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Chapter 1
An Introduction to Digital Health:  
Current and Future Trends

Homero Rivas and Thomas Boillat

Abstract  Over the last 25  years, life as we know it has changed considerably. 
Starting from generation Z (born after 1996), the young generations are true citizens 
of a digital world. Ever since their birth, information and communication technolo-
gies (ICTs) have been very pervasive in all aspects of their lives. On the other hand, 
older generations, including all adults, represent a group of digital immigrants that 
grew up without such technology. Only a few years ago, digital health was not a 
common term in our lexicon much less something well understood by patients and 
most care providers. Since the beginning of the COVID-19 pandemic, circum-
stances have changed globally and the ecosystem has become fertile for the rapid 
expansion of digital health. Most if not all large healthcare systems, pharmaceutical 
companies, medical device companies, etc. have groups dedicated solely to digital 
health. Visionary medical schools are implementing an increasing number of digital 
health courses in their curriculums or at least in their informal courses. Entrepreneurs 
have identified great opportunities to innovate and create ingenious, cost effective, 
and sustainable value propositions in digital health. Venture Capital (VC) invest-
ment has exponentially increased over the last few years on a scale not seen for a 
very long time, either in healthcare or even in other industries. This chapter high-
lights this unique growth and transformation being experienced by digital health 
and healthcare in general.

Keywords  Digital Health · Wearables · Telemedicine · Artificial intelligence  
Virtual reality · Augmented reality · Mobile health
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1.1 � Introduction

In our first book, “Digital Health – Scaling Healthcare to the World” (Rivas and Wac 
2018), we described the opportunity offered by Digital Health Technologies (DHT) 
to improve the delivery and quality of care and wellbeing, and to reduce healthcare 
costs. In this regard, we explained the role of mobile health and wearable technolo-
gies in tracking quality of life, the use of augmented and virtual realities to treat 
mental diseases, the implementation of 3D printing in medical education and clin-
ics, and the use of drones to deliver care to areas that are difficult to access. The 
book also includes discussions on existing challenges in the healthcare system and 
initiatives that use DHT to redesign it. When the book was written, the Apple Watch 
celebrated its first anniversary. To date, more than 100 million units have been sold 
(Rogerson 2021); moreover, few years back, the smartwatch demonstrated its abil-
ity to detect atrial fibrillation in one of the largest clinical trials, involving almost 
half a million participants (Perez et al. 2019). Similarly, in the U.S. between 2019 
and 2020 alone, amid COVID-19, the volume of telehealth delivery increased by 38 
times, allowing medical professionals to maintain a relationship with their patients 
by delivering care remotely (Bestsennyy et al. 2021). When it comes to artificial 
intelligence, 80% of the algorithms used for health-related applications were 
approved by the U.S. Food and Drug Administration (FDA) between 2018 and 2021 
(The Medical Futurist 2021). The creation of the Digital Health Center of Excellence 
by the FDA in 2020 also marked the increasing development and role that digital 
health plays in the healthcare system (Health C for D and R 2021).

Defined by the World Health Organization (WHO) as “the use of information 
and communications technology in support of health and health-related fields” 
(WHO 2017), DHT encompass a wide range of technologies from electronic medi-
cal records to telehealth, mobile health, wearables, augmented and virtual realities, 
and also paradigms such as blockchain and artificial intelligence. To understand the 
adoption and impact of DHT compared to traditional health innovation such as 
X-ray, Magnetic Resonance Imaging (MRI), or ultrasound, it is important to look at 
the origins and types of the aforementioned technologies. On one hand, technolo-
gies such X-ray, MRI, and ultrasound were designed specifically for healthcare 
based on thoroughly analyzed needs, and sold and installed by specially trained 
personnel. On the other hand, DHT such as mobile health, wearables, or virtual real-
ity, were designed for serving multiple industries with unclear needs and expecta-
tions. These differences are also highlighted by the way some researchers and 
practitioners compare the evolution of health technologies with those of the four 
industrial revolutions (Li and Carayon 2021). In this vision, healthcare 1.0 includes 
traditional patient encounter, diagnosis, and treatment; healthcare 2.0 relies on med-
ical equipment, such as ultrasound, CT scans, and surgical and life support equip-
ment including ventilators as well as monitoring devices such as continuous EKG 
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and pulse oximeter among many others. Healthcare 3.0 encompasses the use of 
electronic medical records, patient portals, telemedicine, and virtual visits. Finally, 
healthcare 4.0 utilizes the Internet of Things (IoT), wearables, cloud computing. 
and artificial intelligence to deliver personalized medicine. When comparing health-
care with industrial revolutions, it is clear that from revolutions 3.0 upwards, the 
technologies used become increasingly less specific to the industry. For companies 
and hospitals in particular, this means that additional work is required to understand 
how the identified needs can be addressed by a technology, a task that is not required 
by specific devices used in revolutions 1.0 and 2.0. In addition, though hospitals and 
clinics had the pressure from other institutions to acquire medical equipment, with 
healthcare 4.0 the demand comes from patients and medical professionals. Before 
healthcare 4.0, hospitals and clinics were the innovation-driven forces, with equip-
ment and know-how to which only a few people had access. To describe changes in 
industry forces, researchers and practitioners use the term “consumerization” or 
“bottom-up innovation” whereby customers are pushing industry to adopt a new 
technology (Moschella et al. 2014). Nowadays, many patients use mobile applica-
tions to track their food or wear activity trackers to measure their number of steps 
or amount of sleep, thereby collecting health-related information that hospitals do 
not have access to and do not know how to trust or use (Ho et al. 2017).

1.2 � Current Trends

DHT are increasingly used in healthcare by different stakeholders from clinicians to 
administrative staff and patients. To contextualize the impacts DHT have on the 
health system, in this section we present the latest technologies alongside the 
“Quadruple Aim” for healthcare optimization. This framework was initially devel-
oped for the delivery of high-value care (i.e., Triple Aim) and then revisited as the 
Quadruple Aim in 2014 (Berwick et al. 2008; Bodenheimer and Sinsky 2014). The 
Quadruple Aim framework suggests four dimensions for the delivery of high-value 
care (Bodenheimer and Sinsky 2014): (1) improving the individual experience of 
care; (2) improving the health of populations; (3) reducing per capital cost of health-
care; and the newly added d) improving the experience of providing care. The latter 
dimension not only includes work recognition but also dignity and respect with 
which the medical staff is (should be) treated as well as the requirements addressed 
in terms of education, training, tools, financial support, and encouragement. The 
Quadruple Aim framework is often represented as a circle to highlight the continu-
ous required improvement of each dimension and their relationship with one another 
as shown in Fig. 1.1.

1  An Introduction to Digital Health: Current and Future Trends
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1.2.1 � Improving the Health of Populations

The first step in improving the health of populations lies with connecting with peo-
ple. With social media platforms, information has no temporal or geographical bar-
riers unlike traditional media such as radio, newspapers, or TV.  Take Mikhail 
“Mike” Varshavski, a family medicine doctor practicing in New Jersey (USA). Dr. 
Mike publishes short videos on YouTube and Instagram mostly to demystify medi-
cine and simplify medical concepts. Since 2016, his videos have been viewed more 
than 1.2 billion times on YouTube (Varshavski 2021) alone. While many find his 
work controversial and more medical entertainment than true medical education, he 
has been successful in effectively communicating to the masses through a video 
digital platform. Not only do social media platforms empower the voice of their 
content creators, but they also create a communication channel with their viewers 
by means of comments that viewers can post. During the first months of the 
COVID-19 pandemic, an important number of physicians relied on social media 
platforms to fight against misinformation, relying on scientific evidence to provide 
a neutral analysis of the situation (Topf and Williams 2021). Another technology 
that has been increasingly leveraged for digital health purposes is the smartphone. 
Smartphones, also called mobile devices, are used by more than 6 billion people 
around the world (Statista 2021), offering them opportunities to better understand 
their behavior and health, or toward changing “bad” habits. Additionally, data col-
lected from mobile device users open new avenues for medical professionals to 
connect and gain understanding of people’s lifestyle, behaviors, and conditions 
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Fig. 1.2  Example of an 
alert message sent by the 
police to all citizens’ 
mobile devices during 
COVID-19

(Bradway et al. 2017). The combination of mobile devices and health is defined as 
mHealth and described by the World Health Organization as “medical and public 
health practice supported by mobile devices, such as mobile phones, patient moni-
toring devices, personal digital assistants (PDAs), and other wireless devices” 
(WHO 2011). Definitely, COVID-19 helped people understand the value of mHealth 
with the use of apps to inform the population of new decisions and restrictions 
(Fig. 1.2), and to trace people with whom a COVID-positive person was in contact 
and forecast areas that will be most prevalent to see clusters emerging based on the 
number of close contacts, people’s movement, and density of living (Kamalov 
et al. 2021).

Looking at the last years, the number of mHealth apps has not increased much, 
with 318,000 in 2017 (IQVIA 2017) against 350,000 in 2020 (Olsen 2021) in both 
Android and Apple stores. There are, however, more interesting facts to discuss. In 
2019 alone, 100,000 new mHealth apps were published, demonstrating an impor-
tant turnover and potential market saturation. In addition, the nature of mHealth 
apps is evolving from apps covering general needs such as tracking exercises, fit-
ness activities, and eating diets to apps that support specific diseases such as mental 
health, diabetes, hypertension, or women’s health (IQVIA 2017). Second, over the 
last 5–10 years, mHealth apps have become more active in the way they support 
their users. Not only do they collect and monitor data, but they also suggest inter-
ventions in order to help the user change his or her behavior. For instance, a group 
of researchers demonstrated that sending customized text messages was efficient to 
help patients suffering from coronary heart disease change their behavior when it 
comes to reducing the amount of smoking and increasing physical activities (Chow 
et al. 2015). Over the last 5 years, an increasing number of mHealth apps have lever-
aged machine learning algorithms to provide a higher level of data analysis, thus 
offering new opportunities. For instance, a small Swiss startup developed a mobile 
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app that can measure blood pressure from data collected from a mobile device’s 
camera (Schoettker et al. 2020). With so many available apps, the bigger challenge 
for users lies in finding the most appropriate ones. The growth in health apps is 
poorly aligned with the capacity of evaluation of such apps. A few years back, the 
FDA had approved much less than 1% of those apps for clinical use. Most innova-
tors and entrepreneurs of health apps purposely target the “wellness market” in 
order to bypass the legal challenges and strict regulation processes required for 
FDA-regulated apps or digital devices. Moreover, customer reviews may in theory 
represent some helpful feedback to prospective app customers although very often 
their content is superficial and of no real value. One might think that it would be of 
some benefit if the application stores would categorize mHealth apps that have 
undergone systematic evaluation, even when there is only a paucity of apps. In a 
2017 study, out of the 3296 mHealth apps analyzed, only 11 had been analyzed for 
their effectiveness (Buechi et al. 2017).

Another technology that has been shown to have a big impact on improving the 
health of populations is wearable and comprises all devices whose embedded sen-
sors and analytic algorithms can track, analyze, and guide the wearers’ behavior 
(Schüll 2016). Activity trackers and smartwatches are most probably the most com-
mon and known wearable technology. In one of the largest clinical trials ever con-
ducted, involving 400,000 participants and published in the New England Journal of 
Medicine, a group of researchers demonstrated the ability of the Apple Watch to 
detect atrial fibrillation (Perez et al. 2019). With an increasing number of embedded 
sensors, such as oxygen saturation, electrocardiogram, and blood pressure monitor-
ing, wearables have shown great potential in remotely monitoring mildly symptom-
atic patients during COVID-19 and will most probably continue to do so beyond the 
pandemic (Islam et al. 2020). Wearables have been shown to help children suffering 
with autism recognize the emotions of other children. The researchers used the 
affordances of a pair of smart glasses (i.e., Google Glass) to analyze the facial 
expressions of children in the field of view of the child suffering from autism and 
then display in his or her screen whether the children are smiling and being happy, 
sad, or angry to name of few (Daniels et al. 2018).

1.2.2 � Reducing the Cost of Healthcare

Chronic diseases such as obesity, cancer, and diabetes account for a majority of 
healthcare costs of developing countries along with lifestyle choices (e.g., alcohol, 
tobacco, food). Lately, researchers and governments have been leveraging machine 
learning algorithms and data science in general to predict early obesity using data 
collected during medical visits (Triantafyllidis et al. 2020). These predictions have 
allowed governments to create targeted interventions such as awareness campaigns 
as well as changes in policies. When it comes to cancer prevention, the combination 
of mHealth and machine learning has allowed for the screening of skin cancer. From 
a picture taken with a mobile device, a machine learning algorithm is able to 
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identify whether the mole is malignant or benign. Already used by millions of peo-
ple, not only can these mHealth apps save people’s life, but they also reduce treat-
ment costs by identifying skin cancer at an early stage (SkinVision 2021).

1.2.3 � Improving the Experience of Care

When broken down, experience of care often includes elements of scheduling (e.g., 
how and when can a specialist be booked), accessing the medical facility, registra-
tion, waiting, reception of the care by medical professionals, discharge, and recep-
tion of medication. Until recently, this traditional model of care delivery requiring a 
patient to visit a physician in a clinical setting had been prevalent in the majority of 
the world. It did not change due to new technological advancements, but mostly due 
to the restriction of movement caused by the COVID-19 pandemic. Within a very 
short amount of time, governments and hospitals chose telemedicine to permit 
mildly ill patients to get the supportive care they need while minimizing their expo-
sure to other acutely ill patients (Portnoy et al. 2020). The pre-identified barriers 
that prevented a larger scale adoption of such technology, including a breakdown in 
the relationship between the patient and the physician, had a much lower impact 
than expected (Hollander and Carr 2020). An increasing number of hospitals have 
integrated telemedicine as part of their portal, allowing patients to search and find a 
specialist, book an appointment based on their preferences, run a telemedicine con-
sultation from their personal computer or mobile device, receive an electronic pre-
scription, and access their discharged report from the comfort on their home.

1.2.4 � Improve Care Provider Experience

Though to date digital health has primarily targeted patients, some technologies 
have had indirect and direct impacts on the care provider experience. These impacts 
can be at the same time positive and negative. Electronic Medical Records (EMR) 
is most probably the technology that has been researched and discussed the most. 
On one hand, many concerns have been raised with regard to the impact of EMR on 
medical professionals’ wellbeing due to their lack of usability (Shanafelt et  al. 
2016); on the other hand, they have allowed care providers to access, trace, share, 
and analyze data of multiple patients with limited effort, leading to better care 
(Khalifa 2017; Rathert et al. 2019). Telemedicine is a technology that has had more 
direct impact by allowing physicians and other medical professionals to save time 
by more efficiently sorting patients and redirecting them to specialists (Mahtta et al. 
2021). For physicians practicing home visits or living in rural areas, this allows 
them to consult more patients while reducing risks linked to driving (Mahtta et al. 
2021). As described above, telemedicine has been key to delivering care but also to 
protect care providers from infection (Hoffman 2020). During the COVID-19 
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pandemic, several DHT were used in several studies to better understand the amount 
of stress on care providers and to preventively identify people at risk of burnout or 
mental and physical breakdowns (Goodday et al. 2021). Several techniques were 
used to collect objective and subjective data from surveys, mobile applications, 
activity trackers, smart rings, and video calls with specialists.

1.3 � Future Trends

Aligned with the title of this book, “Digital Health: From assumptions to implemen-
tations,” the trends presented below leverage existing DHT and are foreseen to be 
implemented within 3 years (Fig. 1.3). With the increasing adoption of DHT by the 
population, patients will play a bigger role in the health system, first through the 
amount and variety of data that patients will be collecting but most importantly by 
sharing that data with medical professionals. Though to date many people already 
use activity trackers to collect physical activity level, sleep, and heart rate, future 
activity trackers will be able to collect blood glucose levels, detect toxins, vitamins, 
or micronutrients, and perform molecular diagnostics through biosensors among 
others (Parkhey and Mohan 2019). In addition, we foresee an increasing use of 
home testing triggered in most countries by different types of COVID tests. By 
monitoring diagnostic test results sent from devices worn by patients at home, the 
clinic or general practitioner will decrease the cost and risk of cross infection while 
improving the comfort of the patient. All data collected by the patient will be either 
automatically or manually transferred into his or her Personal Medical Records 
(PMR). PMR or PHR (Personal Health Records) capture health data entered by 
individuals and provide centralized and easy-to-access information related to the 
care of those individuals (Tang et  al. 2006). Until recently, maintaining a PMR 
mostly meant copying information from one or more Electronic Medical Record 
(EMR). However, with the increasing amount of data collected by patients, there is 
now an incentive for hospitals and clinics, in addition to software vendors, to cen-
tralize that data and share it. Big players, such as Amazon and Microsoft, have 
developed such centralized PMR that can be shared with hospitals and clinics in 
some countries only. In the meantime, researchers look into more decentralized and 
traceable solutions by leveraging blockchain (Chen et al. 2019). From a medical 
professional perspective, an increasing number of tests will be performed in local 
clinics or health hubs located in malls, train stations, or in high-density living areas. 
Tests requiring more advanced technologies and skills will be performed by regional 
hospitals. On-demand, data will be integrated in a national EMR and synchronized 
with the patient’s PMR. Both will be connected to a data analysis layer that will use 
deidentified health data to provide recommendations to the patients and the medical 
professionals. Such service is, for instance, being offered by Microsoft and Amazon 
but at a local (hospital) level only. By using PMR and EMR data at a national level, 
the recommendations will gain in relevance and efficiency. Such recommendations 
will promote preventive routines and quality of life through personalized and 
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action-based digital interventions. The data analysis layer will support medical pro-
fessionals’ interventions by leveraging artificial intelligent-based decision making. 
Medical professionals’ decisions will, therefore, be seconded for safer and more 
accurate medicine. Remote interventions, such as telemedicine and surgery, will be 
leveraged to ensure that the patient is treated under the best conditions. The use of 
3D-printed drugs will be more common to deliver personalized treatment. With the 
recent commercialization and certification (e.g., FDA for the U.S.) of non-proprie-
tary 3D printers dedicated to drugs such as the FabRx M3DIMAKER, one might 
expect a high use of such techniques for very specialized treatments.

Deliberately, we did not mention some key advancements such as precision med-
icine or precision nutrition, which are without doubt shaping predictive, preventive, 
personalized, and participatory medicine (Moore 2020). We argue, however, that 
precision medicine does not really fall under the DHT category although some ser-
vices such as 23andMe leverage mobile health as a communication channel between 
the customers and the company.

Ultimately the adoption of DHT will depend on the ability of the medical sector, 
the government, and the technology companies to understand the needs of patients 
and of each other. Tech companies now have chief medical officers to identify clini-
cal needs and constraints. Governments are pushing hospitals to adopt and integrate 
their EMR while the average U.S. hospital has 16 different EMR (Sullivan and Why 
2018). Digital Health Technologies are, without doubt, disrupting medicine—but 
the journey is only at its beginning.
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Chapter 2
How Mobile Technologies Are Changing 
the Life of Physicians and Patients 
in Hospitals

Frederic Ehrler and Katherine Blondon

Abstract  The growing adoption of mHealth technology in hospitals by both 
patients and care-providers has the potential to modify in-depth the patient-provider 
relationship and to improve the quality as well as efficiency of care. However, this 
transformation must be accompanied by a clear strategy by the healthcare institu-
tions to avoid the fragmentation of the initiatives that could lead not only to a sub-
optimal experience for the patients but also to possible safety risks. Besides 
requiring to solve all the technical, regulatory and organizational problems, enter-
ing this new era will deeply transform the role and engagement of the patients in 
their journey as we progress towards a more collaborative vision of care. In this 
chapter, we present the main challenges associated with the deployment of a 
mHealth strategy at the institutional level, as well as from a care-provider and 
patient perspectives.

Keywords  mHealth · Patient Generated Health Data · Empowerment · EHR  
Chronic diseases · Cybersecurity

2.1 � Introduction

Since the emergence of the first mobile devices in the form of personal digital assis-
tants (PDAs), people involved in healthcare have been interested in using mobile 
devices to improve healthcare processes, quality and efficiency. Dealing with one’s 
health is a time- and energy-consuming task, which occupies one’s attention con-
tinuously (MacGregor and Wathen 2014). This is especially true for patients with 
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chronic conditions, who can spend up to 2 hours each day dealing with health issues 
(Jowsey et al. 2012). Mobile devices, which are kept within reach throughout the 
day, offer a privileged channel to reach people at any times (Vo et al. 2019). It also 
offers new opportunities to reach individuals of lower socio-economic status, who 
have more prevalent chronic diseases (Lowry et al. 1996). The healthcare sector has 
witnessed the rapid emergence of many new tools involving mobile technologies to 
support health care professionals with many important tasks (Ventola 2014a; Mosa 
et al. 2012), such as: information and time management; health record access and 
updates; communication and consulting; information gathering and researching ref-
erences. Mobile tools have also demonstrated the potential to support patients’ self-
management for many chronic diseases such as hypertension, diabetes and cancer 
(Lalloo et al. 2017). New medical apps are created and launched daily and contrib-
ute in many ways to transform the way patients and providers deal with the health-
care continuum (Smahel et  al. 2019). The World Health Organization global 
observatory of eHealth defines mobile health (mHealth) as “medical and public 
health practice supported by mobile devices, such as mobile phones, patient moni-
toring devices, Personal Digital Assistants (PDAs), and other wireless devices”. 
MHealth includes different subcategories such as telemedicine that has become 
well-established amid COVID-19 restrictions and defined as “the communication or 
consultation between health professionals about patients using the voice, text, data, 
imaging, or video functions of a mobile device. But it can be applied to other situa-
tions; the management of chronic diseases of patients living at home is one example”.

In hospital settings, mobile technologies offer numerous opportunities for 
change: they can modify the way clinicians work and practice medicine (Ventola 
2014b), empower patients, and improve patient-provider communication (Lu et al. 
2018; Krohn 2015). This evolution started with the digitalization of the clinical 
documentation process that was initially supported by paper records. These records 
were initially designed to fulfill billing and legal requirements. The evolution toward 
the first electronic medical records systems often kept the same approach rather than 
being designed to facilitate and optimize clinician workflows (Evans 2016). As a 
result, the clinicians were forced to adapt their workflow to the electronic tools 
rather than having the tools adapted to their needs (Sieck et  al. 2020). With the 
advent of mobile technologies and the rise of user-centered approach, the paradigm 
is slowly changing in the attempt to provide personalized tools adapted to the real 
need of the providers, rather than being considered as a support for administrative 
processes (Saparamadu et al. 2021; Molina-Recio et al. 2020; Bruce et al. 2020). 
These new tools provide ways for health professionals to more easily access their 
patients’ data, as well as to explore larger databases to access the latest practice 
guidelines. Furthermore, mobile technology has deeply changed the role of patients 
in the care process and its relationship with healthcare professionals. It bolsters 
patient empowerment by enabling patients to be informed about their diseases, 
guided, prompted and reminded about self-management tasks, and helps keep track 
of their health. The evolution of this trend has led to the rise of several channels of 
communication between patients and providers, such as patient portals, emails or 
texting, all of which are more readily accessible with mobile technologies.
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Even if mHealth is full of promises, the deployment of a sound mobile ecosys-
tem improving providers and patients’ collaboration at the level of a healthcare 
institution is not as simple as it seems. Allowing the introduction of these tools in 
the hospital without a proper strategy can led to a fragmented landscape and engen-
ders problematic situations. For instance, providers may need to carry several 
devices, use unreliable apps, jeopardize data security or adopt heterogeneous prac-
tices. It could also lead care provider to develop the feeling of being overwhelmed 
by patient-generated data as well as losing control of the patient trajectory. To avoid 
these drawbacks, the challenges of mHealth implementation must be anticipated 
from the provider’s and patients’ perspectives to fully benefit from its potential.

2.2 � At An Institutional Level

2.2.1 � Enabling the Use of Hospital Health Data

To construct a rich ecosystem of apps for care-providers and patients, a clinical 
information system (CIS) must meet several requirements. CIS must support the 
deployment of multiple client applications without jeopardizing the integrity of the 
data. An important ingredient of success is to choose a software architecture that 
enables the easy creation of multiple apps that can be used to support specific user 
experiences, while limiting redundancies and facilitating reutilization (Fig. 2.1). An 
adapted architecture should favor the exposure of numerous and product-agnostic 
application programming interfaces (API) that allow an app to easily combine dif-
ferent functionalities. Optimally, these interfaces must comply with the data models 
proposed by existing standards such as Fast Healthcare Interoperability Resources 
(FHIR) or Integrating the Healthcare Enterprise (IHE) profiles to ensure the com-
patibility with other systems in the care network (Bent et al. 2021). Another recom-
mendation is to minimize the amount of business logic contained in the front-end to 
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Fig. 2.1  Schematic diagram of clinical informations system architecture
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ensure coherent behavior in each application using the back-end services. Finally, 
relying on numerous small-sized, loosely coupled business services should be privi-
leged, as it is a good way to ensure a smooth lifecycle of the whole system. It allows 
the modification of a component with limited impact on the rest of the system, and 
therefore increases the system’s agility.

Unfortunately, many of the actual CIS architectures are often monolithic or rely 
on an enterprise service bus and are maladapted to provide the required flexibility to 
support a rich application ecosystem leading to additional challenges for the deploy-
ment of mobile apps for care-providers.

2.2.2 � Security, Trust and Legal Aspects

Apps are subject to many regulations constraining to ensure privacy, confidentiality, 
and security of the collected data (Martínez-Pérez et al. 2015). Mobile technologies 
can collect a lot of data unobtrusively, which is a blessing if it can avoid having to 
transcribe data in the app (e.g., syncing blood glucose results rather than having to 
enter them one by one manually). This ease of data collection also triggers several 
privacy concerns, however. Some of these data may lead to considerable unexpected 
consequences, such as when the Internet service Strava allowed its users’ geo-
localization data to be publicly available, causing havoc when app users from the 
military revealed patrol routes and bases. Although users should be attentive to how 
their data is used, this example also illustrates how many do not consider this point 
when choosing which app to use.

Concerns about trust and security issues can be a barrier for using mobile tech-
nologies, especially among older patients (Wilson et al. 2021). Some patients are 
very sensitive about their privacy and are reluctant to let private companies use their 
health data, even sometimes with public authorities (Trinidad et  al. 2020; van 
Haasteren et al. 2019). This tendency was observed during the COVID pandemic, 
where people were very suspicious about symptom-tracking apps as well as contact-
tracing apps (Dowthwaite et al. 2021; Simon and Rieder 2021). For apps recom-
mended by or developed within a health institution, all the guarantees must be given 
to ensure the trust of the patient, because it reflects the trust the patient is placing in 
the institution (van Haasteren et al. 2019). It implies defining a clear disclaimer, 
which specifies who has access to the data, and for which duration. Ensuring a 
secured storage of the patient data usually prevents the use of a cloud solution if the 
storage is not done on the same country as the service provider.

Also, a strong guarantee must be given regarding access to the data. An account 
must be created for each patient to ensure that they will be the only one to have access 
to their personal data. Connecting to these accounts rely usually on dual-factor iden-
tification such as a password and an SMS challenge and must be created through a 
process that validates the patient’s identity. Managing these accounts is a heavy 
responsibility for the healthcare institution and requires having dedicated human 
resources that can deal with the enrollment process and offer support when required.
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Authentication is an additional challenge when designing mobile applications 
for healthcare. Whereas desktops or mobile computers that access sensitive data are 
physical machine that are generally dedicated for clinical use, mobile devices are 
portable, and can be easily stolen, lost or left in a public area (Martínez-Pérez et al. 
2015; Medical and Bromwich 2016). The problem is not so much what happens to 
the device itself, but the concern about potential access to patient data that the insti-
tution needs to keep confidential. Costly (though not yet foolproof) strategies had to 
be put into place when deploying tablets for patients in our institution, to avoid theft 
and “misplaced” accessories. Although mobile devices in hospital settings may be 
shared in a care team to reduce cost, exploitation costs are even lower with a “bring 
your own device” (BYOD) strategy, which is increasingly favored currently (Wani 
et al. 2020). A BYOD strategy reduces the cost of maintenance of device as well as 
the need for the clinicians to carry multiple devices. Owners of a device will also 
take better care of the device and its accessories (charger and cable, for example), 
than if it is considered an institutional device. The constraint of this BYOD strategy 
is the necessity to ensure sufficiently strong security (Al Ayubi et al. 2016). If insti-
tutional devices can be easily enrolled on a mobile device management system 
(MDM) that will control the access and limit its connection to a private and secure 
network, a BYOD, on the other hand, is, by definition, completely open and con-
nected to public networks. It is therefore necessary to put several safeguards into 
place. First, an appropriate authentication strategy must be implemented to ensure a 
secure connection. However, if the connection process is too cumbersome, or is 
required repeatedly throughout the day with short time-outs, user adoption will be 
low. Also, institutional liabilities imply that no sensitive data can be stored on the 
device, in case the device is stolen. Finally, since apps are accessible from an exter-
nal network, all security breaches must be corrected. For this purpose, an external 
audit by cybersecurity specialists must be performed.

2.3 � At the Provider’s Level

2.3.1 � Transforming the Way to Deal with EHR

Patient records have undergone a transformation from paper to virtual files stored in 
large clinical information systems. In the beginning, these digital systems barely 
contained numeric versions of paper documents; rapidly, however, the collection of 
information has become structured, allowing a better use of the data. New technolo-
gies for imaging and wider access to patient information over a patient’s lifetime, 
rather than being limited to the last hospital stay, have led to huge increases in the 
amount of data available for each patient. Modern medicine seeks to manage these 
large amounts of data with continuous information flow: providers need easily 
available tools with decision support capabilities, analytics and visualization of 
these data, as well as communication channels to exchange information about these 
data between healthcare professionals.

2  How Mobile Technologies Are Changing the Life of Physicians and Patients…



18

Unfortunately, despite the numerous advantages of EHR digitalization, one of 
the drawbacks of this transformation was the loss of mobility that previously existed 
with paper as well as an increased time spent on documentation (Ammenwerth and 
Spötl 2009). Indeed, whereas clinicians could carry their paper files with them, 
consulting electronic medical records requires a computer. Requirements for docu-
mentation have increased considerably, and has become a time-consuming process 
with suboptimal tools (e.g. dispersed data to review, difficulty of documenting in 
real time or at the point of care), that can sometimes lead to provider exhaustion or 
even burn out (Tajirian et al. 2020). Obviously, accessibility was improved with the 
apparition of laptops and computers on wheels, but remained limited in some situa-
tions, such as for protective isolation rooms for immunocompromised patients, 
where such equipment is prohibited (Jen et al. 2016).

Mobile devices provide a ubiquitous access to electronic medical records and 
can be useful to support bedside documentation. Instead of jotting notes down on a 
piece of paper, bedside documentation on a mobile device can help avoid transcrip-
tion errors, additional delays in entering clinical data such as vital signs, and 
decrease the number of interruptions in clinical documentation, which can also lead 
to errors (Sowan et al. 2019).

Besides improving the documentation process, mobile devices provide a new 
opportunity to combine the benefits of accessibility and digital capabilities, such as 
quick searches for just-in-time information, checking emails, and text messaging.

2.3.2 � From Standardized to Personalized System

Operating the transition from system running on desktop computer toward mobility 
is not only a question of having an adapted system architecture. Indeed, clinical 
information system (CIS) interfaces are designed to be run on computer screens and 
cannot be visualized without change on a mobile screen (Alnanih and Ormandjieva 
2016; Huang 2009). In traditional CIS interfaces, it is not uncommon that a lot of 
information is displayed on the screen often leading to some problems (Nijor et al. 
2020). These problems are further emphasized on the small size of mobile screens 
limiting the amount of information presented. The design of smartphone interface 
requires careful consideration of what information to focus on for a user in each 
context. Therefore, traditional CIS interfaces can apply a one-system-for-all system 
on computers, whereas mobile device designs need to tailor the interface for each 
type of user. Another difference between desktop computer and mobile device is the 
way one interacts with the device. With desktop computers, users interact through a 
keyboard and mouse, whereas mobile devices rely on a tactile gesture. Consequently, 
the interface must be redesigned, given this constraint. It is much more time con-
suming and complex to enter free text on a mobile device, and therefore predefined 
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options must be favored. A study by Ehrler et al. compared data entry of vital signs 
with different interfaces, and found differences in precision and efficiency. Various 
types of errors occurred, which ranged from 0.7% for the most reliable design to 
18.5% for the least reliable one (Ehrler et  al. 2015). Choosing an inappropriate 
interaction widget not only reduces the capacity of care-providers to interact effi-
ciently with the system, it also increases the risk of error. User-centered design with 
close collaboration with the various types of care-provider users is a key process in 
understanding and supporting the different needs and workflows for mobile devices 
(Johnson et al. 2005). For example, doctors need to see the vital signs in a patient’s 
chart, whereas the nurses need to have a reliable way to enter these types of data. 
Likewise, doctors need to be able prescribe tests and treatments, while nurses need 
to document what medications are administered, and so on. Addressing the needs in 
a way that is specific to each type of user is a key process for better usability and 
satisfaction, while keeping the tool simple and efficient. Users need to understand 
that the mobile CIS is not meant to address all a user’s needs but should rather be 
complementary to the desktop CIS.

For example, the “Bedside” app in our institution (Fig. 2.2) was designed for 
nurses to document short, structured data such as vital signs at the bedside, whereas 
they preferred to type the longer daily progress notes at a desktop in the nurses’ 
office (Ehrler et  al. 2018a). This demonstrates the high importance of designing 
application with user at the center to ensure adoption and to focus on features 
adapted for mobile context. If the users develop the need for writing longer progress 
notes away from their computer, we will then need to consider the right type of 
device (computer on wheels vs smartphone vs tablet), the right sensor (typing vs 
voice recognition) and type of support (suggested nursing targets, based on vitals, 
labs or physician-entered medical problems).

Switching from a computer screen to a mobile device not only enables better 
mobility but also unleashes new capabilities with the use of sensors that are inte-
grated in mobile device. One of the most useful sensors is the camera: for example, 
scanning the patient bracelets to open a chart ensures that a user is accessing the 
right chart. Besides reducing the risk of selecting the wrong chart, these sensors can 
help improve care-provider efficiency. Using the camera also facilitates documenta-
tion and data entry. Documenting the follow-up of wounds (Biagioni et al. 2021) 
become more convenient when the camera is in one’s pocket, for instance, espe-
cially if the picture taken is directly imported in the patient’s chart. However, inte-
grating sensor’s data in healthcare process must be done with particular care. Indeed, 
relying on devices’ sensors often open security breaches (Kumar and Lee 2011). 
Data is often transferred through cloud solutions that have their own policies regard-
ing data management. Therefore, it is important to verify and guarantee that the 
software chosen to support the care workflow does not send data outside of the 
desired secured channel.
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Fig. 2.2  Screenshot of the 
Bedside mobility app. The 
screens shows all the tasks 
to be done by a nurses 
during her shift

2.3.3 � Communication and Notification

Besides all the functionalities offered by mobile devices, its core purpose is to be 
used as a communication channel. Care-providers have long been equipped with 
pagers and feature phones, which require almost synchronous connections. 
Information exchange is of high importance in healthcare teams, and texting and 
chats have become common nowadays (Vermeir et al. 2015; Pourmand et al. 2018). 
This channel of communication has been demonstrated to be especially useful in the 
context of emergency department where clinicians loose often precious time to find 
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their colleague to exchange information (Nittas et al. 2019). Again, security con-
straints need to be considered for these types of communication, which is why many 
companies have appeared with secure channels for healthcare (Nikolic et al. 2018). 
Direct access between the chat system and the electronic chart is recommended, as 
clinicians often send images of a scan or ECG to their colleagues for a second opin-
ion. E-mails are also widely used, but can also easily lead to overload, since alert 
systems may also use this channel. Several papers have reported how excessive 
emails from EHRs and patients can contribute to provider burnout (Gardner et al. 
2019; Armstrong 2017).

Besides benefits in communication, mobile devices can also help care-providers 
be more aware of data arriving in the electronic medical system. Smartphones allow 
alerts to be directed to one or two individuals, rather than a pop-up for all who 
access a given patient’s chart. For example, a highly abnormal lab results may go 
unnoticed unless an alert is triggered in the medical chart (Kuperman et al. 1999; 
Slovis et al. 2017). Notifications and alerts have much greater potential with smart-
phones, with a lower risk of alert fatigue. Alert fatigue is a well described phenom-
enon where the user becomes less responsive to alerts when alerts are too numerous 
or overwhelming (Backman et al. 2017). Mobile devices allow alerts to be targeted 
to an individual, therefore decreasing the risk of alert fatigue. For example. 
Designing alert systems require careful consideration of user needs, especially for 
the choice of thresholds that trigger alerts. For example, oncologists will have many 
patients with very low white blood cell count due to chemotherapies, and may there-
fore not want to have that alert, whereas this same result in a patient elsewhere in the 
hospital may lead to many new considerations for her care.

2.4 � At the Patient’s Level

2.4.1 � Patient Empowerment

Digital technologies, and especially mobile devices, have revolutionized the way 
patients get involved in their care (Marcolino et al. 2018). Many digital interven-
tions empower the patient both through better access to information (Crondahl and 
Eklund 2016) and by the ability to act during the care trajectory. Apps can provide 
information about a disease, helping users to understand practical aspects in daily 
management (Anshari et al. 2021). For example, after a recent diagnosis of diabe-
tes, a patient will need help to interpret the blood glucose results, or to decide how 
much insulin is needed (Gómez-Velasco et al. 2019). An app can provide guidance 
about food choices, or about what parameters should be tracked. It can help record 
data, and provide reminders for medications or stimulate the user to exercise with 
motivational messages. The patient is empowered for better self-management. The 
latter improve patients’ autonomy and freedom of choice, for instance by allowing 
them to make their appointments themselves, to choose their menus during 
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hospitalization and to monitor certain parameters, including reporting the results 
directly to the providers. Finally, digital technologies enable better communication 
between patients and their healthcare team. Mobile apps provide a ubiquitous tool 
to support patients all along their journey, helping them to learn about their disease, 
to understand different aspects for management, to suggesting what, when and how 
to collect relevant data, with reminders and prompts for medication and other 
health-related tasks.

Patient empowerment has been associated with improved health outcomes and 
lower adverse events (Powers and Bendall 2003; Hibbard and Greene 2013). 
Patients can participate in their care during a hospital stay in many ways: they can 
keep track of their daily progress (vitals, lab results, etc.), discuss daily goals with 
the care team, or be aware of the planned activities of the day. Knowing what medi-
cations have been prescribed and why can help them monitor the drugs they receive 
(Graffigna et al. 2017) (Fig. 2.3).

They can play a role in detecting possible side effects, adverse events and may 
even prevent medication, shared daily goals and higher awareness of scheduled 
events each day allow patients to organize their day around these (family visits, 
walks, etc.)

The ever-growing number of mHealth applications available on the market 
makes the choice difficult for patients. As mentioned above, patients often receive 
little guidance about apps from their care-providers and do not have the time to keep 
up with the rapidly changing app market. Patients find themselves in front of a huge 
choice of applications, not knowing what criteria to use to find a “good” app: how 
do they judge the quality of medical information, and can they tell whether their 
personal data will be used for a commercial purpose by the app company?

Despite the wide selection of apps, a gap may remain for patients with chronic 
diseases. Indeed, many health problems require a multi-pronged approach for self-
management. For example, individuals with coronary heart disease need to improve 
their medication adherence, eat more healthily, exercise regularly and for smokers, 
to quit smoking. There are many medication management apps (Pérez-Jover et al. 
2019; Park et  al. 2019), as well as many diet and exercise apps. Yet how many 
address all these issues in a single app? Habit changing apps are starting to integrate 
goal setting to help individualize the functionalities for each user. Other approaches 
such as gamification have also increasingly applied for health and self-management 
goals (Ehrler et al. 2018b) (Fig. 2.4).

There are several main challenges that result from having to use several apps to 
manage one’s health. If a patient must use one app for medications, another to track 
his blood pressure, and a third to exercise regularly, the dispersed information 
makes it difficult for the user to get an overall picture of their health and self-
management status.

Furthermore, all these applications often possess their own authentication sys-
tem and do not communicate easily with each other. So, one app may need the same 
data as another, and the user can either enter it twice, or else not be able to benefit 
fully from the second app with missing data. These data in silos are also barriers to 
sharing data with the user’s healthcare team. All these interoperability issues also 

F. Ehrler and K. Blondon



23

Fig. 2.3  Screenshot of the 
swiss-Meds homescreen 
allowing the patients to 
validate her intake

lead to limitations in implementing artificial intelligence tools to help guide the 
user, either analyzing whether results are normal, or predicting future actions that 
need to be taken.

Finally, apps are generally not adapted to help individuals with more than one 
chronic disease, when there are multiple self-management needs. Besides 
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Fig. 2.4  Home screen of 
the gamified Swiss-Meds 
apps. The screen present a 
path were the user 
progresses each time she 
report accurately her 
medication intake

potentially needing several apps to help manage coronary heart disease (for medica-
tion, diet, exercise, blood pressure monitoring, etc.) the patient may also have other 
diseases such as diabetes, renal failure and so on. Each app will address one or two 
health issues, and may do it very well, but not in coordination with the rest of the 
patient’s health concerns. Ideally, an interoperable and coordinated app in an eco-
system would be able to avoid having to enter data twice, as well as prevent poten-
tial contradictory recommendations from different apps. For example, the exercise 
app may recommend that the patient stay hydrated, while his kidney disease app 
may suggest a water restriction strategy. Complex health issues and multiple chronic 
diseases are unfortunately not uncommon: although improving interoperability 
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issues between health apps will address some aspects, it is only a fully integrated 
system (or ecosystem) that will allow the patient to receive personalized, contextu-
alized and safe care.

2.4.2 � Challenges of Long-term Engagement 
with Health Technologies

After receiving a diagnosis of a chronic disease like diabetes, patients seek support, 
and need to learn how to manage their disease. They may test websites and apps, 
and if they like a tool and find it helpful, will use it for a while. When data entry is 
tedious, or the decision aids are no longer useful because the patient now know 
more about the disease, these tools are no longer used (Middleton et al. 2016). In 
other words, the perceived effort outweighs the perceived benefit of the tool. This 
relationship has been clearly demonstrated through the technology acceptance 
model that shows clearly the link between intention to use and perceived usefulness 
and ease of use (Holden and Karsh 2010). And this is the challenge in designing 
support tools for the long-term: patients’ needs for support change over time. Rather 
than simply not using a tool any longer, we should start examining how the patient’s 
needs change over time to provide an adaptive tool. It should be able to have remind-
ers when it isn’t used but should also be able to “move to the next level of use” and 
stop providing the “basic” information that the patient no longer needs, and move to 
more subtle adjustments of self-management, that are adapted to the user’s context. 
For example, a patient with experience in diabetes self-management will have mas-
tered how her body responds to physical activity and travel and can adapt her insulin 
doses. She does not need further help to calculate insulin doses and may in fact not 
even be documenting all the ingested foods and glucose values. But the day she 
decides to hike in the Himalayas or go deep sea diving, the app should detect a 
change in a new parameter (altitude) and pop back into action, with explanations of 
how this context will affect her metabolism.

2.4.3 � Communicating in Both Way

Patient portals have become widespread to help provide support for patients, both 
during hospital stays and for out-patients (Baldwin et  al. 2017). Portals allow 
patients to communicate with their providers through emails or texts. They can eas-
ily be accessed through smartphones and websites (Fig. 2.5).

Electronic patient records, which are records that belong to the patient, and that 
can be shared with whomever they choose, are also being implemented in 
Switzerland for instance. They provide a way for patients to access their medical 
reports and prescriptions, and in some cases, will allow inter-professional care 
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Fig. 2.5  Home screen of 
the Concerto app, the 
patient portal of the 
University Hospitals of 
Geneva, allowing to 
interact directly with the 
clinical information system

teams to document shared progress notes (e.g., between a doctor and the home 
nurse team). All these shared records help to agree on care objectives: for example, 
which parameters should be monitored for M. Smith (e.g., weight)? What is his 
normal weight range (e.g. 65 ±2 kg) and what action needs to be undertaken outside 
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of that range? Since M. Smith controls the access to his chart, he can also give his 
wife and daughter access, allowing them to be involved in his care.

Designing portals and electronic patient records for patients on their smartphones 
lead to the same challenges as for care-providers for considerations about screen 
size, or usability of smartphone for data entry, for example. Additional consider-
ations are health literacy and numeracy, as well as readability (e.g. font size), and 
the digital divide. Some individuals may not have access to mobile devices or may 
not have data plans; others may find apps too difficult to see or may not understand 
how to use it easily. Yet interestingly, access to portals from smartphones is allowing 
minorities to be connected and more involved in their own care. Chat may also 
facilitates asynchronous communication through text messages. And finally, for 
healthcare use, some individuals may be worried about how their data may be mis-
used by companies or insurances, for example.

The deployment of patient portals along with the widespread adoption of smart-
phones, tracking devices and connected devices enable the capability for the patients 
to collect vast amounts of data about their health. PGHD include several types of 
data. Some require patient inputs such as clinical parameters (e.g., blood pressure or 
glucose measurements), or patient-reported outcomes (typically surveys or ques-
tionnaires). In fact, the definition of patient-generated health data by the Office of 
the National Coordinator for Health Information Technology (ONC) (Shapiro et al. 
2012) also includes health data collected from family members or other caregivers. 
Healthcare providers may encourage their patients to collect and share their health 
data to help manage a medical issue. They may send questionnaires before or after 
a medical visit or may want to help patients with their self-management (Nittas 
et al. 2019).

Since PGHD can potentially generate vast amounts of data, providers worry 
about receiving too much data from their patients, and not having time to process or 
manage these data (Lavallee et al. 2020). This leads to concerns about subsequent 
liability for abnormal findings that may be missed. One approach to address this 
concern is to implement analytical tools for PGHD that can support health profes-
sionals’ work by for instance creating alerts if anomalies are detected. Integration of 
PGHD in electronic health records or in larger databases requires addressing 
interoperability issues from the various sources of data (Tiase et  al. 2019). One 
approach to help detect abnormal findings would then be to use artificial intelli-
gence analyses of these large dataset. Although the interest in using the information 
from PGHD to improve healthcare is growing rapidly, we will not discuss this fur-
ther as it is beyond the scope of this chapter.

