorithm only needs to solve one equality
constraint between sequences at a time, AbCl unify is only ever called with a
single equation as input. The algorithm then essentially tries to find a match
between the elements of the two sets, non-deterministically checking different
permutations. As two sets can be unified in several ways, this algorithm is non-
deterministic, i.e. provides various solutions, albeit all correct. Therefore, due to
relying on AbCl unify, the constraint solving algorithm is also non-deterministic.
We encapsulate the unification algorithm as well as the necessary translation,
and define the sequence solving procedure C

s⇒ S:

Definition 17 (Sequence Solving). Let σ
.= υ be an equality constraint

between two rank 1 sequences σ and υ. The sequence solving procedure (σ .=
υ) s⇒ Si, that non-deterministically returns a set of substitutions S1, . . . , Sn, is
defined by the following steps.

Let (σ .= υ) s⇒ Si, such that:

1. let t, s be abstract set terms such that �σ� = t and �υ� = s;
2. choose an arbitrary solution Ei returned by AbCl unify({t = s}):

(a) for every solved form equation X = t′ ∈ Ei, if �X�inv = α and �t′�inv = σ′,
then [α 
→ σ′] ∈ Si

We transcribe the soundness and completeness result from [20], from which
we can then derive our own:

Theorem 1 (Soundness and Completeness of AbCl unify [20]). Given
a system E, let E1, . . . , En be all the systems in solved form produced by the
unification algorithm. Then Soln(E) = Soln(E1)|vars(E) ∪ . . . ∪ Soln(En)|vars(E)
where Soln(X) is the set of all ground set-unifiers of X and Soln(Ei)|vars(E) is
Soln(Ei) restricted to the variables of E.

Lemma 3 (Soundness of Sequence Solving). If (σ .= υ) s⇒ S then S |=
σ

.= υ.



474 P. Ângelo and M. Florido

Proof. If (σ .= υ) s⇒ Si, for all i ∈ 1..n, then by Definition 17: �σ� = t and
�υ� = s; AbCl unify({t = s}) returns solutions E1, . . . , En; and for every solved
form equation X = t′ ∈ Ei, if �X�inv = α and �t′�inv = σ′, then [α 
→ σ′] ∈ Si.
By Theorem 1, Soln({t = s}) = Soln(E1)|vars({t=s}) ∪ . . .∪Soln(En)|vars({t=s}).
We then have that Ei is a solution for {t = s}. By Definition 16, �t�inv = σ and
�s�inv = υ. Therefore, Si is a solution to σ

.= υ, or rather, Si(σ) = Si(υ). By
Definition 9, Si |= σ

.= υ.

Lemma 4. (Completeness of Sequence Solving). If S1 |= σ
.= υ then

∃S, S2 s.t. (σ .= υ) s⇒ S2 and S1 = S ◦ S2.

Proof. If S1 |= σ
.= υ, then by Definition 16, (1) �σ� = t and �υ� = s. We

then have that (2) AbCl unify({t = s}) returns solutions E1, . . . , En, with i ∈
1..n. By Theorem 1, we have that Soln({t = s}) = Soln(E1)|vars(E) ∪ . . . ∪
Soln(En)|vars(E). Therefore, the set of solved form equations of Ei, for all i ∈ 1..n,
represents all possible solutions of {t = s}, and each solution Ei is a minimal
solution. (2a) For every solved form equation X = t′ ∈ Ei, if �X�inv = α and
�t′�inv = σ′, then [α 
→ σ′] ∈ S′

i. By Definition 17, since we have (1), (2), and
(2a), then (σ .= υ) s⇒ S′

i, non-deterministically for all i ∈ 1..n. One of these
solutions S′

i agrees with S1, and is a most general solution to σ
.= υ. Therefore,

∃S, S′
i s.t. S1 = S ◦ S′

i.

4.3 Constraint Solving

The constraint solving rules are defined in Fig. 2. The constraint solving judg-
ment is written as C∗ ⇒ S, where given constraints C∗ the rules generate sub-
stitutions S. Most rules are straightforward, following standard formulations for
type inference. Rule [S-Empty] allows constraint solving to terminate: when
no constraints are left, the algorithm returns the substitutions. Rule [S-Same]
discards equality constraints between the same types. Rule [S-Arrow] decon-
structs an equality constraint between two arrows, by constraining both the
domains to each other, and both the codomains to each other.

Rule [S-Seq] solves equality constraints between two sequences by calling
the sequence solving algorithm C

s⇒ S′, which in turn calls the solving algo-
rithm AbCl unify from [20,21]. Resulting substitutions are then applied to the
remaining constraints, and solving proceeds as usual. Due to non-determinism
of AbCl unify, and consequently, C

s⇒ S′, this rule introduces non-determinism
in the constraint solving algorithm. However, every parallel solution is either
correct, or constraint solving fails.

The remaining rules are standard rules to deal with type variables. Rules [S-
TVarR] and [S-SVarR] apply when the type (and sequence) variables appear
on the right side, swapping the positions of the constrained types. Rules [S-
TVarL] and [S-SVarL] then produce a substitution between the type (and
sequence) variable and the type on the right of the constraint.

