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Abstract. This study aims to develop a scale-free classification-based defect diag-
nosis model for the pick-and-place (P&P) machine in Surface Mount Technology
(SMT) assembly line. SMT is a manufacturing process used to assemble Printed
Circuit Boards (PCBs). The P&P process is the primary procedure that follows
the application of solder paste or adhesive to the board. Generally, the industry
uses an automatic optical inspection (AOI) machine to detect assembly defects
just after the P&P process. However, inspection data from the AOI machine can
only identify assembly defects; it cannot reveal the underlying causes of assembly
failure. By conducting experiments with initial machine defects, it is possible to
identify patterns associated with various root causes. Using the AOI and machine
performance data, it is possible to trace the root causes of assembly defects using
variousmachine learningmethods. As the number of components used in the SMT
assembly line increases, processing design of experiments (DOE), collecting suf-
ficient data, and developing a defect diagnosis model for each type of component
becomes time-consuming. The proposed model is trained on a single component
type and then applied to other component types. Using the proposed model, when
a new component is applied, the identification accuracies are more than 75.00%
for most of the root causes without conducting DOE. It can significantly reduce
the time required to process experiments, collect data, and adjust models for new
types of components.

Keywords: SMT assembly · P&P machine · Root cause identification ·
Scale-free classification · Predictive maintenance

1 Introduction

Electronic products become lighter, thinner, and more compact with technology devel-
opment. It leads to a decrease in the size of PCBs. That leads to a size decrease of
components that are mounted on the boards [1]. As the use of smaller surface mount
devices (SMDs) increases, the electronic assembly tends to be more stable and precise.
Surface mount technology (SMT) has been widely adopted to meet current requirements
[2]. SMT is an industrial technology to place the SMDs on the Printed Circuit Board
(PCB) after the deposition of solder paste [3]. The SMT production line contains three
main processes: solder paste printing (SPP), pick-and-place (P&P), and reflow soldering
[4]. To ensure the assembly quality, inspectionmachines are introduced to the production
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to ensure the assembly qualities. The solder paste inspection (SPI) machine is equipped
after the SPP process, and it can inspect the status of solder paste printing, including the
offsets and the volume. After the P&P process, a pre-automatic optical inspection (AOI)
machine is used to inspect the component placement quality. It provides information on
component dimension, placement offset, and some other defects that may appear during
the P&P process. When the PCBs are fully mounted after the reflow solder process, the
post-AOI machine is applied to check the final status of the PCBs assembly. Figure 1
shows the SMT assembly line with inspection machines.

Fig. 1. Illustration of adding inspection machines to the SMT assembly line

The P&P process is the core and the critical step of the entire SMT line. Real-line
production feedback shows that the tape-and-reel feeder and nozzle are two cores of the
P&P process [5]. The tape-and-reel feeder holds the component. The size of the pocket
holding components can affect the nozzle pick-up position. Because of the inadequate
size of the pocket, components cannot be held at the center. That leads to the nozzle
cannot pick up the component at the center and causes component misalignment after
the P&P process. Also, the nozzle can affect the placement quality as it is the first
and the last thing that the components contact during the whole P&P process. During
the whole transport process, nozzle size, nozzle contamination, or other nozzle-related
issues may cause the nozzle to lack vacuum power as the nozzles use vacuum power to
hold and transport the components. The lack of vacuum power may lead to component
misalignment and even component absence.

This paper focuses on the nozzle size problem, nozzle contamination problem, and
pick-up position problem. Examples of unsuitable pick-up positions and contaminated
nozzle are shown in Fig. 2. After understanding the relationship between the component
placement quality, such as placement offset, and related machine errors, a multi-output
classification-based defect diagnosis (MCDD) model (see Fig. 3) can be applied to trace
back the root causes of the assembly defects detected by the pre-AOI machine [5]. The
MCDD model is an integration of the classification sub-networks for different types
of the P&P machine errors. As each sub-network works parallelly, compared with the
traditional classification methods, such as Support Vector Machine (SVM), Random
Forest (RF), and Decision Tree (DT), the MCDD model is easier to adjust when new
machine errors are studied and added to the model. However, it is time-consuming to
design the machine errors experiments in real-line production and collect the defect data
for different components.
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This paper proposed a scale-free MCDD model. After training the model with one
component, it is possible to apply the trainedmodel to the other componentswhile saving
time in conducting experiments and data collecting. The proposed model shows the
potential value in model transfer applying in real-world manufacturing process and the
abilities of applying theory into production practice. It shows the idea of the combination
of theory and real need of the industry for the further study related to manufacturing
process improvement.