2.4.4 � Assessing Apps for Quality and Safety: Use Case

Mobile app markets for patients have grown exponentially over the past decade, yet 
it is still difficult for patients to know whether an app is trustworthy in terms of 
medical advice, whether the decision support aids are sound and up to date, and 
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how their data is stored or used by the app company. In fact, mobile apps are 
appearing so fast, that patients sometimes know more about available apps than 
their care-providers do (Klasnja et al. 2015). Providers do not have the time nor the 
expertise to be able to provide a thorough assessments of apps. Several initiatives 
to assess apps for quality and safety of use in healthcare, because these are not 
evaluated by the app stores (Agarwal et al. 2021; Boudreaux et al. 2014). These 
initiatives are difficult to maintain over time. Furthermore, legal aspects and other 
criteria may differ from one country to another, so the analyses only have a 
local value.

In 2019, our institution created a mHealth/consumer health committee with rep-
resentatives of physicians, nurses, patients, legal services, cybersecurity specialist 
and informatics. The aim of this committee is to evaluate apps and connected 
devices (blood pressure device with app and/or website to visualize data for exam-
ple) for patients and providers, according to usability, confidentiality, quality and 
safety criteria. This committee also provides guidance and support for apps that are 
developed within our institution. With the rapidly changing landscape of apps, all 
assessments are limited to a year, or until the next major change of an app. Legal 
constraints also change rapidly in this field, and therefore require a yearly revision 
of the assessment criteria. Regular, yearly reassessments of previously approved 
apps are also needed to ensure the validity of the results.

Community-based healthcare also needs to have this type of expertise available 
for patients and private practices. While sharing the results of our institution’s com-
mittee can partially address this need, creating a larger structure to handle regional 
needs or even a country’s needs, leads to other difficulties. Country boundaries are 
imposed with the legal criteria for mobile apps that differ from one country to 
another. Other issues to consider are sources of funding (e.g., should it be institu-
tional, governmental or by the app developers), ensuring reassessments of all the 
apps to ensure that new versions of the app remain compatible with the assessment 
criteria. Several different models have been tested internationally (e.g. Appscript), 
with several lists of criteria used for assessment e.g., (examples available at the 
European Hub).

2.5 � Conclusion

There is no doubt that mobile technologies are changing the way patients manage 
their health and the way providers take care of their patients. In this currently 
increasingly large market of apps for health, we underline the importance for health 
institutions to consider not only the potential benefits but also to anticipate some of 
the challenges with the implementation of mHealth. Mobile apps provide clinicians 
with easy, ubiquitous access to patient data and to resources to guide patient man-
agement; it can also play a role for patient safety with targeted alerts and improve 
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patient care through facilitated documentation. Yet implementing such solutions in 
an institution need prior considerations of cybersecurity, legal constraints, develop-
ment capabilities and cost.

While patients have much to gain with mHealth, individuals with chronic dis-
eases, especially multiple disease, may not yet find the perfect support tools: despite 
advances with sensors, and connected devices, several apps may be needed to address 
the various self-management tasks, leading to fragmented data in different systems 
with low interoperability. This makes it difficult for the user to have an overview of 
their health and limits the possibility of using artificial intelligence tools for now. 
The vast amount of data generated and gathered by patients provides an opportunity 
to improve healthcare but raises concerns about accountability and liability for the 
institution that integrates these large data. Current approaches include pattern recog-
nition and screening tools with artificial intelligence-based analysis methods.

Both patients and providers need guidance about which apps are reliable, trust-
worthy, and respect privacy and legal constraints. Some institutions and interna-
tional structures have arisen to provide this service, using different assessment 
criteria. Although country laws limit the extent of this collaboration, shared findings 
can help improve the effectiveness of these app reviews.

Besides all the organizational, regulatory and technological aspects, one of the 
most important challenges ahead is certainly the way mHealth will transform the 
relationship between the patient and the care-provider. By offering an unprece-
dented access to information, a monitoring and decision-support tool, mHealth 
allows the patient to become the main actor in his own care trajectory, hopefully 
leading to a collaborative approach with more optimal patient activation.

The future of mHealth is bright and lively and emphasizes the importance of 
considering both patient and provider’s needs. Reviewing prior findings and recom-
mendations to propose amendments and modified solutions is needed to be more 
effective in moving forward; the speed of change in all areas (app markets, legal 
constraints, analytics, etc.) prohibits us from starting from scratch. We should also 
seek to improving collaborative efforts in our research to optimize the efficiency of 
the work in this field.
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Chapter 3
The Future of Telemedicine After Covid-19

Homero Rivas

Abstract  The American Telemedicine Association defines telemedicine as the 
remote delivery of healthcare services and clinical information using telecommu-
nications technology. This includes a wide array of clinical services using internet, 
wireless satellite, and telephone media. Telemedicine itself, as part of digital 
health, leverages on information and communication technologies to expand access 
to healthcare by the masses. It is not quite certain when telemedicine first started 
but during the last one hundred years, several different levels and types of tele-
medicine have been implemented in clinical practice. Those would include tele-
graphic transmission of clinical information, transmission of electrocardiograms 
sent electronically, phone calls from patients to care providers to communicate 
their symptoms or outcomes after treatment, electronic transfer of diagnostic imag-
ing, the National Aeronautics and Space Administration (NASA) utilizing tele-
medicine to monitor the health of astronauts in space, and the recent COVID-19 
pandemic and global efforts to expand access to healthcare by means of 
telemedicine.

Although information and communication technologies have dramatically 
advanced over the last 20 years, with greatly improved telemedicine platforms, a 
myriad of health-related devices in the market, innovation in neural networks, and 
artificial intelligence among others, the implementation of telemedicine in daily 
clinical practice before the COVID-19 pandemic has been very limited at best. This 
is likely due to multiple factors including reimbursement challenges, obsolete leg-
islation and state or board license limitations, lack of awareness among stakehold-
ers, and fear of privacy and security of medical information, among others. 
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Historically, the most prevalent barrier for adoption of innovative technologies has 
been the fixed mindset of care practitioners and their risk aversion towards 
innovation.

During the surge of the COVID-19 pandemic, there was a true crisis and need for 
expanded access to healthcare, which rendered telemedicine as an ideal way to 
extend care to the masses with literally no risk of infectious contagion. Suddenly, 
many of those previously described bureaucratic challenges were relaxed globally 
as reactive emergency measures were implemented to expand care. This included 
the immediate universal adoption of virtual care practices during the acute phase of 
the COVID-19 pandemic. This chapter evaluates the landscape of telemedicine 
before, during, and after the COVID-19 pandemic.

Keywords  Telemedicine · Virtual care · Licensing · COVID-19 pandemic · 
Healthcare systems · Digital health

3.1 � The Calm Before the Storm

For years, telemedicine has been implemented in all different medical specialties. It 
is estimated that up to 78% of doctors’ visits can be handled safely and effectively 
using some form of telemedicine, from a simple phone call to more sophisticated 
technology. The same is true for up to 40% of emergency room visits (American 
Telemedicine Association n.d.; Rivas 2018; Beck 2016; NHS 2018). Undoubtedly, 
there are some medical specialties that better lend themselves to the use of telemedi-
cine than others. Medical specialties such as psychiatry, endocrinology, rheumatol-
ogy, gastroenterology, and some others can be very suitable for virtual care 
provider–patient encounters, whereas others, such as any surgical specialties, have 
inherent challenges to the implementation of telemedicine practices (Cordina et al. 
2021). However, until recently, the adoption of telemedicine in most healthcare sys-
tems around the world, especially those in developed countries, has been limited 
despite all its promising benefits. In places like the U.S., legislation, licensure bar-
riers, insurance, and reimbursement challenges have been probably the most perva-
sive reasons to explain telemedicine’s limited adoption. On the other hand, during 
the last 10 years, there has been great technological innovation in all different realms 
of digital health including wearables, improved telecommunications, blockchain, 
internet of things, mobile networks in addition to the implementation of artificial 
intelligence and neural networks (Rivas 2018; Beck 2016; NHS 2018; Cordina et al. 
2021). Stakeholders of the telemedicine market have been a bit ambivalent as 
patients have always pushed the envelope and have been very welcoming of innova-
tion including telemedicine. On the other hand, care providers, third-party payers, 
and regulators have always been very risk-averse and not full proponents of the 
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universal adoption of telemedicine (Rivas 2018; Blumenthal 2020; Zenooz 2020). 
Even then, the global telemedicine market before the COVID-19 pandemic was 
estimated to be almost 50 billion U.S. dollars (Cordina et al. 2021; Krasniansky 
et al. 2021; Bestsennyy et al. 2021).

3.2 � The Perfect Storm and Its Surge

At the end of 2019, the world witnessed an epidemic that changed the way we live 
our daily lives. A true global health crisis challenged even the most prepared health-
care systems to the extreme. Due to the highly infectious nature of this epidemic and 
the inherent need for isolation practices, many patients in need had no adequate 
access to immediate health care. As telemedicine can overcome most of the physical 
barriers that resulted from the pandemic, it became immediately instrumental in the 
delivery of daily clinical practice (Cordina et  al. 2021; Krasniansky et  al. 2021; 
Bestsennyy et  al. 2021; Chwistek 2020; Hamza et  al. 2020; Hollander and Carr 
2020; Houchens and Tipirneni 2020; Keesara et al. 2020; Macedo 2020; Mehrotra 
et al. 2021; Werner and Glied 2021). Different stakeholders responded very well to 
this situation. Regulators immediately removed many of the restrictions that had 
been present for many years, allowing temporarily care providers to expand their 
access to care across states or even borders where otherwise their medical license 
would not be allowed (Keesara et al. 2020; Mehrotra et al. 2021; Werner and Glied 
2021). Insurance plans and reimbursement fee schemes adjusted to compensate for 
virtual evaluation of patients through telemedicine platforms. A clear example of 
these temporary reforms in the U.S. is the Centers for Medicare & Medicaid 
Services’ expansion of reimbursable telehealth codes for the 2021 physician fee 
schedule. All different medical specialty societies around the world immediately 
endorsed telemedicine practices and encouraged most of their associates to adopt 
them in their daily clinical practice; most importantly, they promoted research in 
telemedicine delivery and education on telemedicine. Care providers in general 
responded well by adopting telemedicine practices as much as possible. Healthcare 
systems and hospitals implemented into their electronic medical record systems 
platforms that would allow for virtual care provider–patient engagements. Innovators 
around the world invested great efforts in designing novel ways to improve current 
telemedicine platforms and to leverage in multiple other digital health technologies 
to be used in tandem. Entrepreneurs have continued to implement innovative busi-
ness models to promote telemedicine practices. Medical educators adopted telepres-
ence teaching for all their core courses, but also identified the need to include 
telemedicine as part of their medical school curriculum. Lastly, investment in digital 
health and telemedicine has skyrocketed to record the highest levels since the pan-
demic, with a growth of at least three times the level seen in 2017.
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3.3 � The Quiet After the Storm

A recent McKinsey and Company report estimated that the use of telemedicine in 
the U.S. during the early peak of the COVID-19 pandemic in April 2020 was 78 
times that in the pre-pandemic period (Bestsennyy et al. 2021). Since then, the ini-
tial spike in telemedicine use has subsided and has been maintained at around 38% 
among all medical specialties. This represents an overall 32% of office and outpa-
tient visits occurring via telehealth in April 2020 and utilization levels that have 
largely stabilized, ranging from 13% to 17% across all specialties. Consumer will-
ingness to use telemedicine services has increased accordingly from 11% pre-
pandemic to up to 76% after the pandemic despite some general concerns regarding 
information and technology security (Cordina et al. 2021; Bestsennyy et al. 2021).

Pre-pandemic clinical case mix use of telemedicine involved urgent but low-
complexity issues, e.g., colds, sore throats, urinary tract infections, rashes, etc. On 
the other hand, post-pandemic virtual care aims to include a much broader spectrum 
from preventive health, wellness programs, integrated management of chronic dis-
eases along with ongoing behavioral health therapy and others; therefore, the bur-
den of travel and opportunity costs from presential doctors’ visits could be reduced 
to a minimum. Wearable technologies—many of which were initially catered 
directly to consumers as mere instruments of wellness promotion—have morphed 
into true remote patient monitoring technologies. Their adoption continues to rise 
and, more importantly, many of them have adapted interoperability with some tele-
medicine software systems. There is still only a paucity of FDA-approved health-
related devices/wearables specific for clinical use although a myriad exists in the 
wellness market. Today, one-third of consumers are more likely to choose care pro-
viders that allow them to share data from a wearable, which in theory promotes 
more positive outcomes. However, currently, there is very little type I evidence that 
wearable devices would improve clinical outcomes.

During post-pandemic times, many governments and regulating bodies around 
the world relaxed quite dramatically many of the historically imposed restrictions 
on telemedicine (Mehrotra et al. 2021; Werner and Glied 2021). In the U.S. alone, 
state licensing limitations were temporarily removed, allowing licensed physicians 
in a single state to virtually care for patients in all U.S. states and territories. In addi-
tion, in-person, direct supervision of physician extenders was relaxed so their super-
vision by physician leaders could be done remotely through videoconference 
platforms (Mehrotra et al. 2021; Werner and Glied 2021). Many additional clinical 
problems were deemed adequate to be evaluated and managed via virtual care and 
reimbursed by either Medicare of by third-party payers. While most of these emer-
gency changes took place during the pandemic, only a few of them may be perma-
nently adopted and severe limitations, such as state licensing barriers, will prevail as 
in the pre-pandemic era. Nevertheless, such emergency measures have fueled and 
jump-started extensive adoption of telemedicine by multiple stakeholders; without 
the pandemic, this would likely not have happened.
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Investment in digital health and virtual care continues to accelerate. The total 
venture capital investment into the digital health space in the first half of 2021 was 
nearly USD 15 billion, which is more than the investment in 2020 ($14.6 billion) 
and nearly twice the investment in 2019 ($7.7 billion) (Krasniansky et  al. 2021; 
Bestsennyy et al. 2021). This investment was expected to double by the end of 2021. 
Since the pandemic, government and non-government organizations (NGOs) around 
the world have also invested significant resources in funding research related to 
telemedicine and digital health. Additionally, government, industry, and academia 
continuously promote innovators from different walks of life to create innovative 
businesses, revenue streams, and clinical models that are adaptable to the nature of 
telemedicine and digital health. This has strengthened a global ecosystem for the 
widespread introduction of telemedicine and digital health technologies.

3.4 � The Future of Telemedicine and Final Thoughts

We are still far from the end of the pandemic; even with improved vaccinations, 
therapies, and preventive health strategies, and perhaps more than ever, healthcare 
systems will rely greatly on digital health and virtual care practices going forward. 
Patient-centered strategies should be designed by multi-disciplinary teams that 
include not only stakeholders in healthcare but also others such as engineers, design-
ers, computer scientists, entrepreneurs, investors, regulators, and payers among oth-
ers. The epidemic has leveled the world and even many powerful nations have 
struggled enormously. Some countries, big and small, which have proved to be 
nimble and agile, have adopted telemedicine and virtual care-friendly practices, and 
are being more successful in prevailing over the pandemic challenges. Even for 
them, they would have hardly ever considered adopting those practices only a few 
years ago.

In many ways, we design our future, and it has become clear to most healthcare 
leaders that telemedicine is a core pillar of any future healthcare system; hence, 
strategies must be crafted to support virtual care practices. Only innovations that 
make economic sense will have universal adoption and become self-sustainable 
(Rivas 2018; Rivas 2020). Therefore, only if achievable reimbursement strategies 
are implemented can telemedicine and digital health innovations be maintained. 
Unfortunately, many seem to forget this lesson as in the case of preventive care not 
being funded, resulting in suboptimal preventive care. We hope that virtual care will 
be reimbursed universally as well as in-presence clinical care. Only then will wide-
spread adoption become a reality.

All insurance care plans, even basic ones, will include virtual care and digital 
health coverage, and even some incentives for telemedicine visitations as opposed 
to in-presence ones. These schemes would also offer lower premiums but, most 
importantly, greater patient convenience. Those programs will also include a much 
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bigger virtual care provider network compared to existing ones as consultations will 
be done across geographical or even international boundaries. Synchronous and 
asynchronous consultations will take place among patients and care providers, and 
access to personal electronic health records will be universal. Blockchain will main-
tain security and privacy of all personal health information. Technologically, better 
multi-system integration should take place, allowing diverse platforms to smoothly 
interoperate with each other, especially with personal medical record systems.

Telemedicine represents a one-quarter trillion-dollar economic opportunity that 
will only become a reality if healthcare systems, including their leaders and stake-
holders, follow this roadmap collectively, and with a common vision in mind. Many 
challenges will remain prevalent, but many have been greatly lessened by the reac-
tive response to the COVID-19 pandemic.
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Chapter 4
Introducing Computer Vision into 
Healthcare Workflows

Candelaria Mosquera, María Agustina Ricci Lara, Facundo Nahuel Díaz, 
Fernando Binder, and Sonia Elizabeth Benitez

Abstract  A wide range of methods and algorithms elaborated over decades by 
scientists from diverse fields—such as artificial intelligence, statistical learning, and 
computer vision—led to the development of automated systems that are able to 
mimic or assist health specialists in both routine and complex tasks related to medi-
cal images, such as identifying a pathological finding on a chest X-ray or contouring 
a tumor on an magnetic resonance image.

Although the high performance of these systems has been reported in an ever-
increasing number of scientific studies, their introduction into daily clinical work-
flows is still challenging. A careful design of the implementation pathway is 
imperative to achieve a successful impact for healthcare actors (physicians, patients, 
or healthcare providers, among others). This implementation takes place at the 
intersection of machine-learning engineering and medicine, which makes the 
deployment of these systems into real clinical settings an inherently multidisci-
plinary task.

In this chapter, we explore the current context by describing the main definitions, 
chief challenges, and existing solutions of each step involved in the process. Firstly, 
we illustrate how quality image datasets are key to obtaining robust models in algo-
rithm development. We then describe the role of validation studies: the evaluation of 
the ethical and legal aspects of artificial intelligence in the medical imaging field is 
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even more incipient than the technologies themselves. This assessment is key to 
devising appropriate regulatory frameworks adapted to the particular characteristics 
of these technologies in order to adequately audit the processes involved. Then, we 
discuss the integration into health informatics systems focusing on how and what 
approaches exist to walk this last mile of the introduction of computer vision into 
healthcare workflows. Finally, we summarize the current state of development and 
application of these tools and then point out some of the future directions in this area.

Keywords  Computer vision · Medical imaging · Artificial intelligence · Clinical 
implementation

4.1 � Introduction

Medical imaging is a fundamental tool in most current diagnostic processes, as it 
provides anatomical and physiological information of the different regions of the 
human body by means of minimally invasive techniques for the patient. Although 
these techniques have existed since the experimental research on X-rays by Wilhelm 
Roentgen and Nikola Tesla towards the end of the XIX century, the technological 
and computer advances that followed gave rise to a large number of acquisition 
techniques, which generate diagnostic images in greater quantity and of higher 
quality and complexity.

In turn, recent trends in precision medicine, which aims to delineate patient sub-
types according to their disease mechanisms and their particular response to thera-
pies, demand greater diagnostic precision in the analysis of medical images.

These factors lead to an increased workload on physicians interpreting and ana-
lyzing the images, who are increasingly overburdened by these tasks. This problem 
is one of the driving forces behind the application of computer vision (CV) using 
artificial intelligence (AI) in the field of medical imaging, with the ultimate goal of 
generating tools to assist and support clinical decision-making.

This chapter describes the intersection of CV and medicine, focusing on the 
deployment of CV systems into real clinical settings: we will describe the current 
context in the steps involved to achieve implementation into clinical practice, 
depicted in Fig. 4.1 (i.e., algorithm development, validation studies, and integration 
to health information systems), including the main definitions, chief challenges, and 
possible solutions.1 Finally, we explore the current situation worldwide by evaluat-
ing CV systems that are already being used at health centers in their daily workflow.

1 The analysis of these subjects is based on the book “Inteligencia artificial en imágenes médicas” 
(Mosquera et al. 2021), written by the authors in Spanish, which provides a more detailed descrip-
tion of this chapter’s content.
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Fig. 4.1  The process of introducing computer vision into healthcare workflows

4.2 � Computer Vision

CV is a set of methods and algorithms that attempt to acquire, process, analyze and 
understand images of the real world, seeking to simulate human visual perception 
and understanding. CV is employed in a large number of applications, which can be 
categorized according to the type of task to be performed. The main tasks of com-
puter vision include:

	1.	 Image classification: assigning a single label to an image. For example, classi-
fying whether a chest X-ray has pathological findings or whether a skin lesion is 
a malignant melanoma or a benign nevus.

	2.	 Object detection: locating and classifying objects in an image, considering that 
the same image may contain multiple objects of multiple classes. In other words, 
the image is not given a unique label. An example in medical images is the detec-
tion of cells in histological images or detecting findings that may have multiple 
locations in the same image (e.g. multiple rib fractures in a chest X-ray).

	3.	 Segmentation: assigning a class to each pixel in the image. Possible classes 
include the categories of objects to be detected and, generally, also a class cor-
responding to the background. In medical images, for example, the aim is to 
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segment different anatomical structures or lesions, separating them from the 
background. There are two types of segmentation: semantic segmentation, where 
a label is assigned to each pixel of the image corresponding to one of the classes 
under consideration; and instance segmentation, where objects are detected indi-
vidually and a class label is assigned to each object.

	4.	 Others: image-generation, super-resolution, image retrieval, image reconstruc-
tion, image registration, among others.

Deep Learning (DL) took a firm foothold in CV when convolutional networks 
outperformed other methods in benchmark competitions of image-analysis. In 
2012, in the famous ImageNet competition (ILSVRC, ImageNet Large Scale Visual 
Recognition Challenge (Krizhevsky et al. 2012)), a convolutional network obtained 
an error metric on the image classification task that far surpassed previous perfor-
mances. Deep learning enabled CV to advance at an unprecedented speed, solving 
pattern recognition tasks that had previously failed to be automated (Esteva 
et al. 2021).

4.3 � Algorithm Development: a Relation Between Useful 
Datasets and Robust Models

Algorithm development in the context of CV for medical imaging can be under-
stood as the creation of an informatics tool that can process a medical image and 
generate a result of interest. The building of these tools involves many stages, start-
ing with the identification of a problem to solve, the construction of image datasets, 
the use of this dataset to train AI models, and the evaluation of their performance. 
Finally, if the intention is to deploy the algorithm into clinical practice, validation 
studies that assess AI performance in a context closer to the real world should be 
performed, as well as integration into healthcare workflows. These later steps are 
covered in the following sections.

The first step when starting an AI project should be an extensive analysis of the 
current state of the art on the topic, to guide the definition of the project’s scope and 
objectives, focusing on clinically relevant applications by identifying bottlenecks 
and promising methodologies to define the scope and final application of the devel-
opment. The feasibility of a project depends largely on the availability of a useful 
image dataset.

4.3.1 � Preparing Image Datasets

Before medical images can be used for the development of an AI algorithm, certain 
steps need to be taken. An initial requirement is typically the approval from the local 
ethical committee and the design of data collection strategies that address 
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deidentification to comply with data privacy regulations. Most health care systems 
are not adequately prepared to collect large amounts of medical images, as medical 
data is often stored in disparate silos (Esteva et al. 2021).

Furthermore, adequate curation, analysis, and labeling of images are critical to 
achieving high-impact robust algorithms. Adequate clinical image data for the train-
ing and testing of algorithms implies both a sufficient number and an acceptable 
quality of images and annotations, and this is considered a chief obstacle. Although 
methods that can take advantage of limited data are now being explored by the 
research community (i.e., semi-supervised or weakly-supervised techniques), the 
widely adopted fully supervised AI methods still require images to be associated 
with a ground-truth diagnosis (Willemink et  al. 2020). This ground-truth can be 
annotated through automatic methods (such as parsing of radiology reports) or 
expert review, and it is task-dependent: it ranges from assigning a class or category 
for the whole image (classification) to delimiting a bounding box (localization or 
object detection) or performing a manual delineation on the region of interest (seg-
mentation). In the context of radiological screening, these three tasks can usually be 
different solutions for the same problem, differing in the level of visual interpret-
ability obtained and the annotation effort implied in building a dataset. In particular, 
the detection of a pathological finding can be learned through examples with weak 
labels, as a classification problem; or through examples with stronger labels, such as 
bounding boxes or masks. With these stronger labels, explicit information of disease 
localization is provided to the model, so similar screening performance could be 
achieved with a smaller dataset size for training. However, the annotation effort per 
image involved in the preparation of a dataset also increases as the label strength 
increases. A usual challenge for health AI teams when addressing the automated 
detection of radiological findings is dealing with the trade-off between label quality 
and feasibility considerations (as better labels require more resources), to determine 
an optimal dataset size. In the medical context, the need for specialized healthcare 
professionals for data curation and the implications of using sensitive and confiden-
tial information in terms of security and privacy are primary obstacles in dataset 
building.

To reduce the costs associated with collecting and labeling data, developers can 
apply transfer learning—in which an algorithm is first trained on a large and unre-
lated dataset (e.g., ImageNet) and then fine-tuned on a dataset of interest (e.g. medi-
cal)—, or techniques to generate synthetic data, such as data augmentation and 
generative adversarial networks (GANs). Recently, methodological alternatives 
have been explored by the research community, such as weakly-supervised learn-
ing —in which soft labels are used to train more complex tasks—, self-supervised 
learning —in which implicit labels are extracted from data—, or vision transform-
ers, a recent technique whose novelty is not using the widely adopted convolutional 
neural networks (Matsoukas et al. 2021).

The construction of large, high-quality, heterogeneous and reliable datasets is 
crucial for the development of robust DL models.
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4.3.2 � Training Robust Models

An important challenge when working with image data is the need for large com-
putation power. Images are high-dimensional data, as they are essentially arrays of 
hundreds to millions of coefficients called pixels (2D) or voxels (3D), which poses 
obstacles in their transmission and storage. The size of a medical image dataset is 
often between hundreds of gigabytes to terabytes, depending on the number of sam-
ples in the dataset as well as its dimensions (height, width, depth) and modality (2D 
or 3D, color or gray scales). Modern technologies for storing and accessing this data 
include cloud solutions and parallel processing. Moreover, implementing DL meth-
ods for image processing requires the computation of a large number of mathemati-
cal operations during the training phase, which is the most demanding stage in 
terms of computational resources. Many strategies have been adopted by CV 
researchers to address these issues, such as mini-batch optimization and image pre-
processing. The use of graphics processing units (GPUs) becomes crucial to train 
algorithms in reasonable time spans. This technology—a specialized processor with 
dedicated memory—allows parallel processing of operations, making the develop-
ment of AI models faster and more efficient.

Another challenge to consider when training models that are to be deployed in 
real scenarios is their generalizability: the degree to which the algorithm gives con-
sistent outputs for inputs of different distributions. The robustness of an algorithm 
is determined by assessing whether its performance level is maintained in new sam-
ples that were not used during its training. Two important phenomena could com-
promise model robustness: domain shift and bias.

Domain shift refers to a variation in the target domain (i.e., real-world data) rela-
tive to the source domain (i.e., the data employed to train the model) (Choudhary 
et  al. 2020; Subbaswamy and Saria 2019). This usually results in a decrease in 
performance, because machine learning algorithms trained with supervised learning 
assume that training samples are independent and identically distributed to the tar-
get samples. Domain shift often occurs when the two sets of data are not extracted 
from the same image population, for example when models are trained with public 
datasets but evaluated with local institutional images, as this might have different 
image acquisition equipment or protocols or a shift in patient demographic and 
epidemiological characteristics. A simple example would be a model trained for 
detecting skin cancer with public datasets, which are composed mostly of patients 
with fair skin tones, that is evaluated in a population with intermediate to dark skin 
tones. In general, training any CV model requires that the training data be represen-
tative of the data that the model will encounter in the final application.

Habitual medical behavior and the actions of humans usually have biases, often 
systematic. An algorithm that “learns” from such behaviors or decisions could 
reproduce and even amplify these biases: this is known as algorithmic bias. As pre-
viously mentioned, a model trained only with samples from Caucasian people is 
expected to perform worse in non-Caucasians, increasing existing social disparities. 
In the context of healthcare, the discrimination of models against certain individuals 
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or groups of individuals due to underdiagnosis, overdiagnosis, or disparate alloca-
tion of resources could have undesirable consequences for patients.

In the last few years, these ethical and legal concerns have been actively addressed 
by the scientific community, for example with domain adaptation techniques and 
fairness assessment methods. A research direction of particular interest is federated 
learning, which aims to learn a common, robust algorithmic model through distrib-
uted computing and model aggregation strategies so that no data are transferred 
outside a hospital or an imaging lab, alleviating issues related to data privacy, data 
security, and data access rights (Rajpurkar et al. 2022). In medical imaging, feder-
ated learning has been applied for brain segmentation (Li et al. 2019; Sheller et al. 
2018) and discovery of disease-related biomarkers (Li et  al. 2020), reporting a 
trade-off between model performance and privacy protection.

4.4 � Validation Studies: The Path from Diagnostic 
Performance to Clinical Effectiveness

Despite the growth in published works about deep learning applied to medical 
imaging diagnosis, substantial implementation challenges have hindered the trans-
lation of these models into clinical practice and limited the potential of these 
advancements (He et al. 2019).

This may be due to the gap that exists between the “algorithm development lab” 
and the final application domain: healthcare processes. Several obstacles hinder the 
implementation of AI models in real healthcare processes, including, for example, 
the domain shift between the data used for training the models and the real images 
of the healthcare setting. As explained in the previous section, if the training sam-
ples have very different data distributions from the real scenario, the generalizabil-
ity of the model will be lower than expected. The images often used in research and 
model development -high quality, preselected and reviewed images- contrast with 
those of health care processes -heterogeneous, sometimes messy, and unstructured.

Another obstacle to the implementation of CV models is the potential discrepan-
cies between the goals that guided the model development and its intended use in 
the medical field. The intended use is the objective intention determined by the team 
responsible for the tool in clinical practice, which may use it for diagnosis, screen-
ing, staging, monitoring, prediction, or prognosis. In the in silico world, concrete, 
quantitative goals are often pursued, such as error minimization and accuracy. In the 
on-site clinical world, on the other hand, the objectives also have a qualitative com-
ponent or include clinical parameters, such as the occurrence of medical events of 
interest. The flexibility and interpretability of the systems, for example, might be 
more valuable for specialists than their accuracy or classification error.

There is also a problem of adoption and adherence to behaviors, ubiquitous in 
medicine: knowing an accurate prediction or diagnosis does not necessarily imply 
that appropriate actions will be taken with that information. Thus, an algorithm may 
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correctly detect a medical finding of interest, but if the notification of this finding 
does not modify medical or patient behavior, its clinical impact could be null, 
despite its adequate diagnostic performance. Behavioral changes in physicians and 
patients are complex; the difficulties of moving from medical evidence to care prac-
tice predate AI and continue to be a huge challenge today (Emanuel and 
Wachter 2019).

Conceptually, the process of evaluating CV algorithms for medical imaging can 
be schematized as a continuum from technical laboratory evaluation, which focuses 
on the diagnostic performance of the algorithm in conditions similar to those in 
which it was trained, to routine implementation in a medical setting, which consid-
ers its utility and clinical impact. In this sense, some authors have proposed analo-
gies with the evaluation process of drugs or other health technologies: the evaluation 
instances go through a process of progressive and controlled exit from the labora-
tory until they reach routine clinical practice. At each stage of this process, different 
domains or constructs are evaluated: the initial evaluation of the technical sound-
ness of the algorithm gives way in later stages to epidemiological considerations on 
the clinical usefulness of the tool (Park and Han 2018).

4.4.1 � Ethics

Ethical considerations play a critical role in the development and implementation of 
AI algorithms in imaging; implementing intelligent, automated algorithms into 
radiology practice carries risks of systematic errors and of amplifying complex 
social problems (Raymond Geis et al. 2019). Possibly, the most important challenge 
is that our understanding of the ethical challenges of AI in health and our responses 
to them are constantly changing.

Some of the most important specific ethical challenges in this field include (Char 
et al. 2018; Pesapane et al. 2018):

•	 Concern that algorithms reflect human biases in making diagnoses, predictions, 
and/or suggesting behaviors; for example, because of biases in the data with 
which they were developed.

•	 Concerns about the goals for which algorithms are trained. Algorithms can be 
trained to avoid sanctions or regulations. There is more experience with this 
problem in non-medical areas: for example, algorithms that assist in driving 
vehicles “learn” to circumvent speed controls or technical/environmental regula-
tions. In the medical field, algorithms can be trained to pursue the economic 
interests of specific stakeholders: for example, recommending tests or referrals 
according to cost or profitability criteria, leaving patient care criteria in the back-
ground. An institution’s Clinical Decision Support System (CDSS) could serve 
economic interests over care priorities.
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•	 Accountability. For example, changes in the notion of personal responsibility, in 
the patient-physician vs. patient-health system relationship. One of the ethical 
issues under constant review is the new definition of responsibility. If an algo-
rithm’s recommendation results in harm to a patient, is the developing company 
liable? In a classic model, the medical staff has the “last word” and therefore 
bears the responsibility. That paradigm may need to be revised as the use of AI 
models in healthcare increases.

•	 Confidentiality and cybersecurity. Confidentiality has been in check since the 
emergence of electronic medical records (to the point that, to preserve patient 
confidentiality, physicians in some cases refrain from recording certain sensitive 
information in them (Char et al. 2018)). AI algorithms raise new confidentiality 
challenges because they require large amounts of data to be developed, often 
gathered from multiple sources and/or shared among multiple actors. Unlike 
other fields of AI development (as in AI-generated product recommendations), 
the development and validation of these tools for medical imaging requires 
research protocols approved by an Institutional Review Board to ensure that 
patient integrity, autonomy, and privacy are respected throughout the process.

These ethical considerations have regulatory implications, depending on the 
notion of medical device and its definition in the regulatory framework of each 
country. This chapter does not address regulatory issues directly; teams working on 
AI for medical imaging must familiarize themselves with local regulations for 
developing, testing, and deploying these tools. Today, there is a gray area in deter-
mining accountability for algorithm-driven decision-making. The authorization of 
AI systems by regulatory agencies such as the American Food and Drug 
Administration (FDA) has increased in recent years, although without the require-
ments usually demanded by these agencies before coming to the market. Unlike 
medical devices and drugs, AI systems often undergo modifications once imple-
mented, so their dynamic nature limits the issuance of full approvals (Rajpurkar 
et al. 2022; Myers 2020). The challenge then lies in defining new frameworks that 
take into account the differences between these products, as well as considering data 
security and confidentiality in light of emerging proposals for simultaneous and 
shared development between institutions.

In an attempt to address these vast and complex ethical challenges, initiatives 
have emerged to include these notions in the development, validation, and evalua-
tion processes of AI models (Spiegelhalter 2020), such as the FATML (fairness, 
accountability and transparency in machine learning) initiative and the FUTURE-AI 
(fairness, universality, traceability, usability, robustness, and explainability in artifi-
cial intelligence) recommendations (Lekadir et al. 2021). In particular, for CV sys-
tems the Radiological Society of North America (RSNA) published a Checklist for 
Artificial Intelligence in Medical Imaging (CLAIM) to outline good practices for 
researchers and developers (Mongan et al. 2020).
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4.4.2 � Interpretability and Transparency

The interpretability of AI models is defined as the ease with which a person under-
stands the relation between the variables or features extracted by a model and its 
predictions (definition adapted from (Reyes et al. 2020)). An interpretable model, 
then, is one in which a human being can understand this relation. The concept of 
interpretability is not new and became more relevant with the development of more 
complex models: as DL models have hidden layers, it is difficult for a human being 
to understand how they reach their conclusions or predictions; a problem sometimes 
described as a “black box”. Some authors point to the challenge of increasing the 
interpretability of DL models without losing predictive accuracy/diagnostic perfor-
mance, arguing that there is possibly an inverse —albeit nonlinear— relationship 
between interpretability and predictive performance (Defense Advanced Research 
Projects Agency (DARPA) 2016).

Interpretability methods —strategies to increase the interpretability of an AI 
model— are on the rise and their use is considered necessary in many fields of AI 
application. Some methods to address this issue are designed to be present from the 
model development stages. Other interpretability methods operate directly at the 
model input or output (model-agnostic) level. These methods are usually easier to 
implement in practice (Reyes et al. 2020) and include some visualization strategies 
that mark or flag image elements that were important for the prediction, for example 
by making use of class activation maps overlapped on a medical image. In later 
stages of evaluation, interpretability is linked to the usability of the tool, acceptance, 
and adoption by users, and ultimately to its clinical utility.

The term transparency in AI models refers to two concepts. On the one hand, in 
a broad scientific sense, transparency refers to the model development/training pro-
cess being accessible or auditable (Spiegelhalter 2020). A model trained with erro-
neously labeled data results in erroneous predictions or diagnoses. In this sense, 
communication about the data and methods used to train a model helps to ensure 
that its quality is controlled and possible errors are detected.

On the other hand, the term transparency refers to the degree of access to the mod-
el’s “internal” information, as opposed to the “black box” model, in which the internal 
procedures are not accessible to the user. It is possible that a transparent model may be 
more interpretable, but this is not always the case: in very complex models, providing 
extensive information or even their programming code may not solve the interpret-
ability problem (Spiegelhalter 2020). Moreover, transparency is not a prerequisite for 
interpretability, as we pointed out earlier for “model-agnostic” methods.

4.4.3 � Clinical Trials

Medicine is a field of knowledge that prioritizes empirical evidence, and random-
ized controlled clinical trials are considered the gold standard method for evaluating 
the benefit of an intervention. Randomization (the random assignment of an 
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intervention among study participants) implies that groups of patients exposed or 
not exposed to the intervention of interest are “interchangeable” (Hernán and Robins 
2019) at the time of study initiation and, broadly speaking, differences in clinical 
events between groups can be interpreted as an “effect” of the intervention. Like 
other medical interventions, AI tools for imaging should be tested by randomized 
clinical trials to generate higher-quality evidence for or against their implementa-
tion in practice. Conducting prospective validation studies and randomized con-
trolled trials that account for the efficacy of CV tools is essential to support their 
adoption (Rajpurkar et al. 2022).

It is still unclear how human performance varies when assisted by intelligent 
systems, so new study designs and evaluation metrics should be built to assess 
human-computer interactions and the impact of AI in real clinical scenarios. It is 
true that many classical diagnostic tests were historically introduced into clinical 
practice without randomized trials of their clinical impact. However, many AI 
tools do not only offer data to be judged or critically interpreted by health profes-
sionals —like classic diagnostic tests—, but also add elements of clinical judg-
ment or even suggestions for specific behaviors. Thus, AI algorithms could affect 
medical decisions more substantially than classic diagnostic tests (Angus 2020), 
further justifying their rigorous evaluation by randomized trials.

Examples in the literature of randomized clinical trials of AI are scarce at the 
time of writing this chapter. Their execution faces both the challenges inherent to 
the implementation of AI in healthcare (development of algorithms, software to 
acquire data —sometimes in real-time— and integration into health information 
systems, training of professionals, etc.), as well as general challenges of clinical 
trials (organizational, human resources and materials). In addition, there are chal-
lenges specific to the field of AI in health:

•	 As in the rest of AI research studies in health, it is difficult to choose and measure 
relevant events to compare patients exposed and not exposed to AI: many times, 
it is a challenge to transcend intermediate or process events and measure clinical 
events (outcomes) focused on the patient or overall safety (Angus 2020). For 
example, in AI used for intraoperative blood pressure monitoring (Wijnberge 
et al. 2020) it is often easier to measure intermediate events such as the number 
of times anesthesia specialists take active action on an algorithm alert than to 
measure the medium- or long-term deleterious effects of operative hypotension 
and elucidate whether the tool reduces them.

•	 So far, research study designs have focused on algorithms with fixed parameters 
(invariant, locked algorithms) already trained, and not on algorithms that actively 
learn during the development of the study. In this second case, methodological 
difficulties are added: assessing the potential impact of a tool that may have 
different effects throughout the study (as it “learns”) brings additional statistical 
and methodological challenges.

Despite these challenges, the field of randomized clinical trials of AI deserves to 
be explored; its contributions to the implementation of AI tools in healthcare are 
likely to continue growing in the coming years. In this regard, two guidelines for 
designing and reporting interventions using artificial intelligence algorithms were 
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published: SPIRIT-AI (Cruz Rivera et al. 2020) and CONSORT-AI (Liu et al. n.d.). 
These guidelines were developed by international multidisciplinary groups and 
validated by consensus using the Delphi method with volunteers from the scientific 
community. Adherence to them is not mandatory, but highly recommended, both for 
newcomers to the field and for advanced researchers.

4.5 � Integration to Health Information Systems: 
What and How

AI in medical imaging is not new. It has been particularly explored in data-driven 
disciplines, such as radiology, pathology, and ophthalmology, among others. In 
applications where images may contain clinically meaningful information some-
times imperceptible for human eyes (Rajpurkar et al. 2022; Syed and Zoga 2018), 
pattern recognition and pixel-level analysis carried out by AI models can help by 
raising alerts and capturing the attention in difficult cases for the user. Ultimately, it 
may help to deliver a better standard of care and improve cost-effectiveness (Helm 
et al. 2020). This research field has been widely explored, and even though there is 
still a long way to go before the implementation of CV systems becomes a reality 
for healthcare centers all over the world (Rajpurkar et al. 2022), there are currently 
some systems that have already been introduced into healthcare workflows. 
Technical and human-centered challenges still lie ahead. An implementable system 
implies much more than a trained and validated algorithm. In this section, we 
describe the possible applications in healthcare scenarios (what) and the steps to 
accomplish a successful implementation (how).

4.5.1 � What

Clinical AI is intended to collaborate in one (or several) of the tasks performed by 
health personnel. In the interpretation of medical images, this occurs fundamentally 
within the category of CDSS (Kohli et al. 2019). A CDSS analyzes the information 
and collaborates with the health team, but does not make the final decision.

Based on intended use, CDSS in images are divided into computer-aided detec-
tion (CADe), computer-aided diagnosis (CADx) and computer-aided triage and 
notification software [CADt] (Food and Drug Administration 2012; Firmino et al. 
2016). Nevertheless, this division is not restrictive as a tool can perform one or more 
of the above, provided that this is made explicit in the intended use.

CDSS represent a paradigm shift in current medical care. These tools are 
designed to help sift through vast amounts of digital data and suggest next steps for 
treatments, alert providers to available information they may not have seen, or spot 
potential problems such as dangerous drug interactions; often integrated into the 

C. Mosquera et al.



55

electronic medical record to streamline workflows and leverage existing data sets, 
useful in creating intuitive, easy-to-use, and effective protocols for alarms, alerts, 
and decision pathways (Sutton et al. 2020).

The acronym CAD, for computer-aided diagnosis/detection, was initially used to 
refer to computer-aided detection or diagnosis interchangeably. With the advent of recent 
advances in AI it became necessary to distinguish between CADe, CADx and CADt.

Basic research and early development for traditional CAD dates back to the 
1960s, culminating in FDA approval of a CAD for mammography in 1998 (Fujita 
2020). In 2016, this CAD was applied to 92% of screening mammograms in the 
United States (Gao et al. 2019). The traditional CAD showed a series of disadvan-
tages throughout its implementation, including high development cost, high rate of 
false positives (with its consequent increase in the rate of unnecessary biopsies), not 
always being effective in clinical evaluation, difficulties in workflow and cost-
effectiveness, and limitation to specific injuries (Land Jr et al. 2006).

The initial results in the evolution of traditional CAD, framed in the so-called 
“third wave of AI”, show promising improvements in the above-mentioned issues, 
because they use deep learning techniques (Fujita 2020). This evolution entails a 
diversification of the intended use (CADe, CADx, CADt) and poses a final unsuper-
vised step (unsupervised computer-aided detection/diagnosis [uCAD]).

A CADe is used for the detection of possible anomalies or pathologies in the 
images. The system can mark specific areas of the image to attract the attention of 
the operator/reader, but do not delve into the analysis of the etiology. This informa-
tion is received by the doctor who must analyze the study as a preliminary reading, 
who may or may not agree with the CADe report. An example of CADe is a tool for 
the detection of pulmonary nodules on chest radiographs.

A CADx adds to the detection of possible anomalies the evaluation of said find-
ing, suggesting a specific diagnosis or a series of differential diagnoses, collaborat-
ing in its characterization. Therefore, in most cases, a CADx includes the instance 
of a CADe. Following the previous example, a CADx can offer the prediction about 
the probability of malignancy in the pulmonary nodule detected by CADe. The 
association of the two tools is recorded as CADe/x.

Computer-assisted triage and reporting refers to tools intended for the selection 
and classification of patients to prioritize reading or attention, optimizing the use of 
available resources. A CADt will select those cases with potential abnormalities 
(Food and Drug Administration 2012). An example of CADt is a tool that performs 
an analysis of chest radiographs and prioritizes in the worklist those in which it 
detects potential findings.

4.5.2 � How

The real impact of medical image analysis through AI lies in the possibility of 
assisting in the resolution of unmet clinical needs. In this sense, multidisciplinary 
work is essential (Cosgriff et  al. 2020): the professionals who assist patients, 
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together with specialists in Diagnostic Imaging, know the difficulties in the diag-
nostic process and the traditional analysis of images; whereas the technical team of 
biomedical engineers, bioengineers, systems engineers, developers, and data scien-
tists know the capabilities and limitations of available technologies; and specialists 
in Health Informatics can supervise the development process with a clinical vision 
while focusing on the implementation and the end-user experience.