Continuing the example from Sect. 4.1, constraints are solved:
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Fig. 3. Constraint solving (C∗ ⇒ S)

Example 4. We now have the following constraints to solve:

{α1
.= α2 → α3, α1 ∧ α2

.= α5 → α5 ∧ α6 → α6} ⇒ ∅
[S-TVarL] {α2 → α3 ∧ α2

.= α5 → α5 ∧ α6 → α6} ⇒ [α1 
→ α2 → α3]

Due to non-determinism of C
s⇒ S, there are two solutions:

[S-Seq] ∅ ⇒ [α5 
→ α6 → α6] ◦ [α2 
→ α5, α3 
→ α5] ◦ [α1 
→ α2 → α3]
[S-Seq] ∅ ⇒ [α6 
→ α5 → α5] ◦ [α2 
→ α6, α3 
→ α6] ◦ [α1 
→ α2 → α3]

Choosing the first solution, our expression is typed as follows:

[T-AbsI] ∅ �∧ λx . x x : ((α6 → α6) → α6 → α6) ∧ (α6 → α6) → α6 → α6

[T-AbsI] ∅ �∧ λy . y : (α6 → α6) → α6 → α6

[T-AbsI] ∅ �∧ λy . y : α6 → α6

[T-App] ∅ �∧ (λx . x x) (λy . y) : α6 → α6

We show our constraint solving algorithm is both sound and complete:

Lemma 5 (Soundness of Constraint Solving). If C∗ ⇒ S then S |= C∗.

Proof. Proof by induction on the length of the derivation tree of C∗ ⇒ S.
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Lemma 6 (Completeness of Constraint Solving). If S1 |= C∗ then ∃S, S2

s.t. C∗ ⇒ S2 and S1 = S ◦ S2.

Proof. Proof by induction on the breakdown of constraint sets C∗ by the solving
rules.

4.4 Algorithm

Having defined both a constraint generation and solving algorithm, we now
include both in the main type inference algorithm. We also show our type infer-
ence is sound and complete.

Definition 18 (Type Inference). The type inference procedure infer(M)
def
=

(Γ, τ, S), that given an expression M , non-deterministically returns a triple
(Γ, τ, S) composed of a typing context Γ , type τ and substitutions S, is defined
by the following steps:

Let infer(M)
def
= (Γ, τ, S), such that:

1. let Γ , τ and C∗ such that Γ �∧ M : τ | C∗;
2. let S such that C∗ ⇒ S;

Theorem 2 (Soundness). If infer(M) = (Γ, τ, S) then S(Γ ) �∧ M : S(τ).

Proof. By Definition 18, we have Γ , τ and C∗ such that Γ �∧ M : τ | C∗, and
S such that C∗ ⇒ S. By Lemma 5, since C∗ ⇒ S then S |= C∗. By Lemma 1,
since Γ �∧ M : τ | C∗ and S |= C∗ then S(Γ ) �∧ M : S(τ).

Theorem 3 (Completeness). If S1(Γ ) �∧ M : τ then ∃S2, ρ, S s.t.
infer(M) = (Γ, ρ, S2) and τ = S ◦ S2(ρ).

Proof. If S1(Γ ) �∧ M : τ then by Lemma 2, Γ �∧ M : ρ | C∗ and ∃S2 s.t.
S2 agrees with S1 except at χ, S2 |= C∗ and S2(ρ) = τ , where χ are the fresh
variables introduced in the derivation of Γ �∧ M : ρ | C∗. By Lemma 6, ∃S, S3

s.t C∗ ⇒ S3 and S2 = S ◦ S3. By Definition 18, infer(M) = (Γ, ρ, S3). Then, we
have that τ = S ◦ S3(ρ).

5 Conclusion and Future Work

In this paper we present a sound and complete unification-based type inference
algorithm for rank-2 intersection types using set unification. One nice feature of
this algorithm is its similarity with type inference for simple types, it is basically
the same algorithm, replacing first-order unification by set unification.
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5.1 Future Work

Using Set-Unification Based Type Inference in Practice. This work
is carried out in the context of a larger research project, focused in the use
of intersection types and gradual types for programming language design and
implementation. This larger project assumes the implementation and evaluation
of intersection gradual types in a functional programming language compiler.
Several points need to be further developed to enable the use of the algorithm
presented here in the overall project goals. Some important points to address
are:

1. Extension of the term language with recursive definitions. This will enable to
apply our algorithm to a more realistic language and will address the known
problems related with decidability for recursive definitions [30,34].

2. Add support to let expressions and conditional expressions. Most likely, in the
case of conditional expressions, this will mean extending the type language
with union types.

Theoretical Issues. The work presented here inspires the following possible
future work:

1. Types here use associative, commutative and idempotent intersections. In the
last years non-idempotent intersections have been successfully used to obtain
quantitative information of program behaviour [1,2,9]. We believe it is rather
promising to use multiset unification (usually based on solving diophantine
equations) in the same way we use set unification, to infer types in this par-
ticular setting.

2. Investigate the complexity of our type inference algorithm. Being exponential
for sure, because this is the complexity of the type inference problem for
rank-2 intersection types, we want to study the exact complexity of our type
inference algorithm and investigate if using set-unification may have some
impact on the overall efficiency of type inference.

3. Extension to higher rank intersection types. Here we use a simple form of set
unification where there cannot be sets inside sets. We conjecture that using
those nested sets limited to a fixed level of nesting will result in type inference
algorithms for higher (but finite) rank intersection types.

4. Study the relation of our approach with β-unification [35] and other forms of
unification. Unification theory is a wide research field and studying in detail
the relations between different unification algorithms, which, in this case, are
used for the same purpose may shed some light on their relations and also
contribute to the area of unification theory.
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