Fig. 2. Vision examples of machine errors. (a) Unsuitable nozzle pick-up position. (b) Contami-
nated nozzle

Fig. 3. The structure of the MCDD model

The rest of this paper is structured as follows: related work and literature review
are shown in Sect. 2; the scale-free MCDD model classification results are illustrated in
Sect. 3; and finally, conclusions and future work are summarized in Sect. 4.

2 Literature Review

In recent years, Industry 4.0 has been the most trending topic in both industrial and
academic fields [6]. It focuses on developing a production system to increase productivity
and production efficiency. Amount all the concepts in Industry 4.0, SmartManufacturing
is the core element and works as the pillar of the internal manufacturing process [7].
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With the help of the technologies developed in Industry 4.0, such as machine-to-
machine (M2M) communication and Industry Internet of Things (IIoT), the function
of Smart Manufacturing has been enhanced [8]. The advanced improvements in Smart
Manufacturing result in a possible development in predictive maintenance in the SMT
assembly line.

Predictive maintenance is the maintenance mode that monitors specific equipment
measurements, such as the quality of the product. Maintenance performs when the sys-
tem detects the degradation of the operation to eliminate or control the stressor before
any deterioration happens [9]. This kind of maintenance can eliminate unneededmainte-
nance. Moreover, as it performs before the failure occurs, it can help to sustain or extend
the equipment’s lifetime. But on the other hand, this kind of maintenance may require
trained staff, which will also increase the investment in staff training.

Served as the core and the most critical step in the entire SMT production line, the
P&P machine is expected to be stable and with high accuracy. However, because of the
nature of themachine,machinemaintenance problems,machine calibration problems, or
human error can lead to amachine error, whichmay affect the final component placement
quality and lead to an assembly defect. According to [10], the assembly defects and their
possible root causes are summarized in Fig. 4.

Fig. 4. Fishbone chart of assembly defects root causes summary

Benefited from the development of Smart Manufacturing, it is possible to apply
advanced technologies to diagnosis machine errors based on the data collected from the
production line in the pick-and-place process. Many machine learning methods, such as
Support VectorMachine (SVM) [11], Decision Tree (DT) [12], and Random Forest (RF)
[13], have been applied in fault detection and fault diagnosis. In [14], an MCDD model
is developed to trace back the root causes of the assembly defect. The trained model
using one component can be applied to the other components with limited training data
for new components by using transfer learning. However, the processing time of the
transferred MCDD model is extended. This paper proposes a scale-free MCDD model
for defect diagnosis to reduce the time spent in modeling training.
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3 Methodology and Results

Several experiments are designed to simulate 1) incorrect nozzle size situation, 2) con-
taminated nozzle situation, and 3) unsuitable nozzle pick-up position situation. The
experiments are processed in the laboratory. The laboratory has an entire state-of-the-art
SMT assembly line. It contains an MPMMomentum printer, a Koh Young Aspire3 SPI
machine, a Universal Instruments Fuzion P&P machine, a Koh Young Zenith pre-AOI
machine, a Heller convection reflow oven, and a Koh Young Zenith post-AOI machine.
Experiments were conducted following the procedure in [14].

By comparing the placement quality under different machine errors situations, all
the machine errors considered in the study affect the component length, width, and angle
offset [10, 14]. It is difficult to summarize a general rule to trace back the root causes
of the defects detected by the pre-AOI machine. Hence, a scale-free MCDD model is
developed based on the integratedMCDDmodel proposed in [14] to diagnose the defects
reported by the pre-AOI machine.

3.1 Scale-Free MCDD Model

The root cause of a defect detected by the pre-AOImachinemay be a singlemachine error
or a combination ofmultiplemachine errors.When a newmachine error is considered in a
traditional machine learning classification method, such as SVM, DT, or RF, the number
of new labels required for the model is 2n, where n is the number of existing machine
errors considered in the model. The MCDDmodel allows for the independent operation
of artificial neural networks (ANN) designed to address specific machine errors. The
model’s parallel structure prevents the number of labels from growing exponentially
when new machine errors are considered. Figure 5 illustrates the operation of the scale-
free MCDD model structure when a new machine error is introduced.

Fig. 5. Working principle of the scale-free MCDD model structure when a new machine error is
added.
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The whole scale-free MCDDmodel integrates branches of different machine errors.
When the processed data is sent to the model, each branch works separately, and the
model’s outcome is the probability of varying machine errors. Based on the model’s
outcome, operators in real-line production can have priority to adjust the machine.