The integration of AI models for the analysis of medical images into healthcare 
workflows requires the involvement of several components of the health informa-
tion systems (HIS). The current software development paradigm of microservices 
determines that communication between software components is done through web 
application programming interfaces (APIs). An important step for the deployment 
of CV algorithms is their integration into an API framework. The machine learning 
community works mainly with Python as programming language and the best-
supported packages for deep learning and data science are Python-written libraries, 
such as Tensorflow (by Google) (Tensorflow 2022), Pytorch (by Facebook) (PyTorch 
2022), or Scikit Learn (Scikit-learn 2022). The translation of the finished algorithms 
to an API component is simplified by using Python API frameworks, such as Django 
(Django 2022) and Flask (Flask 2022).

To access medical images in an automated, secure, and protocolized way, soft-
ware architecture should include a connection to the Picture Archiving and 
Communication System (PACS). Some applications might need real-time access to 
images: for example, a CV tool for analysis of chest x-rays should guarantee that its 
outputs are available within minutes, because this imaging study is usually evalu-
ated by the physician in charge of emergency or hospitalized patients soon after it is 
acquired. On the contrary, the radiological report of other imaging studies such as 
mammographies or magnetic resonance studies is performed on a daily basis, where 
studies are evaluated by imaging specialists on subsequent days after acquisition. A 
CV algorithm that assists in the interpretation of such images can process studies in 
a scheduled batch at a specific hour of the day.

Several preprocessing steps should be considered for a CV algorithm to work as 
expected in a real clinical scenario. Rule-based logic must be applied before extract-
ing images from the PACS, to select studies of adequate modality (for example 
“FRONTAL AND LATERAL CHEST RADIOGRAPHY”, “CONTRAST-
ENHANCED ABDOMINAL COMPUTED TOMOGRAPHY”, etc.) and setting 
(i.e.: emergency, out-patient, or hospitalized patients). Other preprocessing steps 
characteristic of computer vision pipelines include image resizing, rescaling, or 
cropping.

An important decision is whether to deploy systems onsite in local servers, on 
cloud platforms, or use a combination of both. Health centers should perform cost 
analyses considering the volume of images that will be evaluated periodically to 
choose the best option.

To achieve successful adoption of a new CV tool by physicians, the user interface 
should be integrated into the applications they use regularly, such as the electronic 
health records, the patient’s personal health record, or the radiological information 
systems. Interface design should be user-centered and involve the final users in the 
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entire design process: from initial surveys and usability tests to auditing and moni-
toring stages of the final product (Rajpurkar et al. 2022). In this way, users get to 
know from the beginning what the system is expected to do, how it will do it, which 
of these activities may suffer changes or will be impacted by the incorporation of 
these tools, and what is expected from them in the interaction with it. The users’ 
feedback can help improve the performance of the system and is crucial to guaran-
tee its use and adoption.

Acceptance remains one of the biggest barriers to AI adoption, and users’ 
involvement in the development process is key to overcoming this obstacle. Despite 
the fact that AI intervenes in our day-to-day lives through numerous applications 
and content recommendation systems, there is still a generalized lack of trust, 
mainly due to the “black box” nature of algorithms (Helm et al. 2020; Morales et al. 
2021). Specialists can be afraid of being replaced when these tools are trained to 
solve some task in their professional environment, so concrete actions should be 
considered to encourage their engagement with these technologies, such as assertive 
communication, dedicated training, and change management. A good starting point 
is to promote a collaborative human-AI approach — in which technology “enhances 
and empowers” humans (Shneiderman and Human-centered 2021)— rather than 
the futuristic AI paradigm where computers outperform humans in certain tasks 
(Rajpurkar et al. 2022; Syed and Zoga 2018). Although it is not expected that AI 
will be able to replace experts in the near future, it is believed that those specialists 
who are not willing to adopt AI will be replaced by those who do. The incorporation 
of AI is not only aimed at reducing medical error and improving the time to diagno-
sis, but also at reducing the burden on the professional with the ultimate goal of 
bringing him or her closer to the patient (Myers 2020).

All in all, introducing CV into healthcare workflows goes far beyond algorithm 
training. Fundamental disciplines that should be involved include software develop-
ment, health informatics, user experience analysis, interoperability, infrastructure, 
and coaching, as well as monitoring of task performance and user engagement.

4.6 � Current State: Where Are We Standing?

4.6.1 � The Scientific Community

The speed at which this discipline has moved forward is closely linked to the aca-
demic work of a scientific community that is constantly growing. Mainly, this area 
is nourished by methodological contributions made in sister fields such as computer 
vision and machine learning, which are then transferred to the application in medi-
cal imaging. In these fields, we can mention important conferences such as CVPR, 
ICCV, NeurIPS, or ICML. On the other hand, the intersection is also with the medi-
cal radiology community, with major conferences organized by large institutions 
such as the Radiological Society of North America (RSNA), the European Congress 
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of Radiology (ECR), or the Society for Imaging Informatics in Medicine (SIIM), 
among others. The integration of experts from both fields allowed the emergence of 
a new scientific community dedicated to the application of machine learning in 
medical imaging, with its own conferences such as MICCAI.

Another strategy that has encouraged more professionals to become interested in 
this discipline is the organization of online competitions, which generate a competi-
tive environment through the awarding of prizes and rankings for winners and par-
ticipants. The best known are the annual MICCAI competitions or those that take 
place on open platforms such as Kaggle. However, the number of teams participat-
ing in medical imaging competitions is significantly lower than in typical CV com-
petitions. This could be due to the medical terminology adopted in the organization 
of such competitions. An adaptation to more common terms among the CV and 
machine learning community could help to popularize medical images competitions 
among these experts.

4.6.2 � Commercially Available Products

Although the number of AI products that analyze medical images has rapidly 
expanded over the past 2  years, clinical implementation remains limited. In the 
Medical Imaging field, many radiologists seem willing to engage with AI tools and 
adopt them in their daily practice. van Leeuwen et  al. (2021) have published a 
detailed review of commercially available products for radiology, with a search that 
resulted in 100 AI solutions with CE mark that are approved for clinical use in 
Europe. Their results show that there is a large number of products, and more than 
65% were introduced to the market between January 2018 and April 2020, suggest-
ing that this market is still in its infancy. This is seen in the fact that deployment and 
pricing strategies have not yet converged to a preferred standard. Some vendors 
offer multiple options (22/100), with subscription or license models being more 
prevalent than pay-per-use pricing strategies (56/100 and 28/100 respectively).

Scientific works on the impact of these tools in patient outcomes are also still 
scarce. Only 36 out of the 100 CE-marked products surveyed by van Leeuwen et al. 
have peer-reviewed works showing evidence for their efficacy. Moreover, they 
noted that in many cases similar products have been certified under different classes 
(for example, systems for large vessel occlusion detection, chest X-ray abnormality 
detection, or brain region quantification). A class I mark is obtained through self-
certification, whereas a class II mark involves an external audit by a notified body.

Another interesting observation of their review is that most products perform a 
specific task. Only in the area of stroke and oncology, there are “suites” that aim to 
cover the whole diagnostic path. Radiology departments are thus forced to interact 
with multiple vendors in order to supply their whole AI needs, implying an 
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overhead of sales and contracts and requiring several procedures of training and 
technology integration. This is mitigated when the solutions are integrated into pre-
viously existing products by scanner manufacturers, PACS companies, or hospitals’ 
Health Informatics Departments.

4.7 � Future Directions

In the immediate future, efforts will be focused on the implementation of more poli-
cies to solve the controversies that emerged in the past few years, such as the mis-
representation of minorities in the datasets and the unintended errors in datasets’ 
labeling (for example, as a consequence of the use of natural language processing 
systems for mining radiological reports). Although centralization and federated 
learning can help address these situations, new methods and techniques need to be 
developed to ensure fairness and domain adaptation. In addition, the lack of quality-
labeled datasets is already being addressed through alternative learning paradigms, 
such as weak supervised and unsupervised learning.

The utility of AI for medical image analysis will increase as CV systems incor-
porate the fusion of different modalities of data (Morales et al. 2021) and work with 
a wider spectrum of semiologic findings and medical specialties. New challenges 
will emerge related to the management of massive amounts of heterogeneous data, 
but this will bring the AI-assisted decision-making process closer to the knowledge 
paradigm used by health professionals, who integrate knowledge from several 
sources of information (Rajpurkar et al. 2022).

Even though the focus has been set on interpretative applications, an increase in 
non-interpretative CV solutions is expected, including report worklist management, 
image correction, and synthesis, among others. Additionally, the use of intelligent 
systems through telemedicine will allow its use in remote areas that lack specialists, 
empower patients and encourage their self-care (Myers 2020).

Computer vision has the potential to transform healthcare delivery by reshaping 
image processing workflows, but its adoption on a worldwide scale depends on 
prior fundamental aspects such as the digitization of health information systems, 
especially in the case of less developed countries. The differential value of health 
institutions will lie in the constitution of transdisciplinary teams capable of making 
the most of their own resources —especially data— to advance in strategic lines of 
innovation, research, and development. The possibility of AI growth in medical 
imaging will also be linked to the institutionalization of formal education programs 
that foster academic and practical development in the field. The real importance lies 
not in creating AI products, but in ensuring that people have access to them 
(Myers 2020).
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Chapter 5
Technology-driven Solutions in Mental 
Health and Physical Well-being

Reem AlGurg, Faisal A. Nawaz, and Ammar Albanna

Abstract  Mental disorders are increasing worldwide in terms of their prevalence and 
burden. Current healthcare systems are struggling to respond to the mental health needs 
of their communities, resulting in difficulties such as accessing healthcare services. 
Therefore, innovative mental health approaches are desperately needed to bridge this 
gap and enhance mental health. This chapter reviews the role of digital health innova-
tions in mental health and well-being, including the role of technology in mental health 
screening, and predicting mental disorders. Furthermore, case studies of specific mental 
disorders such as the role of digital health in early autism diagnosis and anxiety disorders 
interventions are provided. Given the important connection between mental and physi-
cal well-being, this chapter also reviews the role of digital health in overall physical 
well-being. We also provide suggestions on how to move forward. Digital health aug-
ments well-being at the critical intersection of environmental, social, and personal fac-
tors that motivate healthy behaviors and cultivate sustained behavioral change. The goal 
is to foster confidence to better understand the relationships among physical activity 
including sleep and nutrition, and other health behaviors analyzed with the promise of 
this digital health revolution. This chapter also looks at different digital health applica-
tions; chatbots as well as Nutritional Tracking/Monitoring. The number of digital health 
solutions is on the rise in the post-pandemic era; this needs to be centered in the heart of 
healthcare delivery in order to lower the burden of disease screening and treatment.
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Keywords  Technology · Sleep · Mental Health · Well-being · E-health · Mental 
Disorder · Digital Health · Nutrition

5.1 � Introduction

The global burden of mental disorders is estimated at approximately $16 trillion by 
2030 (Patel et al. 2018). Despite the advancements in prevention, diagnosis, and 
treatment, there remains a wide gap in awareness, funding, and accessibility to men-
tal healthcare. Consecutively, the lack of mental health resources negatively impacts 
mental health outcomes and physical well-being. The role of important parameters 
to physical well-being such as sleep and nutrition have added to this syndemic 
health crisis. At this juncture, we are witnessing a rise in technology-enhanced solu-
tions to various global health challenges. As the digital health industry grows in size 
with over $57.2 billion invested worldwide (The digital health sector set new records 
in 2021 for global deals 2022), the potential for scalable impact is revolutionary. 
The promising diversity in digital health technologies ranging from software-based 
to hands-on products is a boom for the health consumers’ needs. This chapter dwells 
deeper into the current challenges, implications, and updates surrounding the men-
tal health and physical well-being landscape through digital health innovations.

5.2 � Challenges in Mental Healthcare

Mental disorders impact a large proportion of patients worldwide and pose signifi-
cant challenges to healthcare systems (Rehm and Shield 2019). Furthermore, 
COVID-19 had a significant impact on the mental well-being of children, adoles-
cents, and families, and brought mental health to the forefront of healthcare. 
Moreover, there is scarcity of trained mental health professionals worldwide creat-
ing a significant challenge in delivering mental healthcare services. Indeed, studies 
show that less than half of adolescents with mental disorders receive treatment 
(Costello et al. 2014) and more than half of youth with depression do not receive 
any intervention (The State of Mental Health in America n.d.). This problem is not 
limited to low income countries, as, for example, the USA requires to train many 
more professionals in order to meet its mental health needs (United States n.d.). The 
World Health Organization (WHO) has highlighted that lack of funding and ser-
vices constitutes an important barrier in addressing the mental health gap (Keynejad 
et al. 2018). Henceforth, there is a need for innovative approaches that bridge the 
mental health gap. It is, therefore, not surprising that digital innovations have been 
implemented across different domains of mental health care. This section will focus 
on a few examples of how technological advances helped improve mental health, 
including early identification and treatment using different innovative methods.
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5.3 � Role of Digital Mental Healthcare

5.3.1 � Mental Health Screening

Screening for mental disorders in primary care offers an important gateway to men-
tal health services, and time constraints are among important barriers. Using tech-
nology may very well support primary care physicians as several studies showed 
that enhancing screening at Primary Health Centers with applications is feasible and 
may reduce time and increase accessibility across different countries (Diez-Canseco 
et al. 2018).

One of the important areas of clinical care is being able to predict which children 
will develop mental health symptoms later in life, as this will open the doors for 
early intervention and prevent future severe negative outcomes. Using a comprehen-
sive Swedish data registry, Tate et al. explored the possibility of predicting mental 
health problems among adolescents using machine learning techniques, rather than 
the traditional statistical methods (Tate et  al. 2020). They reported that although 
model performance varied, their results indicated non-significant superiority for the 
random forest model (AUC = 0.739, 95% CI 0.708–0.769), and support vector 
machines (AUC = 0.735, 95% CI 0.707–0.764). Although their models were not 
suitable for clinical use, it serves as a model for future studies to predict general 
mental health outcomes.

5.3.2 � Digital Health for Mental Disorders

Autism Spectrum Disorder (ASD) is a heterogeneous developmental disorder, and 
innovative approaches such as artificial intelligence (AI) and machine learning in 
particular have been applied in ASD (Anagnostopoulou et al. 2020). One challeng-
ing aspect in ASD is that the diagnostic process is time-consuming and labor-
intensive, and therefore many studies focus on either reducing the diagnostic time 
or substituting it with different phenotypic approaches. As an example, Chen et al., 
using resting-state functional MRI (rs-fMRI) scans from the Autism Brain Imaging 
Data Exchange (ABIDE), comparing matched samples of children with ASD (n = 
126) with typically developing participants (n = 126). They reported high accuracy 
utilizing different machine learning methods (Chen et al. 2015). In view of reducing 
diagnostic time, a different study that analyzed data from a widely used structured 
ASD assessment, the Autism Diagnostic Observation Schedules (ADOS), machine 
learning was used to study if algorithms can classify people using abbreviated char-
acteristics of the ADOS to identify children as ASD or not (Kosmicki et al. 2015). 
Authors reported around 98% of accuracy and concluded that with machine learn-
ing, a smaller number of behaviors can achieve high validity for ASD diagnosis. 
Mobile applications utilizing AI have been studied in ASD. For instance, Shahamiri 
et  al. studied a mobile application that captures data from a questionnaire and 

5  Technology-driven Solutions in Mental Health and Physical Well-being



66

interfaces with a Convolutional Neural Network (CNN) trained with a database and 
previous ASD cases, and reported higher accuracy, sensitivity, and specificity when 
compared with usual methods of ASD screening (Shahamiri and Thabtah 2020). 
Again, the goal was to improve screening and diagnostic ability in a shorter period, 
given time constraints of clinicians. Despite these examples, it is important to 
acknowledge that this area of research is in its infancy and further studies are needed 
in order to assure that the tools provide acceptable psychometric properties and are 
applicable in real life. Indeed, Da-Yea Song et al. highlighted this point in a litera-
ture review of the use of artificial intelligence for ASD screening, emphasizing that 
despite that studies show high psychometric properties, the feasibility and real-
world applicability is faced with challenges that needs to be addressed before AI can 
be implemented in ASD care (Song et al. 2019).

ASD is not the only area, as novel approaches have been implemented across a 
wide range of mental health conditions. Anxiety disorders are amongst the most 
prevalent mental disorders. In a recent review, Silk et al. showed that mobile tech-
nologies, including apps, have an important role in augmenting treatment or provid-
ing stand-alone treatment for anxiety disorders (Silk et al. 2011). As an example, 
Anxiety Coach is an empirically supported application developed by Mayo Clinic 
that provides assessments and educational material related treatment (Carper 2017). 
Another area in anxiety disorders is Virtual Reality (VR), as VR can simulate 
anxiety-provoking situations and aid as a treatment modality. These VR situations 
have been shown to be very comparable, based on biological data such as heart rate 
variability and saliva cholesterol, to real life situations (Kothgassner et al. 2016). 
Studies have reported lower refusal rate with VR exposure, compared to in vivo 
exposure, suggesting VR may be used to increase access to mental health interven-
tions such as exposure-based treatments (Garcia-Palacios et al. 2007).

5.3.3 � Pandemic-driven Digital Mental Health Services

There is worldwide appreciation of the mental health impact of COVID-19 pan-
demic, that correlates with many factors including the fear of infection, losing loved 
ones, as well as related to the public health measures such as keeping physical dis-
tance from others, staying home and school closures. These same factors supported 
an expansion of digital mental health services (States’ Actions to Expand 
Telemedicine 2021). This was partly due to the transition to tele-health, in light of 
the interruption of face-to-face interactions in many areas of the world (Shah et al. 
2020). Indeed, the pandemic led to a rapid increase in mental health services within 
a few weeks of the onset of the pandemic (Sharma et al. 2020). The current pan-
demic also provided new possibilities for web-based and app-based digital mental 
health interventions such as, for example, an individually tailored web-based cogni-
tive behavioral therapy program that demonstrated preliminary evidence of effec-
tiveness at reducing stress, and anxiety symptoms (Aminoff et al. 2021).
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5.4 � Physical Well-being

Understanding the implications of poor mental health will be incomplete without 
exploring the role of physical health as co-dependent synergists. Up to 50% of can-
cer patients suffer from a mental illness. Moreover, treating symptoms of depression 
in cancer patients has been shown to improve survival time. Similarly, the risk of 
having a heart attack is more than twice in patients with depression as compared to 
the general population; further, depression increases the risk of death in patients 
with cardiac disease (Rosenstein 2011).

In a population-based cohort study of more than two million New Zealand citi-
zens who were followed up across 3 decades, mental disorders were associated with 
the subsequent onset of physical disease, the accumulation of physical disease diag-
noses and associated health care use and costs, and early mortality (Richmond-
Rakerd et al. 2021). This impact of mental health on physical health and vice versa 
is a vicious cycle that worsens the existing burden of diseases. The emphasis on 
prevention is vital to leveraging the goals of sustainable development in healthcare. 
Awareness of risk factors that increase the likelihood of developing illness is cru-
cial. This brings us to the need for focusing on well-being as a protective factor for 
a healthy life. It also requires a holistic approach of incorporating both physical and 
mental well-being as complementary aspects of our daily routine.

5.4.1 � The Key Areas of Population Well-being: Sleep 
and Nutrition

The WHO constitution states: “Health is a state of complete physical, mental and 
social well-being and not merely the absence of disease or infirmity.” The essence of 
well-being comes from integrating activities within our lifestyle in the form of health-
conscious behaviors. This establishes the connection of well-being with health and 
brings a continuum of care. There are various evidence-based practices to ensure 
mental and physical well-being of the population as a whole. For instance, mindful-
ness training has been associated with improved mental health in several high-stress 
career populations, while meditation-based well-being interventions have also been 
shown to have a positive impact on population health (Badger et al. 2008). Interestingly, 
there is growing evidence of changes associated with endocrine function after medita-
tion with improvements in mental health outcomes (Pascoe et al. 2020). The same 
applies to physical well-being practices being key to improved health outcomes. This 
includes regular exercise, adequate sleep, and following health-conscious eating as 
driving forces to optimize longevity and quality of life (Loef and Walach 2012). 
While prevention is better than cure, we are yet to fully embrace well-being as an 
active part of our lifestyle due to various hidden challenges. For instance, lack of 
education surrounding well-being practices and the health implications of not follow-
ing such interventions are potential reasons for these challenges. The pandemic has 
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further exacerbated the mental and physical demands during unprecedented times, 
which inevitably impacted the basic necessities to healthy lifestyle. This is burdened 
by isolation, increased social media use, sleep dysregulation, financial loss, and health 
disparities that have collectively submerged the state of healthcare today. Needless to 
say, the availability of resources to tackle this global challenge is direly insufficient to 
meet the needs of population well-being. However, the environment built around 
negative lifestyle did not originate from the pandemic or in recent years. We have 
been plagued by chronic well being and sleep-deprived habits for far longer. With the 
main social determinants of population well-being, sleep and nutrition, it is key to 
focus on this area of need.

5.4.2 � Impact of Sleep on Health

Poor sleep is known to impact a number of psychiatric conditions. Recent studies 
suggest that sleep can affect both the development and maintenance of different 
mental health problems ranging from poor cognitive performance to mental disor-
ders including depression and generalized anxiety disorder (Scott et al. 2017). Lack 
of sleep is also associated with pathologies of heart disease and type 2 diabetes. 
According to the Centers for Disease Control and Prevention (CDC), a third of 
adults in the U.S. report that they get less than the recommended amount of sleep 
each night. The reasons for lack of sleep vary according to age groups. Younger 
people tend to lose sleep due to lifestyle and social factors. Other factors include 
eveningness in adolescence, electronics usage before bed, caffeine consumption, 
and poor sleep hygiene (Owens et al. 2014; Hershner and Chervin 2014). While the 
long term impact of sleep on physical and mental well-being has been documented 
over the years, the paradigm shift of environments, lifestyle, and lockdown mea-
sures during the COVID-19 pandemic have further worsened the sleep deprivation 
challenge. Sleep problems appear to have been common during the COVID-19 pan-
demic. This is noted by one in every three individuals reported to having sleep 
problems (Alimoradi et al. 2021). This poses an unimaginable risk to the future of 
well-being as the world rushes to gather more data to study its consequences to 
healthcare. Moreover, sleep hygiene may play an even bigger role in the COVID-19 
disease burden due to the strong association of sleep deprivation with dysregulation 
of the immune system (Garbarino et al. 2021). All in all, this calls for a stronger 
need for understanding current sleep trends as a core mediator of well-being.

5.4.3 � Impact of Nutritional Demands on Health

We are in the midst of a growing disparity in unhealthy lifestyles and consecutively 
impacting the prevalence of nutritional diseases. This is also affected by the lack of 
awareness around diet patterns with changing times. It has led to an obesity 
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pandemic through the known relationship between excess weight and comorbid 
conditions such as diabetes, increased cancer risk, heart disease, stroke, osteoarthri-
tis, sleep apnea, liver, and pulmonary disease. Unfortunately, the impact of nutri-
tional diseases negatively affects health systems on a bigger level, particularly in the 
lower and middle income countries. Multifactorial reasons are responsible for the 
complex interplay of genetic, physiologic, environmental, psychological, social, 
economic, and political domains. The rise in sedentary behavior is a major contribu-
tor to obesity. The sedentary lifestyle prevalent in modern society contributes sig-
nificantly to the prevalence of obesity worldwide (Robinson 1999; Levine et  al. 
2000). Lower socioeconomic status also affects the needs of the population. This in 
turn increases food insecurities and prevalence of mental health conditions, either 
due to nutritional deficiencies or other environmental stressors. Among low-
socioeconomic status families, controlling for income variation, food insecurity co-
occurred with maternal depression (Melchior et al. 2009). With the main modifiable 
social determinants of population well-being as sleep and nutrition, it is key to focus 
at this intersection of healthcare.

5.4.4 � Nutrition and Sleep Syndemic

Understanding the syndemic burden of sleep and nutrition on well-being is vital to 
devising practical solutions for monitoring, diagnosing, and treating preventable 
health conditions. The rising epidemic of obesity is closely followed by increased 
trends in sleep deprivation. Various studies have observed an association of short 
sleep duration and poor sleep quality as risk factors for obesity (Beccuti & Pannain 
2011). Research has also shown that sleep deprivation also causes an increase in 
food consumption without a parallel increase in energy expenditure (Grandner et al. 
2014). Furthermore, sleep deprivation also creates a tendency to prefer high-calorie 
foods with poor nutritional advantage and increased risk of weight gain (Greer et al. 
2013). Sleep loss occurs not only as a result of conscious behavioral habits, but also 
due to medical conditions such as obstructive sleep apnea (OSA). There is sufficient 
evidence that indicates the importance of adequate nutrient consumption for sleep. 
This is seen in one study where lack of key nutrients, such as calcium, magnesium, 
and vitamins A, C, D, E, and K was associated with sleep problems (Ikonte 
et al. 2019).

5.4.5 � Role of Technology in Physical Well-being

This well-established relationship between sleep and nutrition as part of well-being 
holds the potential for positive change just as much as its negative implications. 
Technology plays a pivotal role in shaping this balance and is often represented as 
the culprit more than a solution. While there is no doubt that technology has strongly 
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influenced these biopsychosocial factors to well-being through increased screen 
time amongst children and adults, increase in sedentary lifestyle, and lack of moti-
vation to improve physical well-being, there is an untapped paradigm of promising 
potential with the same. This double-edged sword where the same technology with 
adequate innovation can help bring back well-being in society. We are on the fore-
front of this current wave of technology as various advances continue to arise in the 
digital health market with the synergy of sleep and nutrition at the core of health and 
well-being. Enhancing synergy of sleep and nutrition in order to enhance the core of 
well-being are the core functions of apps; examples of which include types of apps 
such as mood trackers; food trackers; sleep trackers and more recently specific dis-
ease management apps are increasing in number (Olsen 2021).

The gamification aspect of the apps along with connectivity to a database of like 
minded peers work as one of many incentives that are embedded within the apps, 
other examples of incentives that are used in health and wellness apps can be related 
to workplace; this would also work on opening up dialog with employers, as 
employees progress towards fitness goals can be provided to administrators through 
dashboard and reports that measure employees engagement on such platforms. 
Individuals use of app; organizational use of apps are all catered towards the same 
goal is to bring back health to society.

Current health technology allows for accurate measurements of heart rate, exer-
cise time, distance, and estimated caloric expenditure, which is both accessible and 
user-friendly for the general population. This mode of health awareness is well-
integrated in our daily lifestyle and serves as a medium for well-being checkups. It 
is therefore essential to create guidelines that target precise and quantifiable health 
parameters which in turn promotes individualized health optimization (Algieri 
2022). Understanding the unpredictable nature of sleep patterns, diet, and other 
health behaviors over the past century have become a rising challenge worldwide 
(Hicks et al. 2019). The potential impact of digital health on physical well-being is 
hampered by various non-technical barriers. This is seen by the lack of transpar-
ency in the development of such technology which creates further insecurities 
related to privacy amongst the general public. The need for a common bridge of 
understanding is essential for collaboration between consumers, developers, and 
business stakeholders. This gap in digital literacy drives the motivation towards 
explainable technologies on a larger scale. It also brings forth the opportunity to 
harness the surge of health-centered data for sleep and nutritional interventions 
using digital technologies to advance healthcare delivery. This is made possible 
through a diverse range of innovations from wearables, biosensors, and mobile 
applications to name a few. Digital health augments well-being at the critical inter-
section of environmental, social, and personal factors that motivate healthy behav-
iors and cultivate sustained behavioral change. Our goal is to foster confidence to 
better understand the relationships among physical activity including sleep and 
nutrition, and other health behaviors analyzed with the promise of this digital health 
revolution.
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5.4.6 � Mobile Apps

With the advancement of technologies in size and process power, it has become pos-
sible to integrate various sensors and technologies to accessible consumer grade 
wearables. It has always been a challenge for health professionals to induce change 
in behavior of people and societies. The data acquired from wearable technologies 
can provide great insight into detailed behavior, social and personal factors that 
promote better living and lifestyle (Mustafa et al. 2022).

Although there has been a great amount of spread of use of these technologies 
accompanied with a very massive amount of data captured, yet their analysis and 
depth insight are not what the industry and professionals desire. The nature of this 
challenge is that it requires both data analysts and health scientists. Another chal-
lenge is the factor of trust of consumers, as the sharing of personal data is a very 
huge concern for many.

There is a surplus of health applications available to be used on most smart 
mobiles. These applications have attracted mostly younger populations even though 
they’re targeted for adults, which can be reasoned to the extensive use of younger 
populations of social media and adaptation of new technologies such as Fitbit’s and 
Nike fuel band. These devices provide data relating to heart rate, sleep and even 
water intake.

There has been a variety of wearable technologies that work hand in hand with 
health oriented applications. A study looked at the behaviors and factors that influ-
ence users of such technologies. Several points and factors were observed: First, for 
any change in behavior, a person must use it over a long period of time. Users go 
through periods of use followed by disengagement with this technology. It was real-
ized by looking at the Azumio dataset that people when reengaging with a health 
application after not using them for a while, usually start from the stage they were 
at the beginning rather than continuing where they left off. Another observation is 
that those who use these technologies for long periods of time tend to be surrounded 
by fitness oriented people and are less active on social media in regards to showcas-
ing these kinds of activities. It has also been shown that people that use smart scales 
often tend to have greater weight loss.

5.4.7 � Wearable Technologies

Wearable technologies can extend their benefits of what is expected of them. 
Wearable technologies have encouraged self monitoring of sleep and physical activ-
ity levels without intervention of medical practitioners. Virtual assistants and virtual 
societies created in these areas act as support groups and methods of checking in on 
the elderly or disabled. The application of wearable technologies in healthcare is 
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fascinating. The Sunrise system, a coin-sized device attached by the sleep techni-
cian to the chin of the patient, is developed to be used for ambulatory diagnosis of 
OSA outside of a sleep center setting (Pépin et al. 2020). This technology allows for 
automatic identification of obstructive and mixed apneas and hypopneas or respira-
tory effort–related arousals by analyzing mandibular movement patterns. The porta-
bility and cost-effectiveness of this innovation can be a game changer for diagnosis 
in impoverished regions. In summary, wearable technologies have shown huge 
promise and results for self monitored behavioral improvements. The amount of 
data produced over a long time will open new doors to further research and observa-
tions never witnessed before at this scale and further details.

5.4.8 � Nutritional Tracking/Monitoring

Widespread usage of wearable technologies, multiple sensors, large data sets of 
multiple types requires strong and deep analysis of the data to make meaningful 
observations. Recent evolution of AI algorithms and processing power and tech-
nologies have assisted in reaching better conclusions and sophisticated applications 
in medicine and nutrition. Although the latest technologies have lagged in their 
application in the field of nutrition, yet there are disruptive innovations that are close 
to becoming fruitful.

5.4.9 � Chatbots

The final circle of technology based nutritional and well-being care is chatbots. Bots 
provide the interaction part that wearable technologies and health oriented apps 
need with the consumer. Chatbots are essentially a “conversational agent”, which 
means a program built to support and engage with humans by means of sound-
related or text techniques. It supports systematic and documented knowledge dis-
semination and sharing. It can also provide consumer support and aid with mental 
and physical well-being. The fundamental design of chatbotchat bots are often cen-
tered around mimicking human-to-human text messaging interactions. By simulat-
ing a human-chat experience, chatbotchat bots can help build seamless conversations 
on the topic of need. The level of advancement in chatbotchat bot services can add-
on to provide automated responses, internet-derived suggestions to user problems, 
including image-detection features in some cases. An interesting example of mental 
well-being innovation is called ESTORE (El Kamali et al. 2020). It utilizes a chat-
botchat bot functionality in the form of text-messaging and voice assistant to pro-
vide mental health support to older adults. In this process and interaction, chatbotchat 
bots will also be a tool to collect nutritional care and complaints to help further 
enhance and research in the field. A food diary coaching chatbot called “Rupert” is 
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an app-based platform centered around offering personalized dietary support. It 
aims to regularly engage with users by maintaining a food diary and encouraging a 
dietary lifestyle that aims to reduce meat consumption for ecological reasons, and 
increase fruits and vegetables consumption for nutritional reasons. The study fur-
ther concluded that 82% of the app users reported that Rupert allowed them to think 
and be aware of their consumption (Casas et al. 2018).

There is further work needed in understanding the personalized nature of chat-
bots and motivational factors surrounding user compliance. In conclusion, these 
solutions are ideal in a world where medical units and organizations are spread thin 
in times of crisis similar to the recent COVID-19 pandemic.

5.5 � Conclusion and Path Forward

As the healthcare landscape continues to evolve in diverse ways, the trends in men-
tal health and physical well-being have drastically changed over time. This has cre-
ated an unprecedented gap in accessibility and monitoring of big data for vital 
health parameters. Technology has the potential to redefine the current challenges 
and support the transition to a digital health-optimized world. This can be made 
possible by focusing on patient-centered innovations that utilize the existing 
advancements for the existing mental health and physical well-being ecosystem. 
This calls for increased collaborations in digital health investment, research, and 
awareness amongst stakeholders along with the general community. The path for-
ward with the acceptance of digital health can in turn lower the burden of disease 
screening, treatments, and the continuum of care. By keeping digital health solu-
tions at the center of healthcare delivery, the future of pandemic-driven care fosters 
novel possibilities for fast-paced innovation.
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Chapter 6
Present Capabilities of Artificial 
Intelligence in Surgical Oncology

Raja R. Narayan

Abstract  With many institutions incorporating algorithms and devices leveraging 
artificial intelligence into clinical practice, it is increasingly necessary for clinicians 
to become proficient in interpreting these resources to steward their integration. 
Oncologists have a great opportunity to benefit from integrating these resources to 
assist with better patient selection for targeted therapies and sequencing of treat-
ment strategies. The development of large oncologic datasets has ushered in the 
opportunity to leverage big data to address these research questions as well, how-
ever, many clinicians may not understand how artificial intelligence platforms are 
developed or tested for their accuracy. In this chapter, a review of the most common 
branches of artificial intelligence are discussed including examples of how these 
platforms are developed or deployed in the oncologic setting. Finally, a caution is 
given on how the lack of regulation or the over-reliance on artificial intelligence 
platforms can be problematic.

Keywords  Surgical oncology · Cancer research · Artificial intelligence · Machine 
learning · Deep learning · Neural networks

6.1 � Introduction

Since the term artificial intelligence was coined in 1956, (Merriam-Webster 2022) 
rapid adoption of this growing discipline has created opportunities to enhance a 
variety of fields. With the relatively recent advent of big data and multi-center col-
laboration to create consortia of medical institutions, data-driven guidance for clini-
cal decision making is readily becoming a reality. Surgical oncology is thus a field 
readily positioned for innovation with these tools to improve our understanding of 
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Fig. 6.1  Volume of Surgical Oncology clinical studies published incorporating “Artificial 
Intelligence” or “Machine Learning” indexed in PubMed from inception to April 1, 2022

patient selection and sequencing for the variety of therapies available to the modern 
oncologist. From the inception of PubMed in 1996 to April 1, 2022, over 300 arti-
cles have been published utilizing some fashion of artificial intelligence to investi-
gate a clinical question pertaining to surgical oncology with an upswing seen in 
recent years (Fig. 6.1). With this trend expected to continue and even accelerate, it 
is essential that providers understand the various modalities of artificial intelligence, 
how they can be leveraged for oncologic research, and the limitations of its use. In 
this chapter, descriptions for the broad field of artificial intelligence and its subcat-
egories are first defined, then a review of recent implementations in the field of 
surgical oncology are discussed, and finally limitations and cautions to the applica-
tion of artificial intelligence in surgical oncology are noted.

6.2 � The Use of AI in Surgical Oncology

6.2.1 � Machine Learning

Artificial intelligence (AI) refers to any platform that can simulate human thought 
or behavior including problem-solving, recognizing images or words, or making 
conclusions based on patterns of data (Hashimoto et al. 2020). Machine learning is 
often conflated with AI but instead represents a major sub-category of programs that 
build their own knowledgebase from increasing amounts of data to create more 
precise conclusions about an output of interest. A machine learning program can 
thus learn from and respond to data in three separate ways. Supervised machine 
learning develops an algorithm from a training and testing dataset to predict an out-
put of interest (Hashimoto et al. 2020). A training set is necessary for the program 
to identify an association between the input and output of interest whereas the test-
ing set allows the program to gauge its performance on unseen data. Generally, a 
larger proportion of a dataset in a study utilizing supervised machine learning will 
go into the training set and the remainder in the testing set (e.g., 90% vs 10%). The 
testing set or validation set may also be further classified as an internal validation set 
(e.g., subjects included from the same dataset) or an external validation set (e.g., 
subjects included from a new dataset not used to train the algorithm). Unsupervised 
machine learning, however, represents algorithms that identify patterns within a 
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dataset. For example, a dataset of patients can be clustered into distinct subgroups 
that represent quartiles with respect to an outcome of interest. Finally, reinforce-
ment machine learning describes the development of an algorithm that makes itera-
tions to the performance of a pre-specified task as more data is introduced (e.g., text 
autocorrect, automated driving) effectively learning from successes and mistakes. 
The choice of using supervised, unsupervised, or reinforcement learning is thus 
dependent on the type of dataset to be utilized and the design of the question at hand.

Several techniques can additionally be employed using the above machine learn-
ing strategies. Classic machine learning utilizes features describing the dataset to 
perform a task or predict an outcome of interest, like independent variables predict-
ing an outcome through regression analysis (Hashimoto et  al. 2020). Laukhtina 
et al. utilized classic machine learning with least absolute shrinkage and selection 
operator (LASSO) regression (a modality that selects features predictive of an out-
come of interest) to develop a nomogram predictive of cancer-specific survival for 
patients with metastatic renal cell carcinoma under consideration for cytoreductive 
nephrectomy (Laukhtina et al. 2022). Of 613 included patients, 65% were allocated 
to the training set to develop the nomogram and the remaining 35% served as the 
testing set or internal validation for the nomogram yielding a c-index = 0.644. Of 
note, this study reported the median cancer-specific survival to be 17 months where 
99% of patients passed due to their metastatic disease underlining the importance of 
designing a study with a common outcome event to train an algorithm with. For 
rarer malignancies (e.g., pancreatic cancer) with even rarer subtypes (e.g., resect-
able pancreatic cancer), this may pose a challenge highlighting the need for multi-
institutional collaboration. Random forest plots are a subset of classic machine 
learning that take a supervised approach to create a decision tree incorporating fea-
tures to arrive at an endpoint or outcome of interest by determining the cumulative 
probability of that outcome (Fig. 6.2) (Kashyap 2019). This decision tree can either 
be constructed to perform classification and/or regression tasks. Rahman and 
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Majority of vote taken Final prediction made
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Fig. 6.2  Random Forest Decision Tree schematic illustrating nodes for classification or regression 
analysis leading to an average endpoint or outcome of interest
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colleagues utilized random forest plotting to predict 5-year survival among 2931 
patients with gastric adenocarcinoma undergoing curative gastrectomy from a 
multi-national audit dataset spanning England and Wales (Rahman et  al. 2021). 
With a 5-year survival of 53%, the time-dependent area under the curve (AUC) for 
this period was 0.80 with a c-index of 0.76 based on a model incorporating 10 out 
of 29 evaluated clinical and pathologic variables. Moreover, other types of AI mod-
eling can be included at various steps along the way for this decision tree.

For example, a k-clustering algorithm is a supervised learning technique that 
evaluates training data geometrically to categorize additional testing data in relation 
by plotting the Euclidean distance from the testing example to related training data. 
Depending on the number of groups or clusters of data to be attained, this could be 
targeted in comparison to a single point—1-nearest neighbor—or balanced on the 
weight of several points—k-nearest neighbors (Hastie et  al. 2016). Yin et  al. 
employed k-clustering when studying 14,134 cancer patients across five Chinese 
institutions to categorize nutritional status based on 17 core nutritional features (Yin 
et al. 2021). Herein, 75% were allocated for the training set and the remaining 25% 
for internal validation yielding four clusters based on nutrition status with a model 
AUC of 0.941. Similarly, support vector machines represent another type of super-
vised learning where classification and regression are utilized to cluster training 
data in space relative to hyperplanes (Fig. 6.3). Testing data incorporated thereafter 
are thus clustered in space based on their similarities or differences to the hyper-
plane (Toledo-Pérez et al. 2019).

Maximum
margin

X2

X1

Optimal hyperplane

Fig. 6.3  Support Vector 
Machine classifying data 
in relation to the optimal 
hyperplane (solid black 
line), planes through 
support vectors (dotted 
lines), as well as support 
vectors themselves 
(colored in circles and 
square). The maximum 
margin between the 
support vectors is also 
shown (Toledo-Pérez et al. 
2019)
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Fig. 6.4  Schematic of neural networks processing several features of an image in the input layer 
to generate a constellation of findings in the output layer to yield an outcome of interest. Multiple 
hidden layers in between perform mathematical transformations of features included in the input 
layer to generate the results of the output layer

6.2.2 � Deep Learning

Neural networks and deep learning refer to platforms where machine learning tech-
niques are modeled after the human nervous system (Hashimoto et al. 2020). This 
consists of at least one input layer incorporating data, one output layer yielding an 
outcome of interest, and a hidden layer in between that will conduct certain mathe-
matical transformations on the input layer to yield the output layer (Fig. 6.4). Rather 
than representing a specific type of machine learning technique, neural networks are 
more of a framework through which multiple machine learning techniques can be 
incorporated to process an input layer to yield an output layer of interest. More 
complex networks can be constructed as convolutional neural networks that bear 
many arrays or recurrent neural networks (Manav 2001). Liu and colleagues uti-
lized a 16-layer convolutional neural network to develop an internally and exter-
nally validated nomogram to predict the likelihood a solitary pulmonary nodule 
would be malignant based on epidemiologic and radiologic features (Liu et  al. 
2021). With 70% allocated to the training set and the remaining 30% for the valida-
tion sets, an ultimate AUC of 0.916 was established. Additionally, other modalities 
of AI can be utilized in these networks to augment the processing capabilities of the 
larger platform.

6.2.3 � Computer Vision

With the increasing volume of image-based datasets and archives of pathology 
slides, computer vision is another modality of AI that uniquely performs analysis of 
images or videos to identify patterns related to an outcome of interest. Several ele-
ments can be identified including color, texture, shape, contour, and focus. 
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Empirically, computer vision platforms convert visual data into categorical or 
numerical format that may then be tested for its association with an outcome of 
interest. Similar processing is performed when an autonomous vehicle is trained to 
respond to cues on the road. A subset of computer vision, called radiomics, identi-
fies texture features on images often imperceptible to the human eyes to identify 
associations with an outcome of interest. These features can be quantified following 
color extraction into components of red, green, and blue (RGB) as well as statistical 
measures including mean, standard deviation or variance, skewness (a measure of 
symmetry or asymmetry), kurtosis (a measure of the complexity of the image), 
entropy (a measure of the randomness of the image), energy (a measure of the dis-
tribution of signal portrayed by an image), contrast, homogeneity, and correlation 
(Fayaz et al. 2021). One study by Creasy and colleagues from the Memorial Sloan 
Kettering Cancer Center utilized radiomics to predict volumetric response to neoad-
juvant chemotherapy from segmented pre-treatment imaging of 157 colorectal liver 
metastasis patients (Creasy et al. 2018). After a regression model was trained from 
70% of the cohort and 30% left for internal validation, a mean absolute prediction 
error (or the difference between the actual and predicted response to chemotherapy) 
was reported to be 21.5%.

6.2.4 � Natural Language Processing

Natural language processing (NLP) is an artificial intelligence technique that seeks 
associations between the syntax and semantics of words (e.g. documents or data in 
the electronic medical record) and outcomes of interest (Nadkarni et  al. 2011). 
Although many fields in the electronic medical record are becoming boxes to check 
or items to select on a synoptic list, NLP pertains to the use of free text and the 
context of words used therein as they apply to a particular outcome. A study from 
Patel et al. out of the University of Chicago used an established NLP platform to 
harvest information from reports of 10,196 average-risk colonoscopic exams to 
identify a relationship between proximal serrated polyp detection rate and median 
withdrawal time (Patel et al. 2018). Another report by Yang and colleagues described 
the development of an NLP platform to identify patients with bladder cancer invad-
ing into the muscle from the computerized patient record system (CPRS) from sev-
eral Veterans Affairs health systems including 600 patients that underwent 
trans-urethral resection of bladder tumor (TURBT) (Yang et al. 2022). The NLP 
platform was trained on 83% of the dataset and internally validated on the remain-
ing 17% to give an accuracy of 94% to predict muscle-invasive bladder cancer. Use 
of this technique is relatively new to clinical research but with the availability of 
standardized radiologic, operative, and pathology reports, there is great potential for 
its incorporation to enhance the quality of the electronic health record and possibly 
streamlining its annotation as well.
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6.3 � Limitations on Artificial Intelligence in Surgical 
Oncology Research

For the few published models that are accessible for open-source use, such as a 
machine learning model constructed by Paredes and colleagues from the Ohio State 
University for the prediction of recurrence after resection of colorectal liver metas-
tases, (Paredes et al. 2020) the lack of internal validation for its use at new institu-
tions may limit its generalizability. In addition, it is not uncommon to find mislabeled 
images in publicly available dataset used for training purposes. For instance, 
Northcutt et al. found an average error rate of 3.3% across the 10 most commonly-
used computer vision datasets (Northcutt et al. 2021). In another dataset of mam-
mogram images used to train an algorithm, more than 15% of the images were 
mislabeled (Kay et al. 2021). As a consequence, models may be unable to account 
for nuances in practice patterns related to differences in resources available at the 
institution to care for the same population of patients. Additionally, as standards of 
practice are updated over time, the need to update these AI models is inherently 
essential to maintain their relevance to clinical use. The rapid change in applicable 
systemic regimens (e.g., emerging indications for immunotherapy) necessitate fre-
quent updates that may not be feasible on a multi-institutional level without a super-
vising consortium. This concept of time drift has been highlighted in the failure of 
established models to keep up practice changes as obvious as updates from the 
International Classification of diseases (ICD) 9 to ICD10 coding as well as more 
specialized changes such as the concept of damage associated molecular patterns 
(DAMP) following operations clouding the suspicion for sepsis from automated 
sepsis protocols embedded in the electronic health record (Ross 2022).

6.4 � Conclusion

Despite the variety of resources available to employ or develop AI platforms, it is 
extremely necessary to remain cautious of unchecked incorporation of these models 
into clinical practice. Current models function best as a supplement to clinical deci-
sion making to guide radiologists, pathologists, and oncologists in patient care 
rather than a tool for cutting corners when it comes to making a diagnosis or prog-
nosis. Although many recently developed models have both been published, none of 
the aforementioned publications give public access to these tools.

Ultimately, it is critical for clinicians to be the driving force for incorporating and 
supervising the use the AI models in clinical practice. Without due clinical over-
sight, unnecessary alarms may be raised or with over-reliance on these models, 
windows for intervention may be missed if warning signs are not recognized. The 
multitude of available AI tools provide a great opportunity to advance the care of 
oncology patients, but clinicians must be the stewards for this growth in order for 
this field to be incorporated with impact and sustained.
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Chapter 7
Machine Learning for Decision Support 
Systems: Prediction of Clinical 
Deterioration 

Farah E. Shamout

Abstract  In-hospital clinical deterioration could lead to unfavorable adverse 
events, such as mortality, cardiac arrest, or unplanned admission to the intensive 
care unit. Early detection of deterioration allows clinical staff to respond in a timely 
manner in order to avoid such events. Advancements in data digitization and com-
putational power enable the development of new algorithms for the prediction of 
clinical deterioration. Such algorithms, traditionally based on simple aggregate-
based Early Warning Score (EWS) systems, seek to drive the inference engine of 
clinical decision support systems. They geared even more attention since the coro-
navirus disease 2019 pandemic to support the prognosis of in-hospital patients. The 
purpose of this chapter is to provide a brief overview of classical EWS systems as 
well as systems based on state-of-the-art machine learning and deep learning. We 
also compare their strengths and limitations, summarize current findings on the 
clinical impact of EWS systems in practice, and provide a future outlook on early 
warning clinical decision support systems based on current needs.

Keywords  clinical deterioration · decision support · early warning scores  
machine learning · deep learning · artificial intelligence

7.1 � Introduction

Dating back to the 1970s, Clinical Decision Support Systems (CDSS) intend to 
inform the decision-making of medical practitioners in patient care settings (Mould 
et al. 2016), such as for tasks pertaining to patient diagnosis, prognosis, or treat-
ment. Although CDSS were limited in their early days due to time inefficiency and 
integration challenges with existing information technology (Sutton et  al. 2020), 
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their value was later recognized in improving patient safety and minimizing medical 
errors in the early 2000s (Donaldson et al. 2000). With the adoption of Electronic 
Health Record (EHR) systems, CDSS can directly access digitized medical infor-
mation or personalized patient data, including historical data from previous hospital 
encounters or data collected in real-time during hospitalization (Menachemi and 
Collum 2011).

CDSS are generally categorized as knowledge-based or non-knowledge-based 
systems (Berner 2007), though other classifications exist. Both types of systems 
share the notion of an inference engine, which performs a reasoning task. As implied 
by the name, knowledge-based systems reason based on information extracted from 
a knowledge base, which is compiled based on expert medical knowledge (Sutton 
et al. 2020). The reasoning component applies rule-based logic based on the patient’s 
clinical data and existing literature, such as IF-THEN statements (Berner 2007). 
Since such systems rely on the information stored within the knowledge base, the 
knowledge base must be constantly maintained and expanded, which is highly costly.

Non-knowledge-based systems rely on pattern recognition approaches within the 
Artificial Intelligence (AI) domain, such as machine learning and deep learning 
(Sutton et  al. 2020). While they do not require a knowledge base, such systems 
require extensive model development using large datasets (Sutton et  al. 2020). 
Model development is also coined as model training in technical terminology, since 
the model learns to reason by recognizing patterns within an existing dataset (Jordan 
and Mitchell 2015). Once optimized, these models also require retrospective and 
prospective validation prior to clinical deployment to ensure a robust performance. 
Information processed by either a knowledge-based or non-knowledge-based sys-
tem is communicated with the end-user via a dashboard or a graphical interface to 
support a variety of decisions (Berner 2007), such as to alert clinicians for unfavor-
able events.

Early warning CDSS, in particular, play a crucial role in the context of patient 
monitoring (Bonnici et al. 2013). Hospitalized patients may suffer from unexpected 
life-threatening complications due to the delayed detection of deterioration 
(Hodgetts et  al. 2002; Hillman et  al. 2001). Clinical deterioration refers to the 
worsening of a patient’s condition on hospital wards (Jones et al. 2013). It is often 
defined based on the occurrence of an adverse event, which is an unintended injury 
or complication, which results in disability, death or prolongation of hospital stay. 
The delayed recognition of deterioration has been shown to be associated with 
human-related monitoring failures (Van Galen et  al. 2016). This motivated the 
development and use of Early Warning Score (EWS) systems that seek to assist 
clinicians in recognizing deterioration signs prior to adverse events, in order to 
ensure that the deterioration is managed in a timely manner (Fu et al. 2020). The 
goal of such systems is to predict whether an adverse event is likely to occur within 
a future time-window of N hours from the time of assessment, e.g., 24 h. In this 
chapter, we provide an overview of classical EWS systems (Sect. 7.2), some of 
which were originally built on the basis of expert-based knowledge, as well as 
state-of-the-art AI-based solutions (Sect. 7.3), and present a future outlook on the 
new generation of EWS systems, or inference engines of prognostic CDSS 
(Sect. 7.4).
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Fig. 7.1  Timeline illustrating the publication date of EWS systems mentioned in this chapter. For 
additional readings on other EWS systems, we refer readers to related reviews (Gerry et al. 2017; 
Downey et al. 2017; Gao et al. 2007; Kamio et al. 2017; Smith et al. 2014)

7.2 � Classical Early Warning Score Systems

Classical EWS systems, also known as ‘track-and-trigger’ systems, aim to assess 
patients for clinical deterioration by assigning scores to simple measurements of 
physiological variables, such as heart rate, respiratory rate, temperature, blood pres-
sure, and oxygen saturation (Fu et al. 2020). The first physiological EWS system 
was introduced in 1997 (Morgan et al. 1997), and subsequent modifications were 
developed and adopted across different hospitals largely based on clinical expertise 
and intuition (Prytherch et al. 2010), as shown in Fig. 7.1. EWS systems perform 
continuous assessment during a patient admission, whenever a set of vital-sign mea-
surements is recorded. Most of them are simple to use and can be easily calculated 
with pen and paper.

Alerting scores within an EWS system are computed based on predetermined 
normality ranges for the input variables. For example, the heart rate variable is 
assigned a score of 3 if the measurement exceeds 130 beats/min (Royal College of 
Physicians, 2012). The aggregate score, which is usually a sum of individual scores 
assigned to all physiological variables, alerts clinicians for signs of deterioration 
that usually precede adverse events (Royal College of Physicians, 2012). The total 
score may also prompt a rapid response team to act accordingly, especially if it 
exceeds a critical threshold (Ludikhuize et al. 2014). The pre-determined normality 
ranges are developed in various ways and early work relied on heuristic means and 
clinical expertise (Smith et  al. 2006). Here, we describe how such ranges were 
determined in two examples: the VitalPAC EWS (Prytherch et  al. 2010) and the 
Age-based EWS (Shamout et al. 2019a).

7.2.1 � VitalPAC Early Warning Score

In an effort to standardize EWS systems, the VitalPAC Early Warning Score 
(ViEWS) was introduced in 2010 (Prytherch et al. 2010). ViEWS assigns scores to 
measurements of heart rate, temperature, respiratory rate, and systolic blood 
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pressure, the patient’s level of consciousness (indicated via the Alert-Verbal-
Painful-Unresponsive Score or the Glasgow Coma Score (Raman et al. 2011)), and 
whether the patient is being provided supplemental oxygen. The authors developed 
a database of the clinical variables collected from adult patients between 2006 and 
2008 at a hospital in Dartmouth, UK, using the VitalPAC software (Smith et al. 
2006). They then determined the normality ranges of ViEWS based on their expert 
clinical knowledge, the existing literature and their previous experience with other 
EWS systems. Specifically, they varied the ranges in a trial-and-error process and 
investigated its impact on the diagnostic accuracy of the total score in predicting 
mortality at hospital discharge within 24 h. They used the Area Under the Receiver 
Operating Characteristic curve (AUROC) as the primary performance metric. The 
final alerting ranges of ViEWS were made freely available and the score can be 
calculated on paper. This was an intentional objective of the authors in order to 
enable accessibility to ViEWS especially for hospitals that do not use digital chart-
ing systems. The authors also explored the idea of incorporating age as an addi-
tional parameter, by increasing the total score by one point if the patient is 65 years 
or older. However, this did not result with any significant improvements in the 
AUROC. Two years following its initial publication, ViEWS served as a template 
for the National Early Warning Score (NEWS) in the United Kingdom (UK) (Royal 
College of Physicians, 2012), and its updated version NEWS2 (Royal College of 
Physicians 2017) shown in Table  7.1. Although the development of ViEWS is 
mostly based on heuristics and clinical judgment, it brought attention to the impor-
tance of data-driven analysis.

Table 7.1  Normality ranges of the updated NEWS2 (Royal College of Physicians 2017) that was 
introduced in 2017. In this version, the level of consciousness score includes the traditional Alert, 
Voice, Pain, Unresponsive score, as well as a new parameter “C” to represent a new-onset of 
confusion (i.e., ACVPU). There are also two oxygen saturation scales, where the second one is 
dedicated to patients with hypercapnic respiratory failure

Vital sign Score
3 2 1 0 1 2 3

Heart rate (beats per minute) ≤30 41–50 51–90 91–110 111–130 ≥131
Systolic blood pressure 
(mmHg)

≤90 91–
100

101–
110

111–
219

≥220

Temperature (Celsius) ≤35.0 35.1–
36.0

36.1–
38.0

38.1–
39.0

≥39.1

Respiratory rate (breaths per 
minute)

≤8 9–11 12–20 21–24 ≥25

Oxygen saturation ≤91 92–
93

94–95 ≥96

Scale 1 (%)
Oxygen saturation ≤83 84–

85
86–87 88–92 93–94 95–96 ≥97

Scale 2 (%) (air) (oxygen) (oxygen) (oxygen)
ACVPU score Alert CVPU
Supplementary oxygen Yes No
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7.2.2 � Age-Based Early Warning Score

Motivated by clinical evidence pertaining to physiological changes associated with 
age, we investigated the impact of age on EWS systems and proposed an Age-based 
Early Warning Score (AEWS) in our previous work in 2019 (Shamout et al. 2019a). 
Using large datasets of vital-sign observations collected at the Oxford University 
Hospitals and the Portsmouth Hospitals National Health Services (NHS) Trust, we 
determined age-specific alerting ranges based on statistical distributions of the input 
variables for the composite outcome of mortality, cardiac arrest, and unplanned 
admission to the intensive care unit within 24 h of assessment time. To determine 
the ranges, we adopted a simple statistical approach presented by the Centile-based 
Early Warning Score (CEWS) and its modified version (Tarassenko et  al. 2011; 
Watkinson et al. 2018). In particular, we computed the cumulative distribution func-
tion for each variable at each age, and used a grid-based approach to select the 
centiles that represent the normality ranges. The performance results indicated that 
AEWS has performance benefits specifically in younger patients. Similar to ViEWS, 
AEWS can also be calculated on paper but it requires the patient’s age and access to 
the age-specific alerting ranges. It can also be easily adapted to new patient cohorts, 
since the ranges are computed in a data-driven manner rather than having to rely on 
clinical expertise and heuristics as in ViEWS and other scores. Overall, the improve-
ments in performance highlight the value of accounting for patient-specific infor-
mation in EWS systems, such as age.

7.2.3 � Strengths and Limitations

The main strength of classical EWS systems, such as ViEWS and AEWS, is the 
simplicity of their application. They are easy to use and implement. The total score 
can be calculated manually using pen and paper, pending the real-time acquisition 
of physiological variables. Due to their simplicity, such scores are considered to be 
highly interpretable, as a clinician can easily infer which variable is most indicative 
of patient deterioration based on the highest individual score assigned. Additionally, 
the aggregate scores of approved clinical EWS systems, such as NEWS2, are asso-
ciated with a specific clinical response and a series of recommendations for ongoing 
care. This supports staff in knowing how to respond based on the patient’s total score.

Despite their strengths, the scoring systems also have their limitations. Since the 
scores tend to consider a single set of measurements, they discard a lot of informa-
tion that could aid the assessment, such as physiological changes over time or 
patient-specific information like sex or comorbidities. This is partially the fault of 
the simple inference engine, which generally is in the form of a weighted sum. 
Another limitation is that the normality ranges cannot be easily maintained or 
updated, especially in EWS systems whereby the ranges rely on human judgment 
and heuristics. While some EWS are even recommended to be standardized across 
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different hospitals and patient sub-populations (Royal College of Physicians 2017), 
many are developed using data from a single-center and hence should first be exten-
sively validated across the target cohort, which is not always feasible. To highlight 
the importance of external validation, two EWS systems were evaluated as part of a 
study across a target patient cohort in Malawi (Wheeler et al. 2013). Both EWS 
systems showed a drop in performance, highlighting that disease and population 
differences can significantly influence the performance of EWS systems.

7.3 � Modern Computational Approaches for Early Warning

Recent advances in AI research in healthcare offer many opportunities towards 
improving patient care (Buch et al. 2018). This includes applications pertaining to 
disease diagnosis (Shen et al. 2021), patient phenotyping (Overby et al. 2013), pre-
scribing medication (Dilsizian and Siegel 2014), as well as deterioration prediction 
(Shamout et al. 2019b). With the recent surge in the quality and quantity of digitized 
medical data, various AI-based CDSS have emerged to support clinical decision-
making (Jiang et al. 2017). These advances are also largely supported by substantial 
developments in high-performance computational resources.

Machine learning, a sub-field of AI, is the scientific study of optimizing mathe-
matical models using data (Bishop 2006). Those models are closely related to foun-
dational statistical approaches and are generally categorized under three basic 
learning paradigms: supervised learning, unsupervised learning, and reinforcement 
learning. Supervised learning aims to map a given input sample to one or more out-
puts by approximating the underlying function (Cunningham et al. 2008). During 
training, we refer to those outputs as ground-truth labels, since they are collected 
based on verifiable observations. Unsupervised learning aims to discover patterns in 
the data and does not use any labels (Ghahramani 2003). Reinforcement learning 
pertains to teaching intelligent agents how to take actions in an environment in order 
to maximize a reward (Wiering and Van Otterlo 2012). In the context of predicting 
patient deterioration, we study the task under the supervised learning paradigm. 
Given a set of clinical observations, the goal is to predict whether the patient will 
deteriorate or not (yes/no, i.e., a binary classification task).

There are several popular machine learning models that are used for binary clas-
sification tasks, such as support vector machines, decision trees, random forests, 
k-nearest neighbor, boosting models and artificial neural networks. Neural networks 
fall under a wider field of study called deep learning (LeCun et  al. 2015). Deep 
neural networks consist of multiple layers of artificial neurons that learn abstract 
representations of the input data. The architecture of a neural network describes 
how the layers, neurons, and functions are organized. Some neural network archi-
tectures have already achieved tremendous success in computer vision applications, 
such as convolutional neural networks, as well as in natural language processing. In 
the next sections, we present a few examples that used machine learning for the 
purpose of predicting clinical deterioration.
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7.3.1 � Laboratory Decision Tree Early Warning Score

For a long time, EWS systems mainly relied on assessing the patient’s status based 
on changes in vital signs (Kyriacos et al. 2011) as described in Sect. 7.2. This was 
motivated by clinical literature highlighting the correlation between vital signs and 
deterioration, and the fact that vital signs are collected more frequently than other 
types of clinical data. Considering the information captured by laboratory tests, one 
study proposed a new EWS system using a binary logistic regression classifier and 
seven commonly collected laboratory tests in 2005 to predict in-hospital mortality: 
hemoglobin, white cell count, urea, albumin, creatinine, sodium, and potassium 
(Prytherch et al. 2005).

Despite the simplicity of logistic regression compared to other types of machine 
learning models, one limitation is that the calculation cannot be easily computed on 
paper. Hence, a later study proposed a Laboratory Decision Tree Early Warning 
Score (LDTEWS) in 2013 (Jarvis et al. 2013). The authors developed LDTEWS 
using a decision tree analysis for females and males separately, with data collected 
from adult patients in the Portsmouth Hospitals NHS Trust and the end-outcome of 
mortality. They then assigned weightings to the decision tree branches, in order to 
tabularize LDTEWS and allow ease of implementation on paper in a similar fashion 
to classical EWS systems.

The LDTEWS:NEWS risk index was later introduced in 2018, consisting of a 
weighted sum of LDTEWS (laboratory test results) and NEWS (vital-sign measure-
ments) at a given time (Redfern et al. 2018). The weighting also considered the time 
difference between the two scores using a linear decay weight, since the vital signs 
are collected more frequently. LDTEWS would not be considered as part of the 
calculation if it was computed more than 5 days prior to NEWS. The LDTEWS:NEWS 
index performed better than NEWS, highlighting the benefit of considering the 
information in both types of data.

7.3.2 � Deep Interpretable Early Warning System

As discussed in Sect. 7.2.3, one limitation of classical EWS systems is that they 
do not consider any temporal information in the vital-sign measurements, and 
rather assume that they are independent and identically distributed random vari-
ables. On the other hand, while certain deep neural network architectures are able 
to capture sequential information, they are usually treated as black-box models 
since they lack interpretability. In our recent work, we proposed the Deep inter-
pretable Early Warning System (DEWS) (Shamout et al. 2019c) based on an atten-
tion-based recurrent deep neural network. Recurrent neural networks are a type of 
deep neural networks that are able to capture sequential information, such as 
within textual or time-series data. We considered the composite outcome of in-
hospital mortality, cardiac arrest, or unplanned admission to the intensive unit 
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within 24 h from assessment time. Since vital-sign sequences are sparse, our sys-
tem first samples the posterior mean and variance at regular intervals from the raw 
sequences using Gaussian process regression (Rasmussen and Williams 2006). 
For interpretability, we implement an attention layer in the classification network 
that assigns an importance score, between 0 and 1, to each timestep within a vital-
sign sequence. The importance scores hence represent how the network pays 
attention to information at different timesteps. The attention-based network finally 
processes the regularly sampled sequences to compute a prediction, and its atten-
tion scores are assessed for interpretability. DEWS outperforms existing baselines 
in terms of discriminative ability and in decreasing the trigger rate at a fixed level 
of sensitivity.

Our subsequent work compared the effect of data interpolation of time-series 
vital-sign data using Gaussian process regression and generative neural networks, 
i.e. neural processes (Sharma et al. 2021). Although deep neural networks and other 
types of machine learning models cannot be implemented manually using pen and 
paper, they offer performance gains compared to classical EWS systems.

7.3.3 � Advances during the Coronavirus Pandemic

The coronavirus 2019 (COVID-19) pandemic led to strained hospital resources and 
staff burn-out worldwide. Due to the urgency, significant efforts focused on the 
development of algorithms for CDSS for patients with COVID-19 (Wynants et al. 
2020), with the majority focusing on the diagnosis of the disease rather than prog-
nosis. The latter is of utmost importance in the context of this chapter, since hospi-
talized patients with COVID-19 may suffer from a variety of adverse events, 
including the need for extensive respiratory support, transfer to the intensive care 
unit, or mortality.

In our recent work, we identified an imminent need for deterioration prediction 
algorithms that can inform patient triage in the emergency department. Chest X-ray 
imaging was considered a first-line triage tool for COVID-19 patients. Compared to 
other imaging technologies such as computed tomography or magnetic resonance 
imaging, it is less costly and minimizes the risk of contamination due to portable 
technology. We proposed a prognostic system that predicts the composite outcome 
of mortality, intubation, or admission to the intensive care unit in the emergency 
department using data collected at NYU Langone Health (Shamout et  al. 2021). 
Specifically, the system first processes chest X-ray images using a convolutional 
network (globally aware multiple instance classifier (Shen et al. 2019)), and then 
fuses the imaging predictions with those of routine clinical data, computed using a 
gradient boosting model, via weighted averaging. The network is multi-task since it 
predicts the risk of deterioration within each of 24, 48, 72, and 96 h time windows. 
The system also computes saliency maps that indicate important regions in the 
image using weakly supervised learning. The findings of our study highlight the 
significance of chest radiographs in the context of deterioration prediction and the 
complementary nature of imaging and non-imaging clinical data. While the results 
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are promising, such systems largely diverge from the classical EWS systems. They 
only go as far as providing an overall risk prediction score, rather than a scoring 
system with multiple levels to prompt action accordingly.

Although classical EWS systems were originally developed for pre-pandemic 
hospitalized patients, they were still being used in hospitals during the pandemic. 
Hence, in another project based at the University of Oxford, we also evaluated the 
performance of such scoring systems, including NEWS, AEWS, LDTEWS, and 
LDTEWS:NEWS for the prediction of respiratory deterioration among patients 
admitted to the Oxford University Hospitals (Youssef et al. 2021). All systems sig-
nificantly underperformed in the COVID-19 cohort compared to previously reported 
results. Such work emphasizes the lack of generalizability of EWS systems when 
transferred to different adverse events or patient cohorts, and illustrates the benefits 
of machine learning algorithms compared to traditional scoring systems that are 
currently used in practice.

7.3.4 � Strengths and Limitations

Early warning systems based on machine learning and deep learning models also 
have their unique strengths and limitations. Since the models learn from large and 
diverse datasets, they are likely to perform better than classical EWS systems. 
Additionally, they can be easily modified, or fine-tuned, for a specific patient cohort 
of interest, compared to classical systems where alerting ranges need to be adjusted 
heuristically or based on clinical expertise. This can help reduce the performance 
gap when the models are adapted to patient populations that were not seen during 
model training. Their input space is also scalable, since the models are not limited 
to a specific number of input variables as in classical systems, where the inputs are 
carefully curated based on clinical expertise.

On the other hand, training accurate machine learning models, especially deep 
neural networks, requires a large amount of labeled data. In practice, we encounter 
two main challenges: a limited amount of labeled data, or if the data is available, 
then it may be noisy due to the inherent nature of data collection in healthcare sys-
tems. The collection of data is not a trivial task, and may not always be viable, 
especially in low-resource settings where digitized electronic health systems are not 
even available. Furthermore, the models are prone to learn different kinds of biases, 
such as dataset bias, leading to biased models in practice. Model fairness is indeed 
a growing area of research in AI in healthcare. Another related limitation is that 
machine learning models can only be developed and applied using computerized 
systems, since they cannot be easily implemented using pen and paper due to the 
complexity of the calculation. Hence, many models are viewed as black-box models 
as their reasoning process lacks interpretability. Finally, most of the early warning 
systems that are based on machine learning are designed to output an overall risk 
score, which can be binarized on the basis of a clinically appropriate level of sensi-
tivity or specificity. Thus, such systems still lack an appropriate clinical response 
plan compared to the classical EWS systems.
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7.4 � Future Outlook

7.4.1 � Evidence of Clinical Impact

Despite recent advancements, the value of EWS systems in real-world clinical set-
tings has been strongly debated, which directly limits their proliferation. This is 
largely attributed to the fact that the quantity of retrospective studies, especially in 
machine learning, largely exceeds the number of prospective validation studies. 
Prospective validation studies offer the opportunity to implement and deploy a pro-
posed algorithm, in order to understand its performance in a real-world environ-
ment. For example, one systematic review evaluated the reported impact of EWS 
systems on specific patient outcomes, such as in-hospital mortality, length of hospi-
tal stay, and cardiac arrest (Alam et al. 2014). While only seven studies met the 
review’s inclusion criteria, the findings were mixed: only two studies showed a sig-
nificant reduction in mortality, while the rest reported positive trends with no sig-
nificant findings. Two of the studies included in the review interestingly reported 
that the deployment of the EWS system led to an increased collection of vital-sign 
measurements. This highlights that algorithm deployment can have a positive effect 
on data collection practices, eventually leading to even better algorithms.

Another systematic scoping review investigated the impact of machine learning-
based EWS systems for clinical deterioration (Muralitharan et al. 2021). While 24 
studies fit the inclusion criteria, 23 were retrospective and only one was prospective. 
The latter investigated the impact of deploying a random forest classifier in a pro-
spective cohort with 178 patients. The model resulted with a significant improve-
ment in performance in detecting early signs of deterioration, however the study 
provided no further insights on the clinical effect of the system (Olsen et al. 2018). 
In the context of COVID-19, most studies were also retrospective with only a few 
highlighting good performance in prospective studies (Wynants et  al. 2020; 
Schöning et al. 2021; Tang et al. 2021). A careful systematic review is needed to 
understand the findings of studies that performed prospective validation of EWS 
systems for clinical deterioration of patients with COVID-19. Although prospective 
validation is rather expensive, since it requires deployment and involvement of clin-
ical staff, we emphasize the need for more prospective studies to leverage a positive 
clinical impact of early warning systems upon implementation.

7.4.2 � Learning From Diverse and Heterogeneous 
Data Modalities

With the proliferation of digital devices and systems, medical data is vast and het-
erogeneous. Multi-modal machine learning pertains to building models that can 
process information from different modalities (Baltrušaitis et  al. 2018), where a 
modality refers to a single source of information. Existing work on multi-modal 
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learning has mainly focused on language, vision, or speech modalities for various 
applications, such as audio-visual speech recognition. In the context of clinical 
deterioration, most approaches focus on learning from uni-modal data, except for a 
few recent studies (Shamout et al. 2021). We argue that the next generation of algo-
rithms for EWS systems should focus on processing different types of information 
available in the patient record and not just vital signs such as imaging data like chest 
X-rays, data collected from wearables, genomic data, or the patient’s family history. 
This could lead to more accurate models considering the diversity of information 
captured by each modality.

7.4.3 � Towards a General Decision Support System

There are numerous algorithms within the existing literature that aim to support 
clinical decision-making by predicting deterioration. Unfortunately, many of those 
models seek to compete with one another or are developed in silo for a particular 
patient cohort or clinical outcome, yielding models that fall under the narrow AI 
domain, i.e. they focus on one narrow task. In the pursuit of Artificial General 
Intelligence (AGI), where a single system is theoretically expected to perform all 
human tasks, there needs to be focused efforts that aim to standardize clinical mod-
els towards a general CDSS. This could include standardizing definitions of clinical 
outcomes and performance metrics, and democratizing access to data to encourage 
multi-center trials with larger and more diverse patient cohorts (Alam et al. 2014). 
Such efforts need inter- and multi-disciplinary collaborations in order to build better 
algorithms with the common goal of improving patient outcomes.

7.5 � Conclusion

In summary, we provide the readers with an overview of recent advances in compu-
tational approaches for EWS systems as a form of CDSS. We mainly focus on the 
inference engine of CDSS in the context of predicting clinical deterioration, but 
there is also important work related to human factors research and how to best com-
municate the predictions with clinical staff. We note that the predictive models have 
significantly evolved in the last decade, based on the increased availability of clini-
cal data and computing resources. To meet the potential of such systems in practice, 
we are now in need of a new generation of multi-modal EWS systems that can 
integrate complex data modalities, as well as centralized learning capabilities to 
reach the goal of a general CDSS. To ensure robust performance in practice, we also 
need to shift some efforts towards evaluation research.

We only cover a handful of EWS systems to illustrate advancements in model 
development over time within the scope of this chapter. For further readings on 
EWS systems, we refer the readers to extensive reviews published on the topic 
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(Gerry et al. 2017; Downey et al. 2017; Gao et al. 2007; Kamio et al. 2017; Smith 
et al. 2014). We also refer readers to the doctoral work that proposed AEWS and 
DEWS, titled Machine Learning for the Detection of Clinical Deterioration on 
Hospital Wards (Shamout et al. 2020). Finally, while this chapter focuses on clinical 
deterioration, we would also like to refer the readers to our review on Machine 
Learning for Clinical Outcome Prediction (Shamout et al. 2020) for a more exten-
sive review on machine learning applications beyond the prediction of clinical 
deterioration.
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Chapter 8
Mixed and Augmented Reality 
in Healthcare: When Will It Deliver Its 
Promises?

Natalia Wrzesińska

Abstract  Medical innovations mean improvement to patients’ safety and outcome. 
Sometimes modern technologies that are not designed for medicine turn out to have 
applications in medical practice. Augmented or mixed reality is a great example and 
countless applications in various medical fields have proved its usefulness. So, 
when will mixed reality be used routinely in medical practice and what is keeping 
this technology from becoming part of modern medicine? This chapter will high-
light possible benefits and some challenges concerning the use of mixed reality in 
medical practice and education.

Keywords  Mixed reality · Augmented reality · Hologram · Head-mounted display  
Smart glasses · Image-guided surgery

8.1 � Introduction

The world around us is changing rapidly as we increasingly rely on technology. 
New generations cannot even imagine the world without it. The technology to sup-
port mixed, augmented, and virtual reality has already become a part of our world. 
Nowadays, medicine is changing rapidly compared to past centuries when none of 
these digital health technologies were available.

Mixed Reality (MR) brings together the real and virtual worlds. In mixed reality, 
physical and digital objects interact in real time but have no specific place in a vir-
tual or real world. One can say it is a mix of augmented reality and virtual reality in 
either two or three dimensions (meaning adding virtual objects to the real environ-
ment). In 1994, Paul Migram described mixed reality as a scale of reality—a virtual 
continuum where mixed reality covers every state between the real and virtual 
worlds (Milgram et al. 1994).
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Although mixed reality is still mainly associated with entertainment, various 
other industries have implemented it for different purposes. So far, it has been 
already used with success in education, military training, remote working, architec-
ture, interior design, and product content management, among many others. In the 
case of medicine and its wide range of possible applications, the use of mixed real-
ity stands out as a very promising tool in healthcare as well.

In practicality, to accomplish a mixed reality environment, there is myriad of 
digital tools from mobile devices or wearable technology to entire rooms designed 
for it. The usefulness of smart glasses in medicine has been especially evaluated and 
proven to be of benefit in many studies even when, in many cases, the evaluated 
devices were not medical devices and were not designed for medical purposes. 
Analytics from Market Data Forecast predict the market compound annual growth 
rate of global mixed reality to be 47.9% during 2020–2025 and the medical holog-
raphy market to grow from only USD 500 million in 2021 to over USD 2 billion in 
2026. This growth will be driven by improvement in technology and by access to it. 
This chapter will highlight potential benefits, opportunities, and some challenges to 
the application of mixed reality in medical practice and medical education.

8.2 � Possible Use of Mixed Reality in Medicine

Mixed reality devices often come in the form of headsets or smart glasses. Smart 
glasses are usually web-connected wearable computing devices that allow the trans-
mission and projection of various types of data in the field of vision. Early models 
could perform basic tasks and display some pictures and figures in the field of 
vision. Such visualization could be useful in everyday medical practice. However, 
with technological progress, other devices have rapidly appeared that are capable of 
displaying three-dimensional objects with which users can interact in real time. 
These devices use special mobile applications dedicated for specific tasks.

In general, smart glasses can display all kinds of information: patient data, test 
results, imaging studies reconstructions etc. Almost a decade ago, Google Glass™ 
was one of the first models of smart glasses to be used in medicine. These efforts 
were not only popularized in the media, but also were described in numerous inves-
tigational studies and reports. Using a wireless platform, smart glasses present prac-
tically no obstruction to human interactions and movements. The other advantage is 
the short learning curve and the fact that smart glasses can run on the well-known 
android system. Other early smart glasses had low wearability, a longer learning 
curve, and were obstructive to human-to-human interactions. O. J. Muensterer is a 
pediatric surgeon and a Glass explorer. He wore Google Glass in LMU Munich 
Children’s Hospital for 4 consecutive weeks, each in different clinical situations, 
and kept a diary of his experience. He focused on how well the device is tolerated 
by the user, checking features like wearability, battery life, and audiovisual quality. 
Patients’ and their families’ responses to the device were also assessed (Muensterer 
et al. 2014).
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Google Glass allows the projection of various data. This concept was used by 
Jeroudi et  al. to investigate the accuracy of electrocardiogram interpretation by 
Google Glass. Each of 10 compared electrocardiograms was visualized in four for-
mats: as viewed by Google Glass; picture taken by Google Glass; paper version; and 
a picture taken by the camera. The researchers then compared differences in the 
interpretations of the electrocardiograms. Although users were not satisfied with the 
images compared to the paper version, this study among others is an example of 
using such a device in telemedicine (Jeroudi et al. 2015).

Smart glasses also allow the sharing of information among specialists, whether 
as a consultation from within the hospital or from anywhere in the world. Authors 
from Yale University attempted to show the application of Google Glass for telecon-
ferencing in emergency medicine. In their project, a team of paramedics performing 
triage during mass accidents consulted with an emergency medicine specialist. The 
results revealed some obstacles but overall performance was not decreased; how-
ever, it took the users more time to perform their tasks. This study showed that with 
some technical improvements, smart glasses could be used in medical emergencies 
(Cicero et al. 2015).

There are few mixed reality head-mounted displays available; the most com-
monly used platform for mixed reality currently is Microsoft HoloLens (Redmond, 
WA, USA). This system projects holographic three-dimensional images in the 
user’s field of vision and runs on Windows operating system, which is familiar to 
users worldwide, making it extremely easy to navigate. It contains an internal bat-
tery and features Wi-Fi and Bluetooth connectivity.

This head-mounted mixed reality device is light (566 grams) and comfortable to 
wear, with an adjustable headband and fits over eyeglasses, which is another 
advantage.

Many companies and start-ups from around the world are developing specific 
applications for Microsoft HoloLens, some for medical use. Some applications pro-
vide access to medical data, remote patient care tools, life streaming, educational 
tools and, of course, 3D reconstructions for surgical planning and assistance.

Almost every field of medicine from anatomic pathology (viewing 3D speci-
mens, navigation through specimen slices, telepathology) (Hanna et al. 2018), pri-
mary care physicians, oncology, and radiotherapy (mixed reality-guided patient 
positioning systems) (Li et al. 2022) among others can take advantage of MR.

With the global COVID-19 pandemic, another advantage of using MR devices 
has emerged. The pandemic led to acceleration in the implementation of digital 
tools and telemedicine solutions in many countries. The main goal was to provide 
safety for patients and medical staff when accessing medical professional diagnosis 
and treatment.

A pilot study was conducted at Imperial College London Hospitals using mixed 
reality during COVID-19 patients’ consultations. In that study, a single senior staff 
member entered the COVID-19 ward for rounds and patient care wearing a Microsoft 
HoloLens2 while other practitioners joined the rounds and took part in the process 
virtually. This reduced the risk of coronavirus transmission by minimizing physical 
interaction between hospital staff and infected patients. Total reduction of exposure 
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time in all participating teams was 222.98 h/week. In addition, a significant reduc-
tion in the use of personal protective equipment (PPE) was noticed (approximately 
3100 fewer items of PPE used per week). When staff members were questioned 
about their experience using the mixed reality device and its impact on their work, 
75% said it was easy to navigate and more than 70% noted that it is comfortable to 
wear. HoloLens facilitated the work, the rounds were less time-consuming, and 
teamwork was improved (Martin et al. 2020).

A similar study conducted by Jeremy B Levy et al., also in London, reported 
similar results. In this study, COVID-19 patients were asked about their views on 
the use of the mixed reality headset during medical rounds. No patient claimed that 
the device disturbed their medical care or their interaction with medical staff (Levy 
et al. 2021).

In another implementation of mixed reality concerning COVID-19 patients, 3D 
holograms with mixed reality techniques were used to assess pulmonary lesions in 
COVID patients. The study showed that compared to standard CT scans, mixed 
reality 3D holographic images can be helpful to evaluate pulmonary lesions espe-
cially by less experienced doctors (Liu et al. 2021).

8.3 � AR and MR in Surgery

Smart glasses react to simple voice commands, eye movements, or gestures. The 
hands-free system is particularly helpful in surgical practice and other fields of med-
icine that require practitioners to work manually, sometimes in sterile field. 
Numerous proofs of concept for smart glasses in surgery have been proposed.

The concept of projecting test images in the field of vision has been studied 
widely. For example, Wu et al. used Google Glass to facilitate ultrasound-guided 
central venous access. In this study, the Google Glass user had fewer additional 
head movements (Wu et al. 2014).

Three-dimensional pictures are routinely applied in the preoperative evaluation 
of surgical patients. This is usually a simple 3D reconstruction of images viewed by 
the surgeon on a plane screen. However, in some complex cases this is not adequate. 
Spatial understanding is crucial to achieve surgical precision and avoid complica-
tions. There is growing interest of 3D printing in preoperative planning, which 
would allow the surgeon to see and touch the printed organ and even practice the 
surgical procedure beforehand. This permits a better understanding of a patient’s 
anatomy, thereby improving safety and accuracy. Using augmented reality and 3D 
reconstruction, for example, holographic images could be as useful but cheaper and 
faster than 3D printing. Additionally, with mixed reality, the surgeon can interact 
with the anatomical reconstructions in real time during the procedure and remain 
sterile in the surgical field. The holograms can be rotated, sliced, or scaled freely by 
the surgeon and can be placed anywhere in the visual field. The user can even “step 
inside” the target organ virtually, an experience never before possible. Most applica-
tions created to display holographic reconstructions of a patient’s anatomy work 
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Fig. 8.1  Process of rendering CT scans to hologram. Photo: Tomasz Jędrzejewski, Medical 
University of Warsaw press office

with different imaging techniques recorded in the DICOM standard (Digital Imaging 
and Communications in Medicine) such as computed tomography (CT), magnetic 
resonance imaging (MRI), angiography, or 3D ultrasonography, and some have the 
capability to connect directly to imaging devices, for example, echocardiography 
devices, to visualize the images in real time (Fig. 8.1).

The application of Microsoft HoloLens has been described in various surgical 
fields, e.g., orthopedic surgery, plastic surgery, neurosurgery, oncological surgery, 
and many others. Practitioners from all fields of medicine see the prospects of mixed 
reality in their everyday work and are trying to explore its possibilities in their 
practice.

Mixed reality tools in preoperative planning might be of great benefit in cases 
where the patient’s anatomy differs such as congenital diseases or in complicated 
oncological cases. Brun et al. described one of the first examples of preoperative 
planning using mixed reality in congenital heart disease. The suggestions for the 
surgical repair were made based on 3D mixed reality reconstructions. The holo-
grams were easy to interpret and helped the surgeons solve challenging tasks intui-
tively and were rated highly by all users (Brun et al. 2019). Some of the applications 
for HoloLens provide specific tools for surgical planning (Kumar et al. 2020).

Research relating to the use of mixed reality in the spatial understanding of liver 
anatomy showed that it decreases the time to correctly identify lesions in the liver 
and, in some localizations, also increases accuracy (Pelanis 2020).

Dimitrios Chytas and Vasileios S Nikolaou in their literature review outlined the 
state of the use of mixed reality in orthopedic surgery (Chytas and Nikolaou 2021). 
They described numerous implementations found in the literature. For example, 
reverse shoulder arthroplasty performed with the aid of an MR headset to better 
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visualize the anatomy (Gregory et al. 2018), cervical spine complex fracture proce-
dure where MR was used for preoperative planning and perioperatively (Wu et al. 
2018), and total hip arthroplasty with the use of both mixed reality and 3D printing. 
These are only a few examples of countless proof–of-concept studies conducted in 
many areas of surgery (Lei et al. 2019).

MR is a tool that can help personalize treatment and could help in the implemen-
tation of new methods with better visualization and accurate planning. An example 
is a study conducted in Cracow where patients with unresectable pancreatic or liver 
tumors had irreversible electroporation or microwave ablation treatment with the 
assistance of Microsoft HoloLens 2. MR was used preoperatively for planning and 
during the procedures to support the decision-making process. Additionally, the 
researchers assessed the remote connection with a team of specialists (Wierzbicki 
et al. 2022).

3D reconstructions for surgical planning with the use of MR can potentially 
increase the surgeon’s precision, help with the expertise, and increase the safety of 
the procedure. Having the opportunity to see the organ in 3D and to interact with it 
proved to be the most advantageous for trainees and less-experienced doctors in 
particular.

Another step toward the future will be totally augmented or mixed reality-guided 
surgery, where anatomical reconstructions would not help plan the procedure and 
understand the anatomy, but the surgery would be navigated by a mixed reality 
platform.

One of the best examples of augmented reality image-guided surgery is spine 
surgery (pedicle screw insertions) with Augmedics Xvision Spine system, a wire-
less surgical navigation platform that allows visualization of a patient’s spine anat-
omy through the skin and tissue using a minimally invasive percutaneous procedure. 
The system helps in navigating implants while looking at the surgical field with no 
need to look on the other monitors for imaging study results. The platform consists 
of a transparent near-eye-display headset; otherwise, it is similar to currently used 
traditional navigation systems. Researchers on a cadaveric proof-of-concept study 
determined its accuracy. Additionally, with no need to look at separate screens it 
eliminates attention shift (Molina et al. 2019).

The advantage of using smart glasses during surgery also lies in the possibility 
for the surgeon to consult and interact with other specialists, and to ask them for 
advice. For example, while performing reverse shoulder arthroplasty with the aid of 
a mixed reality HoloLens, Gregory et al. shared the procedure video in real time 
with four other specialists for expertise (Gregory et al. 2018).

Another interesting implementation of augmented reality in the operating room 
is using it for following the surgical safety checklist developed by the World Health 
Organization. Because many medical errors happen in the operating room, the sur-
gical safety checklist can be lifesaving. Many surgeons read the checklist from a list 
hanging on a wall or do it from memory, which can lead to skipping some important 
steps. Thomas Boilat and Homero Rivas developed the Digital Checklist Box 
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(DCB), which can be projected directly onto the draped patient and completed and 
verified before starting the surgical procedure, preventing the surgeon from missing 
steps (Boilat and Rivas 2021).

8.4 � MR in Endovascular Procedures: One of the Greatest 
Examples of Its Usefulness

Endovascular surgery, interventional radiology, and interventional cardiology are 
notable examples of medical fields that could benefit most from these MR 
technologies.

One of the major challenges of endovascular procedures is working with two-
dimensional images of a three-dimensional anatomy. Oftentimes, vascular anatomy 
is complex, requiring the surgeon to use their spatial imagination; nevertheless, 
sometimes many angiographic images have to be taken in order to insert catheters 
or wires in the right position, which raises concerns about radiation exposure for 
both patient and surgeon, and the use of iodine contrast.

One of the first implementations of the HoloLens on larger scale was made by 
interventional cardiologists. Opolski et  al. performed 15 percutaneous coronary 
interventions for chronic total occlusions with the assist of MR and showed lower 
contrast exposure compared to procedures without MR assist (Opolski et al. 2017).

The author of this chapter had the opportunity to use Microsoft HoloLens during 
endovascular aortic aneurysms repairs (EVAR). We thought that using 3D holo-
grams of a patient’s anatomy could make orientation within the vascular anat-
omy easier.

The EVAR procedure involves radiation exposure and iodine contrast agent, 
which can cause acute kidney injury. Dealing with more complex aneurysms using 
fenestrated or branched stent-grafts also involves increased radiation, more contrast 
use, and a prolonged procedure. In those cases, mixed reality could be most useful.

We used the Carna Life Holo application created by Polish company, MedApp. 
Holograms of the patient’s anatomy are created from preoperative standard cross-
sectional DICOM computer tomography images that are segmented and processed. 
The stent-graft implantations were successful, and we observed no adverse events 
during follow-up. Seeing the patient’s vascular anatomy reconstructions precisely in 
three dimensions certainly helped us navigate the vascular tree (Fig. 8.2). To our 
knowledge, this was one of the first implementations of holographic visualization 
during an EVAR procedure in the world (Fig. 8.3) (Wrzesińska n.d.).

To see the anatomy and position of the catheters and stents in real time would 
revolutionize the field of endovascular interventions. Authors from Germany pro-
posed a mixed reality guidance system for the EVAR procedure with the use of a 
HoloLens display. They used a special artificial human torso with an aortic aneu-
rysm phantom to assess the electromagnetic tracking system (sensors were attached 
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Fig. 8.2  Holographic visualization of vascular tree projected on a surgical field

Fig. 8.3  Visualization during mixed reality-assisted EVAR procedure. Photo: Tomasz 
Jędrzejewski, Medical University of Warsaw press office

on the catheters’ tips and navigated by ultrasound), and display this information on 
the HoloLens in real time (García-Vázquez et al. 2018). Those techniques with tech-
nological improvements might result in shorter procedure time and a decrease of 
radiation and contrast use in the future.
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One way to obtain visual data in real time is by using 3D ultrasonography. 
Currently, this is easier to apply in cardiac procedures as many applications allow 
the creation of holograms directly from echocardiography.

An example of a system that creates holographic images in real time is RealView 
Imaging, an Israeli company. According to the manufacturer, this is the first medical 
holographic system in the world. It was initially targeted to support interventional 
cardiology procedures. This system provides 3D holographic images projected with 
the use of special patented Digital Light Shaping™ technology. There is no need for 
smart glasses or other wearable devices as images are projected in the air. The sys-
tem has FDA clearance for clinical use.

Researchers from Israel conducted a feasibility study using this holographic sys-
tem during cardiac catheterization procedures. The system uses intraprocedural data 
from live 3D transesophageal echocardiography and 3D rotational angiography to 
make real-time holographic reconstructions. Eight patients were enrolled in the 
study. All anatomical landmarks during the procedures were identified successfully 
with no adverse events (Bruckheimer 2016).

8.5 � MR in Education

Given its interactive features, mixed reality has an enormous potential in medical 
education.

One of the first and most spectacular examples of bringing mixed reality to 
teaching is a program conducted by Case Western Reserve University. In their proj-
ect, medical students study anatomy via MR with the use of Microsoft HoloLens. 
The device enables students not only to see the anatomical structures in 3D but also 
to interact with holographic images and even whole-body holographic mannequins. 
This teaching method was compared with traditional anatomy classes on cadavers. 
Upon examination, there was no statistical difference between the scores of students 
taught using MR and those taught learning on cadavers (Stojanovska et al. 2019).