3.2 Data Pre-processing

Features that are considered as inputs for themodel are 1) themean and standard deviation
of X and Y corrections. X and Y corrections represent the machine adjustment values
in X- and Y-directions, 2) the mean and standard deviation of degree correction. Degree
correction represents the machine adjustment value in component placement rotation. 3)
Drop Rate represents the percentage of failure pick-up for a batch of data, 4) the mean
and standard deviation of length, width, and degree offsets. 5) Coplanarity. It shows the
number of coplanarity defects reported in a batch of data, 6) Upside-down counts of the
upside-down defect reported in a batch of data, and 7)Missing represents the component
missing defect reported in a batch of data. Use Xi to represent the original value of the
inputs, X SF

i to represent the value of inputs after the scale-free process, L to represent
the length of the component, and W to represent the width of the component, the input
data scale-free processing can be represented using Eq. 1.

X SF
i = Xi√

L×W (1)

After the scale-free process, not all the features considered as themodel’s inputs have
similar performance. An example of the features comparison is shown in Fig. 6. Figure 6
shows the example of a comparison of scale-free length, width, and angle offset stan-
dard deviations for different types of components under contaminated nozzle situations.
According to the t-test and F-test results, comparisons among different components have
a p-value close to 0. All three components have different performances in the standard
deviation of length, width, and angle offsets. To achieve a higher generalization ability,
themodel should only contain similar features among different features.After comparing
different features, only the features with similar performance after scale-free processing
are considered the model’s inputs.

Fig. 6. An example of the features comparison. (a) Scale-free length offset std. comparison. (b)
Scale-free width offset std. comparison. (c) Scale-free angle offset std. comparison
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3.3 Model Output Analysis

After the scale-free process, selected features are sent to the model. The model is first
trained with a particular type of component. The trained model is then applied to the
other two types of components. Use N1 to represent the data that have been classified
correctly and N0 to represent the data that cannot be identified, accuracy for different
branch can be calculated using Eq. 2. The results of the scale-free MCDDmodel applied
to different types of components are shown in Table 1.

Accuracy = N1
N1+N0

(2)

Table 1. The output of the scale-free MCDD model.

Training Testing Nozzle size (%) Pick-up position (%) Contamination (%)

C1005M C0603M 61.74 86.61 52.52

C0402M 63.06 90.83 57.78

C0603M C0402M 64.89 77.56 76.69

C1005M 63.20 91.40 61.40

C0402M C0603M 63.88 82.50 90.28

C1005M 64.60 96.60 64.00

In Table 1, component types in the “Training” columns indicated the components
used to train the model. Components in the “Testing” columns represent the components
used for testing the model.

According to the results, for the pick-up position branch, the classification accuracies
are more than 75.00% for different models. Compared with the pick-up position branch
and contamination branch, the nozzle size branch does not perform well, with accuracy
no more than 60.00%. The possible reason for the low accuracy is that the nozzle tips’
sizes are different. Different sizes of the nozzle tips can lead to a different distribution
of the vacuum power, which significantly affects component placement quality. For the
contamination branch, when applying the model trained by C0603M to C0402M, the
model can achieve an accuracy of 76.69%. When using the model trained by C0402M
to C0603M, the classification accuracy is 90.28%. However, when applying the model
trained by C1005M (the largest component used in the experiment) to C0603M and
C0402M, the classification accuracies are less than 55.00%. Low classification accura-
cies appearwhen applying themodels trained byC0603MorC0402M toC1005M.When
considering C1005M in the contamination branch, the reasons for the low accuracy are
still unclear, and further study is needed.
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4 Conclusion and Future Work

In the real-line production, only experienced experts can immediately identify machine
errors based on assembly inspection results in real-time production, which could lead
to a serious bias in maintenance quality depending on the expertise level. This paper
proposed a scale-free MCDD model for developing a general defect diagnosis model
that can provide a structured way for identifying machine issues using pre-AOI inspec-
tion data while avoiding expertise related bias. Furthermore, knowledge of the relation-
ship between defects detected by the pre-AOI machine and P&P machine errors can
aid in the transition from traditional preventive maintenance to reactive and predictive
maintenance, resulting in increased production efficiency.

The proposed scale-free MCDD model can be applied to a similar component of
a different size when the model is trained by one type of component. The findings
show that without using DOE, the identification accuracy for most root causes is greater
than 75.00% when a new component is used. The successful application of the model
indicates the model with good generalization ability. When applying the model to real-
line production, it can significantly increase production efficiency without DOE for new
components.

However, according to the results, the nozzle size branch in the scale-free MCDD
needs to be improved. According to [5], features related to the nozzle tips should be
considered in the model development.
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