Another prospective study of anatomy students compared anatomy course study 
time and effectiveness between two groups: those using an MR learning platform 
and those using traditional methods (cadaveric dissection). The results indicated 
that while learning time was shortened using MR, there was no difference in the 
groups’ examination score (Ruthberg et al. 2020).

One more example of using MR in anatomy training was described for plastic 
surgeons. Researchers used a mixed reality HoloLens platform and virtual face 
models reconstructed from pictures taken from different angles. The device was 
able to project individual layers of the face anatomy (Kumar et al. 2021). These and 
other research studies prove that mixed reality can be successfully implemented in 
teaching anatomy.

With the use of smart glasses that have potential to bring demonstrations, record-
ing, and live-streaming videos at any given location globally, education becomes 
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not only easier but also more attractive. This attribute of mixed and augmented real-
ity is particularly exploitable in surgical training. Traditionally, when performing 
surgical procedures there are some limitations on the number of persons that can 
participate in or watch. Those physical limitations end when the procedure can be 
transmitted, recorded, and explained. Harnessing mixed reality in the medical edu-
cation process allows students and trainees to interact with the content they are 
studying, which by all means is more effective than just observing. Using mixed 
reality methods, the teaching surgeon can reach many trainees all over the world at 
the same time, whereas traditional methods limit the number of trainees.

Telementoring is another interesting application for augmented or mixed reality, 
allowing students or residents to perform some procedures on a patient by them-
selves while being constantly monitored and controlled by a supervising person. 
This can be done regardless of distance between trainee and supervisor as they can 
work, for example, in different hospitals (Mitsuno et al. 2019). Residents and more 
experienced surgeons learning new techniques could also benefit (Guraya 2019). 
Telementoring can help in potential guidance for a complex procedure not per-
formed by a surgeon on a daily basis or when the patient is in a critical condition and 
cannot be transported to a specialized surgical center.

MR can also be used to simulate scenarios of potential clinical situations. This is 
a particularly popular way of teaching procedural and technical skills. Simulation-
based training has been confirmed to be safe and effective, and to reduce the rate of 
complications. Trainees using MR simulations learn tasks mimicking relevant clini-
cal situations. Assorted studies have shown that the results of such training are simi-
lar to traditional one but that the lower cost and improvement of patient safety are a 
benefit of MR simulations (Barsom et al. 2016; Huang et al. 2018).

As mentioned earlier, the global COVID-19 pandemic not only had an impact on 
providing healthcare but also on education, making it necessary to implement 
remote access in many places in the world. Likewise, medical education, which is 
based on interactions with patients, had to change dramatically during lockdowns. 
Again, augmented, or mixed reality in such a case presented a fine solution (Kassutto 
et al. 2021).

8.6 � Patients Also Can Use MR

Not only healthcare practitioners can benefit from using mixed reality in their work 
but patients can also directly benefit from it. Using MR can empower patients in the 
sense of interaction between them and their physicians, telemedicine, simplifying 
hospital or outpatient visits, and patient’s education before surgery among many 
other functions. Companies make applications for patient use in pain management, 
rehabilitation, or to plan pharmacological treatment. Mixed reality can help patients 
with chronic diseases like Parkinson’s disease or with chronic pain (Wrzesińska 2015).
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8.7 � Challenges

With all those possible implementations, MR seems like a solution to many prob-
lems by the facilitation and betterment of existing solutions (Table 8.1). So, when 
will it deliver its promises and why does it take so long? Though medicine is becom-
ing more technology-dependent, innovations in medicine take longer than in other 
areas. Because medicine has strict rules and restrictions, the speed of technological 
progress is limited. Every new method and device has to proceed along a path from 
its inception to its implementation in medical practice; indeed, questions arise about 
the use of mixed reality in medicine.

The first and most important limitation that may hinder the use of mixed reality 
in medicine is the law because most of the augmented/mixed reality devices are not 
medical devices. Although the devices do not need to be certified for medical use, 
the medical applications of them oftentimes do. The legislation process in medicine 
takes a long time, especially if the innovation is something completely new, and the 
slow FDA approval process is not flexible for a prompt digital revolution.

We have to address also issues of data protection before using MR tools as this 
could be the main inhibitory factor in implementing these technologies in everyday 
clinical use. Of course, all medical software applications for MR systems must deal 
with the issue of confidentiality and adapt to local regulations.

For now, research is dominating the medical holography market according to a 
Market Data Forecast report. Geographically, the North American region is holding 
the largest market share in medical holography. This might be attributed to better 
support in medical research and better funding as well as good accessibility to and 
acceptance of innovative technologies (Market Data Forecast 2021).

Various technical aspects may inhibit MR implementation in healthcare. If the 
technology is to be used in everyday practice, then it has to be not only safe and 

Table 8.1  Current applications of mixed reality smart glasses in healthcare

Area of application Examples

Reading data, 
interacting with data

Vital signs, test results, 3D anatomical reconstructions

Communication Consultations, teleconferences
Video recording Life streaming of procedure, teleconferences, video records for digital 

documentation
Workflow, 
documentation

Digital patient history, remote consultations, emergencies, drug 
delivery tracking, procedure recordings

Patients’ empowerment Used in chronic diseases, telemedicine, patient connection, 
rehabilitation, pain management

Education Telementoring, trainees’ evaluation, self-evaluation
Safety and efficiency Safety checklists, surgical navigation/guidance, anesthesia and 

intensive care treatment monitoring, infectious diseases treatment 
safety
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effective but also ergonomic and not obstructive. Even though most devices can 
operate wirelessly, poor battery life is reported in many studies. For example, 
Google Glass has a reported battery life of 40 min (Muensterer et al. 2014; Chimenti 
and Mitten 2015). With Microsoft HoloLens, the battery life is longer (up to 5.5 h 
according to some studies), with around 3 h of active use and up to 2 weeks of 
standby time according to the manufacturer, and the device is fully functional when 
the battery is charging (Gregory et al. 2018).

Hence, because those devices were not designed for medical purposes, some 
technical limitations are not a surprise. Tao Zhan et al. addressed some technical 
issues like brightness, panel resolution, or vergence–accommodation conflict in 
existing MR and VR systems (Zhan et al. 2020).

With HoloLens, the user can control the amount of information in order to make 
the cognitive load tolerable. The quality and stability of the image do not cause 
motion sickness, and the voice and gesture commands are easy to use. In many stud-
ies, users were questioned about the comfort and ergonomics of mixed reality plat-
forms (Gregory et al. 2018; Léger et al. 2017).

The gap between research and clinical work is caused to a significant extent by 
costs. Hopefully, this will change over time as these devices become more popular 
and, therefore, more affordable. However, when compared to 3D printing, mixed 
and augmented reality applications cost less.

It seems that the younger generation of practitioners is more willing to try new 
technologies than older doctors. There is also a problem of mindset of medical prac-
titioners who are taught to be risk-averse and to use only proven methods; hence, 
they are oftentimes reticent to try new things. What has to be changed to move an 
innovation into practice is the mindset among clinicians.

In conclusion, it will take some time before we witness the use of MR in health-
care on a daily basis, but it is inevitable. It represents a phenomenal opportunity to 
adapt new technologies in medicine in order to improve patients’ outcome and 
safety. Despite some challenges that for now delay its wider use, I am sure that 
mixed reality will become a part of future medical and surgical practice as it is 
already a part of our everyday life.
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Chapter 9
Why Healthcare Needs Blockchain

Stewart Southey and Mehran Zarrebini

Abstract  As Healthcare evolves into a more patient-centric and digitised experi-
ence, we need a foundational technology layer that enables trust. Data exchange is 
at the heart of how health systems succeed or fail. Trust in how this data currency is 
transferred is critical to patient care, administrative efficiency, commercial relation-
ships, and the advancement of medical science in general. The fundamental value 
proposition of blockchain is that it enables disparate, potentially competing entities 
to transact peer-to-peer via a shared foundational infrastructure that brokers the trust 
between them. It manages the rules and builds the roads upon which a trusted data 
economy can exist. Our current healthcare systems are broken - precisely because 
the flow of critical information cannot occur without clinical or commercial risk. 
Blockchain is transforming the financial services industry through disintermedia-
tion and friction reduction with blockchain. Healthcare must similarly be trans-
formed. This chapter explores this claim, examines the reality of what has been 
developed thus far and offers a vision for how we might achieve a better future for 
healthcare. There will most certainly be barriers, but we believe that these are worth 
overcoming. This is what drives us forward. It is, we believe, essential for good 
healthcare.
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9.1 � Part 1: The Promise of Blockchain for Healthcare

The introduction of bitcoin to the world in 2008 sparked a revolution in how value 
is exchanged across the globe. It seems quite a leap to go from Peer-to-Peer Digital 
Cash (Nakamoto 2008) to where we are today, and the connection to healthcare may 
not seem immediately apparent. We examine the issues by considering the evolution 
of healthcare systems and the problems the technology aims to solve. A detailed 
explanation of the underlying technology is beyond the scope of this chapter. 
However, by exploring a few use cases in action, we aim to illustrate the value 
proposition and provide insights into how we anticipate a better vision for health-
care than the one we experience today.

While some of the start-ups that launched in the last 10 years or thereabouts are 
no longer operational, there are many that have found success. Blockchain technol-
ogy is evolving at a blistering pace, and the agile companies with strong teams have 
managed to adapt or pivot into commercially viable entities. Below, we analyse and 
present some of these successes, explore the potential reasons that others perhaps 
have failed and deliver insights for how the future may play out.

9.1.1 � The Technology: A Primer

Without delving too deeply into the technical jargon, it is imperative we explain the 
value proposition that this technology promises to deliver. Most readers will know 
about Bitcoin and digital currencies but perhaps not entirely understand just why 
they appear to have any value. Though the use of blockchain (the technology upon 
which these currencies are based) does not necessitate a ‘coin’, some foundational 
knowledge of how a crypto-economy functions will aid the discussion as we explore 
the use cases in this chapter.

9.1.2 � Blockchains

At its most basic level, a blockchain is a shared read-and-write database within 
which an object of value can be exchanged and recorded between two or more par-
ties. This database acts as an independent network or ecosystem in which members 
can interact and has embedded within it an agreed set of rules by which participants 
abide. The rules of interaction in the network are defined by the members, and the 
underlying protocol therefore acts as a governance structure underpinning the value 
exchanges for which it is designed. Each blockchain thus acts as a ‘Mini-Economy’ 
within which disparate entities who may not necessarily know or trust one another 
can trade objects of value directly with each other without relying on a trusted inter-
mediary or central authority. Instead, by agreeing to the protocol of ‘trading rules’ 
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defined, members place their trust in the underlying code to execute agreements 
faithfully. Members can contribute and vote on the governance rules of the system, 
and any changes to these rules generally requires a majority vote to amend the 
protocol.

The objects of value being traded can either exist as native assets on the block-
chain (e.g., like bitcoin) or can be digital ‘tokens’ which represent an asset off-
chain. Each ‘digital asset’ is housed permanently on the blockchain at a specific 
address (think of a cell on an excel spreadsheet) and the holder of the private key 
(think pin number) which proves ownership is required to transfer the asset to an 
address owned by another participant.

The ‘state’ of the blockchain (i.e., who owns what right now) provides a snapshot 
in time of the ‘state’ of the mini-economy. Every time an exchange of value is 
agreed as valid by the network and therefore permitted to occur, the new ‘state’ is 
finalised. With each new ‘state’ cryptographically linked to the previous state (all 
the way back to the very beginning of the network), the blockchain acts secondarily 
as an unalterable record of all previous value exchange events. An ‘append-only’ 
structure, it functions as an ever growing ‘chain of states’, documenting the events 
which lead to the current version of the ‘economy’.

Of critical importance, the confirmation of a new state can only be achieved 
through consensus in the network—“It is only true if we all say it is true”. The way 
this is achieved depends on the design of the particular blockchain in use as we shall 
see below.

The blockchain ‘Trilemma’ (Ledger n.d.) presented by Vitalik Buterin, CEO of 
Ethereum, argues that there is a trade-off between decentralisation, security and 
scalability, and numerous variations on the ‘blockchain’ theme exist to balance 
these conflicting elements. Security is best achieved with high levels of decentrali-
sation, but with a consequent reduction in scalability. With private, permissioned 
blockchains, a semi-trusted consortium of actors maintains the integrity of the led-
ger through consensus mechanisms that generally do not utilise crypto-economic 
incentives. These systems prioritise scalability but limit decentralisation and 
security.

Permissionless blockchains on the other hand, have much larger networks with 
many more unknown and untrusted entities participating. These systems usually 
utilise consensus mechanisms which issue cryptocurrencies as rewards for main-
taining the ledger integrity.

Built into this game-theory approach is the crypto-economic disincentive of try-
ing to alter the record. With Bitcoin, for example, the cost of computing required to 
control the contents of the ledger is far greater than the reward for acting honestly. 
Miners are thus incentivised to ensure only valid transactions are accepted onto the 
blockchain.

Deciding the need for a native ‘coin’ depends on the functionality of the block-
chain in use and perhaps whether crypto-incentivisation is required for ledger con-
sensus. Whether being used as a cryptocurrency (as a payment mechanism or store 
of value), a crypto-commodity (such as the Ethereum ‘gas’ fees used to fuel the 
execution of smart contracts), crypto-tokens with a particular economic purpose in 
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a closed economy (Tapscott 2020) (such as used in gaming) or as security tokens 
that represent ownership of a real-world asset (e.g., real-estate), the use of virtual 
assets can be fairly broadly defined. As previously mentioned, however, a private 
‘permissioned’ blockchain with a limited number of semi-trusted members can 
achieve ledger integrity to an acceptable degree with consensus mechanisms that do 
not require crypto-incentivisation. We explore the utility of deploying crypto-tokens 
later in the chapter when discussing use cases in healthcare. What is essential to 
understand, however, is that although cryptocurrency as it was envisioned for 
Bitcoin is a necessity for blockchain according to purist ‘Bitcoin Maximalists’, the 
industry has evolved and this is no longer considered the case.

What we take from all of this is that by using blockchains, it is possible for two 
or more parties to exchange objects of value peer-to-peer within a database, the 
integrity of which is maintained by the participants on the network. Recipients of 
these data objects can SELF-VERIFY the author and content of the data being 
transferred, knowing that it has not been altered en-route, as attested to by the net-
work consensus. Assets on-chain (such as a native currency) or digital representa-
tion of assets off chain must be differentiated. In both cases, however, the record of 
the value exchange is immortalised on the blockchain, which displays the state of 
data asset ownership as well as the event log of when and by whom the transfer was 
permitted. It is important to mention here that the data being transferred between 
parties does not necessarily need to exist on the blockchain. Small amounts of data 
such as the details of a cryptocurrency can exist on-chain without too much concern. 
Transferring large volumes of data would, however, be inefficient. Instead, by rep-
resenting the data being transferred with a unique digital hash (which changes if the 
underlying data is altered), we can record the data transfer event as a transaction on 
the connected blockchain layer. This provides us with a shared, unalterable, and 
fully auditable log of the information exchanges that have occurred.

To understand the implications for healthcare we need to examine the types of 
data being exchanged, the trust required to do so and the value that is derived by 
each party from that process.

9.1.3 � Healthcare Data

With a single patient generating nearly 80 megabytes of data each year in imaging 
and Electronic Medical Records (EMR) data, according to 2017 estimates, RBC 
Capital Market projects that “by 2025, the compound annual growth rate of data for 
healthcare will reach 36%.” This growth rate is notably faster than what’s projected 
for many other massive industries, including manufacturing, financial services and 
media and entertainment. While accounting for a rapidly multiplying amount of 
data—and data that is highly sensitive in nature—healthcare is uniquely ill-equipped 
to protect it. Today, approximately 30% of the world’s data volume is being gener-
ated by the healthcare industry (Capital Markets n.d.). An International Data 
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Corporation report sponsored by Seagate Technology delivered this blunt assess-
ment: “IT investment in healthcare is among the lowest of all industries (Culbertson 
n.d.). The value derived from this data in use is immense. A 2019 report by EY 
(Digital Health n.d.) estimated the value of the U.K. NHS data alone to be worth 
£9.6Bn per year. Globally, the figure for Big Data in Healthcare is estimated to 
reach $78.03 Bn by 2027 (Emergen Research n.d.).

To understand the value in greater detail, we need to examine the environment in 
which this data is being generated and utilised. To do this, we must explore the 
nature of healthcare systems, the multitude of players involved, and the risks associ-
ated with misuse of this data. Healthcare systems are inherently complex and have 
a myriad of stakeholders whose interests are not always necessarily aligned. Industry 
competition aside, it is evident that any sort of data sharing in healthcare brings not 
only unimaginable benefits but also clinical and commercial risk. The relationships 
between payors, providers, patients, suppliers, regulators, big tech firms and indus-
try R&D are by no means simple. While many entities exist in silos, all cohabit a 
fragmented yet inherently connected ecosystem, each influencing the dynamic 
either directly or indirectly. These complex networks themselves exist within a 
wider socio-political context and differ in their design across the globe. The way 
individual systems are architected varies from country to country, with each work-
ing to satisfy the needs of individuals and society. Policymakers are tasked with 
balancing these sometimes-conflicting demands with varying resource constraints. 
It is safe to say that no single system is perfect, and that taxpayer funded structures 
and those that are privately run each have their own challenges and benefits. 
Regardless, some commonalities exist across each.

We are increasingly seeing a more patient-centric approach to healthcare. This 
trend is changing the power dynamic in the ecosystem, resulting in new technologi-
cal and economic models for how care is delivered. In their prescient 1997 book The 
Sovereign Individual, Lord Rees-Mogg et al. (Rees-Mogg and Davidson 1997) pre-
dicted the rise of the sovereign individual, a movement which appears to be growing 
across the globe in many spheres of life. More empowered patients are driving the 
“Amazonification” or health consumerism paradigm, with globalisation and techno-
logical advancements further enabling choice for patients. As Doctors, therapeutics, 
and care experiences become more commoditised, we observe a centralisation of 
these services. In fact, only this week (article dating from 1997) Amazon launched 
their telemedicine services nationwide in the USA (Rees-Mogg and Davidson 
1997), further demonstrating this notion.

Healthcare generally lags other industries where technology adoption is con-
cerned. This fact is of possible relevance when considering the future of blockchain. 
Given that there is an increasing appetite for self-sovereignty and patient-owned 
data, it is curious that the healthcare industry appears to be centralising this data 
even further in the hands of multinationals. The success and longevity of this pro-
cess will ultimately rest on the trust of patients being earned by these oligopolistic 
tech giants seeking to dominate. We propose that in certain circumstances (at least 
initially) this may be successful and perhaps even more feasible and desirable than 
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the nascent blockchain solutions emerging. That said, we believe there are certain 
circumstances in which a leapfrog to decentralisation makes more sense, and we 
will explore these use-cases later in the chapter.

At the heart of any healthcare system, the primary currency fuelling the success 
or failure of care delivery is data. We will examine the different types of data, the 
value attached to it, and the barriers current systems place in exchange of that data, 
and by doing so, we will be able to understand more clearly the value proposition 
that a blockchain based value exchange mechanism might bring. Before this, how-
ever, we ask the reader to indulge us as we contextualise these issues in a perhaps 
flippant but relevant case study.

The story that follows will gradually become increasingly complex as we explore 
the movement of this data currency within a healthcare system. The examples are 
generic and may cut across several divergent healthcare-system models but are 
indicative of the complexity and value derived from health data by various 
stakeholders.

9.1.4 � Case Study: The Currency and Value of Healthcare Data

Mrs. Mary Smith is a 79-year-old lady with a multitude of medical complaints. She 
lives alone in a rural part of the U.K. and although she predominantly makes use of 
the state-funded National Health Service (NHS), she also pays for private health 
insurance to be able to access care more conveniently when required. Her General 
Practitioner (Primary Care Physician) in the village is generally her first point of 
contact for medical care but Mrs. Smith, being a progressive technophile with a 
fierce sense of independence has also adopted numerous health technologies 
(devices and mobile apps) which she uses to monitor, maintain, and improve her 
health. Although she lives alone, she has a supportive family and social group who 
play active roles in her health and wellbeing. Some of Mary’s conditions necessitate 
specialist care. Whilst her GP (Dr. Jones) generally initiates referrals to the local 
hospital, many of her medical interactions occur at the tertiary centre.

More recently, being in  lockdown during the COVID-19 pandemic, Mary has 
had telemedicine consultation follow-ups, with medications delivered from her 
local pharmacy via an international courier company. Some of her medication is not 
accessible via the NHS, and Mary has elected to see a private physician to obtain 
these via her private insurance policy. The independent physician sources the spe-
cialist medication from two competing pharmaceutical suppliers—one in the U.K 
and the second in China to ensure availability and maximise profitability. Mrs. 
Smith suffers with a chronic condition that results in significant pain. She is on 
maximal therapy for this but has recently heard that an experimental drug not yet 
approved by her insurance, or the NHS may help alleviate some of her symptoms. 
While the reports on the Internet appear promising for this novel CBD related 
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treatment, Mary is concerned that many of the online vendors are not necessarily 
ensuring the quality of their products. She worries that any purchases she might 
make may contain impurities or inaccurate drug content or concentrations.

Though her GP does prescribe opioids for her pain, he is reluctant to increase the 
dose she is on. Mary has on occasion visited a private GP to secure additional opi-
oids. For these prescriptions she usually visits a pharmacy in the neighbouring vil-
lage and pays cash rather than using her insurance plan to pay for it. Dr. Simon 
Jones is one of three partners in an NHS Surgery. The practice earns revenues based 
on the number of patients on their list. This is recorded in a database held by NHS 
Digital on behalf of NHS England. In addition to this revenue, the GPs are paid for 
their performance under the Quality Outcomes Framework (QOF). Each Doctor is 
tasked with capturing his/her activities and meeting the targets on the framework to 
ensure this revenue. NHS Digital also utilises this QOF data to run reporting collec-
tions throughout the year. The Care Quality Commission (CQC) additionally runs 
independent inspections and collects data to ensure practises are meeting quality 
standards.

Simon runs a dispensing service from his Surgery but also has links with the 
local pharmacies for certain medications and appliances which he is unable to 
source. An ambitious and tech-savvy Doctor, he has also signed a licence agreement 
with a data analytics company which (after obtaining patient consent) aggregates 
and analyses the data and provides insights to several multinational pharmaceutical 
companies conducting research. When Dr. Jones is away, the Surgery usually 
employs locum GPs via a medical recruitment agency. Whilst this has worked well 
in the past, Dr. Jones recently had a patient complain that his stand-in didn’t seem 
to know very much and had prescribed an inappropriate drug which luckily caused 
no harm.

9.1.5 � Private Insurance Company

As mentioned previously, Mary utilises a variety of gadgets to manage her health. 
She regularly connects her smart scale, blood pressure machine, wearable devices, 
and glucometer to her phone, uploading the results to a remote patient monitoring 
platform to which she subscribes. Her family is able to see these results and can be 
alerted when there are deteriorations from her normal baseline. Dr. Jones is also 
able to access these records and has on occasion been alerted unnecessarily because 
Mary’s nephew wore her smart watch for a day and used it to measure his heart rate 
when he went running. Mrs. Smith’s insurer had provided her with the watch, and 
they too have a platform to which her data is uploaded. Mary receives discounts for 
the local health food shop when she demonstrates positive healthy behaviours. Mary 
has also recently had her genome tested—mostly out of curiosity for her ancestry 
data. She was, however, concerned to learn that she is a carrier of a cancer-inducing 
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mutation which prompted her to tell her daughter in case she might develop cancer. 
Having recently learned that her data might be sold to a pharmaceutical company, 
Mary was pleased to learn she might be able to positively contribute to science. That 
said, she did have some reservations, thinking that her insurance company might use 
the data to her disadvantage. It also occurred to her that her DNA record might be 
used by other more nefarious actors should they be able to access it.

Last month, Mary felt that her blood sugars were poorly controlled. Her symp-
toms were familiar to her as she had experienced this in the past. Despite this, her 
glucometer kept delivering normal test results. Mary wondered whether there may 
be a problem with the test strips or device. Always community-minded, she felt it 
necessary to report this to the manufacturer. When she went online, she discovered 
a 16-page feedback form and an address to which she could post her concerns. Still 
worried, Mary ordered a different brand of glucometer to confirm her suspicions but 
wondered how many other diabetics might be clinically compromised by the faulty 
test kit. She found this particular incident quite interesting as in her pre-retirement 
life Mary had owned a medical device distribution business and knew all too well 
the impact this sort of feedback could have on sales.

Dr. Jones, now back from his vacation, was reviewing the financial accounts of 
the practice. The process of reconciling activities and payments was always burden-
some and error prone, never mind trying to keep track of pharmacy supplies, insur-
ance payments for his private patients and performing payroll activities for his staff. 
He was also painfully aware that he needed to complete his annual appraisal for 
revalidation with the medical council and had to collate proof of his continuing 
medical education from multiple sources.

Table 9.1 below captures some of the important elements illustrated in the above 
use case.

Table 9.1  Healthcare Ecosystem Data Utility

Data example Data type Data owner/user Data value/utility

Medical Records, 
Prescription Data

Clinical Patient/ Healthcare 
Provider

Patient Care, Research, AI/ML 
training, Public Health, Payors, 
Supply Chain, Pharma

Wearable Data Clinical Patient, Provider, 
Insurer, Tech 
Company

Patient Care, Data Science, 
Research, Payors, Device 
Manufacturers

Clinical Activities 
Data; Clinical Quality 
Data

Clinical, 
Financial

Provider, Payor Payments, Public Health, 
Operational Service Planning

Diagnostic Devices Clinical Patient, Provider, 
Manufacturer

Supply Chain, Quality 
Assurance, Clinical Safety, 
Economic Intermediaries

Administrative Data, 
Activity Data

Financial, 
Operational

Provider, Payor Operational Efficiency, Cost 
Reduction. Payors, Public Health

Educational, Clinical 
Outcome Data

Regulatory Provider, Regulators Public Safety, Revalidation
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Blockchains are not ideal for high volume data storage. Where electronic health 
record sharing is concerned, the usefulness of blockchain is not in having these 
records on chain, but rather in having the access to these records stored in servers 
(either in situ or in the cloud). Directory servers may be used to maintain the inven-
tory of user data, mapped to the actual storage location and allowing data sharing 
sessions. A blockchain server can then be used to verify data integrity and log access 
for later audit.

9.1.6 � Discussion

The narrative we have presented illustrates just a glimpse of the data complexities 
within a healthcare system. Whilst we have focused on an individual patient and her 
interactions with the system, the reader will appreciate that these examples are the 
tip of the iceberg when discussing data exchange between various healthcare stake-
holders. Identifying the sources of these data is only the first step in understanding 
their value as currency. It is the utility that data provides which drives the incentives 
for either withholding or sharing it. We will return to the case study later, but in the 
interim, it is useful to discuss the conditions for a data economy and the value it 
provides to various stakeholders.

9.1.7 � Healthcare Data Economy

There are many participants in a data ecosystem, each deriving different types of 
value and managing risks that are pertinent to them. A Framework published in 
August 2021 by the World Economic Forum (WEF) (WEF n.d.) discusses the key 
components required to build a data economy. Although we will not explore this in 
full detail here, it is important to note that core principles include managing the 
functional architecture of a data exchange, the governance of that exchange as well 
as the incentivisation of data sharing. The model discusses enablers for creating a 
data-exchange ecosystem with availability, usability, and trust via a multistake-
holder approach being essential. There are many stakeholders to consider, with data 
owners, data users, analytics companies, venture capital and researchers being just 
a few examples. Value is derived from acquiring and combining data, from having 
low latency access to high quality, high integrity data and then from extracting 
insights to deliver meaningful outcomes. The many data types (structured, unstruc-
tured, multilingual, machine or sensor generated, static or real-time etc.) and legal 
risks associated with it (from how to define ownership, data in use, data protection, 
privacy, security, liability, intellectual property rights and vulnerability to cyber-
crime) suggest that having a framework in place is critical to a successful data econ-
omy. The WEF framework (WEF n.d.) defines the roles of various stakeholders in a 
Data Exchange Ecosystem, and it is pertinent to our discussion.
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Creating frameworks for the production and sharing of quality data is important. 
Equally relevant is quantifying the value and risks for doing so. Understanding the 
qualitative value of data to various entities is of course only part of the discussion. 
EY (Digital Health n.d.) examined the factors quantifying the value of data and as 
mentioned previously estimated the NHS Health data to be worth a staggering £9.6 
Billion per year. Their paper outlines just how they arrived at this figure, and it is 
certainly worth a read. We will not delve into it here, only to say that being able to 
provide data that is accessible, accurate, private, and protected where necessary are 
just some of these determinants observed.

Incentives for sharing, therefore, must incorporate the value and risk of data 
exchange that stakeholders perceive. The framework proposes some examples, and 
these include policy and regulatory frameworks as well as monetary and non-
monetary incentives (reciprocity, opportunity to innovate and data credits) (PWC 
n.d.-a) - the fundamental message being that some form of incentivisation is gener-
ally desired.

Broadly speaking, the benefits of data exchange in healthcare include:

•	 Improved care delivery
•	 Reduction in unnecessary duplication
•	 Fewer silos with a more holistic view of patients
•	 Efficiencies in resource and budget allocations
•	 Faster and more efficient research
•	 Unlocking innovation through data aggregation, combination, and analytics

For patients:

•	 An up to date and available medical record resulting in more efficient, higher 
quality, safer and more personalised/coordinated care

•	 A longitudinal view of one’s own health over time—empowering and 
enabling action

•	 Faster scientific discoveries leading to new treatments

For Healthcare Systems:

•	 Easier identification of risk and quicker diagnoses
•	 Identification of disease transmission pathways and subsequently faster 

prevention
•	 Outcome predictive analytics improving treatment effectiveness and disease 

prevention
•	 Improved quality assurance and safer treatments
•	 Knowledge dissemination—both administrative and clinical
•	 Enhanced public health strategies

Healthcare Providers:

•	 Redesign better care pathways
•	 Improved patient experience and care
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•	 Insights for strategic planning and operational improvements
•	 Improved resource management
•	 Ability to participate in clinical research

Research and Development:

•	 Data aids new discoveries in Pharmaceuticals, Devices, Machine Learning 
Algorithms, AI diagnostics

The findings published to date from Big Data validate these claims and include:

•	 Validation of >200 novel biomarkers predicting cardiovascular risk
•	 Investigating variation of 174,000 observed national prescribing patterns to 

national guidelines for COPD
•	 Comparing ~8000 treatment outcomes for leukaemia by age: uncovering a major 

unmet treatment need
•	 >700 million records mined to develop new cancer risk-stratification algorithms 

(Data Saves Lives n.d.).

9.1.8 � Analysing the Case Study

If we return to our case study, we can identify several themes which illustrate the 
issues more generally:

•	 Mrs. Smith has multiple Medical Records across a range of healthcare systems 
including her NHS General Practitioner, the local NHS hospitals, her private 
physician, the remote patient monitoring platform that collects her wearable 
data, the genomics platform, and the insurance platform which collects some of 
her smart watch data. Each user has operational, financial, and quality control 
reasons for utilising this information notwithstanding the clinical benefits Mrs. 
Smith might derive from its availability.

•	 Some of her prescription data originates with Dr. Jones and is occasionally 
shared with the local pharmacies, but Mrs. Smith also obtains private prescrip-
tions which are not visible to her GP nor her usual dispensing pharmacist. There 
is a disconnect between the needs and desires of the patient and the duty of care 
to protect her from harm. Better visibility across these systems may prompt more 
open discussions about her pain management and potentially avoid an accidental 
overdose or addiction risk. Worldwide, about 500,000 deaths are attributable to 
drug use. More than 70% of these deaths are related to opioids, with more than 
30% of those deaths caused by overdose (WHO n.d.).

•	 The use of wearable devices has the potential to greatly improve the ability to 
care for patients—reducing the workload of doctors, enabling patients to be 
more empowered with greater longitudinal visibility of their health trends. The 
data collected has value for Mrs. Smith, her physicians, her health insurance 
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company and potentially researchers or pharmaceutical companies. But who 
verifies the data is hers and not her nephew’s? Is it fair that these entities profit 
from it financially and Mrs. Smith does not?

•	 Telemedicine can be another great enabler for improved care delivery. But who 
verifies the identity of the doctor or the patient? How is the health record accessed 
and shared? The issue of identity extends further when considering the locum 
GP. Credential management and medical licensure relies on multiple attesting 
parties and the collation of appraisal and revalidation documents. A PwC report 
(PWC n.d.-b) suggests that U.S. payers alone spend more than $2 billion a year 
maintaining provider databases with most credentialing processes taking more 
than 120 days to complete (NAMSS n.d.).

•	 Mrs. Smith’s private physician works with two competing pharmaceutical dis-
tributors to be able to provide her specialist medications. Having supply chain 
visibility is essential for the doctor, as is his desire to keep the commercial 
arrangements of each contract confidential. Similarly, Mrs. Smith is eager to be 
able to procure experimental treatments but would like more confidence in the 
provenance of the products she plans to use. There is an estimated loss of $200 
million globally through counterfeit medications (Siwicki n.d.) as well as the 
potential for significant clinical harm (Blackstone et al. 2014). A Penn Medicine 
Study concluded that nearly 70% of CBD Extracts sold online are mislabelled 
(Penn Medicine News n.d.). A similar study published in the Journal of the 
American Medical Association (JAMA) found that 40% of CBD products online 
have a drug concentration that is different from that on the label. In 26% of prod-
ucts, the concentration was higher than advertised, and some had THC in suffi-
cient quantities that would cause consumers to fail a drug test (Bonn-Millerv 
et al. 2017). There is a clear need for enhanced supply chains in the pharmaceuti-
cal industry.

•	 A similar concern exists with medical devices. One needs to look no further than 
the plethora of fake Covid-19 test kits on the market today.

•	 Administration in a physician practice can be burdensome and prone to error. 
Extrapolation to the global arena illustrates just how significant a problem this 
can be. BIS Research has revealed estimated reports that the immediate applica-
tion and integration of blockchain in healthcare could save more than $100 bil-
lion per year in costs related to IT, operations, support functions, personnel, and 
health data breaches by 2025 (HIT Infrastructure n.d.).

•	 Patient recruitment for clinical trials is known to be a challenging aspect of clini-
cal research. There are multiple competing concerns from the sponsor, patient 
and principal investigator’s perspectives resulting in most clinical trials not meet-
ing recruitment requirements on time. Conducting under-enrolled clinical trials 
affects the power of conclusive results or causes premature trial termination. 
There is evidence that utilising blockchain can provide significant benefits in 
recruitment as well as enhance data provenance and security (Zhuang et al. 2019).

What our meandering story of a patient and her interactions with healthcare 
serves to illustrate is that even a superficial glance under the hood reveals a tangled 
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web of disparate, non-trusting parties who rely on highly valuable data for their 
clinical, commercial, and academic endeavours. This ‘currency’ fuels the business 
of healthcare, and its veracity and accessibility are vital to success in the industry. 
As we strive toward a more robust data economy, one of the tools available to us that 
is demonstrating value is the use of blockchains. Though by no means a panacea, we 
believe that blockchains (at least as a foundational layer, perhaps combined with 
artificial intelligence, IoT and other emerging technologies) can play a part in help-
ing us to build the data ecosystems which we so desperately need.

In the next section, we continue to elaborate on the details of this case study to 
highlight some of the companies developing solutions to the problems identified. 
Though not all have succeeded, there are some that have found commercial success. 
Our discussion will explore the reasons for this and perhaps shed some light on 
what is required for future adoption and triumph.

9.2 � Part 2: The Current Landscape of Blockchain 
in Healthcare: A Brief Analysis

We recently conducted a review to understand the progress that has been made by 
companies deploying blockchain technology in healthcare. A selection of our find-
ings is summarised below, followed by a discussion of the results. Whilst we admit 
that perhaps there are companies which we did not identify, it is our opinion that it 
represents a fair reflection of the current state of the industry.

9.2.1 � A Selection of our Results

Our research identified 75 companies (Fig. 9.1) claiming a blockchain as part of 
their healthcare solution. 75% of these were established in 2016/2017 which per-
haps correlates with the ICO (Initial Coin Offering) craze, and significant funding 
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Fig. 9.1  Number of companies actively involved in Blockchain implementation/development
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was raised in the last decade. Roughly two thirds of the companies identified are 
still active. It is possible that a small percentage of these failures relate to crypto 
scams, but it is more likely that there were fundamental flaws in the teams, business 
models or technology choices that lead to their demise. The Covid-19 pandemic 
may equally have had a significant impact on some of these entities, and further 
examination of the reasons for failure is required to tease this out. The apparent drop 
off in funding after 2017 is likely due to the reputation of ICOs in general. Whilst 
there were many scams, and most companies raised funds without having anything 
but a white paper, there is a significant percentage of companies that have used 
those funds to build substantial products. Though difficult to predict, it is our view 
that when the legitimate products come to market, there is likely to be an increase 
in further funding.

9.2.1.1 � List of Active Companies and Focus Areas

Table 9.2 below lists the companies that are still actively building solutions. It 
remains to be seen which of these will become commercially successful. We antici-
pate further failures and perhaps some mergers or acquisitions to occur.

Table 9.2  List of Active Blockchain Healthcare Companies (Catena.MBA, 2022)

Company name Focus area

Synaptic Health 
Alliance

Provider, Patient and Payor Directories linked to reduce friction in 
administration.

Chronicled Blockchain, MediLedger, Pharmaceutical Supply Chain, Contracts & 
Chargebacks, Product Verification, Roster Management

Medicalchain EHR, Blockchain
Guardtime Blockchain- Vaccine Guard, HSX,
HealthVerity EHR, Clinical Trials, Blockchain
BurstIQ Security, Blockchain
Axuall, Inc. Credentialing, Blockchain
PharmaLedger Blockchain- Healthcare, Pharmaceutical Supply Chain, Clinical Trials
MediShares Insurance, Blockchain
Skyflow Blockchain- Security, Healthcare, Financial
Fortanix Security, Healthcare, Financial, Manufacturing, Public Sector
Gem Crypto- Payments API
Nebula Genomics DNA Testing, Blockchain
KitChain Pharmaceutical Supply Chain, Blockchain
Hashed Health Blockchain- Healthcare, Credentialing, Clinical Data Sharing, 

Marketplace, Digital Signatures
Mosio Clinical Trial Recruiting, SMS, Blockchain
ClinTex Clinical Trials, Blockchain
dHealth Foundation EHR, Blockchain, Network
EncrypGen Blockchain- Healthcare, DNA
FarmaTrust Blockchain, Pharmaceutical Supply Chain
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Table 9.2  (continued)

Company name Focus area

Genomes.io DNA, Blockchain
MediBloc EHR, Blockchain
OncoPower Cancer, Physician Network, Telemedicine
Patientory Blockchain- Healthcare, Clinical Trials, Health Monitoring, Pandemic 

Reporting, OpenEHR
Solve.Care Engagement, Blockchain
Avaneer Health Patient Retention, Blockchain
BlockTEST Blockchain- Healthcare, Drug Tracing, Financing
Bowhead Health Blockchain, Health Tracker
ConsilX Clinical Trials, Engagement, Telemedicine, Blockchain
EHR Data EHR, Engagement, Blockchain
Humanscape Clinical Trial Recruiting, Blockchain
LedgerDomain Blockchain- Pharmaceutical Supply Chain
LifeFilez EHR, Blockchain
MAPay Payments, Blockchain
MediLedger Blockchain- Network, Healthcare, Pharmaceutical Supply Chain, 

Contracts & Chargebacks, Product Verification, Roster Management
Murrieta Genomics Biotech- Genomics
Radiologex Radiology, Blockchain
SoluLab Blockchain- Enterprise, Healthcare, Logistics, Oil and Gas, Education, 

Retail, Transportation, Wellness and Fitness, Cannabis, IoT
Stem Cell Coin Biotech- Regenerative Medicine
Unicsoft Blockchain- Healthcare, Supply Chain, Fintech, Manufacturing, 

Automotive, Retail & E-commerce, Marketing & Media
Veridat Supply Chain, Pharmaceuticals, Blockchain
Well EHR, Wearable, Blockchain
Doc.AI Analytics, Mental Health, Blockchain
Embleema Pharmaceutical Supply Chain, Blockchain
Open Health 
Network

EHR, Blockchain

Longenesis Data Management
ProCredEx EHR, Credentialing, Blockchain
Datavant Analytics, EHR, Tokenization, Blockchain

A similar review was performed in January 2021 on all projects in the 
CoinMarketCap database by Hao Sen Andrew Fang and published in BHTY 
(Blockchain in Healthcare Today) looking at commercially successful blockchain 
healthcare projects. Though the authors acknowledge that their review is limited to 
projects listed in a single database and only those utilising cryptocurrencies, they 
conclude that it is likely that there will be increasing interest and further commercial 
success for blockchain companies in healthcare as the market matures.
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Table 9.3  Distribution of 
the types of healthcare 
projects among those 
reviewed (Fang 
2021, p. 166)

Field Number of companies

Data exchange and 
interoperability

1

Citizen based reporting 1
Health financing 1
Telemedicine 1
Supply chain management 1
Personal health tracking 4
Data collection, management 
and use

1

The paper highlights 10 companies (Table 9.3), the majority of which have proj-
ects in the personal health tracking space (Fang 2021).

The approach we took in our research was to look at all companies claiming to 
utilise both private and public blockchains in their solution. The paper above 
restricted their research to those that deployed crypto-tokens and listed on exchanges.

The question of whether a blockchain (in general or in healthcare) requires the 
use of a cryptocurrency is not a simple one to answer. We alluded to the topic earlier 
in the chapter when discussing the types of blockchains and consensus mechanisms 
deployed. Certainly, it is not a binary key success factor if a crypto-token is used. 
What is key, is how the token functionality is defined. Holding native tokens which 
enable utility in an ecosystem is distinctly different from tokens that allow voting 
rights in a governance model or those that represent ownership of an underlying 
security such as the rights to future dividends.

Additionally, while the ICO craze helped fund many of these companies, the 
Securities and Exchange Commission (SEC) has since deemed many of the ‘utility 
tokens’ to be securities. The craze was, in part, fuelled by speculative investors who 
were simply seeking to profit from the launches of these coins. As a result, some 
‘utility tokens’ have seen their value on exchanges drop to almost zero. Understanding 
tokenomic models is critical to the long-term success of these projects.

As we witness the rise of a more patient-centric healthcare system, with self-
sovereignty at its core, many of these projects have tried to incorporate crypto-
related game theory and behavioural economics into their models. Whether a 
blockchain token can incentivise healthy behaviours or data sharing remains to be 
seen, but there is clearly a shift towards this ideology, though it might require some 
tweaking and learning before it finds purchase.

The industry (particularly where crypto incentives are concerned) is still in its 
infancy, and there are several obstacles to overcome. Fundamentally, however, we 
still believe that there is much to gain. In the final section of this chapter, we explore 
some of these barriers and offer some thoughts on what is required to achieve the 
potential that blockchains have for healthcare.
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9.3 � Part 3: A Future Vision for Healthcare Blockchains

We have alluded to numerous challenges facing healthcare in the coming decade. 
Many of these point to the need for a more robust data economy as discussed previ-
ously. A selection of these issues is listed below:

•	 The amount of knowledge a healthcare professional needs to remain up to date is 
rising exponentially (Illingworth and Chelvanayagam 2017), and there is 
increased need for multidisciplinary cross-collaboration (Keys et al. 2017).

•	 This complexity renders systems more prone to errors (Braithwaite et al. 2017) 
and we therefore require better knowledge sharing mechanisms.

•	 Healthcare organisations tend to be slow in adopting new technologies. Adoption 
is influenced by assessments of feasibility, cost-effectiveness, profitability, and 
potential success (Tal et al. 2019). Technology evaluations involve a complex, 
multi-disciplinary approach that reflects organisational politics, as well as the 
organisation’s values (Tal et al. 2019).

•	 The shift towards patient sovereignty and patient-centred care relies on patient 
engagement with technologies. For this, they need to be empowered (Tobiano 
et al. 2021) and have sufficient access to and literacy with technology. Patients 
also need to be able to trust virtual care services which has been shown to be 
reduced when compared with traditional environments (Hasselgren et al. 2020).

•	 The transparency of the knowledge and data stored in these systems is often 
siloed (Nelson and Staggers 2016), and organisations seek secure methods of 
aggregating and utilising data for healthcare research, operations, and quality 
control (Porsdam Mann et al. 2021).

•	 Current health technologies struggle with interoperability and perceived usabil-
ity remains a challenge (Son et al. 2021).

Adoption of any new technology is generally slow and requires overcoming bar-
riers which we will explore below. There appears to be growing interest in the use 
of blockchain for healthcare with significant percentages of health executives and 
data users admitting that they see immense value in the technology.

The EU Blockchain Observatory Forum (EU Blockchain Observatory and Forum 
n.d.) conducted a survey and asked respondents to identify blockchain use cases of 
highest value. Their answers follow below:

•	 Data transparency (91.1%)
•	 Medical and pharmaceutical supply chains (88.2%)
•	 Data immutability (85.3%)
•	 Collaboration between manufacturers, suppliers, retailers, and end consum-

ers (85.3%)
•	 Medical records sharing (79.4%)
•	 Secure payment transactions (76.5%)
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•	 Record accuracy (73.5%)
•	 Data interoperability (70.6%)
•	 Identity management (70.6%)
•	 The use of smart contracts for insurance purposes (67.7%)
•	 Data management (61.7%).

These findings corroborate our own observations and are reflected in the use 
cases that have been produced. A more topical and perhaps controversial use for 
blockchain that has been explored is that of pandemic response and some solutions 
are already on the market.

The topic introduces several ethical and legal questions which are perhaps 
beyond the scope of this discussion. We take the view, however, that these dilemmas 
aside, blockchain technology has great potential in the management of any future 
pandemic, provided the balance of personal liberties and public good can be man-
aged. “It should make extensive use of its encryption characteristics combined with 
decentralised peer-to-peer engagement so as to improve security, regulatory compli-
ance, durability, consensus, selective privacy and timing” (Kritikos 2020). The use 
of Federated Learning (Li et al. 2021) may bring us closer to being able to share 
datasets in a more privacy-preserving manner.

Some of the barriers to widespread blockchain adoption in healthcare thus con-
cern issues of data accuracy and integrity, regulatory and privacy concerns and ethi-
cal considerations  - “health data quality is still subject to the consideration of 
“garbage in, garbage out” (EU Blockchain Observatory and Forum n.d.), and any 
inaccuracies would be carried forward in a blockchain (Wong et al. 2019). While the 
goal is for a blockchain to serve as a source of trusted data, LaPointe and Fishbane 
(LaPointe and Fishbane 2019) point out that we have not achieved “trusted data” by 
adding inaccurate data to a blockchain (EU Blockchain Observatory and Forum n.d.).

Regulatory frameworks such as The General Data Protection Regulation (GDPR) 
have also created concerns for the use of immutable ledgers in healthcare. Whilst 
this chapter does not delve into the intricacies of this potential barrier, we are aware 
that there are GDPR compliant blockchain solutions for healthcare (Hasselgren 
et al. 2020), and that expertise utilising proper blockchain architecture in deploy-
ment will be critical to ensure regulatory compliance.

The question of ethics-by-design is a far more nuanced one. Allen et al. (2020) 
recommend the development of scenario-based ethical dilemmas across blockchain 
uses in various healthcare to ensure that the right questions are considered for deci-
sion making. Understanding the complexities will require a multidisciplinary 
approach involving legal and healthcare experts working in conjunction with devel-
opers. Work has already started with the development of regulatory sandboxes and 
adopters are advised to work within these evolving frameworks to ensure compliance.

Much has been written about the interaction of blockchain and other emerging 
technologies. Though this deserves a chapter in its own right, we believe that block-
chains can be part of a solution that provides the high quality, trusted data that 
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artificial intelligence and machine learning algorithms require to provide meaning-
ful insights. The use of Internet of Things (IoT) and oracles further add to the verac-
ity of the data that can be used, and the intersection of these technologies is going 
to be critical for complete solutions.

Though there remain challenges to the widespread adoption of blockchain, par-
ticularly in healthcare where the complexities and regulatory hurdles are perhaps 
greater than in other industries, we believe that their use, at least in part (or com-
bined with complementary technologies) has a significant role to play in helping 
achieve a better future for healthcare.

Digitisation of healthcare is an inevitability and securing high quality data and a 
robust trusted data economy will be critical to realising the value from its creation.

We encourage healthcare executives to engage with the opportunities presented. 
No doubt there are challenges and risks associated with adoption of novel technolo-
gies, however, there is, we believe, an even greater risk in the longer term for not 
engaging with them.

As consultants, we constantly advise clients on Blue Ocean Strategies for their 
organisations. Blockchains represent a new paradigm in business. A more coopeti-
tive model, it relies on stakeholders seeing greater benefit in sharing a common 
infrastructure for mutual gain. Blockchain is a governance technology and building 
the rules of engagement in the network is just as important as the technology choices 
deployed. Technology aside, we see much of the hesitancy in adoption coming from 
a mistrust in this very different way of working.

An African proverb “If you want to go fast, go alone; but if you want to go far, 
go together” captures the benefits succinctly. Healthcare is an enormous industry 
and there is opportunity for entrepreneurs to find commercial success at many lev-
els. However, it is perhaps unique in its importance when compared with non-
essential services. Balancing profit with individual care and public utility is a 
tightrope which many other businesses do not need to walk. We believe that collabo-
ration has far greater value than individual success, and that these are not mutually 
exclusive. This belief drives our passion for helping companies build solutions in 
this industry.

We offer a brief suggested template for executives wanting to realise the poten-
tial opportunities of joining the data economy. This approach is founded on evi-
dence from the Blockchain Research Institute in Canada and has been demonstrably 
proven to be a useful approach. We suggest the principles needing to be applied below:

•	 Think “We” vs “I”: What are the shared problems across the ‘trade’ network?
•	 Evangelise the new perspective - Demonstrate the potential of a new solution.
•	 Identify the Minimally Viable Ecosystem/Network (including legal and regula-

tory bodies).
•	 Define Governance Structures.
•	 Define Technology Committee.
•	 Define Voting Structure and Executive Committee.
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When starting:

•	 Identify the highest impact use case needing innovation.
•	 Define Governance Model (JV/Consortium/Statutory Body) and agree a funding 

structure.
•	 Perform Stakeholder Analysis to identify and create measurable value for all 

partners
•	 Define Metrics of Success.
•	 Define the Technological Minimally Viable Product.
•	 Examine legacy infrastructure and establish integration options.

For many organisations, blockchain does not need to replace any existing infra-
structure. It can, rather, be a technology layer above what already exists. What is 
evident is that technology change is 75% cultural and 25% technical. We need to 
build a new culture in healthcare data value exchange if we want to provide better 
care for patients, better work environments for clinical and administrative staff. In 
doing so, we will be able to realise the enormous potential of 30% of the world’s 
data that is currently locked away in silos preventing treatment innovations and bet-
ter health outcomes. We hope you join us on this incredibly important journey.

In the words of futurist Jim Carroll: Think Big, Start Small, Scale Fast.

References

Allen M, et al. Blockchain ethical design framework for healthcare. Washington, DC: Government 
Blockchain Association; 2020.

Blackstone EA, Fuhr JP, Pociask S. The health and economic effects of counterfeit drugs. Am 
Health Drug Benefits. 2014;7(4):216–24.

Bonn-Millerv MO, Loflin MJE, Thomas BF.  Labelling accuracy of cannabidiol extracts sold 
online. JAMA. 2017;318(17):1708–9. https://doi.org/10.1001/jama.2017.11909.

Braithwaite J, Churruca K, Ellis LA, Long J, Clay-Williams R, Damen N, Herkes J, Pomare C, 
Ludlow K. Complexity science in healthcare. Sydney: Australian Institute of Health Innovation, 
Macquarie University; 2017.

Capital Markets. The convergence of Healthcare and Technology; n.d.. Available from: https://www.
rbccm.com/en/gib/healthcare/episode/the_healthcare_data_explosion#:~:text=Today%2C%20
approximately%2030%25%20of%20the,generated%20by%20the%20healthcare%20industry 
(Accessed 10 Feb 2022).

Culbertson N.  The Skyrocketing Volume of Healthcare Data Makes Privacy Imperative; n.d.. 
Available from: https://www.forbes.com/sites/forbestechcouncil/2021/08/06/the-skyrocketing-
volume-of-healthcare-data-makes-privacy-imperative/?sh=fcca2736555c (Accessed 10 
Feb 2022).

Data Saves Lives. What is Big Data? n.d.. Available from: https://datasaveslives.eu/big-data 
(Accessed 11 Feb 2022).

Digital Health. NHS Data worth GBP 9.6bn per year, says Ernst & Young; n.d.. Available from: 
https://www.digitalhealth.net/2019/07/nhs-data-worth-9-6bn-per-year-says-ernst-young/ 
(Accessed 10 Feb 2022).

Emergen Research. Big Data in Healthcare Market Worth USD 78.03 Billion by 2027; n.d.. 
Available from: https://www.globenewswire.com/news-release/2020/12/17/2146728/0/en/

S. Southey and M. Zarrebini

https://doi.org/10.1001/jama.2017.11909
https://www.rbccm.com/en/gib/healthcare/episode/the_healthcare_data_explosion#:~:text=Today, approximately 30% of the
https://www.rbccm.com/en/gib/healthcare/episode/the_healthcare_data_explosion#:~:text=Today, approximately 30% of the
https://www.rbccm.com/en/gib/healthcare/episode/the_healthcare_data_explosion#:~:text=Today, approximately 30% of the
https://www.forbes.com/sites/forbestechcouncil/2021/08/06/the-skyrocketing-volume-of-healthcare-data-makes-privacy-imperative/?sh=fcca2736555c
https://www.forbes.com/sites/forbestechcouncil/2021/08/06/the-skyrocketing-volume-of-healthcare-data-makes-privacy-imperative/?sh=fcca2736555c
https://datasaveslives.eu/big-data
https://www.digitalhealth.net/2019/07/nhs-data-worth-9-6bn-per-year-says-ernst-young/
https://www.globenewswire.com/news-release/2020/12/17/2146728/0/en/Big-Data-in-Healthcare-Market-Size-Worth-USD-78-03-Billion-by-2027-Emergen-Research.html


135

Big-Data-in-Healthcare-Market-Size-Worth-USD-78-03-Billion-by-2027-Emergen-Research.
html (Accessed 10 Feb 2022).

EU Blockchain Observatory & Forum. Blockchain Applications in the Healthcare Sector; n.d.. 
Available from: https://www.eublockchainforum.eu/events/blockchain-applications-healthcare 
[Accessed 11th February 2022].

Fang HSA. Commercially successful blockchain healthcare projects: a scoping review. Blockchain 
Healthc Today. 2021; https://doi.org/10.30953/bhty.v4.166. Published 21 March 2021

Hasselgren A, Wan PK, Horn M, Kralevska K, Gligoroski D, Faxvaag A. GDPR Compliance for 
Blockchain Applications in Healthcare. arXiv preprint arXiv:2009.12913; 2020.

HIT Infrastructure. Healthcare Blockchain Could Save Industry $100B Annually by 2025; 
n.d.. Available from: https://hitinfrastructure.com/news/healthcare-blockchain-could-save-
industry-100b-annually-by-2025 (Accessed 11 Feb 2022).

Illingworth P, Chelvanayagam S. The benefits of interprofessional education 10 years on. Br J 
Nurs. 2017;26(14):813–8.

Keys Y, Silverman SR, Evans J. Identification of tools and techniques to enhance interdisciplinary 
collaboration during design and construction projects. HERD. 2017;10(5):28–38.

Kritikos M. Ten technologies to fight coronavirus. PE 641.543. European Parliamentary Research 
Service: Brussels; 2020.

LaPointe C, Fishbane L. The blockchain ethical design framework. Washington, DC: Georgetown 
University; 2019.

Ledger. What is the Blockchain Trilemma; n.d.. Available from: https://www.ledger.com/academy/
what-is-the-blockchain-trilemma (Accessed 10 Feb 2022).

Li D, Han D, Weng TH. Blockchain for federated learning toward secure distributed machine learning 
systems: a systemic survey. Soft Comput. 2021; https://doi.org/10.1007/s00500-021-06496-5.

Nakamoto S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review; 2008.
NAMSS. Building Blocks for the Future; n.d.. Available from: https://www.namss.org/Portals/0/

Policies_And_Bylaws/Official%20NAMSS%202017%20Roundtable%20Report.pdf 
(Accessed 11 Feb 2022).

Nelson R, Staggers N.  Health informatics-E-book: an interprofessional approach. Amsterdam: 
Elsevier; 2016.

Penn Medicine News. Penn Study Shows Nearly 70 Percent of Cannabidiol Extracts Sold 
Online Are Mislabeled; n.d.. Available from: https://www.pennmedicine.org/news/news-
releases/2017/november/penn-study-shows-nearly-70-percent-of-cannabidiol-extracts-sold-
online-are-mislabeled (Accessed 11 Feb 2022).

Porsdam Mann S, Savulescu J, Ravaud P, Benchoufi M. Blockchain, consent and prosent for medi-
cal research. J Med Ethics. 2021;47(4):244–50.

PWC. Putting a value on data; n.d.-a. Available from: https://www.pwc.co.uk/data-analytics/docu-
ments/putting-value-on-data.pdf (Accessed 11 Feb 2022).

PWC. A prescription for blockchain and healthcare: Reinvent or be reinvented; n.d.-b. Available 
from: https://www.pwc.com/us/en/health-industries/health-research-institute/assets/pdf/pwc-
hri-a-prescription-for-blockchain-in-healthcare_27sept2018.pdf (Accessed 11 Feb 2022).

Rees-Mogg W, Davidson JD. The sovereign individual: mastering the transition to the information 
age. New York: Touchstone; 1997.

Siwicki B.  The next big thing in pharmacy supply chain: Blockchain; n.d.. Available from: 
https://www.healthcareitnews.com/news/next-big-thing-pharmacy-supply-chain-blockchain 
(Accessed 11 Feb 2022).

Son H, Nahm ES, Zhu S, Galik E, Seidl KL, Van de Castle B, Russomanno V. Testing a model of 
patient portal use in adult patients. J Nurs Scholarsh. 2021;53(2):143–53.

Tal O, Booch M, Bar-Yehuda S.  Hospital staff perspectives towards health technology assess-
ment: data from a multidisciplinary survey. Health Res Policy Syst. 2019;17(1):72. https://doi.
org/10.1186/s12961-019-0469-3. PMID: 31337398; PMCID: PMC6651984

Tapscott D. Financial services revolution: how blockchain is transforming money, markets, and 
banking. Blockchain Research Institute Enterprise; 2020.

9  Why Healthcare Needs Blockchain

https://www.globenewswire.com/news-release/2020/12/17/2146728/0/en/Big-Data-in-Healthcare-Market-Size-Worth-USD-78-03-Billion-by-2027-Emergen-Research.html
https://www.globenewswire.com/news-release/2020/12/17/2146728/0/en/Big-Data-in-Healthcare-Market-Size-Worth-USD-78-03-Billion-by-2027-Emergen-Research.html
https://www.eublockchainforum.eu/events/blockchain-applications-healthcare
https://doi.org/10.30953/bhty.v4.166
https://hitinfrastructure.com/news/healthcare-blockchain-could-save-industry-100b-annually-by-2025
https://hitinfrastructure.com/news/healthcare-blockchain-could-save-industry-100b-annually-by-2025
https://www.ledger.com/academy/what-is-the-blockchain-trilemma
https://www.ledger.com/academy/what-is-the-blockchain-trilemma
https://doi.org/10.1007/s00500-021-06496-5
https://www.namss.org/Portals/0/Policies_And_Bylaws/Official NAMSS 2017 Roundtable Report.pdf
https://www.namss.org/Portals/0/Policies_And_Bylaws/Official NAMSS 2017 Roundtable Report.pdf
https://www.pennmedicine.org/news/news-releases/2017/november/penn-study-shows-nearly-70-percent-of-cannabidiol-extracts-sold-online-are-mislabeled
https://www.pennmedicine.org/news/news-releases/2017/november/penn-study-shows-nearly-70-percent-of-cannabidiol-extracts-sold-online-are-mislabeled
https://www.pennmedicine.org/news/news-releases/2017/november/penn-study-shows-nearly-70-percent-of-cannabidiol-extracts-sold-online-are-mislabeled
https://www.pwc.co.uk/data-analytics/documents/putting-value-on-data.pdf
https://www.pwc.co.uk/data-analytics/documents/putting-value-on-data.pdf
https://www.pwc.com/us/en/health-industries/health-research-institute/assets/pdf/pwc-hri-a-prescription-for-blockchain-in-healthcare_27sept2018.pdf
https://www.pwc.com/us/en/health-industries/health-research-institute/assets/pdf/pwc-hri-a-prescription-for-blockchain-in-healthcare_27sept2018.pdf
https://www.healthcareitnews.com/news/next-big-thing-pharmacy-supply-chain-blockchain
https://doi.org/10.1186/s12961-019-0469-3
https://doi.org/10.1186/s12961-019-0469-3


136

Tobiano G, Jerofke-Owen T, Marshall AP. Promoting patient engagement: A scoping review of 
actions that align with the interactive care model. Scand J Caring Sci. 2021;35(3):722–41.

WEF.  Towards a Data Economy: An Enabling Framework; n.d.. Available from: https://www.
weforum.org/whitepapers/towards-a-data-economy-an-enabling-framework (Accessed 11 
February 2022).

WHO. Opioid Overdose; n.d.. Available from: https://www.who.int/news-room/fact-sheets/detail/
opioid-overdose (Accessed 11 Feb 2022).

Wong DR, Bhattacharya S, Butte AJ. Prototype of running clinical trials in an untrustworthy envi-
ronment using blockchain. Nat Commun. 2019;10(1):1–8.

Zhuang Y, Sheets LR, Shae Z, Chen YW, Tsai JJP, Shyu CR. Applying blockchain technology to 
enhance clinical trial recruitment. AMIA Annu Symp Proc. 2019;2020:1276–85. Published 
2020 Mar 4

S. Southey and M. Zarrebini

https://www.weforum.org/whitepapers/towards-a-data-economy-an-enabling-framework
https://www.weforum.org/whitepapers/towards-a-data-economy-an-enabling-framework
https://www.who.int/news-room/fact-sheets/detail/opioid-overdose
https://www.who.int/news-room/fact-sheets/detail/opioid-overdose


137

Chapter 10
Nudging to Change, the Role of Digital 
Health 

Aditya Kumar Purohit, Sofia Schöbel, Olivier Bill, and Adrian Holzer

Abstract  The use of nudges, i.e., design changes in the way choices are presented to 
steer users towards predetermined choices, has dramatically increased over the last few 
years. These interventions have moved online to become digital and are present across 
many fields from politics to healthcare. As the use of these mechanisms in healthcare 
has grown exponentially recently, it is crucial to understand the opportunities they offer 
and the risks they pose. However, at this stage, such an analysis is lacking. This chapter 
specifically addresses this issue by (1) analyzing how digital nudges can be applied in 
the continuum of care and (2) mapping the current empirical research landscape on the 
topic. To do so, this chapter presents a scoping review of the literature by searching 
relevant research in the electronic database of JMIR (Journal of Medical Internet 
Research). The search yielded 150 unique articles, of which 19 articles satisfied the 
criteria for inclusion in this study. The results indicate that feedback and reminders are 
the most commonly used digital nudges for behavior change in digital health. Moreover, 
the results show that most digital nudges research focuses on prevention and the post-
acute phase of the continuum of care, with none of the studies investigating nudges for 
the acute phase. Finally, the results indicate that current empirical research on digital 
nudging in healthcare rarely discusses ethical considerations.
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10.1 � Introduction

Most diseases can be prevented by assisting people to change their habitual risky 
behaviors (Kelly 2000). A variety of risky behaviors are negatively associated with 
health, including being sedentary (Bakker et al. 2021), smoking (Wang et al. 2021), 
eating unhealthy foods (Marucci et  al. 2021), and binge-drinking (Åberg et  al. 
2017). If people change their health risk behavior, they can reduce their risk of 
developing diseases that cause premature sickness and death, like cancer and heart 
disease (Kelly 2000). A case in point would be that millions of premature deaths are 
preventable if individuals stop smoking cigarettes, which not only cause lung cancer 
(Sasco et al. 2004) but also increase the risk of pulmonary and cardiovascular dis-
eases (Stallones 2015).

Historically, interventions to change risky health behaviors were offered in ser-
vice settings or within communities, but today, this is no longer the only way to do 
so. Through the IT infrastructure that has been developed with data from patients 
and service providers (Shah and Adusumalli 2020), research and practice in digital 
health have become more relevant to clinical needs. Through continuous, real-time, 
and objective measurements of physiological parameters and motion activity, it has 
become possible to change risky behaviors through digital interventions. However, 
this is a challenging task as it requires combining evidence-based approaches with 
trust in technology while respecting patient autonomy and consent.

A potential behavioral theory that could be leveraged to address this issue is 
nudge theory (Sunstein and Thaler 2008). Behavioral economists have proposed the 
idea of nudging, which uses human cognitive processes to direct people towards the 
desired behavior without restricting user choice (Sunstein and Thaler 2008). This 
theory is gaining traction in the digital health context as researchers have started to 
apply it to different contexts such as mental health (Okeke et al. 2018), smoking 
cessation (Free et al. 2011), weight management (Valle et al. 2020), medicine adher-
ence (Angellotti et al. 2019), and digital well-being (Purohit and Holzer 2021) to 
name a few. Despite these examples, there is currently no unified picture of how 
digital nudges are used in healthcare and where the state of research stands. In this 
chapter, we address this issue by mapping the landscape of digital nudging for 
healthcare. In particular, the chapter will summarize which specific health behaviors 
are targeted, which nudging techniques have been employed for behavior change 
and how these strategies have been delivered including their ethical implications. In 
an examination of the nudging landscape in digital health, two main research ques-
tions will be addressed:

•	 RQ1: What kind of digital nudge strategies can be leveraged to improve health?
•	 RQ2: How can digital nudge strategies be used to support behaviour change on 

the continuum of care?

The remainder of this chapter is structured as follows. First, the background 
provides a definition of “nudging” and “digital nudging” in the context of behavior 
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change. Second, existing digital nudging strategies are detailed and their employ-
ment in continuum of care is illustrated. Third, the current state of the literature is 
discussed through a scoping review of the JMIR electronic database. Finally, the 
chapter wraps up with a conclusion.

10.2 � Background

Originally, Sunstein and Thaler (2008) suggested that policymakers can design 
nudges to promote change in behavior among citizens. They defined a nudge as 
“any aspect of the architecture of choice that changes people’s behavior in a way 
predictable without prohibiting all options or significantly changing their incen-
tives” (Sunstein and Thaler 2008). To modify behavior, nudges change how we see 
things and make people more receptive to one option (Levy 2017). A typical exam-
ple is the way products are displayed in cafeteria, the more prominent, the greater 
the chance a customer will select them (Sunstein and Thaler 2008). Meanwhile, 
researchers and practitioners have taken the nudging concept online, resulting in 
so-called digital nudges. The term digital nudges refer to nudges that are provided 
through digital technology and employ user-interface design elements to influence 
people’s decisions and behaviors (Weinmann et al. 2016), again without restricting 
choice (Jesse and Jannach 2021). For instance, intuitively reminding individuals by 
giving them feedback about their Instagram use while they are mindlessly scrolling 
through their Instagram news feed can help them reduce their consumption (Purohit 
and Holzer 2021). Especially, digital nudges delivered via mobile devices are 
becoming increasingly common. As a result of recent technological advancements, 
mobile phones have acquired new and distinctive characteristics that make them a 
compelling behaviour change support system. These characteristics include (1) 
their ability to gather contextual and bio-metric data from users, such as location, 
movement, or heart rate, (2) their ability to be reached by users at anytime as they 
carry their phones around almost 24/7, and (3) their ability to potentially reach their 
users any time through notifications.

These characteristics imply that delivery of digital nudges can be much more fine 
tuned than traditional nudges to fit optimal timing (Purohit and Holzer 2019). More 
precisely, through adequate identification of user context, nudges can take advan-
tage of so-called teachable moments (Purohit and Holzer 2019) i.e., “naturally 
occurring health events thought to motivate individuals to adopt risk-reducing 
health behaviours spontaneously.” For example, a woman might benefit from a 
smoking cessation intervention during the perinatal period (Ockene et al. 2002). In 
an attempt to motivate incremental dietary behaviour change, Intille et al. (2003) 
suggested that information should be provided on a PDA (personal digital assistant) 
at the time of purchase (the nudge moment). Another study examined how weight 
loss could be achieved by altering eating behavior in obese adolescents (Ford et al. 
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2010). The study indicated that real-time feedback was given to the participants dur-
ing meals (the nudge moment) to help them eat more slowly. It should be noted that 
despite these examples, of “just-in-time” technology, most other studies do not 
address digital nudges explicitly with timing.

10.3 � Digital Nudging Strategies

This section outlines different strategies of digital nudging used to influence human 
behavior exemplified in the context of digital health. The digital nudges outlined 
here have been adopted from Caraban et al. (2019), they are: defaults, reminders, 
feedback, social, framing, suggesting alternatives, and positioning. Several nudges 
such as hiding, scarcity, and deceptive visualisations and many others are not 
included as they do not fall within the scope of healthcare.

In addition to different digital nudging strategies and examples from healthcare 
research, we also present scenarios that illustrate how clinicians and designers 
might apply digital nudges in healthcare. Consider James. He is overweight and 
sedentary. Through the app store, James has downloaded an application called 
Fitness to his smartwatch that will help him increase physical activity and manage 
his weight.

10.3.1 � Default Nudge

A default nudge occurs whenever there is a predefined option chosen by a system 
designer. A prime example of default is the initial organ donation status of a person 
in a country, i.e., their default status. In some countries, people are organ donors by 
default and they have to actively opt out, whereas in other countries, people are not 
organ donors by default and they have to actively opt in. The status quo bias of 
human psychology is such that people will tend not to change default settings. As a 
result, the number of people on the organ donor list increased by 60% in the coun-
tries where it is the default option compared to the national average of 38% (Thaler 
et al. 2014) in the countries where it is not. On top of the status quo bias, defaults 
produce such large effects because individuals do not have explicit preferences for 
every possible good or service offered (Van Dalen and Henkens 2014). For instance, 
If individuals are assigned permanent appointments by default, assuming they have 
consented beforehand, they are more likely to have a flu vaccine appointment, thus 
increasing the possibility of being vaccinated (Lehmann et al. 2016). Figure 10.1 
illustrates a default nudge.
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10.3.2 � Reminder Nudge

A reminder nudge is a nudge that brings a choice to the user’s attention. With the 
ubiquity of mobile phones, this nudge can typically be delivered through a visual, 
sound, or haptic cue to a user (e.g., a push notification). Most of the time, people 
have a lot on their minds, and they may forget to start an activity (Karlsen and 
Andersen 2019), become preoccupied, or simply put it off. A reminder can act as a 
helpful digital nudge to help them follow through with a certain behavior. For 
instance, text messages sent by the clinician to remind or alert patients to read rel-
evant health resources or to perform an activity. Figure  10.2 illustrates a 
reminder nudge.

Login

  Continue

Receive newsletter

Accept terms

Fig. 10.1  Default nudge on the Fitness app. The app’s log in page requires users to agree with the 
terms and conditions, but they are free to choose to subscribe to the newsletter or not. However, as 
James logs into the application, the subscription option is ticked by default in order to steer his 
behaviour towards simply leaving it as is and subscribing to the newsletter

Time to walk!
Fitness app

Fig. 10.2  Reminder nudge on the Fitness app. The sensors in the watch recognize that James is 
sitting idle for some time. While James sits on the couch watching TV, a notification is sent to his 
watch to make it vibrate and displays a message to steer him towards doing some physical activity
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10.3.3 � Feedback Nudge

Feedback nudges aim to inform users about their performance on some task in order 
to raise their awareness and potentially rectify a misconception a user has about 
their problematic behavior by presenting evidence that their behavior is inconsistent 
with what is actually deemed acceptable (Clayton Neighbors et  al. 2015). For 
instance, to motivate an individual, a feedback nudge can be utilized to provide 
feedback on goals achieved by the end of the day, or the total number of steps taken 
during a certain period. Moreover, a feedback nudge can be tailored/personalized to 
an individual to solve the problem of heterogeneity, i.e., individuals’ behaviors dif-
fer despite being nudged in the same way. Figure 10.3 illustrates a feedback nudge.

10.3.4 � Social Nudge

A social nudge is a nudge that informs individuals about what other people are 
doing. This is also known as a peer comparison nudge. Nudges of this type aim to 
establish social norms that users will be motivated to follow (Arigo and Suls 2018). 
For instance, a user could receive the following message on their app “Approximately 
half of your co-workers walk at least 10,000 steps per day. And you?” Figure 10.4 
illustrates a social nudge.

10.3.5 � Framing Nudge

The way information is presented affects the way people make decisions (Tversky 
and Kahneman 1985), and framing is the deliberate phrasing to encourage the target 
behaviour. A good example is the fact that people respond differently to information 
presented as a loss or a gain. Consider the following framing example: “If skin can-
cer is detected early, it can be treated before it becomes life-threatening” stresses 

Your activity

M   T   W   T   F   S   S 

G
oa

l

Fig. 10.3  Feedback nudge on the Fitness app. The sensors in the watch record James’ physical 
activity using the accelerometer and GPS. James’ steps are recorded whenever he moves. To fur-
ther motivate James, the health application provides James with feedback on his weekly move 
goal. The presentation of the feedback makes it easier for James to track his performance
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Sharing

G
oa

l

JamesAlex

Fig. 10.4  Social nudge on the Fitness app. The app provides a peer comparison feature. James can 
invite his friends and compete against them. Whenever James exercises, the watch records the 
activity via its sensors. It then informs him about how well or poor he is doing in comparison to his 
friend Alex to motivate him to follow through on his exercise goals

Why walk ?

Reduce your 
heart disease 
risk

Fig. 10.5  Framing nudge on the Fitness app. The app features a Q&A section that answers ques-
tion related to health. When James visits the Q&A section within the app, he is presented with vari-
ous questions and related answers that are framed as a loss or a gain. To encourage James to 
increase his physical activity the answer to why walking is important is framed positively

more on benefits while “if skin cancer is not detected early, it cannot be possibly 
treated before it becomes life-threatening” stresses more on costs. Figure 10.5 illus-
trates a framing nudge.

10.3.6 � Suggesting Alternatives Nudge

This nudging strategy aims at providing individuals, about to make a decision, with 
alternatives that they might not have considered at this point (Forwood et al. 2015). 
For instance, to reduce the antibiotic over prescription, patients/clinicians could be 
suggested alternatives to antibiotics medication at the time decision is to be taken. 
Likewise, an individual who is mindlessly switching between social media apps 
could be given alternative tasks to complete: Take a walk. Figure 10.6 illustrates a 
suggesting alternatives nudge.
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Last activity

Next time I will

  Walk 2h in city 

  Run 1h at lake

  Do the same

1h run in the city

Fig. 10.6  Suggesting alternatives nudge on the Fitness app. As a means to motivate James and 
support him in his decision-making, the health app offers James a variety of activities to improve 
his health each morning that he may not have thought of before. Moreover, the options have been 
ordered to favor the first three options visible on the screen (example of a positioning nudge)

10.3.7 � Positioning Nudge

Positioning nudges tap into the status-quo bias by changing the way the options are 
presented visually (Caraban et al. 2019). Intuitively, options that are more salient, 
will be chosen more often than options that are less salient. In the extreme, system 
designer can hide certain options to make users less likely to select them. For 
instance, re-positioning the food choices to make nutritious food more prominent in 
a physical setting can increase their sales (Ensaff et al. 2015). In the digital context, 
Wyse et al. positioned nutritious food at the top of the list on the food ordering web-
platform, resulting in an increased selection of nutritious food (Wyse et al. 2021a). 
Figure 10.6 also illustrates how positioning of physical activity options can assist 
James in being more active.

10.4 � Digital Nudges in the Continuum of Care

In medicine, continuum of care is the provision of health care over time. The term 
refers to all the phases of a patient’s illness, from before the diagnosis to the end of 
life. The continuum of care can be split in five general phases: prevention, pre-acute, 
acute, post-acute and chronic home-care (Cohen et al. 2020; Spring et al. 2020). 
Below, readers are provided with an overview of what it means for digital nudges to 
be used in digital health and how they can be leveraged to address each aspect of the 
health care continuum (Fig. 10.7).

10.4.1 � Prevention

In the prevention phase the goal is to employ digital nudge interventions before the 
onset of a disorder and discourage risky health behaviours and prevent individual 
risk factors for a certain medical condition. The following study presents a case in 
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Prevention Pre-acute Acute Post-acute Home-care

Healthy living
Prediction
Remission

Diagnostics
Monitoring

Hospitalisation
Monitoring & surveillance

Rehabilitation
Education

Telehealth
Remote monitoring
Smart chronic therapy

Fig. 10.7  Continuum of care

point, Milkman et al. employed text-based nudges delivered on a phone that used a 
framing nudge to boost vaccine adoption, i.e., to prevent influenza (Milkman et al. 
2021). The application of framing led to increase in influenza vaccination rate by 
5% when individuals were reminded twice to get their flu shot and were also 
informed that their vaccination appointment was already booked. Within the pre-
vention phase of patient care, digital nudges are generally used to target individuals 
toward increasing behavior such as physical activity, food intake.

10.4.2 � Pre-Acute Care

The pre-acute phase encompasses the time when a patient starts to experience a 
deteriorating health condition and starts self-monitoring. Patients with a progress-
ing health condition following the prevention phase receive pre-acute care that often 
includes services such as health screening, lifestyle behavioural modification 
(healthy living) and disease risk reduction. One among many case in point for pre-
acute care are digital interventions such as feedback and reminders to improve 
dietary intake and physical activity behaviour. To illustrate, Xu et  al. employed 
feedback nudges to improve dietary behaviour and increase physical activity for the 
patients who were at high risk for type 2 diabetes (Xu et al. 2020).

10.4.3 � Acute Care

The acute phase starts with medical diagnostic by medical professional and treat-
ment. Following the prevention phase, patients with potentially unstable health con-
dition then receive acute care that often includes services such as the provision of 
urgent, targeted, primary care or hospital-based care. An example of the area where 
acute care and chronic care is crucial for recovery is motor training for individuals 
affected by stroke (Krakauer and Cortés 2018). The game-based digital therapy sup-
ports user motivation. The goal of gamification is to use game mechanics such as 
competition, awards, and timely feedback to motivate and reward players. These 
elements of the game such as feedback, rewards and social comparison are in fact 
digital nudges integrated into the game mechanics. For instance, Perez-Marcos 
et al. employed gamification-based games for functional training of upper limb after 
brain damage (Perez-Marcos et al. 2017). Also, it has been proposed that immersive 
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VR therapy based on gamification can be beneficial in treating balance problems 
associated with chronic ischemic stroke (Cortés-Pérez et al. 2020). Moreover, digi-
tal nudges are also employed for clinicians in acute phase. One classic example is 
by Boillat et  al. to prevent the human error-related complications in operating 
rooms. They proposed smart glasses to overcome the challenge where surgeons in 
an operating room have to rely on a poster or paper to complete a time-out checklist 
that takes place before the surgery (Boillat et al. 2019). There was a 100% comple-
tion rate with an 18% decrease in the average checklist duration, demonstrating the 
efficacy of reminders digital nudge in reducing patient complications from surgery.

10.4.4 � Post-Acute Care

Patients with stabilized conditions following acute hospitalization receive later care 
services such as nursing care, monitoring, drug administration, rehabilitation, health 
education and residential care (Wang et al. 2019). The employment of various digi-
tal nudges in post-acute care phase has shown some promise. For instance, elderly 
patients who recently suffered a heart attack were significantly motivated to become 
more physically active with loss-framed incentives and personalized goals using a 
wearable device (Chokshi et  al. 2018). In context of residential care, medicine 
adherence is one of many self-management behaviors in which digital nudges are 
being employed. In a recent clinical study, Horne et  al. identified the medicine 
adherence barriers using proprietary recursive machine learning algorithms (Horne 
et al. 2022). Based on augmented intelligence, digital nudges were formulated on 
the content, frequency, timing, delivery method, and feedback metric. These digital 
nudges were distributed via computer-generated emails, SMS messages, and inter-
active voice response phone calls. A 12-month randomized controlled trial indicated 
that the participants in the nudge group adhered to their medicine significantly more 
than the participants in the control group.

10.4.5 � Ethical Considerations

As illustrated above, digital nudging in the health context seems to have promising 
applications, as it could potentially steer behaviour in a very cost-effective fashion. 
However, one important aspect to note is that most digital nudges such as feedback, 
social comparison, or reminders require a multitude of data. Therefore, it is impor-
tant to put some attention on the ethics of digital nudging and how existing studies 
are taking care of it. As to ethics, Thaler proposed a set of design guidelines that 
should be used to design what he called nudges for good (Thaler 2018). Nudges 
should be (1) transparent, (2) easy to opt-out, and (3) designed with the wellbeing 
of the user in mind (Gold et al. 2020; Sunstein and Thaler 2008). Transparency can 
be understood both as the goal of the nudge, which should not be deceitful or 
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obfuscated, but also as the mechanism of the nudge by which it operates (Purohit 
and Holzer 2021). This second aspect involves transparency about data usage and 
privacy. Opting out easily means that users should have the autonomy to follow the 
nudge or to decide not to follow it. However, individuals being nudged are often 
unaware of the nudge or the psychological mechanisms employed by the choice 
architect (Stuart Mills 2020; Reijula and Hertwig 2022). Lastly, the well-being of 
users should be the central focus for nudging and not the well-being of the designer 
(Purohit and Holzer 2021); however, even with the noblest intentions, who is to 
decide what is in the user’s best interest? An ethical analysis of nudges is particu-
larly important to mitigate potentially undesirable or harmful consequences through 
design changes.

10.5 � Landscape of Digital Nudging in Digital Health

To better understand the current landscape of existing empirical research on digital 
nudges in the digital healthcare field, we performed a scoping review. The review 
also attempts to answer RQ1 and RQ2. This analysis is based on the three main 
grids of analysis presented above: digital nudging strategies, continuum of care and 
ethics of nudging. The inclusion criteria consisted of three main points: (1) the focus 
of the research had to be a digital intervention for behaviour change, (2) the inter-
vention had to be evaluated empirically, and (3) the intervention had to target 
patients or healthcare professionals. A search for articles was conducted on the elec-
tronic database of JMIR (Journal of Medical Internet Research), which is the lead-
ing peer-reviewed journal for digital health and medicine. We searched for the term 
“nudging”, “nudges” or “nudge” or “digital nudges” or “digital nudging” or “digital 
nudge” in the content of the articles.

The database search yielded a total of 150 articles, 131 articles were excluded 
based on not fulfilling inclusion criteria, resulting in 19 full-text articles for inclu-
sion. The results in Fig. 10.8 seem to indicate that inclusion of digital nudging in 
digital health is increasing exponentially. For instance, the number of studies that 
include digital nudges have increased more than 160% since 2018. Among the 19 
included studies, 30 nudges were used, as 7 studies employed two or more nudging 
techniques. In most of these 7 studies, nudging strategies were used in combination. 
The most common nudges used were feedback and reminders. Their application 
lied on prevention and post-acute care. Surprisingly, none of the studies investigated 
default nudges. Figure 10.9 provides a full overview of the analysis.
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Fig. 10.8  Results of the scoping review

10.5.1 � Increasing Desired Behaviour

The results of this review suggest that digital nudging can be applied to a wide vari-
ety of health objectives, i.e., from increasing the uptake of contraceptives in Africa 
to increasing treatment adherence to HIV treatment. It should be noted that most 
papers focus on increasing a desired behaviour (e.g., increase in vaccination rate, 
increase physical activity). Sometimes increasing a desired behaviour is coupled 
with a decrease in an unwanted behaviour, such as increasing activity is implicitly 
coupled with decreasing sedentary behaviour. Nevertheless, in the reviewed studies, 
nudges are not used to solely reduce an unwanted behaviour. This presents a poten-
tial opportunity for further investigation. There are several challenges in nudging 
patients away from an undesired behaviour, the first linked to the identification of 
such a behaviour (e.g., inferring when a smoker lights up a cigarette), and the sec-
ond linked to providing adequate feedback on a negative behaviour (e.g., “you have 
not smoked today”).

10.5.2 � Personalized Mobile Feedback

In terms of nudging strategies, most research has focused on feedback nudges and 
reminders. Social comparison has also been investigated a few times, but the other 
strategies are only marginally studied (once in the reviewed papers). The rise of 
feedback nudges is not surprising given the wide adoption of smart devices such as 
wearable and smartphones, which allow tracking motion, steps, heart rate and other 
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physiological metrics. Furthermore, these devices allow to easily reach users at any 
time (potentially an identified teachable moment) through push notifications, sounds 
or vibrations, which make them ideal delivery channels for reminder nudges. 
Moreover, this ubiquitous nature of devices has led to the use of digital nudges in 
the different phases of the continuum of care. For instance, from averting illness by 
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encouraging individuals to vaccinate in the prevention phase to using feedback 
nudging strategies to rehabilitate stroke patients in the post-acute phase. However 
there were no studies focused on acute care in the reviewed articles. This might not 
be surprising as this stage of the continuum of care is the most challenging to study 
empirically. Furthermore, in the acute phase, patients are potentially more passive 
than in other phases, and as such, nudges might have to focus on medical practitio-
ners rather than patients. Future research could further investigate this phase, since 
nudge can present undeniable opportunities, as exemplified by the reminder nudge 
to improve checklist compliance during an event of surgery presented above (Boillat 
et al. 2019).

10.5.3 � Ethical Nudging Boundaries

There is no denying that the omnipresence of connected devices can present oppor-
tunities for innovative and effective digital nudges along the continuum of care. 
However, there are ethical risks associated to these technologies in terms of privacy, 
autonomy, and consent. Understanding the amplitude of these risks requires in-
depth analyses of the intervention design in their specific contexts, but the reviewed 
literature only rarely discuss these issues. Indeed, only 1 out of 19 studies conferred 
about ethical considerations while designing the intervention and others paid little 
or no attention to even explaining the mechanism and working of the nudge. The 
criteria of transparency work well with certain digital nudges such as feedback and 
reminders. For instance, provision of feedback to increase physical activity is pretty 
transparent in its objective like in the study by Xu et al. (2020). However, digital 
nudges such as framing, default and social comparison are inherently not transpar-
ent, as individuals are often unaware about the objective of the nudge until revealed 
before deployment. For instance, Suzuki et al. (2021) employed framing in a brief 
web-based educational intervention to increase vaccination rates. The participants 
were blind to the mechanism that was employed to change their mindset. The crite-
rion of ease of opting out is also met in certain cases. For instance, in a study by 
Purohit and Holzer (2021) participants could opt out of the feedback nudge by just 
turning off the feedback automation themselves. The process to opt-out would 
become challenging for nudges like default, framing (Suzuki et al. 2021), position-
ing (Wyse et  al. 2021b). Finally, surprisingly, as shown in Fig.  10.9, the ethical 
analysis reveals that out of 19 studies, only one study of Neto et al. (2021) explicitly 
discusses the nudge designs and ethical implications. Future research should further 
investigate this issue. It should also be noted that understanding the ethical boundar-
ies of digital nudging will also allow practitioners to identify potential unintended 
nudges present on their digital support systems. This can typically happen as nudges 
such as positioning or defaults are unavoidable when a system is designed. The 
challenge is to make sure these design decisions are aligned with the welfare of the 
patient and are not so called dark patterns, manipulating them.
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10.5.4 � Limitations

It should be noted that this chapter is not without limitations. Despite carefully fol-
lowing the guidelines for scoping reviews, the results are confined to the initial 
search, as is inherent to their nature. For instance, the nursing field may have applied 
a type of digital nudge like feedback without calling it that. Moreover, our search for 
the scoping review was limited to JMIR database and mainly focused on digital 
nudging for patients. Future research could include other digital health databases 
and review digital nudging for clinicians to provide a full-fledged systematic review 
of the topic.

10.6 � Conclusion

This chapter mapped the landscape of a growing topic, namely digital nudging in 
healthcare. This chapter allows practitioners and healthcare system designers to get 
a better understanding of possible applications of digital nudges to increase the 
effectiveness of health applications along the continuum of care. It first gave an 
overview of the potential opportunities offered by digital nudges through the con-
tinuum of care. It then discussed the current state of the empirical literature on digi-
tal nudging in healthcare through a scoping literature review. The review highlighted 
the fact that current research efforts mainly focus on feedback and reminder nudges 
applied to an increasingly desired behaviour for prevention and post-acute care. At 
the current stage, several otherwise effective nudging strategies such as defaults are 
absent from the reviewed literature and none of the interventions was applied to 
acute care. Furthermore, the review revealed that only one paper out of 19 discussed 
ethical aspects of nudging. As such it appears that the development and promotion 
of an ethical analysis grid that will guide practitioners and researchers in designing 
not only low cost and effective, but also ethical nudges is crucial to unleash the full 
power of nudging to improve digital health.
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Chapter 11
The Role of Design in Healthcare 
Innovation and Future Digital Health

Carlos Montana-Hoyos, Marianella Chamorro-Koc, and Lisa Scharoun

Abstract  This chapter explores the role of design disciplines within healthcare 
innovation and digital health. Through defining design, we provide an overview of 
the evolution and current roles of design disciplines as a means to explore the con-
tributions of different design disciplines to healthcare innovation. Furthermore, we 
discuss the ways that design can humanize technology and how inter and transdis-
ciplinary collaborations, where designers from different specializations interact 
with engineers, health professionals, and others, can be powerful agents for creating 
current and future innovations in this sector. The chapter provides an overall view of 
types of applications and implementations of design disciplines in healthcare design 
and digital health, going from design of hospitals and health spaces to medical 
equipment, and others, with special emphasis in apps and wearables for digital 
health and wellbeing. Through a discussion of design projects, initiated and imple-
mented by the authors, where designers and researchers collaborate with engineers, 
medical professionals and other disciplines, centred on health care and delivery; we 
reflect on the inter and transdisciplinary innovation processes. We highlight benefits 
and challenges of these types of collaborations and explore possible avenues for 
integrating and developing the projects further, through the use of emerging tech-
nologies. Future trends and forecasts, especially around new virtual lives afforded 
by emerging technology applications, offer new future scenarios by using design 
fiction narratives. The chapter ends with possible implications of future digital 
health applications, including a critique from social points of view.
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11.1 � Introduction

In 2014 the World Health Organization (WHO) estimated a worldwide shortage of 
around 4.3 million health workers in the world (Aluttis et al. 2014) with the stress 
on health care systems posed by the Covid-19 pandemic - this is now estimated at 
18 million (WHO 2021). As we reflect on these statistics and the world-changing 
events of the Covid-19 pandemic, the opportunities for both the integration and 
acceptance of digital health to tackle this challenge have come to the forefront and 
will continue to be a critical part of the health service delivery environment. Digital 
technologies in healthcare have the possibility to disrupt and transform the delivery 
and effectiveness of care on a universal scale. According to Meskó et al. (2017, p.1) 
“the cultural transformation of how disruptive technologies that provide digital and 
objective data accessible to both caregivers and patients leads to an equal level 
doctor-patient relationship with shared decision-making and the democratization of 
care.” Development, acceptance, and performance of health digital interventions are 
largely dependent on good design. Through processes such as co-design and design 
thinking, a connection with empathy and the care experience can be mapped and 
then aligned with new technologies to provide improved patient journeys that can 
influence systemic changes in care. Large and small design interventions in this 
space can create profound changes in the way that people access and perceive 
healthcare.

11.2 � Towards a Definition of Design

Design as defined by the Oxford Dictionary (2022) is:
“(1) the general arrangement of the different parts of something that is made, 

such as a building, book, machine, etc. (2) the art or process of deciding how some-
thing will look, work, etc. by drawing plans, making models, etc., (3) design (for 
something) a drawing or plan from which something may be made, (4) an arrange-
ment of lines and shapes as a decoration and (5) a plan or an intention.”

However, due to its broad definition and interpretations, the word design can 
have many different meanings and is often viewed differently depending on the role 
one plays in the design process. For instance, design can be seen by practitioners as 
a process in and of itself but it is more commonly seen by society as the result or 
creations from that process. Blackler et  al. (2021) explored 20 years of ongoing 
discussion among design theorists and academics about what design is. Through a 
data mining process, they concluded that design continues to be an ill-defined term, 
and that it also means so many different things, from process, to theory to activity 
and more. As explained in Scharoun et al. (2020):

“The word ‘design’ is both an action and its result. As an action—to design—the 
term refers to a creative thinking and problem-solving process that enables the 
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creation and development of ideas through iteration, visualisation and materialisa-
tion into a reality, in a planned and methodical way. As a result—a design—the term 
also describes the outcome of the previous action.”

As a fusion of art, culture, technology, engineering, business, innovation and 
many other disciplines; design is transdisciplinary by nature. In the post-industrial 
world, design is an entity that has moved from being one of solely physical experi-
ence (e.g., a book, building or piece of furniture) to one of the complete immersive 
experiences of the everyday as defined by the human centred approach to the under-
standing of the aesthetics and behavioural approach to our services, systems and use 
experiences. Design is not, and has never been, simply a style filter that makes 
something mundane more beautiful however embedded in the design process is the 
necessity for an aesthetic that appeals to and persuades the end user to form a bond 
with the product/service/communication strategy or space.

Design has been described by some researchers as having syntactic, pragmatic 
and semantic functions (Boucharenc 2008; Bonollo 2010). As related to linguistics, 
syntactic functions answer to how something is ‘made’ or constructed, pragmatic 
functions refer to how something is ‘used’, and semantic functions relate to how 
something is perceived, or what it ‘communicates’. In terms of communication of 
designs, it is also pertinent to include the concept of ‘affordances.’ According to 
Butler et al. (2003), affordance is “a property in which the physical characteristics 
of an object or environment influence its function”. When affordances are used well 
by designers, the use of the design is effectively communicated to the user.

Increasingly, designers have influence over how we perceive our virtual as well 
as our physical reality. As explained in Scharoun et al. (2020) ‘We are experiencing 
the evolution of design towards social change while seeking the humanisation of 
multiple new disruptive technologies such as artificial intelligence (AI), internet of 
things (IoT), blockchain, and many others, which are changing our relationships 
with the world and creating new interfaces, digital environments, and even virtual 
and augmented realities.’

In exploring the definition of design, it is important to differentiate design disci-
plines from design process. Co-design and design thinking are processes that are 
both integrated in a design outcome but also can be separated as a discrete service 
in its own right. Co-design, also described as generative design, co-creation, partici-
patory design, or co-operative design, is a process and not an outcome. Through a 
process of exploratory research and developmental design, it seeks to define a prob-
lem that requires a solution and to try and address that problem together with the 
end user. The process aims to achieve an outcome or series of outcomes of which 
have the potential to be rapidly tested in collaboration with the end user (NCOSS 
2017). In co-design all participants are responsible for the effectiveness of the pro-
cess. Similarly, Design Thinking is an iterative process in which we seek to under-
stand the user, challenge assumptions, and redefine problems. It seeks to identify 
alternative strategies and solutions that might not be instantly apparent but that can 
be teased out during a multi-step process involving empathising or ‘stepping in the 
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shoes’ of the user, defining the users’ needs, problem and insights; ideating a solu-
tion based on that insight; prototyping that solution and finally testing the solution 
(Dam and Siang 2021). Unlike co-design, however, it is not dependant on creating 
the solution with the end user.

When taken from a wholistic perspective, design can be defined as the original 
concept in everything. It is the driving concept behind a process of transformation 
and representations – giving our material culture its value, meaning and balance. In 
the context of the chapter and projects described, we define design as a conscious 
intention to modify our environment to benefit human progress and increase social 
good. Through strategic problem-solving process, we believe that designers go 
beyond invention and foster a culture of innovation. Through co-design with rele-
vant stakeholders and end-users, designs can foster outcomes that lead to innovative 
systems, products and services which ultimately provide better experiences and thus 
a better quality of life.

11.3 � The Role of Design in Healthcare Innovation

Digital technologies can give agency and power to patients. Previously healthcare 
functioned with a ‘doctor hero’ scenario in which the doctor makes all decisions 
with the patient having little or no agency in attaining an understanding of their own 
condition. In this traditional structure of healthcare, patients are not involved in 
decision making about their own health and disease management. “This insecurity 
and exposure to decisions out of their control served as the primary motivation 
behind patient empowerment that included the use of disruptive technologies, which 
were also becoming available” (Meskó et al. 2017: 3).

Healthcare, and the patient experience, is something that is strongly tied to emo-
tion and sense of control. To have a successful treatment outcome, a positive patient 
experience is essential. If these experiences are left to chance, with no element of 
thought put into the overall feeling one gets from their delivery, outcomes can be 
dire. “Without design,” explains Solis (2020), “experiences are left to chance, for 
someone to internalize our processes, policies, services, physical and digital touch-
points, on their own” Designers play many roles in the health care innovation space, 
including the design of tangible objects such as furniture but are also integral in the 
creation of digital systems and designed experiences. According to Solis (2020) 
“Design has a direct effect on how patients, and also caregivers, feel. When done 
right through intentionality – colors, art, furniture, process, technology, and staff 
training – patients can feel more at ease, calm, and secure.”

Many of the issues being faced daily in the Healthcare sector are complex and 
systemic. They require a perspective that is difficult to attain for those that are work-
ing in the system and therefore too close to the problem. As described above in the 
design thinking process, design problems often begin with ambiguity, and it is the 
designer’s ability to step through the phases of the iterative design thinking process 
that leads to a solution to a problem uncovered during the process. Designers can 
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navigate the system as a relative outsider to understand the parameters or conditions 
in which solutions can be developed. Explains Park (2020) “we look to clearly 
define a problem, and the reasons behind it, before jumping to solutions… designers 
know when and how to bring users along in the process. They ensure that there are 
questions and activities that give users effective entry points into the creative pro-
cess and give users the opportunity to make amorphous ideas concrete.”

Design methods, with their embedded reliance on stepping into the shoes of the 
user, help with public engagement and ultimately acceptance of a new service, 
delivery model or technological intervention. ‘Being involved in the change conver-
sation from the start means people (as citizens, taxpayers and service users) are 
more likely to feel a degree of ownership. This, in turn, means they are less likely to 
oppose the agreed solution, and will potentially be more willing to play a part in 
delivery (Design Commission 2013).’ It is therefore crucial to engage designers in 
innovation processes.

11.4 � Design in Healthcare Innovation and Digital Health

‘Health,’ as defined by the WHO (2022) is ‘a state of complete physical, social and 
mental well-being and not merely the absence of disease or infirmity.” Healthcare 
innovation driven by technological solutions such as the ones encompassed under 
the umbrella of digital health has become a popular topic of discussion. The litera-
ture on digital health and health technologies commonly refer to how such technolo-
gies would improve healthcare delivery. This is mainly because of the nature of 
digital health technologies that enables remote communication, incorporates Virtual 
Reality (VR), Artificial Intelligence (AI) and Augmented Reality (AR) technologies 
that facilitate medical training, providing solutions for remote tracking of health 
indicators from patients. Some examples of digital health are wearable technologies 
such as exercise trackers and mobile phone applications (Apps) (Birnbaum et al. 
2015). There is also discussion in the literature about the risks around data privacy 
and security, as well as equitable access to those technologies. Lack of user engage-
ment in the proposed solutions is one of the areas where the role of Design in 
Healthcare innovation has become necessary to work with end users in the process 
of design and implementation.

In Healthcare, design thinking approaches are now commonly employed where 
Design is understood as the strategy that can facilitate disruptive solutions to 
improve the quality of healthcare. Matthews (2015) discusses the role of Design in 
Healthcare and states that Design is a broad term with many definitions because it 
may be applied to an object, a process or a system and contribute to healthcare by 
improving safety, dignity, efficiency and sustainability. In the healthcare sector, 
patient-centered design is a multi-stage process that involves iterations from con-
ceptualisation, to design, and to design testing.

The struggle of healthcare services and their need for drastic innovation became 
even more evident during the 2020 Covid-19 pandemic, when healthcare services 
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delivery collapsed globally. Patrício et al. (2019) stress that the complexity of the 
challenges faced by the healthcare sector demands profound system innovation and 
provides examples of how design plays a critical role in not only developing solu-
tions, but also engaging people and multidisciplinary teams in co-creating valuable 
service solutions.

11.5 � Design and Hospitals of the Future

A combination of factors such as demographic and economic changes, rapidly 
evolving technologies as well as the mass-adaption of digital and tele-health ser-
vices during the Covid-19 pandemic, continue to challenge hospitals worldwide to 
think of new ways to deliver care. “A growing number of inpatient health care ser-
vices are already being pushed to home and outpatient ambulatory facilities. 
However, many complex and very ill patients will continue to need acute inpatient 
services” (Deloitte 2017). These conditions assert a changing role and design of 
hospitals for the future. The re-design and re-thinking of hospitals is at the forefront 
of healthcare provision today.

“With a continually increasing and ageing patient population, tighter budgets, 
fewer doctors and higher patient expectations, many envisage that there could be 
significant challenges ahead. Equally, with more technology, better use of more data 
and some innovative new business models, there could also be some substantial 
opportunities to improve both the efficiency and the quality of delivering care 
(Future Agenda 2022).”

Hospitals are experimenting with design elements such as customized patient 
rooms using digital screens, automation and robotics for care and ancillary services, 
digital patient experience using AI and machine learning (ML) and refined care 
delivery through centralized clinical command centers with digital continuous mon-
itoring - amongst others (Deloitte 2017). Designers are playing a large part in the 
overall development of these spaces and experiences.

11.6 � Design Narratives and Design Fiction

Design is an interdisciplinary and integrative discipline and a process by which we 
devise courses of action aimed at changing existing situations into preferred ones 
(Simon 1988). It has the ability to capture both new knowledge and in the applica-
tion of this knowledge to the creation of possible futures and scenarios. Scenarios 
have been employed in design-led innovation processes to provide a methodologi-
cal framework to explore, investigate and depict people’s current and future every-
day practices, as well as devising alternative futures.

Scenarios is traditionally defined as ‘a projection of a concrete narrative descrip-
tion of activity that the user engages in when performing a specific task, a 
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description sufficiently detailed so that design implications can be inferred and rea-
soned about’ (Carroll 1997:385). From this perspective it is understood that sce-
narios are design representations focused on use situations. As such, scenarios can 
be employed in the evaluation of use cases and for many other purposes. Chamorro-
Koc et al. 2012 discuss the concept of scenarios as a design tool that can be success-
fully employed by organisations as an innovative design led approach to: (i) 
understand people’s everyday practices in current social contexts in order to identify 
opportunities and emerging markets, and (ii) reveal stakeholder relationships exist-
ing in the provision of services within current everyday practices. As an example, 
they discuss an industry project that explored opportunities for the development of 
future health care services. In this project, scenarios were employed to explore the 
opportunities for a medical device manufacturer to expand their services and com-
pliment their product offering. As part of scenarios, design strategies such as perso-
nas, experiential journey maps, narrative, and video vignettes were employed to 
translate customer experiences into ideas and conceptualisations of future service 
development (Bucolo and Mathews 2010).

Depicting narratives about people’s experiences and practices is also employed 
in the context of healthcare. Story and narrative are terms applied in nursing train-
ing, health communication and medical science. Patients’ stories help depict a 
healthcare situation and the illness experience of patients, while the clinical narra-
tive is representative of models of medical practice and healthcare. Sometimes 
referred to as ‘vignettes’, clinical narratives embed data and are not merely anec-
dotal, casual accounts, they connect theory with experience and represent the rela-
tionship between daily healthcare practice and knowledge (Wiltshire 1995).

While nowadays this term is stated as ambiguous and highly debated, the term 
design fiction was coined in 2005 by author Bruce Sterling, specialized in Science 
Fiction literature. Since its origins, design fiction has been widely adopted by a 
broad range of design and future-oriented disciplines (Lindley and Coulton 2015). 
Bosch (2012) defines design fiction as the “deliberate use of diegetic prototypes to 
suspend disbelief about change”. Diegesis, the key component of design fiction 
according to Sterling, is a type of narrative and storytelling in which the narrator 
tells the story. Diegetic prototypes are elements of this fictional world. The focus is 
on the design and use of these objects and situations in the fictional world, rather 
than a focus in the macro story of the world, like political trends or geopolitical 
strategies (Bosch 2012). “Design Fiction” has become an established field of design 
research dedicated to creating, imagining, and visualizing possible futures and new 
worlds (Grand and Wiedmer 2010). Through simulated experiences, design fiction 
allows designers and users to engage with a world that does not yet exist—where 
radical new solutions are conceived and their potential benefits and consequences 
can be experienced first-hand. It has also become a widely used tool that uses a nar-
rative to contextualize a future design, and the needs, values, and experiences asso-
ciated with it (Ahmadpour et al. 2019), by enabling co-creation processes where 
possible applications, but most importantly, potential implications of interactions 
with future and emerging technologies can be explored. These discussions allow 
researchers to speculate about possible future socio-political contexts, direct or 
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indirect desirable or undesirable implications, and visualization of future scenarios 
with possible utopian or dystopian characteristics. While there are similarities and 
relationships between speculative critical design and design fiction, and these are 
often associated with participatory research, design fiction should not necessarily be 
equated to these. Furthermore, while design fiction can be used for speculative proj-
ects, professional designers have also been using related tools in day-to-day prac-
tice, such as future forecasting and trend spotting (Milton and Rodgers 2013).

In the context of Health Innovation and Digital Health, many researchers have 
reported the use of design narratives and design fiction for healthcare, medical 
devices, and related areas (Stead et al. 2018; Strachan 2016).

11.7 � Future Healthcare Innovation and Digital Health 
Design Projects and Scenarios

Historically, design has focused on visualising the future. Futurist and designer 
Buckminster Fuller (1982) stated: “you never change things by fighting the existing 
reality. To change something, build a new model that makes the existing model 
obsolete.” Special effects designers have created objects, transportation and new 
modes of life which have been portrayed by science-fiction movies. Researchers 
argue that many products, garments, vehicles and other designs showcased in some 
visionary sci-fi movies have shaped the reality of future life. Furthermore, this 
future-oriented role of design has been widely described in books like Design as 
Future Making (Yelavich and Adams 2014), or Design Futures (Quinn 2011) 
amongst many others. Both books provide ideas and essays about the future, with 
design-related topics like bio-architecture, robotics for manufacturing and other 
applications, interactive spaces, new materials, including but not limited to bioma-
terials, biomimetic design, self-replication, reactive surfaces, future fashion, bio-
design, and many other topics.

In this section we discuss design projects that aimed to solve current issues in 
Healthcare but could be adapted and further evolved using new technologies. We 
outline the projects and original scope and then discuss future scenarios design fic-
tion to provide rich possibilities for the hospitals of the future.

11.7.1 � Futuristic Intensive Care Units

One example of future-oriented design for health, developed by the authors, is the 
2013 project User-centered, Research-based Design of Futuristic Intensive Care 
Units. This design research project, developed with Industrial Design post-graduate 
students in collaboration with representatives of two hospitals in Canberra, Australia, 
used ergonomics and user-centred design approaches in health-services 
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environments, specifically Intensive Care Units (ICU) in Hospitals, to design inno-
vative, futuristic ICU design concepts (Montana-Hoyos et al. 2016). While at the 
time the project did not explicitly use the Design Fiction methodology, current and 
futuristic visions for ICU spaces were illustrated and developed through examples 
from architecture and science fiction movies. This vision of the future, coupled with 
in situ user-observations, surveys and unstructured interviews of patients, family, 
and healthcare workers (mainly nurses and medical doctors) carried on at the 
Calvary John James Hospital (CJJH) and the Canberra Hospital (CH) provided the 
basis for futuristic conceptual design proposals. The project proposed a fully inte-
grated ICU bedspace, which used emerging technologies (at the time) such as wit-
ricity and holograms (see Fig. 11.1, below). According to Gozalvez (2007), witricity, 
or wireless electricity, is a wireless power transfer developed by MIT researchers. In 
this project, this technology could avoid the spaghetti syndrome, or multiple chords, 
tubes and electric cables commonly found in today’s hospitals. Furthermore, holo-
grams can improve medical 3-D visualizations. In the future, this concept could be 
further developed to avoid the common disconnection between different technolo-
gies and medical equipment manufacturers, and to provide improved spaces for 
specialized intensive care, with inclusions of AI, IoT, and remote robotic surgery 
devices.

Fig. 11.1  Futuristic ICU design concepts (Source: Montana-Hoyos et al. 2016)
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11.7.2 � HealthPod

In 2016 two of the authors participated in a design research project where we devel-
oped and tested a Digital Health intervention. High quality patient data offers ben-
efits to General Practices (GP) and patients. Such data can be used to identify 
patients at risk of disease and offer intervention opportunities. Despite quality 
assurance schemes, GP clinic datasets are often incomplete e.g. missing data on 
patient demographic and information on height, weight, and behavioural risk fac-
tors such as smoking, alcohol consumption and physical activity. This missing data 
makes population stratification (e.g. determination of populations at risk of diabetes 
or cardiovascular disease (CVD) risk) difficult and presents a barrier to optimal 
patient care (Volker et al. 2014). This becomes particularly relevant as the landscape 
of general practice changes with health reforms focusing on initiatives such as 
health care homes, where data driven improvement and patient-care team partner-
ship form essential building blocks (Bodenheimer et al. 2014). Furthermore, patients 
have a limited role in engaging with their own health information to ensure its accu-
racy and relevance to their current health status. Manual interventions to improve 
GP data quality are time consuming for practice staff. It may be more efficient, less 
costly and more reliable to use information and communication technologies to 
streamline, automate and enhance the patient data collection process, especially 
technologies that include the patient in the collection of their own data. Considering 
all these factors, a multidisciplinary co-design approach was adopted for the design, 
development and implementation of a HealthPod intervention in a large multi-
disciplinary integrated general practice developed through funding from the 
Australian Department of Health’s Superclinic program (see Fig. 11.2, below).

To enable the design of the HealthPod, we enacted a co-design approach involv-
ing patients, students and medical staff cooperating with designers, researchers and 
developers to inform the design and development the HealthPod. Engagement was 
required during several stages of this process including the initial design brief and 
conceptualisation to develop a patient kiosk. The process included a clear definition 
of the scope of the project and a focus on the end users, to help generate innovative 
ideas for potential solutions. This was done through a patient focus group which 
focused on issues surrounding patient empowerment and data quality and an inter-
active design workshop with design students focusing on the physical design of the 
pod. The multi-disciplinary team collaborated extensively during the co-development 
stage to ensure that all aspects of the design (including the overall user experience, 
the physical pod, the graphic user interface and software development, among oth-
ers) were integrated. The design of the Pod was heavily influenced by the materials 
and interior design within the clinic, as the Pod was not meant to be perceived as an 
alien object inside the waiting room, but as part of it. Main considerations were also 
ergonomics, postures of the users, privacy and accessibility to the Pod. The Health 
Pod was used as a mechanism for improving data collection. It had a custom-built 
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Fig. 11.2  HealthPod physical structure, interface and print report card

program that fed into the clinic’s database and a visually appealing graphical user 
interface that took into account potential accessibly concerns of the end user. It 
generated a physical ‘report card’ that patients could choose to print in the pod and 
take home with them to help empower patients to take action on the health issues 
identified.

The HealthPod could be adapted to a range of future purposes but mainly the 
functionality could be enhanced to deliver a full e-health experience. The inclusion 
of AI could further assist in a body-scanning and empowerment activity in which 
remote consultations with specialists could be more easily facilitated. In a hospital 
of the future scenario – the pods could become integral parts of a new hospital plan-
ning and design. To expedite waiting times, HealthPods could be used in Accident 
and Emergency units (A&E) or Day Surgery areas to facilitate initial assessment, 
triage, and pre-health scanning activities.
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11.7.3 � Design Fiction to Envision Life in 2050

While not exclusively focused on health, from 2018 to the moment of writing this 
book chapter, one of the authors has used design fiction to enable undergraduate 
design students analyse and better understand future and emerging technologies, 
and possible future applications in transdisciplinary design. By analysing emerging 
technologies, students created future design scenarios for life on earth, or other 
planets, in 2050. Some of the technologies which were mostly related to healthcare 
and mental health applications, were 4D printing, bio-printing and 3D printing of 
live tissues, emotion sensing artificial intelligence, electronic tattoos, mind readers, 
life-extension technologies, living materials, self-healing materials, and of 
course, robots.

Some results of these projects are illustrated below. For example, design student 
Zhara Akef researched self-healing materials and behaviours of growing new tis-
sues or limbs, as in the case of some lizards, to propose future scenarios where self-
healing textiles and clothing could have medical properties, and even facilitate the 
growth of injured tissues and limbs (see Fig. 11.3, below).

Another technology of choice for possible future medical applications was elec-
tronic tattoos. E-Tattoos, a new generation of thin, adhesive surfaces that behave 
like skin and have electronics embedded in them, has been seen as one of the wear-
ables of the future, with sensors and data that can enhance well-being, and also with 
medical applications. These small, thin wearables could act like small bandages, 
helping skin heal, while simultaneously monitoring patients and sending key infor-
mation to medical practitioners. Two possible visualizations were the concepts cre-
ated by design students Alexandra Karakovskaya, who proposed e-tattoos for 
multiple applications including fitness and health monitoring (see Fig. 11.4, below) 
and the project “physio Ink” by Areeba Shahid, which proposed the use of elec-
tronic tattoos made with electricity-conductive inks, with applications in physio-
therapy (see Fig. 11.5, below). It is worth noting that while these projects might 
appear far-fetched and without realistic applications in health or medicine, the 
objective was not at all to develop currently feasible, or commercially oriented 
design projects, but rather to get design students to think about the future, and most 
importantly, about the potential applications and implications of future uses of 
emerging technologies, how they will shape our lives, and how they can allow for 
great progress, new experiences and improvement of overall quality of life and 
extension of our lifespan, but also how in the wrong hands or due to unforeseen 
consequences, they can also create future problems in our society.
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Fig. 11.3  2050 Future scenario of self-healing materials. Design fiction visualization
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Fig. 11.4  Design Fiction visualization of E tattoos

11.7.4 � Assessing Pain in Pediatric Hospital Wards

People experience and express pain differently, and in the context of a hospital, 
children might not be able to respond to the protocol of questions about pain accu-
rately. This is of critical importance as this protocol is used to inform nurses and 
doctors the next steps of the therapeutic treatment. When expressing pain or emo-
tional distress, children are a lot less articulated than adults. Unlike adults who can 
verbally express how they experience pain, young children who are pre-verbal can 
only express their feelings of anxiety only through crying. In some circumstances, 
children would become introverted and not be able to express their experience if 
they have preconceived ideas about a treatment; or on the other hand, children might 
not want to express pain if they had been taught to appear tough and not weak.

Pediatric pain is a factor that impacts negatively in the entire healthcare experi-
ence and recovery rates of the pediatric patient. Assessing pain in a pediatric envi-
ronment is a core task that is currently informed by a 1 to 10 scale or a happy to sad 
faces; however, in hospital admissions, tiredness, business, and the heightened emo-
tions of a child in pain might influence the nurse and clinician’s accurate assessment 
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Fig. 11.5  Design Fiction visualization of E tattoos

of a child in pain. This project investigated the way pain is assessed in a pediatric 
population and whether the design of a pain assessment technology device could 
improve a more accurate and empathetic assessment of pain as well as provide a 
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strategy for rapport building with the child. The focus of the research was the con-
text of Admissions to the Emergency room, at the initial stage or touchpoint when 
the nurse asks a child about how much pain they have. The research sought to 
enhance the decision-making of the clinician at the pain assessment moment by co-
designing a technology tool to support healthcare professionals’ expertise by 
enhancing their understanding of the child’s pain and transforming that pain assess-
ment moment in a more positive experience for the child and the clinician 
(Chamorro-Koc et al. 2021).

This project was initiated from the interest of hospitals in understanding chil-
dren’s pain journeys. Led by one of the Authors, this project was a transdisciplinary 
innovation process that brought together healthcare professionals and designers, 
involving end-users (nurses and doctors) and patients from the start of the process 
all the way to the development of research prototypes to facilitate end users input 
and discussion around potential solutions for the design of the device. The scenarios 
we considered corresponded to the current hospital context and services at the 
Emergency Department. Benefits of this collaboration were immediately evident as 
it opened opportunity to designers to work alongside with health professionals and 
understand the critical aspects of the problem from their perspective, expertise and 
regulatory framework (Fig. 11.6). A key challenge was presented due to restrictions 
imposed by Covid. This translated to our project in terms of our inability to run 
observations in the hospital grounds. Design thinking strategies were important in 
this circumstance as it allowed us to work out an alternative way to collect data 

Fig. 11.6  The Pediatric Pain Metric
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remotely, by utilising different design research strategies such as photo ethnography 
(to understand context from the participants’ eyes) and retrospective interviews in 
combination with more traditional methods approaches such as Critical Incident 
Interviews. The result of our inter and transdisciplinary approach and collaboration 
led to the design of TAME, a Pediatric Pain Metric device that utilised sensors to 
gather basic patient data (temperature, tremors and heart rate), and employed a 
screen to facilitate the visualisation of such data in a simple manner and as an indi-
cation of pain and anxiety level of the child (Chamorro-Koc et al. 2021).

As healthcare innovations and digitization of healthcare services continue to 
progress and be implemented, future fiction narratives could help explore those 
emerging concepts of Future Hospitals, providing a platform to further understand 
healthcare professionals’ experiences in those digitized contexts, and the way those 
technologies could facilitate pain assessment in pediatric care. For example, 
Desselle et al. (2020) discusses the design of a virtual reality (VR) experience in the 
context of anxiety and pain management of burns patients in hospitals. There are 
many examples of the use of VR in pain management, and it has mainly been used 
as a diversional therapy (Mallari et al. 2019). Although the use of VR is not new in 
the context of pain management, the potential of its application in other aspects of 
therapeutic treatment has not been fully explored. TAME demonstrated a different 
scenario of use, one that is not centred on the technology functionality, but one 
where technology affordances are applied to humanise how technology can be used 
for empathy building.

As stated by many authors, technology innovation in healthcare lags implemen-
tation, mainly due to the sector being highly regulated. However, opportunities exist 
to develop solutions that can be integrated within existing clinical workflows. A 
future fiction scenario for pain assessment in paediatric wards is suitable within the 
context of the concept of Hospitals of the Future, which are envisioned as organisa-
tions operating within smart environments, that are error-free, effective, and are 
patient-centered (Pickering et al. 2012). In such a future context, pain assessment 
would be pain-free, seamless and error-free. For example, imagine, a VR solution 
that helps to engage the pediatric patient -the child- into therapeutic treatment by 
providing a strategy for nurses or doctors to build rapport with their patient and be 
able to discuss the therapy with them. It would be a VR solution that not only helps 
healthcare professionals to assess pain more accurately, but also one that would help 
children to understand their pain in an engaging manner. Perhaps the VR solution 
can use data visualisation to transform their vital signals into enjoyable visual expe-
riences, where the child has some agency during the pain relief therapeutic process.

11.8 � Conclusions

While some of the projects described above were relatively low complexity proj-
ects, with the increasing use of AI, IoT, emotion sensing technologies, and new 
types of sensors and wearables, the possibilities of pre-screening of symptoms, 
medical triage, remote monitoring done by machines and not humans, as well as 
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remote procedures, robotic surgeries and even 3D and 4D printing of hyper-
customized human tissues and organs is growing. In recent years, the Covid pan-
demic and lockdowns accelerated a move to digital and virtual meetings in industry, 
education and health. Many people, especially an ageing population not comfort-
able with digital services, quickly migrated to telehealth, phone or videoconference 
consultations. This opens future avenues for new generations of wearables, health 
pods, pediatric pain assistants or even robotic personal assistants in hospitals, where 
technology replaces face to face human contact.

Furthermore, a most recent boom of blockchain, cryptocurrencies and the emerg-
ing network of virtual worlds or Metaverse, with increasing participation of indus-
try, businesses and the lay person in the creation of Non Fungible Tokens NFTs, 
Descentralized Autonomous Organizations DAOs and many others, is opening 
unimagined possibilities for a completely digital and immersive world and aug-
mented virtual life.

While the possibilities of these emerging technologies are yet to be understood, 
researchers today can only imagine the extent to which these technologies will mod-
ify our future world and living. Thus, design fiction offers a tool to envision these 
alternative future scenarios, and especially allows speculation around possible 
applications, and implications of these technologies.

Potential benefits might include a democratization and wider coverage of basic 
health services, better possibilities of “hospital at home” opportunities, and hope-
fully a focus on preventive, rather than diagnostic healthcare. However, possible 
risks also include exclusion of people due to an increasing “digital divide”, espe-
cially within the aging population, people living in remote areas, or people pur-
posely isolated of the digital world, like in penitentiaries.

In this chapter we have discussed the concept of design and its role in healthcare 
innovation. Through the various examples, conceptual and applied, we have demon-
strated our position about Design, as a conscious intention to modify our environ-
ment to benefit human progress and increase social good. The following points 
highlight possible implications of Design in the future of digital health:

•	 Design is not just ‘design thinking’ but ‘doing’, and can demonstrate and 
test future technology applications through scenarios and prototyping. 
Chamorro-Koc et al. (2012) demonstrated the use of design strategies and tools 
such as Personas and Role-playing to develop future scenarios that enable key 
stakeholders with different roles in the service process (service provider, service 
consumer, other agents in the process) to be involved in the concept development 
and prototyping of the final service design proposals. Technology makes possi-
ble to test initial concepts into virtual prototypes to help stakeholders and end-
users envision the new healthcare solutions, supporting decision making, offering 
a cost-effective and expedient pathway to test new ideas.

•	 Design works with ambiguity and transdisciplinary teams and can enable 
the exploration of person-centred future digital health solutions. The value 
of design in the healthcare innovation process is manifested in the ability of the 
design process to work with ill-defined problems and with transdisciplinary 
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teams. Exploration with end-users is integral to the design process, from concep-
tualisation to testing of solutions. Current technology innovation processes bring 
end-uses at the end of the process once the solutions have been developed, for 
final prototype testing and correction of some functionality. Design has demon-
strated how strategies and practices can be enhanced with technology to facilitate 
not only innovation processes across multiple teams, in transdisciplinary con-
texts, but also in ways that support empathy building and social change.

•	 Design contributes to quality improvement in healthcare by being a catalyst 
for healthcare innovation. The healthcare sector is a highly regulated environ-
ment, where technical innovations, systems and devices must be approved at 
different levels in order to be integrated into the existing operation workflows. 
Designing with technology through co-creation process with stakeholders and 
policy makers can provide a pathway to address the gaps between technology 
innovation and regulatory reform in healthcare sector.

•	 Design champions the humanisation of technology through design and the 
focus on people. Design, as a person-centred approach to innovation, brings 
technology, expertise and knowledge into the collaborative development of new 
technologies. With a focus on people, design ensures that future technologies are 
conceptualised with the end-users, being them the healthcare professionals or the 
healthcare patient.
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Chapter 12
Medical Schools and Digital Health

Thomas Boillat, Farah Otaki, and Catherine Kellett

Abstract  There is no doubt that digital health is drawing the attention of both 
patients and medical professionals. Given that digital health technologies are some-
what new members of the medical technology landscape, it is reasonable to ask “Is 
digital health taught in medical schools?” This book chapter answers this question 
by first looking at the evolution and the nature of medical technologies. It then pres-
ents the results of a systematic analysis that investigated the extent to which top-
ranked medical schools around the world offer digital health classes as part of their 
curricula. The topic is then analyzed through the lens of a physician and from a 
medical education perspective. Mindful that digital health offerings are limited, an 
example of a digital health curriculum is presented and described. This chapter ends 
with a discussion on the future of medical schools and the place of engineering and 
computing as part of medical education.

Keywords  Digital health · Medical schools · Higher education · Medical 
education

12.1 � Introduction

Medicine and technologies have always worked hand in hand since the construction 
of the first magnifying glass in 1250, the stethoscope in 1815, the X-Ray in 1895, 
and the pacemaker in 1936, to name but a few (The New York Times 2012). These 
technologies were designed for specific medical needs and have become part of a 
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physician’s toolkit after demonstrating their positive impact on patients’ care out-
comes. Shortly after, these technologies became integrated into medical school 
teaching. The impact on patient care of some of these technologies, along their 
complexity have also led medicine to create specialties such as radiology or mini-
mal invasive surgery.

When it comes to Digital Health Technologies (DHT), the amount of (scientific) 
evidence demonstrating their positive impact on patient care and medical outcomes 
is increasing, year after year. For instance, digital therapeutics (DTx)—the delivery 
of evidence-based therapeutic interventions to patients by means of qualified soft-
ware programs to prevent, manage, and/ or treat medical conditions (Alliance 
2018)—have received the approval from the U.S. Food and Drug Administration 
(FDA) and are being prescribed and reimbursed by some health insurance compa-
nies. Virtual Reality (VR) has been successfully used in clinical settings to help 
patient fight phobias, stress, and anxiety, as well as specific conditions, such as: 
eating disorders (Wiederhold and Bouchard 2014). It also has been used to reduce 
chronic and acute pain among adults and children (Ahmadpour et  al. 2019). 
Moreover, wearable technology such as activity trackers have also shown their 
capability to detect Atrial Fibrillation in clinical trials, involving almost half a mil-
lion participants (Perez et al. 2019).

Unlike stethoscopes that physicians carry with them, DHT can be used across 
different contexts by medical professionals and patients. DHT run on devices that 
were not designed exclusively for health care. As a result, it makes it more compli-
cated for the healthcare sector and professionals to fully understand how to use 
them and to find situations where they can safely leverage DHT. This contributes to 
the persistently low adoption rate. On the other hand, patients and the population-
at-large have been using DHT to collect data regarding their behavior such as physi-
cal activity, sleeping patterns, and heart rate variability that medical professionals 
are not able to leverage due to a lack of training (Aungst and Patel 2020). Educating 
medical professionals on the use and capabilities of DHT is thus key to ensuring that 
patients can benefit from these technologies. Medical schools are therefore instru-
mental to dissimilating this knowledge to their medical students. So far, however, 
feedback from students has not been reassuring. In a recent scoping review that 
investigated DHT initiatives in medical schools, the authors found that most of the 
studies focused on medical informatics and electronic health records. Only tele-
health and mobile health have been discussed in 9% and 3% of the studies, respec-
tively (Car et al. 2021). In another research, more than 50% of the medical students 
perceive their DHT competences as poor or very poor (Machleid et al. 2020).

This book chapter aims to shed light on the extent to which medical schools offer 
DHT teachings to their medical students. It systematically analyzes top medical 
schools around the world and investigates their coverage of DHT. It then describes 
the learning objectives of a 6-week curriculum designed to teach DHT to under-
graduate medical students. This chapter ends with a critical discussion on the cur-
rent role of medical schools and provides guidelines to further help the 
implementation of DHT as part of the teaching.
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12.2 � Background: Some Data

To have a better understanding of the extent to which medical schools around the 
world teach digital health, we conducted a systematic analysis of 60 curricula, rep-
resenting the best 10 medical schools per continent according to the Times Higher 
Education. The results showed that only four medical schools are teaching some 
elements of digital health (according to their website). The university that is most 
active appeared to be Stanford University with three offerings taught through the 
Byers Center for Biodesign. The first, Biodesign for Digital Health, is a quarter-
long course that requires multidisciplinary teams (i.e., medicine and bioengineer 
students) to identify needs and prototype digital health solutions that address health 
challenges. The second, Biodesign innovation, aims at teaching students the science 
of innovating in the field of health. Over two quarters, students from medicine, bio-
engineering, mechanical engineering, and operation and information technology 
learn and apply processes to identify and characterize unmet health needs in view of 
inventing and evaluating new solutions to address them. A shorter version of the 
program is also offered to medical students only. In addition, the Center of Biodesign 
offers a course on technology assessment and medical device regulations for medi-
cal students as well as engineers. All the above programs adopt a problem-based 
approach whereby short knowledge capsules are taught by faculty members and 
experts and activated through group projects. The programs are elective and carry 
between 3 to 4 credits. Similar to Stanford University, Johns Hopkins University 
offers DHT extra-curriculum classes. More specifically, as part of its dual degrees 
MBA/MD, the respective university offers a course called Design Lab that teaches 
students human-centered approaches in view of developing DHT.  In addition, 
through the Johns Hopkins Technology Ventures, the university offers non-credit 
courses and initiatives that promote (health) innovation for undergraduate and post-
graduate students. For instance, the FastForward provides students with resources 
including accelerator programs, seed funding, mentorship, and spaces. Yale 
University, as part of the School of Management, has develop a program on entre-
preneurship open to any Yale student. Among its offering, the course New Ventures 
in Healthcare and the Life Sciences focuses on empowering medical students or any 
students interested in disrupting health care. It includes lectures on digital health 
and medical devices, as well as, case studies and projects that support students from 
needfinding to prototyping and commercialization. Finally, the University of Zurich, 
the only non-American institution, offers to second year medical students, as part of 
its elective offerings, a course on e-health and telemedicine as well as a course on 
artificial intelligence in medicine. In addition, students have access to the Innovation 
Hub that offers training and courses on innovation and entrepreneurship as well as 
accelerator programs.

As part of the medical schools we analyzed, we identified one university that was 
piloting a program in digital health with 10 medical students (Poncette et al. 2020). 
The program consists of 22 teaching units made up of small and large group ses-
sions covering topics from telemedicine to health economics, augmented and virtual 
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realities, mobile health, wearables, and health innovation. In a systematic analysis 
investigating digital health offerings in American medical schools, the researchers 
identified seven additional universities (Aungst and Patel 2020). Among them, only 
one had the teaching integrated in the medical curriculum.

To summarize, a limited number of medical schools have included digital health 
teaching in their curriculum, while few offer it as an elective. In addition, the cover-
age of digital health topics is also limited and often taught as part of innovation 
classes that aim to address health challenges with technologies, sometimes focusing 
on one DHT only.

12.3 � Why Should Medical Schools Teach Digital Health?

‘The Flexner report: Medical education in the United States and Canada’ consti-
tuted a transformative turning point in the development of medical education 
(Flexner 1910). This 1910 report was a culmination of an investigative journey 
across medical schools in the United States of America and Canada. These fruitful 
investigations were performed by Abraham Flexner, a nonphysician professional 
educator, who explored the state and quality of medical education (Duffy 2011; 
Halperin et al. 2010) in response to Henry Pritchett of the Carnegie Foundation for 
the Advancement of Teaching who reported that the lagging quality of medical 
schools and physicians’ training were a direct reflection of substandard education 
(Duffy 2011; Senok et al. 2021). The report reflected a thorough understanding of 
the medical education sector and emphasized the necessity to incorporate scientific 
theory into medical school curriculum (Flexner 1910). Consequently, the biomedi-
cal model became the hallmark of modern medical education. The Flexnerian era 
was characterized with myriad of transformations which enabled medicine to 
become firmly anchored in biological science (Norman 2012). Although the 
Flexner’s legacy is rightfully celebrated, several elements of his contribution con-
tinue to generate debates (Sullivan and Suez Mittman 2010). In fact, Flexner’s 
report significantly benefitted the sector but concurrently resulted in significant gaps 
in the structure of medical education (Kirch 2010). The emphasis on medicine’s 
rational world was not complemented by excellence in clinical caring. As such, 
considering the physician as a trusted healer started eroding following the imple-
mentation of the report’s recommendations. As such, revisiting the Flexnerian 
movement through the lens of twenty-first century health care needs became a 
necessity (Arky 2007). An assessment of the external environment’s trends, includ-
ing the ones driven by technological advancements, is urgently needed to produce a 
future-ready doctor (Yeoh 2019). One of the answers came from the American 
Medical Association (AMA) with the Accelerating Change in Medical Education 
initiative launched in 2013 (AMA 2013). It was meant to support the transition of 
health care in the United States from acute to chronic care (Fig. 12.1). The AMA 
provided grants to medical schools across the country to support the implementa-
tion of new models and strategies for this transition.
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Fig. 12.1  Transition of 
health care in the United 
States. Adapted from the 
American Medical 
Association

One of the initiative’s outcomes included in the Health System Science (HSS) 
framework presents the competences that twenty-first century medical students, 
trainees, and physicians should acquire and apply when rendering care (Borkan 
et al. 2021). This outcome “complements and integrates the basic and clinical sci-
ences by leveraging systems thinking to provide students a view of the full com-
plexity and context of a patient’s health” (Gonzalo et al. 2017). The framework is 
made up of four domains namely (1) teaming, (2) leadership, (3) change agency, 
management, and advocacy, and (4) ethical and legal matters that surround the core 
of the framework—patient, family, and community. As part of the domain number 
3 lies the sub-domain: clinical informatics and health technology, that refers to the 
use of information technology as part of the delivery of care. Most common topics 
taught include Electronic Medical Records, data analysis, digital libraries, and deci-
sion support tools (Banerjee et al. 2015). These topics appeared, from the system-
atic analysis reflected upon in this chapter, to be the most popular in terms of 
teaching health technology in top-ranked medical schools. However, as described in 
the background section, digital health is very often overlooked, while its positive 
impact has been repetitively established. Although medical education, in general, 
has acknowledged the need to rely on information technology to support the transi-
tion of healthcare, it remains unclear what path should medical schools follow.

12.4 � Incorporating DHT: Challenges Faced by 
Medical Schools

The introduction of DHT in medical schools’ curricula brings multi-dimensional 
challenges beyond scheduling and assessment:

•	 Definition and nature of DHT: Digital Health’s definition is rather broad and 
prone to subjectivity. As a result, the technologies and concepts that should be 
covered in such course are unclear and will ultimately vary from one institution 
to the others. Eventually, the topics covered will depend on the university’s com-
petence, the medical school’s vision, the population needs or the preferences of 
the lecturers.

•	 Multidisciplinary lecturers: For a medical school, DHT have two main dimen-
sions: their technicality and their applicability. On one hand, the lecturer must be 
able to understand the pieces of hardware that form the device, while it is as 
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much important to understand how the technology can be used to add value in a 
medical context. Here again it is important to stress the broad nature of DHT. It 
is unlikely that one person has experienced artificial intelligence, wearable tech-
nologies and 3D printing. The lecturers will then have to either be a technical 
person with medical experience or physicians with technical knowledge. In both 
cases, such profiles are not easy to find.

•	 Equipment: we believe that universities and medical schools should be leading 
the way. However, many medical schools and teaching hospitals worldwide rely 
on outdated computing systems, making system integration difficult and reduc-
ing the interoperability. Software / hardware depreciation and lack of updates 
does not improve matters. Medical schools often do not have the technology that 
matches state-of-the-art technologies e.g. Augmented and virtual reality head-
sets, 3D printers. In addition, personnel is required in order to maintain these 
devices.

The challenges presented above assume that the medical school and its faculty 
and staff have an open mind and do not see DHT has a threat but rather has bringing 
new opportunities.

12.5 � Next Steps: Course Curriculum

From our systematic investigation of the top-ranked medical schools’ curricula and 
literature review, it became apparent that the amount of information regarding the 
implementation of a digital health technology course is rather limited. In this sec-
tion, we present the curriculum implemented in the course entitled: “Innovation and 
Technologies for Health Sciences” taught to first year medical students of the 
Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, 
UAE. It was decided to integrate this course as part of the first year’s offerings to 
equip the students with a digital health and innovation mindset as early as possible. 
It was believed that it helps medical students to reflect on how digital health could 
be implemented in clinical courses that are taught at a later stage. The course con-
sists of two parts, the first one focusing on digital health, and the second on health 
innovation. In this chapter, we only concentrate on the first part. It consists of 6 
weekly sessions of 50 min each (Table 12.1). The teaching delivery mode varies 
from lectures to tutorials and case studies. The course is not solely about the respec-
tive technologies, but more about their functionalities from the perspectives of a 
medical professional. For example, the medical student understands, through this 
course, how heart rate is taken from an activity tracker, and the differences between 
an electrocardiogram (ECG) taken from an Apple Watch or in an intensive care 
unit (ICU).

At the end of each lecture, students are asked to fill-in an electronic “3-2-1 feed-
back form” that asks them to descriptively identify: 3 new things they learnt in this 
course, 2 things that particularly caught their attention, and 1 further question. Such 
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Table 12.1  Integration of Digital Health as part of the curriculum

Weeks Sessions Description Learning objectives

1 Digital health The lecture starts with highlighting 
the limitations of a non-digital 
healthcare system. It follows with 
the introduction of Electronic 
Medical Records and continues with 
the definition of digital health. Some 
examples of digital health 
technologies are presented and 
contrasted with non-digital 
practices. The lecture ends with the 
presentation of the key components 
of a healthcare system and explains 
the role of DHT

• � Define the concept of Digital 
Health

• � Identify the key components of 
a health system

• � Understand the status of digital 
health technologies

2 Persuasive 
computing 
and mobile 
health

The session starts with some facts 
related to non-communicable 
diseases and the role our lifestyle 
plays in developing those chronic 
diseases. The BJ Fogg’s model, as a 
simple framework to understand 
behavioral change, is presented with 
application examples. The role of 
mobile devices in behavioral 
changes is then emphasized. Several 
examples where digital interventions 
are delivered through mobile devices 
are then presented and evaluated. 
Towards the end of the session, 
differences between low and 
high-fidelity digital interventions are 
discussed

• � Identify what drives behavioral 
change

• � Relate to the role of persuasive 
technology in driving change

• � Learn why and how mobile 
devices have empowered 
patients and medical staff

3 Wearable 
technologies

The lecture starts with the 
description of distinct types of 
wearable technologies and how they 
can help in better understanding 
people’s Quality of Life. Time is 
then dedicated to developing a 
thorough understanding of the 
characteristics and functionalities of 
activity trackers, describing how 
step counting, heart rate monitoring, 
and energy expenditure are 
calculated. The limitations of 
activity trackers are then discussed. 
The lecture ends with the 
presentation of use cases where 
body sensors, smart clothing, smart 
jewelry, and bio-tattoos are used

• � Describe wearable technology
• � Explain why wearables are 

important in supporting 
people’s Quality of Life

• � Explain the characteristics, 
benefits, and limitations of 
wearables

(continued)
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Table 12.1  (continued)

Weeks Sessions Description Learning objectives

4 Augmented 
and virtual 
realities

The session starts with a case-study 
where smart glasses are used to 
increase the usability and 
completion of surgical safety 
checklists in operating theaters. It 
then continues with defining and 
contrasting augmented and virtual 
realities. Several case studies where 
both types of realities are presented, 
and compared and contrasted, and 
their benefits and limitations 
discussed

• � Define the meaning of 
augmented and virtual realities

• � Describe the benefits and 
limitations of both 
technologies

• � Investigate use cases where 
both technologies are 
beneficial, and oppositely: are 
cumbersome

5 Artificial 
intelligence in 
medicine

The lecture begins with a discussion 
regarding the age of Artificial 
Intelligence (AI). It continues with 
presenting underlying AI concepts 
from machine learning to deep 
learning. Then different examples of 
machine learning are presented, 
namely supervised and 
unsupervised algorithms. An 
example of a supervised algorithm 
is discussed. From scientific 
literature, different research is 
presented highlighting the benefits 
and the limitations of AI.

• � Define the concept of AI and 
its origins

• � Explain the role of AI in 
general and why it is 
particularly relevant in 
medicine

• � Describe the limitations of AI
• � Analyze successful and less 

successful eHealth apps 
relying on AI

6 The future of 
care delivery

The session starts with describing a 
typical journey of a patient waiting 
to visit a general practitioner due to 
flu symptoms. Using journey 
mapping, the activities and 
touchpoints are explained. Then, 
three DHTs are presented – 
telehealth, focused on AI-based 
chatbots; 3D printing; and drones 
are presented. The benefits and 
limitations of these three DHTs are 
discussed. Then, how the journey of 
the patient will change through 
introducing the three innovations is 
discussed

• � Analyze successful and less 
successful eHealth apps 
relying on AI

• � Identify what drones can and 
cannot do in supporting 
healthcare

• � Discuss how 3D printing, 
another means to deliver care, 
is changing pharmaceutical 
business models

feedback allows the instructor to know whether the students’ emphasis was aligned 
with the course objectives and highlight some potential areas of the course content 
and/ or delivery that requires more attention. In addition to group projects, the 
course included an in-class assessment as well as an end-of-course assessment com-
prising multiple choice questions and simple answer questions.
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12.6 � Discussion and Conclusion

In the last years, digital health technologies have shown their capacity to support 
and monitor patient’s lifestyle, while guiding medical professionals alongside their 
clinical care provision routines. Though existing research demonstrates the capacity 
of digital interventions to support patients’ behavioral change, medical practitioners 
are yet to be equipped to leverage such mechanisms. In this book chapter, we argue 
that medical schools play a key role in enabling digital health technologies to reach 
their full potential. However, the journey ahead for medical schools, in terms of 
adopting DHT as part of their curriculum, is still long, and for good reasons.

First, the nature of DHT is very different compared to traditional medical tech-
nologies such as X-Ray, MRI, or laparoscopic surgery. DHT are consumer products 
developed by technology companies with different manufacturing, testing, and cer-
tification processes as well as sales channels compared to medical devices. From a 
medical perspective, the clinical use cases of DHT are then less obvious. Second, 
the pace with which DHT evolve is much faster compared to medical technologies. 
For instance, in 2020 only almost 100,000 new digital health apps were released on 
the different app stores (Olsen 2021). It is thus very difficult to keep track of what 
is new, what is not available and what has been scientific tested. Some private insti-
tutions gather information to help patients and physicians select digital applications 
based on the thoroughness of their evaluation (ORCHA 2020), but there is no such 
classification at the app store’s level. Additionally, from a hardware viewpoint, the 
number of options is almost unlimited. It is very difficult to navigate the spectrum 
of brands, functionalities, and price. For instance, from a “no-name” activity tracker 
available for $5 to an Apple Watch sold at $749, it is not always easy to know what 
makes the price.

With the implementation of the Health System Science framework, medical 
schools have realized the importance of complementing the traditional basic sci-
ences + clinical sciences curriculum. However, we argue that a profound restruc-
turation of medical curriculum is required, focusing on integrating technologies as 
a core pillars. Currently, clinical informatics is one of the seven HSS framework’s 
sub-domains, which is materialized by a limited number of credit hours, most of the 
time offered as electives. It, however, does not reflect the impact of concepts such as 
Artificial Intelligence, which will become embedded in most of the decision making 
in a near future. Similarly, virtual reality has shown interesting use cases throughout 
different verticals from pain management to stress and anxiety disorders as well as 
simulation. Some medical schools have taken the opportunity to offer unique 
degrees such as Texas A&M University that graduates “Physicianeers”. The pro-
gram was built in collaboration between the College of Engineering, College of 
Medicine, and the state’s hospital. Graduates receive a master’s degree in engineer-
ing in addition to a Doctor of Medicine (Texas A&M 2022). Duke University is 
another example of a dual program (MD-MEng) offered by the Duke’s Pratt School 
of Engineering and the School of Medicine (Duke 2022).
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Some smaller steps could be undertaken, such as promoting the “engineer to 
physician” path, for medical postgraduate programs in particular. In the United 
States, only 1–2% of graduating engineers apply to medical school, majors such as 
biological sciences make up an overwhelming majority of medical school appli-
cants (Rambukwella et al. 2021). It would imply that both engineering and medical 
colleges engage in awareness and promotional campaigns to explain the value of 
such combination. In the meantime, Massive Open Online Course (MOOC) plat-
forms offer different courses to either introduce medical students to the basics of 
engineering or engineers to the basics of medicine.
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Chapter 13
Opportunities and Challenges of Digital 
Global Health

Julian Euma Ishii-Rousseau and Shion Seino

Abstract  As interest for digital transformations in healthcare continues to grow, 
global health approaches have been identified as aligned with the implementation of 
digital health solutions. “Global health” is a multidisciplinary field that aims to 
achieve equitable healthcare access for all, predominantly operating in low- to 
middle-income countries (LMICs). Traditionally, global health innovation is cen-
tralized on delivery of care in lieu of novel technologies developed in high-resources 
settings that may lead to further displacement of the marginalized. However, the 
sharing of lessons learned from digital global health approaches can lead to the 
development of new technologies that improve health access and the delivery of 
value-based patient care. Furthermore, digital health experiences in LMICs may 
provide insights to develop a borderless ecosystem for capacity building of global 
collaborations in research and development for patient-centric solutions. This chap-
ter discusses the advancements made in digital global health and its challenges, and 
provides a framework for digitization in global health settings.
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13.1 � Introduction

Technology can irrigate clinical deserts.–Dr. Paul Farmer

As Dr. Hans Rosling pointed out in Factfulness, the state of the world has often 
been incorrectly understood due to the “gap instinct,” causing false assumptions that 
the boundaries dividing countries are unchanged and prevalent in the twenty-first 
century (Rosling 2019). Digitization and technology have permitted and promoted 
a more accurate and “fact-based worldview,” and the emergence of the United 
Nations Sustainable Development Goals (SDGs) in 2015 and the World Bank’s 
Human Capital Index (HCI) in 2018 have provided frameworks and indices to con-
sider when tackling the challenges of our shared world (Sachs 2012; Rosling 2019; 
Kraay 2019). Although the list of actions required to create a more peaceful and 
equitable society is still long, there are high expectations for digital solutions in 
improving socioeconomic situations in low- to middle-income countries (LMICs), 
especially with the emergence of low-cost mobile-based technologies.

Significant health inequities persist in the twenty-first century, which has been 
coined as the “golden age for global health” (Maes 2014). Challenges include com-
bating the global burden of cardiovascular disease, injuries, cancer, infectious dis-
ease, and mental illnesses, especially in LMICs (Vos et al. 2020). Key global health 
priorities include topics that overarch these diseases, from maternal and child health, 
infectious disease prevention and elimination, emerging non-communicable disease 
burdens, drug production and equitable distribution, and access to surgical care to 
the procurement of resources required to cover the aforementioned (Maes 2014).

The purpose of digital innovation and technology applications to global health is 
not to replace or displace, but to enhance healthcare access and patient-centric care. 
Value-based approaches in lieu of excessive prioritization on costs generate excel-
lent opportunities for innovations that bridge the divide in health disparities in a 
sustainable manner. As with effective global health interventions, wielding a back-
ground understanding of the extraordinary advances in the computer and informa-
tion technology industry is valuable for appreciating the opportunities in its 
applications to global health.

The expansion of computing speed and digital capabilities since the emergence 
of the first electromechanical digital computers in the late 1930s translates to not 
only the continuous surge of digitization, but also its affordability as exemplified by 
its permeation through multiple aspects of our everyday life. Digitization has 
brought a level of societal optimization in areas that once required more than one 
person through automation (Attaran 2021). The mobile phone penetration success 
story with the inception of the Internet, email, ecommerce, and online banking sys-
tems are examples of this phenomenon. Over the past two decades, increased 
Internet access and mobile phone affordability have permitted developing countries 
to join the online community, and mobile phones are regarded as the key for the 
“next billion” of global citizens to go online (Sambuli 2016).

Since 2019, mobile companies have been deploying the fifth-generation (5G) 
mobile network, theoretically increasing network speed from the previous genera-
tion’s (4G) 300 megabytes per second (Mbps) to approximately 10–30 gigabytes 
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per second (Gbps) (Dananjayan and Raj 2020). 5G’s ultra-fast Internet, low-latency, 
decreased energy usage, and improved reliability expands the possibility of further 
digitization of every industry and permits the introduction of myriad new innova-
tions. There are especially high expectations for its use in low-resourced settings, 
especially for further economic activity and growth via instant communication, 
online marketing and selling, and alternative payment methods (Group and World 
Bank Group 2016).

While Internet and 5G applications to healthcare have positive outlooks, there 
are particular opportunities for global health interventions and solutions that aim to 
achieve equitable health access for all. One reason behind this is the emergence of 
“non-cellular” 5G, which can realize a low-cost, high-functioning, seamless, and 
decentralized environment for digital health innovation (Aijaz 2020; Fossati et al. 
2020; Peña et al. 2021). The combination of digital interventions with global health 
challenges is an exhilarating up and coming area, and can lead to enhanced optimi-
zation of difficult technologies with lower energy input. This in turn contributes to 
improved health access and eco-friendly solutions in urban or developed societies 
that currently seek alternative methods to combat issues related to urbanization such 
as climate change, overcrowding, and growing income gaps (Cho and Kim 1983; 
Cohen 2006). However, while digitization has rapidly shown substantial changes in 
the way society consumes products and conducts business, health has yet to be 
effectively integrated in the information technology circuit (Winter and Davidson 
2019). Furthermore, although there has been a surge in the number of health apps, 
the global health settings have yet to fully benefit from these more affordable tools 
due to challenges in smartphone and broadband availability (Connected Society 
Programme 2021).

Here we discuss the opportunities and challenges in digitization in global health 
settings, and the future possibilities to equitize access to health through digital 
health solutions.

13.2 � Opportunities for Digitization in Global Health

Currently, digitization in global health settings has been shown to be effective in the 
areas of medication management (Anstey Watkins et al. 2018), emergency response 
during injuries or pregnancies (Oyeyemi and Wynn 2015; Anstey Watkins et  al. 
2018), vaccinations (Sondaal et al. 2016), adoption of safer sexual practices (Ippoliti 
and L’Engle 2017), disease surveillance (Ippoliti and L’Engle 2017; van Heerden 
and Young 2020), and clinical imaging (Gallay et  al. 2017; Gheza et  al. 2018). 
These have contributed to enhanced facility triage and management, reduced delays 
in emergency response (Oyeyemi and Wynn 2015), improved vaccine coverage 
(Uddin et al. 2016), and lowered costs (Rajput et al. 2012; Ngwatu et al. 2018). The 
COVID-19 pandemic exacerbated the need for increased deployment of digital 
health for public health responses, especially in LMICs where there are large dis-
crepancies among regions in health resource availability.
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With the high penetration levels of mobile phones in LMICs, there have been 
increased developments in cloud computing and adoption of mobile health 
(mHealth) applications (The World Bank Group 2020; Rundqvist 2020). Studies on 
the effectiveness and value of digital health solutions have been reported with high 
optimism for further implementation of information and communication technolo-
gies (ICT) in global health. A scoping review of digital health interventions in 
LMICs recommended the national scaling up of projects that end as small pilots 
while also evaluating the costs for nationwide implementation and the return on 
investment (ROI) (Long et al. 2018). Other areas that were highlighted for further 
research included quantifying the value of scaling up digital health approaches to 
health human resources management, identifying digital health impact on current 
donor and government procurement policies, and the role of the private sector and 
philanthropists. Furthermore, discourse to establish standards for digital health 
evaluations in global health settings have encouraged LMICs to provide evidence 
(e.g., peer-reviewed literature, data) on digitization in health, permitting the cre-
ation of frameworks and references to decrease risks and amplify the impact of 
investments in the field (Labrique et  al. 2018). Such digital health interventions 
empower LMICs to leapfrog and accelerate development in a self-sufficient manner.

13.2.1 � Case Study 17.1: Health Digitization in Uganda

Uganda is one of the fastest growing nations as well as one of the larger host coun-
tries in the continent for refugees and patient referrals from its neighboring coun-
tries (UNFPA 2017; Uganda Ministry of Health 2019). With the aim to provide 
universal health coverage to the diverse communities within its national borders, the 
Ministry of Health in Uganda launched the Health Management Information System 
(HMIS) to accumulate and analyze health data from public and private health facili-
ties. The HMIS has been improved over the years with the introduction of ICT poli-
cies since the early 2000s (Kimera et al. 2020). While stakeholders have reported 
that the HMIS technology is user-friendly, challenges persist in promoting data uti-
lization and technical skills training (Wandera et al. 2019). If resolved, the system 
has the potential of providing insights on the planning, monitoring, and evaluation 
of health programs within Uganda, and to inform future public health policies 
(Monitoring and Evaluation Technical Support (METS) Program 2018; Wandera 
et al. 2019). Studies on similar systems in South Africa, Kenya, Tanzania, Zambia, 
Mozambique, and Nigeria showed improved patient data retrieval and reporting 
through system integration and training (Ndabarora et al. 2014). Health information 
technology was also proven to improve quality of care and efficiency through adher-
ence to diagnosis guidelines and protocols in India (Chaudhry et al. 2006); hence, 
incorporating best practices from within and beyond Uganda may promote HMIS 
utilization and deployment.

These government efforts are complemented further with new solutions and 
technologies developed by universities and startups. Tools such as a digital 
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pathology platform for automated diagnosis and classification of cervical cancer 
from pap smear images as well as a mobile ambulance service dispatch system aim 
to support the national health system by reducing the time, cost, and errors in deliv-
ering patient care (William n.d.; Edmond 2019). Additionally, there are efforts to 
increase public–private partnerships via small pilots, such as the United Nations 
Children’s Fund (UNICEF)-backed clinical data ecosystem that Global Auto 
Systems’ Digital Health (n.d.) Uganda provides across four hospitals in Uganda, to 
showcase the possibilities of gathering and utilizing hospital data (Global Auto 
Systems Ltd.). The system is currently being expanded to collect and track informa-
tion regarding patients with cancer in order to develop better policies and solutions 
for treatment and care.

Various digital health solutions are currently being deployed to combat the top 
health challenges of the 2020s (Pathan 2020). The COVID-19 pandemic spurred 
myriad creative methods to work across these issues while also following pandemic 
guidelines and bypassing political, cultural, and institutional hurdles (Jayakumar 
2020; Thomason 2021). Table  13.1 summarizes the areas outlined by the World 
Health Organization (WHO) while providing examples of the challenges in LMICs 
and potential digital solutions to address them.

Table 13.1  Digital health solutions to combat global health challenges

Challenge Examples Need
Potential digital health 
solution

Infectious 
disease and 
epidemics

COVID-19, 
influenza

Increased financing and 
international cooperation 
to strengthen health 
systems in endemic 
countries as well as 
increase research and 
development of novel 
tools for containment

Real-time visualizations and 
monitoring of disease 
burden and spread; Rapid 
communication and 
information dissemination 
in emergencies

Health access 
inequities

Access to 
medications, cost of 
care

Improved governance of 
public and private health 
services; Capacity 
building in low- to 
middle-income countries

Deployment of low-cost and 
secure telehealth solutions; 
Increased use of data 
analysis to pinpoint 
discrepancies in health 
needs and availability of 
medications and other 
health resources

Health worker 
shortages

Health worker 
exhaustion, 
low-quality care

Increased investment in 
education and 
employment of health 
workers; Improved 
deployment and allocation 
of resources; Creation of 
health intermediaries

Implementation of low-cost 
educational and data 
sharing platforms; 
Improved resource 
management tools for 
improved allocation; 
Adoption of telehealth 
solutions

(continued)
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Challenge Examples Need
Potential digital health 
solution

Non-
communicable 
diseases

Obesity, cancer, 
cardiovascular 
disease

Further development of 
evidence-based health 
policies; Improved support 
for mental health; 
Increasing science and 
health literacy

Delivery of healthier life 
habits and routines via 
mobile solutions

Climate change Hunger and 
starvation, 
increased gastro-
intestinal, 
infectious, and 
respiratory disease 
burdens

Coordinated global 
response from public and 
private sectors to clean the 
air and prevent further 
climate change; 
Development of novel 
sanitary methods; 
Improved access to clean 
water

Deployment of low-cost 
diagnostic tools for rapid 
and early detection of 
disease onset; Dashboard 
utilization to increase 
transparency between 
climate change and health

Other Provision of care in 
conflict, 
mis-information

Deployment of swift and 
effective medical teams 
and political action to end 
internal and cross-border 
conflicts; Increased 
monitoring and regulation 
of health information

Utilization of telemedicine 
and mobility tools for swift 
and safe healthcare delivery

Table 13.1  (continued)

Particular areas for cost-effective mHealth and digital health deployment within 
global health settings include: (1) patient data management: electronic and per-
sonal health record systems (EHR, PHR), healthcare platforms and infrastructure to 
track and analyze health indices as well as environmental factors (e.g., socioeco-
nomic, regional, cultural, etc.), and health data security via biometrics and block-
chain technologies; (2) improved clinical patient care and flow: utilization of 
artificial intelligence (AI)-based imaging and triage solutions as well as natural lan-
guage processing on unstructured health data; and (3) innovative care delivery: 
drone or digital mobility technologies. Although these digital health approaches 
require long-term planning, many are easily achievable solutions that can be imple-
mented simply through mobile phones, personal computers, and a stable Internet 
connection.

While applications of telehealth, AI, and big data analytics have been theorized as 
key tools to dramatically revamp global health settings, further pragmatic real-world 
investigations have been deemed necessary for their effective implementation, scale-
up, and integration into healthcare systems (Gunasekeran et al. 2021). In addition, 
careful observation must be made to identify the bottlenecks in scaling such efforts. 
Table 13.2 introduces the areas of digital solutions that have been adopted in LMICs 
and the current trajectories for their implementation and deployment.

The aforementioned solutions represent a fraction of the technologies emerging 
to support health and medical delivery in low-resource areas. Since 2011, the WHO 
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Table 13.2  Digital solutions in LMICs

Health challenge Solution Description

Treatment 
delivery

Drone delivery (e.g., 
Zipline, Matternet)

Drones have been deployed to deliver a variety 
of resources and medications in low-resource 
areas such as urgent blood supplies, 
prescription medicine, vaccines, and automated 
external defibrillators (AEDs)

Remote medicine Telemedicine platforms 
and diagnostic kits (e.g., 
Ghana Healthcenter 
Telemedicine, VSee)

Telemedicine kits including tablets, 
stethoscopes, oximeters, ultrasounds, etc. that 
permit full medical examinations in 
inaccessible remote areas such as conflict zones

Health data 
management

Electronic health records/
Personal health records 
(e.g., Possible Health)

Electronic health record created and maintained 
through a public–private partnership utilizing 
open-source components for patient tracking, 
clinical protocols, pharmacy, laboratory, 
imaging, financial management, and supply 
logistics

Patient handover 
and care 
coordination

Doctor-to-doctor 
communication platform 
(e.g., Allm Inc.)

Secure smart device platform to share patient 
data between or within healthcare facilities for 
seamless patient handoff and care coordination 
even in areas with few specialists

Patient 
identification and 
disease 
surveillance

Child fingerprint 
identification (e.g., NEC 
and Simprints)

Biometric identification tool leveraging smart 
devices to ensure patient care and 
administration of routine vaccinations in areas 
where few children are officially registered at 
birth and thus have no official government 
identification

Patient security Blockchain solutions for 
information sharing (e.g., 
Factom, MIT MedRec)

Decentralized ledger network with encrypted 
data chains that permit (1) proof of work/
identification, and (2) smart contract or 
economic model applications, and guarantee 
data integrity

has compiled the Compendium of Innovative Health Technologies for Low-
Resource Settings to introduce health technologies that are high-quality, accessible, 
and affordable to LMICs along with case studies of their deployment (World Health 
Organization 2015). Innovations include equipment for facilities, imaging devices, 
surveillance devices, surgical tools, and treatment as well as assistive solutions for 
improved quality of life.

13.3 � Implementation Challenges for Digital Global Health

The implementation challenges in digitizing healthcare data in global health set-
tings require international attention and multisectoral collaborative efforts. These 
include environmental/infrastructural, financial, educational, cultural, and political 
hurdles that if unanswered, could possibly exacerbate existing ethnic, 
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socioeconomic, and gender inequities. Further, increasing transparency regarding 
these challenges and combating short-sighted biases against digital health innova-
tions in LMICs will become increasingly vital.

Countless innovations are developed to solve health issues across the globe, yet 
deciding the timing and process for digitization as well as resources required calls 
for a definition and understanding of the needs and clinical problems at hand. 
Because digital health solutions aid the creation and discovery of such baselines, 
some say that digital health implementation causes a “chicken or the egg” dilemma. 
However, methods such as the U.S.  Agency for International Development’s 
(USAID) typology of innovation permits flexibility in order to pivot quickly when 
there is a discrepancy between the technology implemented and the needs on the 
ground, and can be used to guide decisions regarding which technologies to priori-
tize (Center for Innovation and Impact 2020). Furthermore, the essential inclusion 
of local academia, public and private sector, and non-profit sector early on in the 
discussion should be a fundamental requirement when working across digital health 
transformations in LMICs to prevent such errors. Figure 13.1 provides an overview 
of the broad set of implementation challenges in digital global health.

The development of effective and scalable global health innovation implementa-
tions require robust data infrastructure, data sharing, and usage capabilities that do 
not compromise patient confidentiality, and flexibility in creating partnerships 
across various departments, industries, and sectors (Center for Innovation and 
Impact 2020). This includes the rearing of digitally literate vendors, healthcare pro-
viders, and patients as well as deployment of hardware that can be leveraged to use 
a variety of software and applications regardless of connectivity. The MIT Critical 
Data (MIT-CD) consortium’s “Ecosystem as a Service (EaaS)” approach provides 
examples of global efforts that can aid as a low-cost and sustainable solution in 
combating this challenge (Ishii-Rousseau et al. 2022).

1  Lack of resources1

4

2

7

6

3

5

2  Lack of specialists

3  Lack of urgency

4  Lack of training opportunities

5  Lack of standardization

6  Lack of monitoring and evaluation

7  Lack of optimism for change

Fig. 13.1  Implementation challenges in digital global health
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Furthermore, meticulous studies on the availability of resources and infrastruc-
ture are also crucial when aiming to rear clinical informaticians that can implement 
and wield digital health solutions. Although mobile penetration has shown high 
promise, developed countries have shifted from solely computer-based to smart 
device- and cloud-based technologies in health, continuously widening the capacity 
divide within the realm of digital health and mHealth technologies (Connected 
Society Programme 2021). According to a 2021 report on the cost of fixed-line 
broadband across 211 countries, Sub-Saharan Africa fared worst with the majority 
of its countries categorized as highly expensive, ranging from a monthly average of 
370 to 710 USD per broadband package (Howdle 2021). Clusters of countries 
within Central and West Africa were also excluded from the study as they could not 
provide sufficient information. Therefore, digitization in global health challenges 
may at times require the primary step of realizing better Internet and broadband 
coverage in addition to the tools required to benefit from online services.

13.3.1 � Case Study 17.2: Rearing Data-literate Clinicians 
in Mexico

Mexico, the second largest economy in Latin America, is currently classified by the 
World Bank as an upper middle-income country. In 2020, 93 per 100 capita were 
subscribed to mobile cellular services (The World Bank Group 2020). However, in 
a 2019 report, 69% of people living in rural areas in Mexico did not have access to 
the Internet and only 60–70% of people living in urban areas were connected (El 
Instituto Federal de Telecomunicaciones (IFT) 2020). Furthermore, within the 
country, only one private university was found with the capacity to provide AI and 
data science education. Specialists in the country attribute this situation to a lack of 
sufficient evidence to convince government officials and stakeholders to promote 
higher uptake of digitization and use of data combined with low levels of knowledge 
about digital health and its possibilities. Currently, the MIT-CD consortium is col-
laborating with researchers in Mexico to participate in global research on data sci-
ence and digital health opportunities, and to increase exposure, literacy, and interest 
in the field. Regarding the COVID-19 pandemic, private sector efforts in Mexico for 
improved digitization and online resources to detect, isolate, and monitor COVID-19 
patients have also been deployed; however, increased efforts for raising the urgency 
and prioritization for ICT, including digital health, are still imperative to realize 
nationwide digitization and data literacy (Betancourt-Cravioto et al. 2022).

Financing to purchase, deploy, implement, and sustain digital health technolo-
gies is another area of debate. While on one hand governments have been identified 
as the key financier of digital health transformation, private sector donations and 
corporate social responsibility (CSR) contributions have also increased in support-
ing local efforts for improved health access. However, sustainable financing for 

13  Opportunities and Challenges of Digital Global Health



198

long-term implementation requires the combination of all of these efforts, including 
discussions around the timeline and exit strategies for reliance on donor govern-
ments and aid. Combined with the aforementioned challenges, examination over 
solutions that prioritize the patients, population, culture, and ecosystem over cost-
effectiveness and speed is how true “value-based equitable basic healthcare deliv-
ery” can be realized (Gary Bisbee 2022). This would further be streamlined by the 
support of technology that accompanies “the accompagnateur,” an innovative 
Community Health Worker (CHW) process for healthcare delivery spearheaded by 
Partners in Health (PIH) (Palazuelos et al. 2018).

Finally, the involvement of local voices in health digitization is critical yet often 
overlooked. Developing countries are often supported by donor countries and over-
seas institutions, advised by international agencies and consultants, and informed 
through numerous whitepapers, guidelines, standards, and best practices created for 
very different populations (Hanafizadeh et al. 2019). Limited experience and lack of 
confidence in the field have led to greater reliance on the global players, with little 
input from local actors. Yet, health systems and the technology used to both provide 
care as well as gather insights must reflect specific clinical and cultural needs of the 
populations they serve. This includes the heightened urgency and call for local 
researchers from developing nations to play a greater role in the literature produced 
regarding their countries. LMICs and the global community must also review main-
stream criteria and guidelines provided for ICT and digital health, and encourage-
ments must be made for LMICs to approach their digitization efforts more radically 
and inclusively (Hanafizadeh et al. 2019).

13.4 � Future Directions

Digital health adoption in global health settings will most likely continue to persist 
and increase over the next decade. However, in order to prevent the risk of facing 
challenges currently seen across high-income countries, such as issues of interoper-
ability and the lack of data sharing, the sharing of perspectives, experiences, and 
expertise, can and will lead to the development of new technologies that are clini-
cally meaningful and contribute to improved health access and the realization of 
value-based patient care. Furthermore, lessons learned from digital health experi-
ences in LMICs may provide insights to not only spearhead further developments in 
the country, but also contribute to building global capacity for collaborative research 
and patient-centric tools.

To achieve an equitable and sustainable digital health ecosystem in global health 
settings, a combination of research, partnerships, advocacy, and scaling will likely 
be required. The authors of this chapter suggest the following steps be considered at 
any stage of the digital health implementation spectrum. The process has been 
developed from the application of PIH’s “Accompaniment Approach” principles 
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and the “Advocate’s Toolkit” recommended by global health leaders such as Dr. 
Paul Farmer and Dr. Joia Mukherjee along with Matthew Basilico and others 
(Maes 2014).

	1.	 Learn from the locals
The “Accompaniment Approach” starts with listening and learning from local 

individuals and stakeholders. Find out about the best practices, the bottlenecks, 
the priority needs, and the areas that suffer from implementations that are theo-
retically good yet poorly executed. Learn about currently available resources and 
how capacity building is taking place. In particular, observe and seek guidance 
from communities that are most marginalized to ensure their pain points are 
addressed. In other words, go to the source to find out what the problems are in 
order to come up with relevant solutions.

	2.	 Find local and global partners
Foreign aid projects have been called out for procuring resources outside the 

countries they serve, thus not only missing the opportunity to stimulate local 
economies but also the chance to gain insight on the cultural and political hur-
dles or shortcuts. Gathering local partners can contribute to sustainable capacity 
building and knowledge transfer and rear the next generation of digital global 
health entrepreneur. Furthermore, the combination of global and local partners 
provides the opportunity for local voices to be heard more in the global health 
arena. Finally, local partners are critical for future scaling.

	3.	 Discuss strategies with policymakers
Digital health is challenging to implement without governmental support and 

relevant policies for scaling in any country, regardless of income level. 
Discussions with relevant ministries and policymakers from an early stage may 
aid leapfrogging in addition to coordinating siloed efforts. Policymakers can also 
help identify pain points and bottlenecks in digitization, which will be necessary 
in order to achieve equitable digital health implementation and usage.

	4.	 Co-invest with governments for sustainability and national growth
While donor governments and private sector capital are helpful in kickstart-

ing digital health implementations, sole reliance on financial support from such 
sources increases the risk of discontinuation, gaps in knowledge creation, uneven 
distribution of resources, and lowered in-country capacity. Discovering ways to 
co-invest with governments may increase government support in achieving the 
desired outcomes and goals as seen with various practices in infectious disease 
prevention and control. It may also contribute to job creation for local communi-
ties, thus positively impacting the local economy.

	5.	 Evaluate and disseminate information regarding best practices
Digital health implementation and realization can be assumed to be costly 

and time-consuming. A greater number of published studies that discuss best 
practices in implementation and scaling can aid countries to overcome such 
fears. In addition, creating discourse and increasing the transparency of current 
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efforts can invite external partners and individuals to offer support as well as 
guidance. Furthermore, the pooling and open-sourcing of information and best 
practices aids in creating an ecosystem for digital global health practices to thrive.

13.4.1 � Case Study 17.3: Medicine Adherence in India

Medicine and treatment adherence has been a long-standing issue in India, espe-
cially among younger populations and those with lower levels of understanding 
regarding their medical conditions along with the consequences (Sarna et al. 2008; 
Venkatachalam et al. 2015; Santra et al. 2021). This imposes a threat in eliminating 
disease burdens and the risk of treatment failure can at times lead to premature 
death. In a study conducted in 2015 on patients with hypertension, drug adherence 
was found more commonly among patients who were closer to health facilities 
while in a 2020 study on antiretroviral drugs, patients who had familial support 
were found to be more adherent to treatment regimens (Sakthivel et al. 2020).

In 2018, India’s Prime Minister Narendra Modi announced India’s ambitious 
target to complete the elimination of tuberculosis (TB) by 2025, 5 years ahead of the 
global target of 2030 (World Health Organization 2021). With this decision, the 
country reviewed its strategy on TB elimination and established the National 
Strategic Plan (NSP) for TB 2020–2025 with revised actions and bolder commit-
ments (Central Tuberculosis Division, Ministry of Health, and Family Welfare, 
Government of India 2021). Although India has the highest TB burden globally, 
with approximately 40% of the population infected, it also has a particular opportu-
nity to eliminate TB through renewed government interest and commitment. 
mHealth solutions, such as the use of low-cost technology that can deliver remind-
ers via short message service (SMS) and voice calls to almost all types of mobile 
phones even in low-resourced settings, have been proven useful in improving drug 
adherence in India and can now be scaled with additional government funding 
(Narasimhan et al. 2014). Such systems also show promise in the surveillance and 
treatment of other diseases, even in areas with low bandwidth and low penetration 
of smartphones.

13.5 � Conclusion

Digital transformations in healthcare have political, technical, and cultural barriers 
regardless of geography. Although the technical hurdle may seem unrealistic, the 
opportunities that will come from these solutions are extraordinary. The true chal-
lenge in these approaches lies in the mechanism behind the design and implementa-
tion of solutions. However, patient-centric visions that integrate the accompaniment 
method for healthcare delivery permits the incentivized sharing of perspectives, 
experiences, and expertise of implementing digital health in global health 

J. E. Ishii-Rousseau and S. Seino



201

approaches. These can lead to the development of new technologies that are clini-
cally meaningful and contribute to improved health access and the realization of 
value-based patient care. The authors of this chapter hereby humbly request that the 
world turn not only inwards domestically, but also externally, to partner with local 
stakeholders in low-resource settings, as the solutions devised would be applicable 
ubiquitously.
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Chapter 14
Future Landscape in Digital Health

Homero Rivas and Thomas Boillat

Abstract  The future, as much as beauty, is in the eye of the beholder. For some, we 
already live in the future of others, where digital health, including artificial intelli-
gence, telemedicine, robotics, genomics, and other technologies will somehow inte-
grate into healthcare. It is how we see and shape our present and future that matters. 
One thing is certain: no matter how much we try and prepare, most predictions 
about the future will always be wrong. In this chapter we venture into just another 
prediction about the future of digital healthcare.

Keywords  Digital health · Future - artificial intelligence · Computer vision  
Machine learning · Neural networks · Robotic surgery · Laparoscopic surgery

14.1 � Introduction

Having a crystal ball that can predict into the future has always been a fantasy and 
part of many fiction novels. Even the most educated prediction about the future, one 
based on experience, statistics, and facts, will likely be wrong (The perils of predic-
tion 2009). Furthermore, most forecasts will be rather conservative unless they are 
predicted for the very long-term future, when so-called “futurists” can add imagina-
tion to knowledge and experience, and propose rather optimistic predictions; regret-
tably, such futurists will not be alive to experience their forecast much less be 
accountable for their predictions. Shorter-term predictions will always be calculated 
and tailored to known trends and tend toward being more conservative.

Successful innovators must bet into the future and embrace risk. In statistics, all 
forecasts are essentially wrong and in baseball as in life, as legendary baseball 
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player and coach, Yogi Berra popularized, it’s tough to make predictions especially 
about the future (Bussel and Team Hewins 2020). During 2011, only a few years 
ago, StarCraft, a very popular online game, had a cyber tournament with a winning 
pool of US $1000 for the few winners, but also 25 bitcoins for the losers. No one 
would have then imagined that only in a few years those bitcoins would be worth a 
bit more than US $1,000,000 (Cade Onder 2021). Especially in healthcare, predict-
ing the future can be a very tricky business and being wrong may be the natural state 
of a forecast.

14.2 � The Future Landscape of Digital Health

In healthcare, most innovations come into our day-to-day practice at a much slower 
pace than in most other industries. There are sensible reasons for this phenomenon, 
including the nearly standardized need for long-term clinical trials before imple-
menting innovations and the fact that care providers must implement those innova-
tions in human beings and not in media, electronics, commodities, market, etc. 
While many other reasons could be added into the mix, perhaps the most important 
reason for the slow adoption of innovations in healthcare is a prevalent mindset of 
risk-aversion that is ingrained in most physicians’ and care providers’ minds (Rivas 
2018; Rivas 2020).

To systematically talk about the future in healthcare, we include three corner-
stones of healthcare: discovery or research, education, and clinical care. Without 
hesitation, the last one presents the biggest challenges and opportunities as 
described before.

Digital health has a distinct differentiator to conventional health practice as it is 
uniquely portable; therefore, it can provide extensive access to care to the masses. 
In the near future, most if not all clinical trials will include digital health. Furthermore, 
for many well-designed investigational clinical trials, there will be no need for 
human research subjects to ever have to set foot in a clinic or hospital, or to be in 
close geographical proximity to the main investigator’s healthcare center. Basic and 
sophisticated, low-cost medical devices will be provided to patients to have at home, 
and different software will be easily accessed through their mobile devices, desktop, 
Wi-Fi network, server, etc. This will not be a simple transition, as many conserva-
tive regulators (i.e., licensing boards, governments, etc.) may limit restrictions to 
such innovative form of research. Nevertheless, as experienced during the COVID-19 
pandemic, barriers to digital health innovation have been dramatically removed by 
even the strictest regulators. Security concerns about the cloud have been lessened 
by the use of regional servers within the boundaries of concerned nations. As 
expected, nations with fewer resources and regulations continue to be much better 
implementers of innovation.

The education and digital health sectors have and will probably continue to expe-
rience high growth in the future. In many ways, this is occurring from the bottom up 
as many learners seek knowledge about digital health themselves regardless of any 
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established school curriculums. In a few years, however, most medical schools, 
nursing schools, allied health schools, etc. will have core curriculums that include 
digital health with as much relevance and value as courses in anatomy, physiology, 
and other core subjects. Failing to provide such relevance to digital health will fail 
our efforts to create well-aligned care providers to the future. Going back to Yogi 
Berra, “The future ain’t what it used to be.” (Nate Scott 2019).

Probably, the biggest potential and the biggest challenges will be found in the 
future of clinical care and digital health. Up until now, most digital health innova-
tions have been directed toward diagnostic and screening devices that measure dif-
ferent biometrics. This has been basically a miniaturization for portability of vital 
signs monitoring systems into commercially available wearable devices. For 
instance, the latest activity trackers embed an electrocardiogram as well as oxygen 
saturation and blood pressure monitoring capabilities. Even further, only a few of 
these devices are medical-grade or as accurate as their conventional counterparts. 
Therefore, to bypass many FDA regulations, most digital health innovations are 
portrayed and marketed as wellness devices in order to attract a much larger direct-
to-consumer market.

We must view the future landscape of digital health with great optimism, the 
same optimism inspired by His Highness Sheikh Mohammed Bin Rashid Al 
Maktoum, Vice President and Prime Minister of the UAE and Ruler of Dubai, when 
saying that “the best is still to come” and that “the future belongs to those who can 
imagine it, design it, and execute it. It isn’t something you await, but rather create” 
(Sheikh Mohammed bin Rashid Al Maktoum 2015). Throughout the first and sec-
ond editions of these two books on Digital Health, many different innovative tech-
nologies have been reviewed. Among them, perhaps the highest exponential growth 
and evolution in clinical care will come from genomics, machine learning, and 
autonomous robotics (Rivas 2018; Rivas 2020; The Topol Review 2018).

14.3 � Delivery of Care in the Future of Digital Health

People in general, before they could be considered patients, will be genomically 
predesigned, screened, and selected much earlier than birth. Even then, extensive 
genomic assessment at birth will identify potential ailments to be suffered through 
life. Continuous monitoring through implantable and wearable devices will autono-
mously monitor and implement interventions as needed throughout life in accor-
dance to machine learning algorithms. Life expectancy will be prolonged; however, 
regardless of all these innovations, chronic diseases will still prevail, and some new 
ones will develop. A great portion of the patient–physician interaction will be auto-
mated, and it will rely purely on digital health platforms. Clinical decision support 
systems, computer vision, and computer-assisted diagnosis—all the result of deep 
neural networks of artificial intelligence—will be prevalent in all societies, even 
those with limited resources. Some professions will flourish, such as Geneticists, 
Artificial Intelligence Medical Informaticians, etc., and some new medical super 

14  Future Landscape in Digital Health



208

specialists will be created, such as Genomic Planners, Genomic Curators, Genomic 
Editors, Tissue Engineers, Healthcare Designers, Brain Computer Interface 
Specialists, etc. (Beck 2016; Cabitza et al. 2017; Stanford University 2015; Gouda 
and Steinhubl 2018; Mesko 2014)

Surgery will always exist because many other diseases require surgical interven-
tion, such as trauma, obstetrics, and some types of cancer. However, over time, digi-
tal surgeons will prevail. The first implementations began 20  years ago with 
master–slave robotic platforms. Soon, however, machine learning algorithms will 
eventually augment surgeons’ cognitive and technical capabilities until fully auton-
omous surgical platforms take over. Surgeons will then be mere digital supervisors 
of many of these autonomous devices, which will finally be able to scale not only to 
medicine but, in this case, surgery.

The future of digital health and healthcare in general is most probably a world 
where the notion of patients and hospitals does not exist per se but rather where 
these become elements in a continuum of care. The first step will be to concentrate 
on changing mindsets. The current model of care focuses on the concept of a patient 
as someone who is “ill or injured and in need of treatment”. This binary vision of 
perceived wellbeing hinders the complexity of health. If a person who needs treat-
ment is called a “patient,” then how should a person who is reducing his or her risk 
to be sick through healthy life choices, such as non-smoking, no alcohol, healthy 
diet, and exercise called? As part of this new approach, how will digital health dis-
rupt the patient and acute care model? Given the cutting-edge digital health research 
and solutions presented throughout this book, what will the health system of tomor-
row look like when all these digital health advancements collaborate and communi-
cate? Our attempt is presented in Fig. 14.1 and explain underneath it. Purposefully, 
our model focuses on the connections between digital health entities and is not 
meant to be exhaustive.

Individuals

Health centers

Family physicians

Public
health

Objective and subjective data

All health-related data

Lifestyle and behavior data collection

Personal Health Records

AI-enabled data
processing

De-identifed population 
health data

Policies and health 
campaigns

Digital test reports

Digital test reports

Fig. 14.1  Integration of digital health technologies – Our attempt
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In a near future, health systems will not focus on people who are currently sick but 
simply on individuals—all individuals. At birth, the genome of each baby will be 
sequenced and comprehensively analyzed, and then transferred and explained in a 
Personal Medical Record (PMR). PMRs store all medical results and are owned by 
the individuals, who decide what data to share and with whom (e.g., health centers, 
government, family physician). To enable data sharing, the PMR is stored in a secured 
cloud platform while blockchain ensures that data are not being altered. The PMR 
will be linked to Artificial Intelligence algorithms that learn the person’s lifestyle in 
order to identify any deviation or abnormal behavior. If the algorithm, based on a 
centralized large dataset, identifies deviations as worrisome, then the data will be 
automatically sent to a health center where it will be analyzed manually by health 
professionals. In our approach, health centers play an active role at the interface of 
health insurers (not represented in the schema) and family physicians. Health centers 
are centralized hubs where health tests are conducted and health data in general are 
analyzed. Relying on AI and robots, the health centers will promote dialog and 
employ medical professionals for tasks that machines cannot or should not be used to 
do. Health centers are also home to medical specialists from mental to physical and 
physiological health. Directly connected to public health entities, health centers 
intend to inform and implement health recommendations. Though to date public 
health departments are only informed about the population’s lifestyle through subjec-
tive data, each PMR owner will have the choice to share data to receive more custom-
ized recommendations. These recommendations, if relevant, will be communicated to 
people via mobile notifications as well as to the family physician. Along with the 
person’s lifestyle, personalized digital interventions will be sent to reduce the person’s 
risk to become ill. Data used for these interventions will be sourced from a person’s 
PMR where genetic data as well as wearables and mobile app data is centralized. 
Hospitals will still exist, but they will be limited to specific tasks such as surgery or 
obstetrics. This view is, of course, oversimplified but it highlights how digital health 
can disrupt the health system when implemented and adopted by health stakeholders.

Innovative insurance and revenue models will engage individuals and physicians 
in shaping better lifestyles and promoting a better state of wellness and disease 
prevention, in contrast to traditional models that support the treatment of disease but 
do not invest much in prevention (Rivas 2020). Probably since the inception of the 
concept of AI, there has been a general paranoia that AI may replace most profes-
sions, including medicine. In healthcare, with no doubt, physicians who do not 
embrace digital health technologies and AI may soon be replaced by those who do. 
This transition will be generational and geographic. Digital native generations of 
patients and medical providers will lead the way as well as small, visionary coun-
tries. Places like the United Arab Emirates have already incorporated Ministers of 
Artificial Intelligence, Happiness, Future, etc. into their government cabinets, which 
will allow them to innovate at a much bigger scale by implementing such technolo-
gies. Other places, like Singapore or Kuwait, may do the same as they attempt to 
obtain genomic profiles of all their population. On the contrary and ironically, for 
larger countries, where most innovating technologies are being created every day 
like in the United States, their implementation strategies will be laggards in this race 
due to regulation, litigation, a risk-averse culture in healthcare, etc.

14  Future Landscape in Digital Health
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14.4 � Final Words

We live in exciting times where some previous predictions have crystalized in real-
ity while many others have not. Healthcare is changing by the minute, not only in 
response to technological advancements, but also dynamically to the many different 
factors that we typically do not consider in daily clinical practice (i.e., societal, 
political, economic, generational, geographical, etc.). All stakeholders in healthcare 
have now nearly universal ready access to some kind and degree of healthcare 
thanks to digital health. This was not the case only a few years ago, even though we 
had most present technologies already available.

While the core model of medical practice will maintain a quintessential relation-
ship between care receivers and care providers, this model will transform in time 
and space, and before or after any evidence of disease may even show up or exist. 
Digital health will soon become an essential part of the core model of healthcare. 
All digital health technologies, some more than others, will intertwine and become 
an invisible part of the routine practice of medicine. Most of these technologies will 
prevail while others may be a preamble to those not yet conceptualized. Artificial 
intelligence and genomics may seem to provide the most value of all; nevertheless, 
even simple technologies that for some are now commodities, like mobile phones, 
wearables, social media, telemedicine, etc., will truly become omnipresent. Good or 
bad, in the future, digital health will co-exist with most current forms of healthcare.
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